WO2013066109A1 - Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same - Google Patents

Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same Download PDF

Info

Publication number
WO2013066109A1
WO2013066109A1 PCT/KR2012/009190 KR2012009190W WO2013066109A1 WO 2013066109 A1 WO2013066109 A1 WO 2013066109A1 KR 2012009190 W KR2012009190 W KR 2012009190W WO 2013066109 A1 WO2013066109 A1 WO 2013066109A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst composition
polyolefin
catalyst
polymerization
group
Prior art date
Application number
PCT/KR2012/009190
Other languages
French (fr)
Korean (ko)
Inventor
이진우
박철영
최영아
이난영
이동길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120084070A external-priority patent/KR101499819B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280054157.1A priority Critical patent/CN103987737B/en
Priority to JP2014539878A priority patent/JP5956595B2/en
Priority to US14/353,666 priority patent/US9631034B2/en
Publication of WO2013066109A1 publication Critical patent/WO2013066109A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to a non-uniform single site catalyst composition which does not use a separate carrier and a method for producing a polyolefin polymer using the same.
  • Ansa-metallocene compound is a catalyst compound comprising two ligands connected to each other by a bridge group, the ligand group is prevented from rotating by the bridge group, and the activity and structure of the metal center Is determined.
  • the metallocene compound Ansari metal such as is used as a catalyst, in the production of eulre pingye homopolymer or copolymer.
  • the ansa metallocene compound containing a cyclopentadienyl-fluorenyl ligand can produce a high molecular weight polyethylene, and it is known that the microstructure of the polypropylene can be controlled.
  • ansa metallocene compound containing an indenyl ligand is known to be capable of producing polyolefins with excellent activity and improved stereoregularity.
  • Such a metallocene catalyst may be said to be one of homogeneous catalysts as a complex compound dissolved in a solvent in itself.
  • the Ziegler-Vanatta catalyst system used in the existing commercialization plant is a heterogeneous catalyst in which a metal component as an active point is dispersed in solid carrier particles, and the production process is designed according to the characteristics of the heterogeneous catalyst.
  • it is necessary to convert it into a monolithic catalyst which is fixed to a solid surface using a suitable carrier.
  • the catalyst may be supported on at least one carrier selected from the group consisting of silica, silica-alumina, and silica-magnesia.
  • Supported catalysts are also an important patent item in commercialization technology. But, In order to support the metallocene catalyst, a number of cumbersome steps have to be carried out, and the active point of the catalyst is lost depending on the limit of the amount of catalyst supported on the solid carrier and the state of the carrier, thereby lowering the activity of the supported catalyst.
  • the present invention is to provide a catalyst composition for unsupported non-uniform polyolefin polymerization, which is excellent in activity as a catalyst without using a separate carrier, and which can easily control the microstructure of the olefinic polymer during polyolefin polymerization.
  • the present invention also provides a method for preparing the catalyst composition for unsupported non-uniform polyolefin polymerization.
  • the present invention also provides a method for producing polyolefin using the catalyst composition for unsupported non-uniform polyolefin polymerization.
  • the present invention provides a catalyst composition for unsupported non-uniform polyolefin polymerization comprising an ansa metallocene compound represented by Formula 1 below and a cocatalyst compound represented by Formula 2 below.
  • M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
  • X is the same or different halogen from each other
  • A is an element of group 14 and is a bridge group connecting indenyl groups
  • R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
  • R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , R 7 , R 7 ' , R 8 , and R 8' are the same as or different from each other, respectively Hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
  • n is an integer from 1 to 20;
  • M 2 is a Group 13 metal element
  • R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • n is an integer of 2 or more.
  • the present invention also provides a method for producing the catalyst composition for polymerization of the above unsupported non-uniform polyolefin.
  • the present invention also provides a method for producing a polyolefin, including the step of polymerizing at least one of the urepin monomers in the presence of the catalyst composition.
  • the present invention provides a unsupported heterogeneous metallocene catalyst having a high activity without changing the existing process by using a specific ansa metallocene compound and a promoter compound together to form a homogeneous catalyst without using a solid carrier. It is to provide a composition.
  • Such a catalyst composition of the present invention while excellent in activity as a catalyst, can easily control the microstructure of the olefin-based polymer, it is possible to easily produce a polyolefin polymer having the desired physical properties.
  • single-site catalysts having various ligand forms have a cation form through alkylation with an organometallic compound, which is a promoter, thereby polymerizing olefins.
  • the present inventors in the course of studying the metallocene compound, by reacting the ansa metallocene compound substituted with a specific ligand and a functional group with a specific promoter compound without using a separate solid carrier It is possible to prepare a catalyst composition for unsupported non-uniform pleurepin polymerization having a non-uniform single activity point by the catalyst itself, and to prepare a polyolefin using the catalyst composition thus prepared, it is easy to prepare a polyolefin having excellent desired physical properties. It was confirmed that it can be prepared to complete the present invention.
  • a catalyst composition for unsupported non-uniform polyolefin polymerization that does not use a separate carrier.
  • the "unsupported catalyst” means that the ansa metallocene compound and / or the cocatalyst compound exhibiting catalytic activity are used in the polymerization of polyolefin because they are present in an unsupported state such as silica or alumina. do.
  • heterogeous catalyst or “heterogeneous catalyst” means a catalyst that catalyzes a phase different from the reaction material. By reference, it is distinguished from a “homogeous catalyst” which has the same phase as the reaction material and catalyzes.
  • a catalyst in a form in which the catalyst does not melt during polymerization of eleupine and is present in a separate form together with the monomer and the produced polymer, and only such a heterogeneous catalyst is fouling of the polymer and fouling in the reactor. Can be prevented.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is an ansa metallocene compound represented by the following formula (1) and the following.
  • the promoter compound represented by the formula (2) may be bound.
  • M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
  • X is the same or different halogen
  • A is an element of group 14 and is a bridge group connecting indenyl groups
  • R 1 is alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or Aryl;
  • R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
  • R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , R 7 , R 7 ' , R 8 , and R 8' are the same as or different from each other, and each hydrogen, C 1 -C 20 alkyl, alkenyl, alkylaryl, arylalkyl or aryl ';
  • n ⁇ r is an integer from 1 to 20;
  • M 2 is a Group 13 metal element
  • R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • n may be an integer of 2 or more.
  • R 1 and R 2 are each alkyl having 1 to 4 carbon atoms;
  • R 3 and R 3 ' are each hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, or arylalkyl;
  • R 5 and R 5 ' are each hydrogen, aryl having 1 to 20 carbon atoms, or alkylaryl;
  • N is an integer from 1 to 6;
  • R 4, R 4 ', 6 (6', R 7, R 7 ', R 8 eu and R 8' are each hydrogen and A may be a silicon (Si) .
  • the ansa metallocene compound may be an indenyl group as a ligand, and may act as a Lewis base as an oxygen-donor to a bridge group connecting the ligand. It is characterized in that the functional group is substituted.
  • the ansamer thiotavante compound of Formula 1 includes two indenyl groups as ligands, and a Lewis base as an oxygen-donor to a bridge group connecting the ligands.
  • the ansa metallocene compound of Formula 1 may preferably include an indenyl group substituted with an alkyl group at position 2 and an aromatic compound at position 4 as a ligand.
  • the ansa metallocene compound may be effectively used for polypropylene polymerization requiring high stereoregularity by employing an indenyl group ligand instead of a cyclopentyl group or anthracene ligand which can be used for polyethylene polymerization.
  • the cocatalyst compound is characterized by forming a Lewis acid-base bond with the bridge group functional group of the ansa metallocene compound as described above.
  • R 9 is respectively methyl, ethyl, propyl, isopropyl, isopropenyl, n_butyl (n-butyl), sec-butyl (secH ityl), tert-butyl (fer -butyl), pentyl, pentyl, hexyl, octyl, decyl, dodecyl, tree Decyl, tetratradecyl, pentadecyl, pentadecyl, nucledecyl, octadecyl, octodecyl, eikosyl, dokosyl, tetrakosyl, cyclonusil (cyclohexyl), cyclooctyl, phenyl, tolyl, or ethylphenyl; M 2 may be aluminum.
  • m in Formula 2 may be an integer of 2 or more or 2 to 500, preferably an integer of 6 or more or 6 to 300, more preferably 10 or more or an integer of 10 to 100. "As described above, the co-catalyst compound of Formula 2 is Formula
  • the ansa metallocene compound of 1 is characterized in that it comprises a metal element capable of acting as a Lewis acid capable of forming a bond through the Lewis acid-base interaction with the functional group introduced to the bridge group (bridge group) .
  • the cocatalyst compound of Formula 2 may be present in a linear, circular or reticular form, examples of such cocatalyst compounds include methylaluminoxane, ethylaluminoxane, Propyl Aluminoxane, Butyl Aluminoxane, Tetraisobutyl Dialuminoacid
  • tetraethyldialuminoxane may be one or more.
  • the structure of such cocatalyst compounds may be present in a linear, circular, or network form.
  • the cocatalyst compound activates a single active site catalyst to cause polymerization in the future, and at the same time reacts with a functional group such as an alkoxy group substituted in the bridge group of the metallocene compound to form a final metallocene catalyst composition. It allows to form a solid particle form without a separate carrier. That is, while activating the catalyst and at the same time acts as a crosslinking agent for some time, the catalyst composition in the form of particles precipitates and has an excellent effect of obtaining the final catalyst composition in an unsupported heterogeneous state by a simple method.
  • the final catalyst composition according to the present invention is a solid particle, for example, after dissolving the catalyst precursor ansametallocene compound in toluene, dropping or one-shot dropping of a promoter compound such as methylaluminoxane. If the particles are precipitated, and then a solvent such as leuene is removed, a solid catalyst can be obtained without using a separate carrier.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention controls the size of the catalyst particles even when the carrier is not used, does not use the carrier, and performs several decantation and washing steps. It has an excellent effect that fouling does not occur during polymerization by a simple method without going through.
  • At least a part of the ansa metallocene compound and the cocatalyst compound in the catalyst composition for unsupported non-uniform polyolefin resin of the present invention may be included in a Lewis acid-base bond state as described above. have.
  • the cocatalyst compound may be additionally included in a state in which the Lewis acid-base bond is not provided, thereby further enhancing the catalytic activity and thus exhibiting excellent catalytic activity without using a carrier.
  • the molar ratio (MVM 1 ) of the transition metal element (M 1 ) of the ansa metallocene compound and the metal element (M 2 ) of the cocatalyst compound may be 70 to 500, preferably 250 to 480, More preferably 300 to 450 Can be.
  • the molar ratio (MVM 1 ) is less than 70, the activation role of the catalyst may be insufficient, and when the molar ratio (MM 1 ) exceeds 500, the particle size is not controlled due to excessive crosslinking reaction. Problems can arise with morphology.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is a Lewis acid of a functional group introduced into a bridge group of the metallocene compound of Formula 1 and a metal element included in the cocatalyst compound of Formula 2. Bonds are formed through base interactions.
  • the catalyst composition of the present invention by the Lewis acid-base bond between the ansa metallocene catalyst compound and the methyl aluminoxane (MA0) promoter compound without a separate carrier, specifically ionic bond Internal crosslinks can be formed by coordinating with each other to form a final unsupported heterogeneous catalyst composition.
  • the present invention can provide a catalyst composition for unsupported non-uniform polyolefin polymerization comprising a coordination bond such as a bond form, that is, a Lewis acid-base bond, as shown by the following Chemical Formula 3.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is not only catalytically activated by a specific cocatalyst compound as described above, but also with the metallocene compound of Formula 3 as described above.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention may be said that the metallocene compound and the promoter compound are formed by being linked to each other by a Lewis acid-base bond.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is a heterogeneous catalyst itself as a catalyst composition through the reaction of a specific metallocene compound and a promoter compound without using a separate carrier. It is characterized in that it is produced in a composition.
  • the catalyst composition of the present invention may be one in which the -OR 1 functional group in Chemical Formula 1 of the ansa metallocene compound and the metal ' element of the cocatalyst compound are bonded by Lewis acid-base reaction.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization may be in a solid particle state
  • the average particle diameter of the catalyst may be 20 to 200, preferably 30 to 170 im, more preferably 40 im to 150 ⁇ . If the average particle diameter of the catalyst is less than 20, there is a possibility that the fine powder, particle components in the polymer are increased, 200 In the case of an excess of an annealing, it is difficult to control the temperature during polymerization, thereby increasing the possibility of fouling, and the morphology is also poor.
  • an alkoxy tether group may be attached to the silane bridge, and methylaluminoxane may be used as a promoter.
  • the reaction rate may be controlled by slowly dropping methylaluminoxanoic acid into a single active site catalyst having an alkoxy tether group dissolved in toluene.
  • the carrier it is possible to simplify the manufacturing process, to reduce the cost of using the carrier, it is possible to prevent the reduction of the catalyst activity generated during the supporting process.
  • the method for preparing a catalyst composition for unsupported non-uniform polyolefin polymerization may include reacting an ansa metallocene compound represented by Formula 1 and a promoter compound represented by Formula 2 below.
  • M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
  • X is the same or different halogen from each other
  • A is an element of group 14 and is a bridge group connecting indenyl groups
  • R 1 is alkyl ⁇ alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylal 3 ⁇ 4 or aryl;
  • R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , .R 7 , R 7 ' ⁇ R 8 , and R 8' are the same as or different from each other, Hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl, respectively; ' n is an integer from 1 to 20;
  • M 2 is a Group 13 metal element
  • R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
  • n is an integer of 2 or more.
  • the metallocene compound or cocatalyst, and Chemical Formula 1 or Chemical Formula 2, Chemical Formula 3, and corresponding substituents are as described above.
  • the molar ratio (MM 1 ) between the transition metal element (M 1 ) of the ansa metallocene compound and the metal element (M 2 ) of the cocatalyst compound may be 70 to 500, preferably 250 to 480, more preferably. May be 300 to 450
  • the molar ratio (MVM 1 ) is less than 70, the activation role of the catalyst may be insufficient, and when the molar ratio (MVM 1 ) exceeds 500, the particle size is not controlled due to excessive crosslinking reaction. Problems can arise with morphology.
  • At least a part of the ansa metallocene compound and the cocatalyst compound may be included in a Lewis acid-base bond state as described above.
  • the cocatalyst compound may be additionally included in a state in which the Lewis acid-base bond is not provided, thereby further enhancing the catalytic activity and thus exhibiting excellent catalytic activity without using a carrier.
  • the ansa metallocene compound or cocatalyst compound may be dissolved in at least one organic solvent selected from the group consisting of toluene, xylene, methylene chloride, ethyl acetate, ethyl ether, nucleic acid, and the like. Rouen, xylene, etc. can be used. At this time, the amount of the organic solvent can be used to adjust the degree to dissolve the metallocene compound or cocatalyst compound, it is possible to control the degree of dilution in terms of the preferred morphology of the catalyst.
  • the concentration of the organic solvent may be 0.1 g / cm 3 or less or 0.1 mg / cm 3 to 0.1 g / cm 3 , preferably 0.05 g / cm 3 or less, and more preferably 0.01 mg / cm 3 or less. have.
  • the dropping speed may be 10 cc / min or less or 0.2 to 10 cc / min, preferably 5 cc / min or less, and more preferably 1 cc / min or less.
  • the dropping speed can be adjusted in terms of effectively maintaining the overall process efficiency. However, if the dropping speed is too fast, for example, if it exceeds 10 cc / min, the reaction proceeds abruptly and the size of the catalyst particles produced is too large. In this case, problems may occur in catalyst injection during polymerization, and the polymer size distribution may be widened.
  • the present invention in addition, in addition to the above-described steps, before or after each of the above steps, the present invention generally performs. Steps to further As it may include, the above-described steps do not limit the manufacturing method of the present invention.
  • a method for producing a polyolefin comprising the step of polymerizing at least one or more olefin monomers in the presence of the unsupported non-uniform catalyst composition.
  • the present invention by reacting a specific ansa metallocene compound with a specific cocatalyst compound to form a heterogeneous metallocene catalyst having a solid particle form to perform olefin polymerization, in particular propylene polymerization.
  • the activity of the catalyst generally has the advantage of obtaining a polymer without fouling while having a very good activity compared to the supported catalyst made by supporting the carrier.
  • the urepin monomers are ethylene, propylene, 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pente, 1-octene, 1-decene, 1-dodecene, 1 pentadedecene, 1-nucleus It may be at least one selected from the group consisting of decene, 1-octadecene, 1-eicosene, and combinations thereof.
  • the polymerization of the polyolefin can be carried out by reacting for 1 to 24 hours at a temperature and a pressure of 10 to 100 kgf / cm 2 from 25 to 500 ° C i.
  • the polymerization reaction temperature is preferably 25 to 200 ° C (Celsius, Celsius), more preferably 50 to 100 ° C.
  • the polymerization reaction pressure is preferably 1 to 70 kgf / cm 2 , more preferably 5 to 40 kgf / cm 2 .
  • the polymerization reaction time is preferably 1 to 5 hours, more preferably 1 to 2 hours.
  • the polymerization process can control the polymer product and the molecular weight range finally produced according to the hydrogenation or non-addition conditions.
  • a high molecular weight polyolefin can be produced under the condition that hydrogen is not added, and low molecular weight polyolefin can be produced even by adding a small amount of hydrogen when hydrogen is added.
  • the hydrogen content added to the polymerization process is in the range of 0.07 L to 4 L under 1 atmosphere of semi-aqueous conditions, or is supplied at a pressure of 1 bar to 40 bar or 168 ppm to 8 in the molar content of hydrogen relative to the olepin monomer. It can be supplied at 000 ppm.
  • the polyolefin prepared using the unsupported non-uniform polyolefin resin catalyst composition of the present invention may have a higher molecular weight than when using a conventional metallocene catalyst.
  • the resulting polyolefin has a weight average molecular weight (Mw) of 200,000 or more or 200,000 to 200,000. 600,000, preferably 250,000 or more, more preferably 300,000 or more.
  • the catalyst composition for unsupported non-uniform polyolefin reinforcement of the present invention when the polymerization process is carried out under the conditions of adding hydrogen, for example, the conditions of adding 0.37 L of hydrogen under 1 atmosphere of semi-aqueous conditions
  • the resulting polyolefin may have an increased average molecular weight (Mw) of 90,000 or less or 55,000 to 90,000, preferably 85,000 or less, and more preferably 80,000 or less.
  • the polyolefin prepared by this method may have a molecular weight distribution (Mw / Mn) of 1 to 4, preferably 1.2 to 3.5, more preferably 1.5 to 3.
  • the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is 6.0 kg, calculated as the ratio of the weight (kg) of the polymer produced per unit weight content (g) of the catalyst used based on the unit time (h). / gCat-hr or more, or 6.0 to 50 kg / gCat-hr, preferably 7.0 kg / gCat-hr or more, more preferably 8.0 kg / gCat-hr or more.
  • the polyolefins thus produced may have a stereoregularity (XI) of at least 90%, preferably at least 92% and more preferably at least 953 ⁇ 4.
  • the stereoregularity diagram (XI) of the polyolefin is a value calculated according to the following formula (1).
  • VbO volume of initial xylene (mL)
  • Vbl volume (mL) of polymer taken from xylene
  • Vb2 volume of collected xylene used in the blank test (mL),
  • W2 sum of the weight of the polymer remaining in the aluminum pan after the evaporation of the aluminum pan and ⁇ xylene (g),
  • W1 weight of aluminum pan (g)
  • B average value (g) of residues remaining in the aluminum pan during the ball test.
  • the catalyst composition for unsupported non-uniform polyolefin resin polymerization of the present invention includes a specific ansa metallocene compound and a specific co-catalyst compound, so that the polyolefin having excellent physical properties can be prepared by using the catalyst itself without a separate carrier. there '.
  • the catalyst composition of the present invention exhibits excellent catalytic activity and can easily control the microstructure of the polymer, thereby easily preparing a polyolefin having desired physical properties.
  • the catalyst composition of the present invention can obtain a very high catalytic activity compared to the ' supported catalyst ' which is supported on the solid support by reacting the existing metallocene compound with the cocatalyst compound.
  • a catalyst composition for non-uniform non-uniform polyolefin polymerization was prepared by using the following method. Synthesis of Metallocene Compounds
  • Step 2 Synthesis of (6-t-butoxynucleosil) (methyl) -bis (2-methyl-4-phenylindenyl) silane
  • Step 3 Synthesis of [(6-t-butoxyhexylmethylsilane-diyl) -bis (2-methyl-4-phenylindenyl)] zirconium dichloride
  • the obtained metallocene compound was equivalent to the homogeneous catalyst melt
  • the molar ratio (Al / Zr) of the metal element of the metallocene compound and methylaluminoxane was set to 375.
  • the upper solution was removed.
  • the unsupported non-uniform metallocene catalyst composition thus obtained is a separate It was prepared as a heterogeneous catalyst composition by only the cocatalyst and the activation reaction itself without using a carrier.
  • Example 2 Carrier in the same manner as in Example 1, except that methylaluminoxane (MA0) was added to the shrink flask in which the metallocene compound was dissolved in one batch instead of dropwise. 0.27 g of an unsupported non-uniform metallocene catalyst having a powder particle form having an average particle diameter of 150 / dl was obtained without using.
  • MA0 methylaluminoxane
  • Triethylaluminum is used instead of methylaluminoxane (MA0) as a promoter, except that the molar ratio (Al / Zr) of the metal element of the metallocene compound and triethylaluminum (TEA) is 50.
  • TMA Triethylaluminum
  • Triisobutylaluminum (TIBA) is used instead of methylaluminoxane (MA0) as a cocatalyst and reacted so that the molar ratio (Al / Zr) of the metal element of the metallocene compound and triisobutylaluminum (TIBA) is 25. Except for the preparation of the unsupported heterogeneous catalyst in the same manner as in Example 2, a catalyst in the form of particles was not obtained. Comparative Example 3
  • methyl aluminoxane (MA0) 52 mirol was added in one batch (One-Shot) and reacted at 90 ° C. for 24 hours. After precipitation, the upper layer was removed and washed twice with toluene to obtain 3 g of a silica carrier carrying methylaluminoxane (MA0).
  • the metal element molar ratio (Al / Zr) of the metallocene compound and methylaluminoxane supported on silica was 215. Thereafter, the resultant was dried in vacuo to obtain 5 g of a silica-supported metallocene catalyst composition having a powder particle form having an average particle diameter of 30 / cc.
  • Triethylaluminum (TEA) was used as a cocatalyst according to Comparative Example 1, and the reaction was carried out such that the molar ratio (Al / Zr) of the metal element of the metallocene compound to the triethylaluminum was 50.
  • a catalyst composition for polyolefin polymerization was prepared in the same manner as in Comparative Example 3, except that the ansa metallocene compound of Formula 5 was prepared and used.
  • Step 2 Preparation of ⁇ dimethylsilanediylbis (2-methyl-4-phenylindenyl)] zirconium dichloride
  • a catalyst composition for polyolefin polymerization was prepared in the same manner as in Comparative Example 3, except that the ansa metallocene compound of Formula 7 was prepared and used.
  • the polypropylene polymer was prepared in the following manner, respectively. Prepared. Propylene polymerization
  • the propylene polymerization process was carried out in a bulk polymerization process using the metallocene catalyst composition under the conditions as shown in Table 1 below.
  • the 2 L stainless steel was dried under vacuum at 65 ° C., and then quenched, triethylaluminum 3 ⁇ was added at room temperature, and 1.5 L of propylene was sequentially added.
  • the metallocene catalyst composition prepared according to Examples 1 and 2 and Comparative Examples 3 to 8, respectively, to 0.02 g or 0.006 g, respectively.
  • the reaction was performed by additionally adding hydrogen gas together with the metallocene catalyst composition (see Table 1). Thereafter, the temperature of the reactor was slowly raised to 70 ° C. and then polymerized for 1 hour. After the reaction was completed, unreacted propylene was vented. At this time, the content and activity of the catalyst composition used and the physical properties of the resulting polymer are measured and shown in Table 1 below.
  • Catalyst activity calculated as the ratio of the weight of polymer produced (kg PP) per catalyst amount (g Cat) used, based on unit time (h).
  • the melting point of the polymer was measured using a Calorimeter, DSC, a device name: DSC 2920, and a TA instrument. ⁇ Specifically, the polymer was heated to 220 ° C and maintained at that temperature for 5 minutes, and then lowered to 20 ° C and increased again. At this time, the rate of rise and fall of temperature was 10 ° C / min, respectively. Adjusted to.
  • Crystallization temperature (Tc) of the polymer The crystallization temperature was determined from a curve appearing while decreasing the temperature under the same conditions as the melting point using DSC.
  • 0-xylene was first prepared in a flask and then 200 mm No. Filtered with 4 extraction paper.
  • the aluminum pan was dried in an oven at 150 ° C. for 30 minutes, then angled in a desiccator and weighed.
  • 100 mL of filtered xylene was collected by a pipette, transferred to an aluminum pan, and heated to 145 to 150 ° C. to evaporate all the xylenes.
  • the aluminum pan was then vacuum dried for 1 hour under a temperature of 100 ⁇ 5 ° C and a pressure of 1 hr, 13.3 kPa. After the aluminum pan is chopped off the desiccator, By repeating the procedure twice, the 0-xylene only blank test was completed with a weight error of 0.0002 g.
  • the polypropylene polymer prepared using a metallocene catalyst was r dried (70 ° C., 13.3 kPa, 60 minutes, vacuum dried), followed by 500 mL of 2 g ⁇ 0.0001 g of the polymer sample, which was detected by a desiccator.
  • Into a flask of 200 mL o-xylene was added thereto. The flask was connected to nitrogen and cooling water and the flask was heated to reflux 0-xylene for 1 hour. Thereafter, the flask was placed in air for 5 minutes, angled to 100 ° C. or less, and the flask was shaken and placed in a thermostat (25 ⁇ 0.5 ° C.) for 30 minutes to precipitate insoluble matters.
  • the resultant solution formed precipitate was 200 ⁇ No. Filtration was repeated with 4 extraction paper until clear. After drying at 150 ° C for 30 minutes, add 100 mL of the filtered solution to a pre-weighed aluminum pan after cooling in a desiccator and evaporate 0-xylene by heating the aluminum pan to 145 to 150 ° C. I was. The evaporated aluminum pan was vacuum dried for 1 hour at a temperature of 70 ⁇ 5 ° C. and a pressure of 13.3 kPa, and weighed in an error of 0.0002 g by repeating the process in a desiccator twice.
  • VbO volume of initial ⁇ xylene (mL)
  • Vbl volume (mL) of polymer taken from xylene
  • Vb2 volume of £ ⁇ xylene taken in the ball test (mL)
  • PDI Molecular weight distribution
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the catalyst size was adjusted to 50 m level by dropwise addition of 10 wt% methylaluminoxane at a rate of 0.5 cc / min, so that the morphology of the polymer was better, and the molecular weight distribution was also reduced to 1.90. It is early and can be seen that the improvement in a significantly narrow range.
  • the size of the final unsupported heterogeneous catalyst composition could be adjusted to 50. It is possible to prepare a catalyst composition with a better morphology of polypropylene obtained after polymerization with a narrower molecular weight distribution.
  • a catalyst having a larger particle size can be obtained.
  • the present invention has the advantage that it is easy to control the microstructure of the olefin polymer during polyolefin polymerization.
  • Comparative Preparation Examples 1 to 7 in which the olefin polymerization process was carried out using the silica supported metallocene catalysts of Comparative Examples 3 to 8 prepared by using the carrier according to the existing process were subjected to a complicated supporting process.
  • the catalyst activity was found to drop significantly below 5.2 kg / gCat-hr.
  • Comparative Examples 3 and 6 the polymerization process itself did not occur, and in Comparative Example 4, the catalytic activity was very low, 0.12 kg / gCat ⁇ hr.
  • the catalysts of Examples 1 to 2 without using a carrier according to the present invention have a very high catalytic activity compared to the catalysts of Comparative Examples 3 to 8 supported on silica, and are controlled by the dropping rate of methylaluminoxane.
  • Example 1 had a catalyst size of 50 to facilitate injection of the catalyst during polymerization, uniform size of the resulting pulley propylene, and better morphology.
  • Examples 1 and 2 are composed of shorter time, lower temperature, and simpler steps than Comparative Examples 3 to 8 using the carrier.

