WO2013069387A1 - Display device, and drive method and manufacturing method for same - Google Patents

Display device, and drive method and manufacturing method for same Download PDF

Info

Publication number
WO2013069387A1
WO2013069387A1 PCT/JP2012/074685 JP2012074685W WO2013069387A1 WO 2013069387 A1 WO2013069387 A1 WO 2013069387A1 JP 2012074685 W JP2012074685 W JP 2012074685W WO 2013069387 A1 WO2013069387 A1 WO 2013069387A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
semi
display panel
parallax barrier
Prior art date
Application number
PCT/JP2012/074685
Other languages
French (fr)
Japanese (ja)
Inventor
結城 昭正
佐竹 徹也
明男 中山
真彦 宇野
石川 淳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013069387A1 publication Critical patent/WO2013069387A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4266Diffraction theory; Mathematical models
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers

Definitions

  • the present invention relates to a display device, and more particularly to a display device such as a parallax barrier type naked-eye three-dimensional display or a multi-image display that displays different images for each observation direction.
  • Patent Document 1 discloses a barrier generating unit that generates a parallax barrier stripe by electronic control using a transmissive display element, and a display screen that is spaced a predetermined distance backward from the position at which the parallax barrier stripe is generated.
  • Image display means arranged and capable of outputting and displaying a multi-directional image in which strips of the left image and the right image are alternately arranged corresponding to the parallax barrier stripe when displaying a three-dimensional image
  • a three-dimensional image display device characterized by comprising:
  • barrier stripes are generated electronically, and the shape (number of stripes, width, interval), position (phase), density, etc. of the generated barrier stripes can be variably controlled. Since it has been made possible, it can be used as a two-dimensional image display device and method and also as a three-dimensional image display device and method, and a compatible image display device and method can be realized. Yes.
  • Patent Document 1 the position of the observer's head is detected, and the position (phase) of the electronic barrier is detected by the detection signal, and the phase inversion (barrier is performed each time the head moves in the left-right direction by the distance of the pupil interval.
  • Patent Document 2 discloses that image display means for alternately displaying a striped left-eye image and right-eye image, and the position of the light-shielding part that causes the binocular parallax effect are moved at a pitch of 1/4 mm of the light-shielding part pitch.
  • a light-shielding means configured to be able to detect the movement of the observer's head in the left-right direction and a sensor that detects whether the position of the observer's head deviates back and forth from the appropriate viewing range.
  • Patent Document 2 includes a black mask portion having at least two different widths between the right-eye pixel and the left-eye pixel of the display portion adjacent to the horizontal direction of the pixel corresponding to the opening of the barrier, It is disclosed that a black mask portion between pixels constituting a parallax image pair is made larger than other portions.
  • the crosstalk at the boundary between the areas for displaying the right-eye image and the left-eye image can be reduced, and the observer has no double image generated by the original image light and crosstalk in a wider range.
  • 3D images can be recognized. If different images are displayed instead of the parallax images, it is possible to recognize multi-directional images without double images generated by crosstalk in a wider range for each observation direction.
  • the present invention has been made to solve the above-described problems, and is a parallax barrier system that can continue stereoscopic viewing in a wide range without feeling flicker of luminance even when an observer moves.
  • An object of the present invention is to provide a naked-eye three-dimensional image display device and to provide a multi-image display capable of visually recognizing an image without a double image due to a change in luminance or crosstalk in a wide range.
  • the display device includes a display panel in which a plurality of pixels each having a light transmission part or a light emission part are arranged in a matrix, and an image viewing side or a rear side of the display panel, and the light transmission part is in a matrix.
  • a plurality of pixels of the display panel each of which includes at least two pixels for displaying images to be observed from different directions, forming a set of pixels
  • One of the light transmission portions of the parallax barrier and the one set of pixels are arranged in a corresponding positional relationship in the vertical direction, and the one arranged on the image viewing side of the parallax barrier and the display panel is , Provided along the left and right sides of the light transmission part, and having a semi-transmission part that partially transmits light.
  • a display device driving method includes a display panel in which a plurality of pixels are arranged in a matrix, and a parallax that is arranged on the image viewing side of the display panel and dynamically forms a parallax barrier by driving a liquid crystal layer
  • the parallax barrier shutter panel constituting a pixel set is divided into a plurality of states in which the liquid crystal layer is electrically insulated, and each has a plurality of sub-openings that are individually driven,
  • the opening forms a light transmission part, a light shielding part, and a semi-transmission part that partially transmits light depending on the driving state of the liquid crystal layer, and the plurality of sub-openings and the one pixel set correspond vertically.
  • the sub-openings serving as the semi-transmissive portions are positioned on the left and right of the array of the sub-openings serving as the light-transmitting portions among the plurality of sub-openings.
  • the liquid crystal layer is driven.
  • the one disposed on the image viewing side is provided along the left and right sides of the light transmission unit, and transmits the light partially. Therefore, the brightness gradient of each image can be made steep at the boundary between the display areas of the two images, and the boundary area where the double image occurs due to the change in brightness or crosstalk can be narrowed. For this reason, even when the observation position of the observer moves to the left and right, a good image without occurrence of a double image due to a change in luminance or crosstalk can be visually recognized in a wide range.
  • the parallax barrier shutter panel includes sub-openings serving as semi-transmissive portions on the left and right sides of the array of sub-openings serving as the light transmissive portions among the plurality of sub-openings. Since the liquid crystal layer is driven so as to be positioned, the luminance gradient of each image can be made steep at the boundary between the display areas of the two images, and a double image is generated due to a change in luminance or crosstalk. The boundary area can be narrowed. For this reason, even when the observation position of the observer moves to the left and right, a good image without occurrence of a double image due to a change in luminance or crosstalk can be visually recognized in a wide range.
  • FIG. 1 It is sectional drawing which shows the structure of the display apparatus of Embodiment 1 which concerns on this invention. It is a figure which shows the measured value and wave optical calculation result of the left-right direction light distribution characteristic of 2 image display apparatuses. It is the enlarged view of the boundary part of the measured value of the left-right direction light distribution characteristic of 2 image display apparatuses, and a wave optical calculation result. It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction at the time of changing the width
  • FIG. 1 shows measured values of light distribution characteristics in the left-right direction and calculation results by geometric optical calculation of a naked-eye stereoscopic display device having a liquid crystal shutter panel on the front side (image viewing side) of the liquid crystal display panel. It shows the light distribution characteristics when a white image and a black image are displayed in the right eye image and the left eye image, respectively.
  • the pitch (arrangement interval) of the pixels of the liquid crystal display panel is 0.096 mm
  • the pitch of the openings of the liquid crystal shutter panel is 0.192 mm
  • the distance between the openings of the liquid crystal shutter panel and the pixels is 0.62 mm. is there.
  • the width of the pixel light emitting portion of the liquid crystal panel is 0.051 mm
  • the center of the right eye pixel is on the left side -0.048 mm
  • the center of the right eye pixel is on the right side of 0.048 mm.
  • the opening width of the liquid crystal shutter panel is 0.062 mm, and is positioned approximately at the center of the right eye pixel and the right eye pixel of the liquid crystal panel.
  • the refractive index of the member is 1.5.
  • the horizontal axis indicates the left-right angle (degrees)
  • the vertical axis indicates the relative luminance (au .: arbitrary unit)
  • the measured values and the geometric optical calculation results are almost the same.
  • the shape of the luminance profile is triangular, and the luminance peak is in the direction of 6.5 degrees.
  • the position in the left-right direction of the luminance peak at the viewing distance of 280 mm is close to half of the average interocular distance of 65 mm and is a reasonable value.
  • the base of the luminance profile is shown in detail in FIG. In FIG. 2, in the geometrical optical calculation, the luminance is 0 in the direction of ⁇ 1 degree, while the measured value has a base, and there is leakage light.
  • the cause of this mismatch is presumed to be the influence of light scattering and diffraction of the members that are not taken into account in the geometric optical calculation. However, it was not clear to what extent the effect of diffraction.
  • the parallax barrier panel 20 is mounted on the front-side main surface of the display panel 10, and the two openings provided in the display panel light-shielding portion 25 on the front-side main surface of the display panel 10 By transmitting backlight light BL from a backlight (not shown) provided on the back side, a right pixel light emitting portion 11a and a left pixel light emitting portion 11b are formed, and the backlight light BL transmitted through these light emitting portions is transmitted.
  • the parallax barrier panel 20 passes through the transparent glass substrate 24 and is observed on the observation surface 3 through the barrier transmission part 21 provided on the barrier light shielding part 22 on the front main surface of the parallax barrier panel 20. .
  • the newly devised wave optical calculation model is based on Kirchhoff's diffraction theory, and a wave spreading in a cylindrical plane from a minute region of the right pixel light emitting part 11a and the left pixel light emitting part 11b which are pixels of the display panel 10
  • This is a two-dimensional model in which secondary element waves are generated from each minute region of the 20 barrier transmission parts 21 and these element waves interfere at one point on the observation surface 3.
  • the wavelength was 550 nm.
  • the calculation result by this wave optical calculation model is shown by a solid line in FIG. 1 as the wave optical calculation.
  • the luminance profile obtained from the wave optical calculation has a triangular shape similar to the measurement value and the geometric optical calculation result, and the angles at which the peaks are made coincide.
  • FIG. 2 showing the base of the luminance profile in detail, it can be seen that the result of the wave optical calculation indicated by the solid line is the base as in the measurement value, and the influence of diffraction is reproduced.
  • FIG. 4 is a schematic perspective view of a two-image display 100 that displays different images depending on the observation direction of the first embodiment according to the present invention.
  • the display panel may be an organic EL panel, a plasma display panel, or a liquid crystal panel, but a liquid crystal panel is shown as an example below.
  • a parallax barrier 12 is disposed on the front surface (image viewing side) main surface of the display panel 10 in which a plurality of pixels are arranged in a matrix.
  • a backlight 30 is provided on the back side of the display panel 10.
  • a plurality of openings of the barrier light-shielding part 122 provided on the front-side main surface of the display panel 10 serve as a barrier transmission part 121.
  • Each of the barrier transmission parts 121 is arranged so that the plan view has a stripe shape and the long sides are arranged in parallel.
  • a barrier semi-transmissive portion 123 is provided along each long side.
  • the plurality of openings of the light shielding portion 115 provided on the liquid crystal layer 114 serve as the pixel light emitting portion 111.
  • Each of the pixel light emitting units 111 is arranged so that the plan view has a stripe shape and the long sides are arranged in parallel.
  • the right-direction pixel light-emitting portions 111a and the left-direction pixel light-emitting portions 111b are alternately arranged. The configuration of the display panel 10 will be further described with reference to FIG.
  • FIG. 4 is a schematic diagram for explaining the positional relationship between the backlight, the pixel light emitting unit 111 of the display panel 10 and the opening 121 of the parallax barrier 12, and the position where the semi-transmissive portion 123 is provided. It is the figure which abbreviate
  • the pixel light emitting unit 111 of the display panel 10 and the opening 121 of the parallax barrier 12 may be arranged at a predetermined distance, and a medium such as air or glass may exist between them.
  • FIG. 5 is a cross-sectional view along the arrangement direction of the pixel light emitting units 111 in FIG.
  • the display panel 10 is a liquid crystal panel, and is provided on the liquid crystal layer 114 sandwiched between two transparent glass substrates 14 and 15, and on the back surface side (light source side) main surface of the transparent glass substrate 14.
  • the back polarizing plate 116 and the front polarizing plate 126 provided on the front main surface of the transparent glass substrate 15 are provided.
  • a transparent electrode 112 divided for each pixel is disposed on the back surface side main surface of the liquid crystal layer 114, and a counter transparent electrode integrally provided over the entire front surface side main surface of the liquid crystal layer 114. 113 is provided, and an electric field is applied to each pixel between both electrodes.
  • the opening of the light shielding part 115 provided on the counter transparent electrode 113 forms the pixel light emitting part 111.
  • the light shielding portion 115 is provided so as to cover the boundary portion between the adjacent transparent electrodes 112, and prevents leakage light from the pixel boundary.
  • the parallax barrier 12 is arranged on the main surface on the front side of the transparent glass substrate 15, and a semi-transmissive film 122b having an energy transmittance of 4 to 64% is arranged at an interval.
  • a semi-transmissive film 122b having an energy transmittance of 4 to 64% is arranged at an interval.
  • the barrier semi-transmissive part 123 and the barrier light-shielding part 122 are formed, and the barrier transmissive part 121 is formed between the adjacent semi-transmissive films 122b. is doing.
  • the front polarizing plate 126 is formed so as to cover the parallax barrier 12.
  • the barrier light-shielding portions 122 of the parallax barrier 12 are provided at a pitch equal to the arrangement width of the right-side pixel light-emitting portions 111a and the left-direction pixel light-emitting portions 111b of the liquid crystal panel 10.
  • the width W1 of the barrier semi-transmissive portion 123 extending on the barrier transmissive portion 121 is 0.5 ⁇ m to 10 ⁇ m, the transmittance is 20 to 80% amplitude transmittance, and 4 to 64% energy transmittance.
  • the barrier semi-transmissive portion 123 of the parallax barrier 12 is configured so that an additional phase difference of ⁇ nd from 0 to half wavelength ( ⁇ / 2) is generated between the barrier semi-transmissive portion 123 and the barrier transmissive portion 121, unlike the barrier transmissive portion 121. You may do it.
  • the additional phase difference ⁇ nd can be set by a combination of the refractive index difference ⁇ n between the semi-transmissive film 121 and the peripheral member and the thickness d of the semi-transmissive film.
  • the pitch W2 of the pixels of the liquid crystal panel 10 is 0.064 mm
  • the pitch W3 of the openings of the parallax barrier 12 is 0.128 mm
  • the distance T between the openings of the parallax barrier 12 and the pixels of the liquid crystal panel 10 is 0. It is set to 09 mm.
  • the distance from the liquid crystal panel 10 to the observation surface 31 is 50 mm.
  • the width W4 of the pixel light emitting unit 111 of the liquid crystal panel is 0.032 mm
  • the center of the right eye pixel is left-0.032 mm
  • the center of the right eye pixel is 0.032 mm right
  • the parallax barrier 12 The opening width W5 is 0.032 mm, and the opening of the parallax barrier 12 is provided almost above the center of the pair of right-eye pixels and right-eye pixels of the liquid crystal panel 10.
  • the width W6 of the light shielding portion 115 is 0.032 mm.
  • the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the relative luminance.
  • the calculated value of the right pixel light-emitting portion obtained by wave optical calculation is calculated R, and the measured value is
  • the measurement value R is the calculated light value of the left pixel light emitting unit L
  • the measurement value is the measurement L
  • the light distribution characteristic of the backlight 30 used for the wave optics calculation is also calculated BL
  • the measurement value is measured Shown as BL.
  • the calculation is performed on the assumption that the parallel light beams according to the actually measured light distribution characteristics of the backlight light BL of the liquid crystal panel 10 are uniformly incident on the light emitting portion of the liquid crystal panel 10.
  • FIG. 7 shows the profile of the low luminance region (1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 ⁇ 4 ) with the vertical axis as a logarithmic display. It is obtained from the actually measured luminance profile and wave optical calculation in the low luminance region. It can be seen that the obtained luminance profile is almost the same.
  • the luminance of the wave optical calculation result is lower than the measured value in the direction where the angle is higher than 30 degrees on the left and right.
  • the light emitting pixels of the liquid crystal panel 10 and the opening of the parallax barrier 12 are in the horizontal direction. This is because, in the wave optical calculation, only a single light emitting pixel and the opening of the parallax barrier are taken into consideration.
  • the measured value and the result of the wave optical calculation are It matches well.
  • the brightness profile obtained from the wave optics calculation reproduces the brightness profile of the measured boundary area well, and this wave optics calculation is effective for analyzing the brightness profile of the boundary area and the low brightness area. I understand.
  • the first is to make the boundary area where two images appear to be mixed as narrow as possible
  • the second is to eliminate the reflection of the image in the other direction even when a dark image is displayed in the image in the observation direction.
  • the ratio of leakage light to the peak luminance of the original display image is suppressed to about 1/1000 or less.
  • the leakage light luminance due to diffraction of the image in the other direction is about 1/1000 of the peak luminance even in the 30 ° right and left direction near the peak of the display light. It has been found necessary to suppress this.
  • FIG. 8 shows a calculation result of the light distribution characteristics of the two-image display 100 according to the first embodiment of the present invention by wave optical calculation.
  • the width of the opening of the parallax barrier 12 is 32.2 ⁇ m.
  • the brightness profiles calculated by changing the width of the barrier semi-transmissive portion 123 in various ways assuming that the barrier semi-transmissive portion 123 having an energy transmittance of 16% is provided on the left and right of the barrier transmissive portion 121 are shown.
  • the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the leakage light luminance.
  • the width of the barrier semi-transmissive portion 123 is 0, 0.5 ⁇ m, 1.0 ⁇ m, The luminance profiles for 2.5 ⁇ m, 5.0 ⁇ m, 7.5 ⁇ m, and 10 ⁇ m are shown.
  • FIG. 9 shows an enlarged view of the left and right borders. From FIG. 9, the luminance gradient at the left and right boundary portions becomes steeper as the width of the barrier semi-transmissive portion 123 increases, and becomes maximum when the width is 5 ⁇ m. It can be seen that when the width of the barrier semi-transmissive portion 123 is further increased, the maximum luminance gradient gradually decreases, and at the same time, the angle at which the maximum luminance gradient is generated is shifted in the display direction of other images, and the luminance gradient in the front direction is decreased.
  • the width of the barrier transmissive portion 121 is reduced to about the width of the barrier semi-transmissive portion 123. Is required.
  • FIG. 10 shows the calculation result of the luminance profile by wave optical calculation when the width of the barrier semi-transmitting portion 123 is fixed to 5 ⁇ m and the energy transmittance is variously changed.
  • the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the leakage light luminance.
  • the energy transmittance of the barrier semi-transmissive portion 123 is 0, 0.04 (4%)
  • the brightness profiles in the case of 0.16 (16%), 0.36 (36%), and 0.64 (64%) are shown, respectively.
  • the leakage light luminance in the direction of 30 degrees to the left and right is the minimum when the energy transmittance is between 16% and 36%, and the maximum luminance gradient in the boundary direction is the steepest around 16%. I understand.
  • the parallax barrier 12 is provided with the barrier semi-transmissive portion 123.
  • the barrier semi-transmissive portion 123 has a width of 0.5 ⁇ m or more and an energy transmittance of 4 to 64%. By doing so, it is possible to suppress the leakage light luminance in the left and right directions by 30 degrees, and to make the luminance gradient in the boundary direction between the left and right images steep. For this reason, it is possible to narrow a boundary region where a double image is generated due to a change in luminance or crosstalk, and even if the observer's observation position moves to the left or right, a double image due to a change in luminance or crosstalk over a wide range. It is possible to visually recognize a good image without occurrence of. It is most preferable that the barrier semi-transmissive portion 123 has a width of 2.5 to 5 ⁇ m and an energy transmittance of 16 to 36%.
  • a sputtering mask 151 is disposed above the main surface of the transparent glass substrate 15. Then, from the upper side of the sputtering mask 151, chromium oxide or graphite, which is a material of the barrier semi-transmissive portion 123, is blown by a sputtering method and adhered onto the main surface of the transparent glass substrate 15, thereby forming the semi-transmissive film 122 b.
  • the transmissivity of the semipermeable membrane 122b is 4 to 64%.
  • the energy transmittance is controlled by controlling the film thickness of the semi-transmissive film 122b.
  • the sputtering mask 151 has a pattern in which the upper part of the transparent glass substrate 15 that becomes the barrier transmission part 121 is masked and the part where the semi-transmissive film 122b is formed becomes an opening.
  • a sputtering mask 152 is formed above the main surface of the transparent glass substrate 15 as shown in FIG. Then, from above the sputtering mask 152, chromium oxide serving as the material of the barrier light-shielding portion 122 is blown off by a sputtering method and deposited on the semi-transmissive film 122b, thereby forming a light-shielding film 122a having an energy transmittance of 0%.
  • the sputtering mask 152 has a pattern in which only a portion where the light shielding film 122a is formed becomes an opening, and the other portion is masked.
  • the barrier semi-transmissive portion 123 and the barrier light-shielding portion 122 are formed, and the barrier transmissive portion 121 is formed between the adjacent barrier semi-transmissive portions 123.
  • the mask sputtering method has been described as an example of the method for forming the light shielding film 122a and the semi-transmissive film 122b.
  • the method is not limited to this, and the light shielding film 122a and the semi-transmissive film 122b can also be formed by a pad printing method or the like.
  • a sputtering mask 153 is formed on the main surface of the transparent glass substrate 15. Then, from the diagonally upper side of the sputtering mask 153, chromium oxide serving as the material of the barrier semi-transmissive portion 123 is blown off by a sputtering method and deposited on the main surface of the transparent glass substrate 15, thereby forming the semi-transmissive film 122c.
  • the energy transmittance of the semipermeable membrane 122c is 4 to 64%. The energy transmittance is controlled by controlling the film thickness of the semi-transmissive film 122c.
  • the semi-transmissive film 122c extends to below the edge of the sputtering mask 153 in the flying direction of the sputtering material.
  • the semi-transmissive film 122c does not extend below the edge of the sputtering mask 153 in the direction opposite to the direction in which the sputtering material comes in.
  • chromium oxide which is a material of the barrier semi-transmissive portion 123, is blown by a sputtering method to adhere to the main surface of the transparent glass substrate 15, thereby forming the semi-transmissive film 122d.
  • the energy transmittance of the semipermeable membrane 122d is 4 to 64%, which is the same as that of the semipermeable membrane 122c.
  • the energy transmittance is controlled by controlling the film thickness of the semi-transmissive film 122d.
  • the semi-transmissive film 122d is formed on the semi-transmissive film 122c and extends to below the edge portion of the sputtering mask 153 in the flying direction of the sputtering material.
  • the semi-transmissive film 122d does not extend below the edge of the sputtering mask 153 in the direction opposite to the flying direction of the sputtering material.
  • the central portion serves as a barrier light shielding portion 122 and the edge portion serves as a barrier semi-transmissive portion 123.
  • the barrier light-shielding part 122 and the barrier semi-transmissive part 123 can be formed with one sputtering mask by performing the sputtering twice from the oblique direction.
  • the transmittance of the light shielding portion 122 is only the square of the barrier semi-transmissive portion 123. For example, when the transmittance of the barrier semi-transmissive portion 123 is 0.1 (10%), the transmittance of the light shielding portion 122 is 0.01 (1%).
  • the manufacturing method of the barrier semi-transmissive portion described above is a manufacturing method for a configuration in which the barrier semi-transmissive portion 123 is provided along the long side of the stripe-shaped barrier transmissive portion 121, and the shape of the barrier semi-transmissive portion 123 is also configured. It was striped.
  • a barrier semi-transmissive portion 124 in which fine openings and barrier light shielding portions 122 are alternately arranged may be employed.
  • a plurality of fine openings 125 arranged in the vertical direction perpendicular to the barrier transmissive part 121 are arranged. Are formed along the two long sides.
  • a barrier semi-transmissive portion 124 in which the structure in which the fine opening 125 is a concave portion and the barrier light-shielding portion 122 is a protrusion is alternately obtained is obtained.
  • the effective energy transmittance of the semi-transmissive portion can be adjusted to the average value of the light shielding area and the opening area.
  • the required pitch P will be described with reference to FIG. 14, when considering a model in which light emitted from a pixel point G of the display panel 10 travels in the Z-axis direction (vertical direction) and reaches the point B of the parallax barrier 12, the light goes straight to the vertical direction.
  • the optical path difference dL when reaching the point B ′ shifted by the pitch P in the X-axis direction is T when the distance between the pixel point G of the liquid crystal display panel 10 and the parallax barrier 12 is T, and the refractive index of the optical path is n. It is approximately expressed by the following formula (1).
  • the phase difference is small, that is, the optical path difference dL is sufficiently smaller than the wavelength of light (for example, about 1/10). is necessary. In order to satisfy this, it is necessary to satisfy the following formula (2).
  • the barrier semi-transmissive portion 124 functions as a semi-transmissive portion having an effectively uniform transmittance.
  • the distance T between the pixel point G of the liquid crystal display panel 10 and the parallax barrier 12 is as thick as 720 ⁇ m, if the pitch P of the fine openings 125 is 10 ⁇ m or less, the barrier semi-transmissive portion 124 is effectively transmitted. It will function as a semi-transmissive part with a uniform rate.
  • barrier semi-transmissive portion 124 it is not necessary to form a semi-transmissive film on the transparent glass substrate 15, and it is only necessary to form the barrier light-shielding portion 122. Therefore, the thickness of the semi-transmissive film and the alignment of the mask are adjusted. High accuracy is not required, and the manufacturing process can be simplified.
  • the pitch P of the fine openings 125 only needs to satisfy the above formulas (1) to (3), and does not need to be uniform and may be random. Further, the openings may be in the form of polka dots isolated from each other.
  • FIG. 15 shows a cross-sectional configuration of the autostereoscopic display 200 according to the second embodiment of the present invention.
  • the autostereoscopic display 200 includes a display panel 210, a parallax barrier shutter panel 220 disposed on the front surface (image viewing side) main surface of the display panel 210, and the rear surface side of the display panel 210 ( A backlight 23 is provided on the light source side.
  • the display panel 210 is a matrix type display panel
  • the display panel 210 may be an organic EL panel, a plasma display panel, or a liquid crystal panel, but a liquid crystal panel is shown below as an example.
  • the display panel 210 is a liquid crystal panel, a liquid crystal layer 214 sandwiched between two transparent glass substrates 204 and the transparent glass substrate 205, and the back side (light source side) of the transparent glass substrate 204.
  • a back polarizing plate 216 provided on the surface and an intermediate polarizing plate 217 provided on the front main surface of the transparent glass substrate 205 are provided.
  • a counter transparent electrode 215 that is integrally provided over the entire surface is disposed on the main surface on the back surface side of the liquid crystal layer 214, and is divided for each pixel on the main surface on the front surface side of the liquid crystal layer 114.
  • a sub-pixel transparent electrode 212 is provided, and an electric field is applied to each pixel between both electrodes.
  • the subpixel transparent electrode 212 is divided by a light shielding wall 218, and the subpixel upper polarizing plate 219 is provided on the subpixel transparent electrode 212, but the subpixel upper polarizing plate 219 is also divided by the light shielding wall 218. ing.
  • subpixels 2110 to 2114 are formed in the horizontal direction (horizontal direction). Then, for example, by combining two sub-pixels of the adjacent sub-pixel 2111 and sub-pixel 2112, a sub-pixel pair 241 that displays different parallax images in the right direction and the left direction is configured. Further, by combining two sub-pixels of the adjacent sub-pixel 2113 and sub-pixel 2114, a sub-pixel pair 242 that displays different parallax images in the right direction and the left direction is configured.
  • the parallax barrier shutter panel 220 is provided on the liquid crystal layer 224 sandwiched between the transparent glass substrate 222 (first transparent substrate) and the transparent glass substrate 226 (second transparent substrate), and the front-side main surface of the transparent glass substrate 222. And a display surface polarizing plate 228. Note that a polarizing plate is also provided on the main surface of the transparent glass substrate 226 on the display panel 210 side, but is omitted here as being also used as the intermediate polarizing plate 217.
  • twisted nematic twisted nematic
  • STN super twisted nematic
  • IPS in-plane switching
  • OBC optically compensated bend
  • a transparent electrode 225 (second transparent electrode) provided integrally on the entire rear surface side of the liquid crystal layer 224 is disposed, and a transparent electrode 225 (second transparent electrode) is provided over the entire surface.
  • An electrode 223 is provided.
  • the reference parallax barrier pitch is defined by a length corresponding to the arrangement width of each sub-pixel pair, and the transparent electrode 223 is divided into a plurality of electrically insulated states within the reference parallax barrier pitch.
  • FIG. 15 shows an example of eight divisions, the present invention is not limited to this, and the number of divisions may be larger.
  • Each of the divided transparent electrodes 223 becomes a sub opening 301, and the width of the sub opening 301 becomes a sub opening pitch.
  • the virtual light LO that has exited from the center of the light shielding wall 218 in the middle of the sub-pixels 2111 and 2112 constituting the sub-pixel pair 241 and passed through the center point within the corresponding reference parallax barrier pitch is the present display device.
  • the reference parallax barrier pitch is set so as to gather at the design visual recognition point Q set in front of.
  • the parallax barrier shutter panel 220 configured in this manner, by applying an electric field to the liquid crystal layer 224 using the transparent electrode 223 and the transparent electrode 225, the plurality of sub-openings 301 are alternately set in a light transmission state, a light shielding state, and a half state. It can be switched to a transparent state.
  • FIG. 16 four of the eight sub-openings 301 within the reference parallax barrier pitch are in a transmissive state to form a transmissive portion 321, and two on both sides thereof are in a semi-transmissive state to form a semi-transmissive portion 323.
  • the liquid crystal is controlled by applying an electric field to the liquid crystal layer 224 using the respective transparent electrodes 223 so that the remaining two are in a light-shielding state to form the light-shielding portion 322.
  • a light emitting portion in the liquid crystal layer 214 in the display panel 210 is shown as a display pixel light emitting portion 211.
  • a light shielding portion (not shown) is disposed on the liquid crystal layer 214 with an interval therebetween, and no light is emitted from the light shielding portion, so that the display pixel light emitting portion 211 exists in a scattered manner.
  • the transmittance of the semi-transmissive portion 323 is lowered and the transmissive portion 321 is also obtained. It is also possible to generate a phase difference (additional phase difference) of ⁇ nd as a phase difference from the light that has passed through.
  • 17 to 19 show an arrangement of twelve sub-openings 301 as a part of the plurality of sub-openings 301, and reference numerals 1 to 8 are given in order from the left side in the drawing.
  • the code is repeated from the sub-opening 301 on the right side of the eighth sub-opening 301.
  • FIG. 17 shows a pattern in which all the sub-openings 301 are in a transmissive state.
  • pattern 1 four consecutive 1 to 4 of the eight sub-openings 301 within the reference parallax barrier pitch are in a light transmission state, and 5 and 8 are in a semi-transmission state.
  • 6 and 7 by making 6 and 7 light-shielded, a pattern having transmissive portions 321 on the left and right is formed.
  • 18B shows a pattern 2 in which patterns 7 and 8 are in a light-shielded state, 1 and 6 are in a semi-transmissive state, and the rest are in a transmissive state.
  • 18C shows a pattern 3 in which 8 and 1 are in a light-shielding state, 7 and 2 are in a semi-transmissive state, and the rest are in a transmissive state.
  • 18D shows a pattern 4 in which 1 and 2 are in a light-shielding state, 8 and 3 are in a semi-transmissive state, and the rest are in a transmissive state.
  • 19A shows a pattern 5 in which 2 and 3 are in a light-shielded state, 1 and 4 are in a semi-transmissive state, and the rest are in a transmissive state.
  • 19B shows a pattern 6 in which 3 and 4 are in a light-shielding state, 5 and 2 are in a semi-transmissive state, and the rest are in a transmissive state.
  • 19C shows a pattern 7 in which 4 and 5 are in a light-shielding state, 6 and 3 are in a semi-transmissive state, and the rest are in a transmissive state.
  • 19D shows a pattern 8 in which 5 and 6 are in a light shielding state, 4 and 7 are in a semi-transmissive state, and the rest are in a transmissive state.
  • the position of the transmission part 321 can be moved at the pitch of the sub-opening part 301 by selecting the sub-opening part 301 to be in the light transmission state and the semi-transmission state.
  • the pitch of the pixels of the liquid crystal panel is 0.069 mm
  • the pitch of the openings of the liquid crystal shutter panel is 0.138 mm
  • the distance between the openings of the liquid crystal shutter panel and the pixels is 1.224 mm.
  • the center of the right-eye pixel of the liquid crystal panel is at the left of ⁇ 0.034 mm
  • the center of the right-eye pixel is at the right of 0.034 mm
  • the opening width of the liquid crystal shutter panel is 0.069 mm. Is located approximately above the center of the pair of right-eye pixels and left-eye pixels of the liquid crystal panel.
  • FIG. 20 shows the result of calculating the light distribution characteristics with various aperture widths of the pixels of the display panel, the refractive index of the transparent glass member is 1.5, and the wavelength at the time of wave optical calculation is It is 550 nm.
  • the calculation result is a relative luminance distribution on a screen located at a design observation distance of 750 mm from the liquid crystal shutter panel.
  • the geometric optical calculation result appears as a straight line
  • the wave optical calculation result appears as a curve.
  • the horizontal axis represents the observation position (mm) on the screen
  • the vertical axis represents the relative luminance.
  • the aperture width of the pixel of the display panel is 34.2 ⁇ m, 27.3 ⁇ m, 20.
  • the geometric optical calculation result and the wave optical calculation result are shown for the cases of 5 ⁇ m, 13.7 ⁇ m, and 6.8 ⁇ m, respectively.
  • the results of wave optics calculations are different.
  • the luminance peak decreases as the aperture width of the pixel of the display panel decreases, a large distribution occurs because a plurality of peaks appear, and the width of the luminance peak area is also narrower than the geometric optical calculation result.
  • FIG. 21 shows a profile obtained by normalizing the luminance profile in FIG. 20 with the peak luminance, and the vertical axis represents the normalized relative luminance.
  • FIG. 22 shows the calculation results obtained by examining how the difference between the wave optical calculation and the geometric optical calculation differs depending on the structural dimensions.
  • the pixel pitch of the liquid crystal panel is 0.069 mm
  • the pitch of the opening of the liquid crystal shutter panel is 0.138 mm
  • the distance between the opening of the liquid crystal shutter panel and the pixel is 1.224 mm.
  • the center of the pixel for the right eye of the panel is at the left -0.034 mm
  • the center of the pixel for the right eye is at the right of 0.034 mm
  • the opening width of the liquid crystal shutter panel is 0.069 mm
  • the opening is formed in the liquid crystal panel.
  • the reference structure is assumed to be located approximately above the center of the pair of right-eye pixels and left-eye pixels, and the display panel pixel aperture width is 34.2 ⁇ m.
  • FIG. 22 shows calculation results when the reference structure is similarly changed to 1/2 times, 2 times, and 4 times.
  • the refractive index of the transparent glass member is 1.5, and the wavelength of light is 550 nm.
  • the calculation result is a relative luminance distribution (au) on the screen at a design observation distance of 750 mm from the liquid crystal shutter panel.
  • the geometric optical calculation result appears as a straight line, and the wave optical calculation result appears as a curve.
  • the result of the wave optical calculation is greatly different from the result of the geometric optical calculation indicated by the solid line in terms of the luminance at the 0 mm point and the flatness of the peak.
  • the difference between the result of the wave optical calculation and the result of the geometric optical calculation becomes larger as the size is similarly reduced.
  • the results of wave optics calculations show that the peak brightness variation exceeds 10%, and the brightness at the geometrical optics calculation is 0—the brightness at the 10 mm point exceeds 10% of the peak. ing. Therefore, a structure that is similarly magnified four times eliminates the difference from geometric optical calculation and loses the merit of using wave optical calculation.
  • the similar dimension is less than 4 times, it can be said that there is an advantage of using wave optical calculation.
  • the opening width closer to the observer is smaller. If it is smaller than 0.138 mm, it is effective to adjust the luminance profile using wave optics calculation.
  • the pitch of the sub-openings 301 was calculated for the case where the reference parallax barrier pitch was divided into 16 (in FIGS. 15 and 16, the case of 8 equal parts was shown).
  • the pixel pitch W12 of the liquid crystal display panel 210 is 0.069 mm
  • the pitch of the transmission part 321 of the liquid crystal shutter panel 220 is 0.138 mm
  • the distance DB between the transmission part 321 of the liquid crystal shutter panel 220 and the pixel of the liquid crystal panel 210 is 1.224 mm.
  • the width of the display pixel light emitting section 211 of the liquid crystal panel 210 is 20.5 ⁇ m, the center of the right eye pixel is at the left end of ⁇ 0.034 mm, and the center of the right eye pixel is at 0.034 mm on the right.
  • the width W13 (barrier opening width) of the transmissive portion 321 of the liquid crystal shutter panel 220 is 0.069 mm (68.5 ⁇ m), which is the sum of the widths of the eight sub-openings 301, and 8 on one side of the sub-opening portion.
  • a semi-transmissive portion 323 of .5 ⁇ m exists, and is positioned almost above the center of the pair of right-eye pixels and right-eye pixels of the liquid crystal panel 210.
  • FIG. 23 shows the results of calculating the light distribution characteristics by changing the transmittance and additional phase of the semi-transmissive portion 323 in various ways.
  • the refractive index of the transparent glass member is 1.5, and the wave optical calculation is performed.
  • the wavelength at that time is 550 nm.
  • the light distribution characteristics when a white image and a black image are displayed in the right-eye image and the left-eye image, respectively, are shown.
  • the horizontal axis represents the observation position (mm) on the screen, and the vertical axis represents the relative luminance.
  • the phase of light passing through the semi-transmissive portion 323 (width 8.5 ⁇ m) is the transmissive portion.
  • the energy transmittance is 6%, 25%, and 56% are assumed to travel a distance longer by 1/4 wavelength as an additional phase difference than when passing through 321 (width 68.5 ⁇ m). Shown with a chain line.
  • the case where there is no semi-transmissive portion 323 and the transmissive portion 321 is correspondingly wide (barrier opening width is 85.6 ⁇ m) is indicated by a thick chain line, and the semi-transmissive portion 323 is absent and the transmissive portion 321 remains 68.5 ⁇ m.
  • the profile of the case is shown by a solid line.
  • the luminance gradient is steep in both cases when the semi-transmissive portion 323 is present, and the leakage light at the ⁇ 10 mm point can be suppressed.
  • the transmittance is 56%, the amount of light leaked at a point of ⁇ 30 mm is increased. Under this condition, it can be seen that a transmittance of about 25% is suitable.
  • FIG. 24 shows the calculation result showing the effect of the additional phase difference generated when passing through the semi-transmissive portion 323 when the energy transmittance of the semi-transmissive portion 323 is 25%, when there is no additional phase difference. It is shown together with (in the case of 0).
  • the horizontal axis indicates the observation position (mm) on the screen, and the vertical axis indicates the relative luminance, and the case where the phase advances by a quarter wavelength ( ⁇ /) as compared with the case where it passes through the transmission part 321. 4) shows a case where the phase advances by 1/2 wavelength (- ⁇ / 2), a case where the phase advances by 3/4 wavelength (- ⁇ 3 / 4), and a case where the phase difference is zero.
  • the liquid crystal shutter panel 220 is provided with the semi-transmissive portion 323, the transmittance of the semi-transmissive portion 323 is about 25%, and the light passes through the transmissive portion 321.
  • the semi-transmissive portion 323 so as to proceed by ⁇ / 4 as compared with the above, it is possible to suppress the leakage light luminance in the right and left 20 degrees direction and to make the luminance gradient in the boundary direction steep.
  • the preferred size is discussed for green light with a wavelength of 550 nm.
  • red light wavelength 650 nm
  • blue light wavelength 450 nm
  • the size is different. Therefore, it is also possible to eliminate the color of leakage light by changing the size of the semi-transmissive portion of the parallax barrier according to the color of the target pixel.
  • the configuration of the parallax barrier is an elongated stripe shape and the long sides are arranged in parallel.
  • the parallax barrier can be applied to a staggered arrangement (checker flag pattern shape). .
  • the staggered arrangement the resolution of the stereoscopic image is improved.
  • the number of direction-specific images has been described by taking the case of two as an example.
  • the present invention is not limited to this, and even when there are three or more parallax images, the luminance of the leaked light is suppressed at each image boundary. There is an effect to.
  • Embodiment 3> ⁇ Device configuration>
  • a display device including a display panel in which pixels are arranged in a matrix and a parallax barrier formed on the front side (image viewing side) of the display panel will be described as an example.
  • the display panel is a liquid crystal display panel
  • the present invention can also be applied to an apparatus having a parallax barrier on the back side of the display panel.
  • FIG. 25 is a schematic perspective view of a two-image display 300 that displays different images depending on the observation direction according to the third embodiment of the present invention.
  • a parallax barrier 42 is disposed on the back side of the display panel 41 in which a plurality of pixels are arranged in a matrix.
  • a backlight 43 is provided on the back side of the parallax barrier 42.
  • a plurality of openings of the light shielding part 412 provided on the liquid crystal layer 410 serve as a pixel transmission part 411. All of the pixel transmission portions 411 are arranged so that the plan view has a stripe shape and the long sides are arranged in parallel. A semi-transmissive portion 413 is provided along each long side.
  • a plurality of openings of the barrier light shielding part 422 are barrier transmission parts 421. All of the barrier transmission parts 421 are arranged so that the plan view has a stripe shape and the long sides are arranged in parallel.
  • FIG. 25 is a schematic diagram for explaining the positional relationship between the backlight 43, the pixel transmission unit 411 and the parallax barrier transmission unit 421 of the display panel 41, and omits transparent electrodes, transparent glass substrates, and the like provided in the display panel. It has become the figure.
  • the pixel transmission unit 411 and the parallax barrier transmission unit 421 of the display panel 41 are arranged at a predetermined distance from each other, and a medium such as air or glass may be present therebetween.
  • FIG. 25 is a schematic diagram for explaining the positional relationship between the backlight, the display panel, and the parallax barrier, and the position where the semi-transmissive portion is provided, in which the transparent electrode and the transparent glass substrate provided on the display panel are omitted. It has become. Further, the backlight, the display panel, and the parallax barrier may be in close contact with each other, or a medium such as air or glass may be present therebetween.
  • the width of the semi-transmissive portion 413 of the liquid crystal display panel 41 is 0.5 ⁇ m to 10 ⁇ m, the transmittance is 20 to 80% amplitude transmittance, and the energy transmittance is about 4 to 64%. Further, the semi-transmissive portion 413 has a refractive index different from that of the transmissive portion 411, and is configured such that a phase difference of ⁇ nd from 0 to a half wavelength is generated between the semi-transmissive portion 413 and the transmissive portion 411.
  • the semi-transmissive portion 413 is provided on the long side of the transmissive portion 411 of the display panel 41.
  • FIG. 26 shows a wave optical calculation result of the light distribution characteristics in the two-image display 300 according to the third embodiment of the present invention.
  • the pixel pitch of the display panel 41 is 0.069 mm
  • the pitch of the barrier transmission part 421 of the parallax barrier 42 is 0.138 mm
  • the transmission part 411 of the display panel 41 and the barrier transmission part 421 of the parallax barrier 42 are The distance between is 1.224 mm.
  • the center position of the transmissive portion 411 of the display panel 41 is -0.034 mm for the left eye pixel and 0.034 mm for the right eye pixel.
  • the width of the barrier transmission part 421 of the parallax barrier 42 is 0.069 mm.
  • the light distribution characteristics when ⁇ nd is varied are calculated, the refractive index of the transparent glass member is 1.5, and the wavelength in the wave optical calculation is 550 nm.
  • the calculation result is a relative luminance distribution on a screen located at a design observation distance of 750 mm from the liquid crystal shutter panel.
  • FIG. 27 shows a normalized relative luminance profile obtained by normalizing each luminance profile with peak luminance.
  • the additional phase difference ⁇ nd can be set by a combination of the refractive index change ⁇ n and the thickness d of the liquid crystal layer. Since the thickness d of the liquid crystal layer is fixed, in order to make the refractive index of the semi-transmissive portion 413 different from that of the transmissive portion 411, the thickness of the ITO (Indium Tin Oxide) electrode having a larger refractive index than that of the liquid crystal. What is necessary is just to employ
  • the horizontal axis indicates the observation position (mm) on the screen, and the vertical axis indicates the relative luminance.
  • the transmitting portion 411 is 34.3 ⁇ m).
  • the case is indicated by a thick chain line
  • the case where there is no transflective portion 413 and the transmission portion 411 is 27.4 ⁇ m is indicated by a solid line
  • the width of the transflective portion 413 is 5 ⁇ m
  • the transmittance is 25%
  • an additional phase difference ( ⁇ nd) ⁇ / 4 is indicated by a broken line
  • the additional phase difference ( ⁇ nd) is 0 is indicated by a chain line.
  • the transmissivity of the semi-transmissive portion 413 is 25% and the additional phase difference ( ⁇ nd) is 0, the peak luminance is not greatly reduced as compared with the case where the semi-transmissive portion 413 indicated by the solid line is not present, at the point of ⁇ 30 mm. It can be seen that the leakage light of the light can be suppressed.
  • suitable light leakage characteristics can be obtained by appropriately setting the transmittance of the semi-transmissive portion 413 and the additional phase difference ( ⁇ nd) according to the configuration of the display device.
  • Embodiment 4 a specific configuration of the liquid crystal display panel in the apparatus described in Embodiment 3 in which the display panel is a liquid crystal display panel and the parallax barrier is on the back side of the display panel will be described. To do.
  • FIG. 28 is a diagram showing an example of a specific configuration of the transmissive portion 411 of the display panel 41 shown in FIG. 25.
  • FIG. 28 (a) is a plan view
  • FIG. 28 (b) is a plan view.
  • FIG. 2 is a cross-sectional view taken along line AA in the plan view.
  • the planar shape of the transmission part 411 is a vertically long rectangular shape, and a semi-transmissive film 1413 is provided along the two long sides.
  • a light shielding film 1412 is formed around the transmission part 411 including the semi-transmissive film 1413.
  • the liquid crystal layer 1422 is sandwiched between the lower transparent substrate 1400 and the upper transparent substrate 1450, and the pixel electrode 1423 is disposed on the lower transparent substrate 1400.
  • a counter electrode 1421 is disposed on the upper transparent substrate 1450, and both are disposed to face each other with a liquid crystal layer 1422 therebetween.
  • the pixel electrode 1423 is provided independently for each transmissive portion (also referred to as an upper opening) 411 and is provided at least in a region corresponding to the lower portion of the upper opening 411.
  • the counter electrode 1421 is provided on the entire upper transparent substrate 1450.
  • the barrier light shielding portion 422 and the barrier transmission portion (also referred to as a lower barrier opening) of the parallax barrier 42 are also referred to. ) 421 is provided.
  • an appropriate voltage can be applied to the pixel electrode 1423 to form an electric field with the counter electrode 1421, and the orientation of the liquid crystal layer 1422 can be controlled by the electric field, and the upper opening 411 can be controlled.
  • the light transmittance can be changed.
  • the normal pixel electrode 1423 is formed of a transparent conductive film such as ITO having a refractive index of about 2.1 and is formed of a thin film having a uniform thickness.
  • a high refractive index film 1424 having a curved shape in which the cross-sectional shape is thickest at the center of the transmission part 411 and becomes thinner toward the edge part is provided.
  • This high refractive index film 1424 is also made of ITO and functions as a pixel electrode.
  • the pixel electrode 1423 is formed on the lower transparent substrate 1400.
  • a transparent conductive film such as ITO is formed on the entire surface of the lower transparent substrate 1400, and the transparent conductive film is formed.
  • the pixel electrode 1423 can be provided by patterning with photolithography. Note that the patterned pixel electrode 1423 is covered with a transparent insulating film 1401, and the transparent insulating film 1401 is planarized to the thickness of the pixel electrode 1423.
  • the formation method of the counter electrode 1421 is also the same. After forming the semi-transmissive film 1413 and the light-shielding film 1412 in which the part corresponding to the transmissive part 411 is an opening on the upper transparent substrate 1450, the transparent electrode 1421 is transparent together with the opening.
  • the insulating film 1402 is covered, the transparent insulating film 1402 is flattened to the thickness of the semi-transmissive film 1413 and the light-shielding film 1412, and a transparent conductive film is formed over the entire surface on the transparent insulating film 1402, the semi-transmissive film 1413 and the light-shielding film 1412.
  • the counter electrode 1421 is obtained. Note that the method described with reference to FIGS. 11 and 12 can be employed as a method of forming the semi-transmissive film 1413 and the light shielding film 1412.
  • the upper transparent substrate 1450 and the lower transparent substrate 1400 are disposed to face each other so that the pixel electrode 1423 and the counter electrode 1421 face each other, and a liquid crystal material is interposed therebetween. Is sealed to form a liquid crystal layer 1422.
  • FIG. 29 schematically shows an optical path of light passing through the pixel transmission part 411 (upper opening 411) of the display panel 41 and the barrier transmission part 421 (lower barrier opening 421) of the parallax barrier 42 shown in FIG.
  • FIG. 9 shows a state in which the upper opening 411 is opposed to the lower barrier opening 421 in the observation direction with a distance D0.
  • the light emitted from the point P in the lower barrier opening 421 propagates radially toward the upper opening 411.
  • Delay ( ⁇ Dx ⁇ D0) ⁇ na occurs.
  • a high refractive index film 1424 having a refractive index nh having a refractive index larger than the surrounding refractive index na is disposed at the center in the opening, and its thickness t It is effective to form so as to satisfy the following formula (4).
  • ⁇ Dx ⁇ na (nh ⁇ na) ⁇ t (4)
  • the horizontal axis represents the left / right position (mm) representing the position from the central axis in the width direction (left / right direction) of the high refractive index film 1424
  • the vertical axis represents the film thickness t (mm).
  • the film thickness distribution of the rate film 1424 is shown.
  • fills the said Numerical formula (4) is shown with the broken line.
  • the distance D0 between the upper opening 411 and the lower barrier opening 421 is 0.9 mm
  • the width of the upper opening 411 is 0.030 mm
  • the width of the lower barrier opening 421 is 0.050 mm
  • the surrounding refractive index na is the refractive index of the liquid crystal layer 1422.
  • na 1.5
  • the film thickness distribution of the ideal high refractive index film 1424 is 0 ⁇ m at the end of the upper opening 411, and the maximum thickness at the center of the upper opening 411 is about 0.35 ⁇ m. Since the thickness is thinner than 3-5 ⁇ m, the influence on the light shielding effect of the liquid crystal panel is negligible.
  • FIG. 31 shows the calculation result of the light distribution characteristic by the wave optical calculation when the film thickness distribution of the high refractive index film 1424 is ideal.
  • the horizontal axis indicates the light distribution angle as the left and right angle (degrees)
  • the vertical axis indicates the relative luminance (au: arbitrary unit)
  • the characteristic plotted by the white circle is the film thickness.
  • the calculation result when the ITO film thickness of the pixel electrode 1423 is uniform, does not have the high refractive index film 1424, and does not have a semi-transmissive region is shown as “conventional aperture”.
  • both the minimum leakage light luminance appearing in the ⁇ 2.5 degree direction and the leakage light luminance in the ⁇ 1 degree direction are decreased. This represents that the observer can observe a stereoscopic image without a double image due to crosstalk in a wider range in a wider viewing range.
  • phase guarantee ideal distribution + semi-transmission region 4 ⁇ m a calculation result when a semi-transmission region with an amplitude transmittance of 50% is formed at the end of the opening with a width of 4 ⁇ m is expressed as “phase guarantee ideal distribution + semi-transmission region 4 ⁇ m.
  • phase guarantee ideal distribution + semi-transmission region 4 ⁇ m As a characteristic plotted with a filled diamond. With this characteristic, it can be seen that both the minimum leakage light luminance appearing in the ⁇ 2.5 degree direction and the leakage light luminance in the ⁇ 1 degree direction are further reduced.
  • a film having a higher refractive index than the surroundings is formed in the vicinity of the upper opening 411 so that the film thickness (t) has a distribution satisfying Equation (4), thereby narrowing the width of the boundary region where the crosstalk is large.
  • light distribution characteristics with low minimum leakage luminance can be realized, and furthermore, by providing a semi-transmissive region at the end of the upper opening 411 in the width direction (left-right direction), the width of the boundary region where crosstalk is large can be achieved. It can be seen that it is possible to realize a light distribution characteristic that is further narrowed and has a lower minimum leakage luminance.
  • such an improvement in the leakage light luminance distribution is not limited to the ideal distribution in which the film thickness distribution of the high refractive index film 1425 satisfies Expression (4). That is, a plurality of high-refractive-index thin films having a uniform thickness may be laminated to form a multilayer high-refractive-index film having a film thickness distribution that approximates the phase guarantee ideal distribution.
  • FIG. 32 shows an example of a multilayer high refractive index film.
  • FIG. 32 is a view corresponding to FIG. 28.
  • FIG. 32 (a) shows a plan view
  • FIG. 32 (b) shows a cross-sectional view taken along line BB in the plan view. Note that the same components as those in FIG. 28 are denoted by the same reference numerals, and redundant description is omitted.
  • the cross-sectional shape has the first thickness that is the thickest at the center of the upper opening 411, and the other portion has the second thickness that is thinner than the first thickness.
  • a two-stage high refractive index film 1425 is provided.
  • the high refractive index film 1425 includes a high refractive index film 14251 provided along the long side of the opening at the center of the upper opening 411 and a high refractive index film 14252 provided so as to cover the high refractive index film 14251.
  • the high refractive index films 14251 and 14252 at the center have a first thickness, and the thickness of the high refractive index film 14252 corresponds to the second thickness.
  • the multilayer high refractive index film in addition to the above-described two-stage high refractive index film, a three-stage high refractive index film and a one-stage high refractive index film are used.
  • the film thickness distribution is also shown. That is, the single-stage high-refractive index film has a uniform thickness of 0.2 ⁇ m, and the two-stage high-refractive index film has a thickness of 0.3 ⁇ m at the center and 0 on both sides.
  • the three-stage high refractive index film having a thickness of 2 ⁇ m has a thickness of 0.3 ⁇ m at the center, a thickness of 0.2 ⁇ m on both sides, and a thickness of 0.2 ⁇ m on the outer side. It has a thickness of 1 ⁇ m.
  • FIG. 31 shows the light distribution characteristic when a one-stage high refractive index film is used as a characteristic plotted as a solid circle with a phase compensation of one stage 0.2 ⁇ m.
  • the light distribution characteristics when using a refractive index film are shown as characteristics plotted with white triangles as two stages of phase compensation 0.2 ⁇ m & 0.3 ⁇ m.
  • the light distribution characteristics when using a three-stage high refractive index film are shown.
  • Phase compensation is shown as a characteristic plotted with solid triangles as three stages 0.1 ⁇ m & 0.2 ⁇ m & 0.3 ⁇ m. In any condition, it is assumed that there is no semi-transmissive region.
  • the gradient at which leakage light decreases can be increased. That is, it is possible to narrow the width of the boundary area where the crosstalk close to the observation area boundary is large and to widen the three-dimensional viewing area.
  • a high refractive index film in which a refractive index is higher in the vicinity of the upper opening 411 than in the surroundings and a thicker central part than at both ends, and a semi-transmissive region is provided at the end of the upper opening 411 in the width direction.
  • FIG. 33 and FIG. 34 show another configuration of a high refractive index film having a refractive index higher in the vicinity of the upper opening 411, thicker at the center of the opening, and thinner at the end, in the vicinity of the upper opening 411. That is, the high refractive index film 1424 shown in FIG. 28 and the high refractive index film 1425 shown in FIG. 32 were provided in the liquid crystal layer 1422, but the high refractive index film 1426 and the high refractive index film 1426 shown in FIG. 33 and FIG. 1427 is formed in the transparent insulating film 1401 provided on the lower transparent substrate 1400.
  • the thickness of the general liquid crystal layer 1422 is 3 to 5 ⁇ m, and the thickness of the thin film layer on the substrate 1400 is about 1 to 3 ⁇ m.
  • the distance between the lower barrier opening 421 and the upper opening 411 is about 1 mm. Since it is thinner than DO, the high refractive index layer 1427 can be said to be in the vicinity of the liquid crystal layer 1422.
  • the high refractive index film 14261 made of a narrow silicon nitride film is laminated, and the high refractive index film 1426 is disposed below the pixel electrode 1423.
  • the refractive index of the high refractive index film 1426 is higher, so that the condition is satisfied.
  • the high refractive index film 1427 shown in FIG. 34 is disposed above the high refractive index film 14272 made of a silicon nitride film, and a high refractive index film 14271 made of a silicon nitride film having a narrower width than that.
  • the transparent insulating film 1401 is interposed between the two, but since the distance between the two is narrow, the phase delay of the light passing therethrough is the delay in the high refractive index film 1427 and the delay in the high refractive index film 14272. Since it becomes a sum, it is substantially the same as the case of the two-stage shape.
  • the position of the high refractive index films 1426 and 1427 is within a few ⁇ m from the liquid crystal layer 1422, it is about 1/10 of the width of the upper opening 411. Has the same effect as the case.
  • TFT thin film transistor driven liquid crystal displays
  • a transparent conductive film (ITO) a transparent conductive film (ITO), a silicon oxide film (SiO 2 ), a silicon nitride film (SiN), and an oxide semiconductor are used to form TFTs and color filters.
  • ITO transparent conductive film
  • SiO 2 silicon oxide film
  • SiN silicon nitride film
  • oxide semiconductor oxide semiconductor
  • a plurality of transparent thin films having different refractive indexes are deposited and patterned by a photoengraving process.
  • the high refractive index films 1426 and 1427 are made of a material (liquid crystal, silicon oxide film, organic film) having a relatively low refractive index (1.5 to 1.6) among these plural materials. Can be formed by leaving a relatively high (1.9 or more) material (silicon nitride film, ITO, oxide semiconductor) by changing the pattern shape of the conventional mask, so that there is no increase in process cost. A refractive index film can be formed.
  • Embodiment 4 and its modification can be paraphrased as follows. That is, the average refractive index of the light transmission part 411 including the liquid crystal layer 1422, the surrounding electrodes, and the insulating film on the substrate is high at the center part in the width direction (left-right direction) and low at the end part side (center part) (Below the end side), the gradient in which light leakage decreases in the light distribution characteristics can be increased, and the width of the boundary region where crosstalk close to the boundary of the observation region is large is narrowed and three-dimensional viewing is possible. The area can be expanded.
  • Embodiment 5 in the apparatus described in Embodiment 3 in which the display panel is a liquid crystal display panel and the parallax barrier is on the back side of the display panel, FFS (Frings Field Switching) is used as the liquid crystal display panel.
  • FFS Rings Field Switching
  • FIG. 35 is a diagram showing an example of a specific configuration immediately below the transmission portion (also referred to as an upper opening) 411 of the display panel 41 shown in FIG.
  • the planar shape of the transmission part 411 is a vertically long rectangular shape, and a light shielding film 2412 is formed on the outside thereof.
  • the liquid crystal layer 2422 is driven by an electric field generated between the common electrode 2421 on the flat plate and the comb-like pixel electrode 2423 provided above the common electrode 2421 and extending in the width direction of the upper opening 411. .
  • the pixel electrode 2423 is provided independently for each upper opening 411, and is provided at least in a region corresponding to the lower part of the upper opening 411.
  • a voltage can be appropriately applied to the pixel electrode 2423 to form an electric field with the common electrode 2421, the orientation of the liquid crystal layer 2422 is controlled by the electric field, and each upper opening 411 is controlled.
  • the light transmittance can be changed.
  • a liquid crystal layer insulating film 2424 made of a silicon oxide film or a silicon nitride film is disposed in a region corresponding to two end portions in the width direction of the upper opening 411. In the region corresponding to the end portion, the thickness of the liquid crystal layer 2422 is thinner than the central portion. That is, as shown in FIG. 35, a pair of liquid crystal layer insulating films 2424 is disposed above the pixel electrode 2423, and the liquid crystal layer insulating film 2424 is thin at the center side of the upper opening 411, and is on the end side. Therefore, the thickness of the liquid crystal layer 2422 is substantially reduced at the end of the upper opening 411 in the width direction.
  • the thickness of the liquid crystal layer 2422 is as thin as about half of the central portion at the end in the width direction of the upper opening 411. It can be said that
  • the FFS mode liquid crystal display panel is a normally black panel in which the transmittance is 0 when no voltage is applied. Therefore, as shown in part (a) of FIG. 36, all light passing through the polarizing plate 2400 and the lower transparent substrate 2401 is transmitted through the upper transparent substrate 2450 when no voltage is applied to the pixel electrode 2423.
  • the rubbing direction of the liquid crystal layer 2422 and the polarization directions of the polarizing plates 2400 and 2300 are determined so as to be absorbed by 2300.
  • a voltage is applied to the pixel electrode 2423 to form an electric field with the common electrode 2421.
  • the orientation angle of liquid crystal molecules in the liquid crystal layer 2422 is rotated.
  • a voltage in which the polarization direction of the incident light passing through the center of the upper opening 411 is rotated by 90 degrees most of the incident polarized light is transmitted without being absorbed by the polarizing plate 2300.
  • the transmittance of the upper opening 411 is maximized.
  • the liquid crystal layer insulating film 2424 that makes it possible to control the orientation angle of the liquid crystal molecules.
  • the thickness of the liquid crystal layer 2422 is about half of the central portion at the end in the width direction of the upper opening 411. Therefore, the rotation of the polarization direction of incident light passing therethrough is rotated. It becomes smaller than 90 degrees, and the transmittance at the polarizing plate 2300 is lower than that at the center. Thereby, the area
  • the liquid crystal layer insulating film 2424 may be provided at a position near the light shielding film 2412. However, the liquid crystal layer insulating film 2424 is arranged at a position near the pixel electrode 2423 to effectively reduce the thickness of the thinner liquid crystal layer insulating film 2424. The transmittance can be lowered, and the step in the liquid crystal layer 2422 can be reduced, so that the rubbing process is facilitated.
  • the transmittance is not limited to this method, and the transmittance is at the central portion at both widthwise end portions of the upper opening 411. Similarly, it is possible to realize a low region, that is, a semi-transmissive region.
  • the pixel electrode 2423 has a comb-like shape extending in the width direction of the upper opening 411.
  • the pixel electrode 2423 is not arranged in this manner, but in the longitudinal direction of the upper opening 411 as shown in FIG. In the case of an extended arrangement, the following problems occur.
  • the comb-like pixel electrode 2423a is arranged to be inclined with respect to the longitudinal direction of the upper opening 411. Since the pixel electrode 2423a is usually formed of an ITO film having a thickness of about 0.1 ⁇ m, the thickness of the pixel electrode 2423a protrudes into the liquid crystal layer 2422 by about 0.1 ⁇ m.
  • the refractive index of the ITO thin film is 1.9 to 2.1, which is larger than the refractive index (1.5 to 1.6) of the liquid crystal layer 2422. Therefore, an uneven phase delay distribution in the width direction in the upper opening 411 ( ⁇ nd phase lag distribution) occurs.
  • the horizontal axis indicates the width direction position (mm) in the upper opening 411, and the vertical axis indicates the film thickness (mm).
  • the pixel electrode 2423a has a thickness (0 It is shown that a phase delay of .0001 mm) occurs.
  • the diffracted light spreads in the longitudinal direction of the upper opening 411 but does not spread in the width direction.
  • the leak light in the width direction does not increase.
  • the comb-like electrode fine wires are arranged so as to be inclined by about ⁇ 5 to 10 degrees with respect to the width direction or the longitudinal direction of the opening. This is to align the direction of rotation of the molecular orientation. Therefore, even when the pixel electrode 2423 has a comb-like shape extending in the width direction, it can be considered that the pixel electrode 2423 is disposed with an inclination of about ⁇ 5 to 10 degrees with respect to the width direction.
  • 39 (a) shows a configuration in which the comb-like pixel electrode 2423b is inclined with respect to the width direction of the upper opening 411.
  • the diffracted light from the pixel electrode 2423b travels in a direction tilted by ⁇ 5 to 10 degrees with respect to the longitudinal direction of the upper opening 411, so that an increase in leakage light from the width direction of the opening is suppressed. Is done.
  • the planar shape of the light shielding film 2412a is as shown in FIG. 39B.
  • a concavo-convex structure is formed at both ends in the width direction of the upper opening 411, and a convex portion that blocks light is formed at a portion corresponding to the pixel electrode 2423b formed of an ITO film, and light is transmitted between the pixel electrodes 2423b. It is a concave part.
  • a region having an average transmittance lower than that of the central portion of the upper opening 411 is formed at the end in the width direction of the upper opening 411.
  • the high refractive index film 1427 may be provided so that the average refractive index of the light transmission portion is lower on the end side than the central portion in the left-right direction of the light transmission portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

