WO2013067807A1 - 一种光源***、照明装置及投影装置 - Google Patents

一种光源***、照明装置及投影装置 Download PDF

Info

Publication number
WO2013067807A1
WO2013067807A1 PCT/CN2012/075643 CN2012075643W WO2013067807A1 WO 2013067807 A1 WO2013067807 A1 WO 2013067807A1 CN 2012075643 W CN2012075643 W CN 2012075643W WO 2013067807 A1 WO2013067807 A1 WO 2013067807A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
light source
color wheel
source system
Prior art date
Application number
PCT/CN2012/075643
Other languages
English (en)
French (fr)
Inventor
胡飞
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2013067807A1 publication Critical patent/WO2013067807A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time

Definitions

  • Light source system illumination device and projection device
  • the present invention relates to the field of optics, and in particular to a light source system, a lighting device, and a projection device. Background technique
  • Multi-color light sources are widely used in a variety of applications such as projection display and stage lighting. As shown
  • the excitation light generated by the excitation light source 102 is condensed by the lens 103 and incident on the color wheel 104.
  • a plurality of phosphor regions such as a green phosphor region, a red phosphor region, and a blue phosphor region, are respectively disposed on the color wheel 104 in the circumferential direction.
  • the fluorescent color wheel 104 is rotated by the driving device 105 such that the above-mentioned regions on the color wheel 104 are alternately disposed on the transmission path of the excitation light generated by the excitation light source 102, thereby converting the excitation light incident thereon into green light. , red or blue light, forming a sequence of colored light.
  • the color light sequence described above is further used for subsequent projection display.
  • the color images produced on the screen are derived from images of different colors that quickly switch the integral effect in the human eye on the screen. If the image of different colors is not fast enough to switch on the screen, it will cause a color breakup phenomenon, that is, as the blink or the field of view moves, the viewer can instantly see the monochromatic light.
  • the switching speed is proportional to the rotational speed of the driving device 105 that drives the color wheel 104 to rotate. Due to the speed limitation of the driving device 105, the color splitting phenomenon cannot be solved.
  • three sets of independent excitation light sources (not shown) generate three beams of excitation light 201A, 201B, and 201C respectively incident on three different colors.
  • the phosphor color wheels 202A, 202B, and 202C respectively excite the phosphors on the respective color wheels 202A, 202B, and 202C, thereby generating three laser beams of different colors.
  • These three beams are combined by the optical filters by the spectral filters 203B and 203C and collected by the light collecting means 204.
  • each color wheel 202A, 202B and 202C is only produced When a single color of light is generated, its wavelength conversion characteristics do not change with time, so it is only necessary to alternately turn on and off the corresponding excitation light source to obtain a colored light sequence.
  • the technical problem to be solved by the present invention is to provide a light source system, a lighting device and a projection device to substantially reduce the number of color wheels, thereby reducing the volume of the light source system and reducing the cost of the light source system.
  • a technical solution adopted by the present invention is to provide a light source system including a color wheel and an optical path combining system.
  • the color wheel is for receiving at least two incident lights at different positions and correspondingly outputting at least two outgoing lights.
  • the optical path combining system is configured to combine the optical paths of the at least two outgoing beams.
  • the color wheel is provided with a first area, the first area receives the first incident light, and wavelength-converts the first incident light to generate the first outgoing light.
  • the color wheel is further provided with a second area, the second area receives the second incident light, and transmits or reflects the second incident light without performing wavelength conversion to generate the second outgoing light.
  • the color wheel is further provided with a third area, the third area receives the third incident light, and performs wavelength conversion on the third incident light to generate the third outgoing light.
  • the color wheel is further provided with a second area, the second area receives the second incident light, and performs wavelength conversion on the second incident light to generate the second outgoing light.
  • the color wheel is further provided with a third area, the third area receives the third incident light, and performs wavelength conversion on the third incident light to generate the third outgoing light.
  • the first region further receives the second incident light at a receiving position different from the first incident light, and performs wavelength conversion on the second incident light to generate a second outgoing light having the same color as the first outgoing light, and the optical path combining system
  • the first outgoing light and the second outgoing light are respectively filtered to correspondingly generate the third outgoing light and the fourth outgoing light of different colors, and the third outgoing light and the fourth outgoing light are optically combined.
  • the first outgoing light and the second outgoing light are yellow light or yellow green light
  • the third outgoing light is green Light
  • the fourth outgoing light is red light
  • first incident light and the second incident light form a spot on the color wheel acting on the first wavelength conversion region along a concentric circular path, wherein the circular paths of the first incident light and the second incident light have the same diameter or different.
  • the color wheel is further provided with a second region, the second region receives the second incident light, the second region performs wavelength conversion on the second incident light or transmits or reflects the second incident light without performing wavelength conversion.
  • the optical path combining device combines the optical paths of the third outgoing light, the fourth outgoing light, and the fifth outgoing light.
  • the optical path combining system includes at least one spectral filter, the spectral filter transmitting at least a portion of a spectral component of the at least two of the at least two outgoing lights and reflecting at least another of the at least two incident lights Part of the spectral component to combine the optical paths of the two outgoing beams.
  • the optical path merging system comprises an optical film, the optical film is provided with a through hole, and one of the at least two incident lights is incident on the color wheel through the through hole, and the color wheel scatters and reflects the incident light. To produce the outgoing light in the form of scattered light, the optical film further reflects the outgoing light incident on the outer region of the through hole of the optical film in the form of scattered light.
  • the light source system further includes a mirror, wherein at least one of the incident light is reflected by the mirror and then incident on the color wheel, and the color wheel scatters and reflects the incident light to generate a form of scattered light.
  • the light is emitted, and the emitted light in the form of scattered light is emitted from the outside of the mirror to the optical path combining system.
  • the light source system further comprises at least two light source means and a control means, the at least two light source means respectively generating a corresponding one of the at least two incident lights, the control means independently controlling the opening and closing and the luminous intensity of the at least two light source means.
  • the optical film is a spectroscopic filter provided with a through hole, the spectroscopic filter further transmits supplemental light incident on the spectroscopic filter without passing through the color wheel, and the complementary light is incident thereon, the optical film
  • the sheet is a spectroscopic filter, and the emitted light in the form of scattered light is emitted from the outside of the mirror to the spectroscopic filter, and the spectroscopic filter further transmits supplemental light incident on the spectroscopic filter without passing through the color wheel, and The supplemental light is incident on the outside of the mirror to the spectroscopic filter
  • the outgoing light of the light sheet is merged by the optical path.
  • the optical path combining system further receives supplemental light that is incident on the optical path combining system without passing through the color wheel, and the optical path combining system further combines the complementary light with the at least two outgoing lights output by the color wheel.
  • the light source system further comprises at least three light source devices and a control device, at least the device independently controlling the opening and closing and the luminous intensity of the at least three light source devices.
  • the light source system further comprises a driving device for driving the color wheel such that at least two spots of incident light formed on the color wheel respectively act on the color wheel along a predetermined path.
  • the driving device is a rotating device, so that the spots formed by the at least two incident lights on the color wheel respectively act on the color wheel along a circular path.
  • another technical solution adopted by the present invention is to provide a projection apparatus including any one of the above-described light source systems.
  • another technical solution adopted by the present invention is to provide an illumination device including any one of the above-described light source systems.
  • the beneficial effects of the present invention are:
  • the invention can sufficiently reduce the number of color wheels, effectively reduce the volume of the light source system, and at the same time effectively reduce the cost of the light source system.
  • FIG. 1 is a schematic structural view of a prior art light source system
  • FIG. 2 is a schematic structural view of another prior art light source system
  • FIG. 3 is a schematic structural view of a first embodiment of a light source system of the present invention.
  • Figure 4 is a front elevational view of the color wheel of the light source system shown in Figure 3;
  • Figure 5 is a schematic structural view of a second embodiment of the light source system of the present invention.
  • Figure 6 is a front elevational view of the color wheel of the light source system shown in Figure 5;
  • FIG. 7 is a schematic view showing a fluorescence spectrum of a color wheel of the light source system shown in FIG. 5 and a filter spectral line of the spectral filter;
  • FIG. 8 is a schematic structural view of an optical path merging system of a third embodiment of the light source system of the present invention.
  • 9 is a schematic structural view of a fourth embodiment of a light source system of the present invention.
  • FIG. 10 is a schematic structural view of a fifth embodiment of a light source system of the present invention.
  • Figure 11 is a schematic structural view of a sixth embodiment of the light source system of the present invention.
  • Figure 12 is a schematic view showing the structure of a seventh embodiment of the light source system of the present invention. detailed description
  • the first embodiment of the light source system of the present invention includes three light sources (not shown), a color wheel 302, an optical path combining system 303, a light collecting device 304, and a driving device 305.
  • the three light sources correspondingly generate three incident lights 301A, 301B, and 301C.
  • the color wheel 302 receives the three incident lights 301A, 301B, and 301C at different positions, and outputs three beams of light (not shown) correspondingly.
  • the optical path combining system 303 combines the optical paths of the three outgoing beams, and the light collecting device 304 collects the three outgoing lights that have been merged by the optical path combining system 303 for subsequent projection display or other applications.
  • the color wheel 302 is provided with three annular regions 402A, 402B and 402C which are concentrically arranged and nested with each other.
  • Incident light 301A, 301B, and 301C are incident on regions 402A, 402B, and 402C, as shown by spots 401A, 401B, and 401C.
  • the driving device 305 is a rotating device for driving the color wheel 302 to rotate, so that the spots 401A, 401B, and 401C generated by the incident light 301A, 301B, and 301C on the color wheel 302 respectively act on the circular region 302A in the region 402A of the color wheel 302. , 402B and 402C.
