WO2013073828A1 - Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same - Google Patents

Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same Download PDF

Info

Publication number
WO2013073828A1
WO2013073828A1 PCT/KR2012/009591 KR2012009591W WO2013073828A1 WO 2013073828 A1 WO2013073828 A1 WO 2013073828A1 KR 2012009591 W KR2012009591 W KR 2012009591W WO 2013073828 A1 WO2013073828 A1 WO 2013073828A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
hollow fiber
membrane
weight
hydrophilic
Prior art date
Application number
PCT/KR2012/009591
Other languages
French (fr)
Korean (ko)
Inventor
이수민
이창호
오현환
박주영
이준석
김민정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201280048355.7A priority Critical patent/CN103857462B/en
Publication of WO2013073828A1 publication Critical patent/WO2013073828A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the present invention relates to a method for producing a hydrophilic polyvinylidene fluoride-based (PVDF) hollow fiber separator, and more specifically, to prepare a spinning solution containing polyvinylidene fluoride (PVDF), a hydrophilic polymer, a specific poor solvent,
  • PVDF polyvinylidene fluoride
  • the present invention relates to a PVDF hollow fiber membrane prepared by spinning and inducing heat-induced phase transition and a method of manufacturing the same.
  • a polymer solution containing a polyvinylidene fluoride resin and a good solvent and a pore-forming agent is cast and extruded at a temperature lower than the melting point of the polyvinylidene fluoride resin.
  • Non-solvent-induced phase separation in which a porous structure is formed by spinning and solidifying in a non-solvent, is generally used.
  • the non-solvent induced phase separation method has an advantage of freely controlling the pore size, but the mechanical strength of the membrane is weak, and the surface characteristics are hydrophobic, so it is vulnerable to membrane contamination.
  • the thermally induced phase separation method is a method of manufacturing a separation membrane by using a vinylidene fluoride-based resin and a poor solvent, spinning at a temperature raised to the melting point of the polyvinylidene fluoride-based resin, cooling and solidifying.
  • Asahi Kasehi prepared a fine filtration membrane by adding inorganic fine particles as a pore-forming agent, but it is troublesome to extract the inorganic fine particles after spinning and undergo a hydrophilization process.
  • Toray is a non-solvent for preparing polyvinylidene fluoride-based ultrafiltration membranes having a double layer structure using a thermally induced phase separation method to form an inner support layer and a hydrophilic polymer solution containing a hydrophilic polymer in the outer membrane active layer. It is prepared using induction phase separation.
  • the Toray ultrafiltration membrane has a double layer structure, so that a high-strength high-molecular separation membrane can be obtained.
  • the manufacturing cost of the Toray ultrafiltration membrane is very high by using both a thermally induced phase separation method and a non-solvent induced phase separation method.
  • the Korea Research Institute of Chemical Technology Patent No.
  • 10-2009-0011655 uses a polyvinylidene fluoride-based resin containing polyacrylonitrile as a hydrophilic polymer in the method of manufacturing a polyvinylidene difluoride hollow fiber membrane, and has a tubular polymer support layer (polyester ) By using non-solvent induction phase separation method.
  • the coating film of the Korea Research Institute of Chemical Technology can produce a high strength separation membrane by using an inner support layer, but the peeling phenomenon of the coating layer occurs in the use of the separation membrane, and when the manufacture without the support layer has a disadvantage in that the strength is very weak.
  • PVDF polyvinylidene fluoride
  • Another object of the present invention is to provide a hydrophilic PVDF hollow fiber membrane having excellent mechanical strength, pore size, permeation flux and membrane fouling resistance prepared by the above method.
  • Another object of the present invention to provide a composition that can be used for the production of the hydrophilic polyvinylidene fluoride-based hollow fiber membrane.
  • One aspect of the present invention is (i) 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of a hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA); And obtaining a spinning solution containing 20 to 85 wt% of a poor solvent (poor-solvent), and (ii) spinning the spinning solution to prepare a hollow fiber membrane. It provides a method for producing a four separation membrane.
  • PVDF polyvinylidene fluoride resin
  • a hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA)
  • the PVDF is preferably used 10 to 50% by weight based on the total weight of the polymer resin, more preferably 20 to 40% by weight. If the amount of PVDF is less than 10% by weight, the strength of the hollow fiber membrane may be weakened. If the amount of the PVDF exceeds 50% by weight, the viscosity of the polymer solution may be too high, making it difficult to form the hollow fiber membrane through spinning.
  • the hydrophilic polymer is preferably used 5 to 30% by weight based on the total weight of the polymer resin, more preferably 10 to 25% by weight.
  • the hydrophilic polymer is less than 5% by weight, the membrane fouling resistance of the prepared membrane is insufficient, and when the amount of the hydrophilic polymer exceeds 30% by weight, the proportion of the hydrophilic polymer in the total polymer weight is high and the particles of the hydrophilic polymer increase. It is not preferable that the voids are small.
  • the hydrophilic polymer is preferably used at least one selected from polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA). More preferably, one or more selected from the group consisting of polyetherimide (PEI), polyimide (PI) and polyamide (PA) can be used.
  • PEI polyetherimide
  • PI polyimide
  • PA polyamide
  • CA cellulose acetate
  • hydrophilic polymer having a weight average molecular weight of 100,000 to 500,000.
  • the poor solvent is preferably used 20 to 85% by weight based on the total weight of the polymer resin, more preferably 35 to 70% by weight.
  • the poor solvent can dissolve the resin at least 5% by weight at a low temperature of 60 ° C or lower, but may be used without limitation as long as it can dissolve 5% or more in the high temperature range of 60 ° C or higher and below the melting point of the resin. It is preferable to use any one or more selected from ⁇ -butyrolactone (lactone), cyclohexanone, acetophenone, and isophorone.
  • a method of manufacturing a PVDF hollow fiber separator using the polymer resin for preparing the PVDF separator is as follows.
  • step is to obtain a spinning solution, for example, 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of hydrophilic resin and at least one solvent selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA) 20-85
  • PVDF polyvinylidene fluoride resin
  • hydrophilic resin at least one solvent selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA) 20-85
  • PEI polyetherimide
  • PI polyimide
  • PA polyamide
  • CA cellulose acetate
  • the method of uniformly melting the polymer resin for PVDF separator production is not particularly limited, but for example, a method is prepared by adding a uniform spinning solution to a continuous resin kneading apparatus such as a screw extruder or having a stirrer having a predetermined size. Uniform spinning solution can be prepared in the working liquid preparation device. At this time, the temperature of each device is preferably maintained at 120 ⁇ 180 °C.
  • the spinning solution is discharged by moving the fixed amount to the nozzle with a gear pump, and preferably cooled and solidified in the phase change tank.
  • the transfer line from the polymer resin production apparatus to the gear pump and the gear pump to the nozzle is preferably heated to reduce the heat loss of the polymer resin.
  • Next step (ii) is to spin the spinning solution to prepare a hollow fiber membrane.
  • step (ii) may be carried out by a thermally induced phase separation method.
  • the spinning solution and the internal coagulation bath may be spun from the same nozzle, thereby cooling and solidifying the spinning solution in a phase-transfer bath to prepare a hollow fiber separator.
  • the internal coagulation bath and the phase transfer bath may be used by mixing a poor solvent or a good solvent in a poor solvent or water.
  • the poor solvent is not particularly limited, but ⁇ -butyrolactone (lactone) and cyclohexanone ( It is preferable to use any one or more selected from cyclohexanone, acetophenone, and isophorone, and the good solvent is dimethylformamide, n-methyl-2-pyrrolidone, dimethylacetamide and dimethyl sulfoxide. It is preferable to use any one or more selected from.
  • the temperature of the internal coagulation bath and the phase transition bath is 0 to 80 °C and more preferably 10 to 50 °C.
  • the solidification phenomenon occurs on the surface of the hollow fiber membrane so that it is difficult to impart porosity of the hollow fiber membrane.
  • the temperature exceeds 80 ° C. the solidification occurs too slowly. As the polymer crystals become larger, the pore size may increase, and the mechanical strength may be weakened.
  • the method further comprises stretching the separator prepared in step (ii) above.
  • the drawing may be performed by drawing through a drawing machine to produce a final hollow fiber separator.
  • the stretching machine is not particularly limited to a method of increasing the mechanical strength of the hollow fiber membrane and increasing the pure water flux.
  • the moist heat stretching proceeds with rotating rolls at the front and rear ends of the stretching period, and each roll can control the rotational speed.
  • the stretching machine can use water or steam, and the temperature is preferably maintained at 80 to 90 ° C. Do.