Abstract

The present invention relates to a polyolefin polymerization metallocene catalyst composition, and more particularly, to a non-supported heterogeneous polyolefin polymerization catalyst composition in which a specific ansa-metallocene compound and a cocatalyst compound are included as being bonded with each other without a separate supporter, and to a method for preparing the composition and a method for preparing polyolefin using the composition. According to the present invention, a specific ansa-metallocene compound and a cocatalyst compound which have superior activity as a catalyst and which can easily control the fine structure of olefin-based polymers are formed into a heterogeneous catalyst composition even without using a solid supporter. Thus, a non-supported heterogeneous metallocene catalyst composition having high activity is provided without changing existing processes.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
비담지 비균일계 폴리올레핀 중합용촉매 조성물 및 그의 제조 방법 【기술분야】  Unsupported non-uniform polyolefin polymerization catalyst composition and its production method
본 발명은 별도의 담지체를 사용하지 않는 비균일 단일 활성점 촉매 조성물 및 이를 이용한 폴리올레핀 중합체의 제조 방법에 관한 것이다. 【배경기술】  The present invention relates to a non-uniform single site catalyst composition which does not use a separate carrier and a method for producing a polyolefin polymer using the same. Background Art
안사 메탈로센 (ansa-metallocene) 화합물은 브릿지 그룹에 의해 서로 연결된 두 개의 리간드를 포함하는 촉매 화합물로서, 상기 브릿지 그룹 (bridge group)에 의해 리간드의 회전이 방지되고, 메탈 센터의 활성 및 구조가 결정된다.  Ansa-metallocene compound is a catalyst compound comprising two ligands connected to each other by a bridge group, the ligand group is prevented from rotating by the bridge group, and the activity and structure of the metal center Is determined.
이와 같은 안사 메탈로센 화합물은 을레핀계 호모폴리머 또는 코폴리머의 제조에 촉매로 사용되고 ' 있다. 특히 사이클로펜타디에닐 (cyclopentadienyl)-플루오레닐 (fluorenyl) 리간드를 포함하는 안사 메탈로센 화합물은 고분자량의 폴리에틸렌을 제조할 수 있으며, 이를 통해 폴리프로필렌의 미세 구조를 제어할 수 있음이 알려져 있다. 또한, 인데닐 (indenyl) 리간드를 포함하는 안사 메탈로센 화합물은 활성이 우수하고 입체 규칙성이 향상된 폴리을레핀을 제조할 수 있는 것으로 알려져 있다. The metallocene compound Ansari metal such as is used as a catalyst, in the production of eulre pingye homopolymer or copolymer. In particular, the ansa metallocene compound containing a cyclopentadienyl-fluorenyl ligand can produce a high molecular weight polyethylene, and it is known that the microstructure of the polypropylene can be controlled. . In addition, ansa metallocene compound containing an indenyl ligand is known to be capable of producing polyolefins with excellent activity and improved stereoregularity.
이러한 메탈로센 촉매는 그 자체로는 용매에 용해되는 착화합물로서 균일계 촉매의 하나라고 할 수 있다. 반면에 기존의 상업화 공장에서 사용되고 있는 지글러ᅳ나타 촉매계는 활성점인 금속 성분이 고체 담체 입자에 분산되어 있는 불균일계 촉매이며 생산공정은 불균일계 촉매의 특성에 맞게 설계되어 있다. 기존의 상업화 공장에서 메탈로센 촉매를 적용하기 위해서는 적당한 담체를 사용하여 고체 표면에 고정하는 담자 촉매 형태로 변환할 필요가 있다. 각종 담체 및 담지 방법에 관한 많은 연구가 되어 있고, 촉매는 실리카, 실리카-알루미나 및 실리카- 마그네시아로 이루어진 군에서 선택되는 1종 이상의 담체에 담지된 것일 수 있다.  Such a metallocene catalyst may be said to be one of homogeneous catalysts as a complex compound dissolved in a solvent in itself. On the other hand, the Ziegler-Vanatta catalyst system used in the existing commercialization plant is a heterogeneous catalyst in which a metal component as an active point is dispersed in solid carrier particles, and the production process is designed according to the characteristics of the heterogeneous catalyst. In order to apply a metallocene catalyst in an existing commercial plant, it is necessary to convert it into a monolithic catalyst which is fixed to a solid surface using a suitable carrier. There have been many studies on various carriers and supporting methods, and the catalyst may be supported on at least one carrier selected from the group consisting of silica, silica-alumina, and silica-magnesia.
담지 촉매는 상업화 기술의 중요한 특허 항목이기도 하다. 그러나, 메탈로센 촉매를 담지하기 위해선 번거로운 많은 단계를 거쳐야 하며, 고체 담체에 담지되는 촉매량의 한계 및 담체의 상태에 따라 촉매의 활성점이 손실되어 담지 촉매의 활성이 매우 낮아지게 된다. Supported catalysts are also an important patent item in commercialization technology. But, In order to support the metallocene catalyst, a number of cumbersome steps have to be carried out, and the active point of the catalyst is lost depending on the limit of the amount of catalyst supported on the solid carrier and the state of the carrier, thereby lowering the activity of the supported catalyst.
또한, 에멀견화법 (emulsion format ion)을 통하여 담체를 사용하지 않는 비균일계 촉매를 제조시에는 촉매와 조촉매를 제외한 제 3의 용매를 사용해야 하며, 더불어 촉매의 활성에 악영향을 줄 수 있는 계면활성제를 사용해야 한다. 특히, 별도의 에멀견화법을 실시한 후 다시 고체화를 실시하여 최종 촉매를 분리하여 제조하는 매우 복잡한 과정을 거치게 되는 공정상 단점이 있다.  In addition, when preparing a non-homogeneous catalyst that does not use a carrier through an emulsion format ion, a third solvent except for the catalyst and the cocatalyst should be used, and an interface which may adversely affect the activity of the catalyst. Active agents should be used. In particular, there is a disadvantage in the process of going through a very complicated process of separating and preparing the final catalyst by performing a solidification again after the separate emulsification method.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 별도의 담지체를 사용하지 않고서도 촉매로서의 활성이 우수하면서도, 플리올레핀 중합시 을레핀계 폴리머의 미세 구조를 쉽게 제어할 수 있는 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 제공하고자 한다.  The present invention is to provide a catalyst composition for unsupported non-uniform polyolefin polymerization, which is excellent in activity as a catalyst without using a separate carrier, and which can easily control the microstructure of the olefinic polymer during polyolefin polymerization.
본 발명은 또한, 상기 비담지 비균일계 폴리을레핀 중합용 촉매 조성물의 제조 방법을 제공하고자 한다.  The present invention also provides a method for preparing the catalyst composition for unsupported non-uniform polyolefin polymerization.
본 발명은 또한, 상기 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 사용하는 폴리을레핀의 제조 방법을 제공하고자 한다.  The present invention also provides a method for producing polyolefin using the catalyst composition for unsupported non-uniform polyolefin polymerization.
【과제의 해결 수단】  [Measures of problem]
본 발명은 하기 화학식 1로 표시되는 안사 메탈로센 화합물과 하기 화학식 2로 표시되는 조촉매 화합물을 포함하는 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 제공한다.  The present invention provides a catalyst composition for unsupported non-uniform polyolefin polymerization comprising an ansa metallocene compound represented by Formula 1 below and a cocatalyst compound represented by Formula 2 below.
[화학식 1] [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1에서,  In Chemical Formula 1,
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
X는 서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen from each other;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
R3, R3', R4, R4', R5, R5', R6, R6' , R7, R7', R8, 및 R8'은 서로 동일하거나 상이하고, 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , R 7 , R 7 ' , R 8 , and R 8' are the same as or different from each other, respectively Hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
n은 1 내지 20의 정수이고;  n is an integer from 1 to 20;
[화학식 2]
Figure imgf000006_0001
상기 화학식 2에서,
[Formula 2]
Figure imgf000006_0001
In Chemical Formula 2,
M2은 13족 금속 원소이고; M 2 is a Group 13 metal element;
R9는 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
m은 2 이상의 정수이다.  m is an integer of 2 or more.
본 발명은 또한, 상기 비담지 비균일계 폴리올레핀 중합용 촉매 조성물의 제조 방법을 제공한다.  The present invention also provides a method for producing the catalyst composition for polymerization of the above unsupported non-uniform polyolefin.
본 발명은 또한, 상기 촉매 조성물의 존재 하에, 적어도 1 종 이상의 을레핀 단량체를 중합시키는 단계를 포함하는 폴리을레핀의 제조방법을 제공한다.  The present invention also provides a method for producing a polyolefin, including the step of polymerizing at least one of the urepin monomers in the presence of the catalyst composition.
이하, 발명의 구체적인 구현예에 따른 비담지 비균일계 폴리올레핀 중합용 촉매 조성물 및 그의 제조 방법, 상기 촉매 조성물을 사용한 폴리을레핀의 제조방법에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.  Hereinafter, a catalyst composition for unsupported non-uniform polyolefin polymerization, a method for preparing the same, and a method for preparing polyolefin using the catalyst composition according to a specific embodiment of the present invention will be described in detail. However, this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유''라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.  In addition, unless otherwise indicated throughout the specification, "including" or "containing" refers to the inclusion of any component (or component) without particular limitation, and the addition of other components (or component) Cannot be interpreted as excluding.
본 발명은 특정의 안사 메탈로센 화합물과 조촉매 화합물을 함께 사용하여 고체 담체에 사용하지 않고서도 블균일계 촉매 형태로 만들어 기존 공정의 변화 없이 높은 활성을 갖는 비담지된 불균일계 메탈로센 촉매 조성물을 제공하는 것이다. 이러한 본 발명의 촉매 조성물은, 촉매로서의 활성이 우수하면서도, 올레핀계 고분자의 미세 구조를 쉽게 제어할 수 있어, 원하는 물성을갖는 폴리을레핀 중합체를 용이하게 제조할 수 있다. 일반적으로 다양한 리간드 형태를 갖는 단일활성점 촉매는 조촉매인 유기금속 화합물 등을 통한 알킬화를 통해 양이온 형태를 띄게 됨으로써 올레핀을 중합하게 된다. 현재 대부분의 상업화 공정은 슬러리 중합, 기상 중합 또는 벌크 중합을 통해 폴리올레핀을 생산하고 있다. 이런 기존의 상업화 공장에서 단일 활성점 촉매를 적용하기 위해선, 다양한 담체를 사용하여 담지된 형태의 단일 활성점 촉매가 제조되어야 한다. 즉, 담지 촉매를 만들기 위해선 여러 단계의 담지 반응과 분리 과정을 거쳐 긴 반웅 시간에 걸쳐 담지를 하게 된다. 그럼에도 불구하고, 담지할 수 있는 촉매 및 조촉매량의 한계 그리고 담지시 수반되는 촉매 활성의 감소는 피할 수 없다. The present invention provides a unsupported heterogeneous metallocene catalyst having a high activity without changing the existing process by using a specific ansa metallocene compound and a promoter compound together to form a homogeneous catalyst without using a solid carrier. It is to provide a composition. Such a catalyst composition of the present invention, while excellent in activity as a catalyst, can easily control the microstructure of the olefin-based polymer, it is possible to easily produce a polyolefin polymer having the desired physical properties. In general, single-site catalysts having various ligand forms have a cation form through alkylation with an organometallic compound, which is a promoter, thereby polymerizing olefins. Most commercial processes currently produce polyolefins through slurry polymerization, gas phase polymerization or bulk polymerization. In order to apply a single site catalyst in such a commercial plant, a single site catalyst in a supported form has to be prepared using various carriers. That is, in order to make a supported catalyst, it is supported over a long reaction time through several supported reactions and separation processes. Nevertheless, the limits of the amount of catalyst and promoters that can be supported and the reduction of the catalytic activity accompanying the loading are inevitable.
본 발명에서는 이런 담체에 활성화된 촉매를 담지하는 과정 자체를 생략함으로써, 전체 공정을 효율적으로 간략화하였으며 별도의 촉매를 활성화시키는 과정 또한 생략하였다. 즉, 단일 활성점 촉매의 활성화 과정과 담체가 없이도 균일한 형태의 입상 촉매를 동시에 한 공정에서 얻을 수가 있게 된다. ' In the present invention, by omitting the process of supporting the activated catalyst on such a carrier itself, the entire process is efficiently simplified and the process of activating a separate catalyst is also omitted. In other words, it is possible to obtain a uniform granular catalyst at the same time without the activation process of the single site catalyst and the carrier. '
특히, 본 발명자들은 메탈로센 화합물에 대한 연구를 거듭하는 과정에서, 특정의 리간드 및 작용기가 치환되어 있는 안사 메탈로센 화합물을 특정의 조촉매 화합물과 반응시킴으로써 별도의 고체 담체를 사용하지 않고서도 촉매 자체로 비균일계 단일 활성점을 갖는 비담지 비균일계 플리을레핀 중합용 촉매 조성물을 제조할 수 있으며, 이렇게 제조되는 촉매 조성물을 사용하여 폴리올레핀을 제조할 경우 목적하는 우수한 물성을 갖는 폴리올레핀을 쉽게 제조할 수 있음을 확인하여 본 발명을 완성하였다.  In particular, the present inventors, in the course of studying the metallocene compound, by reacting the ansa metallocene compound substituted with a specific ligand and a functional group with a specific promoter compound without using a separate solid carrier It is possible to prepare a catalyst composition for unsupported non-uniform pleurepin polymerization having a non-uniform single activity point by the catalyst itself, and to prepare a polyolefin using the catalyst composition thus prepared, it is easy to prepare a polyolefin having excellent desired physical properties. It was confirmed that it can be prepared to complete the present invention.
이에 발명의 일 구현예에 따르면, 별도의 담지체를 사용하지 않는 비담지 비균일계 폴리올레핀 중합용 촉매 조성물이 제공된다.  According to one embodiment of the present invention, there is provided a catalyst composition for unsupported non-uniform polyolefin polymerization that does not use a separate carrier.
본 발명에서 "비담지 촉매"라 함은 촉매 활성을 나타내는 안사 메탈로센 화합물 및 /또는 조촉매 화합물이 실리카, 알루미나 등 별도의 담체에 담지되어 있지 않은 상태로 존재하여 폴리올레핀의 중합에 사용됨을 의미한다. 또한, "비균일계 촉매 (heterogeous catalyst)" 또는 "불균일계 촉매"라 함은 반웅 물질과 다른 상 (phase)을 가지고 촉매 작용하는 촉매를 지칭하는 것으로, 반웅 물질과 동일한 상 (phase)을 가지고 촉매 작용을 하는 "균일계 촉매 (homogeous catalyst)"와 구별되는 것이다. 특히, 본 발명에서와 같이 을레핀 중합시 촉매가 녹지 않고 단량체와 생성된 중합체와 함께 별도의 성상으로 존재하는 형태의 촉매를 지칭하는 것으로, 이런 불균일계 촉매만이 중합체의 모폴로지와 반응기내 파울링을 방지할 수 있다. In the present invention, the "unsupported catalyst" means that the ansa metallocene compound and / or the cocatalyst compound exhibiting catalytic activity are used in the polymerization of polyolefin because they are present in an unsupported state such as silica or alumina. do. In addition, "heterogeous catalyst" or "heterogeneous catalyst" means a catalyst that catalyzes a phase different from the reaction material. By reference, it is distinguished from a "homogeous catalyst" which has the same phase as the reaction material and catalyzes. In particular, as in the present invention, refers to a catalyst in a form in which the catalyst does not melt during polymerization of eleupine and is present in a separate form together with the monomer and the produced polymer, and only such a heterogeneous catalyst is fouling of the polymer and fouling in the reactor. Can be prevented.
본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 하기 화학식 1로 표시되는 안사 메탈로센 화합물과 하기. 화학식 2로 표시되는 조촉매 화합물이 결합하고 있는 것이 될 수 있다.  The catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is an ansa metallocene compound represented by the following formula (1) and the following. The promoter compound represented by the formula (2) may be bound.
[화학식 1]  [Formula 1]
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 1에서  In Chemical Formula 1
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
X는서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; R 1 is alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or Aryl;
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
R3, R3', R4, R4', R5, R5', R6, R6' , R7, R7', R8, 및 R8'은 서로 동일하거나 상이하고, 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며' ; R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , R 7 , R 7 ' , R 8 , and R 8' are the same as or different from each other, and each hydrogen, C 1 -C 20 alkyl, alkenyl, alkylaryl, arylalkyl or aryl ';
n^r 1 내지 20의 정수이고;  n ^ r is an integer from 1 to 20;
[화학식 2]  [Formula 2]
Figure imgf000009_0001
상기 화학식 2에서,
Figure imgf000009_0001
In Chemical Formula 2,
M2은 13족 금속 원소이고; M 2 is a Group 13 metal element;
R9는 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
m은 2 이상의 정수일 수 있다.  m may be an integer of 2 or more.
바람직하게는, 상기 화학식 1에서 R1 및 R2가 각각 탄소수 1 내지 4의 알킬이고; R3 및 R3'가 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐, 또는 아릴알킬이며; R5 및 R5'가 각각 수소, 탄소수 1 내지 20의 아릴, 또는 알킬아릴이며 ; R4, R4', 6 ( 6', R7,. R7', R8ᅳ 및 R8'은 각각 수소이고; n이 1 내지 6의 정수이고; A는 규소 (Si)일 수 있다. Preferably, in Formula 1, R 1 and R 2 are each alkyl having 1 to 4 carbon atoms; R 3 and R 3 ' are each hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, or arylalkyl; R 5 and R 5 ' are each hydrogen, aryl having 1 to 20 carbon atoms, or alkylaryl; . N is an integer from 1 to 6;; R 4, R 4 ', 6 (6', R 7, R 7 ', R 8 eu and R 8' are each hydrogen and A may be a silicon (Si) .
본 발명에서 상기 안사 메탈로센 화합물은 인데닐기 (indenyl group)를 리간드로 하고, 상기 리간드를 연결하는 브릿지 그룹 (bridge group)에 산소 -주게 (oxygen-donor)로서 루이스 염기의 역할을 할 수 있는 작용기가 치환되어 있는 것을 특징으로 한다. 특히, 상기 화학식 1의 안사 머 ί탈로센 화합물은 리간드로 두 개의 인데닐기 (indenyl group)를 포함하며, 상기 리간드를 연결하는 브릿지 그룹 (bridge group)에 산소—주게 (oxygen- donor)로서 루이스 염기의 역할을 할 수 있는 작용기가 치환되어 있어 촉매로서의 활성을 극대화할 수 있는 장점이 있다. 상기 화학식 1의 안사 메탈로센 화합물은 바람직하게는, 2번 위치에 알킬기가 치환되고 4번 위치에 방향족 화합물이 치환된 인데닐기 (indenyl group)를 리간드로 포함할 수 있다. 또한, 본 발명에서는 바람직하게는 상기 안사 메탈로센 화합물의 실란 브릿지에 알콕시 테더 (tether) 그룹을 결합시킬 수 있다. In the present invention, the ansa metallocene compound may be an indenyl group as a ligand, and may act as a Lewis base as an oxygen-donor to a bridge group connecting the ligand. It is characterized in that the functional group is substituted. In particular, the ansamer thiotalosene compound of Formula 1 includes two indenyl groups as ligands, and a Lewis base as an oxygen-donor to a bridge group connecting the ligands. There is an advantage that can maximize the activity as a catalyst is substituted with a functional group that can play a role. The ansa metallocene compound of Formula 1 may preferably include an indenyl group substituted with an alkyl group at position 2 and an aromatic compound at position 4 as a ligand. In addition, in the present invention, it is preferable to bind an alkoxy tether group to the silane bridge of the ansa metallocene compound.