  • regions 402A, 402B, and 402C may also be strip-shaped regions disposed in parallel or in other suitable arrangements.
  • the driving device 305 is a linear translation device or other suitable driving device, so that the spots 401A, 401B, and 401C generated by the incident light 301A, 301B, and 301C on the color wheel 302 respectively act on the color wheel 302 along a straight path or other predetermined path. .
  • the incident lights 301A, 301B, and 301C are prevented from acting on the same position of the color wheel 302 for a long time.
  • the resulting temperature is too high.
  • a red wavelength conversion material is disposed on the region 402A to be incident.
  • the incident light 301A thereon is converted into red light
  • the region 402B is provided with a blue wavelength converting material to convert the incident light 301B incident thereon into blue light
  • the region 402C is provided with a green wavelength converting material to The wavelength of the incident light 301C incident thereon is converted into green light.
  • the wavelength converting material includes a phosphor, a quantum dot material, and any other material capable of achieving a wavelength conversion function.
  • the optical path combining system 303 includes a total reflection mirror 303A and spectral filters 303B, 303C.
  • the red light output from the area 402A is reflected by the total reflection mirror 303A, is incident on the spectroscopic filter 303B, is transmitted through the spectroscopic filter 303B, is incident on the spectroscopic filter 303C, and is transmitted through the spectroscopic filter 303C and then incident on the light.
  • Collection device 304 The blue light output from the area 402B is reflected by the spectral filter 303B, is incident on the spectral filter 303C, is transmitted through the spectral filter 303C, and is incident on the light collecting means 304.
  • the green light output from the area 402C is reflected by the spectral filter 303C and then incident on the light collecting means 304, thereby realizing the optical path combination of the above three output lights.
  • light collecting device 304 can be any suitable optical component such as a lens or integrator rod.
  • total reflection mirror 303A may also be replaced by a spectroscopic filter that reflects red light. Since the spectral range of the output light generated by the wavelength conversion method is relatively wide, resulting in relatively low color saturation during display, the above-mentioned spectroscopic filter can be set to transmit or reflect a part of the spectral component of the corresponding output light to output light. The spectral range is modified to meet the color saturation requirements of the display.
  • a spectroscopic filter or a spectroscopic filter group is used as the optical path combining system. It utilizes the difference in wavelength of light in each optical path, and transmits the light on each optical path to the light collecting device through the transmission and reflection of the light on the different optical paths by the spectral filter; and the light in a certain optical path is in a light filtering filter. Whether the light sheet is transmitted or reflected is arbitrarily designed. For example, in the first embodiment, the positions of the red wavelength conversion material and the green wavelength conversion material can be interchanged. In this case, only the corresponding reflection and transmission characteristics of the respective filters need to be adjusted, and the same optical path combination can still be realized. The function.
  • the total reflection mirror 303A needs to be redesigned to reflect green light
  • the spectral filter 303B needs to be redesigned to reflect red light while transmitting green light
  • the spectral filter 303C needs to be redesigned to reflect red light while transmitting blue light and green light.
  • the specific optical structures of the different color lights passing through the optical path combining system on each optical path are listed for convenience of explanation. Further, in other embodiments, the number of regions on the color wheel 302 and the wavelength converting material thereon can be arbitrarily set according to display requirements.
  • the exiting light output by the color wheel 302 can be any combination of at least two of green, red, and blue.
  • any one of the above-described regions 402A, 402B, and 402C of the color wheel 302 may be disposed as a light transmitting region to transmit incident light rays incident thereon without wavelength conversion.
  • region 402B can be replaced with a light transmissive region.
  • the incident light 301B is blue light, and is transmitted by the region 402B, and is merged by the optical path combining system 303 with the red light and the green light generated by the regions 402A and 402C.
  • Region 402B may further be provided with a scattering material or other scattering mechanism to decoherent incident blue light.
  • the red, blue, and green lights for display are all output by the same color wheel 302, the number of color wheels is sufficiently reduced, the volume of the light source system is effectively reduced, and the light source is effectively reduced. The cost of the system.
  • the excitation light for exciting the red and green wavelength conversion materials is a semiconductor light source, such as a Light Emitting Diode (LED) or a Laser Diode (LD), and the emission wavelength may be a wavelength greater than or equal to The ultraviolet light of 320 nm and less than or equal to 420 nm may also be blue light of 420 or more and 480 nm or less.
  • LED Light Emitting Diode
  • LD Laser Diode
  • a second embodiment of the light source system of the present invention includes three light sources (not shown), a color wheel 502, an optical path combining system 503, a light collecting device 504, and a driving device 505.
  • the light source system of the present embodiment is different from the light source system shown in FIGS. 3-4 in that the color wheel 502 is provided with a region 602A, and incident light 501A and 501C are incident on different positions of the region 602A. Specific locations are shown as spots 601A and 601C.
  • the region 602A converts the incident light 501A and 501C incident thereon into wavelengths of the two outgoing lights of the same color, and then filters them into two other outgoing lights of different colors by the optical path combining system 503, and performs optical path combining.
  • the yellow-green light wave is disposed on the area 602A.
  • the material is long converted to convert incident light 501A and 501C into yellow-green light, respectively.
  • the yellow-green light converted by the incident light 501A is incident on the total reflection mirror 503A, is reflected by the total reflection mirror 503A, and is incident on the spectral filter 503B, and the yellow-green light converted by the incident light 501C is incident on the spectral filter 503C.
  • the spots 601A and 601C can act on the region 602A along a concentric circular path.
  • the diameters of the respective circular paths of the spots 601A and 601C may be the same or different, and the latter has higher fluorescence conversion efficiency than the former because: when two spots act on a circular path of the same diameter, The heat generated by the two excitation spots to excite the wavelength conversion material is distributed on this circular path, and the heat and temperature are accumulated; and when the two spots are respectively applied to two concentric circular paths of different diameters, two The excitation spot excites the heat generated by the wavelength converting material distributed over the two circular paths, and the temperature on the fluorescent conversion material is lower than when the two spots act on a circular path of the same diameter.
  • curve 701 is a spectrum curve of yellow-green light
  • curve 702 is a filter curve of the spectral filter 503B
  • curve 703 is a filter curve of the spectral filter 503C.
  • the green light component of yellow-green light (corresponding to a spectral range of about 500 nm or more and 570 nm or less) converted by the incident light 501A is reflected by the spectral filter 503B as stray light and cannot be collected by the collecting device 504.
  • the red light component (corresponding to a spectral range of about 580 nm or more and 680 nm or less) is transmitted to the spectral filter 503C by the spectral filter 503B, and transmitted through the spectral filter 503C, thereby outputting red light to the light.
  • the red light component of the yellow-green light converted by the incident light 501C is transmitted by the spectral filter 503C as stray light and cannot be collected by the collecting device 504, and the green light component is reflected by the spectral filter 503C, thereby outputting green light to the light collecting device. 504.
  • the incident light 501 A and 501C may also be subjected to wavelength conversion by the region 602A to generate yellow light, and filtered into red light and green light by the spectral filter 503B and the spectral filter 503C, respectively.
  • the spectral filters 503A and 503C in addition to having the function of combining the illumination of different optical paths, can also transmit or reflect the portion of the light incident thereon to the original light-emitting material.
  • the spectrum is filtered to make the color more suitable for practical use.
  • the color coordinates of the original spectrum 701 of the yellow-green wavelength conversion material are (0.414, 0.548), and the color coordinates of the green light obtained by the filtering of the above-described spectral filters 503A and 503C are (0.323). , 0.624 ), the color coordinate of red light is (0.65 0.35).
  • the standard color coordinate of green light is (0.3, 0.6), and the standard color coordinate of red light is (0.0.64, 0.33). It is obvious that the color of the filtered light is closer to the color of the label. It is worth noting that, in general, "filtering" of light means allowing part of the effective spectral energy to pass through, and the rest of the spectral energy is reflected or absorbed as ineffective light, but in the present invention, a certain kind of original light is transmitted.
  • the optical filter in the optical path combining system When the optical filter in the optical path combining system is "filtered", it means that part of the effective spectral energy of the original light is guided to the collecting device by the spectroscopic filter, and the remaining invalid spectral energy cannot be collected by the collecting device; The effective spectral energy is reflected or transmitted on the spectroscopic filter, which is determined by the optical structure of the particular optical path combining system.
  • the color wheel 502 is further provided with a region 602B, and the incident light 501B is incident on the region 602B as shown by the spot 601B.
  • the region 602B performs wavelength conversion on the incident light 501B or transmits the incident light 501B without performing wavelength conversion to output blue light.
  • the blue light output from the area 602B is reflected by the spectral filter 503B, transmitted through the spectral filter 503C, and combined with the above-described red and green light paths.
  • the red, green, and blue colors described above may be output light combinations of other different colors.
  • the optical path merging system of the third embodiment of the light source system of the present invention includes total reflection mirrors 803A, 803B and spectral filters 803C, 803D.
  • the optical path merging system of the present embodiment is different from the optical path merging system in the above embodiment in that the optical path of the present embodiment is not limited to being disposed in the same plane by the proper arrangement of the above components, thereby enhancing the optical path. Design flexibility.
  • a fourth embodiment of the light source system of the present invention includes three light sources (not shown), a color wheel 902, an optical path combining system 903, a light collecting device 904, and a driving device 905.
  • the light source system of the present embodiment differs from the light source system shown in FIGS. 5-7 in that incident light 901A and 901C are incident on the color wheel 902, and supplemental light 901B (for example, blue light) is directly incident on the color wheel 902.
  • the optical path combining system 903 is transmitted through the spectral filters 903A and 903B, and further, the wavelength conversion effect of the incident light 901A and 901C via the color wheel 902 and the outgoing light generated by the filtering of the spectral filters 903A and 903B (for example, Red light and green light) merge the light paths.