  • the drawing step may be performed by a local drawing method in which an external stress is concentrated at a specific portion of the separator, and the stress concentration is repeated to allow the drawing operation to proceed according to hysteresis, between the seaweed bobbin and the winding bobbin. It may also be carried out by a cyclic stretching method after phase separation which is continuously circulated in the forward and reverse directions.
  • a cyclic stretching method after phase separation when the external stress acts perpendicular to the growth direction of the lamellae on the unstretched hollow fiber membrane without any external stress, the fibril structure appears in the polymer lean region and further external stress is applied. Increasing the length of the ground fibrils may increase the distance between the lamellar regions.
  • fibril may be generated at the end of the polymer chain inside the lamellae.
  • the method of the present invention is characterized in that after step (ii), the process does not include a process for coating the surface of the prepared membrane, a surface hydrophilization treatment process or a porosity imparting after treatment process.
  • the hollow fiber membrane manufactured by the method of the present invention is prepared by using a spinning solution containing a specific hydrophilic polymer and a poor solvent, and coats the surface of the separator prepared for the purpose of hydrophilization, porosity, and strength.
  • the mechanical strength is excellent on its own, the pore size is small, the permeation flow rate is high, and at the same time the membrane fouling resistance is very excellent.
  • the hollow fiber membrane after the step (ii), the hollow fiber membrane, characterized in that it does not include the step of coating the surface of the prepared membrane, the surface hydrophilization treatment process or the porous end treatment process
  • a manufacturing method is provided, which is economical and efficient by excluding certain coating, surface treatment and post treatment processes.
  • Another aspect of the present invention is to provide a hydrophilic polyvinylidene fluoride-based hollow fiber separator prepared by the above method.
  • PVDF hollow fiber membrane prepared by the above manufacturing method has excellent mechanical strength by itself, without any specific porosity post-treatment, surface treatment, or coating treatment, while having small pore size, high permeate flow rate, and very high membrane fouling resistance. great.
  • Hydrophilic PVDF hollow fiber membrane prepared by the method of the present invention is excellent in mechanical strength by forming a spherorite structure without a macrovoid as a cross-sectional structure of the membrane, the outer diameter of the hollow fiber membrane is in the range of 1 ⁇ 5 mm, the inner diameter is It has a range of 0.6 to 4.8 mm, has an average pore size of 0.1 to 0.02 ⁇ m, a pure permeate flow rate of 200 to 1200 L / m 2 hr (-500 mmHg), and a porosity of 60% or more, and exhibits excellent membrane fouling resistance.
  • PVDF polyvinylidene fluoride resin
  • hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA); And it provides a composition for producing a hydrophilic polyvinylidene fluoride-based hollow fiber membrane comprising 20 to 85% by weight of a poor solvent (poor-solvent).
  • composition for producing a hollow fiber membrane of the present invention is not used for the purpose of surface modification treatment or post-treatment, and has the use of producing the hollow fiber membrane support structure itself.
  • the composition of the present invention is 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of hydrophilic resin and at least one solvent selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA) 20-85 It is obtained by the method of mixing the weight percent, and the mixture is melted uniformly and spun to give excellent porosity and small pore size by itself, without the need for specific porosity post-treatment, surface treatment, or coating treatment.
  • a hydrophilic polyvinylidene fluoride-based hollow membrane having a high permeation flow rate and excellent membrane fouling resistance can be produced.
  • the hydrophilic resin is one or more selected from the group consisting of polyetherimide (PEI), polyimide (PI) and polyamide (PA).
  • the hydrophilic resin is preferably a weight average molecular weight of 100,000 to 500,000.
  • the poor solvent may be one or more selected from the group consisting of ⁇ - butyrolactone (lactone), cyclohexanone (cyclohexanone), acetophenone (Acetophenone) and isophorone (isophorone).
  • the present invention is prepared by using a spinning solution containing a specific hydrophilic polymer and a poor solvent by supplementing the disadvantages of the conventional non-solvent induced phase separation method and the thermally induced phase separation method of the polyvinylidene fluoride-based membrane manufacturing process and the characteristics of the prepared membrane.
  • the present invention provides a hydrophilic polyvinylidene fluoride-based hollow fiber membrane having excellent porosity, small pore size, high permeate flow rate, and high membrane fouling resistance.
  • the hydrophilic polyvinylidene fluoride-based hollow fiber membrane prepared by the method of the present invention has excellent properties in all aspects of pore size, permeate flow rate, hydrophilicity, and strength without a separate post-treatment process. It is economical and efficient because it can exclude the hydration post-treatment process.
  • FIG. 1 is a view of the film thickness, pore size and cross section of the hollow fiber membrane prepared by the method of the present invention observed with a scanning electron microscope (SEM).
  • Figure 2 is a state observed the surface state of the hollow fiber membrane prepared by the method of the present invention by a scanning electron microscope (Scanning Electron Microscope, SEM).
  • PVDF polyvinylidene fluoride resin
  • GBL ⁇ -butyrolactone
  • PEI polyetherimide
  • SABIC innovation plasitics After stirring for 12 hours in a 170 °C reactor filled with gas was transferred to a stabilizer in the same state to stabilize for 12 hours to prepare a spinning composition. Thereafter, the spinning composition and the internal coagulation bath (GBL 80% by weight, water 20% by weight) are simultaneously discharged through a nozzle to form a hollow fiber, which is immersed in the non-solvent contained in the external coagulation bath (phase transfer bath). Formed a desert.
  • the rate of pumping of the internal coagulation bath was 4.5 ml / min and the temperature was 25 ° C.
  • the discharge pressure was set to 5 kgf / cm 2 or more in the reactor, the production solution transfer pump was maintained at 30 rpm, and the gap between the nozzle and the non-solvent of the phase transfer tank was fixed at 10 cm. It was.
  • the thickness, pore size, cross section and surface state of the hollow fiber membrane prepared by the above method were measured by scanning electron microscope (Scanning Electron Microscope, SEM), and are shown in FIGS. 1 and 2, and spherical spherical lights were connected. It could be confirmed that the appearance.
  • SEM scanning Electron Microscope
  • a hollow fiber separator was manufactured in the same manner as in Example 1, except that polyimide (PI, Matrimid 5218, manufactured by Ciba Polymer, Inc.) was used instead of the polyetherimide of Example 1.
  • polyimide PI, Matrimid 5218, manufactured by Ciba Polymer, Inc.
  • a hollow fiber separator was manufactured in the same manner as in Example 1, except that polyamide (PA, Grivory G16 of EMS-Grivory Co., Ltd.) was used instead of the polyetherimide of Example 1.
  • a hollow fiber separator was manufactured in the same manner as in Example 1, except that cellulose triacetate (CTA, CA-436-80S, manufactured by EASTMAN) was used instead of the polyetherimide of Example 1.
  • CTA cellulose triacetate
  • CA-436-80S manufactured by EASTMAN
  • a hollow fiber membrane was prepared in the same manner as in Example 1, except that Acetophenone was used instead of ⁇ -butylolactone (GBL) of Example 1.
  • GBL ⁇ -butylolactone
  • a hollow fiber membrane was prepared in the same manner as in Example 1, except that isophorone was used instead of ⁇ -butylolactone (GBL) of Example 1.
  • GBL ⁇ -butylolactone
  • a hollow fiber separator was manufactured in the same manner as in Example 1, except that polyacrylonitrile (PAN, Aldrich) was used instead of the polyetherimide of Example 1.
  • PAN polyacrylonitrile
  • a hollow fiber separator was prepared in the same manner as in Example 1, but the composition was prepared by mixing 40% by weight of polyvinylidene fluoride-based resin and 60% by weight of ⁇ -butylolactone (GBL) without using a hydrophilic polymer.
  • GBL ⁇ -butylolactone
  • the hollow fiber membranes were prepared in the same manner as in Comparative Example 1 except that n-methyl-2-pyrrolidone (NMP) was stirred at 150 ° C. instead of ⁇ -butylolactone (GBL) in comparison with Comparative Example 2. Prepared.
  • a hollow fiber separator was prepared in the same manner as in Comparative Example 2, except that dimethylacetamide (DMAc) was used instead of ⁇ -butylolactone (GBL) in comparison with Comparative Example 2.
  • DMAc dimethylacetamide
  • GBL ⁇ -butylolactone
  • the hollow fiber membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 3 produced a module having a constant length and number of strands, and pure water was out at room temperature under a pressure of 1 kgf / cm 2 of TMP (Trans Membrane Pressure). Pressurized using a pressure pump in the -In method was measured.
  • TMP Trans Membrane Pressure
  • the hollow fiber membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were measured using a capillary flow porometer.
  • the hollow fiber separators prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were measured at a dynamic contact angle using KRSS K100 Tensiometers.
  • Tensile strength of the hollow fiber membrane prepared in Examples 1 to 6 and Comparative Examples 1 to 3 was measured using a micro-forcing tester.
  • Examples 1-6 secured excellent properties in all aspects of pore size, permeation flow rate, contact angle, and breaking strength, and in particular, Examples 1-3 and 5-6 were excellent.