본 발명에서 상기 안사 메탈로센 화합물은 기존에 폴리에틸렌 중합 등에 사용 가능한 시클로펜틸기나 안트라센 리간드 대신에 인데닐기 (indenyl group) 리간드를 채용함으로써 높은 입체규칙성을 요구하는 폴리프로필렌 중합 등에 효과적으로 사용할 수 있다.  In the present invention, the ansa metallocene compound may be effectively used for polypropylene polymerization requiring high stereoregularity by employing an indenyl group ligand instead of a cyclopentyl group or anthracene ligand which can be used for polyethylene polymerization.
한편, 본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물에서 조촉매 화합물은 상술한 바와 같은 안사 메탈로센 화합물의 브릿지 그룹 작용기와 루이스 산 -염기 결합을 형성하는 것을 특징으로 한다. 특히, 상기 조촉매 화합물은 바람직하게는, 상기 화학식 2에서 R9가 각각 메틸 (methyl), 에틸 (ethyl), 프로필 (propyl), 이소프로필 (isopropyl), 이소프로펜일 (isopropenyl), n_부틸 (n-butyl), sec-부틸 (secH ityl ), tert- 부틸 (fer -butyl), 펜틸 (pentyl), 핵실 (hexyl), 옥틸 (octyl), 데실 (decyl), 도데실 (dodecyl), 트리데실 (tr idecyl ) , 테트라데실 (tetradecyl ), 펜타데실 (pentadecyl), 핵사데실 (hexadecyl ), 옥타데실 (Octadecyl ), 에이코실 (eikosyl), 도코실 (dokosyl ) , 테트라코실 (tetrakosyl ), 시클로핵실 (cyclohexyl), 시클로옥틸 (cyclooctyl), 페닐 (phenyl), 를릴 (tolyl), 또는 에틸페닐 (ethylphenyl)이며; M2은 알루미늄일 수 있다. 또한, 상기 화학식 2에서 m은 2 이상 또는 2 내지 500의 정수가 될 수 있으며, 바람직하게는 6 이상 또는 6 내지 300의 정수, 좀더 바람직하게는 10 이상 또는 10 내지 100의 정수가 될 수 있다. ' 상술한 바와 같이 , 상기 화학식 2의 조촉매 화합물은 상기 화학식On the other hand, in the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention, the cocatalyst compound is characterized by forming a Lewis acid-base bond with the bridge group functional group of the ansa metallocene compound as described above. In particular, the cocatalyst compound preferably, in Formula 2, R 9 is respectively methyl, ethyl, propyl, isopropyl, isopropenyl, n_butyl (n-butyl), sec-butyl (secH ityl), tert-butyl (fer -butyl), pentyl, pentyl, hexyl, octyl, decyl, dodecyl, tree Decyl, tetratradecyl, pentadecyl, pentadecyl, nucledecyl, octadecyl, octodecyl, eikosyl, dokosyl, tetrakosyl, cyclonusil (cyclohexyl), cyclooctyl, phenyl, tolyl, or ethylphenyl; M 2 may be aluminum. In addition, m in Formula 2 may be an integer of 2 or more or 2 to 500, preferably an integer of 6 or more or 6 to 300, more preferably 10 or more or an integer of 10 to 100. "As described above, the co-catalyst compound of Formula 2 is Formula
1의 안사 메탈로센 화합물에서 브릿지 그룹 (bridge group)에 도입된 작용기와 루이스 산 -염기 상호 작용을 통한 결합을 형성할 수 있는 루이스 산의 역할을 할 수 있는 금속 원소를 포함하는 것을 특징으로 한다. 특히, 상기 화학식 2의 조촉매 화합물은 선형, 원형 또는 망상형으로 존재가 가능하며, 이러한 조촉매 화합물의 예는 메틸알루미녹산, 에틸알루미녹산, 프로필알루미녹산, 부틸알루미녹산, 테트라이소부틸디알루미녹산In the ansa metallocene compound of 1 is characterized in that it comprises a metal element capable of acting as a Lewis acid capable of forming a bond through the Lewis acid-base interaction with the functional group introduced to the bridge group (bridge group) . In particular, the cocatalyst compound of Formula 2 may be present in a linear, circular or reticular form, examples of such cocatalyst compounds include methylaluminoxane, ethylaluminoxane, Propyl Aluminoxane, Butyl Aluminoxane, Tetraisobutyl Dialuminoacid
(tetraisobutyldialuminoxane) , 테트라에틸디알루미녹산(tetraisobutyldialuminoxane), tetraethyldialuminoacid
(tetraethyldialuminoxane) 등의 1종 이상이 될 수 있다. 이러한 조촉매 화합물의 구조는 선형, 원형, 또는 망상형 등으로 존재가 가능하다. (tetraethyldialuminoxane) may be one or more. The structure of such cocatalyst compounds may be present in a linear, circular, or network form.
본 발명에서 상기 조촉매 화합물은 단일 활성점 촉매의 활성화를 시켜 향후 중합이 발생되도록 하며, 동시에 메탈로센 화합물의 브릿지 그룹에 치환된 알콕시기 등의 작용기와 반응하여, 최종 메탈로센 촉매 조성물이 별도의 담체 없이도 고체 상태의 입자 형태를 만들도록 하게 된다. 즉, 촉매의 활성화를 하면서 동시에 얼마간의 가교제 역할을 하게 되어, 입자 형태의 촉매 조성물이 침전되어 비담지 불균일계 상태의 최종 촉매 조성물을 간단한 방법으로 얻을 수 있는 우수한 효과를 갖는다. 본 발명에 따른 최종 촉매 조성물은 고체입자이며, 예컨대, 촉매 전구체 안사메탈로센 화합물을 틀루엔에 녹인후 메틸알루미녹산 등의 조촉매 화합물을 적가하거나 (dropwise) 또는 일시 투입 (one-shot dropping)하면 입자가 석출되고, 이후 를루엔 등의 용매를 제거하면 별도의 담체를 사용하지 않고도 고체상의 촉매를 얻을 수 있다.  In the present invention, the cocatalyst compound activates a single active site catalyst to cause polymerization in the future, and at the same time reacts with a functional group such as an alkoxy group substituted in the bridge group of the metallocene compound to form a final metallocene catalyst composition. It allows to form a solid particle form without a separate carrier. That is, while activating the catalyst and at the same time acts as a crosslinking agent for some time, the catalyst composition in the form of particles precipitates and has an excellent effect of obtaining the final catalyst composition in an unsupported heterogeneous state by a simple method. The final catalyst composition according to the present invention is a solid particle, for example, after dissolving the catalyst precursor ansametallocene compound in toluene, dropping or one-shot dropping of a promoter compound such as methylaluminoxane. If the particles are precipitated, and then a solvent such as leuene is removed, a solid catalyst can be obtained without using a separate carrier.
본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 담체를 사용하지 않는 경우임에도 촉매입자의 크기를 조절하며, 담체를 사용하지 않고, 여러 번의 디켄데이션 (decantation) 및 세척 (Washing) 단계 등을 거치지 않고서도 간단한 방법으로 중합시 파울링이 발생하지 않는 우수한 효과를 갖는다.  The catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention controls the size of the catalyst particles even when the carrier is not used, does not use the carrier, and performs several decantation and washing steps. It has an excellent effect that fouling does not occur during polymerization by a simple method without going through.
본 발명의 비담지 비균일계 폴리을레핀 중합용 촉매 조성물에서 상기 안사 메탈로센 화합물과 조촉매 화합물의 적어도 일부는 상술한 바와 같이, 루이스 .산 -염기 결합한 상태로 포함될 수. 있다. 또한, 상기 조촉매 화합물은 이러한 루이스 산 -염기 결합하지 않은 상태로 추가로 포함될 수 있으며, 이로써 촉매 활성을 더욱 증진시켜 담지체의 사용 없이 우수한 촉매 활성을 나타낼 수 있는 장점이 있다.  At least a part of the ansa metallocene compound and the cocatalyst compound in the catalyst composition for unsupported non-uniform polyolefin resin of the present invention may be included in a Lewis acid-base bond state as described above. have. In addition, the cocatalyst compound may be additionally included in a state in which the Lewis acid-base bond is not provided, thereby further enhancing the catalytic activity and thus exhibiting excellent catalytic activity without using a carrier.
한편, 상기 안사 메탈로센 화합물의 전이금속 원소 (M1)와 상기 조촉매 화합물의 금속 원소 (M2)의 몰비 (MVM1)가 70 내지 500이 될 수 있으며, 바람직하게는 250 내지 480, 좀더 바람직하게는 300 내지 450이 될 수 있다. 상기 몰비 (MVM1)가 70 미만이면, 촉매의 활성화 역할이 부족할 수 있으며, 몰비 (M M1)가 500을 초과하면 과도한 가교 반웅으로 입자의 크기가 제어가 되지 않아, 중합시 촉매 투입 및 중합체의 모폴로지에 문제가 발생될 소지가 있다. On the other hand, the molar ratio (MVM 1 ) of the transition metal element (M 1 ) of the ansa metallocene compound and the metal element (M 2 ) of the cocatalyst compound may be 70 to 500, preferably 250 to 480, More preferably 300 to 450 Can be. When the molar ratio (MVM 1 ) is less than 70, the activation role of the catalyst may be insufficient, and when the molar ratio (MM 1 ) exceeds 500, the particle size is not controlled due to excessive crosslinking reaction. Problems can arise with morphology.
본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 상기 화학식 1의 메탈로센 화합물의 브릿지 그룹 (bridge group)에 도입된 작용기와 상기 화학식 2의 조촉매 화합물에 포함된 금속 원소의 루이스 산- 염기 상호 작용을 통한 결합이 형성된 것이다. 특히, 도 1에 나타낸 바와 같이, 본 발명의 촉매 조성물은 별도의 담체 없이 안사 메탈로센 촉매 화합물과 메틸알루미녹산 (MA0) 조촉매 화합물과의 루이스 산 -염기 결합에 의해, 구체적으로는 이온결합과 배위결합에 의해 내부 교차 결합 (internal crosslink)을 형성시켜 최종 비담지 비균일계 촉매 조성물 형태로 제조할 수 있다. 예컨대, 본 발명은 하기 화학식 3으로 나타낸 바와 같이 결합 형태, 즉, 루이스 산 -염기 결합 등의 배위 결합을 포함하는 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 제공할 수 있다.  The catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is a Lewis acid of a functional group introduced into a bridge group of the metallocene compound of Formula 1 and a metal element included in the cocatalyst compound of Formula 2. Bonds are formed through base interactions. In particular, as shown in Figure 1, the catalyst composition of the present invention by the Lewis acid-base bond between the ansa metallocene catalyst compound and the methyl aluminoxane (MA0) promoter compound without a separate carrier, specifically ionic bond Internal crosslinks can be formed by coordinating with each other to form a final unsupported heterogeneous catalyst composition. For example, the present invention can provide a catalyst composition for unsupported non-uniform polyolefin polymerization comprising a coordination bond such as a bond form, that is, a Lewis acid-base bond, as shown by the following Chemical Formula 3.
[화학식 3]  [Formula 3]
Figure imgf000012_0001
상기 화학식 3에서 M1, M2, X, A, R1, R2, R3, R3', R4, R4' , R5, R5' , R6, R6' , R7, R7' , R8, R8', R9, n, 및 ra은 전술한 바와 같다.
Figure imgf000012_0001
In Chemical Formula 3 M 1 , M 2 , X, A, R 1 , R 2 , R 3 , R 3 ', R 4 , R 4' , R 5 , R 5 ', R 6 , R 6 ', R 7 , R 7 ' , R 8 , R 8 ′, R 9 , n, and ra are as described above.
기존의 메탈로센 담지 촉매는 실리카에 다양한 유기금속 화합물의 조촉매를 먼저 담지한 후 안사메탈로센 촉매를 추가로 담지시킴으로써, 조촉매 화합물의 금속 부분을 알킬화시킨 후 양이온을 만들어 활성종을. 만들게 된다. 그러나, 본 발명의 비담지 비균일계 폴리을레핀 중합용 촉매 조성물은 상술한 바와 같이 특정의 조촉매 화합물에 의해 촉매 활성화가 이뤄질 뿐만 아니라, 이와 더불어 화학식 3과 같이 메탈로센 화합물의. 브릿지 그룹 작용기와도 결합을 형성하게 됨으로써, 담체 없이도 입자 형태로 침전이 이루어지며 비담지 비균일계 촉매 조성물을 형성할 수 있다. 즉, 본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 메탈로센 화합물과 조촉매 화합물이 루이스 산 -염기 결합에 의해 서로 연결되어 형성된 것이라 할 수 있다. Conventional metallocene-supported catalysts are first supported by a cocatalyst of various organometallic compounds on silica, and then additionally supported by an ansametallocene catalyst, to alkylate the metal part of the cocatalyst compound, and then to form a cation . Will be made. However, the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is not only catalytically activated by a specific cocatalyst compound as described above, but also with the metallocene compound of Formula 3 as described above. By forming a bond with a bridging group functional group, precipitation can take place in the form of particles without a carrier and form an unsupported heterogeneous catalyst composition. That is, the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention may be said that the metallocene compound and the promoter compound are formed by being linked to each other by a Lewis acid-base bond.
본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 상술한 바와 같이, 별도의 담지체를 사용하지 않고 특정의 메탈로센 화합물과 조촉매 화합물의 반응을 통해 촉매 조성물 그 자체로 블균일계 촉매 조성물로 생성되는 것을 특징으로 한다. 특히, 본 발명의 촉매 조성물은 상기 안사 메탈로센 화합물의 화학식 1에서 -OR1 작용기와, 상기 조촉매 화합물의 금속 '원소가 루이스 산 -염기 반웅에 의해 결합하고 있는 것일 수 있다. 이같이 별도의 담지체를 사용하지 않고 비담지 비균일계 촉매를 생성시킴으로써, 상기 촉매는 간단한 제조 공정으로 최종 촉매를 얻었으며, 중합 활성 또한 우수한 특징을 갖는다. 또한, 이렇게 별도의 담지체 없이 자체 담지된 불균일계 촉매의 존재 하에 제조되는 폴리올레핀은 폴리머의 입자 형태 및 겉보기 밀도가 우수하여 종래의 슬러리, 벌크, 또는 기상 중합 공정에 적합하게 사용 가능하다. As described above, the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is a heterogeneous catalyst itself as a catalyst composition through the reaction of a specific metallocene compound and a promoter compound without using a separate carrier. It is characterized in that it is produced in a composition. In particular, the catalyst composition of the present invention may be one in which the -OR 1 functional group in Chemical Formula 1 of the ansa metallocene compound and the metal ' element of the cocatalyst compound are bonded by Lewis acid-base reaction. By producing an unsupported non-uniform catalyst without using a separate carrier as described above, the catalyst has obtained a final catalyst by a simple production process, and also has excellent polymerization activity. In addition, the polyolefin prepared in the presence of a heterogeneous catalyst supported by itself without a separate carrier is excellent in the particle form and apparent density of the polymer can be suitably used in conventional slurry, bulk, or gas phase polymerization process.
또한, 상기 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 고체 입자 상태인 것이 될 수 있으며, 상기 촉매의 평균입경은 20 내지 200 가 될 수 있으며 , 바람직하게는 30 내지 170 im, 좀더 바람직하게는 40 im 내지 150 ΙΜΆ 될 수 있다. 상기 촉매의 평균입경은 20 미만에서는 중합체내 미세 분말, 입자 성분이 많아질 가능성이 있으며, 200 an를 초과하는 경웅에서는 중합시 온도 제어가 어려워 파울링 발생될 가능성이 증가하며, 모폴로지 또한 좋지 못하다. In addition, the catalyst composition for unsupported non-uniform polyolefin polymerization may be in a solid particle state, the average particle diameter of the catalyst may be 20 to 200, preferably 30 to 170 im, more preferably 40 im to 150 ΙΜΆ. If the average particle diameter of the catalyst is less than 20, there is a possibility that the fine powder, particle components in the polymer are increased, 200 In the case of an excess of an annealing, it is difficult to control the temperature during polymerization, thereby increasing the possibility of fouling, and the morphology is also poor.
본 발명에서는 특히, 비담지 비균일계 폴리올레핀 중합용 촉매 조성물로서 실란 브릿지에 알콕시 테더 (tether) 그룹을 달고 조촉매로 메틸알루미녹산을 사용할 수 있다. 이때, 메틸알루민녹산을 를루엔에 녹아 있는 알콕시 테터 (tether) 그룹을 지닌 단일 활성점 촉매에 서서히 떨어뜨려 반웅 속도를 조절할 수 있다. 또한, 이렇게 담체를 사용하지 않음으로써, 제조 공정을 단순화할 수 있고, 담체 사용 비용을 절감할 수 있으며, 담지 과정올 거치면서 발생되는 촉매 활성이 감소를 방지할 수 있다. 한편, 발명의 다른 구현예에 따라, 상기 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 제조하는 방법이 제공된다. 이러한 비담지 비균일계 폴리을레핀 중합용 촉매 조성물의 제조 방법은 하기 화학식 1로 표시되는 안사 메탈로센 화합물과 하기 화학식 2로 표시되는 조촉매 화합물을 반웅시키는 단계를 포함할 수 있다.  In the present invention, in particular, as a catalyst composition for unsupported non-uniform polyolefin polymerization, an alkoxy tether group may be attached to the silane bridge, and methylaluminoxane may be used as a promoter. At this time, the reaction rate may be controlled by slowly dropping methylaluminoxanoic acid into a single active site catalyst having an alkoxy tether group dissolved in toluene. In addition, by not using the carrier, it is possible to simplify the manufacturing process, to reduce the cost of using the carrier, it is possible to prevent the reduction of the catalyst activity generated during the supporting process. On the other hand, according to another embodiment of the invention, there is provided a method for preparing the catalyst composition for unsupported non-uniform polyolefin polymerization. The method for preparing a catalyst composition for unsupported non-uniform polyolefin polymerization may include reacting an ansa metallocene compound represented by Formula 1 and a promoter compound represented by Formula 2 below.
[화학식 1]  [Formula 1]
Figure imgf000014_0001
상기 화학식 1에서,
Figure imgf000014_0001
In Chemical Formula 1,
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
X는 서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen from each other;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬ᅤ 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; R 1 is alkyl ᅤ alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
. R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알 ¾ 또는 아릴이며; . R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylal ¾ or aryl;
R3, R3', R4, R4', R5, R5', R6, R6' , .R7, R7'ᅳ R8, 및 R8'은 서로 동일하거나 상이하고, 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; ' n은 1 내지 20의 정수이고; R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , .R 7 , R 7 ' ᅳ R 8 , and R 8' are the same as or different from each other, Hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl, respectively; ' n is an integer from 1 to 20;
[화학식 2] [Formula 2]
Figure imgf000015_0001
상기 화학식 2에서,
Figure imgf000015_0001
In Chemical Formula 2,
M2은 13족 금속 원소이고; M 2 is a Group 13 metal element;
R9는 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
m은 2 이상의 정수이다.  m is an integer of 2 or more.