  • the supplemental light 901C is directly incident on the optical path without the action of the color wheel 902.
  • the merging system 903 can design the color wheel 902, and at the same time reduce the volume of the color wheel 902, which is advantageous for miniaturization.
  • the incident mode of the supplemental light 901C of the present embodiment is also applicable to the light source system shown in Figs.
  • a fifth embodiment of the light source system of the present invention includes three light sources (not shown), a color wheel 1002, an optical path combining system 1003, a light collecting device 1004, and a driving device 1005.
  • the light source system of the present embodiment is different from the light source system shown in FIG. 9 in that incident light 1001 A and 1001C are respectively transmitted through the spectral filters 1003A and 1003B and then incident on the color wheel 1002, and the incident light 1001A is passed through the color wheel 1002.
  • the emitted light generated by wavelength conversion with 1001C is reflected by the color wheel 1002 and then incident on the spectral filters 1003A and 1003B, and optically combined by the spectral filters 1003A and 1003B and the complementary light 1001B.
  • the color wheel 1002 outputs the emitted light in a reflective manner, so that the light source system can meet different optical path design requirements, thereby improving the flexibility of the light source system.
  • the structure of the color wheel 902 shown in Fig. 9 is different from the structure of the color wheel 1002 shown in Fig. 10.
  • the exit surface of the excited light and the incident surface of the excitation light are respectively located on both sides of the wavelength conversion material, and in the embodiment shown in FIG. 10, the exit surface and excitation of the excited light.
  • the incident surface of the light is located on the same side of the wavelength converting material, the former being called a transmissive color wheel and the latter being called a reflective color wheel.
  • the transmissive color wheel has a transparent or translucent base material that allows excitation light to penetrate and be incident on the optical wavelength converting material while at least a portion of the excited light can penetrate and exit.
  • the reflective color wheel is provided with a reflective layer on the other side of the excitation surface of the wavelength converting material, such as a mirror or an aluminum plate coated with a highly reflective silver film, so that the excited light emitted by the wavelength conversion material is all emitted from the excited side.
  • a reflective layer on the other side of the excitation surface of the wavelength converting material, such as a mirror or an aluminum plate coated with a highly reflective silver film, so that the excited light emitted by the wavelength conversion material is all emitted from the excited side.
  • transmissive color wheel and the reflective color wheel have different optical configurations, it can be seen by comparing the embodiments of Figures 9 and 10 that both can be used in the present invention. Further, the two may also be used in combination, that is, at least two incident lights incident on the same color wheel, one beam is transmissive and the other beam is reflective; correspondingly, the color wheel also exists simultaneously Transmissive transparent/translucent substrate and reflective reflective layer.
  • a problem with the fifth embodiment of the present invention as shown in FIG. 10 is that when it is desired to pass the setting When the astigmatism material on the color wheel 1002 scatters and reflects the incident blue light and obtains the scattered light, since the light scattering process does not change the wavelength emission of the light, the spectral filters 1003A and 1003C transmit through different wavelengths. And reflection to complete the separation of the incident and outgoing light, so the scattered light is not reflected by 1003A and 1003C, but is transmitted directly and cannot be collected by the collection system.
  • the sixth and seventh embodiments of the present invention solve this problem.
  • a sixth embodiment of the light source system of the present invention includes three light sources (not shown), a color wheel 1102, an optical path combining system 1103, and a driving device 1105.
  • the light source system of the present embodiment is different from the light source system shown in FIG. 10 in that the incident light 1101A is incident on the color wheel 1102 through the through hole on the spectral filter 1103A, and the scattering material disposed on the color wheel 1102 is not Scattering and reflection are performed with wavelength conversion to produce outgoing light in the form of scattered light.
  • the spectral filter 1103A reflects the outgoing light incident on the outer region of the through hole of the spectral filter 1103A in the form of scattered light to the spectral filter 1103B, thereby realizing the incident light. Separation from the exiting light in the form of most scattered light.
  • the emitted light is transmitted through the spectral filter 1103B.
  • the incident light 1101C is transmitted through the spectral filter 1103B and then incident on the color wheel 1102, and is wavelength-converted by the color wheel 1102 to generate another outgoing light.
  • the other outgoing light is reflected by the color wheel 1102 and further reflected by the spectral filter 1103B.
  • the supplemental light 1101B is transmitted through the spectral filters 1103A, 1103B to merge the optical paths with the two outgoing beams.
  • the incident light 1101A can be effectively guided to the color wheel 1102 through the through hole provided in the spectral filter 1103A, and the through hole of the spectral filter 1103A is passed through the spectral filter.
  • the area is smaller than 1/4 of the reflection area of the spectral filter 1103A.
  • the spectroscopic filter 1103A provided with through holes is also suitable for incident light and outgoing light that are wavelength-converted by the color wheel 1102.
  • the spectroscopic filter 1103A may be replaced by a mirror with a through hole or other suitable optical film.
  • a seventh embodiment of the light source system of the present invention includes three light sources (not shown), a color wheel 1202, an optical path combining system 1203, and a driving device 1205. Similar to the sixth embodiment, in the present embodiment, the expansion of the optical spread of the scattered light beam is also utilized to separate the incident light and the outgoing light in the form of most of the scattered light.
  • the light source system of this embodiment is the same as that shown in FIG. The difference in the light source system is that the incident light 1201 A is reflected by the mirror 1203A and then incident on the color wheel 1202, and is scattered and reflected by the astigmatism material disposed on the color wheel 1202 without wavelength conversion to generate scattered light. Form of the outgoing light.
  • the emitted light in the form of scattered light is emitted from the outside of the mirror 1203A, and is reflected by the spectral filter 1203B and transmitted through the spectral filter 1203C.
  • the incident light 1201C is transmitted through the spectral filter 1203C and then incident on the color wheel 1202, and is wavelength-converted by the color wheel 1202 to generate another outgoing light.
  • the other outgoing light is reflected by the color wheel 1202 and further reflected by the spectral filter 1203C.
  • the supplemental light 1201B is transmitted through the spectral filters 1203B and 1203C to merge the optical paths with the two outgoing beams.
  • the projected area of mirror 1203A on color wheel 1202 is less than 1/4 of the projected area of spectroscopic filter 1203B on color wheel 1202.
  • the combination of mirror 1203A and spectral filter 1203B is equally applicable to incident light that is wavelength converted by color wheel 1102 and outgoing light.
  • the spectroscopic filter 1203B may be replaced by a mirror or other suitable optical film.
  • the incident light is incident on the color wheel. Whether it is scattering or exciting the wavelength conversion material to generate the excited light, the emitted light beam is divergent. In practical applications, it is necessary to use a collimating lens or a lens group. Straighten and then merge with other light paths. Since this is a technical means commonly used in the art, in the schematic diagrams and descriptions of all embodiments of the present invention, the collimating lens or the lens group is not described and the collimated excitation light or scattered light is directly used, which does not limit the correlation. The use of optical originals.
  • the switching and luminous intensity of each optical path can be independently controlled.
  • the light emitted from the light source system of the present invention can be a sequence of monochromatic light due to the high-speed modulation of the semiconductor light source.
  • the monochromatic light sequence can be synchronized with a light valve (such as the DMD chip of the company) for projection display.
  • the light source corresponding to the red light is turned on in the red light monochromatic time period (excitation color wheel)
  • An excitation light source of the red wavelength conversion material, or a red light monochromatic supplement light source when the red light segment ends, the corresponding light source is turned off and the light source corresponding to the green light is turned on, analogy.
  • white light in order to increase the brightness of the projection, it is necessary to introduce white light into the monochromatic light sequence, such as red-green-blue-white-red-green-blue-white.
  • the corresponding light source is turned on while the other monochromatic light source is turned off, and when the time period of the white light starts, the red, green and blue colors are simultaneously turned on.
  • the corresponding light source, the three colors are combined by the optical path combining system to obtain white light, and when the white light period ends, the red light period is turned off, and the light source corresponding to the green light and the blue light is turned off, and the light source corresponding to the red light is kept. Open, and so on.
  • green light and red light can be turned on simultaneously to realize yellow light, and blue light and green light simultaneously turn on to realize cyan light, and blue light and red light simultaneously turn on to form purple red light, and red, green and blue light are simultaneously turned into half of full load. Get half the brightness of white light, etc., different control modes for different applications.
  • the present invention also provides a projection apparatus using any of the above-described light source systems.
  • the present invention can achieve continuous change of the color of the final emitted light in a specific color gamut in the CIE1931 gamut by independent control of each light source.
  • the color coordinates of each vertex of the color gamut are the color coordinates of the monochromatic light in each optical path in CIE1931.
  • the color coordinates of the combined mixed light can be changed; specifically, increasing the brightness of the monochromatic light in a certain optical path causes the color coordinates of the mixed light to be directed to the monochromatic light.
  • the direction of the color coordinates drifts, and decreasing the brightness of the monochromatic light causes the color coordinates of the mixed light to drift in the opposite direction of the color coordinates of the monochromatic light.
  • the present invention also provides a lighting device.
  • the illuminating device comprises at least two light sources, and the light emitted by the two light sources is incident on any one of the above-mentioned light source systems and the combined light of the optical paths is obtained as the outgoing light.
  • the emitted light can be directly used as an illumination source, or can be combined with a projection optical system or a collimating optical system at the rear end to obtain an illumination region of a specific shape, or a specific pattern on the pattern disc can be obtained in the target illumination region in accordance with the use of the pattern disc.
  • the illumination device can also obtain the emitted light of different colors, and the color of the emitted light can continuously change within a certain color gamut.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源***,其包括色轮(302,502,902,1002,1102,1202)以及光路合并***(303,503,903,1003,1103,1203)。色轮(302,502,902,1002,1102,1202)用于在不同位置接收至少两束入射光(301A,301B,301C,501A,501B,501C,901A,901C,1001A,1001C,1101A,1101C,1201A,1201C),并对应输出至少两束出射光。光路合并***(303,503,903,1003,1103,1203)用于对该至少两束出射光进行光路合并。色轮(302,502,902,1002,1102,1202)上设置第一区域,第一区域接收第一入射光,并对第一入射光进行波长转换,以产生第一出射光。该光源***可用于照明装置或投影装置。该光源***的上述结构能够减少光源***的色轮数量和光源***的体积,并降低光源***的成本。