Abstract

In general, a process manufacturing for polyvinylidene fluoride-based separation membrane and a membrane manufactured using same employ a non-solvent induced phase separation method and a thermally induced phase separation method. However, the hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane according to the present invention is manufactured using a spinning solution that contains a predetermined hydrophilic polymer and a poor solvent for excellent mechanical strength, and has small pores, a high permeation flow rate, and high membrane contamination resistance. Also, when a separation membrane for water treatment is manufactured, predetermined post-processing processes for providing porosity and hydrophilicity are eliminated, such that the separation membrane may be manufactured economically and efficiently.

Description

친수성 폴리불화비닐리덴계 중공사 분리막 및 이의 제조방법Hydrophilic Polyvinylidene Fluoride Hollow Fiber Membrane and Manufacturing Method Thereof
본 발명은 친수성 폴리불화비닐리덴계(PVDF) 중공사 분리막의 제조 방법에 관한 것으로써, 더욱 상세하게는 폴리불화비닐리덴(PVDF), 친수성 고분자, 특정 빈용매를 포함하는 방사용액을 제조하고, 이를 방사하여 열 유도 상전이 시켜서 제조한 PVDF 중공사 분리막 및 이의 제조 방법에 관한 것이다.The present invention relates to a method for producing a hydrophilic polyvinylidene fluoride-based (PVDF) hollow fiber separator, and more specifically, to prepare a spinning solution containing polyvinylidene fluoride (PVDF), a hydrophilic polymer, a specific poor solvent, The present invention relates to a PVDF hollow fiber membrane prepared by spinning and inducing heat-induced phase transition and a method of manufacturing the same.
최근 정수 및 오폐수를 처리하는 공정으로 분리막을 이용한 막분리 기술이 많이 적용되고 있다. 일반적으로 수처리에 사용되는 분리막은 오염된 원수를 여과시키면서 막 표면에 오염원이 흡착 및 성장하여 막표면에 오염이 발생하게 되는데 이러한 분리막 오염이 심하게 되면 여과 시 작용하는 수투과압력을 상승시키고 생산수량을 점차 감소시켜 궁극적으로 분리막의 여과기능이 저하된다. 이러한 분리막의 오염 제어를 위하여 염소계 및 산, 알칼리를 사용하여 세정을 하는데, 이는 분리막의 수명을 단축시키는 문제가 있기 때문에, 최근에는 내화학성이 높은 소재인 폴리불화비닐리덴계 수지를 이용하는 연구가 진행되고 있다.Recently, membrane separation technology using a separation membrane has been applied as a process for treating purified water and wastewater. In general, the membrane used for water treatment filters the contaminated raw water, and the contaminants are adsorbed and grown on the membrane surface, causing contamination on the membrane surface. If the membrane contamination becomes severe, the water permeation pressure during filtration increases and the production quantity is increased. Gradually decreasing, ultimately degrading the filtration function of the membrane. In order to control the contamination of the separator, chlorine, acid, and alkali are used for cleaning, which has a problem of shortening the life of the separator. Recently, researches using polyvinylidene fluoride resin, a material having high chemical resistance, have been conducted. It is becoming.
폴리불화비닐리덴계 수지를 소재로 하는 분리막의 제조 방법에는, 폴리불화비닐리덴계 수지를 양용매와 기공형성제를 포함하는 고분자 용액을 폴리불화비닐리덴계 수지의 융점보다 낮은 온도에서 캐스팅 및 압출 방사하여 비용매(non-solvent)에 응고시켜서 다공성 구조를 형성시킨 비용매 유도 상분리법이 일반적으로 사용되고 있다. 상기 비용매 유도 상분리법은 기공의 크기를 자유로이 조절할 수 있는 장점이 있으나, 분리막의 기계적 강도가 약하며, 표면 특성이 소수성으로 막오염에 취약한 단점이 있다.In the method of manufacturing a separator made of polyvinylidene fluoride resin, a polymer solution containing a polyvinylidene fluoride resin and a good solvent and a pore-forming agent is cast and extruded at a temperature lower than the melting point of the polyvinylidene fluoride resin. Non-solvent-induced phase separation, in which a porous structure is formed by spinning and solidifying in a non-solvent, is generally used. The non-solvent induced phase separation method has an advantage of freely controlling the pore size, but the mechanical strength of the membrane is weak, and the surface characteristics are hydrophobic, so it is vulnerable to membrane contamination.
또한, 열 유도 상분리법은 풀리불화비닐리덴계 수지와 빈용매를 사용하며 폴리불화비닐리덴계 수지의 용융점까지 올린 온도에서 방사하여 냉각 고화하여 분리막을 제조하는 방법이다. 상기 열유도 상분리법에 있어 아사히카세히는 무기 미립자를 기공형성제로 첨가하여 정밀여과막을 제조하였으나 방사 후 무기 미립자를 추출하고 친수화 공정을 거치는 번거로움이 있다. 반면 도레이는 2중층 구조의 폴리불화비닐리덴계 한외여과막 제조에 있어 열유도 상분리법을 이용하여 내부의 지지층을 형성하고 외부의 분리막 활성층에 친수성 고분자를 포함하는 폴리불화비닐리덴계 수지 용액을 비용매 유도 상분리법을 이용하여 제조하고 있다. 상기 도레이 한외여과막은 2중층 구조를 형성하고 있어 고강도의 고유량의 분리막을 얻을 수는 있지만 제조 방법에 있어 열유도 상분리법과 비용매 유도 상분리법을 모두 사용하여 제조 비용이 매우 높아지는 단점이 있다. 반면 한국화학연구원(공개특허 10-2009-0011655)은 폴리비닐리덴디플루오라이드 중공사막의 제조 방법에 있어 친수성 고분자로 폴리아크릴로니트릴을 포함하는 폴리불화비닐리덴계 수지를 튜브형 고분자 지지층(폴리에스터)에 코팅하여 비용매 유도 상분리법을 이용하여 제고하고 있다. 상기 한국화학연구원의 코팅막은 내부 지지층의 사용으로 고강도의 분리막을 제조 할 수는 있지만, 분리막의 사용에 있어 코팅층의 박리 현상이 발생하며, 지지층 없이 제조할 경우 파단 강도가 매우 약해지는 단점이 있다.In addition, the thermally induced phase separation method is a method of manufacturing a separation membrane by using a vinylidene fluoride-based resin and a poor solvent, spinning at a temperature raised to the melting point of the polyvinylidene fluoride-based resin, cooling and solidifying. In the heat-induced phase separation method, Asahi Kasehi prepared a fine filtration membrane by adding inorganic fine particles as a pore-forming agent, but it is troublesome to extract the inorganic fine particles after spinning and undergo a hydrophilization process. Toray, on the other hand, is a non-solvent for preparing polyvinylidene fluoride-based ultrafiltration membranes having a double layer structure using a thermally induced phase separation method to form an inner support layer and a hydrophilic polymer solution containing a hydrophilic polymer in the outer membrane active layer. It is prepared using induction phase separation. The Toray ultrafiltration membrane has a double layer structure, so that a high-strength high-molecular separation membrane can be obtained. However, the manufacturing cost of the Toray ultrafiltration membrane is very high by using both a thermally induced phase separation method and a non-solvent induced phase separation method. On the other hand, the Korea Research Institute of Chemical Technology (Patent No. 10-2009-0011655) uses a polyvinylidene fluoride-based resin containing polyacrylonitrile as a hydrophilic polymer in the method of manufacturing a polyvinylidene difluoride hollow fiber membrane, and has a tubular polymer support layer (polyester ) By using non-solvent induction phase separation method. The coating film of the Korea Research Institute of Chemical Technology can produce a high strength separation membrane by using an inner support layer, but the peeling phenomenon of the coating layer occurs in the use of the separation membrane, and when the manufacture without the support layer has a disadvantage in that the strength is very weak.
최근 산업계에서는 기계적 강도가 우수하면서, 기공크기가 작고 투과유량이 높으며 막오염 저항성이 높은 분리막을 경제적으로 제조하는 방법에 대한 요구가 증가하고 있다.In recent years, there is an increasing demand for a method of economically manufacturing a separator having excellent mechanical strength, small pore size, high permeate flow rate, and high membrane fouling resistance.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
본 발명자들은 기계적 강도가 우수하면서, 기공크기가 작고 투과유량이 높으며 막오염 저항성이 높은 분리막을 경제적으로 제조하는 방법의 개발을 위하여 예의 연구 노력하였고, 그 결과 폴리불화비닐리덴(PVDF) 및 빈용매를 포함하는 방사용액에 특정의 친수성 고분자를 첨가하고, 이를 방사하여 열 유도 상전이 시키는 방법에 의하여, 추후 표면 개질 처리 내지 표면 코팅처리 없이도 기계적 강도, 기공크기, 투과유량 및 막오염 저항성의 모든 측면에서 매우 우수한 PVDF 중공사 분리막을 제조 해냄으로써, 본 발명을 완성하게 되었다.The present inventors earnestly researched for the development of a method for economically producing a membrane having excellent mechanical strength, small pore size, high permeate flow rate, and high membrane fouling resistance, and as a result, polyvinylidene fluoride (PVDF) and poor solvent By adding a specific hydrophilic polymer to the spinning solution containing, and spinning it by thermal induced phase transition, in terms of mechanical strength, pore size, permeate flow rate and membrane fouling resistance in the future without surface modification treatment or surface coating treatment By producing a very good PVDF hollow fiber membrane, the present invention has been completed.
따라서 본 발명의 목적은 기계적 강도, 기공크기, 투과유량 및 막오염 저항성이 모두 우수한 친수성 PVDF계 중공사 분리막의 제조방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a method for producing a hydrophilic PVDF hollow fiber membrane having excellent mechanical strength, pore size, permeation flux and membrane fouling resistance.
본 발명의 다른 목적은 상기 방법에 의하여 제조한 기계적 강도, 기공크기, 투과유량 및 막오염 저항성이 모두 우수한 친수성 PVDF계 중공사 분리막을 제공하는 데 있다.Another object of the present invention is to provide a hydrophilic PVDF hollow fiber membrane having excellent mechanical strength, pore size, permeation flux and membrane fouling resistance prepared by the above method.
본 발명의 또 다른 목적은 상기 친수성 폴리불화비닐리덴계 중공사 분리막의 제조를 위해 사용할 수 있는 조성물을 제공하는 데 있다.Another object of the present invention to provide a composition that can be used for the production of the hydrophilic polyvinylidene fluoride-based hollow fiber membrane.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 하나의 관점은 (i) 폴리불화비닐리덴계 수지(PVDF) 10 내지 60 중량%; 폴리에테르이미드(PEI), 폴리이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)로 구성된 군으로부터 일 이상 선택되는 친수성 수지 5-30 중량%; 및 빈용매(poor-solvent) 20 내지 85 중량%를 포함하는 방사용액을 취득하는 단계, 및(ii) 상기 방사용액을 방사하여 중공사 분리막을 제조하는 단계를 포함하는 친수성 폴리불화비닐리덴계 중공사 분리막의 제조방법을 제공하는 것이다.One aspect of the present invention is (i) 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of a hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA); And obtaining a spinning solution containing 20 to 85 wt% of a poor solvent (poor-solvent), and (ii) spinning the spinning solution to prepare a hollow fiber membrane. It provides a method for producing a four separation membrane.