The present invention relates to a display device such as a parallax barrier type three-dimensional display for the unaided eye and a multi-image display that displays different images for each direction of observation, the display device being provided with a display panel (10) on which are disposed a plurality of pixels in a matrix shape that form a light transmitting part or light emitting part and a parallax barrier (12) that is disposed on an image visual contact side or rear side of the display panel (10) and in which light transmitting parts are disposed in a plurality of matrix shapes. The plurality of pixels for the display panel (10) constitutes pixel sets, each of which comprises at least two pixels each displaying an image for observation from a different direction. One of the light transmitting parts of the parallax barrier (12) and one pixel set are disposed with a positional relationship such that the same correspond vertically. Of the parallax barrier (12) and the display panel (10) the one disposed on the image visual contact side is provided along the left and right sides of the light transmitting part and has a semi-transmissive part that transmits part of the light.

Description

表示装置およびその駆動方法と製造方法Display device and driving method and manufacturing method thereof
 本発明は表示装置に関し、視差バリア方式の裸眼3次元ディスプレイや観察方向ごとに異なる画像を表示する多画像ディスプレイなどの表示装置に関する。 The present invention relates to a display device, and more particularly to a display device such as a parallax barrier type naked-eye three-dimensional display or a multi-image display that displays different images for each observation direction.
 従来より、特殊な眼鏡を必要としないで立体視が可能な裸眼立体画像表示装置が提案されている。 Conventionally, an autostereoscopic image display device capable of stereoscopic viewing without requiring special glasses has been proposed.
 例えば、特許文献1には、透過形表示素子を用いてパララックスバリア・ストライプを電子制御により発生するバリア発生手段と、パララックスバリア・ストライプの発生位置から後方に所定距離を離して表示画面を配設し、3次元画像表示の際に、パララックスバリア・ストライプに対応して、左画像と右画像のストリップが交互に配列された多方向画像を該表示画面に出力表示可能な画像表示手段とを具備したことを特徴とする3次元画像表示装置が開示されている。 For example, Patent Document 1 discloses a barrier generating unit that generates a parallax barrier stripe by electronic control using a transmissive display element, and a display screen that is spaced a predetermined distance backward from the position at which the parallax barrier stripe is generated. Image display means arranged and capable of outputting and displaying a multi-directional image in which strips of the left image and the right image are alternately arranged corresponding to the parallax barrier stripe when displaying a three-dimensional image There is disclosed a three-dimensional image display device characterized by comprising:
 このような3次元画像表示装置では、バリア・ストライプを電子式に発生させると共に、発生したバリア・ストライプの形状(ストライプの数、幅、間隔)や位置(位相)、濃度などを自由に可変制御できるようにしたので、2次元画像表示装置および方法としても、また3次元画像表示装置および方法としても使用することができ、両立性のある画像表示装置および方法を実現することができるとされている。 In such a 3D image display device, barrier stripes are generated electronically, and the shape (number of stripes, width, interval), position (phase), density, etc. of the generated barrier stripes can be variably controlled. Since it has been made possible, it can be used as a two-dimensional image display device and method and also as a three-dimensional image display device and method, and a compatible image display device and method can be realized. Yes.
 さらに、特許文献1においては、観察者の頭部位置を検出し、その検出信号によって電子バリアの位置(位相)を、瞳孔間隔の距離だけ頭部が左右方向に移動するごとに位相反転(バリアと透過部の位置関係を逆転)させることにより、2眼式パララックス・ステレオグラムでの逆視現象を解決し、立体視可能な観察範囲を広げることができるとされている。 Furthermore, in Patent Document 1, the position of the observer's head is detected, and the position (phase) of the electronic barrier is detected by the detection signal, and the phase inversion (barrier is performed each time the head moves in the left-right direction by the distance of the pupil interval. By reversing the positional relationship between the transmission part and the transmission part, it is said that the reverse viewing phenomenon in the binocular parallax stereogram can be solved and the stereoscopic observation range can be expanded.
 また、特許文献2には、ストライプ状の左眼画像および右眼画像を交互に表示する画像表示手段と、両眼視差効果を生じさせる遮光部の位置を遮光部ピッチの1 / 4 ピッチで移動できるように構成された遮光手段と、観察者の頭の位置の左右方向の移動と観察者の頭の位置が適視範囲から前後に外れたか否かを検出するセンサと、を備え、遮光手段を左右方向に領域分割し、観察者の頭位置が適視範囲から前後に外れた状態に応じて、領域分割された各領域に遮光手段の遮光部の位置の移動、非移動の制御を行う領域分割移動制御手段を備えたことを特徴とする眼鏡なし立体映像表示装置が開示されている。 Patent Document 2 discloses that image display means for alternately displaying a striped left-eye image and right-eye image, and the position of the light-shielding part that causes the binocular parallax effect are moved at a pitch of 1/4 mm of the light-shielding part pitch. A light-shielding means configured to be able to detect the movement of the observer's head in the left-right direction and a sensor that detects whether the position of the observer's head deviates back and forth from the appropriate viewing range. Is divided into regions in the left-right direction, and the movement and non-moving control of the position of the light-shielding part of the light-shielding means is performed in each region divided according to the state in which the observer's head position moves back and forth from the appropriate viewing range. There is disclosed a 3D image display apparatus without glasses, which is provided with a region division movement control means.
 特許文献2に開示の立体画像表示装置では、ずれた位置に観察者の頭部が移動したときには、遮光部の移動制御および画像表示手段の表示制御を行うことで、観察者の右眼に右眼画像を供給することができ、また、このときには観察者の左眼に左眼画像が供給されるので、観察者は立体映像を認識できるとされている。 In the stereoscopic image display device disclosed in Patent Document 2, when the observer's head moves to a shifted position, the movement of the light shielding unit and the display control of the image display means are performed, so that the right eye of the observer An eye image can be supplied, and at this time, since the left eye image is supplied to the left eye of the observer, the observer can recognize a stereoscopic image.
 また、特許文献2には、バリアの開口に対応する画素の水平方向に隣接する表示部の右眼用画素と左眼用画素の間に、少なくとも2つの異なる幅を持つブラックマスク部を備え、視差画像ペアを構成する画素間のブラックマスク部をその他の箇所よりも大きくすることが開示されている。 Patent Document 2 includes a black mask portion having at least two different widths between the right-eye pixel and the left-eye pixel of the display portion adjacent to the horizontal direction of the pixel corresponding to the opening of the barrier, It is disclosed that a black mask portion between pixels constituting a parallax image pair is made larger than other portions.
 これにより、右眼用画像と左眼用画像を表示する領域の境界部分でのクロストークを小さくでき、観察者はより広い範囲で本来の画像の光とクロストークにより発生する2重像のない立体映像を認識できることになる。また、視差画像に代えて、異なる画像を表示すれば、観察方向ごとにより広い範囲でクロストークにより発生する2重像のない方向別多画像を認識できることになる。 As a result, the crosstalk at the boundary between the areas for displaying the right-eye image and the left-eye image can be reduced, and the observer has no double image generated by the original image light and crosstalk in a wider range. 3D images can be recognized. If different images are displayed instead of the parallax images, it is possible to recognize multi-directional images without double images generated by crosstalk in a wider range for each observation direction.
特許第2857429号公報Japanese Patent No. 2857429 特許第3668116号公報Japanese Patent No. 3668116 特開2011-76095号公報JP 2011-76095 A
 一般的に、裸眼立体ディスプレイや観察方向ごとに異なる画像を表示する多画像ディスプレイにおいては、観察方向により表示画像の輝度差が存在する。このため、特許文献1や特許文献2の3次元表示装置では、観察者の頭の移動に応じて、電子制御によりバリア遮光部の移動制御および画像表示手段の表示制御を行うとしても、制御には必然的な動作の遅れのため、観察者の眼は画像の輝度の変化を感じたり、境界領域に入りクロストークによる2重像を視認する可能性がある。 Generally, in an autostereoscopic display or a multi-image display that displays different images for each observation direction, there is a luminance difference of the display image depending on the observation direction. Therefore, in the three-dimensional display devices of Patent Document 1 and Patent Document 2, even if the movement control of the barrier light shielding unit and the display control of the image display means are performed by electronic control according to the movement of the observer's head, the control is performed. Because of the inevitable movement delay, the observer's eyes may perceive a change in the brightness of the image, or may enter the boundary region and view a double image due to crosstalk.
 観察者の頭の動きが早い場合や、動きが頻繁に行われる場合は、特に不快に感じることとなる。従って、それぞれの画像の観察領域において、位置による輝度の変化がなく、また、他の方向の画像の視認領域との境におけるクロストークの発生する領域が狭いことが望ましい。 ◎ When the observer's head moves quickly or frequently, it feels uncomfortable. Therefore, it is desirable that there is no change in luminance depending on the position in the observation area of each image, and that the area where crosstalk occurs at the boundary with the image viewing area in other directions is narrow.
 本発明は上記のような問題点を解消するためになされたもので、観察者が移動する場合にも、輝度のチラツキを感じることなく、広い範囲で立体視を続けることができる視差バリア方式の裸眼3次元画像表示装置を提供するとともに、広い範囲で輝度の変化やクロストークによる2重像のない画像を視認できる多画像ディスプレイを提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a parallax barrier system that can continue stereoscopic viewing in a wide range without feeling flicker of luminance even when an observer moves. An object of the present invention is to provide a naked-eye three-dimensional image display device and to provide a multi-image display capable of visually recognizing an image without a double image due to a change in luminance or crosstalk in a wide range.
 本発明に係る表示装置は、光透過部または発光部を有する複数の画素がマトリクス状に配置された表示パネルと、前記表示パネルの画像視認側あるいは後方に配置され、光透過部が複数マトリクス状に配置された視差バリアとを備えた表示装置であって、前記表示パネルの前記複数の画素は、異なる方向から観察するための画像をそれぞれ表示する少なくとも2つの画素で1組の画素セットを構成し、前記視差バリアの前記光透過部の1つと前記1組の画素セットとが上下において対応する位置関係に配置され、前記視差バリアおよび前記表示パネルのうち、画像視認側に配置される方は、前記光透過部の左右の辺に沿って設けられ、光を一部透過する半透過部を有する。 The display device according to the present invention includes a display panel in which a plurality of pixels each having a light transmission part or a light emission part are arranged in a matrix, and an image viewing side or a rear side of the display panel, and the light transmission part is in a matrix. A plurality of pixels of the display panel, each of which includes at least two pixels for displaying images to be observed from different directions, forming a set of pixels One of the light transmission portions of the parallax barrier and the one set of pixels are arranged in a corresponding positional relationship in the vertical direction, and the one arranged on the image viewing side of the parallax barrier and the display panel is , Provided along the left and right sides of the light transmission part, and having a semi-transmission part that partially transmits light.
 本発明に係る表示装置の駆動方法は、複数の画素がマトリクス状に配置された表示パネルと、前記表示パネルの画像視認側に配置され、液晶層の駆動により視差バリアを動的に形成する視差バリアシャッタパネルとを備えた表示装置の駆動方法であって、前記表示パネルの前記複数の画素は、左眼用と右眼用の視差画像をそれぞれ表示する少なくとも2つ以上の画素で1組の画素セットを構成し、前記視差バリアシャッタパネルは、前記液晶層が電気的に絶縁された状態に複数に分割されて、それぞれが個別に駆動する複数のサブ開口部を有し、前記複数のサブ開口部は、前記液晶層の駆動状態によって、光透過部、遮光部および光を一部透過する半透過部をなし、前記複数のサブ開口部と前記1組の画素セットとが上下において対応する位置関係に配置され、前記視差バリアシャッタパネルは、前記複数のサブ開口部のうち、前記光透過部となるサブ開口部の配列の左右に、前記半透過部となるサブ開口部が位置するように前記液晶層が駆動される。 A display device driving method according to the present invention includes a display panel in which a plurality of pixels are arranged in a matrix, and a parallax that is arranged on the image viewing side of the display panel and dynamically forms a parallax barrier by driving a liquid crystal layer A driving method of a display device including a barrier shutter panel, wherein the plurality of pixels of the display panel are a set of at least two or more pixels each displaying a left-eye parallax image and a right-eye parallax image. The parallax barrier shutter panel constituting a pixel set is divided into a plurality of states in which the liquid crystal layer is electrically insulated, and each has a plurality of sub-openings that are individually driven, The opening forms a light transmission part, a light shielding part, and a semi-transmission part that partially transmits light depending on the driving state of the liquid crystal layer, and the plurality of sub-openings and the one pixel set correspond vertically. In the parallax barrier shutter panel, the sub-openings serving as the semi-transmissive portions are positioned on the left and right of the array of the sub-openings serving as the light-transmitting portions among the plurality of sub-openings. The liquid crystal layer is driven.
 本発明に係る表示装置によれば、視差バリアおよび表示パネルのうち、画像視認側に配置される方が、光透過部の左右の辺に沿って設けられ、光を一部透過する半透過部を有するので、2つの画像の表示領域の境界部において、それぞれの画像の輝度勾配を急峻にすることができ、輝度の変化やクロストークによる2重像の発生する境界領域を狭めることができる。このため、観察者の観察位置が左右に動いた場合でも、広い範囲で輝度の変化やクロストークによる2重像の発生のない良好な画像を視認できる。 According to the display device according to the present invention, of the parallax barrier and the display panel, the one disposed on the image viewing side is provided along the left and right sides of the light transmission unit, and transmits the light partially. Therefore, the brightness gradient of each image can be made steep at the boundary between the display areas of the two images, and the boundary area where the double image occurs due to the change in brightness or crosstalk can be narrowed. For this reason, even when the observation position of the observer moves to the left and right, a good image without occurrence of a double image due to a change in luminance or crosstalk can be visually recognized in a wide range.
 本発明に係る表示装置の駆動方法によれば、視差バリアシャッタパネルは、複数のサブ開口部のうち、光透過部となるサブ開口部の配列の左右に、半透過部となるサブ開口部が位置するように液晶層が駆動されるので、2つの画像の表示領域の境界部において、それぞれの画像の輝度勾配を急峻にすることができ、輝度の変化やクロストークによる2重像の発生する境界領域を狭めることができる。このため、観察者の観察位置が左右に動いた場合でも、広い範囲で輝度の変化やクロストークによる2重像の発生のない良好な画像を視認できる。 According to the display device driving method of the present invention, the parallax barrier shutter panel includes sub-openings serving as semi-transmissive portions on the left and right sides of the array of sub-openings serving as the light transmissive portions among the plurality of sub-openings. Since the liquid crystal layer is driven so as to be positioned, the luminance gradient of each image can be made steep at the boundary between the display areas of the two images, and a double image is generated due to a change in luminance or crosstalk. The boundary area can be narrowed. For this reason, even when the observation position of the observer moves to the left and right, a good image without occurrence of a double image due to a change in luminance or crosstalk can be visually recognized in a wide range.
視差バリア方式裸眼立体ディスプレイの左右方向配光特性の測定値、幾何光学計算結果、波動光学計算結果を示す図である。It is a figure which shows the measured value of the left-right direction light distribution characteristic of a parallax barrier system autostereoscopic display, a geometric optical calculation result, and a wave optical calculation result. 視差バリア方式裸眼立体ディスプレイの左右方向配光特性の測定値、幾何光学計算結果、波動光学計算結果の低輝度部の拡大図である。It is an enlarged view of the low-intensity part of the measured value of the left-right direction light distribution characteristic of a parallax barrier system autostereoscopic display, a geometric optical calculation result, and a wave optical calculation result. 視差バリアを有する表示装置の配光特性を計算するための波動光学計算のモデルを示す模式図である。It is a schematic diagram which shows the model of the wave optical calculation for calculating the light distribution characteristic of the display apparatus which has a parallax barrier. 本発明に係る実施の形態1の表示装置の構造を示す斜視図である。It is a perspective view which shows the structure of the display apparatus of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の表示装置の構造を示す断面図である。It is sectional drawing which shows the structure of the display apparatus of Embodiment 1 which concerns on this invention. 2画像表示装置の左右方向配光特性の測定値と波動光学計算結果を示す図である。It is a figure which shows the measured value and wave optical calculation result of the left-right direction light distribution characteristic of 2 image display apparatuses. 2画像表示装置の左右方向配光特性の測定値と波動光学計算結果の境界部の拡大図である。It is the enlarged view of the boundary part of the measured value of the left-right direction light distribution characteristic of 2 image display apparatuses, and a wave optical calculation result. 本発明に係る実施の形態1の表示装置の半透過部の幅を変えた場合の左右方向の配光特性の波動光学計算結果を示す図である。It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction at the time of changing the width | variety of the semi-transmissive part of the display apparatus of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の表示装置の半透過部の幅を変えた場合の左右方向の配光特性の波動光学計算結果の拡大図である。It is an enlarged view of the wave optical calculation result of the light distribution characteristic of the left-right direction at the time of changing the width | variety of the semi-transmissive part of the display apparatus of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の表示装置の半透過部の透過率を変えた場合の左右方向の配光特性の波動光学計算結果を示す図である。It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction at the time of changing the transmittance | permeability of the semi-transmissive part of the display apparatus of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の表示装置の視差バリアの製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the parallax barrier of the display apparatus of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の表示装置の視差バリアの製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the parallax barrier of the display apparatus of Embodiment 1 which concerns on this invention. 本発明に係る実施の形態1の表示装置の視差バリアの製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the parallax barrier of the display apparatus of Embodiment 1 which concerns on this invention. 半透過部の構造ピッチの必要条件となる光路差を示す模式図である。It is a schematic diagram which shows the optical path difference used as the necessary condition of the structure pitch of a semi-transmissive part. 本発明に係る実施の形態2の表示装置の構造を示す断面図である。It is sectional drawing which shows the structure of the display apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の表示装置のバリア液晶の半透過部の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the semi-transmissive part of the barrier liquid crystal of the display apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の表示装置のバリアの移動動作を説明する模式図である。It is a schematic diagram explaining the movement operation | movement of the barrier of the display apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の表示装置のバリアの移動動作を説明する模式図である。It is a schematic diagram explaining the movement operation | movement of the barrier of the display apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の表示装置のバリアの移動動作を説明する模式図である。It is a schematic diagram explaining the movement operation | movement of the barrier of the display apparatus of Embodiment 2 which concerns on this invention. 視差バリア方式裸眼立体ディスプレイの左右方向の配光特性の幾何光学計算結果と波動光学計算結果を示す図である。It is a figure which shows the geometric optical calculation result and wave optical calculation result of the light distribution characteristic of the left-right direction of a parallax barrier system autostereoscopic display. 波動光学計算による視差バリア方式裸眼立体ディスプレイの規格化された左右方向の配光特性を示す図である。It is a figure which shows the light distribution characteristic of the left-right direction normalized of the parallax barrier system autostereoscopic display by wave optical calculation. 波動光学計算と幾何光学計算の差が構造寸法によりどのように異なるかを示す図である。It is a figure which shows how the difference of wave optical calculation and geometric optical calculation changes with structural dimensions. 本発明に係る実施の形態2の表示装置の左右方向の配光特性の波動光学計算結果を示す図である。It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction of the display apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態2の表示装置の左右方向の配光特性の波動光学計算結果を示す図である。It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction of the display apparatus of Embodiment 2 which concerns on this invention. 本発明に係る実施の形態3の表示装置の構造を示す斜視図である。It is a perspective view which shows the structure of the display apparatus of Embodiment 3 which concerns on this invention. 本発明に係る実施の形態3の表示装置の左右方向の配光特性の波動光学計算結果を示す図である。It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction of the display apparatus of Embodiment 3 which concerns on this invention. 本発明に係る実施の形態3の表示装置の左右方向の配光特性の波動光学計算結果を示す図である。It is a figure which shows the wave optical calculation result of the light distribution characteristic of the left-right direction of the display apparatus of Embodiment 3 which concerns on this invention. 本発明に係る実施の形態4の表示装置の液晶パネルの透過部の構成を示す図である。It is a figure which shows the structure of the permeation | transmission part of the liquid crystal panel of the display apparatus of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態4の上下バリアの開口を通過する光の光路を模式的に示す図である。It is a figure which shows typically the optical path of the light which passes the opening of the upper and lower barriers of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態4の液晶パネルの透過部内の高屈折率膜の厚さ分布を示す図である。It is a figure which shows thickness distribution of the high refractive index film | membrane in the permeation | transmission part of the liquid crystal panel of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態4の液晶パネルの透過部内に平均屈折率の分布がある場合の波動光学計算による左右方向配光特性の計算結果を示す図である。It is a figure which shows the calculation result of the left-right direction light distribution characteristic by wave optical calculation in case there exists distribution of an average refractive index in the transmission part of the liquid crystal panel of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態4の表示装置の液晶パネルの透過部の構成を示す図である。It is a figure which shows the structure of the permeation | transmission part of the liquid crystal panel of the display apparatus of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態4の表示装置の液晶パネルの透過部の構成を示す図である。It is a figure which shows the structure of the permeation | transmission part of the liquid crystal panel of the display apparatus of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態4の表示装置の液晶パネルの透過部の構成を示す図である。It is a figure which shows the structure of the permeation | transmission part of the liquid crystal panel of the display apparatus of Embodiment 4 which concerns on this invention. 本発明に係る実施の形態5の液晶パネルの透過部の構成を示す斜視図である。It is a perspective view which shows the structure of the permeation | transmission part of the liquid crystal panel of Embodiment 5 which concerns on this invention. 本発明に係る実施の形態5の液晶パネルの透過部の構成を示す断面図である。It is sectional drawing which shows the structure of the permeation | transmission part of the liquid crystal panel of Embodiment 5 which concerns on this invention. 液晶パネルの透過部として望ましくない構成を示す図である。It is a figure which shows the structure undesirable as a permeation | transmission part of a liquid crystal panel. 液晶パネルの透過部として望ましくない構成を採る場合の位相差を生むITO膜厚分布を示す図である。It is a figure which shows the ITO film thickness distribution which produces the phase difference in the case of taking an undesirable structure as a transmission part of a liquid crystal panel. 本発明に係る実施の形態5の液晶パネルの透過部の構成を示す図である。It is a figure which shows the structure of the permeation | transmission part of the liquid crystal panel of Embodiment 5 which concerns on this invention.
 <波動光学計算による光学性能予測>
 従来、視差バリア方式の裸眼立体ディスプレイや2画像表示装置では、配光特性の光学設計は幾何光学計算で行われてきた。
<Optical performance prediction by wave optics calculation>
Conventionally, in a parallax barrier type autostereoscopic display and a two-image display device, optical design of light distribution characteristics has been performed by geometrical optical calculation.
 図1には、液晶表示パネルの前面側(画像視認側)に液晶シャッタパネルを備えた裸眼立体表示装置の、左右方向の配光特性の測定値と幾何光学計算による計算結果を示しており、右眼用画像と左眼用画像に、それぞれ白画像と黒画像を表示した場合の配光特性について示している。 FIG. 1 shows measured values of light distribution characteristics in the left-right direction and calculation results by geometric optical calculation of a naked-eye stereoscopic display device having a liquid crystal shutter panel on the front side (image viewing side) of the liquid crystal display panel. It shows the light distribution characteristics when a white image and a black image are displayed in the right eye image and the left eye image, respectively.
 ここで、液晶表示パネルの画素のピッチ(配設間隔)は0.096mm、液晶シャッタパネルの開口部のピッチは0.192mmであり、液晶シャッタパネルの開口部と画素間距離は0.62mmである。 Here, the pitch (arrangement interval) of the pixels of the liquid crystal display panel is 0.096 mm, the pitch of the openings of the liquid crystal shutter panel is 0.192 mm, and the distance between the openings of the liquid crystal shutter panel and the pixels is 0.62 mm. is there.
 また、液晶パネルの画素発光部の幅は0.051mmであり、右眼用画素の中心は左側-0.048mmにあり、右眼用画素の中心は右側0.048mmにある。液晶シャッタパネルの開口幅は0.062mmであり、液晶パネルの右眼用画素と右眼用画素のほぼ中央に位置している。部材の屈折率は1.5である。 Also, the width of the pixel light emitting portion of the liquid crystal panel is 0.051 mm, the center of the right eye pixel is on the left side -0.048 mm, and the center of the right eye pixel is on the right side of 0.048 mm. The opening width of the liquid crystal shutter panel is 0.062 mm, and is positioned approximately at the center of the right eye pixel and the right eye pixel of the liquid crystal panel. The refractive index of the member is 1.5.
 図1においては、横軸に左右角度(度)を、縦軸に相対輝度(a.u.:任意単位)を示しており、測定値と幾何光学計算結果とは概ね一致している。輝度プロファイルの形状は三角形状であり、輝度のピークは6.5度方向にある。視距離280mmでの輝度ピークの左右方向位置は、平均的な眼間距離65mmの半分に近く、妥当な値となっている。 In FIG. 1, the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the relative luminance (au .: arbitrary unit), and the measured values and the geometric optical calculation results are almost the same. The shape of the luminance profile is triangular, and the luminance peak is in the direction of 6.5 degrees. The position in the left-right direction of the luminance peak at the viewing distance of 280 mm is close to half of the average interocular distance of 65 mm and is a reasonable value.
 ここで、図2に輝度プロファイルの裾野を詳細に示す。図2において、幾何光学計算では、-1度方向で輝度0になるのに対し、測定値では裾野を引いており、漏れ光が存在している。この不一致の原因としては、幾何光学計算では考慮していない部材の光散乱や回折の影響があるものと推定される。しかし、どの程度、回折の影響があるかは明らかではなかった。 Here, the base of the luminance profile is shown in detail in FIG. In FIG. 2, in the geometrical optical calculation, the luminance is 0 in the direction of −1 degree, while the measured value has a base, and there is leakage light. The cause of this mismatch is presumed to be the influence of light scattering and diffraction of the members that are not taken into account in the geometric optical calculation. However, it was not clear to what extent the effect of diffraction.
 このような状況に鑑み、表示パネルと視差バリアパネルを備える表示装置の配光特性に及ぼす回折の影響を調べるために、新たに波動光学計算モデルを作成した。計算の基本原理モデルを図3に示す。 In view of this situation, a wave optical calculation model was newly created in order to investigate the effect of diffraction on the light distribution characteristics of a display device including a display panel and a parallax barrier panel. A basic principle model of the calculation is shown in FIG.
 図3においては、表示パネル10の前面側主面上に視差バリアパネル20が登載され、表示パネル10の前面側主面の表示パネル遮光部25に設けた2つの開口部が、表示パネル10の裏面側に設けたバックライト(図示せず)からのバックライト光BLを透過させることで右方向画素発光部11aおよび左方向画素発光部11bとなり、これらの発光部を透過したバックライト光BLが、視差バリアパネル20の透明ガラス基板24内を通り、視差バリアパネル20の前面側主面のバリア遮光部22に設けたバリア透過部21を介して観察面3で観察される構成となっている。 In FIG. 3, the parallax barrier panel 20 is mounted on the front-side main surface of the display panel 10, and the two openings provided in the display panel light-shielding portion 25 on the front-side main surface of the display panel 10 By transmitting backlight light BL from a backlight (not shown) provided on the back side, a right pixel light emitting portion 11a and a left pixel light emitting portion 11b are formed, and the backlight light BL transmitted through these light emitting portions is transmitted. The parallax barrier panel 20 passes through the transparent glass substrate 24 and is observed on the observation surface 3 through the barrier transmission part 21 provided on the barrier light shielding part 22 on the front main surface of the parallax barrier panel 20. .
