WO2013073631A1 - 冷却ファン制御装置 - Google Patents

冷却ファン制御装置 Download PDF

Info

Publication number
WO2013073631A1
WO2013073631A1 PCT/JP2012/079688 JP2012079688W WO2013073631A1 WO 2013073631 A1 WO2013073631 A1 WO 2013073631A1 JP 2012079688 W JP2012079688 W JP 2012079688W WO 2013073631 A1 WO2013073631 A1 WO 2013073631A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
cooling fan
switching
reverse
rotation
Prior art date
Application number
PCT/JP2012/079688
Other languages
English (en)
French (fr)
Inventor
幸次 兵藤
淳志 島津
勇 青木
田中 哲二
圭吾 菊池
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP12850060.0A priority Critical patent/EP2781713B1/en
Priority to US14/358,324 priority patent/US9458758B2/en
Priority to CN201280055959.4A priority patent/CN103946505B/zh
Priority to KR1020147012671A priority patent/KR20140099236A/ko
Publication of WO2013073631A1 publication Critical patent/WO2013073631A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P5/043Pump reversing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4043Control of a bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4061Control related to directional control valves, e.g. change-over valves, for crossing the feeding conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4165Control of cooling or lubricating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • B60K2025/026Auxiliary drives directly from an engine shaft by a hydraulic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating

Definitions

  • the present invention relates to a cooling fan control device.
  • a work vehicle equipped with a cooling fan for blowing cooling air to a heat exchanger such as a radiator is known.
  • a cooling fan for blowing cooling air to a heat exchanger such as a radiator.
  • dust is sent to the heat exchanger together with the cooling air, which causes clogging.
  • the cooling fan control apparatus which can remove a dust by rotating a cooling fan reversely and making a ventilation direction reverse is proposed (refer patent document 1).
  • a discharge pressure (hydraulic motor) of a hydraulic pump is set against a relief valve with a variable set pressure.
  • the control signal for lowering the pressure at the inlet side to the switching pressure is output, and after the time necessary for the rotational speed of the hydraulic motor to decrease, a control signal for rotating the hydraulic motor in the reverse direction is output. Thereafter, a control signal for increasing the discharge side pressure of the hydraulic pump to the reverse pressure is output to the variable relief valve.
  • the cooling fan control device described in Patent Document 1 is configured to output a control signal for rotating the hydraulic motor in the reverse direction after a lapse of time necessary for the rotational speed of the hydraulic motor to decrease. Therefore, a control signal for rotating the hydraulic motor in the reverse direction is output even when the rotational speed of the hydraulic motor does not sufficiently decrease within a necessary time due to malfunction of the controller or the variable relief valve.
  • the cooling fan control device is driven by an engine-driven hydraulic pump and pressure oil discharged from the hydraulic pump, and the cooling fan blows cooling air to the heat exchanger. Detects the discharge pressure of the hydraulic pump, the direction switching valve that switches the flow direction of the discharge oil from the hydraulic pump to reverse the hydraulic motor, the variable relief valve that controls the discharge pressure of the hydraulic pump, and the hydraulic pump A pressure sensor that rotates, a rotation direction changeover switch for changing the rotation direction of the cooling fan, and the rotation direction changeover switch when operated in the reverse direction when the cooling fan is rotating forward, the set relief pressure of the variable relief valve Is reduced to a predetermined lower limit value over a predetermined time, and the discharge pressure of the hydraulic pump detected by the pressure sensor is decreased to a predetermined switching pressure.
  • a control unit that switches the direction switching valve to control the flow direction of the pressure oil to the hydraulic motor in the reverse direction and increases the set relief pressure of the variable relief valve to the set pressure for reverse rotation of the hydraulic motor over a predetermined time.
  • the control unit is variable when the rotation direction selector switch is operated to the forward rotation side when the cooling fan is rotated in the reverse direction.
  • the relief pressure setting relief pressure is lowered to a prescribed lower limit over a prescribed period of time, and after the discharge pressure of the hydraulic pump detected by the pressure sensor has dropped to a predetermined switching pressure, the direction switching valve is switched to the hydraulic motor.
  • the control unit determines whether or not the connection state between the variable relief valve and the control unit is normal.
  • connection state determination unit for determining whether the connection state is not normal by the connection state determination unit, and when the cooling fan is rotating forward, the rotation direction selector switch is set to the reverse rotation side. It is preferable to maintain the current direction of rotation of the cooling fan without switching the direction switching valve.
  • the pressure increase in the hydraulic circuit can be suppressed during the reversing operation of the cooling fan, the durability of each part in the hydraulic circuit is not deteriorated and Smooth reverse rotation is possible.
  • the side view of the wheel loader which is an example of a working vehicle.
  • the flowchart which shows the processing content about the inversion operation
  • FIG. 1 is a side view of a wheel loader that is an example of a work vehicle on which the cooling fan control device according to the present embodiment is mounted.
  • the wheel loader 100 includes a front vehicle body 110 having an arm 111, a bucket 112, a tire 113, and the like, and a rear vehicle body 120 having an operator cab 121, an engine compartment 122, a tire 123, and the like.
  • the engine compartment 122 is covered with a building cover 131.
  • a counterweight 124 is attached to the rear of the rear vehicle body 120.
  • the arm 111 is rotated in the vertical direction by driving an arm cylinder (not shown), and the bucket 112 is rotated in the vertical direction by driving the bucket cylinder 115.
  • the front vehicle body 110 and the rear vehicle body 120 are pivotally connected to each other by a center pin 101, and the front vehicle body 110 is refracted to the left and right with respect to the rear vehicle body 120 by expansion and contraction of the steering cylinder 116.
  • a radiator frame 135 and a cooling fan unit 150 are disposed behind the building cover 131.
  • the radiator frame 135 is attached with a radiator 6 that cools the cooling water of the engine 1 and an oil cooler 7 that cools the hydraulic oil, as shown in FIG.
  • the radiator frame 135 is fixed to the rear vehicle body 120.
  • the cooling fan unit 150 includes a cooling fan 4 driven by the fan motor 3 and a fan shroud 151 shown in FIG. 2 to be described later, and is disposed behind the radiator frame 135.
  • the side and top surfaces of the radiator frame 135 and the cooling fan unit 150 are covered with a cooler building cover 132 (FIG. 1).
  • the cooler building cover 132 is opened at the rear, and is covered by a grill 140 that can be opened and closed.
  • the grill 140 is a cover provided with a plurality of openings so that intake air or exhaust air from the cooling fan 4 is circulated to the outside.
  • FIG. 2 is a diagram showing a schematic configuration of a cooling system of the wheel loader 100.
  • the wheel loader 100 includes an engine 1, an auxiliary hydraulic pump 2 driven by the engine 1, a fan motor 3 driven by pressure oil discharged from the hydraulic pump 2, and a cooling fan rotated by the fan motor 3. 4 is provided.
  • the rotational speed of the engine 1 increases as the amount of depression of the accelerator pedal 15 increases.
  • the fan motor 3 is driven by pressure oil supplied from the hydraulic pump 2 and rotates the cooling fan 4 for blowing cooling air to the radiator 6 and the oil cooler 7.
  • the wheel loader 100 includes a changeover switch 19 for changing the rotation direction of the cooling fan 4 and a direction changeover valve 5 for changing the flow direction of the discharge oil from the hydraulic pump 2 to rotate the fan motor 3 forward and backward.
  • the direction switching valve 5 is an electromagnetic switching valve, and is switched to the L position (forward rotation side) or the M position (reverse rotation side) by the operation of the changeover switch 19 in the cab 121.
  • the changeover switch 19 When the changeover switch 19 is turned off, the direction switching valve 5 is switched to the L position (forward rotation side), and the pressure oil from the hydraulic pump 2 is supplied to the fan motor 3 via the pipelines L1 and L2, and the fan The motor 3 and the cooling fan 4 rotate in the forward direction.
  • the oil supplied to the fan motor 3 returns to the tank 10 via the pipelines L3 and L4.
  • the changeover switch 19 is turned on, the direction switching valve 5 is switched to the M position (reverse rotation side), and the pressure oil from the hydraulic pump 2 is supplied to the fan motor 3 via the pipe lines L1 and L3. 3 and the cooling fan 4 rotate in the opposite direction.
  • the oil supplied to the fan motor 3 returns to the tank 10 via the pipe lines L2, L4.
  • a variable relief valve 23 is interposed.
  • a pressure sensor 14 for detecting the pump discharge pressure Pp is provided in the discharge line L1 of the hydraulic pump 2. Information on the pump discharge pressure Pp detected by the pressure sensor 14 is input to the controller 17.
  • the controller 17 includes an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits. On / off operation information from the changeover switch 19 is input to the controller 17. The controller 17 outputs a switching signal to the direction switching valve 5 based on the on / off operation information of the input selector switch 19 and controls the switching position of the direction switching valve 5.
  • the controller 17 is connected to the relief valve 23 via the control line 20.
  • the relief valve 23 is an electromagnetic variable relief valve that defines the maximum pressure of the pressure oil supplied from the hydraulic pump 2 to the fan motor 3 in accordance with the output current value (indicated value) from the controller 17.
  • the pump discharge pressure Pp is controlled.
  • the controller 17 controls a set relief pressure of the relief valve 23 (hereinafter referred to as a relief set pressure). That is, the controller 17 can control the rotational speed of the fan motor 3 by controlling the pump discharge pressure Pp that is the inlet side pressure of the fan motor 3.
  • the controller 17 is connected to the relief valve 23 via the control line 21, and the controller 17 detects the feedback current value from the relief valve 23.
  • the wheel loader 100 includes a working hydraulic pump that is driven by the engine 1, a control valve that controls pressure oil discharged from the working hydraulic pump, and a working hydraulic cylinder (for example, a bucket cylinder 115, Arm cylinder).
  • the control valve is driven by operating an operation lever (not shown), and can drive the actuator in accordance with the operation amount of the operation lever.
  • the controller 17 normally controls the direction switching valve 5 to switch to the L position (forward rotation side) so that the fan motor 3 rotates normally when the engine 1 is operated.
  • the fan motor 3 is rotated forward by the pressure oil supplied from the hydraulic pump 2.
  • cooling air is blown from the cooling fan 4 toward the radiator 6 and the oil cooler 7 as shown by an arrow 12 in FIG. 2, and the engine 1 is cooled by heat exchange with the cooling air. Water and hydraulic oil are cooled.
  • the fan motor 3 can be reversed, and the outside air is blown from the direction opposite to the normal blowing direction, so that dust accumulated in the air passage is blown away and removed. I can do it. As a result, the performance of the radiator 6 and the oil cooler 7 can be maintained.
  • the controller 17 controls the direction switching valve 5 to switch to the M position (reverse rotation side).
  • the fan motor 3 is reversed by the pressure oil supplied from the hydraulic pump 2.
  • the fan motor 3 is reversed, that is, the cooling fan 4 is reversed, outside air is blown to the radiator 6 and the oil cooler 7 in the opposite direction as indicated by an arrow 13 in FIG.
  • the changeover switch 19 when the changeover switch 19 is turned on, the set pressure of the relief valve 23 is changed, the pump discharge pressure Pp is reduced, and the rotational speed of the fan motor 3 is sufficiently reduced.
  • the direction switching valve 5 is controlled to be switched to the M position (reverse rotation side).
  • a ROM or RAM of the controller 17 stores a table for controlling the set pressure of the relief valve 23 (see FIG. 3).
  • the controller 17 refers to these tables according to the conditions, and outputs an output current value to the relief valve 23 so as to change the relief set pressure based on the referenced tables.
  • Each of the times T 1-3 , T 3-4 , T 4-3 , T 3-1 is determined to be, for example, about 2 to 3 seconds so that the relief pressure is stably lowered or raised.
  • the forward rotation setting pressure (P1) and the reverse rotation setting pressure (P4) are determined according to the specifications of the cooling fan 4.
  • the normal rotation set pressure (P1) is a set pressure for causing the cooling fan 4 to rotate forward at the rated rotational speed Nr.
  • the set pressure for reverse rotation (P4) is a set pressure for rotating the cooling fan 4 in reverse at the rated rotation speed Nr.
  • the cooling fan 4 has a smaller air flow rate when it is reversely rotated at the rated rotational speed Nr than the air flow rate when it is normally rotated at the rated rotational speed Nr.
  • Such a cooling fan 4 has lower air resistance during reverse rotation than air resistance during forward rotation.
  • a switching pressure (P2) is stored as a threshold value used for determining whether or not the pump discharge pressure Pp detected by the pressure sensor 14 has sufficiently decreased.
  • the switching pressure (P2) is determined in advance so that the fan motor 3 can sufficiently decelerate and the reversing operation can be performed smoothly.
  • Controller 17 reverses cooling fan 4 after sufficiently reducing the discharge pressure of hydraulic pump 2 by controlling each part as follows.
  • FIG. 4 is a flowchart showing the processing contents of the reversing operation of the cooling fan 4 as described above.
  • FIG. 5 is a time chart for explaining the operating state for the reversing operation for reversely rotating the cooling fan 4 during normal rotation
  • FIG. 6 is for explaining the operating state for the reversing operation for normal rotating the cooling fan 4 during reverse rotation. It is a time chart.
  • step S101 the controller 17 determines whether the changeover switch 19 is turned on or off. If the changeover switch 19 is turned off, the controller 17 moves the direction changeover valve 5 to the L position (positive position) so that the cooling fan 4 rotates forward. And the relief set pressure is set to the normal rotation set pressure (P1). On the other hand, when the changeover switch 19 is turned on, the direction switching valve 5 is switched to the M position (reverse side) so that the cooling fan 4 rotates in the reverse direction, and the relief set pressure is set to the reverse set pressure (P4). ).
  • step S101 the controller 17 outputs corresponding to the relief valve 23 so that the relief set pressure becomes the forward rotation set pressure (P1) or the reverse rotation set pressure (P4) based on the on / off operation information of the changeover switch 19.
  • the current value (instruction value) Ai is output.
  • step S102 information on the feedback current value Af input from the relief valve 23 to the controller 17 via the control line 21, and information on the rotation direction of the cooling fan 4, that is, on / off operation information on the changeover switch 19 are obtained.
  • the process proceeds to step S106.
  • step S106 it is determined whether or not the connection state of the connection lines (control lines 20 and 21) between the controller 17 and the relief valve 23 is normal.
  • the controller 17 compares the current value (indicated value) Ai output to the relief valve 23 in step S101 with the feedback current value Af returned to the controller 17 from the relief valve 23 detected in step S102.
  • the controller 17 determines that the disconnection state, that is, normal.
  • the difference between the output current value Ai and the feedback current value Af is equal to or larger than the predetermined value At (
  • step S106 If an affirmative determination is made in step S106, that is, if the connection state of the connection lines (control lines 20, 21) between the controller 17 and the relief valve 23 is determined to be normal, the process proceeds to step S111.