상기 PVDF는 고분자 수지 전체 중량에 대하여 10 ~ 50 중량%를 사용하는 것이 바람직하며, 더욱 상게하게는 20 ~ 40 중량%를 사용하는 것이 바람직하다. 상기 PVDF 사용량이 10 중량% 미만이면 중공사막의 경우 강도가 약해질 수 있으며, 50 중량%를 초과하는 경우에는 고분자 용액의 점도가 너무 높아 방사를 통한 중공사 분리막 성형이 어려운 문제가 있다.The PVDF is preferably used 10 to 50% by weight based on the total weight of the polymer resin, more preferably 20 to 40% by weight. If the amount of PVDF is less than 10% by weight, the strength of the hollow fiber membrane may be weakened. If the amount of the PVDF exceeds 50% by weight, the viscosity of the polymer solution may be too high, making it difficult to form the hollow fiber membrane through spinning.
상기 친수성 고분자는 고분자 수지 전체 중량에 대하여 5 ~ 30 중량%를 사용하는 것이 바람직하며, 더욱 상세하게는 10 ~ 25 중량%를 사용하는 것이 바람직하다. 이 때, 상기 친수성 고분자 사용량이 5 중량% 미만이면 제조된 분리막의 막오염 저항성이 미비하며, 30 중량%를 초과하는 경우에는 전체 고분자 중량에서 친수성 고분자가 차지하는 비율이 높아 친수성 고분자의 입자가 커지면서 분리막의 공극이 작아짐으로 바람직하지 않다. The hydrophilic polymer is preferably used 5 to 30% by weight based on the total weight of the polymer resin, more preferably 10 to 25% by weight. In this case, when the amount of the hydrophilic polymer is less than 5% by weight, the membrane fouling resistance of the prepared membrane is insufficient, and when the amount of the hydrophilic polymer exceeds 30% by weight, the proportion of the hydrophilic polymer in the total polymer weight is high and the particles of the hydrophilic polymer increase. It is not preferable that the voids are small.
상기 친수성 고분자는 폴리에테르이미드(PEI), 폴리 이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하다. 보다 바람직하게는 폴리에테르이미드(PEI), 폴리이미드(PI) 및 폴리아마이드(PA)로 구성된 군으로부터 일 이상 선택되는 것을 사용할 수 있다.The hydrophilic polymer is preferably used at least one selected from polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA). More preferably, one or more selected from the group consisting of polyetherimide (PEI), polyimide (PI) and polyamide (PA) can be used.
또한, 상기 친수성 고분자는 중량평균분자량이 100,000 ~ 500,000인 것을 사용하는 것이 바람직하다.In addition, it is preferable to use the hydrophilic polymer having a weight average molecular weight of 100,000 to 500,000.
상기 빈용매는 고분자 수지 전체 중량에 대하여 20 ~ 85 중량%를 사용하는 것이 바람직하며, 더욱 상세하게는 35 ~ 70 중량%를 사용하는 것이 바람직하다. 여기에서 빈용매란, 수지를 60℃이하의 저온에서는 5 중량% 이상 용해시킬 수 있지만, 60℃이상이면서 수지의 융점 이하의 고온 영역에서 5 중량% 이상 용해시킬 수 있는 것이라면 제한 없이 사용될 수 있지만, γ-부틸로락톤(lactone), 시크로헥사논(cyclohexanone), 아세토페논(Acetophenone), 아이소포론(isophorone)에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하다.The poor solvent is preferably used 20 to 85% by weight based on the total weight of the polymer resin, more preferably 35 to 70% by weight. Here, the poor solvent can dissolve the resin at least 5% by weight at a low temperature of 60 ° C or lower, but may be used without limitation as long as it can dissolve 5% or more in the high temperature range of 60 ° C or higher and below the melting point of the resin. It is preferable to use any one or more selected from γ-butyrolactone (lactone), cyclohexanone, acetophenone, and isophorone.
이하에서는 상기 PVDF 분리막 제조용 고분자 수지를 이용하여 PVDF 중공사 분리막을 제조하는 방법에 대해서 설명하면 다음과 같다.Hereinafter, a method of manufacturing a PVDF hollow fiber separator using the polymer resin for preparing the PVDF separator is as follows.
(i) 단계는 방사용액을 취득하는 단계로서, 예컨대 폴리불화비닐리덴계 수지(PVDF) 10 내지 60 중량%; 폴리에테르이미드(PEI), 폴리이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)로 구성된 군으로부터 일 이상 선택되는 친수성 수지 5-30 중량% 및 빈용매(poor-solvent) 20 내지 85 중량%를 혼합하고, 상기 PVDF 분리막 제조용 고분자 수지를 120 ~180℃로 가열하여 균일하게 용융하여 방사용액을 제조하는 방법에 의하여 수행될 수 있다.(i) step is to obtain a spinning solution, for example, 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of hydrophilic resin and at least one solvent selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA) 20-85 The weight% may be mixed, and the polymer resin for preparing the PVDF separator may be uniformly melted by heating to 120 to 180 ° C. to prepare a spinning solution.
상기 PVDF 분리막 제조용 고분자 수지를 균일하게 용융하는 방법은 특별히 한정되는 것은 아니지만, 예를 들면 스크루식 압출기 등의 연속식 수지혼련 장치에 투입하여 균일한 방사용액을 제조하거나 일정 크기의 교반기가 구비된 방사용액 제조 장치에서 균일한 방사 용액을 제조 할 수 있다. 이때 각 장치의 온도는 120 ~ 180 ℃로 유지하는 것이 바람직하다.The method of uniformly melting the polymer resin for PVDF separator production is not particularly limited, but for example, a method is prepared by adding a uniform spinning solution to a continuous resin kneading apparatus such as a screw extruder or having a stirrer having a predetermined size. Uniform spinning solution can be prepared in the working liquid preparation device. At this time, the temperature of each device is preferably maintained at 120 ~ 180 ℃.
상기 방사용액은 기어 펌프로 정량을 노즐로 이동하여 방사되며, 상전이 조에서 냉각 고화되는 것이 바람직하다. 이때 고분자 수지 제조 장치로부터 기어 펌프까지 또한 기어펌프에서 노즐까지의 이송라인은 고분자 수지의 열 손실을 줄이기 위해 이송라인을 가열해 주는 것이 바람직하다.The spinning solution is discharged by moving the fixed amount to the nozzle with a gear pump, and preferably cooled and solidified in the phase change tank. In this case, the transfer line from the polymer resin production apparatus to the gear pump and the gear pump to the nozzle is preferably heated to reduce the heat loss of the polymer resin.
그 다음 단계 (ii)는 상술한 방사용액을 방사하여 중공사 분리막을 제조하는 단계이다.Next step (ii) is to spin the spinning solution to prepare a hollow fiber membrane.
구체예에서, 상기 단계 (ii)는 열유도 상분리법에 의하여 수행될 수 있다. 예컨대, 상기 방사용액과 내부응고욕을 같은 노즐에서 방사시켜서 상전이조에서 방사용액을 냉각 고화시켜서 중공사 분리막을 제조하는 방법에 의하여 수행될 수 있다. In embodiments, step (ii) may be carried out by a thermally induced phase separation method. For example, the spinning solution and the internal coagulation bath may be spun from the same nozzle, thereby cooling and solidifying the spinning solution in a phase-transfer bath to prepare a hollow fiber separator.
상기 내부응고욕과 상전이조는 빈용매 또는 물에 빈용매 또는 양용매을 혼합하여 사용할 수 있다, 이때 상기 빈용매로는 특별한 제한이 있는 것은 아니나, Γ-부틸로락톤(lactone), 시크로헥사논(cyclohexanone), 아세토페논(Acetophenone), 아이소포론(isophorone)에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하며, 양용매는 디메틸포름아마이드, n-메틸-2-피롤리돈, 디메틸아세트아마이드 및 디메틸설폭사이드에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하다.The internal coagulation bath and the phase transfer bath may be used by mixing a poor solvent or a good solvent in a poor solvent or water. In this case, the poor solvent is not particularly limited, but Γ-butyrolactone (lactone) and cyclohexanone ( It is preferable to use any one or more selected from cyclohexanone, acetophenone, and isophorone, and the good solvent is dimethylformamide, n-methyl-2-pyrrolidone, dimethylacetamide and dimethyl sulfoxide. It is preferable to use any one or more selected from.
또한 상기 내부응고욕과 상전이조의 온도는 0 ~ 80℃로 하며 더욱 상세하게는 10 ~ 50℃로 하는 것이 바람직하다. 이때, 상기 내부응고욕과 상전이조의 온도가 0℃보다 급속 냉각이 이루어지기 때문에 중공사 분리막 표면에 지나치게 빠른 고화 현상이 일어나서 중공사 분리막의 기공률을 부여하기 어렵고 80℃를 초과하면 고화가 지나치게 천천히 일어나서 고분자 결정이 커지게 되며 그에 따라 기공의 크기가 커지고, 기계적 강도가 약해지는 문제가 있을 수 있다.In addition, the temperature of the internal coagulation bath and the phase transition bath is 0 to 80 ℃ and more preferably 10 to 50 ℃. At this time, since the internal coagulation bath and the phase transition bath are rapidly cooled than 0 ° C., the solidification phenomenon occurs on the surface of the hollow fiber membrane so that it is difficult to impart porosity of the hollow fiber membrane. When the temperature exceeds 80 ° C., the solidification occurs too slowly. As the polymer crystals become larger, the pore size may increase, and the mechanical strength may be weakened.
바람직한 구체예에서, 본 발명의 방법은 상기 단계 (ii)에서 제조된 분리막을 연신하는 단계를 추가적으로 포함한다. In a preferred embodiment, the method further comprises stretching the separator prepared in step (ii) above.
상기 연신하는 단계는 연신기를 통하여 연신하여 최종 중공사 분리막을 제조하는 것에 의해 수행될 수 있다.The drawing may be performed by drawing through a drawing machine to produce a final hollow fiber separator.
상기 연신기는 중공사 분리막의 기계적 강도를 높이고, 순수투과유량을 증가시키는 방법으로 특별히 한정되는 것은 아니다. 예를 들면 습열 연신은 연시기 앞단과 뒷단에 회전 롤로 진행하며, 각 롤은 회전속도를 제어 할 수 있다, 또한 연신기는 물 또는 증기를 사용할 수 있으며, 온도는 80 ~ 90℃로 유지하는 것이 바람직하다. 또한 연신 배율은 1배 이상 5배 이하로 하는 것이 바람직하다.The stretching machine is not particularly limited to a method of increasing the mechanical strength of the hollow fiber membrane and increasing the pure water flux. For example, the moist heat stretching proceeds with rotating rolls at the front and rear ends of the stretching period, and each roll can control the rotational speed. In addition, the stretching machine can use water or steam, and the temperature is preferably maintained at 80 to 90 ° C. Do. Moreover, it is preferable to make draw ratio 1 to 5 times.