 新たに考案した波動光学計算モデルは、キルヒホッフの回折理論に従い、表示パネル10の画素である右方向画素発光部11aおよび左方向画素発光部11bの微小領域から円柱面状に広がる波が視差バリアパネル20のバリア透過部21の各微小領域から2次的な要素波を発生させ、それらの要素波が観察面3の一点において干渉するという2次元モデルである。ここで、波長は550nmとした。 The newly devised wave optical calculation model is based on Kirchhoff's diffraction theory, and a wave spreading in a cylindrical plane from a minute region of the right pixel light emitting part 11a and the left pixel light emitting part 11b which are pixels of the display panel 10 This is a two-dimensional model in which secondary element waves are generated from each minute region of the 20 barrier transmission parts 21 and these element waves interfere at one point on the observation surface 3. Here, the wavelength was 550 nm.
 この波動光学計算モデルによる計算結果を、図1中に波動光学計算として実線で示す。図1に示すように、波動光学計算から得られた輝度プロファイルも、測定値や幾何光学計算結果と同様の三角形状をしており、ピークとなる角度も一致している。 The calculation result by this wave optical calculation model is shown by a solid line in FIG. 1 as the wave optical calculation. As shown in FIG. 1, the luminance profile obtained from the wave optical calculation has a triangular shape similar to the measurement value and the geometric optical calculation result, and the angles at which the peaks are made coincide.
 輝度プロファイルの裾野を詳細に示す図2においても、実線で示す波動光学計算の結果は、測定値と同様に裾野を引いており、回折の影響が再現されていることが判る。 Also in FIG. 2 showing the base of the luminance profile in detail, it can be seen that the result of the wave optical calculation indicated by the solid line is the base as in the measurement value, and the influence of diffraction is reproduced.
 以上より、境界部近傍での漏れ光の挙動を解明するためには、幾何光学計算では不十分であり、新たに考案した波動光学計算モデルに基づく波動光学計算が有効であることが判った。以下においては、この波動光学計算を用いて本発明の実施の形態を説明する。 From the above, it has been found that geometrical optical calculations are insufficient to elucidate the behavior of leaked light in the vicinity of the boundary, and wave optical calculations based on a newly devised wave optical calculation model are effective. In the following, embodiments of the present invention will be described using this wave optical calculation.
 <実施の形態1>
  <装置構成>
 図4には、本発明に係る実施の形態1の観察方向により異なる画像を表示する2画像ディスプレイ100の模式的な斜視図を示す。なお、表示パネルは、有機ELパネルや、プラズマディスプレイパネル、液晶パネルでも良いが、以下では液晶パネルを例に示している。
<Embodiment 1>
<Device configuration>
FIG. 4 is a schematic perspective view of a two-image display 100 that displays different images depending on the observation direction of the first embodiment according to the present invention. The display panel may be an organic EL panel, a plasma display panel, or a liquid crystal panel, but a liquid crystal panel is shown as an example below.
 図4に示すように、マトリクス状に複数の画素を配置した表示パネル10の前面側(画像視認側)主面上に視差バリア12が配設されている。また、表示パネル10の裏面側にはバックライト30が設けられている。 As shown in FIG. 4, a parallax barrier 12 is disposed on the front surface (image viewing side) main surface of the display panel 10 in which a plurality of pixels are arranged in a matrix. A backlight 30 is provided on the back side of the display panel 10.
 視差バリア12は、表示パネル10の前面側主面上に設けたバリア遮光部122の複数の開口部が、バリア透過部121となっている。バリア透過部121は何れも平面視形状がストライプ状をなし、長辺が並列するように配列されている。そして、それぞれの長辺に沿ってバリア半透過部123が設けられている。なお、視差バリア12の構成は図5を用いてさらに説明する。 In the parallax barrier 12, a plurality of openings of the barrier light-shielding part 122 provided on the front-side main surface of the display panel 10 serve as a barrier transmission part 121. Each of the barrier transmission parts 121 is arranged so that the plan view has a stripe shape and the long sides are arranged in parallel. A barrier semi-transmissive portion 123 is provided along each long side. The configuration of the parallax barrier 12 will be further described with reference to FIG.
 また、表示パネル10においては、液晶層114上に設けた遮光部115の複数の開口部が、画素発光部111となっている。画素発光部111は何れも平面視形状がストライプ状をなし、長辺が並列するように配列されている。そして、右方向用画素発光部111aと、左方向用画素発光部111bとが交互に配設される構成となっている。なお、表示パネル10の構成は図5を用いてさらに説明する。 Further, in the display panel 10, the plurality of openings of the light shielding portion 115 provided on the liquid crystal layer 114 serve as the pixel light emitting portion 111. Each of the pixel light emitting units 111 is arranged so that the plan view has a stripe shape and the long sides are arranged in parallel. The right-direction pixel light-emitting portions 111a and the left-direction pixel light-emitting portions 111b are alternately arranged. The configuration of the display panel 10 will be further described with reference to FIG.
 なお、図4は、バックライト、表示パネル10の画素発光部111および視差バリア12の開口121の位置関係、半透過部123を設けた位置を説明するための概略図であり、表示パネル10に設ける透明電極や透明ガラス基板等を省略した図となっている。表示パネル10の画素発光部111と、視差バリア12の開口121は所定の距離を離して配置すれば良く、空気やガラスなどの媒体が間に存在していても良い。 4 is a schematic diagram for explaining the positional relationship between the backlight, the pixel light emitting unit 111 of the display panel 10 and the opening 121 of the parallax barrier 12, and the position where the semi-transmissive portion 123 is provided. It is the figure which abbreviate | omitted the transparent electrode, transparent glass substrate, etc. which are provided. The pixel light emitting unit 111 of the display panel 10 and the opening 121 of the parallax barrier 12 may be arranged at a predetermined distance, and a medium such as air or glass may exist between them.
 図5は、図4における画素発光部111の配列方向に沿った断面図である。図5に示すように、表示パネル10は液晶パネルであり、2枚の透明ガラス基板14および15に挟まれた液晶層114と、透明ガラス基板14の裏面側(光源側)主面上に設けた裏面偏光板116と、透明ガラス基板15の前面側主面上に設けた前面偏光板126とを備えている。 FIG. 5 is a cross-sectional view along the arrangement direction of the pixel light emitting units 111 in FIG. As shown in FIG. 5, the display panel 10 is a liquid crystal panel, and is provided on the liquid crystal layer 114 sandwiched between two transparent glass substrates 14 and 15, and on the back surface side (light source side) main surface of the transparent glass substrate 14. The back polarizing plate 116 and the front polarizing plate 126 provided on the front main surface of the transparent glass substrate 15 are provided.
 液晶層114の裏面側主面上には、画素ごとに分割された透明電極112が配設され、液晶層114の前面側主面上には、全面に渡って一体で設けられた対向透明電極113が配設されており、両電極間で画素ごとに電界が印加される構成となっている。 A transparent electrode 112 divided for each pixel is disposed on the back surface side main surface of the liquid crystal layer 114, and a counter transparent electrode integrally provided over the entire front surface side main surface of the liquid crystal layer 114. 113 is provided, and an electric field is applied to each pixel between both electrodes.
 対向透明電極113上に設けられた遮光部115の開口部が画素発光部111を形成している。なお、遮光部115は、隣り合う透明電極112の境界部上を覆うように設けられ、画素境界からの漏れ光を防いでいる。 The opening of the light shielding part 115 provided on the counter transparent electrode 113 forms the pixel light emitting part 111. The light shielding portion 115 is provided so as to cover the boundary portion between the adjacent transparent electrodes 112, and prevents leakage light from the pixel boundary.
 視差バリア12は透明ガラス基板15の前面側主面上に配設され、エネルギー透過率4~64%の半透過膜122bが間隔を開けて配設され、その上に、半透過膜122bよりも幅の狭いエネルギー透過率0%の遮光膜122aが配設されることで、それぞれバリア半透過部123およびバリア遮光部122が形成され、隣り合う半透過膜122bの間がバリア透過部121を形成している。なお、前面偏光板126は視差バリア12を覆うように形成されている。 The parallax barrier 12 is arranged on the main surface on the front side of the transparent glass substrate 15, and a semi-transmissive film 122b having an energy transmittance of 4 to 64% is arranged at an interval. By providing the light-shielding film 122a having a narrow energy transmittance of 0%, the barrier semi-transmissive part 123 and the barrier light-shielding part 122 are formed, and the barrier transmissive part 121 is formed between the adjacent semi-transmissive films 122b. is doing. The front polarizing plate 126 is formed so as to cover the parallax barrier 12.
 ここで、視差バリア12のバリア遮光部122は、液晶パネル10の右方向用画素発光部111aと左方向用画素発光部111bとの組の配設幅に等しいピッチで設けられている。 Here, the barrier light-shielding portions 122 of the parallax barrier 12 are provided at a pitch equal to the arrangement width of the right-side pixel light-emitting portions 111a and the left-direction pixel light-emitting portions 111b of the liquid crystal panel 10.
 なお、バリア透過部121上に延在するバリア半透過部123の幅W1は0.5μm~10μmで、透過率は振幅透過率20~80%、エネルギー透過率で4~64%である。 The width W1 of the barrier semi-transmissive portion 123 extending on the barrier transmissive portion 121 is 0.5 μm to 10 μm, the transmittance is 20 to 80% amplitude transmittance, and 4 to 64% energy transmittance.
 視差バリア12のバリア半透過部123は、屈折率がバリア透過部121と異なり、バリア透過部121との間に0から半波長(λ/2)のΔndの付加的位相差が生じるように構成しても良い。ここで、付加的位相差Δndは、半透過膜121と周辺部材との間の屈折率の差Δnと半透過膜の厚さdとの組み合わせにより設定することができる。 The barrier semi-transmissive portion 123 of the parallax barrier 12 is configured so that an additional phase difference of Δnd from 0 to half wavelength (λ / 2) is generated between the barrier semi-transmissive portion 123 and the barrier transmissive portion 121, unlike the barrier transmissive portion 121. You may do it. Here, the additional phase difference Δnd can be set by a combination of the refractive index difference Δn between the semi-transmissive film 121 and the peripheral member and the thickness d of the semi-transmissive film.
 なお、バリア半透過部123を付加的位相差が生じるように構成することにより、左右の2つの画像の境界方向の輝度勾配を急峻にする効果が得られるが、これについては実施の形態3においてさらに説明する。 In addition, by configuring the barrier semi-transmissive portion 123 to generate an additional phase difference, an effect of steepening the luminance gradient in the boundary direction between the two left and right images can be obtained. Further explanation will be given.
  <波動光学計算による構造の最適化>
 以上説明した2画像ディスプレイ100においては、左右30度方向にそれぞれ異なる画像を表示するものとし、その配光特性についての波動光学計算結果と測定値とを図6に示す。
<Optimization of structure by wave optics calculation>
In the two-image display 100 described above, different images are displayed in the left and right directions of 30 degrees, and the wave optical calculation results and measured values for the light distribution characteristics are shown in FIG.
 ここで、液晶パネル10の画素のピッチW2は0.064mm、視差バリア12の開口部のピッチW3は0.128mmであり、視差バリア12の開口部と液晶パネル10の画素間距離Tは0.09mmとする。また、液晶パネル10から観察面31までの距離を50mmとする。 Here, the pitch W2 of the pixels of the liquid crystal panel 10 is 0.064 mm, the pitch W3 of the openings of the parallax barrier 12 is 0.128 mm, and the distance T between the openings of the parallax barrier 12 and the pixels of the liquid crystal panel 10 is 0. It is set to 09 mm. The distance from the liquid crystal panel 10 to the observation surface 31 is 50 mm.
 また、液晶パネルの画素発光部111の幅W4は0.032mmであり、右眼用画素の中心は左-0.032mmに右眼用画素の中心は右0.032mmにあり、視差バリア12の開口幅W5は0.032mmであり、視差バリア12の開口部は液晶パネル10の右眼用画素と右眼用画素の組のほぼ中央の上方に設けられている。また、遮光部115の幅W6は0.032mmである。 Further, the width W4 of the pixel light emitting unit 111 of the liquid crystal panel is 0.032 mm, the center of the right eye pixel is left-0.032 mm, the center of the right eye pixel is 0.032 mm right, and the parallax barrier 12 The opening width W5 is 0.032 mm, and the opening of the parallax barrier 12 is provided almost above the center of the pair of right-eye pixels and right-eye pixels of the liquid crystal panel 10. Further, the width W6 of the light shielding portion 115 is 0.032 mm.
 図6においては、横軸に左右角度(度)を、縦軸に相対輝度を示しており、波動光学計算で得られた右方向用画素発光部の光の計算値を計算R、測定値を測定Rとし、左方向用画素発光部の光の計算値を計算L、測定値を測定Lとし、波動光学計算に用いたバックライト30の配光特性も計算値を計算BL、測定値を測定BLとして示している。ここでは、液晶パネル10のバックライト光BLの実測された配光特性に従った平行光線が液晶パネル10の発光部に一様に入射したものとして計算している。 In FIG. 6, the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the relative luminance. The calculated value of the right pixel light-emitting portion obtained by wave optical calculation is calculated R, and the measured value is The measurement value R is the calculated light value of the left pixel light emitting unit L, the measurement value is the measurement L, the light distribution characteristic of the backlight 30 used for the wave optics calculation is also calculated BL, and the measurement value is measured Shown as BL. Here, the calculation is performed on the assumption that the parallel light beams according to the actually measured light distribution characteristics of the backlight light BL of the liquid crystal panel 10 are uniformly incident on the light emitting portion of the liquid crystal panel 10.
 図6に示すように、実測された輝度プロファイルと波動光学計算から得られた輝度プロファイルは、概ね一致していることが判る。 As shown in FIG. 6, it can be seen that the actually measured luminance profile and the luminance profile obtained from the wave optics calculation are almost the same.
 また、図7には、縦軸を対数表示として低輝度領域(1×10-1~1×10-4)のプロファイル示すが、低輝度領域においても実測された輝度プロファイルと波動光学計算から得られた輝度プロファイルとは、概ね一致していることが判る。 FIG. 7 shows the profile of the low luminance region (1 × 10 −1 to 1 × 10 −4 ) with the vertical axis as a logarithmic display. It is obtained from the actually measured luminance profile and wave optical calculation in the low luminance region. It can be seen that the obtained luminance profile is almost the same.
 なお、左右30度よりも角度の高い方向で、測定値に比べて波動光学計算結果の輝度が低いのは、実際の装置では液晶パネル10の発光画素と視差バリア12の開口部とが横方向に複数並んでいるのに対し、波動光学計算では単一の発光画素と視差バリアの開口部のみを考慮して計算しているためである。 Note that the luminance of the wave optical calculation result is lower than the measured value in the direction where the angle is higher than 30 degrees on the left and right. In the actual device, the light emitting pixels of the liquid crystal panel 10 and the opening of the parallax barrier 12 are in the horizontal direction. This is because, in the wave optical calculation, only a single light emitting pixel and the opening of the parallax barrier are taken into consideration.
 従って、左右30度よりも角度の高い方向の波動光学計算の結果には、他の視差バリアの開口部を通過する光が重畳されることを考慮すれば、実測値と波動光学計算の結果は良く一致することとなる。 Therefore, considering that the light passing through the opening of another parallax barrier is superimposed on the result of the wave optical calculation in a direction with an angle higher than 30 degrees on the left and right, the measured value and the result of the wave optical calculation are It matches well.
 このように、波動光学計算から得られた輝度プロファイルは実測の境界領域の輝度プロファイルを良く再現しており、境界部ならびに低輝度領域の輝度プロファイルの解析には本波動光学計算が有効であることが判る。 In this way, the brightness profile obtained from the wave optics calculation reproduces the brightness profile of the measured boundary area well, and this wave optics calculation is effective for analyzing the brightness profile of the boundary area and the low brightness area. I understand.
 一般的に2画像ディスプレイでは、以下の2つの特性が重要である。第一は、2つの画像が混在して見える境界領域をなるべく狭くすることであり、第二は、観察方向の画像に暗い画像を表示した場合にも他方向への画像の映り込みをなくすため、漏れ光の本来の表示画像のピーク輝度に対する比率を1/1000以下程度に抑制することである。 Generally, in the two-image display, the following two characteristics are important. The first is to make the boundary area where two images appear to be mixed as narrow as possible, and the second is to eliminate the reflection of the image in the other direction even when a dark image is displayed in the image in the observation direction. In other words, the ratio of leakage light to the peak luminance of the original display image is suppressed to about 1/1000 or less.
 図7に示されるように、表示光のピーク付近である左右30度方向でも他方向画像の回折によるリーク光輝度はピーク輝度の1/1000程度あり、リーク光輝度の抑制を図るためには回折を抑制することが必要であることが判明した。 As shown in FIG. 7, the leakage light luminance due to diffraction of the image in the other direction is about 1/1000 of the peak luminance even in the 30 ° right and left direction near the peak of the display light. It has been found necessary to suppress this.
 図8には、波動光学計算による本発明の実施の形態1の2画像ディスプレイ100の配光特性の計算結果を示す。図8は、視差バリア12の開口部の幅を32.2μmとし。バリア透過部121の左右にエネルギー透過率16%のバリア半透過部123を設けるとして、バリア半透過部123の幅を種々変えて計算した輝度プロファイルを示している。 FIG. 8 shows a calculation result of the light distribution characteristics of the two-image display 100 according to the first embodiment of the present invention by wave optical calculation. In FIG. 8, the width of the opening of the parallax barrier 12 is 32.2 μm. The brightness profiles calculated by changing the width of the barrier semi-transmissive portion 123 in various ways assuming that the barrier semi-transmissive portion 123 having an energy transmittance of 16% is provided on the left and right of the barrier transmissive portion 121 are shown.
 図8においては、横軸に左右角度(度)を、縦軸に漏れ光輝度を示しており、バリア半透過部123の幅が0の場合、0.5μmの場合、1.0μmの場合、2.5μmの場合、5.0μmの場合、7.5μmの場合および10μmの場合の輝度プロファイルをそれぞれ示している。 In FIG. 8, the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the leakage light luminance. When the width of the barrier semi-transmissive portion 123 is 0, 0.5 μm, 1.0 μm, The luminance profiles for 2.5 μm, 5.0 μm, 7.5 μm, and 10 μm are shown.
 図8より、実線で示すバリア半透過部123がない場合に比べ、バリア半透過部123の幅が0.5μm以上あれば、左右30方向の漏れ光強度は半減していることが判る。 8 that the leakage light intensity in the left and right 30 directions is halved when the width of the barrier semi-transmissive portion 123 is 0.5 μm or more, compared to the case where the barrier semi-transmissive portion 123 indicated by the solid line is not provided.
 また、図9には左右の境界部の拡大図を示す。図9より、左右の境界部の輝度勾配はバリア半透過部123の幅が大きくなるにつれて急峻になり、幅が5μmで最大なる。バリア半透過部123の幅がさらに大きくなると、最大輝度勾配は次第に低下し、同時に最大輝度勾配の発生する角度が他画像の表示方向にシフトし、正面方向の輝度勾配は低下することが判る。 FIG. 9 shows an enlarged view of the left and right borders. From FIG. 9, the luminance gradient at the left and right boundary portions becomes steeper as the width of the barrier semi-transmissive portion 123 increases, and becomes maximum when the width is 5 μm. It can be seen that when the width of the barrier semi-transmissive portion 123 is further increased, the maximum luminance gradient gradually decreases, and at the same time, the angle at which the maximum luminance gradient is generated is shifted in the display direction of other images, and the luminance gradient in the front direction is decreased.
 このため、バリア半透過部123の幅が5μmよりも広い場合に、正面方向での輝度勾配を大きくするためには、バリア透過部121の幅をバリア半透過部123の幅程度に縮小することが必要になる。 Therefore, in order to increase the luminance gradient in the front direction when the width of the barrier semi-transmissive portion 123 is wider than 5 μm, the width of the barrier transmissive portion 121 is reduced to about the width of the barrier semi-transmissive portion 123. Is required.
 次に、図10にバリア半透過部123の幅を5μmに固定し、エネルギー透過率を種々変えた場合の波動光学計算による輝度プロファイルの計算結果を示す。 Next, FIG. 10 shows the calculation result of the luminance profile by wave optical calculation when the width of the barrier semi-transmitting portion 123 is fixed to 5 μm and the energy transmittance is variously changed.
 図10においては、横軸に左右角度(度)を、縦軸に漏れ光輝度を示しており、バリア半透過部123のエネルギー透過率が0の場合、0.04(4%)の場合、0.16(16%)の場合、0.36(36%)の場合および0.64(64%)の場合の輝度プロファイルをそれぞれ示している。 In FIG. 10, the horizontal axis indicates the left-right angle (degrees), and the vertical axis indicates the leakage light luminance. When the energy transmittance of the barrier semi-transmissive portion 123 is 0, 0.04 (4%), The brightness profiles in the case of 0.16 (16%), 0.36 (36%), and 0.64 (64%) are shown, respectively.
 図10より、エネルギー透過率が16%と36%の間付近で左右30度方向の漏れ光輝度は最小になり、また、境界方向の最大輝度勾配は16%付近で最も急峻になっていることが判る。 As shown in FIG. 10, the leakage light luminance in the direction of 30 degrees to the left and right is the minimum when the energy transmittance is between 16% and 36%, and the maximum luminance gradient in the boundary direction is the steepest around 16%. I understand.
 以上のように、実施の形態1の2画像ディスプレイ100においては視差バリア12にバリア半透過部123を設け、バリア半透過部123としては、幅0.5μm以上で、エネルギー透過率4~64%とすることで、左右30度方向の漏れ光輝度を抑制でき、かつ、左右の2つの画像の境界方向の輝度勾配を急峻にすることができる。このため、輝度の変化やクロストークによる2重像の発生する境界領域を狭めることができ、観察者の観察位置が左右に動いた場合でも、広い範囲で輝度の変化やクロストークによる2重像の発生のない良好な画像を視認できる。なお、バリア半透過部123は、幅2.5~5μm、エネルギー透過率16~36%とした場合が最も好適である。 As described above, in the two-image display 100 according to the first embodiment, the parallax barrier 12 is provided with the barrier semi-transmissive portion 123. The barrier semi-transmissive portion 123 has a width of 0.5 μm or more and an energy transmittance of 4 to 64%. By doing so, it is possible to suppress the leakage light luminance in the left and right directions by 30 degrees, and to make the luminance gradient in the boundary direction between the left and right images steep. For this reason, it is possible to narrow a boundary region where a double image is generated due to a change in luminance or crosstalk, and even if the observer's observation position moves to the left or right, a double image due to a change in luminance or crosstalk over a wide range. It is possible to visually recognize a good image without occurrence of. It is most preferable that the barrier semi-transmissive portion 123 has a width of 2.5 to 5 μm and an energy transmittance of 16 to 36%.
  <バリア半透過部の製造方法1>
 次に、図11を用いてバリア半透過部の製造方法について説明する。まず、図11の(a)部に示すように、透明ガラス基板15の主面上方にスパッタリングマスク151を配置する。そして、スパッタリングマスク151の上方から、バリア半透過部123の材料となる酸化クロムやグラファイトをスパッタリング法により飛ばして透明ガラス基板15の主面上に付着させることで半透過膜122bを形成する。半透過膜122bのエネルギー透過率は4~64%である。なお、エネルギー透過率の制御は半透過膜122bの膜厚を制御することによりなされる。
<Barrier translucent part manufacturing method 1>
Next, the manufacturing method of a barrier semi-transmissive part is demonstrated using FIG. First, as shown in part (a) of FIG. 11, a sputtering mask 151 is disposed above the main surface of the transparent glass substrate 15. Then, from the upper side of the sputtering mask 151, chromium oxide or graphite, which is a material of the barrier semi-transmissive portion 123, is blown by a sputtering method and adhered onto the main surface of the transparent glass substrate 15, thereby forming the semi-transmissive film 122 b. The transmissivity of the semipermeable membrane 122b is 4 to 64%. The energy transmittance is controlled by controlling the film thickness of the semi-transmissive film 122b.
 ここで、スパッタリングマスク151は、透明ガラス基板15のバリア透過部121となる部分の上がマスクされ、半透過膜122bを形成する部分が開口部となったパターンを有している。 Here, the sputtering mask 151 has a pattern in which the upper part of the transparent glass substrate 15 that becomes the barrier transmission part 121 is masked and the part where the semi-transmissive film 122b is formed becomes an opening.
 次に、スパッタリングマスク151を除去した後、図11の(b)部に示すように、透明ガラス基板15の主面上方にスパッタリングマスク152を形成する。そして、スパッタリングマスク152の上方から、バリア遮光部122の材料となる酸化クロムをスパッタリング法により飛ばして半透過膜122b上に付着させることでエネルギー透過率0%の遮光膜122aを形成する。ここで、スパッタリングマスク152は、遮光膜122aを形成する部分のみが開口部となり、他の部分がマスクされたパターンを有している。 Next, after removing the sputtering mask 151, a sputtering mask 152 is formed above the main surface of the transparent glass substrate 15 as shown in FIG. Then, from above the sputtering mask 152, chromium oxide serving as the material of the barrier light-shielding portion 122 is blown off by a sputtering method and deposited on the semi-transmissive film 122b, thereby forming a light-shielding film 122a having an energy transmittance of 0%. Here, the sputtering mask 152 has a pattern in which only a portion where the light shielding film 122a is formed becomes an opening, and the other portion is masked.
 以上の工程を経て、バリア半透過部123およびバリア遮光部122が形成され、隣り合うバリア半透過部123の間がバリア透過部121となる。なお、ここで、遮光膜122aと半透過膜122bの成膜方法として、マスクスパッタ法を例に説明したが、これに限るものではなく、パッド印刷法などにより、形成することも可能である。 Through the above steps, the barrier semi-transmissive portion 123 and the barrier light-shielding portion 122 are formed, and the barrier transmissive portion 121 is formed between the adjacent barrier semi-transmissive portions 123. Here, the mask sputtering method has been described as an example of the method for forming the light shielding film 122a and the semi-transmissive film 122b. However, the method is not limited to this, and the light shielding film 122a and the semi-transmissive film 122b can also be formed by a pad printing method or the like.
  <バリア半透過部の製造方法2>
 図11を用いて説明したバリア半透過部の製造方法では、バリア半透過部123の形成にために2枚のスパッタリングマスクを用いる例を示したが、この場合は、スパッタリングマスクの位置合わせに精度が要求される。
<Manufacturing method 2 of a barrier translucent part>
In the method for manufacturing the barrier semi-transmissive portion described with reference to FIG. 11, an example in which two sputtering masks are used for forming the barrier semi-transmissive portion 123 has been described. Is required.
 そこで、バリア半透過部の製造方法の他の例として、1枚のスパッタリングマスクでバリア半透過部123を形成する方法について図12を用いて説明する。 Therefore, as another example of the manufacturing method of the barrier semi-transmissive portion, a method of forming the barrier semi-transmissive portion 123 with one sputtering mask will be described with reference to FIG.
 まず、図12の(a)部に示すように、透明ガラス基板15の主面上にスパッタリングマスク153を形成する。そして、スパッタリングマスク153の斜め上方から、バリア半透過部123の材料となる酸化クロムをスパッタリング法により飛ばして透明ガラス基板15の主面上に付着させることで半透過膜122cを形成する。半透過膜122cのエネルギー透過率は4~64%である。なお、エネルギー透過率の制御は半透過膜122cの膜厚の制御によりなされる。 First, as shown in part (a) of FIG. 12, a sputtering mask 153 is formed on the main surface of the transparent glass substrate 15. Then, from the diagonally upper side of the sputtering mask 153, chromium oxide serving as the material of the barrier semi-transmissive portion 123 is blown off by a sputtering method and deposited on the main surface of the transparent glass substrate 15, thereby forming the semi-transmissive film 122c. The energy transmittance of the semipermeable membrane 122c is 4 to 64%. The energy transmittance is controlled by controlling the film thickness of the semi-transmissive film 122c.
 この場合、半透過膜122cは、スパッタリング材の飛来方向においてスパッタリングマスク153の端縁部の下方まで延在することとなる。一方で、スパッタリング材の飛来方向とは反対の方向においては半透過膜122cは、スパッタリングマスク153の端縁部下方には延在しない。 In this case, the semi-transmissive film 122c extends to below the edge of the sputtering mask 153 in the flying direction of the sputtering material. On the other hand, the semi-transmissive film 122c does not extend below the edge of the sputtering mask 153 in the direction opposite to the direction in which the sputtering material comes in.
 次に、スパッタリングマスク153の反対側の斜め上方から、バリア半透過部123の材料となる酸化クロムをスパッタリング法により飛ばして透明ガラス基板15の主面上に付着させることで半透過膜122dを形成する。半透過膜122dのエネルギー透過率は半透過膜122cと同じ4~64%である。なお、エネルギー透過率の制御は半透過膜122dの膜厚の制御によりなされる。 Next, from the diagonally upper side opposite to the sputtering mask 153, chromium oxide, which is a material of the barrier semi-transmissive portion 123, is blown by a sputtering method to adhere to the main surface of the transparent glass substrate 15, thereby forming the semi-transmissive film 122d. To do. The energy transmittance of the semipermeable membrane 122d is 4 to 64%, which is the same as that of the semipermeable membrane 122c. The energy transmittance is controlled by controlling the film thickness of the semi-transmissive film 122d.
 この場合、半透過膜122dは半透過膜122c上に形成されるとともに、スパッタリング材の飛来方向においてスパッタリングマスク153の端縁部の下方まで延在することとなる。一方で、スパッタリング材の飛来方向とは反対の方向においては半透過膜122dは、スパッタリングマスク153の端縁部下方には延在しない。 In this case, the semi-transmissive film 122d is formed on the semi-transmissive film 122c and extends to below the edge portion of the sputtering mask 153 in the flying direction of the sputtering material. On the other hand, the semi-transmissive film 122d does not extend below the edge of the sputtering mask 153 in the direction opposite to the flying direction of the sputtering material.
 この結果、半透過膜122cと半透過膜122dとが重なった中央部分と、半透過膜122cあるいは半透過膜122dのみが形成された端縁部とを有することとなる。この、中央部がバリア遮光部122となり、端縁部がバリア半透過部123となる。 As a result, it has a central portion where the semipermeable membrane 122c and the semipermeable membrane 122d overlap each other and an edge portion where only the semipermeable membrane 122c or the semipermeable membrane 122d is formed. The central portion serves as a barrier light shielding portion 122 and the edge portion serves as a barrier semi-transmissive portion 123.
 このように、方向を変えた斜め方向からの2回のスパッタリングにより、1枚のスパッタリングマスクで、バリア遮光部122およびバリア半透過部123を形成できる。 As described above, the barrier light-shielding part 122 and the barrier semi-transmissive part 123 can be formed with one sputtering mask by performing the sputtering twice from the oblique direction.
 この場合、スパッタリングマスク153は共通であるので、位置合わせ精度の問題が解消されるとともに、マスクの種類を減らせて製造コストを削減することができる。 In this case, since the sputtering mask 153 is common, the problem of alignment accuracy can be solved, and the manufacturing cost can be reduced by reducing the types of masks.
 ただし、バリア半透過部123の膜厚は遮光部122の膜厚の半分にしかならないという制約が生じるため、遮光部122の透過率はバリア半透過部123の2乗にしかならない。例えば、バリア半透過部123の透過率が0.1(10%)の場合、遮光部122の透過率は0.01(1%)となる。 However, since the restriction that the film thickness of the barrier semi-transmissive portion 123 is only half the film thickness of the light shielding portion 122 occurs, the transmittance of the light shielding portion 122 is only the square of the barrier semi-transmissive portion 123. For example, when the transmittance of the barrier semi-transmissive portion 123 is 0.1 (10%), the transmittance of the light shielding portion 122 is 0.01 (1%).