  • step S111 it is determined from the on / off operation information of the changeover switch 19 detected in step S101 whether or not the cooling fan 4 is controlled to rotate forward.
  • step S111 If an affirmative determination is made in step S111, that is, if it is determined that the cooling fan 4 is controlled so as to rotate normally, the process proceeds to step S116, and the changeover switch 19 is turned on (operated on the reverse side). In other words, it is determined whether or not the switch 19 has been turned on.
  • step S116 If an affirmative determination is made in step S116, that is, if it is determined that the changeover switch 19 is turned on to reversely rotate the cooling fan 4 rotating in the forward direction at the rated rotational speed Nr, the process proceeds to step S121.
  • step S121 referring to the table shown in FIG. 3A, the relief set pressure is decreased over a predetermined time from the normal rotation set pressure (P1) to the switching set pressure (P3) in accordance with a preset characteristic.
  • a control signal (current value Ai) is output to the relief valve 23.
  • the relief set pressure decreases from the forward setting pressure (P1) to the switching setting pressure (P3) between time T1 and time T3.
  • the control signal (current value Ai) is input to the relief valve 23. Therefore, the pump discharge pressure Pp decreases as the relief set pressure decreases.
  • step S123 information on the discharge pressure Pp of the hydraulic pump 2 detected by the pressure sensor 14 is acquired.
  • step S126 the detected pump discharge pressure Pp is the switching pressure. It is determined whether or not P2 or less (Pp ⁇ P2).
  • step S126 If an affirmative determination is made in step S126, that is, if the pump discharge pressure Pp is determined to be P2 or less (Pp ⁇ P2), the process proceeds to step S131. If a negative determination is made in step S126, that is, if it is determined that the pump discharge pressure Pp is greater than P2, the process returns to step S123 to acquire information on the pump discharge pressure Pp. That is, in step S121, the controller 17 performs control to decrease the relief set pressure over a predetermined time until the switching set pressure (P3), and monitors the pump discharge pressure Pp, and responds to the decrease in the relief set pressure. It is determined whether or not the pump discharge pressure Pp has decreased to the switching pressure (P2).
  • the controller 17 outputs a switching signal (current or voltage) to the direction switching valve 5 to control the direction switching valve 5 to the M position (in order to control the flow direction of the pressure oil to the fan motor 3 in the reverse direction in step S131.
  • a timer built in the controller 17 starts counting. As shown in FIG. 5, at time T2, when the pressure sensor 14 detects that the pump discharge pressure Pp has decreased to P2 or less and the switching control of the direction switching valve 5 is executed, the spool (Not shown) begins to move. The inlet side pressure Pp of the fan motor 3 decreases to P3 or less due to undershoot, and then increases with the movement of the spool of the direction switching valve 5 and temporarily exceeds the relief set pressure. There is no sudden rise to a pressure at which an excessive load acts on the relief valve 23 and the fan motor 3.
  • step S141 the controller 17 determines whether or not the measurement time t by the timer is equal to or longer than a predetermined set time T (t ⁇ T).
  • step S141 If an affirmative determination is made in step S141, that is, if it is determined that the measurement time t by the timer is equal to or greater than the set time T (t ⁇ T), the process proceeds to step S146.
  • step S146 referring to the table shown in FIG. 3B, the relief set pressure rises from the switching set pressure (P3) to the reverse set pressure (P4) over a predetermined time according to the preset characteristics. Then, a control signal (current value Ai) is output to the relief valve 23, and the process returns.
  • the relief set pressure is changed from time T4 to time.
  • a control signal (current value Ai) is input to the relief valve 23 so as to increase from the switching set pressure (P3) to the reverse set pressure (P4) during T5. Therefore, the pump discharge pressure Pp increases to the reverse pressure (P4) as the relief set pressure increases.
  • the cooling fan 4 rotates in the reverse direction at the rated rotational speed Nr, and the dust adhering to the heat exchanger is blown away.
  • step S111 if a negative determination is made in step S111, that is, if it is determined that the cooling fan 4 is controlled to rotate in the reverse direction, the process proceeds to step S216.
  • Steps S116 to S146 described above are the contents of the reversing operation for reversely rotating the cooling fan 4 that normally rotates, but steps S216 to S246 are related to the reversing operation that normally rotates the cooling fan 4 that reversely rotates. The same processing as the processing in steps S116 to S146 described above is performed.
  • step S216 it is determined whether or not the changeover switch 19 has been turned off (operated in the forward direction), that is, the turnoff operation of the changeover switch 19 is monitored.
  • step S216 If an affirmative determination is made in step S216, that is, if it is determined that the changeover switch 19 is turned off in order to normally rotate the cooling fan 4 rotating in the reverse direction at the rated rotational speed Nr, the process proceeds to step S221.
  • step S221 referring to the table shown in FIG. 3C, the relief set pressure decreases from the reverse set pressure (P4) to the switch set pressure (P3) over a predetermined time according to a preset characteristic.
  • a control signal (current value Ai) is output to the relief valve 23.
  • step S223 information on the discharge pressure Pp of the hydraulic pump 2 detected by the pressure sensor 14 is acquired.
  • step S226 the detected pump discharge pressure Pp is a switching pressure. It is determined whether or not P2 or less (Pp ⁇ P2).
  • step S226 If an affirmative determination is made in step S226, that is, if it is determined that the pump discharge pressure Pp is equal to or lower than P2 (Pp ⁇ P2), the process proceeds to step S231. If a negative determination is made in step S226, that is, if it is determined that the pump discharge pressure Pp is greater than P2, the process returns to step S223 to acquire information on the pump discharge pressure Pp. In other words, the controller 17 executes control to reduce the relief set pressure over a predetermined time until the set pressure for switching (P3) in step S221, and monitors the pump discharge pressure Pp, and responds to the reduction in the relief set pressure. It is determined whether or not the pump discharge pressure Pp has decreased to P2, which is a switching pressure.
  • the controller 17 outputs a switching signal (current or voltage) to the direction switching valve 5 to control the direction switching valve 5 to the L position (in order to control the flow direction of the pressure oil to the fan motor 3 in the reverse direction in step S231.
  • counting of a timer built in the controller 17 is started.
  • the spool (Not shown) begins to move.
  • the inlet side pressure Pp of the fan motor 3 decreases to P3 or less due to undershoot, and then increases with the movement of the spool of the direction switching valve 5 and temporarily exceeds the relief set pressure. There is no sudden rise to a pressure at which an excessive load acts on the relief valve 23 and the fan motor 3.
  • step S241 the controller 17 determines whether or not the measurement time t measured by the timer is equal to or longer than a predetermined set time T (t ⁇ T).
  • step S241 If an affirmative determination is made in step S241, that is, if it is determined that the measurement time t by the timer is equal to or greater than the set time T (t ⁇ T), the process proceeds to step S246.
  • step S246 referring to the table shown in FIG. 3 (d), the relief set pressure rises over a predetermined time from the switching set pressure (P3) to the forward set pressure (P1) according to a preset characteristic. Then, a control signal (current value Ai) is output to the relief valve 23, and the process returns.
  • the relief set pressure is changed from time T9 to time.
  • a control signal (current value Ai) is input to the relief valve 23 so as to increase from the switching set pressure (P3) to the forward rotation set pressure (P1) during T10. Therefore, the pump discharge pressure Pp increases to P1 as the relief set pressure increases.
  • the cooling fan 4 rotates in the forward direction at the rated rotational speed Nr, and the cooling air is guided to the heat exchanger to cool the cooling water and the hydraulic oil.
  • step S106 determines whether the connection state (control lines 20, 21) between the controller 17 and the relief valve 23 is broken, for example, the connection state is not normal. If a negative determination is made in step S106, that is, if it is determined that the connection state (control lines 20, 21) between the controller 17 and the relief valve 23 is broken, for example, the connection state is not normal, step The process proceeds to S310.
  • a notification unit such as a notification lamp is activated (lit) to notify the operator that the connection state between the controller 17 and the relief valve 23 is not normal, and the process returns without executing the above-described reversing operation. To do. Instead of lighting the notification lamp, a notification sound may be generated.
  • the controller 17 can be operated even if the changeover switch 19 is operated to the reverse side (ON) when the cooling fan 4 is rotating forward. Does not output a switching signal for switching the direction switching valve 5 to the M position (reverse rotation side). As a result, the cooling fan 4 maintains the current rotation direction (forward rotation).
  • the connection state between the controller 17 and the relief valve 23 is abnormal, even if the changeover switch 19 is operated to the forward rotation side (off) when the cooling fan 4 is rotating in the reverse direction, The controller 17 does not output a switching signal for switching the direction switching valve 5 to the L position (forward rotation side). As a result, the cooling fan 4 maintains the current rotation direction (reverse rotation).
  • the controller 17 controls the set pressure of the relief valve 23 to discharge the hydraulic pump 2.
  • the pressure Pp was lowered to the switching pressure (P2).
  • the controller 17 moves the direction switching valve 5 from the L position (forward rotation side) to the M position (reverse rotation).
  • the flow direction of the pressure oil from the hydraulic pump 2 to the fan motor 3 is reversed.
  • the controller 17 determines that the switching of the direction switching valve 5 is completed, the controller 17 controls the set pressure of the relief valve 23 to increase the discharge pressure Pp of the hydraulic pump 2 to the reverse pressure (P4). I did it.
  • the reversing operation of the cooling fan 4 is performed. At this time, an increase in pressure in the hydraulic circuit can be suppressed. As a result, the durability performance of the relief valve 23, the direction switching valve 5, the fan motor 3 and the like is not deteriorated, and the normally rotating cooling fan 4 can be smoothly rotated backward. The same process is also performed when the reversely rotated cooling fan 4 is reversed, so that the reversely rotated cooling fan 4 is smoothly forward rotated without deteriorating the durability of each part. be able to.
  • a technique for reversing the cooling fan 4 without detecting the pump discharge pressure Pp (hereinafter referred to as a comparative example) is as follows. Problems arise.
  • connection state of the connection lines (control lines 20 and 21) between the relief valve 23 and the controller 17 is normal. Regardless of the on / off operation, a switching signal for switching the direction switching valve 5 is not output so that the current rotation direction of the cooling fan 4 is maintained. That is, when the connection state is abnormal due to disconnection or the like, the above-described reversing operation process is not executed. Thereby, only when the connection state between the relief valve 23 and the controller 17 is normal, the reversing operation process can be performed, and the pump discharge pressure Pp (motor driving pressure) can be stably reduced or increased.
  • Pp motor driving pressure
  • the forward rotation set pressure (P1) is set higher than the reverse rotation set pressure (P4) so that the hydraulic pump discharge pressure Pp during forward rotation is higher than the hydraulic pump discharge pressure Pp during reverse rotation.
  • connection line is about to be disconnected. Even when it is determined that the connection line is about to be disconnected, a notification unit such as a notification lamp is operated to notify the operator that the connection line is about to be disconnected, and the cooling fan 4 is reversed. Control to not perform.
  • a notification unit such as a notification lamp is operated to notify the operator that the connection line is about to be disconnected, and the cooling fan 4 is reversed. Control to not perform.
  • the connection state of the connection line between the controller 17 and the relief valve 23 is abnormal. May be.
  • connection state of the connection line between the controller 17 and the relief valve 23 is determined based on whether or not the difference between the output current value Ai and the feedback current value Af is less than a predetermined value At.
  • the present invention is not limited to this.
  • the connection state may be determined based on the voltage value.
  • the forward rotation set pressure (P1) of the fan motor 3 is set higher than the reverse rotation set pressure (P4), but the present invention is not limited to this.
  • the normal rotation set pressure and the reverse rotation set pressure may be set to the same value.
  • the controller 17 determines the completion of switching of the direction switching valve 5 based on the measurement time by the timer, but the present invention is not limited to this.
  • a position detection unit that mechanically detects the switching position of the direction switching valve 5 may be provided, and the controller 17 may determine completion of switching of the direction switching valve 5 based on a detection signal from the position detection unit.
  • the cooling fan 4 is rotated forward or reverse by manually turning the changeover switch 19 on and off, but the present invention is not limited to this.
  • the cooling fan 4 may be reversed from normal rotation to reverse rotation at every set time.
  • the cooling fan 4 rotating in the reverse direction by the reversal operation returns to the normal rotation operation after continuing the reverse rotation operation for a predetermined time.
  • the relief set pressure is set to P3 lower than the switching pressure P2, but the present invention is not limited to this.
  • the relief set pressure that is set when the cooling fan 4 is reversed may be set to the same value as the switching pressure P2.
  • the wheel loader 100 has been described as an example of the work vehicle.
  • the present invention is not limited to this, and may be other work vehicles such as a forklift, a telehandler, a lift truck, and the like. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 冷却ファン制御装置は、冷却ファンが正回転されているときに回転方向切換スイッチが逆転側に操作されると、可変リリーフ弁の設定リリーフ圧を所定の下限値まで所定時間かけて低下させ、圧力センサにより検出される油圧ポンプの吐出圧が予め定めた切換用圧力まで低下した後に方向切換弁を切り換えて油圧モータへの圧油の流れ方向を逆方向に制御するとともに、可変リリーフ弁の設定リリーフ圧を油圧モータの逆転用設定圧まで所定時間かけて上昇させる。