상기 연신 단계는 분리막의 특정부위에 외부 응력이 집중되도록 하고, 이 응력 집중이 반복되게 함으로써 이력현상에 따른 연신작업이 진행되도록 하는 국부연신법에 의해 수행될 수도 있고, 해사보빈과 권취보빈 사이에서 연속적으로 정방향과 역방향으로 순환하며 연신시키는 상분리후 순환연신법에 의해 수행될 수도 있다. 상분리후 순환연신법을 사용하는 경우, 외부 응력이 전혀 가해지지 않은 미연신 중공사막에 외부응력이 라멜라의 성장방향에 수직으로 작용하면 피브릴구조가 고분자 희박영역에서 나타나고, 그 이상의 외부응력이 가해지면 피브릴의 길이가 증가하여 라멜라 영역간의 거리가 멀어질 수 있다. 또한, 외부응력이 라멜라의 성장방향과 일정각을 가지고 가해지는 경우, 라멜라 내부의 고분자 사슬의 말단에서 피브릴이 발생될 수 있다.The drawing step may be performed by a local drawing method in which an external stress is concentrated at a specific portion of the separator, and the stress concentration is repeated to allow the drawing operation to proceed according to hysteresis, between the seaweed bobbin and the winding bobbin. It may also be carried out by a cyclic stretching method after phase separation which is continuously circulated in the forward and reverse directions. In the case of using the cyclic stretching method after phase separation, when the external stress acts perpendicular to the growth direction of the lamellae on the unstretched hollow fiber membrane without any external stress, the fibril structure appears in the polymer lean region and further external stress is applied. Increasing the length of the ground fibrils may increase the distance between the lamellar regions. In addition, when the external stress is applied at a certain angle with the growth direction of the lamellae, fibril may be generated at the end of the polymer chain inside the lamellae.
구체예에서, 본 발명의 방법은 상기 단계 (ii) 이후에, 제조된 분리막의 표면을 코팅하는 공정, 표면 친수화 처리 공정 또는 다공성 부여 후처리 공정을 포함하지 않는 것을 특징으로 한다.In an embodiment, the method of the present invention is characterized in that after step (ii), the process does not include a process for coating the surface of the prepared membrane, a surface hydrophilization treatment process or a porosity imparting after treatment process.
고분자 중공사막의 강도와 수투과량은 반비례 관계에 있기 때문에 동시에 성능을 높이는 것은 어려운 일이다. 그 동안에는 고투과수율 또는 고강도를 얻기 위하여, 표면 개질 처리나 후처리를 하거나 또는 우선 브레이드(braid)형태의 고분자 섬유 지지층을 제조한 후 그 위에 친수성 고분자를 코팅하는 방법을 사용하여 표면 처리 내지 코팅을 수행하여왔다. 그러나 이러한 방법은 2step 이상의 중공사막 제조 과정이 발생하여, 제조비용이나 시간이 오래 걸린다는 단점이 있다.Since the strength of the polymer hollow fiber membrane and the water permeation rate are inversely related, it is difficult to increase the performance at the same time. In the meantime, in order to obtain a high permeability or high strength, surface modification or post-treatment or surface treatment or coating may be performed by first preparing a braided polymer fiber support layer and then coating a hydrophilic polymer thereon. Has been. However, this method has a disadvantage in that the manufacturing process of the hollow fiber membrane of 2 steps or more takes place, and the manufacturing cost or time is long.
본 발명의 방법에 의하여 제조된 중공사막은, 특정 친수성 고분자와 빈용매를 포함하는 방사용액을 이용하여 제조한 것으로서, 친수화, 다공성부여, 강도부여 등의 목적을 위하여 제조된 분리막의 표면을 코팅하거나, 표면처리 내지 후처리를 하지 않아도, 그 자체로서 기계적 강도가 우수하면서, 기공크기가 작고 투과유량이 높으며 동시에 막오염 저항성이 매우 우수하다. The hollow fiber membrane manufactured by the method of the present invention is prepared by using a spinning solution containing a specific hydrophilic polymer and a poor solvent, and coats the surface of the separator prepared for the purpose of hydrophilization, porosity, and strength. In addition, even without surface treatment or post treatment, the mechanical strength is excellent on its own, the pore size is small, the permeation flow rate is high, and at the same time the membrane fouling resistance is very excellent.
따라서, 본 발명의 일 구현예로서, 상기 단계 (ii) 이후에, 제조된 분리막의 표면을 코팅하는 공정, 표면 친수화 처리 공정 또는 다공성 부여 후처리 공정을 포함하지 않는 것을 특징으로 하는 중공사 분리막 제조방법이 제공되며, 이 방법은 특정 코팅공정, 표면처리공정 내지 후처리 공정을 배제함으로써 경제성과 효율성 갖는다.Therefore, as an embodiment of the present invention, after the step (ii), the hollow fiber membrane, characterized in that it does not include the step of coating the surface of the prepared membrane, the surface hydrophilization treatment process or the porous end treatment process A manufacturing method is provided, which is economical and efficient by excluding certain coating, surface treatment and post treatment processes.
본 발명의 다른 관점은 상기 방법에 의하여 제조된 친수성 폴리불화비닐리덴계 중공사 분리막을 제공하는 것이다.Another aspect of the present invention is to provide a hydrophilic polyvinylidene fluoride-based hollow fiber separator prepared by the above method.
이상의 제조 방법으로 제조된 PVDF 중공사 분리막은 특정 다공성 부여 후처리, 표면 처리, 또는 코팅 처리 등을 하지 않아도 그 자체로서 기계적 강도가 우수하면서, 기공크기가 작고 투과유량이 높으며 동시에 막오염 저항성이 매우 우수하다.PVDF hollow fiber membrane prepared by the above manufacturing method has excellent mechanical strength by itself, without any specific porosity post-treatment, surface treatment, or coating treatment, while having small pore size, high permeate flow rate, and very high membrane fouling resistance. great.
본 발명의 방법에 의하여 제조된 친수성 PVDF 중공사 분리막은 막의 단면 구조로 메크로보이드가 없는 스페럴라이트 구조를 형성하여 기계적 강도가 우수하며, 중공사 분리막의 외경은 1 ~ 5 mm범위이고, 내경은 0.6 ~ 4.8 mm범위를 나타내며, 평균기공크기 0.1 ~ 0.02 ㎛, 순수투과유량 200 ~ 1200 L/㎡ hr(-500mmHg), 기공률 60% 이상을 가지며 막오염 저항성이 우수한 특징을 나타낸다.Hydrophilic PVDF hollow fiber membrane prepared by the method of the present invention is excellent in mechanical strength by forming a spherorite structure without a macrovoid as a cross-sectional structure of the membrane, the outer diameter of the hollow fiber membrane is in the range of 1 ~ 5 mm, the inner diameter is It has a range of 0.6 to 4.8 mm, has an average pore size of 0.1 to 0.02 μm, a pure permeate flow rate of 200 to 1200 L / m 2 hr (-500 mmHg), and a porosity of 60% or more, and exhibits excellent membrane fouling resistance.
본 발명의 또 다른 관점은 폴리불화비닐리덴계 수지(PVDF) 10 내지 60 중량%; 폴리에테르이미드(PEI), 폴리이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)로 구성된 군으로부터 일 이상 선택되는 친수성 수지 5-30 중량%; 및 빈용매(poor-solvent) 20 내지 85 중량%를 포함하는 친수성 폴리불화비닐리덴계 중공사 분리막 제조용 조성물을 제공하는 것이다.Another aspect of the invention is 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of a hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA); And it provides a composition for producing a hydrophilic polyvinylidene fluoride-based hollow fiber membrane comprising 20 to 85% by weight of a poor solvent (poor-solvent).
본 발명의 중공사 분리막 제조용 조성물은 표면 개질 처리나 후처리의 목적으로서 사용되는 것이 아니며, 중공사 분리막 지지구조 자체를 제조하는 용도를 갖는 것을 그 특징으로 한다. The composition for producing a hollow fiber membrane of the present invention is not used for the purpose of surface modification treatment or post-treatment, and has the use of producing the hollow fiber membrane support structure itself.
본 발명의 조성물은 폴리불화비닐리덴계 수지(PVDF) 10 내지 60 중량%; 폴리에테르이미드(PEI), 폴리이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)로 구성된 군으로부터 일 이상 선택되는 친수성 수지 5-30 중량% 및 빈용매(poor-solvent) 20 내지 85 중량%를 혼합하는 방법에 의해 얻어지며, 상기 혼합물을 균일하게 용융하고 이를 방사하여 특정 다공성 부여 후처리, 표면 처리, 또는 코팅 처리 등을 하지 않아도 그 자체로서 기계적 강도가 우수하면서, 기공크기가 작고 투과유량이 높으며 동시에 막오염 저항성이 매우 우수한 친수성 폴리불화비닐리덴계 중공막을 제조할 수 있다.The composition of the present invention is 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of hydrophilic resin and at least one solvent selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA) 20-85 It is obtained by the method of mixing the weight percent, and the mixture is melted uniformly and spun to give excellent porosity and small pore size by itself, without the need for specific porosity post-treatment, surface treatment, or coating treatment. A hydrophilic polyvinylidene fluoride-based hollow membrane having a high permeation flow rate and excellent membrane fouling resistance can be produced.
구체예에서, 제9항에 있어서, 상기 친수성 수지는 폴리에테르이미드(PEI), 폴리이미드(PI) 및 폴리아마이드(PA)로 구성된 군으로부터 일 이상 선택되는 것이다. 또한 상기 상기 친수성 수지는 중량평균분자량이 100,000 내지 500,000인 것을 사용하는 것이 바람직하다.In an embodiment, the hydrophilic resin is one or more selected from the group consisting of polyetherimide (PEI), polyimide (PI) and polyamide (PA). In addition, the hydrophilic resin is preferably a weight average molecular weight of 100,000 to 500,000.
또한 상기 빈용매는 γ-부틸로락톤(lactone), 시크로헥사논(cyclohexanone), 아세토페논(Acetophenone) 및 아이소포론(isophorone)으로 구성된 군으로부터 일 이상 선택되는 것일 수 있다.In addition, the poor solvent may be one or more selected from the group consisting of γ- butyrolactone (lactone), cyclohexanone (cyclohexanone), acetophenone (Acetophenone) and isophorone (isophorone).
본 발명은 종래의 비용매 유도 상분리법과 열 유도 상분리법의 폴리불화비닐리덴계 분리막 제조 공정상 및 제조된 막의 특성 등의 단점을 보완하여 특정 친수성 고분자와 빈용매를 포함하는 방사용액을 이용하여 제조한, 기계적 강도가 우수하면서, 기공크기가 작고 투과유량이 높으며 막오염 저항성이 높은 친수성 폴리불화비닐리덴계 중공사 분리막을 제공한다. The present invention is prepared by using a spinning solution containing a specific hydrophilic polymer and a poor solvent by supplementing the disadvantages of the conventional non-solvent induced phase separation method and the thermally induced phase separation method of the polyvinylidene fluoride-based membrane manufacturing process and the characteristics of the prepared membrane. In addition, the present invention provides a hydrophilic polyvinylidene fluoride-based hollow fiber membrane having excellent porosity, small pore size, high permeate flow rate, and high membrane fouling resistance.
또한, 본 발명의 방법에 의하여 제조한 친수성 폴리불화비닐리덴계 중공사 분리막은 별도의 후처리 공정 없이도 기공크기, 투과유량, 친수성 및 강도의 모든 측면 우수한 성질을 가지는바 특정 다공성 부여 후처리 및 친수화 부여 후처리 공정을 배제할 수 있으므로 경제적이고 효율적이다.In addition, the hydrophilic polyvinylidene fluoride-based hollow fiber membrane prepared by the method of the present invention has excellent properties in all aspects of pore size, permeate flow rate, hydrophilicity, and strength without a separate post-treatment process. It is economical and efficient because it can exclude the hydration post-treatment process.