  <バリア半透過部の製造方法3>
 以上説明したバリア半透過部の製造方法は、ストライプ状のバリア透過部121の長辺に沿ってバリア半透過部123が設けられた構成についての製造方法であり、バリア半透過部123の形状もストライプ状であった。
<Method 3 for producing a barrier semi-transmissive portion>
The manufacturing method of the barrier semi-transmissive portion described above is a manufacturing method for a configuration in which the barrier semi-transmissive portion 123 is provided along the long side of the stripe-shaped barrier transmissive portion 121, and the shape of the barrier semi-transmissive portion 123 is also configured. It was striped.
 しかし、図13に示すように、微細開口部とバリア遮光部122とが交互に配置されたバリア半透過部124を採用しても良い。 However, as shown in FIG. 13, a barrier semi-transmissive portion 124 in which fine openings and barrier light shielding portions 122 are alternately arranged may be employed.
 図13において、バリア遮光部122を形成する遮光膜において、バリア透過部121の配列方向を左右方向とした場合に、それと直交する上下方向に配列される複数の微細開口部125をバリア透過部121の2つの長辺に沿って形成する。これにより、微細開口部125が凹部となりバリア遮光部122が突部となった構造が交互に繰り返すバリア半透過部124が得られる。 In FIG. 13, in the light shielding film that forms the barrier light shielding part 122, when the arrangement direction of the barrier transmissive part 121 is the left-right direction, a plurality of fine openings 125 arranged in the vertical direction perpendicular to the barrier transmissive part 121 are arranged. Are formed along the two long sides. As a result, a barrier semi-transmissive portion 124 in which the structure in which the fine opening 125 is a concave portion and the barrier light-shielding portion 122 is a protrusion is alternately obtained is obtained.
 このとき、微細開口部125のピッチPが充分小さければ、半透過部の実効的なエネルギー透過率を遮光面積と開口面積の平均値に調整できる。 At this time, if the pitch P of the fine openings 125 is sufficiently small, the effective energy transmittance of the semi-transmissive portion can be adjusted to the average value of the light shielding area and the opening area.
 ここで、図14を用いて、必要なピッチPの大きさについて説明する。図14に示すように、表示パネル10の画素点Gから出た光がZ軸方向(鉛直方向)に進んで視差バリア12の地点Bに到達するモデルを考えると、鉛直方向に対して直行するX軸方向にピッチPだけずれた点B’に到達する場合の光路差dLは、液晶表示パネル10の画素点Gと視差バリア12間の距離をT、光路の屈折率をnとした場合、以下の数式(1)で近似的に表される。 Here, the required pitch P will be described with reference to FIG. As shown in FIG. 14, when considering a model in which light emitted from a pixel point G of the display panel 10 travels in the Z-axis direction (vertical direction) and reaches the point B of the parallax barrier 12, the light goes straight to the vertical direction. The optical path difference dL when reaching the point B ′ shifted by the pitch P in the X-axis direction is T when the distance between the pixel point G of the liquid crystal display panel 10 and the parallax barrier 12 is T, and the refractive index of the optical path is n. It is approximately expressed by the following formula (1).
 dL=4×P×P/T・・・(1)
 ここで、バリア半透過部124が均一な透過率の領域とみなせるためには、位相差が少ないこと、すなわち、この光路差dLが光の波長よりも充分小さい(例えば1/10程度)ことが必要である。これを満たすには、以下の数式(2)を満たす必要がある。
dL = 4 × P × P / T (1)
Here, in order for the barrier semi-transmissive portion 124 to be regarded as a region having a uniform transmittance, the phase difference is small, that is, the optical path difference dL is sufficiently smaller than the wavelength of light (for example, about 1/10). is necessary. In order to satisfy this, it is necessary to satisfy the following formula (2).
 P<2×(波長/屈折率/10×T)0.5・・・(2)
 上式において、例えば波長を550nm(0.55μm)とし、T=80μm、n=1.5を代入とすると、以下の数式(3)となる。
P <2 × (wavelength / refractive index / 10 × T) 0.5 (2)
In the above formula, for example, when the wavelength is 550 nm (0.55 μm), T = 80 μm, and n = 1.5 are substituted, the following formula (3) is obtained.
 P<2×(0.55/1.5/10×80)0.5=3.4μm・・・(3)
 すなわち、微細開口部125のピッチPは2μm以下であれば、バリア半透過部124が実効的に透過率の均一な半透過部として機能することとなる。同様に液晶表示パネル10の画素点Gと視差バリア12間の距離Tが720μmと厚い場合には、微細開口部125のピッチPは10μm以下であれば、バリア半透過部124が実効的に透過率の均一な半透過部として機能することとなる。
P <2 × (0.55 / 1.5 / 10 × 80) 0.5 = 3.4 μm (3)
That is, when the pitch P of the fine openings 125 is 2 μm or less, the barrier semi-transmissive portion 124 functions as a semi-transmissive portion having an effectively uniform transmittance. Similarly, when the distance T between the pixel point G of the liquid crystal display panel 10 and the parallax barrier 12 is as thick as 720 μm, if the pitch P of the fine openings 125 is 10 μm or less, the barrier semi-transmissive portion 124 is effectively transmitted. It will function as a semi-transmissive part with a uniform rate.
 このようなバリア半透過部124であれば、透明ガラス基板15上に半透過膜を形成する必要がなくなり、バリア遮光部122を形成するだけで済むので、半透過膜の厚さやマスクの位置合わせに高い精度が不要となり、製造工程を簡略化できる。 With such a barrier semi-transmissive portion 124, it is not necessary to form a semi-transmissive film on the transparent glass substrate 15, and it is only necessary to form the barrier light-shielding portion 122. Therefore, the thickness of the semi-transmissive film and the alignment of the mask are adjusted. High accuracy is not required, and the manufacturing process can be simplified.
 なお、微細開口部125のピッチPは上記数式(1)~(3)を満たせば良く、均一である必要はなくランダムであっても良い。さらに、開口部はお互いに孤立した水玉模様状でも良い。 Note that the pitch P of the fine openings 125 only needs to satisfy the above formulas (1) to (3), and does not need to be uniform and may be random. Further, the openings may be in the form of polka dots isolated from each other.
 <実施の形態2>
  <装置構成>
 図15には、本発明に係る実施の形態2の裸眼立体ディスプレイ200の断面構成を示す。図15に示すように、裸眼立体ディスプレイ200は、表示パネル210と、表示パネル210の前面側(画像視認側)主面上に配置された視差バリアシャッタパネル220と、表示パネル210の裏面側(光源側)に配設したバックライト23を備えている。
<Embodiment 2>
<Device configuration>
FIG. 15 shows a cross-sectional configuration of the autostereoscopic display 200 according to the second embodiment of the present invention. As shown in FIG. 15, the autostereoscopic display 200 includes a display panel 210, a parallax barrier shutter panel 220 disposed on the front surface (image viewing side) main surface of the display panel 210, and the rear surface side of the display panel 210 ( A backlight 23 is provided on the light source side.
 表示パネル210はマトリクス型表示パネルであるが、表示パネル210は、有機ELパネルや、プラズマディスプレイパネル、液晶パネルでも良いが、以下では液晶パネルを例に示している。 Although the display panel 210 is a matrix type display panel, the display panel 210 may be an organic EL panel, a plasma display panel, or a liquid crystal panel, but a liquid crystal panel is shown below as an example.
 図15に示すように、表示パネル210は液晶パネルであり、2枚の透明ガラス基板204と透明ガラス基板205とに挟まれた液晶層214と、透明ガラス基板204の裏面側(光源側)主面上に設けた裏面偏光板216と、透明ガラス基板205の前面側主面上に設けた中間偏光板217とを備えている。 As shown in FIG. 15, the display panel 210 is a liquid crystal panel, a liquid crystal layer 214 sandwiched between two transparent glass substrates 204 and the transparent glass substrate 205, and the back side (light source side) of the transparent glass substrate 204. A back polarizing plate 216 provided on the surface and an intermediate polarizing plate 217 provided on the front main surface of the transparent glass substrate 205 are provided.
 また、液晶層214の裏面側主面上には、全面に渡って一体で設けられた対向透明電極215が配設され、液晶層114の前面側主面上には、画素ごとに分割されたサブ画素透明電極212が配設されており、両電極間で画素ごとに電界が印加される構成となっている。 In addition, a counter transparent electrode 215 that is integrally provided over the entire surface is disposed on the main surface on the back surface side of the liquid crystal layer 214, and is divided for each pixel on the main surface on the front surface side of the liquid crystal layer 114. A sub-pixel transparent electrode 212 is provided, and an electric field is applied to each pixel between both electrodes.
 サブ画素透明電極212は、遮光壁218によって分割されており、サブ画素透明電極212上にはサブ画素上偏光板219が設けられているが、サブ画素上偏光板219も遮光壁218によって分割されている。 The subpixel transparent electrode 212 is divided by a light shielding wall 218, and the subpixel upper polarizing plate 219 is provided on the subpixel transparent electrode 212, but the subpixel upper polarizing plate 219 is also divided by the light shielding wall 218. ing.
 遮光壁218によって分割されたサブ画素透明電極212に対応して、横方向(水平方向)にサブ画素2110~2114が形成される。そして、例えば、隣り合うサブ画素2111とサブ画素2112の2つのサブ画素を組み合わせることで、右方向と左方向に異なる視差画像をそれぞれ表示するサブ画素ペア241を構成している。また、隣り合うサブ画素2113とサブ画素2114の2つのサブ画素を組み合わせることで、右方向と左方向に異なる視差画像をそれぞれ表示するサブ画素ペア242を構成している。 Corresponding to the subpixel transparent electrode 212 divided by the light shielding wall 218, subpixels 2110 to 2114 are formed in the horizontal direction (horizontal direction). Then, for example, by combining two sub-pixels of the adjacent sub-pixel 2111 and sub-pixel 2112, a sub-pixel pair 241 that displays different parallax images in the right direction and the left direction is configured. Further, by combining two sub-pixels of the adjacent sub-pixel 2113 and sub-pixel 2114, a sub-pixel pair 242 that displays different parallax images in the right direction and the left direction is configured.
 視差バリアシャッタパネル220は、透明ガラス基板222(第1透明基板)と透明ガラス基板226(第2透明基板)とに挟まれた液晶層224と、透明ガラス基板222の前面側主面上に設けた表示面偏光板228とを備えている。なお、透明ガラス基板226の表示パネル210側の主面にも偏光板を備えるが、ここでは中間偏光板217で兼用するものとして省略している。 The parallax barrier shutter panel 220 is provided on the liquid crystal layer 224 sandwiched between the transparent glass substrate 222 (first transparent substrate) and the transparent glass substrate 226 (second transparent substrate), and the front-side main surface of the transparent glass substrate 222. And a display surface polarizing plate 228. Note that a polarizing plate is also provided on the main surface of the transparent glass substrate 226 on the display panel 210 side, but is omitted here as being also used as the intermediate polarizing plate 217.
 ここで、液晶層224のモードはツイストネマテック(TN)、スーパーツイストネマテック(STN)、インプレインスイッチング(IPS)、オプティカリ-コンペンセイティドベンド(OCB)などが利用可能である。 Here, as the mode of the liquid crystal layer 224, twisted nematic (TN), super twisted nematic (STN), in-plane switching (IPS), optically compensated bend (OCB), or the like can be used.
 また、液晶層224の裏面側主面上には、全面に渡って一体で設けられた透明電極225(第2透明電極)が配設され、液晶層214の前面側主面上には、透明電極223が配設されている。 Further, a transparent electrode 225 (second transparent electrode) provided integrally on the entire rear surface side of the liquid crystal layer 224 is disposed, and a transparent electrode 225 (second transparent electrode) is provided over the entire surface. An electrode 223 is provided.
 各サブ画素ペアの配設幅に対応する長さで基準視差バリアピッチが規定され、透明電極223は、基準視差バリアピッチ内で、複数の電気的に絶縁された状態に分割されている。図15では8分割した例を示しているが、これに限定されるものではなく、分割数はさらに多くても良い。この分割された透明電極223のそれぞれがサブ開口部301となり、このサブ開口部301の幅がサブ開口ピッチとなる。 The reference parallax barrier pitch is defined by a length corresponding to the arrangement width of each sub-pixel pair, and the transparent electrode 223 is divided into a plurality of electrically insulated states within the reference parallax barrier pitch. Although FIG. 15 shows an example of eight divisions, the present invention is not limited to this, and the number of divisions may be larger. Each of the divided transparent electrodes 223 becomes a sub opening 301, and the width of the sub opening 301 becomes a sub opening pitch.
 ここで、サブ画素ペア241を構成するサブ画素2111と2112の中間にある遮光壁218の中央から出て、対応する基準視差バリアピッチ内の中央点を通過した仮想の光LOが、本表示装置の正面前方に設定した設計視認点Qに集まるように、基準視差バリアピッチが設定されている。 Here, the virtual light LO that has exited from the center of the light shielding wall 218 in the middle of the sub-pixels 2111 and 2112 constituting the sub-pixel pair 241 and passed through the center point within the corresponding reference parallax barrier pitch is the present display device. The reference parallax barrier pitch is set so as to gather at the design visual recognition point Q set in front of.
 このように構成された視差バリアシャッタパネル220では、透明電極223と透明電極225を用いて液晶層224に電界をかけることにより、複数のサブ開口部301を交互に光透過状態と遮光状態ならびに半透過状態に切り替えることができる。 In the parallax barrier shutter panel 220 configured in this manner, by applying an electric field to the liquid crystal layer 224 using the transparent electrode 223 and the transparent electrode 225, the plurality of sub-openings 301 are alternately set in a light transmission state, a light shielding state, and a half state. It can be switched to a transparent state.
 図16を用いて、視差バリアシャッタパネル210の動作状態の例を説明する。なお、図16は、図15に示した裸眼立体ディスプレイ200をさらに模式的に示している。 An example of the operation state of the parallax barrier shutter panel 210 will be described with reference to FIG. 16 further schematically illustrates the autostereoscopic display 200 illustrated in FIG.
 図16においては、基準視差バリアピッチ内の8つのサブ開口部301のうち4つを透過状態として透過部321を形成し、その両側の2つを半透過状態にして半透過部323を形成し、残りの2つを遮光状態にして遮光部322を形成するように、それぞれの透明電極223を用いて液晶層224に電界をかけることで液晶を制御している。なお、表示パネル210における液晶層214での発光部を表示画素発光部211として示している。なお、液晶層214上には図示されない遮光部が間隔を開けて配設されており、当該遮光部からは光は発せられないので、表示画素発光部211は飛び飛びに存在している。 In FIG. 16, four of the eight sub-openings 301 within the reference parallax barrier pitch are in a transmissive state to form a transmissive portion 321, and two on both sides thereof are in a semi-transmissive state to form a semi-transmissive portion 323. The liquid crystal is controlled by applying an electric field to the liquid crystal layer 224 using the respective transparent electrodes 223 so that the remaining two are in a light-shielding state to form the light-shielding portion 322. Note that a light emitting portion in the liquid crystal layer 214 in the display panel 210 is shown as a display pixel light emitting portion 211. Note that a light shielding portion (not shown) is disposed on the liquid crystal layer 214 with an interval therebetween, and no light is emitted from the light shielding portion, so that the display pixel light emitting portion 211 exists in a scattered manner.
 ここで、半透過部323の液晶層の配向状態による複屈折に加え、屈折率の変化Δnと液晶層の厚さdを適宜選べば、半透過部323の透過率を下げるとともに、透過部321を通過した光との間の位相差としてΔnd分の位相差(付加的位相差)を生じさせることもできる。 Here, in addition to the birefringence due to the alignment state of the liquid crystal layer in the semi-transmissive portion 323, if the refractive index change Δn and the thickness d of the liquid crystal layer are appropriately selected, the transmittance of the semi-transmissive portion 323 is lowered and the transmissive portion 321 is also obtained. It is also possible to generate a phase difference (additional phase difference) of Δnd as a phase difference from the light that has passed through.
 次に、図17~図19を用いて視差バリアシャッタパネル220のサブ開口部301の動作パターンの例を説明する。 Next, an example of the operation pattern of the sub opening 301 of the parallax barrier shutter panel 220 will be described with reference to FIGS.
 図17~図19においては、複数のサブ開口部301の一部として12個のサブ開口部301の配列を示しており、図に向かって左側から順に1~8までの符号を付しており、8番目のサブ開口部301の右隣のサブ開口部301からは符号が繰り返される。 17 to 19 show an arrangement of twelve sub-openings 301 as a part of the plurality of sub-openings 301, and reference numerals 1 to 8 are given in order from the left side in the drawing. The code is repeated from the sub-opening 301 on the right side of the eighth sub-opening 301.
 図17は、全てのサブ開口部301が透過状態となっているパターンである。図18の(a)部には、パターン1として、基準視差バリアピッチ内の8個のサブ開口部301のうち連続した1~4の4つを光透過状態とし、5と8を半透過状態に、6と7を遮光状態にすることにより左右に透過部321を備えたパターンを形成している。 FIG. 17 shows a pattern in which all the sub-openings 301 are in a transmissive state. In part (a) of FIG. 18, as pattern 1, four consecutive 1 to 4 of the eight sub-openings 301 within the reference parallax barrier pitch are in a light transmission state, and 5 and 8 are in a semi-transmission state. In addition, by making 6 and 7 light-shielded, a pattern having transmissive portions 321 on the left and right is formed.
 また、図18の(b)部には、パターン2として、7と8を遮光状態とし、1と6を半透過状態とし、残りを透過状態としたパターンを示している。 18B shows a pattern 2 in which patterns 7 and 8 are in a light-shielded state, 1 and 6 are in a semi-transmissive state, and the rest are in a transmissive state.
 また、図18の(c)部には、パターン3として、8と1を遮光状態とし、7と2を半透過状態とし、残りを透過状態としたパターンを示している。 18C shows a pattern 3 in which 8 and 1 are in a light-shielding state, 7 and 2 are in a semi-transmissive state, and the rest are in a transmissive state.
 また、図18の(d)部には、パターン4として、1と2を遮光状態とし、8と3を半透過状態とし、残りを透過状態としたパターンを示している。 18D shows a pattern 4 in which 1 and 2 are in a light-shielding state, 8 and 3 are in a semi-transmissive state, and the rest are in a transmissive state.
 また、図19の(a)部には、パターン5として、2と3を遮光状態とし、1と4を半透過状態とし、残りを透過状態としたパターンを示している。 19A shows a pattern 5 in which 2 and 3 are in a light-shielded state, 1 and 4 are in a semi-transmissive state, and the rest are in a transmissive state.
 また、図19の(b)部には、パターン6として、3と4を遮光状態とし、5と2を半透過状態とし、残りを透過状態としたパターンを示している。 19B shows a pattern 6 in which 3 and 4 are in a light-shielding state, 5 and 2 are in a semi-transmissive state, and the rest are in a transmissive state.
 また、図19の(c)部には、パターン7として、4と5を遮光状態とし、6と3を半透過状態とし、残りを透過状態としたパターンを示している。 19C shows a pattern 7 in which 4 and 5 are in a light-shielding state, 6 and 3 are in a semi-transmissive state, and the rest are in a transmissive state.
 また、図19の(d)部には、パターン8として、5と6を遮光状態とし、4と7を半透過状態とし、残りを透過状態としたパターンを示している。 19D shows a pattern 8 in which 5 and 6 are in a light shielding state, 4 and 7 are in a semi-transmissive state, and the rest are in a transmissive state.
 以上説明したパターン2~8のように、光透過状態と半透過状態にするサブ開口部301を選択することにより透過部321の位置をサブ開口部301のピッチで移動させることが可能になる。 As in the patterns 2 to 8 described above, the position of the transmission part 321 can be moved at the pitch of the sub-opening part 301 by selecting the sub-opening part 301 to be in the light transmission state and the semi-transmission state.
  <一般的な裸眼立体ディスプレイにおける配光特性>
 視差バリアを用いた一般的な裸眼立体ディスプレイにおいて、右眼用画像と左眼用画像に、それぞれ白画像と黒画像を表示した場合の配光特性についての幾何光学計算結果と波動光学計算結果を図20に示す。
<Light distribution characteristics in general autostereoscopic displays>
In a typical autostereoscopic display using a parallax barrier, the results of geometric and wave optics calculations for the light distribution characteristics when a white image and a black image are displayed on the image for the right eye and the image for the left eye, respectively. It shows in FIG.
 ここで、液晶パネルの画素のピッチは0.069mm、液晶シャッタパネルの開口部のピッチは0.138mmであり、液晶シャッタパネルの開口部と画素間距離は1.224mmである。 Here, the pitch of the pixels of the liquid crystal panel is 0.069 mm, the pitch of the openings of the liquid crystal shutter panel is 0.138 mm, and the distance between the openings of the liquid crystal shutter panel and the pixels is 1.224 mm.
 また、液晶パネルの右眼用画素の中心は左-0.034mmにあり、右眼用画素の中心は右0.034mmにあり、液晶シャッタパネルの開口幅は0.069mmであり、当該開口部は液晶パネルの右眼用画素と左眼用画素の組のほぼ中央の上方に位置している。 Further, the center of the right-eye pixel of the liquid crystal panel is at the left of −0.034 mm, the center of the right-eye pixel is at the right of 0.034 mm, and the opening width of the liquid crystal shutter panel is 0.069 mm. Is located approximately above the center of the pair of right-eye pixels and left-eye pixels of the liquid crystal panel.
 図20においては、表示パネルの画素の開口幅を種々変えて、配光特性を計算した結果を示しており、透明ガラス部材の屈折率は1.5であり、波動光学計算の際の波長は550nmとしている。なお、計算結果は液晶シャッタパネルから設計観察距離750mm離れた位置にあるスクリーン上での相対輝度分布である。図中、幾何光学計算結果は直線で現れており、波動光学計算結果は曲線で現れている。 FIG. 20 shows the result of calculating the light distribution characteristics with various aperture widths of the pixels of the display panel, the refractive index of the transparent glass member is 1.5, and the wavelength at the time of wave optical calculation is It is 550 nm. The calculation result is a relative luminance distribution on a screen located at a design observation distance of 750 mm from the liquid crystal shutter panel. In the figure, the geometric optical calculation result appears as a straight line, and the wave optical calculation result appears as a curve.
 図20では、横軸にスクリーン上での観察位置(mm)を、縦軸に相対輝度を示しており、表示パネルの画素の開口幅が34.2μmの場合、27.3μmの場合、20.5μmの場合、13.7μmの場合および6.8μmの場合のそれぞれについて、幾何光学計算結果と波動光学計算結果を示している。 In FIG. 20, the horizontal axis represents the observation position (mm) on the screen, and the vertical axis represents the relative luminance. When the aperture width of the pixel of the display panel is 34.2 μm, 27.3 μm, 20. The geometric optical calculation result and the wave optical calculation result are shown for the cases of 5 μm, 13.7 μm, and 6.8 μm, respectively.
 図20より、幾何光学計算結果では、表示パネルの画素の開口幅が小さくなるにつれて輝度ピークは低下して輝度の平坦部は広くなり、輝度均一な視認域が拡大すると期待される。さらに、境界部分の左側の他方向画像表示域への光の漏れ域は狭くなり、境界領域が縮小すると期待される。 From FIG. 20, it is expected from the geometric optical calculation result that the luminance peak is lowered and the flat portion of the luminance is widened as the aperture width of the pixel of the display panel is reduced, so that the viewing area with uniform luminance is expanded. Furthermore, it is expected that the light leakage area to the other direction image display area on the left side of the boundary portion is narrowed and the boundary area is reduced.
 しかし、波動光学計算の結果は、これとは異なっている。表示パネルの画素の開口幅が小さくなるにつれて輝度ピークは低下するが、複数のピークが表れるため大きな分布が生じており、輝度ピーク域の幅も幾何光学計算結果よりも狭い。 However, the results of wave optics calculations are different. Although the luminance peak decreases as the aperture width of the pixel of the display panel decreases, a large distribution occurs because a plurality of peaks appear, and the width of the luminance peak area is also narrower than the geometric optical calculation result.
 ここで、図21には、図20における輝度プロファイルをピーク輝度で規格化したプロファイルを示しており、縦軸は規格化相対輝度である。 Here, FIG. 21 shows a profile obtained by normalizing the luminance profile in FIG. 20 with the peak luminance, and the vertical axis represents the normalized relative luminance.
 図21より、境界部分の左側の他方向画像表示域への光の漏れる範囲は、画素の開口幅を6.8μmに狭くしても幾何光学計算から期待されるほどには違わないことが判明した。 From FIG. 21, it is found that the light leaking range to the other direction image display area on the left side of the boundary portion does not differ as much as expected from geometric optical calculation even if the aperture width of the pixel is narrowed to 6.8 μm. did.
 図22に、波動光学計算と幾何光学計算の差が構造寸法によりどのように異なるかを調べた計算結果を示す。図20で計算したように、液晶パネルの画素のピッチは0.069mm、液晶シャッタパネルの開口部のピッチは0.138mm、液晶シャッタパネルの開口部と画素間距離は1.224mmであり、液晶パネルの右眼用画素の中心は左-0.034mmにあり、右眼用画素の中心は右0.034mmにあり、液晶シャッタパネルの開口幅は0.069mmとし、当該開口部は液晶パネルの右眼用画素と左眼用画素の組のほぼ中央の上方に位置するものとし、表示パネルの画素の開口幅が34.2μmの場合を基準構造とする。図22では、この基準構造を相似的に1/2倍、2倍、4倍に変えた場合の計算結果を示す。 FIG. 22 shows the calculation results obtained by examining how the difference between the wave optical calculation and the geometric optical calculation differs depending on the structural dimensions. As calculated in FIG. 20, the pixel pitch of the liquid crystal panel is 0.069 mm, the pitch of the opening of the liquid crystal shutter panel is 0.138 mm, and the distance between the opening of the liquid crystal shutter panel and the pixel is 1.224 mm. The center of the pixel for the right eye of the panel is at the left -0.034 mm, the center of the pixel for the right eye is at the right of 0.034 mm, the opening width of the liquid crystal shutter panel is 0.069 mm, and the opening is formed in the liquid crystal panel. The reference structure is assumed to be located approximately above the center of the pair of right-eye pixels and left-eye pixels, and the display panel pixel aperture width is 34.2 μm. FIG. 22 shows calculation results when the reference structure is similarly changed to 1/2 times, 2 times, and 4 times.
 図22においては、透明ガラス部材の屈折率は1.5であり、光の波長は550nmとしている。なお、計算結果は液晶シャッタパネルから設計観察距離750mm離れた位置にあるスクリーン上での相対輝度分布(a.u.)である。図中、幾何光学計算結果は直線で現れており、波動光学計算結果は曲線で現れている。 In FIG. 22, the refractive index of the transparent glass member is 1.5, and the wavelength of light is 550 nm. The calculation result is a relative luminance distribution (au) on the screen at a design observation distance of 750 mm from the liquid crystal shutter panel. In the figure, the geometric optical calculation result appears as a straight line, and the wave optical calculation result appears as a curve.
 図22に示すように、相似的に4倍拡大した構造では、波動光学計算の結果は、実線の直線で示す幾何光学計算の結果と比べ、0mm点での輝度やピークの平坦度に関して大きな差はないが、相似的に寸法が小さくなるにつれて、波動光学計算の結果と幾何光学計算の結果の違いが大きくなることが判る。相似的に2倍に拡大した構造では、波動光学計算の結果は、ピーク輝度の変動が10%を超え、幾何光学計算で輝度が0となる-10mm地点での輝度がピークの10%を超えている。従って、相似的に4倍拡大した構造では幾何光学計算と差がなくなり、波動光学計算を用いるメリットはなくなる。換言すれば、相似的な寸法が4倍より小さい場合は波動光学計算を用いるメリットがあると言える。具体的な寸法で言えば、波動光学の原理からより影響の大きい光路後方にある液晶シャッタパネル開口幅0.069mmの2倍である0.138mmから鑑みて、観察者に近い方の開口幅が0.138mmよりも小さい場合には、波動光学計算を用いた輝度プロファイルの調整が有効である。 As shown in FIG. 22, in the structure that is similarly magnified 4 times, the result of the wave optical calculation is greatly different from the result of the geometric optical calculation indicated by the solid line in terms of the luminance at the 0 mm point and the flatness of the peak. However, it can be seen that the difference between the result of the wave optical calculation and the result of the geometric optical calculation becomes larger as the size is similarly reduced. In a similar doubled structure, the results of wave optics calculations show that the peak brightness variation exceeds 10%, and the brightness at the geometrical optics calculation is 0—the brightness at the 10 mm point exceeds 10% of the peak. ing. Therefore, a structure that is similarly magnified four times eliminates the difference from geometric optical calculation and loses the merit of using wave optical calculation. In other words, if the similar dimension is less than 4 times, it can be said that there is an advantage of using wave optical calculation. In terms of specific dimensions, in view of 0.138 mm, which is twice the 0.069 mm liquid crystal shutter panel opening width behind the optical path, which is more influenced by the principle of wave optics, the opening width closer to the observer is smaller. If it is smaller than 0.138 mm, it is effective to adjust the luminance profile using wave optics calculation.
 そこで、上記に鑑み、回折を考慮した輝度プロファイルの調整方法について以下に説明する。 Therefore, in view of the above, a method for adjusting a luminance profile in consideration of diffraction will be described below.
  <本発明に係る裸眼立体ディスプレイにおける配光特性>
 次に、図23を用いて本発明に係る実施の形態2の裸眼立体ディスプレイ200における配光特性の波動光学計算結果について説明する。
<Light distribution characteristics in autostereoscopic display according to the present invention>
Next, wave optical calculation results of light distribution characteristics in the autostereoscopic display 200 according to the second embodiment of the present invention will be described with reference to FIG.
 以下では、サブ開口部301のピッチは基準視差バリアピッチを16分割(図15,16では8等分の場合を示した)した場合について計算を行った。液晶表示パネル210の画素のピッチW12は0.069mm、液晶シャッタパネル220の透過部321のピッチは0.138mmであり、液晶シャッタパネル220の透過部321と液晶パネル210の画素との距離DBは1.224mmである。 In the following, the pitch of the sub-openings 301 was calculated for the case where the reference parallax barrier pitch was divided into 16 (in FIGS. 15 and 16, the case of 8 equal parts was shown). The pixel pitch W12 of the liquid crystal display panel 210 is 0.069 mm, the pitch of the transmission part 321 of the liquid crystal shutter panel 220 is 0.138 mm, and the distance DB between the transmission part 321 of the liquid crystal shutter panel 220 and the pixel of the liquid crystal panel 210 is 1.224 mm.
 液晶パネル210の表示画素発光部211の幅は20.5μmであり、右眼用画素の中心は左端-0.034mmに右眼用画素の中心は右0.034mmにある。 The width of the display pixel light emitting section 211 of the liquid crystal panel 210 is 20.5 μm, the center of the right eye pixel is at the left end of −0.034 mm, and the center of the right eye pixel is at 0.034 mm on the right.
 液晶シャッタパネル220の透過部321の幅W13(バリア開口幅)は8個のサブ開口部301の幅の和である0.069mm(68.5μm)であり、その両側に1サブ開口部分の8.5μmの半透過部323が存在し、液晶パネル210の右眼用画素と右眼用画素の組のほぼ中央の上方に位置している。 The width W13 (barrier opening width) of the transmissive portion 321 of the liquid crystal shutter panel 220 is 0.069 mm (68.5 μm), which is the sum of the widths of the eight sub-openings 301, and 8 on one side of the sub-opening portion. A semi-transmissive portion 323 of .5 μm exists, and is positioned almost above the center of the pair of right-eye pixels and right-eye pixels of the liquid crystal panel 210.