상기 메탈로센 화합물 또는 조촉매, 및 각각의 화학식 1 또는 화학식 2, 화학식 3과 해당 치환기 등에 관한 구체적인 내용은 상술한 바와 같다. 상기 안사 메탈로센 화합물의 전이금속 원소 (M1)와 상기 조촉매 화합물의 금속 원소 (M2)와의 몰비 (M M1)는 70 내지 500이 될 수 있으며, 바람직하게는 250 내지 480, 좀더 바람직하게는 300 내지 450이 될 수 있다 상기 몰비 (MVM1)가 70 미만이면, 촉매의 활성화 역할이 부족할 수 있으며, 몰비 (MVM1)가 500을 초과하면 과도한 가교 반응으로 입자의 크기가 제어가 되지 않아, 중합시 촉매 투입 및 중합체의 모폴로지에 문제가 발생될 소지가 있다. Details of the metallocene compound or cocatalyst, and Chemical Formula 1 or Chemical Formula 2, Chemical Formula 3, and corresponding substituents are as described above. The molar ratio (MM 1 ) between the transition metal element (M 1 ) of the ansa metallocene compound and the metal element (M 2 ) of the cocatalyst compound may be 70 to 500, preferably 250 to 480, more preferably. May be 300 to 450 When the molar ratio (MVM 1 ) is less than 70, the activation role of the catalyst may be insufficient, and when the molar ratio (MVM 1 ) exceeds 500, the particle size is not controlled due to excessive crosslinking reaction. Problems can arise with morphology.
본 발명에서 상기 안사 메탈로센 화합물과 조촉매 화합물의 적어도 일부는 상술한 바와 같이, 루이스 산 -염기 결합한 상태로 포함될 수 있다. 또한, 상기 조촉매 화합물은 이러한 루이스 산 -염기 결합하지 않은 상태로 추가로 포함될 수 있으며, 이로써 촉매 활성을 더욱 증진시켜 담지체의 사용 없이 우수한 촉매 활성을 나타낼 수 있는 장점이 있다.  In the present invention, at least a part of the ansa metallocene compound and the cocatalyst compound may be included in a Lewis acid-base bond state as described above. In addition, the cocatalyst compound may be additionally included in a state in which the Lewis acid-base bond is not provided, thereby further enhancing the catalytic activity and thus exhibiting excellent catalytic activity without using a carrier.
상기 안사 메탈로센 화합물 또는 조촉매 화합물은 를루엔, 자일렌, 메틸렌클로라이드, 에틸아세테이트, 에틸에테르, 핵산 등으로 이루어진 군으로부터 선택된 1종 이상의 유기 용제에 용해시켜 반웅시킬 수 있으며, 바람직하게는 를루엔, 자일렌 등을 사용할 수 있다. 이때, 유기 용제의 사용량은 메탈로센 화합물 또는 조촉매 화합물을 녹일 수 있는 정도에서 조절하여 사용할 수 있으며, 다만 촉매의 바람직한 모폴로지 측면에서 희석 정도를 조절할 수 있다. 예컨대, 상기 유기 용제 사용시 농도는 0.1 g/cm3 이하 또는 0.1 mg/cm3 내지 0.1 g/cm3, 바람직하게는 0.05 g/cm3 이하, 좀더 바람직하게는 0.01 mg/cm3 이하가 될 수 있다. The ansa metallocene compound or cocatalyst compound may be dissolved in at least one organic solvent selected from the group consisting of toluene, xylene, methylene chloride, ethyl acetate, ethyl ether, nucleic acid, and the like. Rouen, xylene, etc. can be used. At this time, the amount of the organic solvent can be used to adjust the degree to dissolve the metallocene compound or cocatalyst compound, it is possible to control the degree of dilution in terms of the preferred morphology of the catalyst. For example, the concentration of the organic solvent may be 0.1 g / cm 3 or less or 0.1 mg / cm 3 to 0.1 g / cm 3 , preferably 0.05 g / cm 3 or less, and more preferably 0.01 mg / cm 3 or less. have.
이와 같이 유기 용제에 용해시킨 안사 메탈로센 화합물에 조촉매 화합물을 첨가함에 있어서, 실린지 펌프 등을 이용하여 천천히 적가 방식 (Dropwise)을 적용하는 것이 모폴로지 측면에서 바람직할 수 있다. 여기서, 적가 속도는 10 cc/min 이하 또는 0.2 내지 10 cc/min, 바람직하게는 5 cc/min 이하, 좀더 바람직하게는 1 cc/min 이하가 될 수 있다. 상기 적가 속도는 전체 공정 효율을 효과적으로 유지하는 측면에서 조절할 수 있다. 다만 상기 적가 속도가 너무 빠르면, 예컨대, 10 cc/min를 초과하면, 반웅이 급격히 진행되어 생성되는 촉매 입자의 크기가 너무 커지게 된다. 이러한 경우에, 중합시 촉매 주입에서 문제가 생길 수 있으며, 중합체 크기 분포도가 넓어질 수 있다.  In the addition of the cocatalyst compound to the ansa metallocene compound dissolved in the organic solvent as described above, it may be preferable to apply a dropwise method slowly using a syringe pump or the like in terms of morphology. Here, the dropping speed may be 10 cc / min or less or 0.2 to 10 cc / min, preferably 5 cc / min or less, and more preferably 1 cc / min or less. The dropping speed can be adjusted in terms of effectively maintaining the overall process efficiency. However, if the dropping speed is too fast, for example, if it exceeds 10 cc / min, the reaction proceeds abruptly and the size of the catalyst particles produced is too large. In this case, problems may occur in catalyst injection during polymerization, and the polymer size distribution may be widened.
또한, 전술한 단계들 이외에도, 상기 각 단계의 이전 또는 이후에 본 발명이 속하는 기술분야에서 통상적으로 수행할. 수 있는 단계를 더욱 포함할 수 있으므로, 전술한 단계들만으로 본 발명의 제조 방법을 한정하는 것은 아니다. In addition, in addition to the above-described steps, before or after each of the above steps, the present invention generally performs. Steps to further As it may include, the above-described steps do not limit the manufacturing method of the present invention.
한편, 발명의 또다른 구현예에 따라, 상기 비담지 비균일계 촉매 조성물의 존재 하에ᅳ 적어도 1 종 이상의 올레핀 단량체를 중합시키는 단계를 포함하는 폴리올레핀의 제조방법을 제공한다.  On the other hand, according to another embodiment of the present invention, there is provided a method for producing a polyolefin comprising the step of polymerizing at least one or more olefin monomers in the presence of the unsupported non-uniform catalyst composition.
특히, 본 발명은 상술한 바와 같이, 특정의 안사 메탈로센 화합물을 특정의 조촉매 화합물과 반응시켜 고체 입자 형태를 갖는 불균일계 메탈로센 촉 를 만들어 올레핀 중합, 특히 프로필렌 중합을 수행할 수 있다. 이때, 촉매의 활성은 일반적으로 담체에 담지시켜 만든 담지 촉매 대비 매우 우수한 활성을 가지면서도 파울링이 없는 중합체를 얻을 수 있는 장점이 있다.  In particular, the present invention, as described above, by reacting a specific ansa metallocene compound with a specific cocatalyst compound to form a heterogeneous metallocene catalyst having a solid particle form to perform olefin polymerization, in particular propylene polymerization. . In this case, the activity of the catalyst generally has the advantage of obtaining a polymer without fouling while having a very good activity compared to the supported catalyst made by supporting the carrier.
상기 을레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-핵센, 4-메틸 -1-펜테, 1-옥텐, 1-데센, 1-도데센, 1ᅳ테트라데센, 1-핵사데센, 1- 옥타데센, 1-에이코센 및 이들의 흔합물로 이루어진 군에서 선택되는 1 종 이상일 수 있다.  The urepin monomers are ethylene, propylene, 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pente, 1-octene, 1-decene, 1-dodecene, 1 pentadedecene, 1-nucleus It may be at least one selected from the group consisting of decene, 1-octadecene, 1-eicosene, and combinations thereof.
여기서, 상기 폴리올레핀의 중합은 25 내지 500 °C의 온도 및 10 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반응시켜 수행될 수 있다. 이때, 상기 증합 반응 온도는 25 내지 200 °C (섭씨, Celsius)가 바람직하고, 50 내지 100 °C가 좀더 바람직하다. 또한, 상기 중합 반웅 압력은 1 내지 70 kgf/cm2가 바람직하고, 5 내지 40 kgf/cm2가 좀더 바람직하다. 상기 중합 반웅 시간은 1 내지 5 시간이 바람직하고, 1 내지 2 시간이 좀더 바람직하다. Here, the polymerization of the polyolefin can be carried out by reacting for 1 to 24 hours at a temperature and a pressure of 10 to 100 kgf / cm 2 from 25 to 500 ° C i. At this time, the polymerization reaction temperature is preferably 25 to 200 ° C (Celsius, Celsius), more preferably 50 to 100 ° C. In addition, the polymerization reaction pressure is preferably 1 to 70 kgf / cm 2 , more preferably 5 to 40 kgf / cm 2 . The polymerization reaction time is preferably 1 to 5 hours, more preferably 1 to 2 hours.
한편, 상기 중합 공정은 수소 첨가 또는 미첨가 조건에 따라 최종적으로 생성되는 폴리머 제품와 분자량 범위를 조절할 수 있다. 특히, 수소를 첨가하지 않은 조건 하에서는 고분자량의 폴리올레핀을 제조할 수 있으며, 수소를 첨가하면 적은 량의 수소 첨가로도 저분자량의 폴리올레핀을 제조할 수 있다. 이 때, 상기 중합 공정에 첨가되는 수소 함량은 반웅기 조건 1 기압 하에서 0.07 L 내지 4 L 범위이거나, 또는 1 bar 내지 40 bar의 압력으로 공급되거나 을레핀 단량체 대비 수소 몰 함량 범위로 168 ppm 내지 8,000 ppm으로 공급될 수 있다. 본 발명의 비담지 비균일계 폴리을레핀 중합용 촉매 조성물을 사용하여 제조된 폴리올레핀은 기존의 메탈로센 촉매를 사용하였을 경우에 비해 높은 분자량을 갖는 것이 될 수 있다. 특히, 본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 사용하여, 수소를 첨가하지 않는 조건 하에서 중합 공정을 수행하였을 때, 생성된 폴리을레핀은 중량평균분자량 (Mw)이 200,000 이상 또는 200,000 내지 600,000, 바람직하게는 250,000 이상, 좀더 바람직하게는 300,000 이상이 될 수 있다. 반면에, 본 발명의 비담지 비균일계 폴리을레핀 증합용 촉매 조성물을 사용하여, 수소를 첨가하는 조건 하에서 중합 공정을 수행하였을 때, 예컨대, 반웅기 조건 1 기압 하에서 0.37 L의 수소를 첨가하는 조건 하에서 중합 공정을 수행하였을 때, 생성된 폴리올레핀은 증량평균분자량 (Mw)이 90,000 이하 또는 55,000 내지 90,000, 바람직하게는 85,000 이하, 좀더 바람직하게는 80,000 이하가 될 수 있다. On the other hand, the polymerization process can control the polymer product and the molecular weight range finally produced according to the hydrogenation or non-addition conditions. In particular, a high molecular weight polyolefin can be produced under the condition that hydrogen is not added, and low molecular weight polyolefin can be produced even by adding a small amount of hydrogen when hydrogen is added. At this time, the hydrogen content added to the polymerization process is in the range of 0.07 L to 4 L under 1 atmosphere of semi-aqueous conditions, or is supplied at a pressure of 1 bar to 40 bar or 168 ppm to 8 in the molar content of hydrogen relative to the olepin monomer. It can be supplied at 000 ppm. The polyolefin prepared using the unsupported non-uniform polyolefin resin catalyst composition of the present invention may have a higher molecular weight than when using a conventional metallocene catalyst. In particular, when the polymerization process is performed under the condition of not adding hydrogen, using the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention, the resulting polyolefin has a weight average molecular weight (Mw) of 200,000 or more or 200,000 to 200,000. 600,000, preferably 250,000 or more, more preferably 300,000 or more. On the other hand, using the catalyst composition for unsupported non-uniform polyolefin reinforcement of the present invention, when the polymerization process is carried out under the conditions of adding hydrogen, for example, the conditions of adding 0.37 L of hydrogen under 1 atmosphere of semi-aqueous conditions When the polymerization process is carried out under, the resulting polyolefin may have an increased average molecular weight (Mw) of 90,000 or less or 55,000 to 90,000, preferably 85,000 or less, and more preferably 80,000 or less.
이와 같이, 본 발명의 본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물을 사용하여 중합 공정의 수소 첨가량을 조절함으로써, 저분자량이나 고분자량의 폴리을레핀을 효과적으로 선택하여 제조할 수 있다.  As described above, by adjusting the amount of hydrogenation in the polymerization step by using the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention, low molecular weight or high molecular weight polyolefin can be effectively selected and produced.
이러한 방법으로 제조된 상기 폴리올레핀은 분자량 분포 (Mw/Mn)가 1 내지 4, 바람직하게는 1.2 내지 3.5, 좀더 바람직하게는 1.5 내지 3일 수 있다.  The polyolefin prepared by this method may have a molecular weight distribution (Mw / Mn) of 1 to 4, preferably 1.2 to 3.5, more preferably 1.5 to 3.
또한, 본 발명의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물은 단위 시간 (h)을 기준으로 사용된 촉매 단위 중량 함량 (g)당 생성된 중합체의 중량 (kg)의 비로 계산하였을 때, 6.0 kg/gCat · hr 이상 또는 6.0 내지 50 kg/gCat - hr , 바람직하게는 7.0 kg/gCat - hr 이상, 좀더 바람직하게는 8.0 kg/gCat - hr 이상이 될 수 있다.  In addition, the catalyst composition for unsupported non-uniform polyolefin polymerization of the present invention is 6.0 kg, calculated as the ratio of the weight (kg) of the polymer produced per unit weight content (g) of the catalyst used based on the unit time (h). / gCat-hr or more, or 6.0 to 50 kg / gCat-hr, preferably 7.0 kg / gCat-hr or more, more preferably 8.0 kg / gCat-hr or more.
이렇게 생성된 폴리올레핀은 입체규칙도 (XI)가 90% 이상, 바람직하게는 92% 이상, 좀더 바람직하게는 95¾ 이상이 될 수 있다. 이때, 폴리을레핀의 입체규칙도 (XI)는 하기의 계산식 1에 따라 계산된 값이다.  The polyolefins thus produced may have a stereoregularity (XI) of at least 90%, preferably at least 92% and more preferably at least 95¾. At this time, the stereoregularity diagram (XI) of the polyolefin is a value calculated according to the following formula (1).
[계산식 1]  [Calculation 1]
입체 규칙도 (XI) = 100 - Xs
Figure imgf000019_0001
상기 계산식 1에서,
Stereogram (XI) = 100-Xs
Figure imgf000019_0001
In the above formula 1,
Xs = 중합체 중 ^자일렌에 녹은 부분 (중량 %),  Xs = ^ melted part of the polymer (% by weight) ,
VbO = 초기 자일렌의 부피 (mL),  VbO = volume of initial xylene (mL),
Vbl = 자일렌에 녹은 중합체 중 채취한 부피 (mL),  Vbl = volume (mL) of polymer taken from xylene,
Vb2 = 공 테스트시 사용한 채취한 자일렌의 부피 (mL),  Vb2 = volume of collected xylene used in the blank test (mL),
W2 = 알루미늄팬과 ^자일렌을 증발시킨 후 알루미늄 팬에 남은 중합체 무게의 합 (g),  W2 = sum of the weight of the polymer remaining in the aluminum pan after the evaporation of the aluminum pan and ^ xylene (g),
W1 = 알루미늄팬의 무게 (g),  W1 = weight of aluminum pan (g),
W0 = 초기 중합체의 게 (g),  W0 = crab of the initial polymer (g),
B = 공 테스트시 알루미늄팬에 남은 잔분의 평균값 (g).  B = average value (g) of residues remaining in the aluminum pan during the ball test.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.  In the present invention, matters other than those described above can be added or subtracted as necessary, and therefore the present invention is not particularly limited.
[발명의 효과】  [Effects of the Invention】
본 발명의 비담지 비균일계 폴리을레핀 중합용 촉매 조성물은 특정의 안사 메탈로센 화합물과 특정꾀 조촉매 화합물을 포함함으로써, 별도의 담지체 없이 촉매 자체로 사용하여 우수한 물성의 폴리올레핀을 제조할 수 있다'. 본 발명의 촉매 조성물은 우수한 촉매 활성을 나타내며 고분자의 미세 구조를 쉽게 제어할 수 있어, 원하는 물성을 갖는 폴리올레핀을 용이하게 제조할 수 있다. 본 발명의 촉매 조성물은 기존의 메탈로센 화합물을 조촉매 화합물과 반웅시켜 고체 담지체에 담지시킨 '일반적인 담지 촉매 대비 매우 높은 촉매 활성을 얻을 수 있다. The catalyst composition for unsupported non-uniform polyolefin resin polymerization of the present invention includes a specific ansa metallocene compound and a specific co-catalyst compound, so that the polyolefin having excellent physical properties can be prepared by using the catalyst itself without a separate carrier. there '. The catalyst composition of the present invention exhibits excellent catalytic activity and can easily control the microstructure of the polymer, thereby easily preparing a polyolefin having desired physical properties. The catalyst composition of the present invention can obtain a very high catalytic activity compared to the ' supported catalyst ' which is supported on the solid support by reacting the existing metallocene compound with the cocatalyst compound.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명'의 일 구현예에 따라 담지체를 사용하지 않은 비담지 비균일계 폴리올레핀 중합용 촉매 조성물에서, 안사 메탈로센 화합물 촉매와 조촉매 화합물이 이온결합과 배위결합에 의해 내부 교차 결합 (internal crosslink)을 형성하고 있는 상태를 나타낸 모식로이다. 1 is a cross inside by one in a non-loaded non-homogeneous polyolefin polymerization catalyst composition using no carrier, the metallocene compound catalyst and the co-catalyst compound is an ionic bond and the coordinate bond to Ansari metal in accordance with embodiments of the present invention " It is a schematic diagram which shows the state forming the internal crosslink.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. Or less, to present a preferred embodiment to help the understanding of the present invention, The following examples are merely illustrative of the present invention, and the scope of the present invention is not limited to the following examples.
[실시예 1] Example 1
다음과 같은 방법으로 담지체를 사용하지 않은 비담지 비균일계 폴리을레핀 중합용 촉매 조성물을 제조하였다. 메탈로센 화합물의 합성  A catalyst composition for non-uniform non-uniform polyolefin polymerization was prepared by using the following method. Synthesis of Metallocene Compounds
1 단계: (6-t-부톡시헥실)디클로로메틸실란의 합성  Step 1: Synthesis of (6-t-butoxyhexyl) dichloromethylsilane
100 mL의 트리클로로메틸실란 용액 (약 0.21 mol, 핵산)에 100 mL의 t-부특시핵실 마그네슘 클로라이드 용액 (약 0.14 mol, 에테르)을 -100 °C 하에서 3 시간에 걸쳐 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다. 상기 흔합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하고, 과량의 트리클로로메틸실란을 제거하여, 투명한 액상의 (6-t-부록시핵실)디클로로메틸실란을 얻었다 (수율 84 %). To 100 mL of trichloromethylsilane solution (about 0.21 mol, nucleic acid), 100 mL of t-subsilicate magnesium chloride solution (about 0.14 mol, ether) was slowly added dropwise over 3 hours at -100 ° C., at room temperature Stirred for 3 h. After the transparent organic layer was separated from the mixed solution, the separated transparent organic layer was dried in vacuo, and excess trichloromethylsilane was removed to obtain a transparent liquid (6-t-butoxynucleosil) dichloromethylsilane (yield 84). %).
¾ 證 (500 MHz, CDC13) 7.24 ppm): 0.76(3H, s), 1.11(2H, t), 1.18(9H,s), 1.32~1.55(8H, m), 3.33(2H, t) ¾ 證 (500 MHz, CDC1 3) 7.24 ppm): 0.76 (3H, s), 1.11 (2H, t), 1.18 (9H, s), 1.32-1.55 (8H, m), 3.33 (2H, t)
2 단계: (6-t-부톡시핵실) (메틸) -비스 (2-메틸 -4-페닐인데닐)실란의 합성  Step 2: Synthesis of (6-t-butoxynucleosil) (methyl) -bis (2-methyl-4-phenylindenyl) silane
77 mL의 2-메틸ᅳ 4-페닐인덴 를루엔 /THF=10/1 용액 (34.9 mmol)에 n- 부틸리튬 용액 (2.5 M, 핵산 용매) 15.4 mL를 0 °C에서 천천히 적가하였고, 80 °C에서 1시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, - 78 °C에서 상기 흔합 용액에 앞서 제조한 (6-t- 부특시핵실)디클로로메틸실란 5 g을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 80 °C에서 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 78%의 수율로 얻었다 (racemic:meso = 1:1) 15.4 mL of n-butyllithium solution (2.5 M, nucleic acid solvent) was slowly added dropwise at 0 ° C. to 77 mL of 2-methyl ᅳ 4-phenylindene toluene / THF = 10/1 solution (34.9 mmol). After stirring for 1 hour at ° C it was stirred for 1 day at room temperature. After that, - it was slowly added dropwise to a (6-t- buteuk when haeksil) Preparation dichloromethylsilane 5 g prior to the heunhap solution at 78 ° C, and the mixture was stirred at about 10 minutes after a 80 ° C stirred for an hour . Then, water was added to separate the organic layer, and the silica column was purified and vacuum dried to give a sticky yellow oil in a yield of 78% (racemic: meso = 1: 1).