Description

冷却ファン制御装置
 本発明は、冷却ファン制御装置に関する。
 ラジエータなどの熱交換器に冷却風を送風するための冷却ファンを備えた作業車両が知られている。このような冷却ファンは、送風方向が一方向であると、塵芥が冷却風とともに熱交換器に送り込まれ、目詰まりの原因となる。そこで、冷却ファンを逆回転させて、送風方向を逆にすることで、塵芥を取り除くことができる冷却ファン制御装置が提案されている(特許文献1参照)。
 特許文献1に記載の冷却ファン制御装置は、正回転中の冷却ファンを逆回転させるための操作が行われると、設定圧可変式のリリーフ弁に対して、油圧ポンプの吐出側圧力(油圧モータの入口側圧力)を切換用圧力まで低下させる制御信号を出力し、油圧モータの回転速度が下がるために必要な時間経過後、油圧モータを逆方向に回転させる制御信号を出力する。その後、可変リリーフ弁に対して、油圧ポンプの吐出側圧力を逆転用圧力まで上昇させる制御信号を出力する。
日本国特開2006-45808号公報
 上記のとおり、特許文献1に記載の冷却ファン制御装置では、油圧モータの回転速度が下がるために必要な時間経過後に、油圧モータを逆方向に回転させる制御信号を出力する構成とされている。したがって、コントローラや可変リリーフ弁の誤作動などにより、必要な時間内に油圧モータの回転速度が十分に下がらなかった場合であっても油圧モータを逆方向に回転させる制御信号を出力してしまう。
 そのため、正回転から逆回転させる反転動作の際に油圧回路内の圧力が急上昇して、油圧回路内各部に過度な負荷がかかり、各部の耐久性能が低下するおそれがある。
 本発明の第1の態様によると、冷却ファン制御装置は、エンジンにより駆動される油圧ポンプと、油圧ポンプから吐出される圧油によって駆動され、熱交換器に冷却風を送風するための冷却ファンを回転させる油圧モータと、油圧ポンプからの吐出油の流れ方向を切り換えて油圧モータを正逆転させる方向切換弁と、油圧ポンプの吐出圧を制御する可変リリーフ弁と、油圧ポンプの吐出圧を検出する圧力センサと、冷却ファンの回転方向を切り換えるための回転方向切換スイッチと、冷却ファンが正回転されているときに回転方向切換スイッチが逆転側に操作されると、可変リリーフ弁の設定リリーフ圧を所定の下限値まで所定時間かけて低下させ、圧力センサにより検出される油圧ポンプの吐出圧が予め定めた切換用圧力まで低下した後に方向切換弁を切り換えて油圧モータへの圧油の流れ方向を逆方向に制御するとともに、可変リリーフ弁の設定リリーフ圧を油圧モータの逆転用設定圧まで所定時間かけて上昇させる制御部とを備える。
 本発明の第2の態様によると、第1の態様の冷却ファン制御装置において、制御部は、冷却ファンが逆回転されているときに回転方向切換スイッチが正転側に操作されると、可変リリーフ弁の設定リリーフ圧を所定の下限値まで所定時間かけて低下させ、圧力センサにより検出される油圧ポンプの吐出圧が予め定めた切換用圧力まで低下した後に方向切換弁を切り換えて油圧モータへの圧油の流れ方向を正方向に制御するとともに、可変リリーフ弁の設定リリーフ圧を油圧モータの正転用設定圧まで所定時間かけて上昇させるのが好ましい。
 本発明の第3の態様によると、第2の態様の冷却ファン制御装置において、油圧モータの正転用設定圧は油圧モータの逆転用設定圧よりも高く、切換用圧力は油圧モータの逆転用設定圧よりも低いのが好ましい。
 本発明の第4の態様によると、第1ないし3のいずれか1の態様の冷却ファン制御装置において、制御部は、可変リリーフ弁と制御部との間の接続状態が正常であるか否かを判定する接続状態判定部を含み、制御部は、接続状態判定部により接続状態が正常でないと判定された場合には、冷却ファンが正回転されているときに、回転方向切換スイッチが逆転側に操作されたとしても、方向切換弁を切り換えずに冷却ファンの現在の回転方向を維持するのが好ましい。
 本発明によれば、冷却ファンの反転動作の際、油圧回路内の圧力の上昇を抑制することができるので、油圧回路内の各部の耐久性能が低下せず、正回転されている冷却ファンをスムーズに逆回転させることができる。
作業車両の一例であるホイールローダの側面図。 ホイールローダの冷却系の概略構成を示す図。 リリーフ弁の設定圧を制御するためのテーブルを示す図。 冷却ファンの反転動作についての処理内容を示すフローチャート。 正回転中の冷却ファンを逆回転させる反転動作についての作動状態を説明するタイムチャート。 逆回転中の冷却ファンを正回転させる反転動作についての作動状態を説明するタイムチャート。
 以下、図面を参照して、本発明による冷却ファン制御装置の一実施の形態を説明する。図1は、本実施の形態に係る冷却ファン制御装置が搭載される作業車両の一例であるホイールローダの側面図である。ホイールローダ100は、アーム111、バケット112、タイヤ113等を有する前部車体110と、運転室121、エンジン室122、タイヤ123等を有する後部車体120とで構成される。エンジン室122は、建屋カバー131で覆われている。後部車体120の後方にはカウンタウェイト124が取り付けられている。
 アーム111は不図示のアームシリンダの駆動により上下方向に回動し、バケット112はバケットシリンダ115の駆動により上下方向に回動する。前部車体110と後部車体120とはセンタピン101により互いに回動自在に連結され、ステアリングシリンダ116の伸縮により後部車体120に対し前部車体110が左右に屈折する。
 建屋カバー131の後方には、ラジエータフレーム135と、冷却ファンユニット150とが配設されている。ラジエータフレーム135には、後述する図2に示した、エンジン1の冷却水を冷却するラジエータ6や、作動油を冷却するオイルクーラ7等が取り付けられている。ラジエータフレーム135は、後部車体120に固定されている。冷却ファンユニット150は、後述する図2に示した、ファンモータ3で駆動される冷却ファン4と、ファンシュラウド151とを備えており、ラジエータフレーム135の後方に配設されている。
 ラジエータフレーム135および冷却ファンユニット150は、その側面および上面が冷却器用建屋カバー132で覆われている(図1)。冷却器用建屋カバー132は後方で開口しており、開閉可能に取り付けられたグリル140によって覆われている。グリル140は、冷却ファン4による吸気または排気が外部と流通するように複数の開口が設けられた覆いである。
 図2は、ホイールローダ100の冷却系の概略構成を示す図である。ホイールローダ100は、エンジン1と、エンジン1により駆動される補機用の油圧ポンプ2と、油圧ポンプ2から吐出される圧油によって駆動するファンモータ3と、ファンモータ3によって回転される冷却ファン4とを備えている。エンジン1の回転数は、アクセルペダル15の踏み込み量の増加に伴い上昇する。エンジン回転数が上昇すると、油圧ポンプ2の回転数が上昇し、ポンプ吐出量が増大する。ファンモータ3は、油圧ポンプ2から供給される圧油によって駆動され、ラジエータ6およびオイルクーラ7に冷却風を送風するための冷却ファン4を回転させる。
 ホイールローダ100は、冷却ファン4の回転方向を切り換えるための切換スイッチ19と、油圧ポンプ2からの吐出油の流れ方向を切り換えてファンモータ3を正逆転させる方向切換弁5とを備えている。
 方向切換弁5は電磁式切換弁であり、運転室121内の切換スイッチ19の操作によりL位置(正転側)またはM位置(逆転側)に切り換わる。切換スイッチ19がオフ操作されると、方向切換弁5がL位置(正転側)に切り換わり、油圧ポンプ2からの圧油が管路L1,L2を介してファンモータ3に供給され、ファンモータ3および冷却ファン4が正方向に回転する。ファンモータ3に供給された油は管路L3,L4を介してタンク10に戻る。切換スイッチ19がオン操作されると、方向切換弁5がM位置(逆転側)に切り換わり、油圧ポンプ2からの圧油が管路L1,L3を介してファンモータ3に供給され、ファンモータ3および冷却ファン4が逆方向に回転する。ファンモータ3に供給された油は管路L2,L4を介してタンク10に戻る。
 管路L1と管路L4との間には、ファンモータ3の入口側圧力(モータ駆動圧)である油圧ポンプ2の吐出側圧力(以下、ポンプ吐出圧Ppと記載する)を制限する設定圧可変式のリリーフ弁23が介装されている。油圧ポンプ2の吐出側の管路L1にはポンプ吐出圧Ppを検出する圧力センサ14が設けられている。圧力センサ14で検出されたポンプ吐出圧Ppの情報は、コントローラ17に入力される。
 コントローラ17は、CPU,ROM,RAM,その他の周辺回路などを有する演算処理装置を含んで構成される。コントローラ17には切換スイッチ19からのオンオフ操作情報が入力されている。コントローラ17は、入力される切換スイッチ19のオンオフ操作情報に基づいて、切換信号を方向切換弁5に出力し、方向切換弁5の切換位置を制御する。
 コントローラ17は、制御ライン20でリリーフ弁23と接続されている。リリーフ弁23は、電磁式の可変リリーフ弁であって、コントローラ17からの出力電流値(指示値)に応じて、油圧ポンプ2からファンモータ3へ供給される圧油の最高圧を規定し、ポンプ吐出圧Ppを制御する。コントローラ17は、リリーフ弁23の設定リリーフ圧(以下、リリーフセット圧と記す)を制御する。すなわち、コントローラ17は、ファンモータ3の入口側圧力であるポンプ吐出圧Ppを制御することで、ファンモータ3の回転速度を制御できる。
 コントローラ17は、制御ライン21でリリーフ弁23と接続されており、コントローラ17では、リリーフ弁23からのフィードバック電流値が検出される。
 なお、図示しないが、ホイールローダ100は、エンジン1で駆動される作業用油圧ポンプと、作業用油圧ポンプから吐出される圧油を制御するコントロールバルブと、作業用油圧シリンダ(たとえばバケットシリンダ115やアームシリンダ)とを備えている。コントロールバルブは不図示の操作レバーの操作により駆動され、操作レバーの操作量に応じてアクチュエータを駆動できる。
 このように構成されるホイールローダ100では、通常、エンジン1の作動時にはファンモータ3が正転するように、コントローラ17が方向切換弁5をL位置(正転側)に切り換えるように制御する。これにより、ファンモータ3は、油圧ポンプ2から供給される圧油によって正転する。ファンモータ3が正転することで、図2の矢印12で示すように、冷却ファン4からラジエータ6およびオイルクーラ7に向けて冷却風が送風され、冷却風との熱交換によりエンジン1の冷却水および作動油が冷却される。
 外気を冷却風として一方向に送風していると、外気に含まれる塵埃などがラジエータ6やオイルクーラ7の風路に蓄積して、この風路を狭めてしまう。その結果、外気との熱交換の効率が低下して、エンジン1のオーバーヒートや作動油温の上昇等の不具合を招くおそれがある。このような不具合を防止するため、本実施の形態では、ファンモータ3の逆転を可能とし、外気を通常の送風方向とは反対方向から送風することで、風路に蓄積した塵埃を吹き飛ばして除去できるようにしている。その結果、ラジエータ6やオイルクーラ7の性能を維持できる。
 オペレータにより切換スイッチ19がオン操作されると、コントローラ17は方向切換弁5をM位置(逆転側)に切り換えるように制御する。これにより、ファンモータ3は、油圧ポンプ2から供給される圧油によって逆転する。ファンモータ3が逆転する、すなわち冷却ファン4が逆転することで、図2の矢印13で示すように、ラジエータ6およびオイルクーラ7に対して通常とは逆向きに外気が送風される。
 切換スイッチ19がオン操作されたと同時に、ファンモータ3を逆転させるように方向切換弁5をM位置(逆転側)に切り換える制御が行われると、回路内圧力が急激に高まり、ファンモータ3や方向切換弁5、リリーフ弁23に大きな負荷がかかり、各部の耐久性能を低下させてしまうおそれがある。