Description

一种光源***、 照明装置及投影装置 技术领域
本发明涉及光学领域, 特别是涉及一种光源***、 照明装置及投影 装置。 背景技术
多色光源广泛地应用于投影显示及舞台灯光等各种应用场合。 如图
1所示, 在一种现有技术的光源***中, 激发光光源 102产生的激发光 经透镜 103聚光后入射到色轮 104上。 色轮 104上沿圓周方向分别设置 有多个荧光粉区,例如绿光荧光粉区、红光荧光粉区以及蓝光荧光粉区。 荧光色轮 104在驱动装置 105的驱动下转动, 使得色轮 104上的上述区 域交替设置于激发光光源 102产生的激发光的传输路径上, 进而将入射 于其上的激发光转换成绿光、 红光或蓝光, 形成一彩色光序列。 上述彩 色光序列进一步用于后续的投影显示。
屏幕上产生的彩色图像来源于不同颜色的图像在屏幕上快速的切 换在人眼中的积分效应。 如果不同颜色的图像在屏幕上的切换速度不 够, 则会造成色***(color breakup )现象, 也就是随着眨眼或者视野 的移动, 观众可以瞬间看到单色光。 在上述方案中, 该切换速度与驱动 色轮 104转动的驱动装置 105的转速成正比。 由于驱动装置 105的速度 限制, 使得色***现象无法解决。
如图 2所示, 在另一种现有技术的光源***中, 三组独立的激发光 光源 (未图示)产生的三束激发光 201A、 201B和 201C分别入射到三 个涂有不同颜色的荧光粉的色轮 202A、 202B和 202C上, 分别激发各 自所对应的色轮 202A、 202B和 202C上的荧光粉, 进而产生三束不同 颜色的受激光。这三束受激光由分光滤光片 203B和 203C进行光路合并, 并被光收集装置 204收集。 由于每一个色轮 202A、 202B和 202C仅产 生单一颜色的光线, 其波长转化特性不随时间发生变化, 因此只需要交 替开启和关闭对应的激发光光源即可获得一彩色光序列。 然而, 在上述 方案中, 需要使用三个色轮 202A、 202B和 202C, 使得光源***的体积 变大, 不利于实现光源***的小型化, 同时增加了光源***的成本。 发明内容
本发明主要解决的技术问题是提供一种光源***、 照明装置及投影 装置, 以充分减少色轮数量, 进而减小光源***体积, 并降低光源*** 的成本。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种光 源***, 包括色轮以及光路合并***。 色轮用于在不同位置接收至少两 束入射光, 并对应输出至少两束出射光。 光路合并***用于对该至少两 束出射光进行光路合并。 色轮上设置有第一区域, 第一区域接收第一入 射光, 并对第一入射光进行波长转换, 以产生第一出射光。
其中, 色轮上进一步设置有第二区域, 第二区域接收第二入射光, 并在不进行波长转换的情况下对第二入射光进行透射或反射, 以产生第 二出射光。
其中, 色轮上进一步设置有第三区域, 第三区域接收第三入射光, 并对第三入射光进行波长转换, 以产生第三出射光。
其中, 色轮上进一步设置有第二区域, 第二区域接收第二入射光, 并对第二入射光进行波长转换, 以产生第二出射光。
其中, 色轮上进一步设置有第三区域, 第三区域接收第三入射光, 并对第三入射光进行波长转换, 以产生第三出射光。
其中, 第一区域进一步在与第一入射光不同的接收位置接收第二入 射光, 并对第二入射光进行波长转换, 以产生与第一出射光颜色相同的 第二出射光, 光路合并***分别对第一出射光和第二出射光进行过滤, 以对应产生不同颜色的第三出射光和第四出射光, 并对第三出射光和第 四出射光进行光路合并。
其中, 第一出射光和第二出射光为黄光或黄绿光, 第三出射光为绿 光, 第四出射光为红光。
其中, 第一入射光和第二入射光在色轮上形成的光斑沿同心的圓形 路径作用于第一波长转换区, 其中第一入射光和第二入射光的圓形路径 的直径相同或不同。
其中, 色轮上进一步设置有第二区域, 第二区域接收第二入射光, 第二区域对第二入射光进行波长转换或者在不进行波长转换的情况下 对第二入射光进行透射或反射, 以产生第五出射光, 光路合并装置对第 三出射光、 第四出射光和第五出射光进行光路合并。
其中, 光路合并***包括至少一分光滤光片, 分光滤光片透射该至 少两束出射光中的一出射光的至少部分光谱分量且反射该至少两束入 射光中的另一出射光的至少部分光谱分量, 以对两束出射光进行光路合 并。
其中, 光路合并***包括一光学膜片, 光学膜片上设置有通孔, 该 至少两束入射光中的一入射光经通孔入射到色轮, 色轮对入射的入射光 进行散射和反射, 以产生散射光形式的出射光, 光学膜片进一步反射以 散射光形式入射到光学膜片的通孔的外侧区域的出射光。
其中, 光源***还包括一反射镜, 至少两束入射光中的一入射光经 反射镜反射后入射到色轮, 色轮对入射的该入射光进行散射和反射, 以 产生散射光形式的出射光, 该散射光形式的出射光从反射镜的外侧出射 至光路合并***。
其中, 光源***进一步包括至少两个光源装置和一控制装置, 至少 两个光源装置分别产生至少两束入射光中的对应一个, 控制装置独立控 制至少两个光源装置的开启和关闭和发光强度。
其中, 光学膜片为设置有通孔的分光滤光片, 该分光滤光片进一步 透射不经过色轮入射到该分光滤光片的补充光, 并将该补充光与入射到 其中, 光学膜片为分光滤光片, 散射光形式的出射光从反射镜的外 侧出射至该分光滤光片, 该分光滤光片进一步透射不经过色轮入射到该 分光滤光片的补充光, 并将该补充光与从反射镜的外侧入射到该分光滤 光片的出射光进行光路合并。
其中, 光路合并***进一步接收不经过色轮入射到光路合并***的 补充光, 光路合并***进一步将补充光与色轮输出的该至少两束出射光 进行光路合并。
其中, 光源***进一步包括至少三个光源装置和一控制装置, 至少 装置独立控制至少三个光源装置的开启和关闭和发光强度。
其中, 光源***进一步包括驱动装置, 驱动装置用于驱动色轮, 以 使至少两束入射光在色轮上形成的光斑分别沿预定的路径作用于色轮。
其中, 驱动装置为转动装置, 以使该至少两束入射光在色轮上形成 的光斑分别沿圓形路径作用于色轮。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种 投影装置, 该投影装置包括上述光源***中的任意一种。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种 照明装置, 该照明装置包括上述光源***中的任意一种。
本发明的有益效果是: 本发明能够充分减少色轮数量, 有效地减小 光源***的体积, 同时还有效地降低了光源***的成本。 附图说明
图 1是一种现有技术光源***的结构示意图;
图 2是另一种现有技术光源***的结构示意图;
图 3是本发明光源***的第一实施例的结构示意图;
图 4是图 3所示的光源***的色轮的主视图;
图 5是本发明光源***的第二实施例的结构示意图;
图 6是图 5所示的光源***的色轮的主视图;
图 7是图 5所示的光源***的色轮的荧光光谱以及分光滤光片的滤 光谱线示意图;
图 8 是本发明光源***的第三实施例的光路合并***的结构示意 图; 图 9是本发明光源***的第四实施例的结构示意图; 图 10本发明光源***的第五实施例的结构示意图;
图 11本发明光源***的第六实施例的结构示意图;
图 12本发明光源***的第七实施例的结构示意图。 具体实施方式
下面结合附图和实施例对本发明进行详细说明。
如图 3所示,本发明光源***的第一实施例包括三个光源(未图示)、 色轮 302、 光路合并*** 303、 光收集装置 304以及驱动装置 305。
三个光源对应产生三束入射光 301A、 301B以及 301C。 色轮 302在 不同位置接收该三束入射光 301A、 301B以及 301C, 并对应输出三束出 射光(未标示)。 光路合并*** 303 对该三束出射光进行光路合并, 光 收集装置 304 收集经光路合并*** 303 进行光路合并后的该三束出射 光, 以用于后续的投影显示或其他应用。
如图 4所示, 本实施例中, 色轮 302上设置有三个同心设置且相互 嵌套的圓环状区域 402A、 402B 以及 402C。 入射光 301A、 301B 以及 301C对应入射到区域 402A、402B以及 402C上,具***置如光斑 401A、 401B以及 401C所示。 驱动装置 305为一转动装置, 用于驱动色轮 302 旋转,使得入射光 301A、301B以及 301C在色轮 302上产生的光斑 401A、 401B以及 401C分别沿圓形路径作用于色轮 302的区域 402A、 402B以 及 402C。 在其它实施例中, 区域 402A、 402B以及 402C也可以是平行 设置的带状区域或采取其他适当设置方式。 此时, 驱动装置 305为线性 平移装置或其他适当驱动装置, 使得入射光 301A、 301B 以及 301C在 色轮 302上产生的光斑 401A、 401B以及 401C分别沿直线路径或其他 预定路径作用于色轮 302。 由于入射光 301A、 301B 以及 301C在色轮 302上产生的光斑 401A、 401B以及 401C沿预定路径作用于色轮 302, 避免了入射光 301A、 301B以及 301C长时间作用于色轮 302的同一位 置而导致的温度过高。