¾ NMR(500 MHz, CDC13, 7.24 ppm): 0.10(3H, s), 0.98(2H, t), 1.25(9H, s), 1.36~1.50(8H, m), 1.62(8H, m), 2.26(6H, s), 3.34(2H, t), 3.8K2H, s), 6.87(2H, s), 7.25(2H, t), 7.35(2H, t), 7.45(4H, d), 7.53(4H, t), 7.6K4H, d) ¾ NMR (500 MHz, CDC1 3 , 7.24 ppm): 0.10 (3H, s), 0.98 (2H, t), 1.25 (9H, s), 1.36-1.50 (8H, m), 1.62 (8H, m) 2.26 (6H, s), 3.34 (2H, t), 3.8 K2H, s), 6.87 (2H, s), 7.25 (2H, t), 7.35 (2H, t), 7.45 (4H, d), 7.53 (4H, t), 7.6K4H, d)
3 단계: [(6-t-부톡시헥실메틸실란-디일) -비스 (2-메틸 -4- 페닐인데닐)] 지르코늄 디클로라이드의 합성  Step 3: Synthesis of [(6-t-butoxyhexylmethylsilane-diyl) -bis (2-methyl-4-phenylindenyl)] zirconium dichloride
앞서 제조한 (6-t-부톡시핵실) (메틸)비스 (2-메틸 -4—페닐)인데닐실란 에테르 /핵산 =1/1 용액 (3.37 圆 ol) 50 mL에 n-부틸리튬 용액 (2.5 M in 핵산) 3.0 mL를 —78 °C에서 천천히 적가한 후, 상온에서 약 2 시간 동안 교반한 뒤 진공 건조하였다. 그 뒤, 핵산으로 염을 세척한 후 여과 및 진공 건조하여 노란색의 고체를 얻었다. 글로브 박스 (glove box) 내에서 합성한 리간드 염 (ligand salt)와 비스 (Ν,Ν'-디페닐 -1,3- 프로판디아미도)디클로로지르코늄 비스 (테트라하이드로퓨란)N-butyllithium solution (50 mL of (6-t-butoxynucleosil) (methyl) bis (2-methyl-4-phenyl) indenylsilane ether / nucleic acid = 1/1 solution (3.37 圆 ol)) 2.5 M in nucleic acid) 3.0 mL was slowly added dropwise at —78 ° C., followed by stirring at room temperature for about 2 hours, followed by vacuum drying. Then, the salt was washed with nucleic acid, filtered and dried in vacuo to give a yellow solid. Ligand salt and bis (Ν, Ν'-diphenyl-1,3-propanediamido) dichlorozirconium bis (tetrahydrofuran) synthesized in a glove box
[Zr(C5H6NCH2CH2CH2NC5H6)Cl2(C4H80)2]을 쉬링크 플라스크 (schlenk flask)에 칭량 (weighing)한 후, -78 °C에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 이후에, 붉은색 반웅 용액을 여과 분리한 후 HC1 에테르 용액 (1M) 4 당량을 -78 °C에서 천천히 적가한 후 상온에서 3시간 동안 교반하였다. 이후 여과하고 진공 건조하여, 하기 화학식 4를 갖는 오렌지색 고체 성분의 메탈로센 화합물 (R1 = t-Bu; R2 = C¾; R3, R3' = CH3; R5, R5' = Ph)을 85%의 수율로 얻었다 (racemic:meso = 10:1). After weighing [Zr (C 5 H 6 NCH 2 CH 2 CH 2 NC 5 H 6 ) Cl 2 (C 4 H 8 0) 2 ] in a Schlenk flask, at -78 ° C The ether was slowly added dropwise and stirred at room temperature for one day. Thereafter, the red reaction solution was separated by filtration, and then 4 equivalents of HC1 ether solution (1M) was slowly added dropwise at -78 ° C, followed by stirring at room temperature for 3 hours. After filtration and vacuum drying, the orange solid metallocene compound having the formula (4) (R 1 = t-Bu; R 2 = C¾; R 3 , R 3 ' = CH 3 ; R 5 , R 5' = Ph) was obtained in a yield of 85% (racemic: meso = 10: 1).
이때, 얻어진 메탈로센 화합물은 비담지 상태에서는 후술되는 바와 같이 를루엔 등의 유기 용제에 용해되는 균일계 촉매에 해당하는 것아었다.  At this time, the obtained metallocene compound was equivalent to the homogeneous catalyst melt | dissolved in organic solvents, such as toluene, as mentioned later in an unsupported state.
¾ 讓 (500 顧 z, C6D6) 7.24 ppm): 1.19(9H, s), 1.32(3H, s),¾ 500 (500 顧 z, C 6 D 6) 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s),
1.48~1.86(10H, m), 2.25(6H, s), 3.37(2H, t), 6.95(2H, s), 7.13(2H, t), 7.36(2H, d), 7.43C6H, t), 7.62(4H, d), 7.67(2H, d) 1.48-1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, t), 6.95 (2H, s), 7.13 (2H, t), 7.36 (2H, d), 7.43C6H, t), 7.62 (4H, d), 7.67 (2H, d)
[화학식 4] [Formula 4]
Figure imgf000022_0001
비담지된 비균일계 촉매 조성물의 제조 . 상기에서 합성한 메탈로센 화합물 120 μιιωΐ을 를루엔 25 mL가 들어있는 쉬링크 플라스크에 넣은 후, 아르곤 분위기 하에서 교반하여 용해시켰다.
Figure imgf000022_0001
Preparation of Unsupported Heterogeneous Catalyst Composition. 120 μιιωΐ of the metallocene compound synthesized above was placed in a shrink flask containing 25 mL of toluene, and then dissolved by stirring under an argon atmosphere.
상기 쉬링크 플라스크에 메틸알루미녹산 (MA0, 화학식 2에서 R9 = 메틸) 45 mm 을 실린지 펌프를 이용해 1 시간 동안 적가 방식 (Dropwise)으로 0.5 cc/min 속도로 첨가하고, 실온 (rt: room temperature)의 아르곤 분위기 하에서 24 시간 동안 반웅시켰다. 45 ml of methylaluminoxane (MA0, R 9 = methyl in Formula 2) was added to the shrink flask at a rate of 0.5 cc / min in a dropwise manner for 1 hour using a syringe pump, and room temperature (rt: room reaction under an argon atmosphere for 24 hours.
이때, 상기 메탈로센 화합물과 메틸알루미녹산의 금속원소의 몰비 (Al/Zr)은 375가 되도록 하였다. 상기 반웅 후에 생성된 비균일계 메탈로센 촉매 입자가 침전되면, 상층부 용액을 제거하였다.  At this time, the molar ratio (Al / Zr) of the metal element of the metallocene compound and methylaluminoxane was set to 375. When the non-uniform metallocene catalyst particles produced after the reaction were precipitated, the upper solution was removed.
이후, 상온의 를루엔과 핵산을 사용하여 순차적으로 세척한 후, 2 시간 동안 진공 건조하여 담체를 사용하지 않고 평균 입경 50 의 파우더 입자 형태를 갖는 비담지 비균일계 메탈로센 촉매 조성물 0.27 g을 얻었다. 이렇게 얻어진 비담지 비균일계 메탈로센 촉매 조성물은 별도의 담체를 사용하지 않고도 단지 조촉매와 활성화 반응 자체만으로 비균일계 촉매 조성물로 제조되었다. Thereafter, the mixture was washed sequentially with toluene and nucleic acid at room temperature, followed by vacuum drying for 2 hours, and 0.27 g of an unsupported non-uniform metallocene catalyst composition having a powder particle form having an average particle diameter of 50 without using a carrier. Got it. The unsupported non-uniform metallocene catalyst composition thus obtained is a separate It was prepared as a heterogeneous catalyst composition by only the cocatalyst and the activation reaction itself without using a carrier.
[실시예 2] Example 2
메틸알루미녹산 (MA0)을 적가 방식 (Dropwise)이 아닌 일괄 투입 방식 (One-Shot)으로 한꺼번에 메탈로센 화합물이 녹아 있는 쉬링크 플라스크에 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 담체를 사용하지 않고 평균 입경 150 /迎의 파우더 입자 형태를 갖는 비담지 비균일계 메탈로센 촉매 0.27 g을 얻었다.  Carrier in the same manner as in Example 1, except that methylaluminoxane (MA0) was added to the shrink flask in which the metallocene compound was dissolved in one batch instead of dropwise. 0.27 g of an unsupported non-uniform metallocene catalyst having a powder particle form having an average particle diameter of 150 / dl was obtained without using.
[비교예 1] Comparative Example 1
조촉매로 메틸알루미녹산 (MA0) 대신에 트리에틸알루미늄 (TEA)을 사용하며 메탈로센 화합물과 트리에틸알루미늄 (TEA)의 금속원소의 몰비 (Al/Zr)가 50이 되도록 반웅시킨 것을 제외하고는, 실시예 2와 동일한 방법으로 비담지 비균일계 촉매 제조 공정을 수행하였으나, 입자 형태의 촉매는 얻어지지 않았다.  Triethylaluminum (TEA) is used instead of methylaluminoxane (MA0) as a promoter, except that the molar ratio (Al / Zr) of the metal element of the metallocene compound and triethylaluminum (TEA) is 50. Was carried out in the same manner as in Example 2 to prepare an unsupported non-uniform catalyst, but a catalyst in the form of particles was not obtained.
[비교예 2] Comparative Example 2
조촉매로 메틸알루미녹산 (MA0) 대신에 트리이소부틸알루미늄 (TIBA)을 사용하며 메탈로센 화합물과 트리이소부틸알루미늄 (TIBA)의 금속원소의 몰비 (Al/Zr)가 25가 되도록 반응시킨 것을 제외하고는, 실시예 2와 동일한 방법으로 비담지 비균일계 촉매 제조 공정을 수행하였으나, 입자 형태의 촉매는 얻어지지 않았다. [비교예 3]  Triisobutylaluminum (TIBA) is used instead of methylaluminoxane (MA0) as a cocatalyst and reacted so that the molar ratio (Al / Zr) of the metal element of the metallocene compound and triisobutylaluminum (TIBA) is 25. Except for the preparation of the unsupported heterogeneous catalyst in the same manner as in Example 2, a catalyst in the form of particles was not obtained. Comparative Example 3
상기 화학식 4의 안사 메탈로센 화합물을 사용하여 다음과 같은 방법으로 실리카 담지된 형태의 폴리올레핀 중합용 촉매 조성물을 제조하였다.  Using the ansa metallocene compound of Formula 4 to prepare a catalyst composition for polyolefin polymerization of the silica-supported form in the following manner.
메탈로센 화합물의 합성  Synthesis of Metallocene Compounds
실시예 1과 동일한 방법으로 [(6-t_부특시핵실메틸실란-디일) - 비스 (2—메틸 -4-페닐인데닐)] 지르코늄 디클로라이드를 합성하였다. In the same manner as in Example 1 [(6-t_subspecific nucleosil methylsilane-diyl)- Bis (2—methyl-4-phenylindenyl)] zirconium dichloride was synthesized.
실리카 담지 촉매 조성물의 제조  Preparation of Silica Supported Catalyst Composition
실리카 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산 (MA0) 52 mirol을 일괄 투입 방식 (One-Shot )으로 한꺼번에 넣어 90 °C에서 24 시간 동안 반웅시켰다. 침전후 상층부는 제거하고 를루엔으로 2회에 걸쳐 세척한 후에, 메틸알루미녹산 (MA0)이 담지된 실리카 담체 3 g을 얻었다. After weighing 3 g of silica in a shrink flask in advance, methyl aluminoxane (MA0) 52 mirol was added in one batch (One-Shot) and reacted at 90 ° C. for 24 hours. After precipitation, the upper layer was removed and washed twice with toluene to obtain 3 g of a silica carrier carrying methylaluminoxane (MA0).
상기에서 합성한 메탈로센 화합물, 즉, [(6-t-부록시핵실메틸실란- 디일)—비스 (2-메틸 -4-페닐인데닐)] 지르코늄 디클로라이드 240 μιτ ΐ을 를루엔 50 mL에 녹인 후, 상기 메틸알루미녹산 (MA0)이 담지된 실리카 담체를 첨가하여 40 °C에서 5 시간 동안 반웅시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반웅 생성물을 를루엔과 헥산으로 2회에 걸쳐 세척하였다. 이때, 상기 메탈로센 화합물과 실리카에 담지된 메틸알루미녹산과의 금속원소 몰비 (Al/Zr)는 215가 되었다. 이후 진공 건조하여 평균 입경 30 /皿의 파우더 입자 형태를 갖는 실리카 담지 메탈로센 촉매 조성물 5 g을 얻었다. 50 mL of toluene with 240 μιτΐ of the metallocene compound synthesized above, i.e., [(6-t-butoxynucleosilmethylsilane-diyl) -bis (2-methyl-4-phenylindenyl)] zirconium dichloride After dissolving in, the silica carrier carrying the methylaluminoxane (MA0) was added thereto and reacted at 40 ° C. for 5 hours. After the completion of the reaction, when the precipitation was completed, the upper layer solution was removed and the remaining reaction product was washed twice with toluene and hexane. At this time, the metal element molar ratio (Al / Zr) of the metallocene compound and methylaluminoxane supported on silica was 215. Thereafter, the resultant was dried in vacuo to obtain 5 g of a silica-supported metallocene catalyst composition having a powder particle form having an average particle diameter of 30 / cc.
[비교예 4] [Comparative Example 4]
비교예 1에 따라 조촉매로 트리에틸알루미늄 (TEA)을 사용하며 메€로센 화합물과 트리에틸알루미늄과의 금속원소의 몰비 (Al/Zr)가 50이 되도록 반웅시킨 후에, 상기 메틸알루미녹산 (MA0)이 담지된 실리카에 담지시킨 것 (담지시, Al/Zr = 215)을 제외하고는, 바교예 3과 동일한 방법으로 평균 입경 30 의 파우더 밉자 형태를 갖는 실리카 담지 메탈로센 촉매 조성물 5 g을 얻었다.  Triethylaluminum (TEA) was used as a cocatalyst according to Comparative Example 1, and the reaction was carried out such that the molar ratio (Al / Zr) of the metal element of the metallocene compound to the triethylaluminum was 50. 5 g of the silica-supported metallocene catalyst composition having a powder mip shape with an average particle diameter of 30 was obtained in the same manner as Bagyo Example 3, except that it was supported on the supported silica (Al / Zr = 215). Got it.
[비교예 5] [Comparative Example 5]
비교예 1에 따라 조촉매로 트리이소부틸알루미늄 (TIBA)을 사용하며 메탈로센 화합물과 트리이소부틸알루미늄의 금속원소의 몰비 (Al/Zr)가 25가 되도록 반웅시킨 후에, 상기 메틸알루미녹산 (MA0)이 담지된 실리카에 담지시킨 것 (담지시, Al/Zr = 215)을 제외하고는, 비교예 3과 동일한 방법으로 평균 입경 30 의 파우더 입자 형태를 갖는 실리카 담지 메탈로센 촉매 조성물 5 g을 얻었다. After using triisobutylaluminum (TIBA) as a cocatalyst according to Comparative Example 1 and reacting such that the molar ratio (Al / Zr) of the metallocene compound and the metal element of triisobutylaluminum is 25, the methylaluminoxane ( MA0) is carried the same as in the Comparative example 3, except for that one (when supported, Al / Zr = 215) supported on silica 5 g of a silica-supported metallocene catalyst composition having a powder particle form having an average particle diameter of 30 was obtained by the method.
[비교예 6] , [Comparative Example 6],
하기 화학식 5의 안사 메탈로센 화합물을 제조하여 사용한 것을 제외하고는, 비교예 3과 동일한 방법으로 폴리을레핀 중합용 촉매 조성물을 제조하였다.  A catalyst composition for polyolefin polymerization was prepared in the same manner as in Comparative Example 3, except that the ansa metallocene compound of Formula 5 was prepared and used.
. [화학식 5]  . [Formula 5]
Figure imgf000025_0001
메탈로센 화합물의 제조
Figure imgf000025_0001
Preparation of Metallocene Compounds
1 단계: 디메틸비스 (2-메틸 -4페닐인데닐)실란의 제조  Step 1: Preparation of Dimethylbis (2-Methyl-4phenylindenyl) silane
77 mL의 2-메틸 -4-페닐인덴 를루엔 /THF=10/1 용액 (49.5 mmol)에 n- 부틸리튬 용액 (2.5 M, 핵산 용매) 21.8 mL를 0 °C에서 천천히 적가하고, 80 °C에서 1 시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 0 °C 이하에서 디클로로메틸실란 2.98 mL를 천천히 적가하고, 약 10 분 동안 교반한 뒤 80 °C로 온도를 을려 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 61%의 수율로 얻었다 (racemic:meso = 1:1). Slowly add 21.8 mL of n-butyllithium solution (2.5 M, nucleic acid solvent) to 77 mL of 2-methyl-4-phenylindene toluene / THF = 10/1 solution (49.5 mmol) at 0 ° C; 80 After stirring for 1 hour at ° C it was stirred for 1 day at room temperature. Then, 2.98 mL of dichloromethylsilane was slowly added dropwise at 0 ° C. or lower, stirred for about 10 minutes, and stirred at 80 ° C. for 1 hour. Then water The organic layer was separated, silica column purified, and dried in vacuo to give a sticky yellow oil in 61% yield (racemic: meso = 1: 1).
¾ NMRC500 MHz, CDC13, 7.24 pm): 0.02(6H, s), 2.37(6H, s), 4.00C2H, s), 6.87(2H, t), 7.38(2H, t), 7.45(2H, 0, 7.57(4H, d), 7.65(4H, 0, 7.75(4H, d) ¾ NMRC500 MHz, CDC1 3 , 7.24 pm): 0.02 (6H, s), 2.37 (6H, s), 4.00C2H, s), 6.87 (2H, t), 7.38 (2H, t), 7.45 (2H, 0 , 7.57 (4H, d), 7.65 (4H, 0, 7.75 (4H, d)
2 단계: Γ디메틸실란디일비스 (2-메틸 -4-페닐인데닐)] 지르코늄 디클로라이드의 제조  Step 2: Preparation of Γdimethylsilanediylbis (2-methyl-4-phenylindenyl)] zirconium dichloride
240 mL의 디메틸비스 (2-메틸 -4-페닐인데닐)실란 에테르 /핵산 =1八 용액 (12.4 mmol)에 nᅳ부틸리튬 용액 (2.5 M in 핵산) 10.9 mL를 -78 °C에서 천천히 적가하였다. 그 뒤, 상온에서 하루 동안 교반한 뒤 여과하고 진공 건조하여 연한 노란색의 고체를 얻었다. 글로브 박스 (glove box) 내에서 합성한 리간드 염 (ligand salt)과 비스 (Ν,Ν'-디페닐 -1,3- 프로판디아미도)디클로로지르코늄비스 (테트라하이드로퓨란) 을 쉬링크 플라스크 (schlenk flask)에 칭량 (weighing)한 후, -78 °C에서 에.테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 붉은색의 용액을 여과 분리한 후 진공 건조하고 를루엔 /에테르 = 1/2 용액을 가하여 깨끗한 붉은 색 용액을 얻었다. HC1 에테르 용액 (1M) 1.5-2 당량을 -78 'C에서 천천히 적가한 후 상온에서 3시간 동안 교반하였다. 이후 여과하고 진공 건조하여 상기 화학식 5으로 표시되는 오렌지색 고체 성분의 메탈로센 화합물을 70%의 수율로 얻었다 (racemic only).. Slowly add 10.9 mL of n2-butyllithium solution (2.5 M in nucleic acid) to 240 mL of dimethylbis (2-methyl-4-phenylindenyl) silane ether / nucleic acid = 1 八 solution (12.4 mmol) at -78 ° C. It was. Then, the mixture was stirred at room temperature for one day, filtered and dried in vacuo to give a pale yellow solid. Ligand salt and bis (Ν, Ν'-diphenyl-1,3-propanediamido) dichlorozirconiumbis (tetrahydrofuran) synthesized in a glove box were used in the Schlenk flask. After weighing, the ether was slowly added dropwise at -78 ° C and stirred for 1 day at room temperature. The red solution was separated by filtration, dried in vacuo and toluene / ether = 1/2 solution was added to obtain a clean red solution. 1.5-2 equivalents of HC1 ether solution (1M) was slowly added dropwise at -78 'C, followed by stirring at room temperature for 3 hours. After filtration and vacuum drying to give a metallocene compound of the orange solid component represented by the formula (5) in a yield of 70% (racemic only).
¾ NMR(500 MHz, C6D6, 7.24 ppm): 1.32(6H, s), 2.24(6H, s), 6.93C2H, s), 7.10(2H, t), 7.32(2H, t), 7.36(2H, d), 7.43(4H, t), 7.60C4H, d), 7.64(2H, d) ¾ NMR (500 MHz, C 6 D 6 , 7.24 ppm): 1.32 (6H, s), 2.24 (6H, s), 6.93C2H, s), 7.10 (2H, t), 7.32 (2H, t), 7.36 (2H, d), 7.43 (4H, t), 7.60C4H, d), 7.64 (2H, d)
실리카담지된 촉매 조성물의 제조  Preparation of Silica Supported Catalyst Composition
상기에서 합성한 화학식 5의 메탈로센 화합물을 사용한 것을 제외하고는, 비교예 3과 동일한 방법으로 평균 입경 ·30 /皿의 파우더 입자 형태를 갖는 실리카에 담지된 메탈로센 촉매 5 g을 얻었다.  5 g of a metallocene catalyst supported on silica having a powder particle form having an average particle diameter of 30 / mm 3 was obtained in the same manner as in Comparative Example 3, except that the metallocene compound of Chemical Formula 5 synthesized above was used.
[비교예 7] Comparative Example 7
하기 화학식 6의 안사 메탈로센 화합물을 제조하여 사용한 제외하고는, 비교예 3과 동일한 방법으로 폴리을레핀 중합용 촉매 조성물을 제조하였다. To prepare and use the ansa metallocene compound of the formula Except, a catalyst composition for polymerizing polyolefin was prepared in the same manner as in Comparative Example 3.
[화학식 6]  [Formula 6]
Figure imgf000027_0001
Figure imgf000027_0001
메탈로센 화합물의 제조  Preparation of Metallocene Compounds
1 단계: 디메틸비스 (2-메틸 -4 ,6-디이소프로필인데닐)실란의 제조  Step 1: Preparation of Dimethylbis (2-Methyl-4,6-diisopropylindenyl) silane
10 mL의 2-메틸 -4,6-이소프로필인덴 용액 (3.45 mmol in 에테르)에 7.83 mL의 n-부틸리튬 용액 (2.5 M in 핵산)을 0 °C에서 천천히 적가한 후에 상기 흔합 용액을 상온에서 약 3 시간 동안 교반하였다. 그 후, 0 °C 이하에서 디클로로메틸실란 0.2 mL를 천천히 적가하고, 약 10 분 동안 교반한 뒤 상온으로 온돌르 올려 3 시간 동안 교반하였다. 이어서, 상기 반웅 생성물을 여과 및 진공 건조하여 디메될비스 (2-메틸 -4,6- 디이소프로필인데닐)실란을 제조하였다. 7.83 mL of n-butyllithium solution (2.5 M in nucleic acid) was slowly added dropwise at 0 ° C. to 10 mL of 2-methyl-4,6-isopropylindene solution (3.45 mmol in ether), followed by the mixing solution. Stir for about 3 hours at room temperature. Then, 0.2 mL of dichloromethylsilane was slowly added dropwise at 0 ° C. or lower, stirred for about 10 minutes, and then heated to room temperature, followed by stirring for 3 hours. The reaction product was then filtered and dried in vacuo to produce dimethasylbis (2-methyl-4,6-diisopropylindenyl) silane.