도 1은 본 발명의 방법으로 제조한 중공사 분리막의 막 두께, 공극크기 및 단면을 주사전자현미경(Scanning Electron Microscope, SEM)으로 관찰한 모습이다.1 is a view of the film thickness, pore size and cross section of the hollow fiber membrane prepared by the method of the present invention observed with a scanning electron microscope (SEM).
도 2는 본 발명의 방법으로 제조한 중공사 분리막의 표면상태를 주사전자현미경(Scanning Electron Microscope, SEM)으로 관찰한 모습이다.Figure 2 is a state observed the surface state of the hollow fiber membrane prepared by the method of the present invention by a scanning electron microscope (Scanning Electron Microscope, SEM).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples in accordance with the gist of the present invention to those skilled in the art. Will be self explanatory.
실시예Example
<실시예 1><Example 1>
폴리불화비닐리덴계 수지(PVDF, 솔베이사 solef 6010) 35 중량%, γ-뷰틸로락톤(GBL) 55 중량%, 폴리에테르이미드(PEI, SABIC innovation plasitics사 ULTEM 1010) 10 중량%를 혼합하여 질소 가스로 충진된 170℃ 반응기에서 12시간 교반 후 같은 상태의 안정조에 이송시켜 12시간 동안 안정화시켜 방사 조성물을 준비하였다. 이 후, 노즐을 통해서 방사 조성물과 내부 응고욕(GBL 80 중량%, 물 20 중량%)을 동시에 토출하여 중공사 형태로 성형을 하고, 외부 응고욕(상전이조)에 담긴 비용매에 침지하여 중공사막을 형성하였다. 상기 비용매는 순수한 물을 사용하였으며, 내부 응고욕의 정량펌프 속도는 4.5 ㎖/min, 온도는 25℃에서 진행되었다. 상기 방사 용액을 이송하기 위해 반응기내 질소압을 5 kgf/cm2 이상으로 토출압을 설정하고, 제조 용액 이송 펌프는 30 rpm으로 유지시켰으며, 노즐과 상전이조의 비용매 사이의 간격은 10cm로 고정하였다.35% by weight of polyvinylidene fluoride resin (PVDF, solef 6010), 55% by weight of γ-butyrolactone (GBL), 10% by weight of polyetherimide (PEI, ULTEM 1010) from SABIC innovation plasitics After stirring for 12 hours in a 170 ℃ reactor filled with gas was transferred to a stabilizer in the same state to stabilize for 12 hours to prepare a spinning composition. Thereafter, the spinning composition and the internal coagulation bath (GBL 80% by weight, water 20% by weight) are simultaneously discharged through a nozzle to form a hollow fiber, which is immersed in the non-solvent contained in the external coagulation bath (phase transfer bath). Formed a desert. Pure water was used as the nonsolvent, and the rate of pumping of the internal coagulation bath was 4.5 ml / min and the temperature was 25 ° C. In order to transfer the spinning solution, the discharge pressure was set to 5 kgf / cm 2 or more in the reactor, the production solution transfer pump was maintained at 30 rpm, and the gap between the nozzle and the non-solvent of the phase transfer tank was fixed at 10 cm. It was.
상기 방법으로 제조한 중공사 분리막의 막 두께, 공극크기, 단면 및 표면상태를 주사전자현미경(Scanning Electron Microscope, SEM)에 의하여 측정한 후 도 1과 2에 나타내었으며, 구형의 스페럴라이트들이 연결되어 있는 모양임을 확인할 수 있었다. 또한 제조된 중공사 분리막의 기본 물성은 <실험예>의 방법으로 측정하여 표 1에 나타내었다.The thickness, pore size, cross section and surface state of the hollow fiber membrane prepared by the above method were measured by scanning electron microscope (Scanning Electron Microscope, SEM), and are shown in FIGS. 1 and 2, and spherical spherical lights were connected. It could be confirmed that the appearance. In addition, the basic physical properties of the manufactured hollow fiber membranes are shown in Table 1 measured by the method of <Experimental Example>.
<실시예 2><Example 2>
실시예 1의 폴리에테르이미드 대신에 폴리이미드(PI, Ciba polymer사 Matrimid 5218)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 중공사 분리막을 제조하였다.A hollow fiber separator was manufactured in the same manner as in Example 1, except that polyimide (PI, Matrimid 5218, manufactured by Ciba Polymer, Inc.) was used instead of the polyetherimide of Example 1.
<실시예 3><Example 3>
실시예 1의 폴리에테르이미드 대신에 폴리아마이드(PA, EMS-Grivory사 Grivory G16)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 중공사 분리막을 제조하였다.A hollow fiber separator was manufactured in the same manner as in Example 1, except that polyamide (PA, Grivory G16 of EMS-Grivory Co., Ltd.) was used instead of the polyetherimide of Example 1.
<실시예 4><Example 4>
실시예 1의 폴리에테르이미드 대신에 셀룰로스 트리아세테이트(CTA, EASTMAN사 CA-436-80S)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 중공사 분리막을 제조하였다.A hollow fiber separator was manufactured in the same manner as in Example 1, except that cellulose triacetate (CTA, CA-436-80S, manufactured by EASTMAN) was used instead of the polyetherimide of Example 1.
<실시예 5>Example 5
실시예 1의 γ-뷰틸로락톤(GBL) 대신에 아세토페논(Acetophenone)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 중공사 분리막을 제조하였다.A hollow fiber membrane was prepared in the same manner as in Example 1, except that Acetophenone was used instead of γ-butylolactone (GBL) of Example 1.
<실시예 6><Example 6>
실시예 1의 γ-뷰틸로락톤(GBL) 대신에 아이소포론(isophorone)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 중공사 분리막을 제조하였다. A hollow fiber membrane was prepared in the same manner as in Example 1, except that isophorone was used instead of γ-butylolactone (GBL) of Example 1.
<비교예 1>Comparative Example 1
실시예 1의 폴리에테르이미드 대신에 폴리아크릴로니트릴(PAN, Aldrich사)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 중공사 분리막을 제조하였다. A hollow fiber separator was manufactured in the same manner as in Example 1, except that polyacrylonitrile (PAN, Aldrich) was used instead of the polyetherimide of Example 1.
<비교예 2>Comparative Example 2
실시예 1과 같은 방법으로 중공사 분리막을 제조하나, 조성이 친수성 고분자를 사용하지 않고 폴리불화비닐리덴계 수지 40 중량%, γ-뷰틸로락톤(GBL) 60 중량%를 혼합하여 제조하였다. A hollow fiber separator was prepared in the same manner as in Example 1, but the composition was prepared by mixing 40% by weight of polyvinylidene fluoride-based resin and 60% by weight of γ-butylolactone (GBL) without using a hydrophilic polymer.
<비교예 3>Comparative Example 3
비교예 2와 비교하여 γ-뷰틸로락톤(GBL) 대신에 n-메틸-2-피롤리돈(NMP)을 150℃에서 교반하는 것을 제외하고는, 비교예 1과 동일한 방법으로 중공사 분리막을 제조하였다.The hollow fiber membranes were prepared in the same manner as in Comparative Example 1 except that n-methyl-2-pyrrolidone (NMP) was stirred at 150 ° C. instead of γ-butylolactone (GBL) in comparison with Comparative Example 2. Prepared.
<비교예 4><Comparative Example 4>
비교예 2와 비교하여 γ-뷰틸로락톤(GBL) 대신에 디메틸아세트아마이드(DMAc)을 사용한 것을 제외하고는, 비교예 2과 동일한 방법으로 중공사 분리막을 제조하였다.A hollow fiber separator was prepared in the same manner as in Comparative Example 2, except that dimethylacetamide (DMAc) was used instead of γ-butylolactone (GBL) in comparison with Comparative Example 2.
<실험예 > Experimental Example
1. 순수투과유량 측정 1. Pure Permeate Flow Measurement
상기 실시예 1 ~ 6 및 비교예 1 ~ 3에서 제조된 중공사 분리막을 일정한 길이와 가닥수를 갖는 모듈을 자체 제조하여 순수를 TMP(Trans Membrane Pressure) 1 kgf/cm2의 압력으로 상온에서 Out-In 방식으로 가압펌프를 사용하여 가압하여 측정하였다.The hollow fiber membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 3 produced a module having a constant length and number of strands, and pure water was out at room temperature under a pressure of 1 kgf / cm 2 of TMP (Trans Membrane Pressure). Pressurized using a pressure pump in the -In method was measured.
2. 평균기공크기 측정2. Average pore size measurement
상기 실시예 1 ~ 6 및 비교예 1 ~ 3에서 제조된 중공사 분리막을 모세관 유동 공극측정기(Capillary Flow Porometer)를 사용하여 측정하였다.The hollow fiber membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were measured using a capillary flow porometer.
3. 접촉각 측정3. Contact angle measurement
상기 실시예 1 ~ 6 및 비교예 1 ~ 3에서 제조된 중공사 분리막을 KRSS K100 표면장력측정기(Tensiometers)를 사용하여 동적 접촉각(dynamic contact angle)으로 측정하였다.The hollow fiber separators prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were measured at a dynamic contact angle using KRSS K100 Tensiometers.
4. 인장강도 측정4. Tensile strength measurement
상기 실시예 1 ~ 6 및 비교예 1 ~ 3에서 제조된 중공사 분리막의 인장강도는 미세인장강도시험기(Micro - Forcing Tester)를 사용하여 측정하였다. Tensile strength of the hollow fiber membrane prepared in Examples 1 to 6 and Comparative Examples 1 to 3 was measured using a micro-forcing tester.
제조한 중공사 분리막의 기본 물성을 상기 시험예와 같이 측정하고, 그 결과를 아래 표 1에 나타내었다.The basic physical properties of the manufactured hollow fiber membranes were measured in the same manner as in Test Example, and the results are shown in Table 1 below.
표 1
구분 조성 (중량 %) 평균기공 크기(㎛) 순수투과유량(L/m2h at 1kgf/cm2, 25℃) 접촉각(o) 파단강도(MPa)
폴리불화비닐리덴계 수지 친수성 고분자 빈용매
실시예 1 35 PEI 10 GBL 55 0.03 430 74.4 7.5
실시예 2 35 PI 10 GBL 55 0.01 210 78.9 7.2
실시예 3 35 PA 10 GBL 55 0.01 240 86.4 6.9
실시예 4 35 CTA 10 GBL 55 0.05 270 69.7 5.3
실시예 5 35 PEI 10 아세토페논 10 0.02 380 72.2 7.8
실시예 6 35 PEI 10 아이소포론 10 0.02 320 75.1 7.4
비교예 1 35 PAN 10 GBL 55 0.05 220 70.6 3.5
비교예 2 40 - GBL 60 0.09 1,240 95.7 8.4
비교예 3 40 - NMP 60 0.01 140 90.8 4.1
비교예 4 40 - DMAc 60 0.01 120 93 4.5
Table 1
division Composition (% by weight) Average pore size (㎛) Pure water flux (L / m 2 h at 1kgf / cm 2 , 25 ℃) Contact angle ( o ) Breaking strength (MPa)
Polyvinylidene fluoride resin Hydrophilic polymer Poor solvent
Example 1 35 PEI 10 GBL 55 0.03 430 74.4 7.5
Example 2 35 PI 10 GBL 55 0.01 210 78.9 7.2
Example 3 35 PA 10 GBL 55 0.01 240 86.4 6.9
Example 4 35 CTA 10 GBL 55 0.05 270 69.7 5.3
Example 5 35 PEI 10 Acetophenone 10 0.02 380 72.2 7.8
Example 6 35 PEI 10 Isophorone 10 0.02 320 75.1 7.4
Comparative Example 1 35 PAN 10 GBL 55 0.05 220 70.6 3.5
Comparative Example 2 40 - GBL 60 0.09 1,240 95.7 8.4
Comparative Example 3 40 - NMP 60 0.01 140 90.8 4.1
Comparative Example 4 40 - DMAc 60 0.01 120 93 4.5
실험 결과, 실시예 1-6은 기공크기, 투과유량, 접촉각 및 파단강도의 모든 측면 우수한 성질이 확보되었으며, 특히 실시예 1-3 및 5-6이 우수하였다.As a result of the experiment, Examples 1-6 secured excellent properties in all aspects of pore size, permeation flow rate, contact angle, and breaking strength, and in particular, Examples 1-3 and 5-6 were excellent.