 そこで、本実施の形態では、切換スイッチ19がオン操作されると、リリーフ弁23の設定圧を変更し、ポンプ吐出圧Ppを減少させ、ファンモータ3の回転速度を十分に低下させた上で、方向切換弁5をM位置(逆転側)に切り換えるように制御する。
 コントローラ17のROMまたはRAMには、リリーフ弁23の設定圧を制御するためのテーブルが記憶されている(図3参照)。図3(a)は、リリーフセット圧を正転用設定圧(P1=19MPa)から下限値である切換用設定圧(P3=5MPa)まで所定時間(T1-3秒)かけて低下させるために用いられるテーブルであり、時間の経過に伴い直線的にリリーフセット圧が減少するように定められている。図3(b)は、リリーフセット圧を切換用設定圧(P3=5MPa)から逆転用設定圧(P4=15MPa)まで所定時間(T3-4秒)かけて上昇させるために用いられるテーブルであり、時間の経過に伴い直線的にリリーフセット圧が増加するように定められている。
 図3(c)は、リリーフセット圧を逆転用設定圧(P4=15MPa)から切換用設定圧(P3=5MPa)まで所定時間(T4-3秒)かけて低下させるために用いられるテーブルであり、時間の経過に伴い直線的にリリーフセット圧が減少するように定められている。図3(d)は、リリーフセット圧を切換用設定圧(P3=5MPa)から正転用設定圧(P1=19MPa)まで所定時間(T3-1秒)かけて上昇させるために用いられるテーブルであり、時間の経過に伴い直線的にリリーフセット圧が増加するように定められている。
 コントローラ17は、条件に応じて、これらのテーブルを参照し、参照したテーブルに基づいて、リリーフセット圧を変化させるようにリリーフ弁23に出力電流値を出力する。時間T1-3,T3-4,T4-3,T3-1はそれぞれ、リリーフ圧が安定して低下あるいは上昇されるように、たとえば、2~3秒程度と定められている。
 正転用設定圧(P1)および逆転用設定圧(P4)は、冷却ファン4の仕様に応じて定められている。正転用設定圧(P1)は、冷却ファン4を定格回転数Nrで正回転させるための設定圧である。逆転用設定圧(P4)は、冷却ファン4を定格回転数Nrで逆回転させるための設定圧である。
 通常、冷却ファン4は、定格回転数Nrで正回転されたときの送風量に比べて、定格回転数Nrで逆回転されたときの送風量の方が小さい。このような冷却ファン4は、正回転時の空気抵抗に比べて逆回転時の空気抵抗の方が小さい。その結果、冷却ファン4を定格回転数Nrで逆回転させるために必要なポンプ吐出圧Ppは、正回転させる場合に比べて小さくてよい。そこで、本実施の形態では、上記したようにファンモータ3の正転用設定圧をP1=19MPaと定め、ファンモータ3の逆転用設定圧をP4=15MPaと定めた。
 これに対して、正転用設定圧と逆転用設定圧とを同じ値にした場合、正転時には定格回転数Nrで回転させることができるが、逆転時には定格回転数Nrを上回る回転数で冷却ファン4が回転するため、冷却ファン4およびファンモータ3の耐久性に悪影響を与えてしまうおそれがある。
 コントローラ17のROMまたはRAMには、圧力センサ14で検出されたポンプ吐出圧Ppが十分に低下したか否かを判定するために用いられる閾値として切換用圧力(P2)が記憶されている。切換用圧力(P2)は、ファンモータ3が十分に減速して反転動作がスムーズに行えるように予め定められている。切換用設定圧(P3)は、切換用圧力(P2)よりも小さい値となるように定められている。本実施の形態では、切換用圧力をP2=6.5MPaと定め、切換用設定圧をP3=5MPaと定めた。
 コントローラ17は、次のように各部を制御することで、油圧ポンプ2の吐出圧を十分に低下させた後に冷却ファン4を逆転させる。図4は、上述したような冷却ファン4の反転動作についての処理内容を示すフローチャートである。図5は正回転中の冷却ファン4を逆回転させる反転動作についての作動状態を説明するタイムチャートであり、図6は逆回転中の冷却ファン4を正回転させる反転動作についての作動状態を説明するタイムチャートである。ホイールローダ100の不図示のイグニッションスイッチがオン操作されると、図4に示す処理を行うプログラムが起動されて、コントローラ17で繰り返し実行される。
 ステップS101において、コントローラ17は、切換スイッチ19のオンオフ操作を判定し、切換スイッチ19がオフ操作されている場合には、冷却ファン4が正回転するように、方向切換弁5をL位置(正転側)に切り換えるとともに、リリーフセット圧を正転用設定圧(P1)に設定する。一方、切換スイッチ19がオン操作されている場合には、冷却ファン4が逆回転するように、方向切換弁5をM位置(逆転側)に切り換えるとともに、リリーフセット圧を逆転用設定圧(P4)に設定する。
 すなわち、コントローラ17は、ステップS101において、切換スイッチ19のオンオフ操作情報に基づいてリリーフセット圧が正転用設定圧(P1)または逆転用設定圧(P4)となるようにリリーフ弁23に対応する出力電流値(指示値)Aiを出力する。
 ステップS102において、リリーフ弁23から制御ライン21を介してコントローラ17に入力されるフィードバック電流値Afの情報、ならびに、冷却ファン4の回転方向の情報、すなわち切換スイッチ19のオンオフ操作情報を取得して、ステップS106へ進む。
 ステップS106では、コントローラ17とリリーフ弁23との間の接続線(制御ライン20,21)の接続状態が正常であるか否かを判定する。コントローラ17は、ステップS101でリリーフ弁23へ出力された電流値(指示値)Aiと、ステップS102で検出されたリリーフ弁23からコントローラ17へ戻ってくるフィードバック電流値Afとを比較する。コントローラ17は、出力電流値Aiとフィードバック電流値Afとの差が所定値At未満である場合(|Ai-Af|<At)には非断線状態、すなわち正常と判定する。一方、出力電流値Aiとフィードバック電流値Afとの差が所定値At以上である場合(|Ai-Af|≧At)には断線状態、すなわち異常と判定する。
 ステップS106で肯定判定されると、すなわち、コントローラ17とリリーフ弁23との間の接続線(制御ライン20,21)の接続状態が正常と判定されるとステップS111へ進む。ステップS111では、ステップS101で検出された切換スイッチ19のオンオフ操作情報から冷却ファン4が正回転するように制御されている状態にあるのかどうかを判定する。
 ステップS111で肯定判定されると、すなわち、冷却ファン4が正回転するように制御されている状態にあると判定されると、ステップS116に進み、切換スイッチ19がオン操作(逆転側に操作)されたか否かを判定する、すなわち切換スイッチ19のオン操作を監視する。
 ステップS116で肯定判定されると、すなわち、定格回転数Nrで正方向に回転している冷却ファン4を逆回転させるために切換スイッチ19がオン操作されたと判定されるとステップS121へ進む。ステップS121では、図3(a)に示すテーブルを参照し、予め設定された特性にしたがってリリーフセット圧が正転用設定圧(P1)から切換用設定圧(P3)まで所定時間かけて低下するように、リリーフ弁23へ制御信号(電流値Ai)を出力する。
 図5に示すように、時点T1で切換スイッチ19がオン操作されると、リリーフセット圧が時点T1から時点T3の間で正転用設定圧(P1)から切換用設定圧(P3)まで低下するように、リリーフ弁23に制御信号(電流値Ai)が入力される。そのため、ポンプ吐出圧Ppは、リリーフセット圧の低下に伴って減少する。
 図4に示すように、次のステップS123では、圧力センサ14で検出された油圧ポンプ2の吐出圧Ppの情報を取得し、ステップS126では、検出されたポンプ吐出圧Ppが切換用圧力であるP2以下(Pp≦P2)であるか否かを判定する。
 ステップS126で肯定判定されると、すなわち、ポンプ吐出圧PpがP2以下(Pp≦P2)であると判定されると、ステップS131へ進む。ステップS126で否定判定されると、すなわちポンプ吐出圧PpがP2より大きいと判定されると、ステップS123に戻ってポンプ吐出圧Ppの情報を取得する。すなわち、コントローラ17は、ステップS121で切換用設定圧(P3)まで所定時間かけてリリーフセット圧を低下させる制御を実行するとともに、ポンプ吐出圧Ppを監視して、リリーフセット圧の低下に応じてポンプ吐出圧Ppが切換用圧力(P2)まで低下したか否かを判定する。
 コントローラ17は、ステップS131でファンモータ3への圧油の流れ方向を逆方向に制御するために、切換信号(電流または電圧)を方向切換弁5に出力して方向切換弁5をM位置(逆転側)に切り換え、次ステップS136でコントローラ17に内蔵のタイマのカウントを開始する。図5に示すように、時点T2において、圧力センサ14でポンプ吐出圧PpがP2以下まで低下したことが検出され、方向切換弁5の切り換え制御が実行されると、方向切換弁5のスプール(不図示)が移動し始める。ファンモータ3の入口側圧力Ppは、アンダーシュートにより、P3以下まで減少した後、方向切換弁5のスプールの移動に伴って増加し、一時的にリリーフセット圧を上回るが、方向切換弁5やリリーフ弁23、ファンモータ3に過度な負荷が作用するような圧力まで急激に上昇することはない。
 図4に示すように、コントローラ17は、ステップS141において、タイマによる計測時間tが予め定められた設定時間T以上(t≧T)になったか否かを判定する。設定時間Tは、方向切換弁5の位置が切り換わるのに要する時間に相当する値(たとえば、T=2秒)とされ、予めコントローラ17のROMまたはRAMに記憶されている。つまり、コントローラ17は、計測時間tが設定時間T以上になったか否かを判定することで、方向切換弁5の切り換えが完了したか否かを判定する。
 ステップS141で肯定判定されると、すなわち、タイマによる計測時間tが設定時間T以上(t≧T)になったと判定されるとステップS146へ進む。ステップS146では、図3(b)に示すテーブルを参照し、予め設定された特性にしたがってリリーフセット圧が切換用設定圧(P3)から逆転用設定圧(P4)まで所定時間かけて上昇するように、リリーフ弁23へ制御信号(電流値Ai)を出力し、リターンする。
 図5に示すように、時点T4において、計測時間tが設定時間T以上となったと判定されると、すなわち方向切換弁5の切り換えの完了が判定されると、リリーフセット圧が時点T4から時点T5の間で切換用設定圧(P3)から逆転用設定圧(P4)まで上昇するように、リリーフ弁23に制御信号(電流値Ai)が入力される。そのため、ポンプ吐出圧Ppは、リリーフセット圧の上昇に伴って逆転用圧力(P4)まで上昇する。その結果、冷却ファン4が定格回転数Nrで逆方向に回転し、熱交換器に付着する塵芥が吹き飛ばされる。
 図4に示すように、ステップS111で否定判定されると、すなわち、冷却ファン4が逆回転するように制御されている状態にあると判定されると、ステップS216に進む。上述したステップS116~ステップS146までは、正回転する冷却ファン4を逆回転させる反転動作についての処理内容であるが、ステップS216~ステップ246までは逆回転する冷却ファン4を正回転させる反転動作についての処理内容であり、上述したステップS116~ステップS146の処理と同様の処理がなされる。
 ステップS216では、切換スイッチ19がオフ操作(正転側に操作)されたか否かを判定する、すなわち切換スイッチ19のオフ操作を監視する。
 ステップS216で肯定判定されると、すなわち、定格回転数Nrで逆方向に回転している冷却ファン4を正回転させるために切換スイッチ19がオフ操作されたと判定されるとステップS221へ進む。ステップS221では、図3(c)に示すテーブルを参照し、予め設定された特性にしたがってリリーフセット圧が逆転用設定圧(P4)から切換用設定圧(P3)まで所定時間かけて低下するように、リリーフ弁23へ制御信号(電流値Ai)を出力する。