在本实施例中, 区域 402A上设置有红光波长转换材料, 以将入射 到其上的入射光 301A波长转换成红光, 区域 402B上设置有蓝光波长 转换材料, 以将入射到其上的入射光 301B波长转换成蓝光, 区域 402C 上设置有绿光波长转换材料, 以将入射到其上的入射光 301C波长转换 成绿光。 在本实施例中, 波长转换材料包括荧光粉、 量子点材料以及其 他能够实现波长转换功能的任意材料。
在本实施例中, 光路合并*** 303包括全反射镜 303A以及分光滤 光片 303B、 303C。 区域 402A输出的红光经全反射镜 303A反射后入射 到分光滤光片 303B , 并经分光滤光片 303B 透射后入射到分光滤光片 303C, 再经分光滤光片 303C透射后入射到光收集装置 304。 区域 402B 输出的蓝光经分光滤光片 303B反射后入射到分光滤光片 303C, 再经分 光滤光片 303C透射后入射到光收集装置 304。区域 402C输出的绿光经 分光滤光片 303C反射后入射到光收集装置 304,由此实现了上述三束输 出光的光路合并。 在本实施例中, 光收集装置 304可以是透镜或积分棒 等任何适当的光学元件。 在其他实施例中, 全反射镜 303A也可以由能 够反射红光的分光滤光片代替。 由于通过波长转换方式产生的输出光的 光谱范围相对较宽, 导致显示时色饱和度相对较低, 因此上述分光滤光 片可以设置成透射或反射对应输出光的部分光谱分量, 以对输出光的光 谱范围进行修饰, 进而满足显示时的色饱和度要求。
在本发明的各实施例中, 都使用了分光滤光片或分光滤光片组作为 光路合并***。 它利用各个光路中光波长的差异, 通过分光滤光片对不 同光路上光的透射和反射, 将每一光路上的光都投射到光收集装置; 而 某一个光路上的光在一个分光滤光片上被透射还是被反射, 是可以任意 设计的。 例如在第一实施例中, 红光波长转换材料和绿光波长转换材料 的位置可以相互调换, 此时只需要相应的调整各个滤光片的反射和透射 特性, 就依然可以实现相同的光路合并的功能。 具体的, 全反射镜 303A 需要重新设计成为反射绿光, 分光滤光片 303B需要重新设计成为反射 红光同时透射绿光, 而分光滤光片 303C需要重新设计成为反射红光同 时透射蓝光和绿光。 因此, 在本发明的所有实施例中, 各光路上不同颜 色光通过光路合并***的具体的光学结构, 都是为了方便说明而列举的 进一步, 在其他实施例中, 色轮 302上的区域的数量以及其上的波 长转换材料可根据显示需要进行任意设置。 例如, 通过设置色轮 302上 的区域的数量以及其上的波长转换材料, 可以使得色轮 302输出的出射 光可以是绿光、 红光以及蓝光中的至少两者的任意组合。 此外, 可以将 色轮 302的上述区域 402A、 402B以及 402C中的任意一个设置成透光 区, 以在不进行波长转换的情况下对入射于其上的入射光线进行透射。 例如, 可以将区域 402B替换成透光区。 此时, 入射光 301B为蓝光, 并由区域 402B透射, 再通过光路合并*** 303与区域 402A和 402C 产生的红光和绿光进行光路合并。 区域 402B进一步可设置有散射材料 或其他散射机构, 以对入射的蓝光进行消相干。
在本实施例中,由于显示用的红光、蓝光以及绿光均由同一色轮 302 输出, 因此充分减少了色轮数量, 有效地减小了光源***的体积, 同时 还有效地降低了光源***的成本。 此时, 在需要产生彩色光序列时, 只 需要利用控制装置对三个光源进行控制, 以使三个光源交替快速的产生 入射光 301A、 301B 以及 301C即可产生彩色光序列, 进而能够有效地 避免色***现象的发生。
在本实施例中, 用于激发红色和绿色波长转换材料的激发光是半导 体光源, 例如发光二极管 ( Light Emitting Diode, LED )或激光二极管 ( Laser Diode, LD ), 其发光波长可以是波长大于等于 320nm且小于等 于 420nm的紫外光, 也可以是大于等于 420且小于等于 480nm的蓝光。
如图 5所示,本发明光源***的第二实施例包括三个光源(未图示)、 色轮 502、 光路合并*** 503、 光收集装置 504以及驱动装置 505。
如图 6所示, 本实施例的光源***与图 3-4所示的光源***的区别 之处在于, 色轮 502上设有区域 602A, 入射光 501A和 501C入射到区 域 602A的不同位置, 具***置如光斑 601A和 601C所示。 区域 602A 将入射于其上的入射光 501A和 501C波长转换成同一颜色的两束出射 光, 随后由光路合并*** 503过滤成不同颜色的另外两束出射光, 并进 行光路合并。 具体来说, 在本实施例中, 区域 602A上设置有黄绿光波 长转换材料, 以将入射光 501A和 501C分别转换成黄绿光。 其中, 入射 光 501A所转换成的黄绿光入射到全反射镜 503A, 并由全反射镜 503A 反射后入射到分光滤光片 503B , 入射光 501C所转换成的黄绿光入射到 分光滤光片 503C。 在本实施例中, 光斑 601A和 601C可沿同心的圓形 路径作用于区域 602A。 其中, 光斑 601A和 601C的各自的圓形路径的 直径可以相同或不同,后者比前者具有更高的荧光转化效率,这是因为: 当两个光斑作用于同一直径的圓形路径上时, 两个激发光斑激发波长转 换材料产生的热量都分布于这个圓形路径上, 其热量和温度会发生累 加; 而当两个光斑分别作用于不同直径的两个同心圓形路径上时, 两个 激发光斑激发波长转换材料产生的热量分布于这两个圓形路径上, 荧光 转化材料上的温度比两个光斑作用于同一直径的圓形路径上时要低。
如图 7所示, 其中曲线 701为黄绿光的光谱曲线, 曲线 702为分光 滤光片 503B的滤光曲线, 曲线 703为分光滤光片 503C的滤光曲线。 由 图 7可知, 入射光 501A所转换成的黄绿光的绿光分量(对应于约为大 于等于 500nm且小于等于 570nm的光谱范围)被分光滤光片 503B反射 成为杂散光而不能被收集装置 504收集, 而红光分量(对应于约为大于 等于 580nm且小于等于 680nm的光谱范围)被分光滤光片 503B透射到 分光滤光片 503C, 并经分光滤光片 503C透射, 进而输出红光到光收集 装置 504。入射光 501C所转换成的黄绿光的红光分量被分光滤光片 503C 透射成为杂散光而不能被收集装置 504收集, 而绿光分量被分光滤光片 503C反射,进而输出绿光到光收集装置 504。在其他实施例,入射光 501 A 和 501C也可以经区域 602A进行波长转换后产生黄光,并分别经分光滤 光片 503B和分光滤光片 503C过滤成红光和绿光。
由图 7的说明可见, 分光滤光片 503A和 503C, 除了具有合并不同 光路上发光的功能, 还能通过对入射到其上的光的部分透射或反射, 对 波长转换材料发出的原始的发光光谱进行过滤, 使其颜色更能满足实际 的使用要求。 例如在本实施例中, 黄绿色波长转换材料的原始光谱 701 的色坐标为(0.414, 0.548 ), 经过上述分光滤光片 503A和 503C的过滤 作用,分别得到的绿光的色坐标为( 0.323 , 0.624 ),红光的色坐标为( 0.65 , 0.35 )。 在 Rec 709的颜色标准中, 绿光的标准色坐标是 (0.3,0.6), 红光 的标准色坐标是(0.0.64, 0.33 )。 显然过滤后的光的颜色更接近标注颜 色。 值得说明的是, 一般意义上来说对光的 "过滤" 是指允许部分有效 的光谱能量透过, 其余光谱能量作为无效光被反射或吸收, 但在本发明 中, 某一种原始光透过光路合并***中的分光滤光片时被 "过滤", 指 的是利用该分光滤光片将该原始光的部分有效光谱能量引导到收集装 置, 其余无效的光谱能量则不能被收集装置收集; 而有效光谱能量在该 分光滤光片上被反射还是透射, 由具体的光路合并***的光学结构决 定。
此外, 与图 3-4 所示的实施例相同, 色轮 502 进一步设置有区域 602B , 入射光 501B入射到区域 602B , 具***置如光斑 601B所示。 区 域 602B对入射光 501B进行波长转换或在不进行波长转换的情况下对入 射光 501B进行透射, 以输出蓝光。 区域 602B输出的蓝光经分光滤光片 503B反射, 再经分光滤光片 503C透射, 与上述的红光和绿光进行光路 合并。 在其他实施例中, 上述的红光、 绿光和蓝光可以是其他不同颜色 的输出光组合。
如图 8所示, 本发明光源***的第三实施例的光路合并***包括全 反射镜 803A、 803B 以及分光滤光片 803C、 803D。 本实施例的光路合 并***与上述实施例中的光路合并***的区别之处在于, 通过上述元件 的适当设置, 能够使得本实施例的光路并不局限于设置于同一平面内, 进而增强了光路设计的灵活性。