¾ 賺(500 MHz, CDCls, 7.24 ppm): 0.39(6H, s), 1.30~1.23(24H, m) 2.25(6H, m), 2.91(2H, q) , 3.18(2H, q), 3.53(2H, s), 6.71(2H, s), 6.95(2H, s), 7.14(2H, s)  ¾ 賺 (500 MHz, CDCls, 7.24 ppm): 0.39 (6H, s), 1.30-1.23 (24H, m) 2.25 (6H, m), 2.91 (2H, q), 3.18 (2H, q), 3.53 ( 2H, s), 6.71 (2H, s), 6.95 (2H, s), 7.14 (2H, s)
2 단계: [디메틸실란디일비스 (2-메틸 -4,6-디이소프로필인데닐)] 지르코늄 디클로라이드의 제조  Step 2: Preparation of Zirconium Dichloride [Dimethylsilanediylbis (2-methyl-4,6-diisopropylindenyl)]
10 mL의 디메틸비스 (2-메틸 -4,6-디이소프로필인데닐)실란 용액 (2.55 匪 ol in 에테르)에 n—부틸리튬 용액 (2.5 M in 핵산) 2.3 mL를 0 °C에서 천천히 적가한 후, 상온에서 약 4 시간 동안 교반한 뒤 진공 건조하였다. 그 후에, 핵산으로 염을 세척한 후 여과 및 진공 건조하여 흰색의 고체를 얻었다. 여기에 를루엔과 디메특시에탄을 가하여 녹인 뒤, -78 °C에서 ZrCl4 를루엔 슬러리를 가하여 상온에서 약 3 시간 동안 교반하였다. 이후 진공 건조하고 핵산을 가한 뒤 저온에서 여과하여 상기 화학식 6으로 표시되는 메탈로센 화합물, [디메틸실란디일비스 (2-메틸 -4,6-디이소프로필인데닐)] 지르코늄 디클로라이드를 얻었다 (racemic:meso = 1:1). 10 mL of dimethylbis (2-methyl-4,6-diisopropylindenyl) silane solution (2.55 匪 ol in ether) was slowly added dropwise n-butyllithium solution (2.5 M in nucleic acid) 2.3 mL at 0 ° C, stirred for about 4 hours at room temperature and then dried in vacuo. Thereafter, the salt was washed with nucleic acid, filtered and dried in vacuo to give a white solid. Toluene and dimetheusethane were added thereto to dissolve it, and then ZrCl 4 -luene slurry was added at -78 ° C, and the mixture was stirred at room temperature for about 3 hours. Thereafter, the resultant was dried under vacuum and filtered at low temperature to obtain a metallocene compound represented by Chemical Formula 6, [dimethylsilanediylbis (2-methyl-4,6-diisopropylindenyl)] zirconium dichloride. (racemic: meso = 1: 1).
¾ 贿 (500 MHz, C6D6, 7.24 ppm): 1.19~1.34(30H, m), 2.22(6H, s), 2.84(2H, q), 3.03(2H, q) , 6.79(2H, s), 7.04(2H, q), 7.27(2H, s) ¾ 贿 (500 MHz, C 6 D 6 , 7.24 ppm): 1.19 to 1.34 (30H, m), 2.22 (6H, s), 2.84 (2H, q), 3.03 (2H, q), 6.79 (2H, s ), 7.04 (2H, q), 7.27 (2H, s)
실리카담지된 촉매 조성물의 제조  Preparation of Silica Supported Catalyst Composition
상기에서 합성한 화학식 6의 메탈로센 화합물을 사용한 것을 제외하고는, 비교예 3과 동일한 방법으로 평균 입경 30 通의 파우더 입자 형태를 갖는 실리카에 담지된 메탈로센 촉매 5 g을 얻었다.  5 g of a metallocene catalyst supported on silica having a powder particle form having an average particle diameter of 30% was obtained in the same manner as in Comparative Example 3, except that the metallocene compound of Chemical Formula 6 synthesized above was used.
[비교예 8] Comparative Example 8
하기 화학식 7의 안사 메탈로센 화합물을 제조하여 사용한 것을 제외하고는, 비교예 3과 동일한 방법으로 폴리올레핀 중합용 촉매 조성물을 제조하였다.  A catalyst composition for polyolefin polymerization was prepared in the same manner as in Comparative Example 3, except that the ansa metallocene compound of Formula 7 was prepared and used.
[화학식 7]  [Formula 7]
Figure imgf000028_0001
Figure imgf000028_0001
메탈로센 화합물의 제조  Preparation of Metallocene Compounds
(디메틸실란디일-비스인데닐) 지르코늄 디클로라이드의 제조 44 mL의 인덴과 테트라하이드로퓨란 (THF, TetraHydroFuran) 150 mL을 포함하는 용액에 메틸리튬 용액 (1.4 M in THF) 215 mL를 0 °C에서 천천히 적가한 후, 상온에서 약 2 시간 동안 교반한 뒤 진공 건조하였다. 그 후에, 메틸리튬 용액 (1.4 M in THF) 225 mL를 0 °C에서 천천히 적가한 후, 상온에서 약 1 시간 동안 교반하며 반웅시켰다. 한편, -80 °C THF 200 cc에 40 g의 지르코늄 테트라클로라드를 투입한 후에 25 °C로 승온하였다. 여기에, 앞서 흔합 반웅시킨 인덴 용액을 서서히 상기 지르코늄할라이드 용액에 넣고 25 °C에서 1 시간 도동안 교반하며 반응시켰다. 그 후에, 24 시간 동안 건조시켜, 오일 형상으로 얻어진 물질을 여과하여 상기 화학식 7로 표시되는 메탈로센 화합물, (디메틸실란디일-비스인데닐) 지르코늄 디클로라이드를 노란색 고체상으로 얻었다. Preparation of (dimethylsilanediyl-bisindenyl) zirconium dichloride 215 mL of methyllithium solution (1.4 M in THF) was slowly added dropwise at 0 ° C to a solution containing 44 mL of indene and 150 mL of tetrahydrofuran (THF, TetraHydroFuran), followed by stirring at room temperature for about 2 hours. Dried in vacuo. Thereafter, 225 mL of methyllithium solution (1.4 M in THF) was slowly added dropwise at 0 ° C., followed by stirring at room temperature for about 1 hour. On the other hand, 40 g of zirconium tetrachlorad was added to -80 ° C THF 200 cc and then heated to 25 ° C. Here, the previously mixed reaction mixture of indene was slowly added to the zirconium halide solution and reacted with stirring at 25 ° C. for 1 hour. Thereafter, the resultant was dried for 24 hours, and the material obtained in an oil form was filtered to obtain a metallocene compound represented by Chemical Formula 7, (dimethylsilanediyl-bisindenyl) zirconium dichloride, as a yellow solid.
¾ 爾 (500 腿 z, C6D6, 7.26 ppm): 0.54(6H, s), 5.774(2H, d), 6.80(2H, d), 6.86(2H, t), 7.14(2H, t), 7.22(2H, d), 7.33(2H, d) ¾ 500 (500 腿 z, C 6 D 6 , 7.26 ppm): 0.54 (6H, s), 5.774 (2H, d), 6.80 (2H, d), 6.86 (2H, t), 7.14 (2H, t) , 7.22 (2H, d), 7.33 (2H, d)
실리카 담지된 촉매 조성물의 제조  Preparation of Silica Supported Catalyst Composition
상기에서 합성한 화학식 7의 메탈로센 화합물을 사용한 것을 제외하고는, 비교예 3과 동일한 방법으로 평균 입경 30 ; «m의 파우더 입자 형태를 갖는 실리카에 담지된 메탈로센 촉매 5 g을 얻었다.  5 g of a metallocene catalyst supported on silica having a powder particle form having an average particle diameter of 30; «m was obtained in the same manner as in Comparative Example 3, except that the metallocene compound of Formula 7 synthesized above was used.
[제조예 1~4및 비교제조예 1~8] [Production Examples 1 to 4 and Comparative Production Examples 1 to 8]
실시예 1~2에 따라 제조된 비담지 비균일계 폴리을레핀 중합용 촉매 조성물 및 비교예 3~8에 따라 제조된 실리카 담지 메탈로센 촉매를 사용하여, 다음과 같은 방법으로 각각 폴리프로필렌 중합체를 제조하였다. 프로필렌 중합  Using the catalyst composition for unsupported non-uniform polyolefin resin prepared according to Examples 1 and 2 and the silica-supported metallocene catalyst prepared according to Comparative Examples 3 to 8, the polypropylene polymer was prepared in the following manner, respectively. Prepared. Propylene polymerization
하기 표 1에 나타낸 바와 같은 조건 하에서 메탈로센 촉매 조성물을 사용하여 벌크 중합 공정으로 프로필렌 중합 공정을 수행하였다.  The propylene polymerization process was carried out in a bulk polymerization process using the metallocene catalyst composition under the conditions as shown in Table 1 below.
먼저, 2 L 스테인레스 반웅기를 65 °C에서 진공건조한 후 넁각하고, 실온에서 트리에틸알루미늄 3 醒 을 넣고 1.5 L의 프로필렌을 순차적으로 투입하였다. 이후 10 분 동안 교반한 후, 실시예 1~2 및 비교예 3~8에 따라 각각 제조된 메탈로센 촉매 조성물을 각각 0.02 g 또는 0.006 g으로 질소 분위기 하에서 반웅기에 투입하였다. 이 때, 상기 메탈로센 촉매 조성물과 함께 수소 기체를 추가로 투입하여 반응을 수행하기도 하였다 (표 1 참조). 이후 반응기 온도를 70 °C까지 서서히 승온한 후 1 시간 동안 중합하였다. 반웅 종료후 미반웅된 프로필렌은 벤트하였다. 이때, 사용된 촉매 조성물의 함량 및 활성과 생성된 중합체의 물성 등을 측정하여 하기 표 1에 나타내었다. First, the 2 L stainless steel was dried under vacuum at 65 ° C., and then quenched, triethylaluminum 3 에서 was added at room temperature, and 1.5 L of propylene was sequentially added. After stirring for 10 minutes, the metallocene catalyst composition prepared according to Examples 1 and 2 and Comparative Examples 3 to 8, respectively, to 0.02 g or 0.006 g, respectively. Into the reaction vessel under the atmosphere. At this time, the reaction was performed by additionally adding hydrogen gas together with the metallocene catalyst composition (see Table 1). Thereafter, the temperature of the reactor was slowly raised to 70 ° C. and then polymerized for 1 hour. After the reaction was completed, unreacted propylene was vented. At this time, the content and activity of the catalyst composition used and the physical properties of the resulting polymer are measured and shown in Table 1 below.
<중합체의 물성 측정 방법 > <Measurement Method of Physical Properties of Polymer>
(1) 촉매 활성: 단위 시간 (h)을 기준으로 사용된 촉매량 (g Cat)당 생성된 중합체의 무게 (kg PP)의 비로 계산하였다.  (1) Catalyst activity: calculated as the ratio of the weight of polymer produced (kg PP) per catalyst amount (g Cat) used, based on unit time (h).
(2) 중합체의 녹는점 (Tm): 시차주사열량계 (Differential Scanning (2) Melting Point (Tm) of Polymer: Differential Scanning Calorimeter
Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 중합체의 녹는점을 측정하였다. 구체적으로 중합체를 220 °C까지 가열한 후 5 분 동안 그 온도를 유지하였고, 다시 20 °C까지 내린 후 다시 온도를 증가시켰으며, 이때 온도의 상승속도와 하강속도는 각각 10 °C/min으로 조절하였다. The melting point of the polymer was measured using a Calorimeter, DSC, a device name: DSC 2920, and a TA instrument. Specifically, the polymer was heated to 220 ° C and maintained at that temperature for 5 minutes, and then lowered to 20 ° C and increased again. At this time, the rate of rise and fall of temperature was 10 ° C / min, respectively. Adjusted to.
(3) 중합체의 결정화 온도 (Tc): DSC를 이용하여 용융점과 같은 조건에서 온도를 감소시키면서 나타나는 곡선으로부터 결정화 온도로 하였다.  (3) Crystallization temperature (Tc) of the polymer: The crystallization temperature was determined from a curve appearing while decreasing the temperature under the same conditions as the melting point using DSC.
(4) 중합체의 입체 규칙도 (XI): 중합체를 끓는 0-자일렌 (ortho- Xylene)에 첨가하여 1 시간 경과 후에 추출되지 않는 중합체의 무게비 ( >)로 환산하였다.  (4) Stereoregularity diagram of the polymer (XI): The polymer was added to boiling 0-xylene (ortho-Xylene) and converted to the weight ratio (>) of the polymer which was not extracted after 1 hour.
구체적으로, 먼저 플라스크에 200 mL 0-자일렌을 준비한 후 200 mm No. 4 추출 종이로 필터링하였다. 알루미늄 팬을 30 분, 150 °C 오븐에서 건조한 후 데시케이터 (desicator)에서 넁각시키고, 질량을 측정하였다. 다음으로 여과된 으자일렌 100 mL를 피펫으로 채취하여 알루미늄 팬에 옮기고, 145 내지 150 °C로 가열하여 으자일렌을 모두 증발시켰다. 이후 알루미늄 팬을 100 ±5 °C의 온도 및 1 hr, 13.3 kPa의 압력 하에서 1 시간 동안 진공 건조시켰다. 이후 알루미늄 팬을 데시케이터에서 넁각후 상기 과정을 2번 반복함으로써, 무게 오차 0.0002 g 이내로 0-자일렌만의 공측정 테스트 (blank test)를 마쳤다. Specifically, 200 mL 0-xylene was first prepared in a flask and then 200 mm No. Filtered with 4 extraction paper. The aluminum pan was dried in an oven at 150 ° C. for 30 minutes, then angled in a desiccator and weighed. Next, 100 mL of filtered xylene was collected by a pipette, transferred to an aluminum pan, and heated to 145 to 150 ° C. to evaporate all the xylenes. The aluminum pan was then vacuum dried for 1 hour under a temperature of 100 ± 5 ° C and a pressure of 1 hr, 13.3 kPa. After the aluminum pan is chopped off the desiccator, By repeating the procedure twice, the 0-xylene only blank test was completed with a weight error of 0.0002 g.
다음으로, 메탈로센 촉매를 사용하여 제조된 폴리프로필렌 중합체를 r건조 (70 °C, 13.3 kPa, 60분, 진공 건조)한 후, 데시케이터에서 넁각시킨 중합체 샘플 2g±0.0001g을 500 mL의 플라스크에 넣고 여기에 200 mL o- 자일렌을 투입하였다. 이 플라스크에는 질소와 냉각수를 연결하였으며 1 시간 동안 플라스크를 가열하여 0-자일렌을 계속 환류시켰다. 이후 플라스크를 5분간 공기 중에 두어 100 °C 이하로 넁각시킨 후, 플라스크를 흔들고 항온조 (25±0.5 °C)에 30분간 넣어 불용물을 침전시켰다. 침전이 형성된 결과액은 200 瞧 No. 4의 추출 종이로 깨끗해질 때까지 반복하여 여과하였다. 150 °C에서 30분간 건조한 후 데시케이터에서 냉각후 미리 무게를 측정해둔 알루미늄 팬에 깨끗이 여과된 결과액 100 mL를 가하고, 145 내지 150. °C로 알루미늄 팬을 가열하여 0-자일렌을 증발시켰다. 증발이 끝난 알루미늄 팬은 70±5 °C의 온도 및 13.3 kPa의 압력 하에서 1 시간 동안 진공 건조시키고, 데시케이터에서 넁각시키는 과정을 2번 반복하여 오차 0.0002 g 이내로 무게를 측겋하였다. Next, the polypropylene polymer prepared using a metallocene catalyst was r dried (70 ° C., 13.3 kPa, 60 minutes, vacuum dried), followed by 500 mL of 2 g ± 0.0001 g of the polymer sample, which was detected by a desiccator. Into a flask of 200 mL o-xylene was added thereto. The flask was connected to nitrogen and cooling water and the flask was heated to reflux 0-xylene for 1 hour. Thereafter, the flask was placed in air for 5 minutes, angled to 100 ° C. or less, and the flask was shaken and placed in a thermostat (25 ± 0.5 ° C.) for 30 minutes to precipitate insoluble matters. The resultant solution formed precipitate was 200 瞧 No. Filtration was repeated with 4 extraction paper until clear. After drying at 150 ° C for 30 minutes, add 100 mL of the filtered solution to a pre-weighed aluminum pan after cooling in a desiccator and evaporate 0-xylene by heating the aluminum pan to 145 to 150 ° C. I was. The evaporated aluminum pan was vacuum dried for 1 hour at a temperature of 70 ± 5 ° C. and a pressure of 13.3 kPa, and weighed in an error of 0.0002 g by repeating the process in a desiccator twice.
하기의 계산식 1에 의하여 중합체 중 으자일렌에 녹은 부분의 중량? KXs)를 구하고, 이로부터 으자일렌에 추출되지 않은 중합체의 무게 비 (=100-Xs)를 구한 뒤, 이를 입체 규칙도 (XI)라 하였다.  Weight of the part melted in the xylene in the polymer according to the formula 1? KXs) was obtained, and the weight ratio (= 100-Xs) of the polymer not extracted to exylene was obtained from this, and this was called the stereoregularity diagram (XI).
[계산식 1]  [Calculation 1]
입체 규칙도 (XI) = 100 一 Xs
Figure imgf000031_0001
Stereogram (XI) = 100 一 Xs
Figure imgf000031_0001
상기 계산식 1에서,  In the above formula 1,
Xs = 중합체 중 ^자일렌에 녹은 부분 (중량 %),  Xs = ^ melted part of the polymer (% by weight) ,
VbO = 초기 ^자일렌의 부피 (mL),  VbO = volume of initial ^ xylene (mL),
Vbl = 자일렌에 녹은 중합체 중 채취한 부피 (mL),  Vbl = volume (mL) of polymer taken from xylene,
Vb2 = 공 테스트시 사용한 채취한 £广자일렌의 부피 (mL),  Vb2 = volume of £ 广 xylene taken in the ball test (mL),
W2 = 알루미늄팬과 ^자일렌을 증발시킨 후 알루미늄
Figure imgf000031_0002
중합체 무게의 합 (g), Wl = 알루미늄팬의 무게 (g),
W2 = aluminum pan and ^ xylene after evaporation
Figure imgf000031_0002
Sum of polymer weights (g), Wl = weight of aluminum pan (g),
WO = 초기 중합체의 무게 (g),  WO = weight of initial polymer (g),
B = 공 테스트시 알루미늄팬에 남은 잔분의 평균값 (g)  B = average value of remaining residues in aluminum pan during ball test (g)
(5) 중합체의 분자량 분포 (PDI, polydispersity index) 및 중량평균 분자량 (Mw): 겔 투과 크로마토그래피 (GPC: gel permeation chromatography, Waters사 제조)를 이용하여 중합체의 중량평균 분자량 (Mw)과 수평균 분자량 (Mn)을 측정하였고, 증량평균 분자량을 수평균 분자량으로 나누어 분자량 분포 (PDI)를 계산하였다. 이때, 분석온도는 160 °C로 사용하고, 용매는 트리클로로벤젠을 사용하였으며, 폴리스티렌으로 표준화하여 분자량을 측정하였다. 실시예 1~2 및 비교예 3~8에 따라 제조된 촉매 조성물을 사용한 제조예 1~3 및 비교제조예 1~7의 중합 공정 조건 및 생성된 폴리프로필렌의 물성 측정 결과는 하기 표 1에 나타낸 바와 같다. (5) Molecular weight distribution (PDI, polydispersity index) and weight average molecular weight (Mw) of the polymer: weight average molecular weight (Mw) and number average of the polymer using gel permeation chromatography (GPC: manufactured by Waters) The molecular weight (Mn) was measured and the molecular weight distribution (PDI) was calculated by dividing the increase average molecular weight by the number average molecular weight. At this time, the analysis temperature was used at 160 ° C, the solvent was trichlorobenzene was used, and the molecular weight was measured by standardizing with polystyrene. Polymerization process conditions of Preparation Examples 1 to 3 and Comparative Preparation Examples 1 to 7 using the catalyst compositions prepared according to Examples 1 to 2 and Comparative Examples 3 to 8 and the measurement results of the physical properties of the resulting polypropylene are shown in Table 1 below. As shown.
【표 1】 Table 1
Figure imgf000032_0001
Figure imgf000033_0001
상기 표 1에서 보는 것과 같이, 본 발명에 따라 특정의 안사 메탈로센 화합물과 조촉매를 포함하는 실시예 1~2의 비담지 비균일계 촉매 조성물을 사용하여 올레핀 중합 공정을 수행한 제조예 1~3의 경우에, 단위 시간 기준으로 촉매의 단위 중량에 대하여 얻어진 폴리을레핀의 생성된 중량을 나타내는 촉매 활성은 10.3 내지 13.5 kg/gCat .hr로 기존의 담지 촉매에 비해 현저히 향상된 정도까지 구현할 수 있는 것으로 확인되었다. 특히, 제조예 1~2의 경우에, 10 wt% 메틸알루미녹산을 0.5 cc/min 속도로 적가함으로써 촉매 크기를 50 m 수준으로 조절함으로써, 중합체의 모폴로지가 더 우수하고, 분자량분포 또한 모두 1.90에 이르며 현저히 좁은 범위로 향상되었음을 알 수 있다.
Figure imgf000032_0001
Figure imgf000033_0001
As shown in Table 1, Preparation Example 1 in which the olefin polymerization process was performed using the unsupported heterogeneous catalyst composition of Examples 1 to 2 including the specific ansa metallocene compound and a promoter according to the present invention. In the case of ˜3, the catalytic activity representing the resulting weight of the polyolefin obtained relative to the unit weight of the catalyst on a unit time basis is 10.3 to 13.5 kg / gCat.hr, which can be realized to a significantly improved level compared to the conventional supported catalyst. It was confirmed. In particular, in Preparation Examples 1 and 2, the catalyst size was adjusted to 50 m level by dropwise addition of 10 wt% methylaluminoxane at a rate of 0.5 cc / min, so that the morphology of the polymer was better, and the molecular weight distribution was also reduced to 1.90. It is early and can be seen that the improvement in a significantly narrow range.
더욱이, 실시예 1과 같이 메틸알루미녹산을 적가 방식으로 를루엔에 녹아 있는 메탈로센 촉매에 떨어뜨렸을 경우에, 최종 비담지된 비균일계 촉매 조성물의 크기를 50 로 조절할 수 있었으며, 이 촉매 조성물을 사용하여 중합 후 얻어지는 폴리프로필렌의 모폴로지가 더 우수했으며 분자량 분포가 더 좁은 촉매 조성물올 제조할 수 있다. 다른 한편으로, 실시예 2와 같이 일괄 투입 방식으로 메틸알루미녹산을 를루엔에 녹아 있는 메탈로센 촉매에 투입하면, 좀더 큰 입경의 촉매를 얻을 수 있다. 이로써, 본 발명은 폴리올레핀 중합시 올레핀계 폴리머의 미세 구조를 쉽게 제어할 수 있는 장점이 있다.  Furthermore, when methylaluminoxane was dropped on the metallocene catalyst dissolved in toluene in a dropwise manner as in Example 1, the size of the final unsupported heterogeneous catalyst composition could be adjusted to 50. It is possible to prepare a catalyst composition with a better morphology of polypropylene obtained after polymerization with a narrower molecular weight distribution. On the other hand, when methylaluminoxane is added to the metallocene catalyst dissolved in toluene in a batch feeding method as in Example 2, a catalyst having a larger particle size can be obtained. Thus, the present invention has the advantage that it is easy to control the microstructure of the olefin polymer during polyolefin polymerization.