 図6に示すように、時点T6で切換スイッチ19がオフ操作されると、リリーフセット圧が時点T6から時点T8の間で逆転用設定圧(P4)から切換用設定圧(P3)まで低下するように、リリーフ弁23に制御信号(電流値Ai)が入力される。そのため、ポンプ吐出圧Ppは、リリーフセット圧の低下に伴って減少する。
 図4に示すように、次のステップS223では、圧力センサ14で検出された油圧ポンプ2の吐出圧Ppの情報を取得し、ステップS226では、検出されたポンプ吐出圧Ppが切換用圧力であるP2以下(Pp≦P2)であるか否かを判定する。
 ステップS226で肯定判定されると、すなわち、ポンプ吐出圧PpがP2以下(Pp≦P2)であると判定されると、ステップS231へ進む。ステップS226で否定判定されると、すなわちポンプ吐出圧PpがP2より大きいと判定されると、ステップS223に戻ってポンプ吐出圧Ppの情報を取得する。すなわち、コントローラ17は、ステップS221で切換用設定圧(P3)まで所定時間かけてリリーフセット圧を低下させる制御を実行するとともに、ポンプ吐出圧Ppを監視して、リリーフセット圧の低下に応じてポンプ吐出圧Ppが切換用圧力であるP2まで低下したか否かを判定する。
 コントローラ17は、ステップS231でファンモータ3への圧油の流れ方向を逆方向に制御するために、切換信号(電流または電圧)を方向切換弁5に出力して方向切換弁5をL位置(正転側)に切り換え、次ステップS236でコントローラ17に内蔵のタイマのカウントを開始する。図6に示すように、時点T7において、圧力センサ14でポンプ吐出圧PpがP2以下まで低下したことが検出され、方向切換弁5の切り換え制御が実行されると、方向切換弁5のスプール(不図示)が移動し始める。ファンモータ3の入口側圧力Ppは、アンダーシュートにより、P3以下まで減少した後、方向切換弁5のスプールの移動に伴って増加し、一時的にリリーフセット圧を上回るが、方向切換弁5やリリーフ弁23、ファンモータ3に過度な負荷が作用するような圧力まで急激に上昇することはない。
 図4に示すように、コントローラ17は、ステップS241において、タイマによる計測時間tが予め定められた設定時間T以上(t≧T)になったか否かを判定する。設定時間Tは、方向切換弁5の位置が切り換わるのに要する時間に相当する値(たとえば、T=2秒)とされ、予めコントローラ17のROMまたはRAMに記憶されている。つまり、コントローラ17は、計測時間tが設定時間T以上になったか否かを判定することで、方向切換弁5の切り換えが完了したか否かを判定する。
 ステップS241で肯定判定されると、すなわち、タイマによる計測時間tが設定時間T以上(t≧T)になったと判定されるとステップS246へ進む。ステップS246では、図3(d)に示すテーブルを参照し、予め設定された特性にしたがってリリーフセット圧が切換用設定圧(P3)から正転用設定圧(P1)まで所定時間かけて上昇するように、リリーフ弁23へ制御信号(電流値Ai)を出力し、リターンする。
 図6に示すように、時点T9において、計測時間tが設定時間T以上となったと判定されると、すなわち方向切換弁5の切り換えの完了が判定されると、リリーフセット圧が時点T9から時点T10の間で切換用設定圧(P3)から正転用設定圧(P1)まで上昇するように、リリーフ弁23に制御信号(電流値Ai)が入力される。そのため、ポンプ吐出圧Ppは、リリーフセット圧の上昇に伴ってP1まで上昇する。その結果、冷却ファン4が定格回転数Nrで正方向に回転し、熱交換器に冷却風を導いて冷却水および作動油を冷却する。
 ステップS106で否定判定されると、すなわち、コントローラ17とリリーフ弁23との間の接続線(制御ライン20,21)が断線するなどして、その接続状態が正常でないと判定されると、ステップS310へ進む。ステップS310では、コントローラ17とリリーフ弁23との接続状態が正常な状態にないことをオペレータに知らせるために報知ランプなどの報知部を作動(点灯)させ、上述した反転動作を実行せずにリターンする。なお、報知ランプを点灯させることに代えて、報知音を発生させてもよい。
 つまり、コントローラ17とリリーフ弁23との接続状態が異常である場合には、冷却ファン4が正回転されているときに、切換スイッチ19が逆転側(オン)に操作されたとしても、コントローラ17は、方向切換弁5をM位置(逆転側)に切り換える切換信号を出力しない。その結果、冷却ファン4は、現在の回転方向(正回転)を維持する。同様に、コントローラ17とリリーフ弁23との接続状態が異常である場合には、冷却ファン4が逆回転されているときに、切換スイッチ19が正転側(オフ)に操作されたとしても、コントローラ17は、方向切換弁5をL位置(正転側)に切り換える切換信号を出力しない。その結果、冷却ファン4は、現在の回転方向(逆回転)を維持する。
 以上説明した本実施の形態によれば、以下のような作用効果を奏することができる。
(1)冷却ファン4が正回転されているときに、切換スイッチ19が逆転側に操作(オン操作)されると、コントローラ17が、リリーフ弁23の設定圧を制御して油圧ポンプ2の吐出圧Ppが切換用圧力(P2)まで低下するようにした。圧力センサ14で油圧ポンプ2の吐出圧Ppが切換用圧力(P2)まで低下したことが検出されると、コントローラ17が、方向切換弁5をL位置(正転側)からM位置(逆転)に切り換えて、油圧ポンプ2からファンモータ3への圧油の流れ方向が逆方向になるようにした。その後、コントローラ17により方向切換弁5の切り換えの完了が判定されると、コントローラ17が、リリーフ弁23の設定圧を制御して油圧ポンプ2の吐出圧Ppを逆転用圧力(P4)まで上昇させるようにした。
 このように、油圧ポンプ2の吐出圧Ppが切換用圧力(P2)まで低下したことを圧力センサ14により検出した後にファンモータ3を逆方向に回転させる制御を行うため、冷却ファン4の反転動作の際、油圧回路内の圧力の上昇を抑制することができる。その結果、リリーフ弁23や方向切換弁5、ファンモータ3等の耐久性能が低下せず、正回転されている冷却ファン4をスムーズに逆回転させることができる。なお、同様の処理を逆回転されている冷却ファン4を反転動作させる際にも実行することで、各部の耐久性能を低下させることなく、逆回転されている冷却ファン4をスムーズに正回転させることができる。
 これに対して、切換スイッチ19がオン操作された後、所定時間が経過すると、ポンプ吐出圧Ppを検出することなく冷却ファン4を逆転させる技術(以下、比較例と記す)では、以下のような問題が生じる。
 比較例では、コントローラ17やリリーフ弁23の誤作動等により、所定時間経過後にポンプ吐出圧Ppが切換用圧力(P2)まで低下していない場合であっても、冷却ファン4を逆転させる制御を行ってしまうという問題がある。その結果、冷却ファン4の反転動作の際に油圧回路内の圧力が急上昇して、方向切換弁5やリリーフ弁23、ファンモータ3に過度な負荷がかかり、方向切換弁5やリリーフ弁23、ファンモータ3の耐久性能が低下するおそれがある。なお、油圧回路内の圧力が過度に高くなることを防止するためにオーバーロードリリーフ弁を設ける場合は、その分コスト高となる。
 比較例では、ファンモータ3の入口側圧力が十分に低下したことを切換スイッチ19のオン操作後の経過時間によって推定して反転動作の制御を実行するため、切換スイッチ19のオン操作後の時間に十分な裕度を見込んでおく必要がある。その結果、冷却ファン4の反転動作に時間がかかってしまう。
(2)リリーフ弁23とコントローラ17との間の接続線(制御ライン20,21)の接続状態が正常であるか否かを判定し、正常でないと判定された場合には、切換スイッチ19のオンオフ操作に拘わらず、方向切換弁5を切り換える切換信号を出力しないようにして、冷却ファン4の現在の回転方向を維持するようにした。つまり、断線などにより接続状態が異常である場合には、上述した反転動作処理を実行しない。これにより、リリーフ弁23とコントローラ17との接続状態が正常である場合にのみ、反転動作処理を行って、ポンプ吐出圧Pp(モータ駆動圧)を安定して低下または上昇させることができる。
(3)正転用設定圧(P1)を逆転用設定圧(P4)よりも高く定め、正回転時の油圧ポンプ吐出圧Ppが逆回転時の油圧ポンプ吐出圧Ppよりも高くなるようにした。これにより、定格回転数Nrで正回転されたときの送風量に比べて、定格回転数Nrで逆回転されたときの送風量の方が小さい一般的な冷却ファン4を使用する場合に、ファンモータ3や冷却ファン4の耐久性に悪影響を与えることなくファンモータ3を作動させることができる。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
[変形例]
(1)上述の説明では、出力電流値Aiとフィードバック電流値Afとの差が所定値At以上であった場合には、コントローラ17とリリーフ弁23との間の接続線の接続状態が正常でないと判定したが、本発明はこれに限定されない。
 出力電流値Aiとフィードバック電流値Afとの差が所定値At以上になった回数が所定回数を超えたときに、コントローラ17とリリーフ弁23との間の接続線の接続状態が異常であると判定してもよい。この場合、誤検出が防止される。さらにこの場合、接続線が断線しかかっていることを判定することもできる。接続線が断線しかかっていることが判定された場合にも、上述した処理と同様に、断線しかかっていることをオペレータに知らせるために報知ランプなどの報知部を動作させ、冷却ファン4の反転動作を行わないように制御する。
 出力電流値Aiとフィードバック電流値Afとの差が所定値At以上である状態が所定時間継続されたときに、コントローラ17とリリーフ弁23との間の接続線の接続状態が異常であると判定してもよい。
(2)上述の説明では、コントローラ17とリリーフ弁23との間の接続線の接続状態の判定を出力電流値Aiとフィードバック電流値Afとの差が所定値At未満であるのか否かに基づいて判定したが、本発明はこれに限定されない。たとえば、電圧値に基づいて接続状態を判定してもよい。
(3)上述の説明では、ファンモータ3の正転用設定圧(P1)を逆転用設定圧(P4)よりも高く定めたが本発明はこれに限定されない。たとえば、正回転時の風量と、逆回転時の風量とに大きな差がない冷却ファン4などを使用する場合には、正転用設定圧と逆転用設定圧とを同じ値にしてもよい。
(4)上述の説明では、コントローラ17で方向切換弁5の切り換えの完了をタイマによる計測時間で判定したが、本発明はこれに限定されない。方向切換弁5の切り換え位置を機械的に検出する位置検出部を設け、位置検出部からの検出信号に基づいてコントローラ17が方向切換弁5の切り換えの完了を判定してもよい。
(5)上述の説明では、手動で切換スイッチ19をオンオフ操作することで、冷却ファン4を正転または逆転させることとしたが、本発明はこれに限定されない。冷却ファン4の運転中、設定時間経過ごとに冷却ファン4を正転から逆転に反転動作させてもよい。反転動作により逆方向に回転している冷却ファン4は、所定時間だけ逆転動作を継続させた後、正転動作に復帰する。
(6)上述の説明では、冷却ファン4を反転させる際に、リリーフセット圧を切換用圧力P2よりも低いP3に設定したが、本発明はこれに限定されない。冷却ファン4を反転させる際に設定するリリーフセット圧は、切換用圧力P2と同じ値に設定してもよい。
(7)上述の説明では、作業車両の一例としてホイールローダ100を例に説明したが、本発明はこれに限定されず、たとえば、フォークリフト、テレハンドラー、リフトトラック等、他の作業車両であってもよい。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2011年第250021号(2011年11月15日出願)