如图 9所示,本发明光源***的第四实施例包括三个光源(未图示 )、 色轮 902、 光路合并*** 903、 光收集装置 904以及驱动装置 905。 本实 施例的光源***与图 5-7所示的光源***的区别在于, 入射光 901A和 901C入射到色轮 902上, 而补充光 901B (例如, 蓝光) 不经色轮 902 作用直接入射到光路合并*** 903 ,并经分光滤光片 903A和 903B透射, 进而与入射光 901A和 901C经色轮 902的波长转换作用以及分光滤光片 903A和 903B的滤光作用产生的出射光(例如, 红光和绿光)进行光路 合并。 在本实施例中, 补充光 901C不经色轮 902作用直接入射到光路 合并*** 903 , 可筒化色轮 902的设计, 同时可减小色轮 902的体积, 有利于实现小型化。 本实施例的补充光 901C的入射方式同样适用于图 3—4所示的光源***。
如图 10所示, 本发明光源***的第五实施例包括三个光源 (未图 示)、 色轮 1002、 光路合并*** 1003、 光收集装置 1004以及驱动装置 1005。 本实施例的光源***与图 9所示的光源***的区别在于, 入射光 1001 A和 1001C分别经分光滤光片 1003A和 1003B透射后入射到色轮 1002上, 经色轮 1002对入射光 1001A和 1001C进行波长转换产生的出 射光被色轮 1002反射后重新入射到分光滤光片 1003A和 1003B, 并经 分光滤光片 1003A和 1003B与补充光 1001B进行光路合并。
在本实施例中, 色轮 1002 以反射方式输出出射光, 使得光源*** 能够满足不同的光路设计需求, 进而提高了光源***的灵活性。
值得说明的是,图 9所示的色轮 902的结构与图 10所示的色轮 1002 的结构有所不同。 在图 9所示的实施例中, 受激发光的出射面与激发光 的入射面分别位于波长转换材料的两侧, 而在图 10 所示的实施例中, 受激发光的出射面与激发光的入射面位于波长转换材料的同一侧, 前者 称为透射式色轮, 后者称为反射式色轮。 透射式色轮具有透明或半透明 的基底材料, 使激发光可以穿透并入射到光波长转换材料, 同时至少部 分受激发光可以穿透并出射出来。 反射式色轮在波长转换材料被激发面 的另一面设置有反射层, 例如反射镜或镀高反射银膜的铝板, 使波长转 换材料所发射的受激发光全部从被激发的一面出射出来。
虽然透射式色轮和反射式色轮具有不同的光学结构, 但是比较图 9 和图 10 的实施例可以看出, 在本发明中两者都可以使用。 进一步的, 两者还可以组合使用, 即在入射到同一个色轮上的至少两束入射光中, 一束为透射式, 另一束为反射式; 相对应的, 色轮上也同时存在透射式 的透明 /半透明村底和反射式的反射层。 通过前面实施例的描述, 本领域 的一般技术人员可以实现透射式与反射式的组合使用, 因此本发明不再 列举实施例赘述。
如图 10所示的本发明的第五实施例的问题在于, 当希望通过设置 于色轮 1002上的散光材料对入射的蓝光进行散射并反射并得到散射光 时, 因为光散射过程不会使光的波长发射改变, 而分光滤光片 1003A和 1003C是通过对不同波长的透射和反射来完成对入射光和出射光的分离 的, 因此散射光不会被 1003A和 1003C反射, 而是直接透射而不能被收 集***收集。 本发明的第六和第七个实施例解决了这个问题。
如图 11 所示, 本发明光源***的第六实施例包括三个光源 (未图 示 )、 色轮 1102、 光路合并*** 1103以及驱动装置 1105。 本实施例的光 源***与图 10所示的光源***的区别在于, 入射光 1101A经分光滤光 片 1103A上的通孔入射到色轮 1102, 并由设置在色轮 1102上的散射材 料在不进行波长转换的情况下进行散射和反射, 以产生散射光形式的出 射光。 利用了散射后光束的光学扩展量的扩大, 分光滤光片 1103A将以 散射光形式入射到分光滤光片 1103A的通孔的外侧区域的出射光反射到 分光滤光片 1103B,实现了入射光与大部分散射光形式的出射光的分离。 该出射光经分光滤光片 1103B透射。入射光 1101C经分光滤光片 1103B 透射后入射到色轮 1102, 并由色轮 1102进行波长转换后产生另一出射 光。 该另一出射光经色轮 1102反射后, 进一步经分光滤光片 1103B反 射。 补充光 1101B则经分光滤光片 1103A、 1103B透射, 以与上述两束 出射光进行光路合并。 在本实施例中, 通过在分光滤光片 1103A上设置 的通孔能将入射光 1101A有效地导引色轮 1102上, 并通过分光滤光片 施例中,分光滤光片 1103A的通孔面积小于分光滤光片 1103A的反射面 积的 1/4。 在其他实施例中, 设置有通孔的分光滤光片 1103A同样适用 于需经色轮 1102 进行波长转换的入射光及出射光。 进一步, 在不需要 透射补充光 1101B的情况下,分光滤光片 1103A也可以由带通孔的反射 镜或其他适当光学膜片代替。
如图 12所示, 本发明光源***的第七实施例包括三个光源 (未图 示)、 色轮 1202、 光路合并*** 1203以及驱动装置 1205。 与第六实施 例近似, 本实施例中也利用了散射后光束的光学扩展量的扩大分离入射 光和大部分散射光形式的出射光。 本实施例的光源***与图 10所示的 光源***的区别在于,入射光 1201 A经反射镜 1203A反射后入射到色轮 1202, 并由设置在色轮 1202 上的散光材料在不进行波长转换的情况下 进行散射和反射, 以产生散射光形式的出射光。 该散射光形式的出射光 从反射镜 1203A外侧出射出来,并在分光滤光片 1203B发生反射和在分 光滤光片 1203C发生透射。 入射光 1201C经分光滤光片 1203C透射后 入射到色轮 1202, 并由色轮 1202进行波长转换产生另一出射光。 该另 一出射光经色轮 1202反射后, 进一步经分光滤光片 1203C反射。 补充 光 1201B则经分光滤光片 1203B、 1203C透射, 以与上述两束出射光进 行光路合并。 在优选实施例中, 反射镜 1203A在色轮 1202上的投影面 积小于分光滤光片 1203B在色轮 1202上的投影面积的 1/4。在其他实施 例中, 反射镜 1203A和分光滤光片 1203B的组合同样适用于需经色轮 1102 进行波长转换的入射光以及出射光。 并且, 在不需要透射补充光 1201B的情况下, 分光滤光片 1203B也可以由反射镜或其他适当光学膜 片代替。
值得说明的是, 入射光入射到色轮上, 无论是发生散射还是激发波 长转换材料产生受激发光, 发射的光束都是发散的, 在实际应用中都需 要利用准直透镜或透镜组进行准直后再与其它光路进行合并。 由于这是 本领域常用的技术手段, 在本发明的所有实施例的示意图和说明中, 没 有描述准直透镜或透镜组而直接使用了准直的受激发光或散射光, 这并 不限制相关光学原件的使用。
在本发明中, 每个光路的开关和发光强度可以分别独立控制。 若采 用 LED或 LD为光源, 则由于半导体光源可以高速调制的特点, 本发明 的光源***的出射光可以成为一个单色光的序列。 该单色光序列可以与 光阀 (例如 Ή公司的 DMD芯片)进行同步进而实现投影显示。
具体来说, 若希望得到一个红-绿-蓝 -红-绿-蓝 -…的单色光时间序 列, 则在红光单色光时间段内, 打开红光所对应的光源 (激发色轮上的 红色波长转换材料的激发光源, 或者红光单色补充光源), 并关闭其它 光源; 在红光段结束绿光段开始时, 关闭所对应的光源并打开绿光所对 应的光源, 依次类推。 在实际应用中, 为了提高投影的亮度, 需要在单色光序列中引入白 光, 例如红-绿 -蓝-白-红 -绿-蓝-白 ...的发光序列。 在这种情况下, 对于红 绿蓝等单色光的时间段, 依然是相对应的光源打开同时关闭其它单色光 光源, 而当白光的时间段开始时, 同时打开红绿蓝三种颜色所对应的光 源, 三种颜色经过光路合并***合并后得到白光出射光, 当白光的时间 段结束红光时间段开始时, 关闭绿光和蓝光所对应的光源, 并保持红光 所对应的光源开启, 依次类推。 与之相类似的, 可以利用绿光和红光同 时开启实现黄色光, 蓝光与绿光同时开启实现青色光, 蓝光与红光同时 开启形成***光, 红绿蓝光同时开启为满负荷的一半得到一半亮度的 白光等等, 针对不同的应用有不同的控制模式。
因此, 本发明还提供了一种投影装置, 其使用上述任意一种光源系 统。除了得到不同时序的光序列,本发明通过对各个光源的独立的控制, 还可以实现最终出射光的颜色在 CIE1931 色域图中的一个特定色域内 连续变化。 该色域的每一个顶点的色坐标就是各光路中的单色光在 CIE1931 中的色坐标。 通过控制每一个光路中发光的亮度, 可以使合并 后的混合光的色坐标发生变化; 具体来说, 提高某一个光路中单色光的 亮度, 会使混合光的色坐标向该单色光的色坐标的方向漂移, 降低该单 色光的亮度则会使混合光的色坐标向该单色光的色坐标的反方向漂移。
因此, 本发明还提供了一种照明装置。 所述的照明装置包含至少两 个光源, 这两个光源发出的光入射到上述任意一种光源***并得到光路 合并后的混合光作为出射光。 该出射光可以直接使用作为照明光源, 也 可以配合后端的投影光学***或准直光学***得到特定形状的照明区 域, 也可以配合图案盘的使用在目标照明区域得到图案盘上特定的图 案。 配合光源的独立控制, 该照明装置还可以得到不同颜色的出射光, 而且出射光的颜色可以在一定的色域范围内连续变化。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或 直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保 护范围内。