반면에, 기존의 공정에 따라 담체를 사용하여 제조된 비교예 3~8의 실리카 담지된 메탈로센 촉매를 사용하여 올레핀 중합 공정을 수행한 비교제조예 1~7의 경우에는 복잡한 담지 과정을 거치게 되어 제조비용이 더 증가하였음에도 불구하고, 촉매 활성이 5.2 kg/gCat - hr 이하로 현저히 떨어짐을 확인하였다. 더욱이, 비교제조예 3과 6의 경우에 중합 공정 자체가 일어나지 않았으며, 비교제조예 4의 경우에 촉매 활성이 0.12 kg/gCat · hr로 매우 낮아졌다. 특히, 본 발명에 따라 담체를 사용하지 않는 실시예 1~2의 촉매를 사용한 제조예 1~3의 경우에, 담체를 사용한 비교제조예 1과 비교하여 녹는점, 분자량, 입체규칙도 등에 차이 없이 높은 활성과 파울링 없는 촉매 조성물을 제조하였음을 알 수 있다. 이 때, 파울링 여부는 중합 종료후 반웅기 내부에 폴리머가 엉겨붙어 있는지를 육안으로 관찰하고 확인하였다. 이러한 제조예 1~3의 촉매 조성물 물성 측정 결과는 담체를 사용하지 않고서도, 현재 가장 보편적으로 사용되고 있는 담체를 사용한 촉매와 동등한 뙤는 좀더 우수한 물성 측정 결과를 갖는 것을 알 수 있다. On the other hand, Comparative Preparation Examples 1 to 7 in which the olefin polymerization process was carried out using the silica supported metallocene catalysts of Comparative Examples 3 to 8 prepared by using the carrier according to the existing process were subjected to a complicated supporting process. In spite of the increase in manufacturing cost, the catalyst activity was found to drop significantly below 5.2 kg / gCat-hr. Furthermore, in Comparative Examples 3 and 6, the polymerization process itself did not occur, and in Comparative Example 4, the catalytic activity was very low, 0.12 kg / gCat · hr. In particular, in the case of Preparation Examples 1 to 3 using the catalysts of Examples 1 to 2 without using the carrier according to the present invention, there is no difference in melting point, molecular weight, stereoregularity, etc., compared to Comparative Preparation Example 1 using the carrier. It can be seen that a catalyst composition with high activity and no fouling was prepared. At this time, whether fouling was observed by visual observation whether the polymer was entangled inside the reaction vessel after completion of polymerization. The measurement results of the physical properties of the catalyst compositions of Preparation Examples 1 to 3 were found to have more excellent physical property measurement results than those of the catalyst using the carrier most commonly used without using a carrier.
이와 같이, 본 발명에 따라 담체를 사용하지 않는 실시예 1~2의 촉매는 실리카에 담지된 비교예 3~8의 촉매와 비교하여 촉매 활성이 매우 높으며, 메틸알루미녹산의 적가 속도를 조절한 실시예 1은 촉매 크기를 50 로 만들어 중합시 촉매의 주입이 용이하며, 생성되는 풀리프로필렌 크기가 균일하며, 모폴로지가 더 우수했다. 더욱이, 제조 시간과 제조 단계 측면에서도, 실시예 1과 2가 담지체를 사용한 비교예 3~8에 비해 짧은 시간과 낮은 온도 그리고, 간단한 단계로 구성되어 있다. 특히, 비교예 3~8처럼 실리카 담지를 사용할 경우 소요되는 시간은 38 시간 정도로 실시예 1~2의 27 시간보다 11 시간 정도가 더 필요하며, 각 단계마다 실시하는 세척 단계는 5회로 실시예의 2회보다 더 많이 필요한 단점이 있다. 또한, 비교예 3~8의 경우에는 반응은도가 90 °C에서 시작하여 40 °C에서 반응을 진행하나, 실시예 1~2는 상온에서 모든 반웅이 진행될 수 있어 에너지 효율 측면에서도 우수한 장점을 갖는다. As described above, the catalysts of Examples 1 to 2 without using a carrier according to the present invention have a very high catalytic activity compared to the catalysts of Comparative Examples 3 to 8 supported on silica, and are controlled by the dropping rate of methylaluminoxane. Example 1 had a catalyst size of 50 to facilitate injection of the catalyst during polymerization, uniform size of the resulting pulley propylene, and better morphology. Moreover, also in terms of manufacturing time and manufacturing steps, Examples 1 and 2 are composed of shorter time, lower temperature, and simpler steps than Comparative Examples 3 to 8 using the carrier. In particular, when using the silica support as in Comparative Examples 3 to 8, the time required is about 38 hours to 11 hours more than the 27 hours of Examples 1 to 2, the washing step performed in each step is 5 times of Example 2 The disadvantage is that it requires more than ash. In addition, in the case of Comparative Examples 3 to 8 the reaction proceeds at 40 ° C starting from 90 ° C degree, Examples 1 to 2 all reactions can be carried out at room temperature, which is excellent in terms of energy efficiency Have
또한, 이러한 특정의 치환기를 갖지 않는 비교예 6~8의 메탈로센 화합물을 촉매로 사용한 비교제조예 5~7의 경우에는 반웅기내 파울링 또는 중합이 일어나지 않는 것으로 보아 담체로 부터 촉매가 유출되었음을 확인할 수 있다. 이는 담지 촉매의 단점인 촉매가 모두 담지되지도 않을 뿐 아니라, 중합시 유출되어 반웅기내 파울링을 유발시킬 수 있다는 사실을 재확인시켜준다. 이에 반해 담체를 사용하지 않은 제조예 1~3은 촉매가 유출되지 않아 파울링이 없었고, 반응한 촉매량도 담체를 사용할 경우 보다 더 높아져 활성이 올라감을 알 수 있다. 특히, 조촉매를 적가 (dropwise)하였을 때 촉매의 크기를 제어 할 수 있었고, 이렇게 함으로써 생성되는 폴리프로필렌 중합체의 모폴로지 및 입자크기가 좀더 균일하게 얻어졌다. In addition, in Comparative Production Examples 5 to 7 using the metallocene compound of Comparative Examples 6 to 8 which do not have such a specific substituent as a catalyst, it was found that fouling or polymerization did not occur in the reaction period, so that the catalyst was leaked from the carrier. You can check it. This reaffirms the fact that not only all of the catalysts, which are disadvantages of the supported catalysts, are supported, but also may leak during polymerization and cause fouling in the reaction period. On the contrary, Preparation Examples 1 to 3 without using a carrier did not have fouling because the catalyst did not flow out, and the amount of reacted catalyst was also higher than when using the carrier, indicating that the activity was increased. In particular, when the catalyst was dropwise added, the size of the catalyst was controlled. The morphology and particle size of the resulting polypropylene polymer were obtained more uniformly.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1로 표시되는 안사 메탈로센 화합물과 하기 화학식 2로 표시되는 조촉매 화합물을 포함하는 비담지 비균일계 폴리올레핀 중합용 촉매 조성물: Claims [Claim 1] A catalyst composition for unsupported non-uniform polyolefin polymerization comprising an ansa metallocene compound represented by the following formula (1) and a cocatalyst compound represented by the following formula (2):
[화학식 1]  [Formula 1]
Figure imgf000036_0001
상기 화학식 1에서,
Figure imgf000036_0001
In Chemical Formula 1,
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나 o 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; ' M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lantana o series transition metal or an actanide series transition metal; '
X는 서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen from each other;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; ' R 1 is alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl; '
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
R3, R3', R4, R4', R5, R5', R6, R6' , R7, R7' , R8, 및 R8'은 서로 동일하거나 상이하고, 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐 알킬아릴, 아릴알킬 또는 아릴이며; R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , R 7 , R 7 ' , R 8 , and R 8' The same or different and are each hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl alkylaryl, arylalkyl or aryl;
n은 1 내지 20의 정수이고;  n is an integer from 1 to 20;
[화학식 2]  [Formula 2]
Figure imgf000037_0001
Figure imgf000037_0001
상기 화학식 2에서,  In Chemical Formula 2,
M2은 13족 금속 원소이고; M 2 is a Group 13 metal element;
R9는 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 9 is the same as or different from each other, and is alkyl, alkenyl, alkylaryl, arylalkyl or aryl, each having 1 to 20 carbon atoms;
m은 2 이상의 정수임 .  m is an integer of 2 or more.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 안사 메탈로센 화합물과 조촉매 화합물의 적어도 일부는 루이스 산 -염기 결합으로 교차결합 (crosslink)되어 있는 비담지 비균일계 폴리을레핀 중합용 촉매 조성물. ' At least a part of the ansa metallocene compound and the cocatalyst compound are crosslinked with Lewis acid-base linkages. '
【청구항 3】 [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 루이스 산 -염기 결합하지 않은 조촉매 화합물을 추가로 포함하는 비담지 비균일계 폴리을레핀 중합용 촉매 조성물.  A catalyst composition for unsupported non-uniform polyolefin polymerization, which further comprises the Lewis acid-base bond-free promoter compound.
【청구항 4】  [Claim 4]
게 2항에 있어서,  According to claim 2,
상기 안사 메탈로센 화합물의 화학식 1에서 -OR1 기와, 상기 조촉매 화합물이 루이스 산ᅳ염기 결합으로 교차결합 (cross link)하고 있는 비담지 비균일계 폴리을레핀 중합용 촉매 조성물. The catalyst composition for unsupported non-uniform polyolefin resin polymerization of the ansa metallocene compound in the formula (1) and the -OR 1 group, the co-catalyst compound is cross-linked by a Lewis acid-base bond.
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 안사 메탈로센 화합물의 전이금속 원소 (M1)와 상기 조촉매 화합물의 금속 원소 (M2)와의 몰비 (MVM1)가 70 내지 500인 비담지 비균일계 폴리올레핀 중합용 촉매 조성물. The transition metal element (M 1 ) of the ansa metallocene compound and the cocatalyst A catalyst composition for unsupported non-uniform polyolefin polymerization, wherein the compound has a molar ratio (MVM 1 ) to a metal element (M 2 ) of 70 to 500.
【청구항 6】  [Claim 6]
게 1항에 있어서,  According to claim 1,
상기 화학식 1에서 R1 및 R2는 각각 탄소수 1 내지 4의 알킬이고; R3 및 R3'가 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐, 또는 아릴알킬이며; R5 및 R5'는 각각 수소, 탄소수 1 내지 20의 아릴, 또는 알킬아릴이며; R4, R4', R6, R6', R7, R7', R8, 및 R8'은 각각 수소이고; n은 1 내지 6의 정수이고; A는 규소 (Si)인 비담지 비균일계 플리올레핀 중합용 촉매 조성물. R 1 and R 2 in Formula 1 are each alkyl having 1 to 4 carbon atoms; R 3 and R 3 ' are each hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, or arylalkyl; R 5 and R 5 ′ are each hydrogen, aryl having 1 to 20 carbon atoms, or alkylaryl; R 4 , R 4 ′, R 6 , R 6 ′, R 7 , R 7 ′, R 8 , and R 8 ′ are each hydrogen; n is an integer from 1 to 6; A is a catalyst composition for unsupported heterogeneous polyolefin polymerization of silicon (Si).
[청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 화학식 2에서 R9는 각각 메틸, 에틸, 프로필, 이소프로필, 이소프로펜일, n-부틸, sec-부틸, tert-부틸, 펜틸, 핵실, 옥틸, 데실, 도데실, 트리데실, 테트라데실, 펜타데실, 핵사데실, 옥타데실, 에이코실, 도코실, 테트라코실, 시클로핵실, 시클로옥틸, 페닐, 를릴, 또는 에틸페닐이며; m은 6 내지 300의 정수이고; M2은 알루미늄인 비담지 비균일계 폴리올레핀 중합용 촉메 조성물. In Formula 2, R 9 is methyl, ethyl, propyl, isopropyl, isopropenyl, n-butyl, sec-butyl, tert-butyl, pentyl, nucleus, octyl, decyl, dodecyl, tridecyl, tetradecyl, Pentadecyl, nucleodecyl, octadecyl, eicosyl, docosyl, tetracosyl, cyclonuclear, cyclooctyl, phenyl, lryl, or ethylphenyl; m is an integer from 6 to 300; M 2 is an aluminum unsupported catalyst composition for non-uniform polyolefin polymerization.
【청구항 8]  [Claim 8]
제 1항에 있어서,  The method of claim 1,
고체 입자 상태의 비담지 비균일계 폴리올레핀 중합용 촉매 조성물. Catalyst composition for unsupported non-uniform polyolefin polymerization of a solid particle state.
【청구항 9】 [Claim 9]
제 8항에 있어서,  The method of claim 8,
평균입경은 20 ^ 내지 200 인 비담지 비균일계 폴리을레핀 중합용 촉매 조성물.  The catalyst composition for unsupported non-uniform polyolefin resin polymerization having an average particle diameter of 20 ^ to 200.
【청구항 10】  [Claim 10]
하기 화학식 1로 표시되는 안사 메탈로센 화합물과 하기 화학식 2로 표시되는 조촉매 화합물을 반응시키는 단계를 포함하는 비담지 비균일계 폴리을레핀 중합용 촉매 조성물의 제조 방법:  A method for preparing a catalyst composition for unsupported non-uniform polyolefin polymerization comprising the step of reacting an ansa metallocene compound represented by Formula 1 with a cocatalyst compound represented by Formula 2 below:
[화학식 1] [Formula 1]
Figure imgf000039_0001
상기 화학식 1에서,
Figure imgf000039_0001
In Chemical Formula 1,
M1은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고; M 1 is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide transition metal or an actanide transition metal;
X는 서로 동일하거나 상이한 할로겐이며;  X is the same or different halogen from each other;
A는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹 (bridge group)이고;  A is an element of group 14 and is a bridge group connecting indenyl groups;
R1은 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이고; R 1 is alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
R2는 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 2 is hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
R3, R3', R4, R4', R5, R5', R6, R6' , R7, R7', R8, 및 R8'은 서로 동일하거나 상이하고, 각각 수소, 탄소수 1 내지 20의 알킬, 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며; R 3 , R 3 ' , R 4 , R 4' , R 5 , R 5 ' , R 6 , R 6' , R 7 , R 7 ' , R 8 , and R 8' are the same as or different from each other, respectively Hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl, alkylaryl, arylalkyl or aryl;
n은 1 내지 20의 정수이고;  n is an integer from 1 to 20;
[화학식 2]
Figure imgf000040_0001
상기 화학식 2에서,
[Formula 2]
Figure imgf000040_0001
In Chemical Formula 2,
M2은 13족 금속 원소이고 ; M 2 is a Group 13 metal element;
R9는 서로 동일하거나 상이하고, 각각 탄소수 1 내지 20의 알킬 , 알케닐, 알킬아릴, 아릴알킬 또는 아릴이며 ; R 9 are the same as or different from each other, and are each alkyl, alkenyl, alkylaryl, arylalkyl or aryl having 1 to 20 carbon atoms;
tn은 2 이상의 정수임 .  tn is an integer greater than or equal to 2.
【청구항 11】  [Claim 11]
제 10항에 있어서, ᅳ  The method of claim 10, wherein
상기 안사 메탈로센 화합물과 조촉매 화합물의 적 어도 일부는 루이스 산 -염기 결합으로 교차결합한 상태로 포함되는 비담지 비균일계 폴리올레핀 중합용 촉매 조성물의 제조 방법 .  At least a part of the ansa metallocene compound and the cocatalyst compound is a method for producing a catalyst composition for unsupported non-uniform polyolefin polymerization, which is included in the state cross-linked by Lewis acid-base bond.
【청구항 12】  [Claim 12]
제 10항에 있어서,  The method of claim 10,
상기 루이스 산 -염기 결합하지 않은 조촉매 화합물을 추가로 포함하는 비담지 비균일계 폴리을레핀 중합용 촉매 조성물의 제조 방법 .  A method for preparing a catalyst composition for unsupported non-uniform polyolefin polymerization, which further comprises the promoter of the Lewis acid-base bond.
【청구항 13】 [Claim 13]
제 10항에 있어서,  The method of claim 10,
상기 안사 메탈로센 화합물의 전이금속 원소 (M1)와 상기 조촉매 화합물의 금속 원소 (M2)와의 몰비 (MVM1)가 70 내지 500이 되는 비담지 비균일계 폴리을레핀 중합용 촉매 조성물의 제조 방법 . Of the catalyst composition for unsupported non-uniform polyolefin resin, in which the molar ratio (MVM 1 ) between the transition metal element (M 1 ) of the ansa metallocene compound and the metal element (M 2 ) of the cocatalyst compound is 70 to 500. Manufacturing method.
【청구항 141  [Claim 141
제 1항 내지 게 9항 중 어느 한 항에 따른 촉매 조성물의 존재 하에, 적어도 1 종 이상의 올레핀 단량체를 중합시 키는 단계를 포함하는 폴리올레핀의 제조 방법 .  A process for producing a polyolefin comprising polymerizing at least one or more olefin monomers in the presence of a catalyst composition according to claim 1.
【청구항 15】  [Claim 15]
제 14항에 있어서,  The method of claim 14,
상기 폴리올레핀의 중합은 25 내지 500 °C의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반웅시켜 수행하는 폴리을레핀의 제조 방법 . The polymerization of the polyolefin is a temperature of 25 to 500 ° C and 1 to 100 Process for the preparation of polylephine, which is carried out by reacting for 1 to 24 hours under a pressure of kgf / cm 2 .
【청구항 16]  [Claim 16]
제 14항에 있어서,  The method of claim 14,
상기 을레핀 단량체는 에 틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-핵센 , The olepin monomers include ethylene, propylene, 1-butene, 1-pentene, 1-nuxene,
4-메틸 -1-펜텐, 1ᅳ옥텐, 1-데센, 1-도데센, 1ᅳ테트라데센, 1-핵사데센, 1ᅳ 옥타데센, 1-에 이코센 및 이들의 흔합물로 이루어진 군에서 선택되는 1 종 이상인 폴리을레핀의 제조 방법 . In the group consisting of 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetratedecene, 1-nuxadecene, 1-octadecene, 1-ecocene and combinations thereof Method for producing a polyolefin, which is at least one selected.
【청구항 17】  [Claim 17]
제 14항에 있어서,  The method of claim 14,
상기 폴리을레핀은 분자량 분포 (Mw/Mn)가 1 내지 4인 폴리을레핀의 제조 방법 .  The polyolefin has a molecular weight distribution (Mw / Mn) of 1 to 4 method for producing a polyolefin.
【청구항 18]  [Claim 18]
제 14항에 있어서 ,  The method of claim 14,
단위 시간 기준으로 촉매의 단위 중량에 대하여 얻어진 플리올레핀의 생성된 중량을 나타내는 촉매 활성 이 6.0 kg/gCat - hr 이상인 폴리올레핀의 제조 방법 .  A process for producing a polyolefin having a catalytic activity of at least 6.0 kg / gCat-hr indicating the resulting weight of the obtained polyolefin relative to the unit weight of the catalyst on a unit time basis.
【청구항 19】  [Claim 19]
제 14항에 있어서,  The method of claim 14,
상기 폴리을레핀의 입 체규칙도 (XI )가 90% 이상인 폴리올레핀의 제조방법 .  A method for producing a polyolefin having a granularity (XI) of 90% or more of the polyolefin.
PCT/KR2012/009190 2011-11-03 2012-11-02 Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same WO2013066109A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280054157.1A CN103987737B (en) 2011-11-03 2012-11-02 Non-loading type heterogeneous polyolefin polymerization catalysts compositions and preparation method thereof
JP2014539878A JP5956595B2 (en) 2011-11-03 2012-11-02 Non-supported heterogeneous polyolefin polymerization catalyst composition and process for producing the same
US14/353,666 US9631034B2 (en) 2011-11-03 2012-11-02 Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110114011 2011-11-03
KR10-2011-0114011 2011-11-03
KR1020120084070A KR101499819B1 (en) 2011-11-03 2012-07-31 Non-supported heterogeous catalyst composition for polymerizing polyolefin and preparation method of the same
KR10-2012-0084070 2012-07-31