Claims (4)

  1.  冷却ファン制御装置であって、
     エンジンにより駆動される油圧ポンプと、
     前記油圧ポンプから吐出される圧油によって駆動され、熱交換器に冷却風を送風するための冷却ファンを回転させる油圧モータと、
     前記油圧ポンプからの吐出油の流れ方向を切り換えて前記油圧モータを正逆転させる方向切換弁と、
     前記油圧ポンプの吐出圧を制御する可変リリーフ弁と、
     前記油圧ポンプの吐出圧を検出する圧力センサと、
     前記冷却ファンの回転方向を切り換えるための回転方向切換スイッチと、
     前記冷却ファンが正回転されているときに前記回転方向切換スイッチが逆転側に操作されると、前記可変リリーフ弁の設定リリーフ圧を所定の下限値まで所定時間かけて低下させ、圧力センサにより検出される前記油圧ポンプの吐出圧が予め定めた切換用圧力まで低下した後に前記方向切換弁を切り換えて前記油圧モータへの圧油の流れ方向を逆方向に制御するとともに、前記可変リリーフ弁の設定リリーフ圧を前記油圧モータの逆転用設定圧まで所定時間かけて上昇させる制御部とを備える冷却ファン制御装置。
  2.  請求項1に記載の冷却ファン制御装置において、
     前記制御部は、前記冷却ファンが逆回転されているときに前記回転方向切換スイッチが正転側に操作されると、前記可変リリーフ弁の設定リリーフ圧を所定の下限値まで所定時間かけて低下させ、圧力センサにより検出される前記油圧ポンプの吐出圧が予め定めた切換用圧力まで低下した後に前記方向切換弁を切り換えて前記油圧モータへの圧油の流れ方向を正方向に制御するとともに、前記可変リリーフ弁の設定リリーフ圧を前記油圧モータの正転用設定圧まで所定時間かけて上昇させる冷却ファン制御装置。
  3.  請求項2に記載の冷却ファン制御装置において、
     前記油圧モータの正転用設定圧は前記油圧モータの逆転用設定圧よりも高く、前記切換用圧力は前記油圧モータの逆転用設定圧よりも低い冷却ファン制御装置。
  4.  請求項1ないし3のいずれか1項に記載の冷却ファン制御装置において、
     前記制御部は、前記可変リリーフ弁と前記制御部との間の接続状態が正常であるか否かを判定する接続状態判定部を含み、
     前記制御部は、前記接続状態判定部により前記接続状態が正常でないと判定された場合には、前記冷却ファンが正回転されているときに、前記回転方向切換スイッチが逆転側に操作されたとしても、前記方向切換弁を切り換えずに前記冷却ファンの現在の回転方向を維持する冷却ファン制御装置。
PCT/JP2012/079688 2011-11-15 2012-11-15 冷却ファン制御装置 WO2013073631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12850060.0A EP2781713B1 (en) 2011-11-15 2012-11-15 Cooling fan control apparatus
US14/358,324 US9458758B2 (en) 2011-11-15 2012-11-15 Cooling fan control device
CN201280055959.4A CN103946505B (zh) 2011-11-15 2012-11-15 冷却风扇控制装置
KR1020147012671A KR20140099236A (ko) 2011-11-15 2012-11-15 냉각 팬 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-250021 2011-11-15
JP2011250021A JP5868663B2 (ja) 2011-11-15 2011-11-15 冷却ファン制御装置