 図23においては、半透過部323の透過率と付加的位相を種々変えて、配光特性を計算した結果を示しており、透明ガラス部材の屈折率は1.5であり、波動光学計算の際の波長は550nmとしている。そして、右眼用画像と左眼用画像に、それぞれ白画像と黒画像を表示した場合の配光特性を示しており、計算結果は液晶シャッタパネル220から設計観察距離DS=750mm離れた位置にあるスクリーン上での相対輝度分布である。 FIG. 23 shows the results of calculating the light distribution characteristics by changing the transmittance and additional phase of the semi-transmissive portion 323 in various ways. The refractive index of the transparent glass member is 1.5, and the wave optical calculation is performed. The wavelength at that time is 550 nm. The light distribution characteristics when a white image and a black image are displayed in the right-eye image and the left-eye image, respectively, are shown. The calculation result is at a design observation distance DS = 750 mm away from the liquid crystal shutter panel 220. It is a relative luminance distribution on a certain screen.
 図23では、横軸にスクリーン上での観察位置(mm)を、縦軸に相対輝度を示しており、図中、半透過部323(幅8.5μm)を通過する光の位相が透過部321(幅68.5μm)を通過する場合に比べ付加的位相差として1/4波長分長い距離を進むものとして、エネルギー透過率を6%、25%、56%とした場合の計算結果を各種鎖線で示している。また、半透過部323がなく、その分透過部321が広い場合(バリア開口幅が85.6μm)の場合を太い鎖線で示し、半透過部323がなく透過部321は68.5μmのままの場合のプロファイルを実線で示している。 In FIG. 23, the horizontal axis represents the observation position (mm) on the screen, and the vertical axis represents the relative luminance. In the figure, the phase of light passing through the semi-transmissive portion 323 (width 8.5 μm) is the transmissive portion. Various calculation results when the energy transmittance is 6%, 25%, and 56% are assumed to travel a distance longer by 1/4 wavelength as an additional phase difference than when passing through 321 (width 68.5 μm). Shown with a chain line. Further, the case where there is no semi-transmissive portion 323 and the transmissive portion 321 is correspondingly wide (barrier opening width is 85.6 μm) is indicated by a thick chain line, and the semi-transmissive portion 323 is absent and the transmissive portion 321 remains 68.5 μm. The profile of the case is shown by a solid line.
 図23において、実線で示す半透過部323がない場合に比べて、半透過部323がある場合は何れの場合も輝度勾配が急峻になっており、-10mm地点での漏れ光が抑制できていることが判る。ただし、透過率が56%の場合は-30mm地点での漏れ光が増加しており、この条件の場合は、透過率25%程度が好適であることが判る。 In FIG. 23, compared to the case where the semi-transmissive portion 323 indicated by the solid line is not present, the luminance gradient is steep in both cases when the semi-transmissive portion 323 is present, and the leakage light at the −10 mm point can be suppressed. You can see that However, when the transmittance is 56%, the amount of light leaked at a point of −30 mm is increased. Under this condition, it can be seen that a transmittance of about 25% is suitable.
 また、図24には、半透過部323のエネルギー透過率25%とした場合の半透過部323を通過する際に生じる付加的位相差による影響を示す計算結果を、付加的位相差がない場合(0の場合)とともに示している。 FIG. 24 shows the calculation result showing the effect of the additional phase difference generated when passing through the semi-transmissive portion 323 when the energy transmittance of the semi-transmissive portion 323 is 25%, when there is no additional phase difference. It is shown together with (in the case of 0).
 図24では、横軸にスクリーン上での観察位置(mm)を、縦軸に相対輝度を示しており、透過部321を通過する場合に比べて1/4波長分多く進む場合(-λ/4)、1/2波長分多く進む場合(-λ/2)、3/4波長分多く進む場合(-λ3/4)および位相差0の場合を示している。 In FIG. 24, the horizontal axis indicates the observation position (mm) on the screen, and the vertical axis indicates the relative luminance, and the case where the phase advances by a quarter wavelength (−λ /) as compared with the case where it passes through the transmission part 321. 4) shows a case where the phase advances by 1/2 wavelength (-λ / 2), a case where the phase advances by 3/4 wavelength (-λ3 / 4), and a case where the phase difference is zero.
 図24より、透過部321を通過する場合(位相差0の場合)に比べてλ/4分進む場合には、境界部の勾配が急峻でしかも20度方向の漏れ光の輝度も低いことが判る。 From FIG. 24, it can be seen that when the light advances by λ / 4 as compared with the case where the light passes through the transmission part 321 (when the phase difference is 0), the gradient of the boundary part is steep and the luminance of the leaked light in the direction of 20 degrees is low. I understand.
 以上のように、実施の形態2の裸眼立体ディスプレイ200においては液晶シャッタパネル220に半透過部323を設け、半透過部323の透過率を25%程度とし、また、透過部321を通過する場合に比べてλ/4分進むように半透過部323を構成することで、左右20度方向の漏れ光輝度を抑制でき、かつ、境界方向の輝度勾配を急峻にすることができる。このため、輝度の変化やクロストークによる2重像の発生する境界領域を狭めることができ、観察者の観察位置が左右に動いた場合に、広い範囲で輝度の変化やクロストークによる2重像の発生のない良好な画像を視認できる。 As described above, in the autostereoscopic display 200 according to the second embodiment, the liquid crystal shutter panel 220 is provided with the semi-transmissive portion 323, the transmittance of the semi-transmissive portion 323 is about 25%, and the light passes through the transmissive portion 321. By configuring the semi-transmissive portion 323 so as to proceed by λ / 4 as compared with the above, it is possible to suppress the leakage light luminance in the right and left 20 degrees direction and to make the luminance gradient in the boundary direction steep. For this reason, it is possible to narrow a boundary region where a double image is generated due to a change in luminance or crosstalk, and a double image due to a change in luminance or crosstalk over a wide range when the observer's observation position moves to the left or right. It is possible to visually recognize a good image without occurrence of.
 なお、以上の計算では波長550nmの緑色光を対象にサイズの好適を議論したが、赤色光(波長650nm)や青色光(波長450nm)の場合は波長が異なり、漏れ光を制御するのに好適なサイズは異なる。従って、対象とする画素の色に応じて視差バリアの半透過部の寸法を変えることにより漏れ光の着色をなくすことも可能になる。 In the above calculation, the preferred size is discussed for green light with a wavelength of 550 nm. However, red light (wavelength 650 nm) and blue light (wavelength 450 nm) have different wavelengths and are suitable for controlling leakage light. The size is different. Therefore, it is also possible to eliminate the color of leakage light by changing the size of the semi-transmissive portion of the parallax barrier according to the color of the target pixel.
 また、以上の説明では、視差バリアの形状は細長いストライプ状とし、長辺が一列に並列するように配列された構成を示したが、千鳥配列(チェッカーフラグパターン状)にも適用できることは言うまでもない。千鳥配列の場合は、立体画像の解像度感が向上する。 In the above description, the configuration of the parallax barrier is an elongated stripe shape and the long sides are arranged in parallel. However, it is needless to say that the parallax barrier can be applied to a staggered arrangement (checker flag pattern shape). . In the case of the staggered arrangement, the resolution of the stereoscopic image is improved.
 また、方向別画像の数は2つの場合を例に採って説明したが、これに限らず、視差画像が3つや、さらに複数の場合でも、それぞれの画像の境界において、漏れ光の輝度を抑制する効果がある。 In addition, the number of direction-specific images has been described by taking the case of two as an example. However, the present invention is not limited to this, and even when there are three or more parallax images, the luminance of the leaked light is suppressed at each image boundary. There is an effect to.
 <実施の形態3>
  <装置構成>
 以上説明した本発明に係る実施の形態1においては、マトリクス状に画素を配置した表示パネルと、表示パネルの前面側(画像視認側)に形成した視差バリアから構成された表示装置を例に説明したが、表示パネルが液晶表示パネルの場合は、視差バリアが表示パネルの背面側にある装置にも応用できる。
<Embodiment 3>
<Device configuration>
In Embodiment 1 according to the present invention described above, a display device including a display panel in which pixels are arranged in a matrix and a parallax barrier formed on the front side (image viewing side) of the display panel will be described as an example. However, when the display panel is a liquid crystal display panel, the present invention can also be applied to an apparatus having a parallax barrier on the back side of the display panel.
 図25には、本発明に係る実施の形態3の観察方向により異なる画像を表示する2画像ディスプレイ300の模式的な斜視図を示す。 FIG. 25 is a schematic perspective view of a two-image display 300 that displays different images depending on the observation direction according to the third embodiment of the present invention.
 図25に示すように、マトリクス状に複数の画素を配置した表示パネル41の裏面側に視差バリア42が配設されている。また、視差バリア42の裏面側にはバックライト43が設けられている。 As shown in FIG. 25, a parallax barrier 42 is disposed on the back side of the display panel 41 in which a plurality of pixels are arranged in a matrix. A backlight 43 is provided on the back side of the parallax barrier 42.
 また、表示パネル41においては、液晶層410上に設けた遮光部412の複数の開口部が、画素透過部411となっている。画素透過部411は何れも平面視形状がストライプ状をなし、長辺が並列するように配列されている。そして、それぞれの長辺に沿って半透過部413が設けられている。 Further, in the display panel 41, a plurality of openings of the light shielding part 412 provided on the liquid crystal layer 410 serve as a pixel transmission part 411. All of the pixel transmission portions 411 are arranged so that the plan view has a stripe shape and the long sides are arranged in parallel. A semi-transmissive portion 413 is provided along each long side.
 視差バリア42は、バリア遮光部422の複数の開口部が、バリア透過部421となっている。バリア透過部421は何れも平面視形状がストライプ状をなし、長辺が並列するように配列されている。 In the parallax barrier 42, a plurality of openings of the barrier light shielding part 422 are barrier transmission parts 421. All of the barrier transmission parts 421 are arranged so that the plan view has a stripe shape and the long sides are arranged in parallel.
 なお、図25は、バックライト43、表示パネル41の画素透過部411および視差バリア透過部421の位置関係を説明するための概略図であり、表示パネルに設ける透明電極や透明ガラス基板等を省略した図となっている。また、表示パネル41の画素透過部411と視差バリア透過部421はそれぞれ所定の距離を離して配置されており、空気やガラスなどの媒体が間に存在していても良い。 FIG. 25 is a schematic diagram for explaining the positional relationship between the backlight 43, the pixel transmission unit 411 and the parallax barrier transmission unit 421 of the display panel 41, and omits transparent electrodes, transparent glass substrates, and the like provided in the display panel. It has become the figure. In addition, the pixel transmission unit 411 and the parallax barrier transmission unit 421 of the display panel 41 are arranged at a predetermined distance from each other, and a medium such as air or glass may be present therebetween.
 なお、図25は、バックライト、表示パネルおよび視差バリアの位置関係、半透過部を設けた位置を説明するための概略図であり、表示パネルに設ける透明電極や透明ガラス基板等を省略した図となっている。また、バックライト、表示パネル、視差バリアはそれぞれ密着していても良いし、空気やガラスなどの媒体が間に存在していても良い。 FIG. 25 is a schematic diagram for explaining the positional relationship between the backlight, the display panel, and the parallax barrier, and the position where the semi-transmissive portion is provided, in which the transparent electrode and the transparent glass substrate provided on the display panel are omitted. It has become. Further, the backlight, the display panel, and the parallax barrier may be in close contact with each other, or a medium such as air or glass may be present therebetween.
 液晶表示パネル41の半透過部413の幅は0.5μm~10μmで、透過率は振幅透過率20~80%、エネルギー透過率で4~64%程度である。さらに半透過部413には屈折率が透過部411と異なり、透過部411との間に0から半波長のΔndの位相差が生じるように構成されている。 The width of the semi-transmissive portion 413 of the liquid crystal display panel 41 is 0.5 μm to 10 μm, the transmittance is 20 to 80% amplitude transmittance, and the energy transmittance is about 4 to 64%. Further, the semi-transmissive portion 413 has a refractive index different from that of the transmissive portion 411, and is configured such that a phase difference of Δnd from 0 to a half wavelength is generated between the semi-transmissive portion 413 and the transmissive portion 411.
 このように、マトリクス状に画素を配置した表示パネル41と、表示パネル41の裏面側に視差バリア42を形成した表示装置においても、表示パネル41の透過部411の長辺に半透過部413を設けることにより、画像の境界部での輝度勾配を急峻にすることができる。 Thus, also in the display panel 41 in which pixels are arranged in a matrix and the display device in which the parallax barrier 42 is formed on the back surface side of the display panel 41, the semi-transmissive portion 413 is provided on the long side of the transmissive portion 411 of the display panel 41. By providing, the luminance gradient at the boundary portion of the image can be made steep.
 図26に本発明に係る実施の形態3の2画像ディスプレイ300における配光特性の波動光学計算結果を示す。 FIG. 26 shows a wave optical calculation result of the light distribution characteristics in the two-image display 300 according to the third embodiment of the present invention.
 以下では、表示パネル41の画素のピッチを0.069mm、視差バリア42のバリア透過部421のピッチは0.138mmであり、表示パネル41の透過部411と視差バリア42のバリア透過部421との間の距離は1.224mmである。 In the following, the pixel pitch of the display panel 41 is 0.069 mm, the pitch of the barrier transmission part 421 of the parallax barrier 42 is 0.138 mm, and the transmission part 411 of the display panel 41 and the barrier transmission part 421 of the parallax barrier 42 are The distance between is 1.224 mm.
 表示パネル41の透過部411の中心位置は左眼用画素が-0.034mmに右眼用画素が右0.034mmにある。また、視差バリア42のバリア透過部421の幅は0.069mmである。 The center position of the transmissive portion 411 of the display panel 41 is -0.034 mm for the left eye pixel and 0.034 mm for the right eye pixel. The width of the barrier transmission part 421 of the parallax barrier 42 is 0.069 mm.
 図26では、透過部411の左右に設けた半透過部413のエネルギー透過率と、半透過部413を通過する光の位相が透過部411を通過する場合に比べて付加される付加的位相差Δndとを種々変えた場合の配光特性を計算しており、透明ガラス部材の屈折率は1.5であり、波動光学計算の際の波長は550nmとしている。なお、計算結果は液晶シャッタパネルから設計観察距離750mm離れた位置にあるスクリーン上での相対輝度分布である。また、図27には、それぞれの輝度プロファイルをピーク輝度で規格化した規格化相対輝度プロファイルを示している。 In FIG. 26, the energy transmittance of the semi-transmissive portion 413 provided on the left and right of the transmissive portion 411 and the additional phase difference added compared to the case where the phase of the light passing through the semi-transmissive portion 413 passes through the transmissive portion 411. The light distribution characteristics when Δnd is varied are calculated, the refractive index of the transparent glass member is 1.5, and the wavelength in the wave optical calculation is 550 nm. The calculation result is a relative luminance distribution on a screen located at a design observation distance of 750 mm from the liquid crystal shutter panel. FIG. 27 shows a normalized relative luminance profile obtained by normalizing each luminance profile with peak luminance.
 ここで、付加的位相差Δndは、屈折率の変化Δnと液晶層の厚さdとの組み合わせにより設定することができる。なお、液晶層の厚さdは固定されているので半透過部413の屈折率を透過部411と異なった値とするには、屈折率が液晶に比べ大きなITO(Indium Tin Oxide)電極の厚さを半透過部413と透過部411で異なった値とするという構成を採れば良い。 Here, the additional phase difference Δnd can be set by a combination of the refractive index change Δn and the thickness d of the liquid crystal layer. Since the thickness d of the liquid crystal layer is fixed, in order to make the refractive index of the semi-transmissive portion 413 different from that of the transmissive portion 411, the thickness of the ITO (Indium Tin Oxide) electrode having a larger refractive index than that of the liquid crystal. What is necessary is just to employ | adopt the structure that it is set as a different value by the semi-transmissive part 413 and the transmissive part 411.
 図26および図27では、横軸にスクリーン上での観察位置(mm)を、縦軸に相対輝度を示しており、図中、半透過部413がなく、透過部411が34.3μm)の場合を太い鎖線で示し、半透過部413がなく透過部411が27.4μmの場合を実線で示し、半透過部413の幅が5μmで、透過率が25%で付加的位相差(Δnd)がλ/4の場合を破線で、および半透過部413の幅が5μmで、透過率が25%で付加的位相差(Δnd)が0の場合を鎖線で示している。 26 and 27, the horizontal axis indicates the observation position (mm) on the screen, and the vertical axis indicates the relative luminance. In the drawing, there is no transflective portion 413, and the transmitting portion 411 is 34.3 μm). The case is indicated by a thick chain line, the case where there is no transflective portion 413 and the transmission portion 411 is 27.4 μm is indicated by a solid line, the width of the transflective portion 413 is 5 μm, the transmittance is 25%, and an additional phase difference (Δnd) Λ / 4 is indicated by a broken line, and a case where the width of the semi-transmissive portion 413 is 5 μm, the transmittance is 25%, and the additional phase difference (Δnd) is 0 is indicated by a chain line.
 図27において、透過率が25%で付加的位相差(Δnd)がλ/4の場合、実線で示す半透過部413がない場合に比べ、ピーク輝度の大きな低下もなく境界部での輝度勾配が急峻になっており、-10mm地点での漏れ光が抑制できていることが判る。 In FIG. 27, when the transmittance is 25% and the additional phase difference (Δnd) is λ / 4, the luminance gradient at the boundary portion is not greatly reduced as compared with the case where the semi-transmissive portion 413 indicated by the solid line is not provided. Is steep, and it can be seen that leakage light at a point of −10 mm can be suppressed.
 また、半透過部413の透過率が25%で付加的位相差(Δnd)が0の場合は、実線で示す半透過部413がない場合に比べ、ピーク輝度の大きな低下もなく-30mm地点での漏れ光が抑制できていることが判る。 Further, when the transmissivity of the semi-transmissive portion 413 is 25% and the additional phase difference (Δnd) is 0, the peak luminance is not greatly reduced as compared with the case where the semi-transmissive portion 413 indicated by the solid line is not present, at the point of −30 mm. It can be seen that the leakage light of the light can be suppressed.
 このように、表示装置の構成に応じて、半透過部413の透過率と付加的位相差(Δnd)を適宜設定することにより、好適な漏れ光特性が得られる。 As described above, suitable light leakage characteristics can be obtained by appropriately setting the transmittance of the semi-transmissive portion 413 and the additional phase difference (Δnd) according to the configuration of the display device.
 <実施の形態4>
 本発明に係る実施の形態4では、実施の形態3で説明した、表示パネルが液晶表示パネルであり、視差バリアが表示パネルの背面側にある装置において、液晶表示パネルの具体的な構成を説明する。
<Embodiment 4>
In Embodiment 4 according to the present invention, a specific configuration of the liquid crystal display panel in the apparatus described in Embodiment 3 in which the display panel is a liquid crystal display panel and the parallax barrier is on the back side of the display panel will be described. To do.
 図28は、図25に示した表示パネル41の透過部411の具体的構成の一例を示す図であり、図28の(a)部には平面図を、図28の(b)部には、平面図におけるA-A線での断面図を示す。 FIG. 28 is a diagram showing an example of a specific configuration of the transmissive portion 411 of the display panel 41 shown in FIG. 25. FIG. 28 (a) is a plan view, and FIG. 28 (b) is a plan view. FIG. 2 is a cross-sectional view taken along line AA in the plan view.
 図28の(a)部に示すように、透過部411の平面形状は縦長の矩形状であり、その2つの長辺に沿って半透過膜1413が設けられている。半透過膜1413を含めた透過部411の周囲は遮光膜1412が形成されている。 As shown in part (a) of FIG. 28, the planar shape of the transmission part 411 is a vertically long rectangular shape, and a semi-transmissive film 1413 is provided along the two long sides. A light shielding film 1412 is formed around the transmission part 411 including the semi-transmissive film 1413.
 また、図28の(b)部に示すように、液晶層1422は、下側透明基板1400と上側透明基板1450との間に挟持され、下側透明基板1400上には画素電極1423が配設され、上側透明基板1450上には対向電極1421が配設され、両者は液晶層1422を間に介して対向して配置されている。画素電極1423は、透過部(上部開口とも呼称)411ごとに独立して設けられ、少なくとも上部開口411の下方に対応する領域に設けられている。また、対向電極1421は上側透明基板1450上全体に設けられている。また、下側透明基板1400の下主面(画素電極1423が設けられた側とは反対側の主面)上には、視差バリア42のバリア遮光部422とバリア透過部(下バリア開口とも呼称)421が設けられている。 As shown in FIG. 28B, the liquid crystal layer 1422 is sandwiched between the lower transparent substrate 1400 and the upper transparent substrate 1450, and the pixel electrode 1423 is disposed on the lower transparent substrate 1400. A counter electrode 1421 is disposed on the upper transparent substrate 1450, and both are disposed to face each other with a liquid crystal layer 1422 therebetween. The pixel electrode 1423 is provided independently for each transmissive portion (also referred to as an upper opening) 411 and is provided at least in a region corresponding to the lower portion of the upper opening 411. The counter electrode 1421 is provided on the entire upper transparent substrate 1450. Further, on the lower main surface of the lower transparent substrate 1400 (the main surface opposite to the side on which the pixel electrode 1423 is provided), the barrier light shielding portion 422 and the barrier transmission portion (also referred to as a lower barrier opening) of the parallax barrier 42 are also referred to. ) 421 is provided.
 このような構成を採ることで、画素電極1423に適宜電圧を印加し対向電極1421との間で電界を形成することができ、当該電界により液晶層1422の配向を制御し、上部開口411ごとに光の透過率を変えることができる。 By adopting such a structure, an appropriate voltage can be applied to the pixel electrode 1423 to form an electric field with the counter electrode 1421, and the orientation of the liquid crystal layer 1422 can be controlled by the electric field, and the upper opening 411 can be controlled. The light transmittance can be changed.
 ここで、通常の画素電極1423は、屈折率が2.1程度のITO等の透明導電膜で形成され、厚さの均一な薄膜で構成されるが、本実施の形態では画素電極1423の上に、断面形状が透過部411の中央で最も厚く、端縁部に向けて薄くなる曲線形状を有した高屈折率膜1424を備えている。この高屈折率膜1424もITOで形成されており画素電極として機能する。 Here, the normal pixel electrode 1423 is formed of a transparent conductive film such as ITO having a refractive index of about 2.1 and is formed of a thin film having a uniform thickness. In addition, a high refractive index film 1424 having a curved shape in which the cross-sectional shape is thickest at the center of the transmission part 411 and becomes thinner toward the edge part is provided. This high refractive index film 1424 is also made of ITO and functions as a pixel electrode.
 なお、画素電極1423は、下側透明基板1400上に形成されるが、その形成方法としては、下側透明基板1400上にITO等の透明導電膜を全面に渡って形成し、当該透明導電膜をフォトリソグラフィでパターニングして画素電極1423を設ける方法を採ることができる。なお、パターニングされた画素電極1423は、透明絶縁膜1401で覆い、透明絶縁膜1401を画素電極1423の厚さまで平坦化する。 The pixel electrode 1423 is formed on the lower transparent substrate 1400. As a method for forming the pixel electrode 1423, a transparent conductive film such as ITO is formed on the entire surface of the lower transparent substrate 1400, and the transparent conductive film is formed. The pixel electrode 1423 can be provided by patterning with photolithography. Note that the patterned pixel electrode 1423 is covered with a transparent insulating film 1401, and the transparent insulating film 1401 is planarized to the thickness of the pixel electrode 1423.
 対向電極1421の形成方法も同様であり、上側透明基板1450上に、透過部411に対応する部分が開口部となった半透過膜1413および遮光膜1412を形成した後、それらを開口部ごと透明絶縁膜1402で覆い、透明絶縁膜1402を半透過膜1413および遮光膜1412の厚さまで平坦化し、透明絶縁膜1402、半透過膜1413および遮光膜1412の上に透明導電膜を全面に渡って形成することで対向電極1421を得る。なお、半透過膜1413および遮光膜1412の形成方法は、図11および図12を用いて説明した方法を採ることができる。 The formation method of the counter electrode 1421 is also the same. After forming the semi-transmissive film 1413 and the light-shielding film 1412 in which the part corresponding to the transmissive part 411 is an opening on the upper transparent substrate 1450, the transparent electrode 1421 is transparent together with the opening. The insulating film 1402 is covered, the transparent insulating film 1402 is flattened to the thickness of the semi-transmissive film 1413 and the light-shielding film 1412, and a transparent conductive film is formed over the entire surface on the transparent insulating film 1402, the semi-transmissive film 1413 and the light-shielding film 1412. Thus, the counter electrode 1421 is obtained. Note that the method described with reference to FIGS. 11 and 12 can be employed as a method of forming the semi-transmissive film 1413 and the light shielding film 1412.
 そして、画素電極1423上に高屈折率膜1424を形成した後、上側透明基板1450と下側透明基板1400とを、画素電極1423と対向電極1421とが向かい合うように対向配置し、間に液晶材料を封入することで液晶層1422を形成する。 After the high refractive index film 1424 is formed on the pixel electrode 1423, the upper transparent substrate 1450 and the lower transparent substrate 1400 are disposed to face each other so that the pixel electrode 1423 and the counter electrode 1421 face each other, and a liquid crystal material is interposed therebetween. Is sealed to form a liquid crystal layer 1422.
 次に、図29を用いて高屈折率膜1424の厚さ分布について説明する。図29は、図25に示した表示パネル41の画素透過部411(上部開口411)と、視差バリア42のバリア透過部421(下バリア開口421)とを通過する光の光路を模式的に示した図であり、下バリア開口421の観察方向に上部開口411が距離D0離れて対向している状態を示している。 Next, the thickness distribution of the high refractive index film 1424 will be described with reference to FIG. FIG. 29 schematically shows an optical path of light passing through the pixel transmission part 411 (upper opening 411) of the display panel 41 and the barrier transmission part 421 (lower barrier opening 421) of the parallax barrier 42 shown in FIG. FIG. 9 shows a state in which the upper opening 411 is opposed to the lower barrier opening 421 in the observation direction with a distance D0.
 下バリア開口421内の点Pから発した光は、上部開口411に向けて放射状に伝播する。このとき、上部開口411内の位置x地点を通過する光Lxには、点Pから真上に進む光L0に比べ、光路差ΔDx=(Dx-D0)と周囲の屈折率naで決まる位相の遅れ(ΔDx-D0)・naが発生する。 The light emitted from the point P in the lower barrier opening 421 propagates radially toward the upper opening 411. At this time, the light Lx passing through the position x in the upper opening 411 has a phase determined by the optical path difference ΔDx = (Dx−D0) and the surrounding refractive index na, as compared with the light L0 traveling right above the point P. Delay (ΔDx−D0) · na occurs.
 ここで、下バリア開口421内の点Pから発し、上部開口411を通過した光が観察者の位置で集光され結像するためには、上部開口411を通過した直後の位相を揃えることが有効である。この光L0に対する光Lxの位相遅れを補償するために、開口内の中央部に屈折率が周囲の屈折率naよりも大きい屈折率nhの高屈折率膜1424を配設し、その厚さtが下記の数式(4)を満たすように形成することが有効である。 Here, in order for the light emitted from the point P in the lower barrier opening 421 and passing through the upper opening 411 to be focused and imaged at the position of the observer, the phases immediately after passing through the upper opening 411 may be aligned. It is valid. In order to compensate for the phase lag of the light Lx with respect to the light L0, a high refractive index film 1424 having a refractive index nh having a refractive index larger than the surrounding refractive index na is disposed at the center in the opening, and its thickness t It is effective to form so as to satisfy the following formula (4).
 ΔDx・na=(nh-na)・t ・・・(4)
 図30において、横軸に高屈折率膜1424の幅方向(左右方向)の中心軸からの位置を表す左右位置(mm)を取り、縦軸に膜厚t(mm)を取って、高屈折率膜1424の膜厚分布を示している。そして、上記数式(4)を満たす高屈折率膜1424の理想的な膜厚分布を破線で示している。
ΔDx · na = (nh−na) · t (4)
In FIG. 30, the horizontal axis represents the left / right position (mm) representing the position from the central axis in the width direction (left / right direction) of the high refractive index film 1424, and the vertical axis represents the film thickness t (mm). The film thickness distribution of the rate film 1424 is shown. And the ideal film thickness distribution of the high refractive index film | membrane 1424 which satisfy | fills the said Numerical formula (4) is shown with the broken line.
 ここで、上部開口411と下バリア開口421の距離D0=0.9mm、上部開口411の幅0.030mm、下バリア開口421の幅0.050mm、周囲の屈折率naは液晶層1422の屈折率na=1.5とし、高屈折率膜1424の屈折率はITOの屈折率nh=2.1とする。この場合、理想的な高屈折率膜1424の膜厚分布は、上部開口411の端で0μm、上部開口411の中央部の最大厚さは0.35μm程度であり、一般的な液晶層1422の厚さ3~5μmに比べて薄いので、液晶パネルの光遮蔽作用への影響は無視できる。 Here, the distance D0 between the upper opening 411 and the lower barrier opening 421 is 0.9 mm, the width of the upper opening 411 is 0.030 mm, the width of the lower barrier opening 421 is 0.050 mm, and the surrounding refractive index na is the refractive index of the liquid crystal layer 1422. It is assumed that na = 1.5, and the refractive index of the high refractive index film 1424 is the refractive index of ITO nh = 2.1. In this case, the film thickness distribution of the ideal high refractive index film 1424 is 0 μm at the end of the upper opening 411, and the maximum thickness at the center of the upper opening 411 is about 0.35 μm. Since the thickness is thinner than 3-5 μm, the influence on the light shielding effect of the liquid crystal panel is negligible.
 高屈折率膜1424の膜厚分布が理想的な場合について、波動光学計算による配光特性の計算結果を図31に示す。図31において、横軸に配光角度を左右角度(度)として示し、縦軸に相対輝度(a.u.:任意単位)を示しており、白抜きの円でプロットされる特性が膜厚分布が理想的な場合の計算結果であり、これを「位相補償理想的分布」と呼称する。この条件では、半透過領域はないとしている。 FIG. 31 shows the calculation result of the light distribution characteristic by the wave optical calculation when the film thickness distribution of the high refractive index film 1424 is ideal. In FIG. 31, the horizontal axis indicates the light distribution angle as the left and right angle (degrees), and the vertical axis indicates the relative luminance (au: arbitrary unit), and the characteristic plotted by the white circle is the film thickness. This is a calculation result when the distribution is ideal, and this is referred to as “phase compensation ideal distribution”. Under this condition, there is no semi-transmissive region.
 図31において、画素電極1423のITO膜厚が均一で、高屈折率膜1424を有さず、半透過領域もない場合の計算結果を「従来開口」として示しており、これと比べると位相補償理想的分布は、-2.5度方向に現れる最小漏れ光輝度、-1度方向の漏れ光輝度ともに減少している。これは、観察者が、より広い範囲でクロストークによる二重像のない立体画像を、より広い視認域で観察することができることを表している。 In FIG. 31, the calculation result when the ITO film thickness of the pixel electrode 1423 is uniform, does not have the high refractive index film 1424, and does not have a semi-transmissive region is shown as “conventional aperture”. In the ideal distribution, both the minimum leakage light luminance appearing in the −2.5 degree direction and the leakage light luminance in the −1 degree direction are decreased. This represents that the observer can observe a stereoscopic image without a double image due to crosstalk in a wider range in a wider viewing range.