Claims

权 利 要 求 书
1. 一种光源***, 其特征在于, 包括:
色轮, 用于在所述色轮的不同位置接收至少两束入射光, 并对应输 出至少两束出射光;
光路合并***, 用于对所述至少两束出射光进行光路合并, 其中,所述色轮上设置有第一区域,所述第一区域接收第一入射光, 并对所述第一入射光进行波长转换, 以产生第一出射光。
2. 根据权利要求 1所述的光源***, 其特征在于, 所述色轮上进一 步设置有第二区域, 所述第二区域接收第二入射光, 并在不进行波长转 换的情况下对所述第二入射光进行透射或反射, 以产生第二出射光。
3. 根据权利要求 1所述的光源***, 其特征在于, 所述色轮上进一 步设置有第二区域, 所述第二区域接收第二入射光, 并对所述第二入射 光进行波长转换, 以产生第二出射光。
4. 根据权利要求 2或 3所述的光源***, 其特征在于, 所述色轮上 进一步设置有第三区域, 所述第三区域接收第三入射光, 并对所述第三 入射光进行波长转换, 以产生第三出射光。
5. 根据权利要求 1所述的光源***, 其特征在于, 所述第一区域进 一步在与所述第一入射光不同的接收位置接收第二入射光, 并对所述第 二入射光进行波长转换, 以产生与所述第一出射光颜色相同的第二出射 光, 所述光路合并***分别对所述第一出射光和所述第二出射光进行过 滤, 以对应产生不同颜色的第三出射光和第四出射光, 并对所述第三出 射光和所述第四出射光进行光路合并。
6. 根据权利要求 5所述的光源***, 其特征在于, 所述第一出射光 和所述第二出射光为黄光或黄绿光, 所述第三出射光为绿光, 所述第四 出射光为红光。
7. 根据权利要求 5所述的光源***, 其特征在于, 所述第一入射光 和所述第二入射光在所述色轮上形成的光斑沿同心的圓形路径作用于 所述第一波长转换区, 其中所述第一入射光和所述第二入射光的圓形路 径的直径相同或不同。
8. 根据权利要求 5所述的光源***, 其特征在于, 所述色轮上进一 步设置有第二区域, 所述第二区域接收第三入射光, 所述第二区域对所 述第三入射光进行波长转换或者在不进行波长转换的情况下对所述第 三入射光进行透射或反射, 以产生第五出射光, 所述光路合并装置对所 述第三出射光、 所述第四出射光和所述第五出射光进行光路合并。
9. 根据权利要求 1所述的光源***, 其特征在于, 所述光路合并系 统包括至少一分光滤光片, 所述分光滤光片透射所述至少两束出射光中 的一出射光的至少部分光谱分量且反射所述至少两束入射光中的另一 出射光的至少部分光谱分量, 以对两束出射光进行光路合并。
10. 根据权利要求 1所述的光源***, 其特征在于, 所述光路合并 ***包括一光学膜片, 所述光学膜片上设置有通孔, 所述至少两束入射 光中的一入射光经所述通孔入射到所述色轮, 所述色轮对入射的所述入 射光进行散射和反射, 以产生散射光形式的出射光, 所述光学膜片进一 步反射以散射光形式入射到所述光学膜片的所述通孔的外侧区域的所 述出射光。
11. 根据权利要求 1所述的光源***, 其特征在于, 光源***还包 括一反射镜, 所述至少两束入射光中的一入射光经所述反射镜反射后入 射到所述色轮, 所述色轮对入射的该入射光进行散射和反射, 以产生散 射光形式的出射光, 该散射光形式的出射光从所述反射镜的外侧出射至 所述光路合并***。
12. 根据权利要求 1至 3、 以及 5至 11中任一项所述的光源***, 其特征在于, 所述光源***进一步包括至少两个光源装置和一控制装 置, 所述至少两个光源装置分别产生所述至少两束入射光中的对应一 个, 所述控制装置独立控制所述至少两个光源装置的开启和关闭和发光 强度。
13. 根据权利要求 10所述的光源***, 其特征在于, 所述光学膜片 为设置有通孔的分光滤光片, 该分光滤光片进一步透射不经过所述色轮 入射到该分光滤光片的补充光, 并将该补充光与入射到该分光滤光片的 通孔的外侧区域的所述出射光进行光路合并。
14.根据权利要求 11所述的光源***, 其特征在于, 所述光学膜片 为分光滤光片, 所述散射光形式的出射光从所述反射镜的外侧出射至该 分光滤光片, 该分光滤光片进一步透射不经过所述色轮入射到该分光滤 光片的补充光, 并将该补充光与从所述反射镜的外侧入射到该分光滤光 片的所述出射光进行光路合并。
15.根据权利要求 1所述的光源***, 其特征在于, 所述光路合并 ***进一步接收不经过所述色轮入射到所述光路合并***的补充光, 所 述光路合并***进一步将所述补充光与所述色轮输出的所述至少两束 出射光进行光路合并。
16.根据权利要求 13至 15中任一项所述的光源***,其特征在于, 所述光源***进一步包括至少三个光源装置和一控制装置, 所述至少三 个, 所述控制装置独立控制所述至少三个光源装置的开启和关闭和发光 强度。
17. 根据权利要求 1所述的光源***, 其特征在于, 所述光源*** 进一步包括驱动装置, 所述驱动装置用于驱动所述色轮, 以使所述至少 两束入射光在所述色轮上形成的光斑分别沿预定的路径作用于所述色 轮。
18. 根据权利要求 17所述的光源***, 其特征在于, 所述驱动装置 为转动装置, 以使所述至少两束入射光在所述色轮上形成的光斑分别沿 圓形路径作用于所述色轮。
19.一种投影装置,其特征在于,所述投影装置包括如权利要求 1-18 任意一项所述的光源***。
20.一种照明装置,其特征在于,所述照明装置包括如权利要求 1-18 任意一项所述的光源***。
PCT/CN2012/075643 2011-11-10 2012-05-17 一种光源***、照明装置及投影装置 WO2013067807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110355290.8A CN102645826B (zh) 2011-11-10 2011-11-10 一种光源***、照明装置及投影装置
CN201110355290.8 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013067807A1 true WO2013067807A1 (zh) 2013-05-16