Publications (1)

Publication Number Publication Date
WO2013073631A1 true WO2013073631A1 (ja) 2013-05-23

Family

ID=48429685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079688 WO2013073631A1 (ja) 2011-11-15 2012-11-15 冷却ファン制御装置

Country Status (6)

Country Link
US (1) US9458758B2 (ja)
EP (1) EP2781713B1 (ja)
JP (1) JP5868663B2 (ja)
KR (1) KR20140099236A (ja)
CN (1) CN103946505B (ja)
WO (1) WO2013073631A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763695A (zh) * 2015-04-13 2015-07-08 徐州徐工施维英机械有限公司 液压***、散热***和工程机械
CN110778545A (zh) * 2019-11-01 2020-02-11 上海三一重机股份有限公司 风扇控制***及工程机械车

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012024207A1 (de) * 2012-12-05 2014-06-05 Hydac Fluidtechnik Gmbh Vorrichtung zur Steuerung des Betriebs eines mittels eines Hydromotors antreibbaren Lüfters einer Kühleinrichtung
JP6223840B2 (ja) * 2014-01-21 2017-11-01 住友重機械工業株式会社 射出成形機
CN105625497A (zh) * 2014-11-20 2016-06-01 斗山工程机械(中国)有限公司 一种液压油风扇转速的控制方法、装置及挖掘机
US10056807B2 (en) * 2014-12-23 2018-08-21 Orange Motor Company L.L.C. Electronically commutated fan motors and systems
JP6466824B2 (ja) * 2015-12-04 2019-02-06 日立建機株式会社 油圧モータ制御装置
US10330126B2 (en) * 2016-12-16 2019-06-25 Caterpillar Inc. Fan control system with electro-hydraulic valve providing three fan motor operational positions
KR102316824B1 (ko) * 2017-11-17 2021-10-25 현대건설기계 주식회사 건설기계의 냉각장치
CN111356808B (zh) * 2017-11-23 2022-03-22 沃尔沃建筑设备公司 用于工程机械的驱动***和用于控制该驱动***的方法
US10479191B2 (en) * 2017-12-19 2019-11-19 Cnh Industrial America Llc Cooling systems and methods for an agricultural harvester
JP7160646B2 (ja) * 2018-11-22 2022-10-25 キャタピラー エス エー アール エル 建設機械
JP7076396B2 (ja) * 2019-03-27 2022-05-27 日立建機株式会社 作業機械
US11555291B2 (en) * 2020-04-06 2023-01-17 Deere & Company Self-propelled work vehicle and method implementing perception inputs for cooling fan control operations
US20240208389A1 (en) * 2021-03-19 2024-06-27 Hitachi Construction Machinery Co., Ltd. Dump Truck

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045808A (ja) 2004-08-02 2006-02-16 Shin Caterpillar Mitsubishi Ltd 建設機械における冷却ファン用油圧モータの駆動回路
JP2006057601A (ja) * 2004-08-24 2006-03-02 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の冷却装置
JP2007016667A (ja) * 2005-07-06 2007-01-25 Komatsu Ltd 冷却用油圧駆動ファンの制御装置および制御方法
WO2010083816A1 (de) * 2009-01-22 2010-07-29 Robert Bosch Gmbh Hydrostatischer lüfterantrieb
JP2010236556A (ja) * 2010-06-24 2010-10-21 Komatsu Ltd 冷却用ファンの駆動制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750623B1 (en) * 2002-12-17 2004-06-15 Caterpillar Inc. Reversible automatic fan control system
FR2882536B1 (fr) * 2005-02-25 2007-08-24 Koyo Hpi Soc Par Actions Simpl Procede de pilotage de l'inversion du sens de rotation d'un moteur hydraulique et systeme de mise en oeuvre de ce procede
US7240486B2 (en) * 2005-04-18 2007-07-10 Caterpillar Inc Electro-hydraulic system for fan driving and brake charging
US7937938B2 (en) * 2008-04-23 2011-05-10 Caterpillar Inc. Hydraulic reversing fan valve and machine using same
JP2011184911A (ja) * 2010-03-08 2011-09-22 Kcm:Kk 冷却ファンの駆動回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045808A (ja) 2004-08-02 2006-02-16 Shin Caterpillar Mitsubishi Ltd 建設機械における冷却ファン用油圧モータの駆動回路
JP2006057601A (ja) * 2004-08-24 2006-03-02 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の冷却装置
JP2007016667A (ja) * 2005-07-06 2007-01-25 Komatsu Ltd 冷却用油圧駆動ファンの制御装置および制御方法
WO2010083816A1 (de) * 2009-01-22 2010-07-29 Robert Bosch Gmbh Hydrostatischer lüfterantrieb
JP2010236556A (ja) * 2010-06-24 2010-10-21 Komatsu Ltd 冷却用ファンの駆動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781713A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763695A (zh) * 2015-04-13 2015-07-08 徐州徐工施维英机械有限公司 液压***、散热***和工程机械
CN110778545A (zh) * 2019-11-01 2020-02-11 上海三一重机股份有限公司 风扇控制***及工程机械车

Also Published As

Publication number Publication date
US20140311140A1 (en) 2014-10-23
EP2781713A4 (en) 2015-06-03
CN103946505A (zh) 2014-07-23
KR20140099236A (ko) 2014-08-11
CN103946505B (zh) 2016-11-09
EP2781713B1 (en) 2016-09-14
JP2013104386A (ja) 2013-05-30
JP5868663B2 (ja) 2016-02-24
EP2781713A1 (en) 2014-09-24
US9458758B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
JP5868663B2 (ja) 冷却ファン制御装置
JP4651467B2 (ja) 冷却用油圧駆動ファンの制御装置および制御方法
US6349882B1 (en) Controlling device for hydraulically operated cooling fan
JP4331151B2 (ja) 建設機械の作動流体冷却制御システム
JP5518589B2 (ja) 作業機械
WO2019188415A1 (ja) 作業車両
US20140060099A1 (en) Construction machine and control method for cooling fan
JP4538427B2 (ja) 作業用車両
WO2012124530A1 (ja) 建設機械
JP6749877B2 (ja) 冷却ファン制御装置
JP4900625B2 (ja) 冷却用ファンの駆動制御装置
JP2007321463A (ja) 作業用車両
JP4825006B2 (ja) 油圧回路の制御装置
JP7165831B2 (ja) ダンプトラックの油圧アクチュエータ制御装置
JP4559663B2 (ja) 冷却用ファンの駆動制御装置
JP2015071976A (ja) 作業車両
JP4330431B2 (ja) 冷却ファン制御システム
JP4580896B2 (ja) 作業用車両
WO2024048527A1 (ja) 運搬車両
JP2006063882A (ja) 建設機械
JP2024032270A (ja) 運搬車両
JP2024032296A (ja) 運搬車両
JP2024053762A (ja) 電動式作業機械の制御装置
JP2011021615A (ja) 冷却用油圧駆動ファンの制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147012671

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012850060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012850060

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358324

Country of ref document: US