 さらに、この位相保障理想的分布の状態で、開口部の端部に振幅透過率50%の半透過領域を4μm幅で形成した場合の計算結果を、「位相保障理想的分布+半透過領域4μm」として、塗りつぶしの菱形でプロットされる特性として示している。この特性では、-2.5度方向に現れる最小漏れ光輝度、-1度方向の漏れ光輝度ともに、さらに減少することが判る。 Further, in the state of ideal phase guarantee distribution, a calculation result when a semi-transmission region with an amplitude transmittance of 50% is formed at the end of the opening with a width of 4 μm is expressed as “phase guarantee ideal distribution + semi-transmission region 4 μm. As a characteristic plotted with a filled diamond. With this characteristic, it can be seen that both the minimum leakage light luminance appearing in the −2.5 degree direction and the leakage light luminance in the −1 degree direction are further reduced.
 以上より、上部開口411近傍に、周囲よりも屈折率が高い膜を膜厚(t)が数式(4)を満たす分布となるように形成することで、クロストークが大きな境界領域の幅を狭め、かつ最小リーク輝度が低い配光特性を実現することができ、さらに、上部開口411の幅方向(左右方向)の端部に半透過領域を設けることで、クロストークが大きな境界領域の幅をさらに狭め、かつ、最小リーク輝度がさらに低い配光特性を実現することができることが判る。 As described above, a film having a higher refractive index than the surroundings is formed in the vicinity of the upper opening 411 so that the film thickness (t) has a distribution satisfying Equation (4), thereby narrowing the width of the boundary region where the crosstalk is large. In addition, light distribution characteristics with low minimum leakage luminance can be realized, and furthermore, by providing a semi-transmissive region at the end of the upper opening 411 in the width direction (left-right direction), the width of the boundary region where crosstalk is large can be achieved. It can be seen that it is possible to realize a light distribution characteristic that is further narrowed and has a lower minimum leakage luminance.
 ただし、このような、漏れ光輝度分布の改善は高屈折率膜1425の膜厚分布が数式(4)を満たす理想的な分布の場合に限られるものではない。すなわち、複数の均一な厚さの高屈折率薄膜を積層して、位相保障理想的分布に近似した膜厚分布を有する多層高屈折率膜を形成しても良い。図32には、多層高屈折率膜の一例を示す。 However, such an improvement in the leakage light luminance distribution is not limited to the ideal distribution in which the film thickness distribution of the high refractive index film 1425 satisfies Expression (4). That is, a plurality of high-refractive-index thin films having a uniform thickness may be laminated to form a multilayer high-refractive-index film having a film thickness distribution that approximates the phase guarantee ideal distribution. FIG. 32 shows an example of a multilayer high refractive index film.
 図32は、図28に対応する図であり、図32の(a)部には平面図を、図32の(b)部には、平面図におけるB-B線での断面図を示す。なお、図28と同一の構成については同一の符号を付し、重複する説明は省略する。 32 is a view corresponding to FIG. 28. FIG. 32 (a) shows a plan view, and FIG. 32 (b) shows a cross-sectional view taken along line BB in the plan view. Note that the same components as those in FIG. 28 are denoted by the same reference numerals, and redundant description is omitted.
 図32では、画素電極1423の上に、断面形状が上部開口411の中央で最も厚い第1の厚さを有し、それ以外の部分では第1の厚さよりも薄い第2の厚さを有する、2段形状の高屈折率膜1425を備えている。高屈折率膜1425は、上部開口411の中央に、開口の長辺に沿って設けられた高屈折率膜14251と、高屈折率膜14251を覆うように設けられた高屈折率膜14252とを有して形成され、中央の高屈折率膜14251と14252とで第1の厚さとなり、高屈折率膜14252の厚さが第2の厚さに相当する。 In FIG. 32, on the pixel electrode 1423, the cross-sectional shape has the first thickness that is the thickest at the center of the upper opening 411, and the other portion has the second thickness that is thinner than the first thickness. A two-stage high refractive index film 1425 is provided. The high refractive index film 1425 includes a high refractive index film 14251 provided along the long side of the opening at the center of the upper opening 411 and a high refractive index film 14252 provided so as to cover the high refractive index film 14251. The high refractive index films 14251 and 14252 at the center have a first thickness, and the thickness of the high refractive index film 14252 corresponds to the second thickness.
 図30には、多層高屈折率膜の例として、上述した2段形状の高屈折率膜の他に、3段形状の高屈折率膜および1段形状の高屈折率膜を用いた場合の膜厚分布も併せて示している。すなわち、1段形状の高屈折率膜は0.2μmの均一な厚さを有し、2段形状の高屈折率膜は、中央部が0.3μmの厚さを有し、その両側が0.2μmの厚さを有し、3段形状の高屈折率膜は、中央部が0.3μmの厚さを有し、その両側が0.2μmの厚さを有し、さらに外側が0.1μmの厚さを有している。 In FIG. 30, as an example of the multilayer high refractive index film, in addition to the above-described two-stage high refractive index film, a three-stage high refractive index film and a one-stage high refractive index film are used. The film thickness distribution is also shown. That is, the single-stage high-refractive index film has a uniform thickness of 0.2 μm, and the two-stage high-refractive index film has a thickness of 0.3 μm at the center and 0 on both sides. The three-stage high refractive index film having a thickness of 2 μm has a thickness of 0.3 μm at the center, a thickness of 0.2 μm on both sides, and a thickness of 0.2 μm on the outer side. It has a thickness of 1 μm.
 そして、図31には、1段形状の高屈折率膜を用いた場合の配光特性を、位相補償1段0.2μmとして塗りつぶしの円でプロットされる特性として示し、2段形状の高屈折率膜を用いた場合の配光特性を、位相補償2段0.2μm&0.3μmとして白抜き三角形でプロットされる特性として示し、3段形状の高屈折率膜を用いた場合の配光特性を、位相補償3段0.1μm&0.2μm&0.3μmとして塗りつぶし三角形でプロットされる特性として示している。いずれの条件でも、半透過領域はないとしている。 FIG. 31 shows the light distribution characteristic when a one-stage high refractive index film is used as a characteristic plotted as a solid circle with a phase compensation of one stage 0.2 μm. The light distribution characteristics when using a refractive index film are shown as characteristics plotted with white triangles as two stages of phase compensation 0.2 μm & 0.3 μm. The light distribution characteristics when using a three-stage high refractive index film are shown. , Phase compensation is shown as a characteristic plotted with solid triangles as three stages 0.1 μm & 0.2 μm & 0.3 μm. In any condition, it is assumed that there is no semi-transmissive region.
 これらの特性より、何れの場合も、理想的な膜厚分布の場合に比べて漏れ光輝度の低減効果は劣るが、「従来開口」の場合に比べて-1度方向の漏れ光輝度を低減することができることが判る。 From these characteristics, in all cases, the effect of reducing the leakage light luminance is inferior compared to the case of an ideal film thickness distribution, but the leakage light luminance in the direction of −1 degree is reduced compared to the case of “conventional opening”. You can see that you can.
 すなわち、上部開口411近傍に周囲よりも屈折率が高い膜を、開口中央部で厚く、端部で薄くなる膜厚分布で形成することにより、漏れ光の減少する勾配を大きくすることができる。すなわち、観察域境界に近いクロストークが大きい境界領域の幅を狭め、3次元視認域を広げることができる。 That is, by forming a film having a higher refractive index near the upper opening 411 with a film thickness distribution that is thicker at the center of the opening and thinner at the end, the gradient at which leakage light decreases can be increased. That is, it is possible to narrow the width of the boundary area where the crosstalk close to the observation area boundary is large and to widen the three-dimensional viewing area.
 さらに、上部開口411近傍に、周囲よりも屈折率が高く、中央部が両端よりも厚い膜を形成した高屈折率膜と、上部開口411の幅方向の端部に半透過領域を設けることで、クロストークが大きい境界領域の幅を狭め、かつ最小リーク輝度の低い配光特性を実現することができる。 Furthermore, a high refractive index film in which a refractive index is higher in the vicinity of the upper opening 411 than in the surroundings and a thicker central part than at both ends, and a semi-transmissive region is provided at the end of the upper opening 411 in the width direction. In addition, it is possible to reduce the width of the boundary region where crosstalk is large and realize light distribution characteristics with low minimum leakage luminance.
  <変形例>
 図33および図34に、上部開口411近傍に、周囲よりも屈折率が高く、開口中央部で厚く、端部では薄い膜厚分布を有する高屈折率膜の他の構成を示す。すなわち、図28に示した高屈折率膜1424および図32に示した高屈折率膜1425は、液晶層1422内に設けられていたが、図33および図34にそれぞれ示す高屈折率膜1426および1427は、下側透明基板1400上に配設された透明絶縁膜1401の中に形成されている。ここで、一般的な液晶層1422の厚さは3~5μm、基板1400上の薄膜層のの厚さは1~3μm程度であり、1mm程度の下バリア開口421と上部開口411の間の距離DOに比べて薄いので、高屈折率層1427は液晶層1422の近傍にあるといえる。
<Modification>
FIG. 33 and FIG. 34 show another configuration of a high refractive index film having a refractive index higher in the vicinity of the upper opening 411, thicker at the center of the opening, and thinner at the end, in the vicinity of the upper opening 411. That is, the high refractive index film 1424 shown in FIG. 28 and the high refractive index film 1425 shown in FIG. 32 were provided in the liquid crystal layer 1422, but the high refractive index film 1426 and the high refractive index film 1426 shown in FIG. 33 and FIG. 1427 is formed in the transparent insulating film 1401 provided on the lower transparent substrate 1400. Here, the thickness of the general liquid crystal layer 1422 is 3 to 5 μm, and the thickness of the thin film layer on the substrate 1400 is about 1 to 3 μm. The distance between the lower barrier opening 421 and the upper opening 411 is about 1 mm. Since it is thinner than DO, the high refractive index layer 1427 can be said to be in the vicinity of the liquid crystal layer 1422.
 より具体的には、図33に示す高屈折率膜1426は、シリコン窒化膜(SiN、nh=1.8~2.2)で構成される高屈折率膜14262の上に、それよりも幅の狭いシリコン窒化膜で構成される高屈折率膜14261を積層した2段形状を有しており、高屈折率膜1426は画素電極1423の下方に配設されている。ここで、透明絶縁膜1401をシリコン酸化膜(SiO、na=1.5)とすると、高屈折率膜1426の方が屈折率が高くなるので、条件を満たすこととなる。 More specifically, the high refractive index film 1426 shown in FIG. 33 has a width wider than that of the high refractive index film 14262 formed of a silicon nitride film (SiN, nh = 1.8 to 2.2). The high refractive index film 14261 made of a narrow silicon nitride film is laminated, and the high refractive index film 1426 is disposed below the pixel electrode 1423. Here, if the transparent insulating film 1401 is a silicon oxide film (SiO 2 , na = 1.5), the refractive index of the high refractive index film 1426 is higher, so that the condition is satisfied.
 また、図34に示す高屈折率膜1427は、シリコン窒化膜で構成される高屈折率膜14272の上方に、それよりも幅の狭いシリコン窒化膜で構成される高屈折率膜14271が配設され、両者の間には透明絶縁膜1401が介在するが、両者の間は狭いので、通過する光の位相遅れは高屈折率膜1427内での遅れと高屈折率膜14272内での遅れの和になるため、実質的には2段形状の場合と同じである。 Also, the high refractive index film 1427 shown in FIG. 34 is disposed above the high refractive index film 14272 made of a silicon nitride film, and a high refractive index film 14271 made of a silicon nitride film having a narrower width than that. The transparent insulating film 1401 is interposed between the two, but since the distance between the two is narrow, the phase delay of the light passing therethrough is the delay in the high refractive index film 1427 and the delay in the high refractive index film 14272. Since it becomes a sum, it is substantially the same as the case of the two-stage shape.
 ここで、高屈折率膜1426および1427の位置が、液晶層1422から数μm以内の位置にあれば、上部開口411の幅に比べて1/10程度であるので、液晶層1422内に設けた場合と同じ効果を奏する。 Here, if the position of the high refractive index films 1426 and 1427 is within a few μm from the liquid crystal layer 1422, it is about 1/10 of the width of the upper opening 411. Has the same effect as the case.
 なお、一般的なTFT(薄膜トランジスタ)駆動の液晶ディスプレイでは、TFTやカラーフィルターを形成するために、透明導電膜(ITO)、シリコン酸化膜(SiO)やシリコン窒化膜(SiN)、酸化物半導体など、複数の透明で屈折率の異なる薄膜を堆積し、これらを写真製版工程でパターニングする工程を有している。 In general TFT (thin film transistor) driven liquid crystal displays, a transparent conductive film (ITO), a silicon oxide film (SiO 2 ), a silicon nitride film (SiN), and an oxide semiconductor are used to form TFTs and color filters. A plurality of transparent thin films having different refractive indexes are deposited and patterned by a photoengraving process.
 したがって、高屈折率膜1426および1427は、これら複数の材料のうち、屈折率が比較的低い(1.5~1.6)材料(液晶、シリコン酸化膜、有機膜)の中に、屈折率が比較的高い(1.9以上)材料(シリコン窒化膜、ITO、酸化物半導体)を従来のマスクのパターン形状を変更して残すことにより形成が可能であるので、プロセスコストの増加なしに高屈折率膜を形成することができる。 Therefore, the high refractive index films 1426 and 1427 are made of a material (liquid crystal, silicon oxide film, organic film) having a relatively low refractive index (1.5 to 1.6) among these plural materials. Can be formed by leaving a relatively high (1.9 or more) material (silicon nitride film, ITO, oxide semiconductor) by changing the pattern shape of the conventional mask, so that there is no increase in process cost. A refractive index film can be formed.
 なお、実施の形態4およびその変形例は、以下のように言い換えることができる。すなわち、液晶層1422とその周囲の電極、および基板上絶縁膜を含めて、光透過部411の平均屈折率が、幅方向(左右方向)の中央部で高く、端部側で低い(中央部よりも端部側で低い)構成とすることにより、配光特性において漏れ光の減少する勾配を大きくすることができ、観察域境界に近いクロストークが大きい境界領域の幅を狭め、3次元視認域を広げることができる。 In addition, Embodiment 4 and its modification can be paraphrased as follows. That is, the average refractive index of the light transmission part 411 including the liquid crystal layer 1422, the surrounding electrodes, and the insulating film on the substrate is high at the center part in the width direction (left-right direction) and low at the end part side (center part) (Below the end side), the gradient in which light leakage decreases in the light distribution characteristics can be increased, and the width of the boundary region where crosstalk close to the boundary of the observation region is large is narrowed and three-dimensional viewing is possible. The area can be expanded.
 <実施の形態5>
 本発明に係る実施の形態5では、実施の形態3で説明した、表示パネルが液晶表示パネルであり、視差バリアが表示パネルの背面側にある装置において、液晶表示パネルとしてFFS(Frings Field Switching)モードの液晶表示パネルを用いた場合の具体的な構成を説明する。
<Embodiment 5>
In Embodiment 5 according to the present invention, in the apparatus described in Embodiment 3 in which the display panel is a liquid crystal display panel and the parallax barrier is on the back side of the display panel, FFS (Frings Field Switching) is used as the liquid crystal display panel. A specific configuration when a mode liquid crystal display panel is used will be described.
 図35は、図25に示した表示パネル41の透過部(上部開口とも呼称)411直下の具体的構成の一例を示す図である。図35に示すように、透過部411の平面形状は縦長の矩形状であり、その外側には遮光膜2412が形成されている。 FIG. 35 is a diagram showing an example of a specific configuration immediately below the transmission portion (also referred to as an upper opening) 411 of the display panel 41 shown in FIG. As shown in FIG. 35, the planar shape of the transmission part 411 is a vertically long rectangular shape, and a light shielding film 2412 is formed on the outside thereof.
 液晶層2422は、平板上の共通電極2421と、共通電極2421の上方に設けられ、上部開口411の幅方向に延在する櫛歯状の画素電極2423との間で発生する電界により駆動される。画素電極2423は、上部開口411ごとに独立して設けられ、少なくとも上部開口411の下方に対応する領域に設けられている。 The liquid crystal layer 2422 is driven by an electric field generated between the common electrode 2421 on the flat plate and the comb-like pixel electrode 2423 provided above the common electrode 2421 and extending in the width direction of the upper opening 411. . The pixel electrode 2423 is provided independently for each upper opening 411, and is provided at least in a region corresponding to the lower part of the upper opening 411.
 このような構成を採ることで、画素電極2423に適宜電圧を印加し共通電極2421との間で電界を形成することができ、当該電界により液晶層2422の配向を制御し、上部開口411ごとに光の透過率を変えることができる。 By adopting such a structure, a voltage can be appropriately applied to the pixel electrode 2423 to form an electric field with the common electrode 2421, the orientation of the liquid crystal layer 2422 is controlled by the electric field, and each upper opening 411 is controlled. The light transmittance can be changed.
 ここで、液晶層2422内には上部開口411の幅方向の2つの端部に対応する領域にシリコン酸化膜やシリコン窒化膜で構成される液晶層内絶縁膜2424が配設され、当該2つの端部に対応する領域では、液晶層2422の厚さが中央部よりも薄くなっている。すなわち、図35に示すように、画素電極2423の上方に1対の液晶層内絶縁膜2424が配設され、液晶層内絶縁膜2424は上部開口411の中央側で厚みが薄く、端部側で厚い形状となっているので、上部開口411の幅方向端部において、液晶層2422の厚みが実質的に薄くなっている。 Here, in the liquid crystal layer 2422, a liquid crystal layer insulating film 2424 made of a silicon oxide film or a silicon nitride film is disposed in a region corresponding to two end portions in the width direction of the upper opening 411. In the region corresponding to the end portion, the thickness of the liquid crystal layer 2422 is thinner than the central portion. That is, as shown in FIG. 35, a pair of liquid crystal layer insulating films 2424 is disposed above the pixel electrode 2423, and the liquid crystal layer insulating film 2424 is thin at the center side of the upper opening 411, and is on the end side. Therefore, the thickness of the liquid crystal layer 2422 is substantially reduced at the end of the upper opening 411 in the width direction.
 すなわち、液晶層内絶縁膜2424の最大厚さは、液晶層2422の厚さの半分程度であるので、液晶層2422の厚さは上部開口411の幅方向端部において中央部の半分程度に薄くなっていると言える。 That is, since the maximum thickness of the liquid crystal layer insulating film 2424 is about half of the thickness of the liquid crystal layer 2422, the thickness of the liquid crystal layer 2422 is as thin as about half of the central portion at the end in the width direction of the upper opening 411. It can be said that
 次に、上記構成を有する場合の液晶層2422の動作について、図36に示す断面図を用いて説明する。FFSモードの液晶表示パネルは、電圧を印加しない状態で透過率が0となるノーマリーブラックのパネルである。従って、図36の(a)部に示すように、画素電極2423に電圧を印加しない状態では偏光板2400、下側透明基板2401を通過してきた光は、上側透明基板2450を介して全て偏光板2300で吸収されてしまうように液晶層2422のラビング方向、偏光板2400および2300の偏光方向が決められている。 Next, the operation of the liquid crystal layer 2422 in the case of having the above configuration will be described with reference to a cross-sectional view shown in FIG. The FFS mode liquid crystal display panel is a normally black panel in which the transmittance is 0 when no voltage is applied. Therefore, as shown in part (a) of FIG. 36, all light passing through the polarizing plate 2400 and the lower transparent substrate 2401 is transmitted through the upper transparent substrate 2450 when no voltage is applied to the pixel electrode 2423. The rubbing direction of the liquid crystal layer 2422 and the polarization directions of the polarizing plates 2400 and 2300 are determined so as to be absorbed by 2300.
 ここで、上部開口411の透過率を最大にする際には、図36の(b)部に示すように、画素電極2423に電圧を印加し共通電極2421との間で電界を形成して、液晶層2422の液晶分子の配向角度を回転させる。そして上部開口411の中央を通過する入射光の偏光の向きがちょうど90度回転する電圧を印加することで、入射した偏光光は偏光板2300で吸収されることなく大部分が透過することとなり、上部開口411の透過率は最大になる。 Here, when maximizing the transmittance of the upper opening 411, as shown in FIG. 36B, a voltage is applied to the pixel electrode 2423 to form an electric field with the common electrode 2421. The orientation angle of liquid crystal molecules in the liquid crystal layer 2422 is rotated. Then, by applying a voltage in which the polarization direction of the incident light passing through the center of the upper opening 411 is rotated by 90 degrees, most of the incident polarized light is transmitted without being absorbed by the polarizing plate 2300. The transmittance of the upper opening 411 is maximized.
 このような液晶分子の配向角度の制御を可能とするのが液晶層内絶縁膜2424である。すなわち、液晶層内絶縁膜2424の存在により、液晶層2422の厚さは上部開口411の幅方向端部において中央部の半分程度になっているため、通過する入射光の偏光の向きの回転が90度よりも小さくなり、偏光板2300での透過率は中央部に比べ低下する。これにより、上部開口411の幅方向両端部に、透過率が中央部に比べて低い領域、すなわち半透過領域を実現することができる。これにより、図31に示すような低い漏れ光輝度分布が実現できる。 It is the liquid crystal layer insulating film 2424 that makes it possible to control the orientation angle of the liquid crystal molecules. In other words, due to the presence of the insulating film 2424 in the liquid crystal layer, the thickness of the liquid crystal layer 2422 is about half of the central portion at the end in the width direction of the upper opening 411. Therefore, the rotation of the polarization direction of incident light passing therethrough is rotated. It becomes smaller than 90 degrees, and the transmittance at the polarizing plate 2300 is lower than that at the center. Thereby, the area | region where the transmittance | permeability is low compared with a center part at the both ends of the width direction of the upper opening 411, ie, a semi-transmissive area | region, is realizable. Thereby, a low leakage light luminance distribution as shown in FIG. 31 can be realized.
 また、液晶層内絶縁膜2424を画素電極2423寄りの位置に配置することで、液晶層2422にかかる電界が緩和される効果もある。このため液晶分子の配向角度の変化も小さくなるため、入射光の偏光の向きの回転はより小さくなり偏光板2300による吸収が増加する。 In addition, by disposing the liquid crystal layer insulating film 2424 near the pixel electrode 2423, there is an effect that the electric field applied to the liquid crystal layer 2422 is reduced. For this reason, since the change in the orientation angle of the liquid crystal molecules is also reduced, the rotation of the polarization direction of the incident light becomes smaller and the absorption by the polarizing plate 2300 increases.
 なお、液晶層内絶縁膜2424は、遮光膜2412寄りの位置に設けても良いが、画素電極2423寄りの位置に配置することで、より薄い液晶層内絶縁膜2424の厚さで効果的に透過率を下げることができ、液晶層2422内の段差が小さくなりラビング工程が容易になるという効果もある。 The liquid crystal layer insulating film 2424 may be provided at a position near the light shielding film 2412. However, the liquid crystal layer insulating film 2424 is arranged at a position near the pixel electrode 2423 to effectively reduce the thickness of the thinner liquid crystal layer insulating film 2424. The transmittance can be lowered, and the step in the liquid crystal layer 2422 can be reduced, so that the rubbing process is facilitated.
 また、液晶層2422の厚さを上部開口411の幅方向端部において中央部の半分程度にすることができれば、この方法に限らず、上部開口411の幅方向両端部に、透過率が中央部に比べて低い領域、すなわち半透過領域を実現することができるのは同様である。 Further, if the thickness of the liquid crystal layer 2422 can be reduced to about half of the central portion at the widthwise end portion of the upper opening 411, the transmittance is not limited to this method, and the transmittance is at the central portion at both widthwise end portions of the upper opening 411. Similarly, it is possible to realize a low region, that is, a semi-transmissive region.
 なお、図35では、画素電極2423は、上部開口411の幅方向に延在する櫛歯状の形状としているが、このような配置ではなく、図37に示すように上部開口411の長手方向に延在する配置とした場合には、以下のような問題生じる。 In FIG. 35, the pixel electrode 2423 has a comb-like shape extending in the width direction of the upper opening 411. However, the pixel electrode 2423 is not arranged in this manner, but in the longitudinal direction of the upper opening 411 as shown in FIG. In the case of an extended arrangement, the following problems occur.
 すなわち、図37においては櫛歯状の画素電極2423aが上部開口411の長手方向に対して傾斜して配置されている。画素電極2423aは通常厚さ0.1μm程度のITO膜で形成されているので、その厚み分が液晶層2422内に0.1μm程度突出することになる。ITO薄膜の屈折率は1.9~2.1であり、液晶層2422の屈折率(1.5~1.6)よりも大きいため、上部開口411内の幅方向に凹凸状の位相遅れ分布(Δnd位相遅れ分布)が発生することになる。 That is, in FIG. 37, the comb-like pixel electrode 2423a is arranged to be inclined with respect to the longitudinal direction of the upper opening 411. Since the pixel electrode 2423a is usually formed of an ITO film having a thickness of about 0.1 μm, the thickness of the pixel electrode 2423a protrudes into the liquid crystal layer 2422 by about 0.1 μm. The refractive index of the ITO thin film is 1.9 to 2.1, which is larger than the refractive index (1.5 to 1.6) of the liquid crystal layer 2422. Therefore, an uneven phase delay distribution in the width direction in the upper opening 411 (Δnd phase lag distribution) occurs.
 図38には、横軸に上部開口411内の幅方向位置(mm)を取り、縦軸に膜厚(mm)を取っており、画素電極2423aの配置の周期で画素電極2423aの厚み(0.0001mm)分の位相遅れが生じることが示されている。 In FIG. 38, the horizontal axis indicates the width direction position (mm) in the upper opening 411, and the vertical axis indicates the film thickness (mm). The pixel electrode 2423a has a thickness (0 It is shown that a phase delay of .0001 mm) occurs.
 これは、図30に示した高屈折率膜の理想的な膜厚分布に比べて無視できない凹凸であり、幅方向へ回折が生じ幅方向でのリーク光が増加してしまう。 This is unevenness that is not negligible compared to the ideal film thickness distribution of the high refractive index film shown in FIG. 30. Diffraction occurs in the width direction and leakage light in the width direction increases.
 これに対し、図35に示す画素電極2423のように上部開口411の幅方向に延在する形状の場合は、回折光は上部開口411の長手方向には広げるが幅方向には広げらないため、幅方向でのリーク光が増加することはない。 On the other hand, in the case of a shape that extends in the width direction of the upper opening 411 like the pixel electrode 2423 shown in FIG. 35, the diffracted light spreads in the longitudinal direction of the upper opening 411 but does not spread in the width direction. The leak light in the width direction does not increase.
 ここで、IPSモードやFFSモードでは櫛歯状の電極細線を、開口の幅方向、あるいは長手方向に対して±5~10度程度傾けて配置する。これは、分子配向の回転の方向を揃えるためである。従って、画素電極2423を幅方向に延在する櫛歯状の形状とする場合にも、幅方向に対して±5~10度程度の傾きを持たせて配置することが考えられる。 図39の(a)部には、櫛歯状の画素電極2423bが上部開口411の幅方向に対して傾斜して配置された構成を示している。このような構成を採る場合、画素電極2423bによる回折光は、上部開口411の長手方向に対して±5~10度傾いた方向に進むので、開口の幅方向からのリーク光が増えることは抑制される。 Here, in the IPS mode and the FFS mode, the comb-like electrode fine wires are arranged so as to be inclined by about ± 5 to 10 degrees with respect to the width direction or the longitudinal direction of the opening. This is to align the direction of rotation of the molecular orientation. Therefore, even when the pixel electrode 2423 has a comb-like shape extending in the width direction, it can be considered that the pixel electrode 2423 is disposed with an inclination of about ± 5 to 10 degrees with respect to the width direction. 39 (a) shows a configuration in which the comb-like pixel electrode 2423b is inclined with respect to the width direction of the upper opening 411. FIG. In the case of adopting such a configuration, the diffracted light from the pixel electrode 2423b travels in a direction tilted by ± 5 to 10 degrees with respect to the longitudinal direction of the upper opening 411, so that an increase in leakage light from the width direction of the opening is suppressed. Is done.
 なお、図39の(a)部に示す構成を採る場合、遮光膜2412aの平面形状は図39の(b)部に示すような形状となる。すなわち、上部開口411の幅方向両端部には、凹凸構造が形成され、ITO膜で形成された画素電極2423bに対応する部分では光を遮断する凸部となり、画素電極2423bの間では光を透過する凹部となっている。これにより、上部開口411の幅方向端部には、平均透過率が上部開口411の中央部よりも低い領域が形成される。 Note that when the configuration shown in FIG. 39A is employed, the planar shape of the light shielding film 2412a is as shown in FIG. 39B. In other words, a concavo-convex structure is formed at both ends in the width direction of the upper opening 411, and a convex portion that blocks light is formed at a portion corresponding to the pixel electrode 2423b formed of an ITO film, and light is transmitted between the pixel electrodes 2423b. It is a concave part. As a result, a region having an average transmittance lower than that of the central portion of the upper opening 411 is formed at the end in the width direction of the upper opening 411.
 また、上部開口411の幅方向端部では、ITO膜で形成された画素電極2423bに対応しない部分のみが透過部となっており、そこでは画素電極2423bの高い屈折率の影響を受けないため、平均透過率は上部開口411の中央部よりも低くなる。このため、図30に示すような高屈折率膜の膜厚分布の実現が容易となる。 Further, at the end portion in the width direction of the upper opening 411, only a portion not corresponding to the pixel electrode 2423b formed of the ITO film is a transmission portion, and is not affected by the high refractive index of the pixel electrode 2423b. The average transmittance is lower than the central portion of the upper opening 411. Therefore, it is easy to realize the film thickness distribution of the high refractive index film as shown in FIG.
 また、図35では図示は省略しているが、図28に示した高屈折率膜1424、図32に示した高屈折率膜1425、図33に示した高屈折率膜1426、図34に示した高屈折率膜1427を設け、光透過部の平均屈折率が、光透過部の左右方向の中央部よりも端部側で低い構成としても良い。 35, the high refractive index film 1424 shown in FIG. 28, the high refractive index film 1425 shown in FIG. 32, the high refractive index film 1426 shown in FIG. 33, and the high refractive index film 1424 shown in FIG. Alternatively, the high refractive index film 1427 may be provided so that the average refractive index of the light transmission portion is lower on the end side than the central portion in the left-right direction of the light transmission portion.
 以上の説明では、方向別に表示する画像の数は2つの例を用いて説明を行ったが、これに限るものではなく、3画像、4画像の多画像の場合にも同様に成り立つことは言うまでもない。 In the above description, the number of images to be displayed for each direction has been described using two examples. However, the present invention is not limited to this, and it goes without saying that the same holds true in the case of three images or four images. Yes.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
 10 表示パネル、12 視差バリア、121バリア透過部、122バリア遮光部、123 バリア半透過部、220 視差バリアシャッタパネル、321 透過部、322 遮光部、323 半透過部。 10 display panel, 12 parallax barrier, 121 barrier transmissive part, 122 barrier light shielding part, 123 barrier semi-transmissive part, 220 parallax barrier shutter panel, 321 transmissive part, 322 light shielding part, 323 semi-transmissive part.