Claims (12)

  1. (i) 폴리불화비닐리덴계 수지(PVDF) 10 내지 60 중량%; 폴리에테르이미드(PEI), 폴리이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)로 구성된 군으로부터 일 이상 선택되는 친수성 수지 5-30 중량%; 및 빈용매(poor-solvent) 20 내지 85 중량%를 포함하는 방사용액을 취득하는 단계, 및(i) 10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of a hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA); And obtaining a spinning solution containing 20 to 85 wt% of a poor solvent, and
    (ii) 상기 방사용액을 방사하여 중공사 분리막을 제조하는 단계(ii) spinning the spinning solution to produce a hollow fiber membrane
    를 포함하는 친수성 폴리불화비닐리덴계 중공사 분리막의 제조방법.Method for producing a hydrophilic polyvinylidene fluoride-based hollow fiber membrane comprising a.
  2. 제1항에 있어서, 상기 단계 (ii)는 열유도 상분리법에 의하여 수행되는 것을 특징으로 하는 방법.The method of claim 1, wherein step (ii) is carried out by thermally induced phase separation.
  3. 제1항에 있어서, 상기 단계 (ii)에서 제조된 분리막을 연신하는 단계를 추가적으로 포함하는 것을 특징으로 하는 방법.The method of claim 1, further comprising stretching the separator prepared in step (ii).
  4. 제1항에 있어서, 상기 단계 (ii) 이후에, 제조된 분리막의 표면을 코팅하는 공정, 표면 친수화 처리 공정 또는 다공성 부여 후처리 공정을 포함하지 않는 것을 특징으로 하는 방법.The method of claim 1, wherein after step (ii), the method does not include a process for coating the surface of the prepared separator, a surface hydrophilization treatment process, or a porosity post-treatment process.
  5. 제1항에 있어서, 상기 친수성 수지는 폴리에테르이미드(PEI), 폴리이미드(PI) 및 폴리아마이드(PA)로 구성된 군으로부터 일 이상 선택되는 것인 방법.The method of claim 1, wherein the hydrophilic resin is selected from one or more of the group consisting of polyetherimide (PEI), polyimide (PI), and polyamide (PA).
  6. 제1항에 있어서, 상기 친수성 수지는 중량평균분자량이 100,000 내지 500,000인 것을 특징으로 하는 방법. The method of claim 1, wherein the hydrophilic resin has a weight average molecular weight of 100,000 to 500,000.
  7. 제1항에 있어서, 상기 빈용매는 γ-부틸로락톤(lactone), 시크로헥사논(cyclohexanone), 아세토페논(Acetophenone) 및 아이소포론(isophorone)으로 구성된 군으로부터 일 이상 선택되는 것인 방법.The method of claim 1, wherein the poor solvent is at least one selected from the group consisting of γ-butyrolactone (cyclotone), cyclohexanone, acetophenone and isophorone.
  8. 제1항 내지 제7항 중 어느 한 항의 방법에 의하여 제조된 친수성 폴리불화비닐리덴계 중공사 분리막.A hydrophilic polyvinylidene fluoride-based hollow fiber separator prepared by the method of any one of claims 1 to 7.
  9. 폴리불화비닐리덴계 수지(PVDF) 10 내지 60 중량%; 폴리에테르이미드(PEI), 폴리이미드(PI), 폴리아마이드(PA) 및 셀룰로스 아세테이트(CA)로 구성된 군으로부터 일 이상 선택되는 친수성 수지 5-30 중량%; 및 빈용매(poor-solvent) 20 내지 85 중량%를 포함하는 친수성 폴리불화비닐리덴계 중공사 분리막 제조용 조성물.10 to 60% by weight of polyvinylidene fluoride resin (PVDF); 5-30% by weight of a hydrophilic resin selected from the group consisting of polyetherimide (PEI), polyimide (PI), polyamide (PA) and cellulose acetate (CA); And 20 to 85 wt% of a poor solvent (poor-solvent). A composition for preparing a hydrophilic polyvinylidene fluoride-based hollow fiber separator.
  10. 제9항에 있어서, 상기 친수성 수지는 폴리에테르이미드(PEI), 폴리이미드(PI) 및 폴리아마이드(PA)로 구성된 군으로부터 일 이상 선택되는 것인 조성물.The composition of claim 9, wherein the hydrophilic resin is selected from one or more of the group consisting of polyetherimide (PEI), polyimide (PI), and polyamide (PA).
  11. 제9항에 있어서, 상기 친수성 수지는 중량평균분자량이 100,000 내지 500,000인 것을 특징으로 하는 조성물.The composition of claim 9, wherein the hydrophilic resin has a weight average molecular weight of 100,000 to 500,000.
  12. 제9항에 있어서, 상기 빈용매는 γ-부틸로락톤(lactone), 시크로헥사논(cyclohexanone), 아세토페논(Acetophenone) 및 아이소포론(isophorone)으로 구성된 군으로부터 일 이상 선택되는 것인 조성물.The composition of claim 9, wherein the poor solvent is at least one selected from the group consisting of γ-butyrolactone (lactone), cyclohexanone, acetophenone and isophorone.
PCT/KR2012/009591 2011-11-16 2012-11-14 Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same WO2013073828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280048355.7A CN103857462B (en) 2011-11-16 2012-11-14 Hydrophilicity kynoar system hollow fiber separating film and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110119649A KR101462939B1 (en) 2011-11-16 2011-11-16 Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
KR10-2011-0119649 2011-11-16