Family

ID=46658726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075643 WO2013067807A1 (zh) 2011-11-10 2012-05-17 一种光源***、照明装置及投影装置

Country Status (2)

Country Link
CN (4) CN104932187A (zh)
WO (1) WO2013067807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030121A1 (de) * 2014-08-29 2016-03-03 Osram Gmbh Beleuchtungsvorrichtung mit einer wellenlängenkonversionsanordnung

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216209B (zh) * 2012-09-28 2018-10-26 深圳市绎立锐光科技开发有限公司 光源***及相关投影***
CN103713454B (zh) 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影***
CN106842790B (zh) * 2012-09-28 2019-01-08 深圳市光峰光电技术有限公司 光源***及相关投影***
CN103852965B (zh) * 2012-12-05 2016-01-20 台达电子工业股份有限公司 用于一立体投影装置的光源***
CN103968332B (zh) * 2013-01-25 2015-10-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影***
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影***
CN105022210B (zh) * 2014-04-17 2019-07-02 深圳光峰科技股份有限公司 光学***、发光装置及投影***
CN105025280B (zh) * 2014-04-30 2017-11-28 深圳市光峰光电技术有限公司 光源***和投影仪
TWI504832B (zh) * 2014-05-02 2015-10-21 Coretronic Corp 照明系統及投影裝置
CN106154713B (zh) * 2015-04-09 2018-05-15 深圳市光峰光电技术有限公司 光源***和投影***
TWI605295B (zh) * 2015-12-02 2017-11-11 中強光電股份有限公司 投影機及波長轉換裝置
CN106842785B (zh) * 2015-12-03 2018-08-28 深圳市光峰光电技术有限公司 光源模组和应用该光源模组的投影***
CN105573030B (zh) * 2015-12-18 2017-12-19 海信集团有限公司 一种光源及激光投影装置
JP2017151199A (ja) * 2016-02-23 2017-08-31 セイコーエプソン株式会社 波長変換装置、照明装置、およびプロジェクター
CN108107658B (zh) * 2016-11-25 2019-10-25 深圳光峰科技股份有限公司 光源***、投影***及照明装置
CN106527026A (zh) * 2016-12-09 2017-03-22 上海晟智电子科技有限公司 一种激光投影光源实现装置及方法
CN108957921B (zh) * 2017-05-17 2021-05-04 深圳光峰科技股份有限公司 激发光强度控制***及投影***
CN109254485B (zh) 2017-06-29 2021-05-14 深圳光峰科技股份有限公司 光源装置及投影***
CN109696791B (zh) * 2017-10-23 2021-08-03 深圳光峰科技股份有限公司 色轮、光源***及显示设备
CN110132541A (zh) * 2018-02-02 2019-08-16 深圳光峰科技股份有限公司 光源装置及光学镜片测试***
CN110389489B (zh) * 2018-04-19 2021-10-12 深圳光峰科技股份有限公司 光源***、投影设备及色轮
CN110471244A (zh) 2018-05-10 2019-11-19 中强光电股份有限公司 照明***及投影装置
CN110597000A (zh) * 2018-06-13 2019-12-20 中强光电股份有限公司 照明***、投影装置以及投影装置的投影方法
CN110737086B (zh) 2018-07-19 2022-11-22 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法以及投影装置
CN108758453A (zh) * 2018-08-03 2018-11-06 佛山市南海区协隆电器有限公司 一种多色星空投影灯
CN108826120A (zh) * 2018-08-03 2018-11-16 佛山市南海区协隆电器有限公司 星空投影灯
CN114374828A (zh) * 2018-08-20 2022-04-19 深圳光峰科技股份有限公司 显示设备、显示***及显示方法
CN111221208B (zh) * 2018-11-26 2021-07-23 深圳光峰科技股份有限公司 光源***及投影***
CN111381425B (zh) * 2018-12-29 2022-04-15 深圳光峰科技股份有限公司 光源***及投影装置
CN112147836B (zh) * 2019-06-28 2023-08-04 深圳光峰科技股份有限公司 一种光源***及显示设备
CN110673328B (zh) 2019-10-10 2021-05-07 成都极米科技股份有限公司 一种荧光轮、光源模组和投影机
CN113495411B (zh) 2020-03-19 2024-02-06 中强光电股份有限公司 投影装置及其多色域模式显示方法
CN113064320A (zh) * 2021-02-25 2021-07-02 江苏师范大学 一种提高绿光亮度的光源***
CN113467174B (zh) * 2021-07-23 2022-05-24 无锡视美乐激光显示科技有限公司 一种投影光源结构及其控制方法
CN114624947A (zh) * 2022-01-27 2022-06-14 无锡视美乐激光显示科技有限公司 一种波长转换装置、光源装置及投影***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967636A (en) * 1998-08-19 1999-10-19 In Focus Systems, Inc. Color wheel synchronization apparatus and method
CN101840143A (zh) * 2009-03-19 2010-09-22 杭州三花科特光电有限公司 投影机多光源照明装置
JP2010262312A (ja) * 2010-08-09 2010-11-18 Necディスプレイソリューションズ株式会社 投写型表示装置
CN101933145A (zh) * 2008-01-31 2010-12-29 欧司朗光电半导体有限公司 光电子模块和带有光电子模块的投影装置
WO2011092841A1 (ja) * 2010-01-29 2011-08-04 Necディスプレイソリューションズ株式会社 照明光学系とこれを用いたプロジェクタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462839C (zh) * 2004-12-11 2009-02-18 鸿富锦精密工业(深圳)有限公司 微镜投影仪
CN1847971B (zh) * 2005-04-04 2010-05-12 中华映管股份有限公司 液晶投影显示器
CN101460778B (zh) * 2006-06-02 2011-04-27 皇家飞利浦电子股份有限公司 彩色光和白光发光器件
CN101109488A (zh) * 2007-08-23 2008-01-23 福州高意光学有限公司 多基色led的发光结构及其在投影机和照明***中的应用
CN101430492B (zh) * 2007-11-08 2011-05-18 北京中视中科光电技术有限公司 一种用于投影***的光源装置及投影显示装置
US8851684B2 (en) * 2009-06-18 2014-10-07 Nec Display Solutions, Ltd. Optical unit including an integrator optical system, and projection display device including the optical unit
US8684560B2 (en) * 2009-11-18 2014-04-01 Stanley Electric Co., Ltd. Semiconductor light source apparatus and lighting unit
JP5617288B2 (ja) * 2010-03-18 2014-11-05 セイコーエプソン株式会社 照明装置及びプロジェクター
EP2556293B1 (en) * 2010-04-07 2018-01-10 Appotronics Corporation Limited High brightness illumination device using double-sided excitation of wavelength conversion materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967636A (en) * 1998-08-19 1999-10-19 In Focus Systems, Inc. Color wheel synchronization apparatus and method
CN101933145A (zh) * 2008-01-31 2010-12-29 欧司朗光电半导体有限公司 光电子模块和带有光电子模块的投影装置
CN101840143A (zh) * 2009-03-19 2010-09-22 杭州三花科特光电有限公司 投影机多光源照明装置
WO2011092841A1 (ja) * 2010-01-29 2011-08-04 Necディスプレイソリューションズ株式会社 照明光学系とこれを用いたプロジェクタ
JP2010262312A (ja) * 2010-08-09 2010-11-18 Necディスプレイソリューションズ株式会社 投写型表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030121A1 (de) * 2014-08-29 2016-03-03 Osram Gmbh Beleuchtungsvorrichtung mit einer wellenlängenkonversionsanordnung

Also Published As

Publication number Publication date
CN104991406A (zh) 2015-10-21
CN104991407B (zh) 2017-02-01
CN104932187A (zh) 2015-09-23
CN104991406B (zh) 2017-01-25
CN102645826A (zh) 2012-08-22
CN104991407A (zh) 2015-10-21
CN102645826B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2013067807A1 (zh) 一种光源***、照明装置及投影装置
JP6479946B2 (ja) 光源システム及び関連する投影システム
JP4590647B2 (ja) 光源装置およびプロジェクタ装置
JP5870259B2 (ja) 照明装置および該照明装置を備える投射型表示装置
JP4829470B2 (ja) 投写型表示装置
JP5987382B2 (ja) 照明装置、ならびに、投射装置および投射装置の制御方法
US9075299B2 (en) Light source with wavelength conversion device and filter plate
US8662690B2 (en) Multi-colored illumination system with wavelength converter and method
JP5987368B2 (ja) 照明装置および投射装置
JP6422143B2 (ja) プロジェクター及び画像光投射方法
WO2011092841A1 (ja) 照明光学系とこれを用いたプロジェクタ
US8616705B2 (en) Light source device and projection display method
JP5491571B2 (ja) 投写型表示装置
JP7108901B2 (ja) 照明装置及び投写型表示装置
US20220141432A1 (en) Projection display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12848009

Country of ref document: EP

Kind code of ref document: A1