Claims (12)

  1. 光透過部または発光部を有する複数の画素がマトリクス状に配置された表示パネル(10)と、
     前記表示パネルの画像視認側あるいは後方に配置され、光透過部(121、421)が複数マトリクス状に配置された視差バリア(12.42)と、を備えた表示装置であって、
     前記表示パネルの前記複数の画素は、
     異なる方向から観察するための画像をそれぞれ表示する少なくとも2つの画素で1組の画素セットを構成し、
     前記視差バリアの前記光透過部の1つと前記1組の画素セットとが上下において対応する位置関係に配置され、
     前記視差バリアおよび前記表示パネルのうち、画像視認側に配置される方は、前記光透過部の左右の辺に沿って設けられ、光を一部透過する半透過部(123,413)を有することを特徴とする、表示装置。
    A display panel (10) in which a plurality of pixels each having a light transmission part or a light emitting part are arranged in a matrix;
    A display device including a parallax barrier (12.42) arranged on the image viewing side or the rear of the display panel and having a plurality of light transmission parts (121, 421) arranged in a matrix,
    The plurality of pixels of the display panel are:
    A set of pixels is composed of at least two pixels each displaying an image for observation from different directions,
    One of the light transmission parts of the parallax barrier and the one set of pixels are arranged in a corresponding positional relationship in the up and down direction,
    Of the parallax barrier and the display panel, the one arranged on the image viewing side has semi-transmissive portions (123, 413) provided along the left and right sides of the light transmissive portion and partially transmitting light. A display device characterized by that.
  2. 前記視差バリアは、前記表示パネルの画像視認側に配置され、
     前記半透過部は、前記視差バリアの前記光透過部の左右の辺に沿って設けられる、請求項1記載の表示装置。
    The parallax barrier is disposed on the image viewing side of the display panel,
    The display device according to claim 1, wherein the semi-transmissive portion is provided along left and right sides of the light transmissive portion of the parallax barrier.
  3. 前記視差バリアは、前記表示パネルの後方に配置され、
     前記半透過部は、前記表示パネルの前記光透過部の左右の辺に沿って設けられ、光を一部透過し、残りを吸収する、請求項1記載の表示装置。
    The parallax barrier is disposed behind the display panel,
    The display device according to claim 1, wherein the semi-transmissive portion is provided along the left and right sides of the light transmissive portion of the display panel, partially transmits light, and absorbs the rest.
  4. 前記視差バリアおよび前記表示パネルのうち、画像視認側に配置される方に設けられる前記半透過部は、
     前記光透過部を通過する光に比べて所定の位相差が付加されるように構成される、請求項1~請求項3の何れか1項に記載の表示装置。
    Of the parallax barrier and the display panel, the semi-transmissive portion provided on the side arranged on the image viewing side is
    The display device according to any one of claims 1 to 3, wherein the display device is configured so that a predetermined phase difference is added as compared with light passing through the light transmission section.
  5. 光透過部を有する複数の画素がマトリクス状に配置された液晶表示パネルと、
     前記液晶表示パネルの後方に配置され、光透過部が複数マトリクス状に配置された視差バリアと、
     前記視差バリアの後方に配置されたバックライトと、を備えた表示装置であって、
     前記液晶表示パネルの前記複数の画素は、異なる方向に表示するための画像をそれぞれ表示する少なくとも2つの画素で1組の画素セットを構成し、
     前記視差バリアの前記光透過部の1つと前記1組の画素セットとが上下において対応する位置関係に配置され、
     前記液晶表示パネルの前記光透過部の平均屈折率が、前記光透過部の左右方向の中央部よりも端部側で低いことを特徴とする、表示装置。
    A liquid crystal display panel in which a plurality of pixels having a light transmission portion are arranged in a matrix;
    A parallax barrier disposed behind the liquid crystal display panel and having a plurality of light transmission portions arranged in a matrix;
    A backlight disposed behind the parallax barrier, and a display device comprising:
    The plurality of pixels of the liquid crystal display panel constitute a pixel set of at least two pixels that respectively display images for display in different directions,
    One of the light transmission parts of the parallax barrier and the one set of pixels are arranged in a corresponding positional relationship in the up and down direction,
    The display device, wherein an average refractive index of the light transmission part of the liquid crystal display panel is lower on an end side than a central part in the left-right direction of the light transmission part.
  6. 前記液晶表示パネルは、
     前記光透過部に対応する領域の左右方向の中央部に、屈折率が液晶層よりも高い少なくとも一層の薄膜(1424)を有する、請求項5記載の表示装置。
    The liquid crystal display panel is
    The display device according to claim 5, further comprising at least one thin film (1424) having a refractive index higher than that of the liquid crystal layer in a central portion in a left-right direction of a region corresponding to the light transmission portion.
  7. 前記少なくとも一層の薄膜は、
     複数の均一な厚さの膜を積層した多層膜であって、
     前記多層膜は、
     中央部での積層数が、端部での積層数よりも多く形成される、請求項6記載の表示装置。
    The at least one thin film comprises:
    A multilayer film in which a plurality of uniform thickness films are laminated,
    The multilayer film is
    The display device according to claim 6, wherein the number of stacked layers at the center is larger than the number of stacked layers at the end.
  8. 前記液晶表示パネルの前記複数の画素のそれぞれは、櫛歯状の電極(2423)を有し、
     前記櫛歯状の電極は、前記光透過部の左右方向に延在する、請求項2、3および5の何れか1項に記載の表示装置。
    Each of the plurality of pixels of the liquid crystal display panel has a comb-like electrode (2423),
    The display device according to claim 2, wherein the comb-like electrode extends in a left-right direction of the light transmission portion.
  9. 前記液晶パネルは、ノーマリーブラックモードのパネルであって、
     前記液晶表示パネルの、前記光透過部に対応する液晶層(2422)内の左右方向の端部に絶縁膜(2424)を有する、請求項5記載の表示装置。
    The liquid crystal panel is a normally black mode panel,
    The display device according to claim 5, wherein the liquid crystal display panel has an insulating film (2424) at an end portion in a left-right direction in a liquid crystal layer (2422) corresponding to the light transmission portion.
  10. 複数の画素がマトリクス状に配置された表示パネル(210)と、
     前記表示パネルの画像視認側に配置され、液晶層の駆動により視差バリアを動的に形成する視差バリアシャッタパネル(220)とを備えた表示装置の駆動方法であって、
     前記表示パネルの前記複数の画素は、
     左眼用と右眼用の視差画像をそれぞれ表示する少なくとも2つ以上の画素で1組の画素セットを構成し、
     前記視差バリアシャッタパネルは、
     前記液晶層が電気的に絶縁された状態に複数に分割されて、それぞれが個別に駆動する複数のサブ開口部(301)を有し、
     前記複数のサブ開口部は、前記液晶層の駆動状態によって、光透過部、遮光部および光を一部透過する半透過部をなし、
     前記複数のサブ開口部と前記1組の画素セットとが上下において対応する位置関係に配置され、
     前記視差バリアシャッタパネルは、
     前記複数のサブ開口部のうち、前記光透過部となるサブ開口部の配列の左右に、前記半透過部となるサブ開口部が位置するように前記液晶層が駆動されることを特徴とする、表示装置の駆動方法。
    A display panel (210) in which a plurality of pixels are arranged in a matrix;
    A display device driving method comprising a parallax barrier shutter panel (220) disposed on the image viewing side of the display panel and dynamically forming a parallax barrier by driving a liquid crystal layer,
    The plurality of pixels of the display panel are:
    A set of pixels is formed by at least two or more pixels that display parallax images for the left eye and the right eye,
    The parallax barrier shutter panel is:
    The liquid crystal layer is divided into a plurality of electrically insulated states, each having a plurality of sub-openings (301) that are individually driven,
    The plurality of sub-openings, depending on the driving state of the liquid crystal layer, constitutes a light transmissive portion, a light shielding portion, and a semi-transmissive portion that partially transmits light,
    The plurality of sub-openings and the one set of pixels are arranged in a corresponding positional relationship in the vertical direction,
    The parallax barrier shutter panel is:
    The liquid crystal layer is driven such that, among the plurality of sub-openings, the sub-openings serving as the semi-transmissive portions are positioned on the left and right of the arrangement of the sub-openings serving as the light transmissive portions. And driving method of display device.
  11. 前記半透過部となるサブ開口部は、
     前記光透過部となるサブ開口部を通過する光に比べて所定の位相差が付加されるように、屈折率が調整される、請求項10記載の表示装置の駆動方法。
    The sub opening serving as the semi-transmissive portion is
    The display device driving method according to claim 10, wherein the refractive index is adjusted so that a predetermined phase difference is added as compared with light passing through the sub-opening serving as the light transmitting portion.
  12. 請求項1記載の表示装置の製造方法であって、
     前記視差バリアおよび前記表示パネルのうち、画像視認側に配置される方に設けられる前記半透過部の形成において、
     基板となる透明層(15)の主面上方に、半透過膜と遮光膜を重ねて形成する工程を備えた表示装置の製造方法。
    A manufacturing method of a display device according to claim 1,
    Among the parallax barrier and the display panel, in the formation of the semi-transmissive portion provided on the side arranged on the image viewing side,
    A method for manufacturing a display device, comprising: a step of forming a semi-transmissive film and a light-shielding film on top of a main surface of a transparent layer (15) serving as a substrate.
PCT/JP2012/074685 2011-11-07 2012-09-26 Display device, and drive method and manufacturing method for same WO2013069387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-243257 2011-11-07
JP2011243257 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013069387A1 true WO2013069387A1 (en) 2013-05-16