Publications (1)

Publication Number Publication Date
WO2013073828A1 true WO2013073828A1 (en) 2013-05-23

Family

ID=48429841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009591 WO2013073828A1 (en) 2011-11-16 2012-11-14 Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR101462939B1 (en)
CN (1) CN103857462B (en)
WO (1) WO2013073828A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495347A (en) * 2013-10-15 2014-01-08 山东招金膜天有限责任公司 Continuous TIPS (thermally induced phase separation) film forming device and process
CN103861481A (en) * 2014-04-03 2014-06-18 陕西科技大学 Method for preparing polyvinylidene-fluoride porous membrane
US9492785B2 (en) 2013-12-16 2016-11-15 Sabic Global Technologies B.V. UV and thermally treated polymeric membranes
US9522364B2 (en) 2013-12-16 2016-12-20 Sabic Global Technologies B.V. Treated mixed matrix polymeric membranes
CN106637493A (en) * 2016-09-23 2017-05-10 江西师范大学 Nylon 66/PVDF (Polyvinylidene Fluoride)/PEO (Polyethylene Oxide)/boric acid composite nano-fibers and preparation method thereof
CN111013400A (en) * 2019-12-30 2020-04-17 安徽普朗膜技术有限公司 Method for preparing polyvinylidene fluoride tubular membrane by low-temperature thermal induced phase method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101661671B1 (en) * 2013-06-28 2016-09-30 제일모직 주식회사 A method for manufacturing porous separators for use of secondary cell using nano steam, separators made by the method, and secondary cell
CN104209016B (en) * 2014-07-30 2017-02-08 昆明理工大学 Magnetic electric filtering membrane and preparation method thereof
CN104857866B (en) * 2015-05-18 2017-06-16 上海交通大学 A kind of method for preparing hydrophilic modifying polyvinylidene fluoride film
JP6791945B2 (en) * 2016-03-09 2020-11-25 旭化成株式会社 Porous hollow fiber membrane, its manufacturing method, and filtration method
KR102281508B1 (en) * 2016-06-24 2021-07-26 도레이 카부시키가이샤 Composite porous hollow fiber membrane, manufacturing method of composite porous hollow fiber membrane, operating method of composite porous hollow fiber membrane module and composite porous hollow fiber membrane module
TWI740635B (en) 2020-09-09 2021-09-21 財團法人工業技術研究院 Polyvinylidene fluoride film composition, and polyvinylidene fluoride isolation film
CN112316756A (en) * 2020-11-12 2021-02-05 艾克飞膜材(嘉兴)有限公司 High-strength and high-retention TIPS hollow fiber membrane and preparation method thereof
CN114849500B (en) * 2022-05-17 2023-02-10 江苏艾乐膜科技有限公司 Preparation method of hydrophilized modified hollow fiber ultrafiltration membrane based on TIPS method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515322A (en) * 1998-05-18 2002-05-28 ユーエスエフ・フィルトレイション・アンド・セパレイションズ・グループ・インコーポレイテッド Highly porous polyvinylidene difluoride membrane
KR20080057637A (en) * 2006-12-20 2008-06-25 에스케이케미칼주식회사 Method for manufacturing polyvinylidene fluoride hollow fiber membrane and hollow fiber membrane
KR20090037963A (en) * 2006-08-10 2009-04-16 가부시키가이샤 구라레 Porous membrane of vinylidene fluoride resin and process for producing the same
JP2010094670A (en) * 2008-09-19 2010-04-30 Toray Ind Inc Polyvinylidene fluoride-based multiple membrane and method for producing the same
KR20100114808A (en) * 2009-04-16 2010-10-26 주식회사 파라 Method for asymmetric microporous hollow fiber membrane
KR20110052244A (en) * 2009-11-12 2011-05-18 한국화학연구원 Novel polymer resin of polyvinylidenefluoride type hollow fiber membrane, pvdf hollow fiber membrane with resistant membrane-pollution and preparing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724412B2 (en) * 2001-11-02 2005-12-07 東レ株式会社 Hollow fiber membrane manufacturing method and hollow fiber membrane module
US7338692B2 (en) * 2003-09-12 2008-03-04 3M Innovative Properties Company Microporous PVDF films
JP4623626B2 (en) * 2004-01-30 2011-02-02 日東電工株式会社 Porous membrane and method for producing the same
CN1281301C (en) * 2004-09-30 2006-10-25 浙江大学 Method for preparing for polyvinylidene fluoride hollow fiber microporous film by melt spinning-pull stretching method
CN101269302B (en) * 2008-05-06 2011-08-31 南京奥特高科技有限公司 Non-crystallization permanent hydrophilic PVDF membrane material and preparation method thereof
CN101342468B (en) * 2008-08-22 2011-09-14 清华大学 Preparation method for beta crystal phase polyvinylidene fluoride hollow fiber porous membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515322A (en) * 1998-05-18 2002-05-28 ユーエスエフ・フィルトレイション・アンド・セパレイションズ・グループ・インコーポレイテッド Highly porous polyvinylidene difluoride membrane
KR20090037963A (en) * 2006-08-10 2009-04-16 가부시키가이샤 구라레 Porous membrane of vinylidene fluoride resin and process for producing the same
KR20080057637A (en) * 2006-12-20 2008-06-25 에스케이케미칼주식회사 Method for manufacturing polyvinylidene fluoride hollow fiber membrane and hollow fiber membrane
JP2010094670A (en) * 2008-09-19 2010-04-30 Toray Ind Inc Polyvinylidene fluoride-based multiple membrane and method for producing the same
KR20100114808A (en) * 2009-04-16 2010-10-26 주식회사 파라 Method for asymmetric microporous hollow fiber membrane
KR20110052244A (en) * 2009-11-12 2011-05-18 한국화학연구원 Novel polymer resin of polyvinylidenefluoride type hollow fiber membrane, pvdf hollow fiber membrane with resistant membrane-pollution and preparing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495347A (en) * 2013-10-15 2014-01-08 山东招金膜天有限责任公司 Continuous TIPS (thermally induced phase separation) film forming device and process
CN103495347B (en) * 2013-10-15 2016-05-25 山东招金膜天有限责任公司 A kind of continuous thermally induced phase separation film formation device and film-forming process
US9492785B2 (en) 2013-12-16 2016-11-15 Sabic Global Technologies B.V. UV and thermally treated polymeric membranes
US9522364B2 (en) 2013-12-16 2016-12-20 Sabic Global Technologies B.V. Treated mixed matrix polymeric membranes
CN103861481A (en) * 2014-04-03 2014-06-18 陕西科技大学 Method for preparing polyvinylidene-fluoride porous membrane
CN106637493A (en) * 2016-09-23 2017-05-10 江西师范大学 Nylon 66/PVDF (Polyvinylidene Fluoride)/PEO (Polyethylene Oxide)/boric acid composite nano-fibers and preparation method thereof
CN106637493B (en) * 2016-09-23 2018-11-09 江西师范大学 Nylon66 fiber/PVDF/PEO/ boric acid composite nano fibers and preparation method thereof
CN111013400A (en) * 2019-12-30 2020-04-17 安徽普朗膜技术有限公司 Method for preparing polyvinylidene fluoride tubular membrane by low-temperature thermal induced phase method

Also Published As

Publication number Publication date
KR20130053933A (en) 2013-05-24
CN103857462B (en) 2016-08-24
CN103857462A (en) 2014-06-11
KR101462939B1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2013073828A1 (en) Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same
JP4050977B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
KR102031395B1 (en) Composite hollow fibre membrane with compatible braided support filaments
US7455772B2 (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
WO2010021474A2 (en) Porous membrane and preparation method thereof
WO2011037354A2 (en) Fluorine-based hollow-fibre membrane and a production method therefor
US20080156722A1 (en) Porous hollow-yarn membrane of vinylidene fluoride resin
KR20070113375A (en) Asymmetric poly(vinylidene fluoride) hollow fiber membranes and methods to make membranes
WO2012177058A2 (en) Pressurized hollow fiber membrane module
KR20090013643A (en) Polyvinylidene difluoride hollow fiber membrane for water treatment and manufacturing method thereof
KR101494053B1 (en) Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
WO2011126001A1 (en) Process for production of porous membrane
WO2014112689A1 (en) Method for manufacturing hydrophilized hollow fiber membrane by continuous process using extruder
WO2012074222A9 (en) Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
WO2016072554A1 (en) Porous hollow fiber membrane and method for manufacturing same
WO2014098322A1 (en) Hollow-fibre membrane having novel structure, and production method therefor
KR20160081612A (en) PVDF porous hollow fiber membrane and the preparing method thereof
CN101890303B (en) Hollow fibrous membrane with asymmetrical structure and preparation method thereof
KR20070113374A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of spherical particles containing polymeric nanofibers
KR20070103187A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of both fibril and nodular structures
KR20100079630A (en) Ultrafiltration membranes with improved water permeability and mechanical strength and manufacturing method thereof
KR20070102011A (en) Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes
WO2013147525A1 (en) Porous membrane and method for manufacturing the same
KR101556009B1 (en) Multilayered hollow fiber membrane having improved impact strength and thermal resistance and preparing method of the same
KR20130040625A (en) Polyvinylidenefluoride hollow fiber membrane with secondary barrier for water treatment and preparation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848903

Country of ref document: EP

Kind code of ref document: A1