Publications (1)

Publication Number Publication Date
WO2013066109A1 true WO2013066109A1 (en) 2013-05-10

Family

ID=48192389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009190 WO2013066109A1 (en) 2011-11-03 2012-11-02 Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same

Country Status (1)

Country Link
WO (1) WO2013066109A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824107A4 (en) * 2012-05-08 2015-08-12 Lg Chemical Ltd Ansa-metallocene compound and method for preparing supported catalyst using same
WO2016060412A1 (en) * 2014-10-17 2016-04-21 주식회사 엘지화학 Metallocene catalyst for preparation of polyolefin having high molecular weight, and method for preparing same
CN105555811A (en) * 2013-09-30 2016-05-04 株式会社Lg化学 Polypropylene preparation method and polypropylene obtained therefrom
CN105555813A (en) * 2013-09-30 2016-05-04 株式会社Lg化学 Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer obtained thereby
WO2016072630A1 (en) * 2014-11-06 2016-05-12 주식회사 엘지화학 Metallocene catalyst for preparing high-molecular polyolefin, and method for preparing same
CN110099934A (en) * 2017-11-27 2019-08-06 Lg化学株式会社 Polypropylene and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021476A (en) * 2004-09-03 2006-03-08 주식회사 엘지화학 Supported metallocene catalyst using the metallocene compound, method for preparing the same and method for manufacturing polyolefins using the same
KR20100067627A (en) * 2008-12-11 2010-06-21 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing olefin-based polymer using the same
KR20110101386A (en) * 2010-03-08 2011-09-16 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing polyolefin using the same
KR20110117736A (en) * 2010-03-24 2011-10-28 주식회사 엘지화학 Method for preparing supported multi-site metallocene catalyst and method for preparing polyolefin using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021476A (en) * 2004-09-03 2006-03-08 주식회사 엘지화학 Supported metallocene catalyst using the metallocene compound, method for preparing the same and method for manufacturing polyolefins using the same
KR20100067627A (en) * 2008-12-11 2010-06-21 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing olefin-based polymer using the same
KR20110101386A (en) * 2010-03-08 2011-09-16 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing polyolefin using the same
KR20110117736A (en) * 2010-03-24 2011-10-28 주식회사 엘지화학 Method for preparing supported multi-site metallocene catalyst and method for preparing polyolefin using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284386B2 (en) 2012-05-08 2016-03-15 Lg Chem, Ltd. Ansa-metallocene compound and method for preparing supported catalyst using the same
EP2824107A4 (en) * 2012-05-08 2015-08-12 Lg Chemical Ltd Ansa-metallocene compound and method for preparing supported catalyst using same
US9587053B2 (en) 2013-09-30 2017-03-07 Lg Chem, Ltd. Preparation method of a propylene-1-butene copolymer and a propylene-1-butene copolymer obtained therefrom
CN105555811A (en) * 2013-09-30 2016-05-04 株式会社Lg化学 Polypropylene preparation method and polypropylene obtained therefrom
CN105555813A (en) * 2013-09-30 2016-05-04 株式会社Lg化学 Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer obtained thereby
WO2016060412A1 (en) * 2014-10-17 2016-04-21 주식회사 엘지화학 Metallocene catalyst for preparation of polyolefin having high molecular weight, and method for preparing same
KR20160045433A (en) * 2014-10-17 2016-04-27 주식회사 엘지화학 Metallocene catalyst for preparing polyolefin with high molecular weight
US9783557B2 (en) 2014-10-17 2017-10-10 Lg Chem, Ltd. Metallocene catalyst for preparing a high molecular weight polyolefin and a preparation method thereof
KR101653356B1 (en) * 2014-10-17 2016-09-01 주식회사 엘지화학 Metallocene catalyst for preparing polyolefin with high molecular weight
WO2016072630A1 (en) * 2014-11-06 2016-05-12 주식회사 엘지화학 Metallocene catalyst for preparing high-molecular polyolefin, and method for preparing same
KR101653357B1 (en) * 2014-11-06 2016-09-01 주식회사 엘지화학 Metallocene catalyst for preparing polyolefin with high molecular weight
KR20160054357A (en) * 2014-11-06 2016-05-16 주식회사 엘지화학 Metallocene catalyst for preparing polyolefin with high molecular weight
US9884926B2 (en) 2014-11-06 2018-02-06 Lg Chem, Ltd. Metallocene catalyst for preparing a high molecular weight polyolefin and a preparation method thereof
CN110099934A (en) * 2017-11-27 2019-08-06 Lg化学株式会社 Polypropylene and preparation method thereof
US11384180B2 (en) 2017-11-27 2022-07-12 Lg Chem, Ltd. Polypropylene and method for preparing the same

Similar Documents

Publication Publication Date Title
JP5956595B2 (en) Non-supported heterogeneous polyolefin polymerization catalyst composition and process for producing the same
EP3034521B1 (en) Metallocene catalyst for preparation of polyolefin having high molecular weight, and method for preparing same
JP7234411B2 (en) Hybrid catalyst compositions, catalysts containing same and methods for their preparation
WO2013168928A1 (en) Ansa-metallocene compound and method for preparing supported catalyst using same
EP3421506B1 (en) Metallocene supported catalyst and method for producing polypropylene using same
KR101631702B1 (en) Catalyst for olefin polymerization and preparation method of polyolefin by using the same
CN106795229B (en) Metallocene-supported catalyst and method for preparing polyolefin using the same
KR101492571B1 (en) Hybride supported metallocene catalysts and method for preparing the same
WO2013066109A1 (en) Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same
JP2016537500A (en) Polyolefin production method and polyolefin produced therefrom
WO2015047030A1 (en) Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer obtained thereby
JP2019524963A (en) Ethylene / alpha-olefin copolymer
KR101665076B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using it
WO2012036443A2 (en) Dinuclear metallocene compound and a production method for polyolefins using the same
KR101723488B1 (en) Method for preparing polypropylene and polypropylene prepared therefrom
KR101973191B1 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
US9884926B2 (en) Metallocene catalyst for preparing a high molecular weight polyolefin and a preparation method thereof
EP3472213A1 (en) Catalytic compositions
WO2016195424A1 (en) Supported metallocene catalyst, and method for preparing polyolefin by using same
JP2023515574A (en) Hybrid catalyst compositions, catalysts containing same and methods for their preparation
US11731123B2 (en) Method of preparing supported metallocene catalyst and method of preparing polypropylene using catalyst prepared thereby
CN111212845A (en) Polyolefin catalyst and process for producing polyolefin using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353666

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014539878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846445

Country of ref document: EP

Kind code of ref document: A1