Family

ID=48289772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074685 WO2013069387A1 (en) 2011-11-07 2012-09-26 Display device, and drive method and manufacturing method for same

Country Status (2)

Country Link
JP (2) JPWO2013069387A1 (en)
WO (1) WO2013069387A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125428A (en) * 2013-12-27 2015-07-06 株式会社ジャパンディスプレイ Display device and method of manufacturing the same
US9402071B2 (en) 2012-09-27 2016-07-26 Mitsubishi Electric Corporation Display device
JP2017138498A (en) * 2016-02-04 2017-08-10 株式会社ジャパンディスプレイ Display device
TWI761048B (en) * 2021-01-25 2022-04-11 友達光電股份有限公司 Display device
CN115776560A (en) * 2022-12-05 2023-03-10 杭州思影奇数字科技有限公司 Image splicing and repairing processing system and method based on naked eye 3D technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835060B1 (en) * 2016-06-30 2018-03-07 엘지디스플레이 주식회사 Autostereoscopic 3-Dimensional Display
KR102597593B1 (en) * 2016-11-30 2023-11-01 엘지디스플레이 주식회사 Autostereoscopic 3-Dimensional Display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115804A (en) * 1996-08-01 1998-05-06 Sharp Corp Optical device and directional display device
JP2001091898A (en) * 1999-07-24 2001-04-06 Sharp Corp Parallax barrier, automatic stereoscopic vision 3d picture and automatic stereoscopic vision 3d display
JP2009258584A (en) * 2008-03-27 2009-11-05 Epson Imaging Devices Corp Electro-optical device and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018057B2 (en) * 2011-06-20 2016-11-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Video display device and video display method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115804A (en) * 1996-08-01 1998-05-06 Sharp Corp Optical device and directional display device
JP2001091898A (en) * 1999-07-24 2001-04-06 Sharp Corp Parallax barrier, automatic stereoscopic vision 3d picture and automatic stereoscopic vision 3d display
JP2009258584A (en) * 2008-03-27 2009-11-05 Epson Imaging Devices Corp Electro-optical device and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402071B2 (en) 2012-09-27 2016-07-26 Mitsubishi Electric Corporation Display device
US9729848B2 (en) 2012-09-27 2017-08-08 Mitsubishi Electric Corporation Display device
JP2015125428A (en) * 2013-12-27 2015-07-06 株式会社ジャパンディスプレイ Display device and method of manufacturing the same
US9891455B2 (en) 2013-12-27 2018-02-13 Japan Display Inc. Display device and method for manufacturing the same
JP2017138498A (en) * 2016-02-04 2017-08-10 株式会社ジャパンディスプレイ Display device
TWI761048B (en) * 2021-01-25 2022-04-11 友達光電股份有限公司 Display device
CN115776560A (en) * 2022-12-05 2023-03-10 杭州思影奇数字科技有限公司 Image splicing and repairing processing system and method based on naked eye 3D technology
CN115776560B (en) * 2022-12-05 2023-08-22 杭州思影奇数字科技有限公司 Image stitching and repairing processing system and method based on naked eye 3D technology

Also Published As

Publication number Publication date
JP2014160282A (en) 2014-09-04
JPWO2013069387A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5910470B2 (en) Display device and driving method thereof
JP5732348B2 (en) Display device
JP5596625B2 (en) Display device
JP5877979B2 (en) Image display device using diffraction element
WO2013069387A1 (en) Display device, and drive method and manufacturing method for same
JP5745979B2 (en) Multiple view liquid crystal display
JP5462131B2 (en) Liquid crystal display
CN109031760B (en) 3D liquid crystal display panel, display device and driving method
JP6427341B2 (en) Three-dimensional display
WO2014196125A1 (en) Image display device and liquid crystal lens
TW201239468A (en) Display device
JP2007139904A (en) Display element and display device equipped therewith
WO2013099793A1 (en) Stereoscopic display device
US20170045763A1 (en) Stereoscopic display device
JP6100390B2 (en) 3D display device
JP2011169949A (en) Three-dimensional image display device
US20190265492A1 (en) Display device and display device driving method
WO2015060002A1 (en) Three-dimensional display device
JP6071605B2 (en) Multiple view liquid crystal display
WO2014162798A1 (en) Display panel and display apparatus
WO2013099794A1 (en) Stereoscopic display device
JP6207355B2 (en) 3D display device
KR101314402B1 (en) Dislgay device
US9354453B2 (en) Stereoscopic image display device and method for manufacturing the same
JP5669945B2 (en) 3D display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848001

Country of ref document: EP

Kind code of ref document: A1