WO2013065601A1 - グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法 - Google Patents

グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法 Download PDF

Info

Publication number
WO2013065601A1
WO2013065601A1 PCT/JP2012/077745 JP2012077745W WO2013065601A1 WO 2013065601 A1 WO2013065601 A1 WO 2013065601A1 JP 2012077745 W JP2012077745 W JP 2012077745W WO 2013065601 A1 WO2013065601 A1 WO 2013065601A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
copper foil
producing
rolling
copper
Prior art date
Application number
PCT/JP2012/077745
Other languages
English (en)
French (fr)
Inventor
喜寛 千葉
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to ES12845162.2T priority Critical patent/ES2639493T3/es
Priority to CN201280053628.7A priority patent/CN104024156B/zh
Priority to KR1020147010266A priority patent/KR101589392B1/ko
Priority to EP12845162.2A priority patent/EP2762446B1/en
Priority to JP2013541754A priority patent/JP5847834B2/ja
Priority to US14/355,348 priority patent/US20140246399A1/en
Publication of WO2013065601A1 publication Critical patent/WO2013065601A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the present invention relates to a copper foil for producing graphene, a method for producing the same, and a method for producing graphene.
  • Graphite has a layered structure in which a number of flat carbon 6-membered ring layers are stacked, but those with a single atomic layer to several atomic layers are called graphene or graphene sheets.
  • Graphene sheets have unique electrical, optical and mechanical properties, and in particular have a high carrier movement speed. Therefore, graphene sheets are expected to have a wide range of applications in the industry, such as fuel cell separators, transparent electrodes, conductive thin films for display elements, mercury-free fluorescent lamps, composite materials, and drug delivery system (DDS) carriers. ing.
  • Non-patent Document 1 a technique for forming graphene by chemical vapor deposition on a copper layer formed on a Ni or Cu metal foil or Si substrate.
  • the graphene film is formed at about 1000 ° C.
  • Non-Patent Document 2 a technique for forming graphene on an electropolished copper foil has been reported.
  • Non-Patent Document 1 describes that Cu is used as a substrate, but graphene does not grow in the surface direction in a short time on the Cu foil, and the Cu layer formed on the Si substrate is annealed. The substrate is formed as coarse particles. In this case, the size of graphene is limited by the Si substrate size, and the manufacturing cost is high.
  • Non-Patent Document 2 performs electropolishing for 0.5 hour at 1.0 to 2.0 V using an electrolytic solution containing phosphoric acid (p1442).
  • p1442 Assuming that the inventor conducted a supplementary test assuming that the area of the copper foil sample was 1 cm 2, the amount of electrolytic polishing was small (the polishing thickness was about 0.3 ⁇ m), and the production yield of graphene did not increase. That is, this invention aims at provision of the copper foil for graphene manufacture which can produce a graphene of large area at low cost, its manufacturing method, and the manufacturing method of graphene.
  • the arithmetic average roughness Ra 1 of the direction parallel to the rolling direction, the ratio of the arithmetic mean roughness Ra 2 of the direction perpendicular to the rolling direction (Ra 1 / Ra 2), 0.7 ⁇ (Ra 1 / Ra 2 ) ⁇ 1.3.
  • the copper foil for producing graphene of the present invention contains 20% by volume or more of hydrogen, and after heating at 1000 ° C. for 1 hour in an atmosphere of argon, the ratio (Ra 1 / Ra 2 ) is 0.8 ⁇ ( Ra 1 / Ra 2) is ⁇ 1.2.
  • the tough pitch copper specified in JIS-H3100, the oxygen free copper specified in JIS-H3100, the oxygen free copper specified in JIS-H3510, or the tough pitch copper or the oxygen free copper The composition preferably contains at least 0.001% by mass and not more than 0.15% by mass of one or more elements selected from the group consisting of Sn and Ag. It is preferable that the 60-degree glossiness in the direction parallel to the rolling direction and the direction perpendicular to the rolling direction is 200% or more.
  • the manufacturing method of the copper foil for graphene manufacture of this invention is a manufacturing method of the said copper foil for graphene manufacture, Comprising: The surface of a copper foil base material is electrolytically polished more than the depth of 0.5 micrometer.
  • the method for producing a graphene-producing copper foil of the present invention is a method for producing the graphene-producing copper foil, in the final pass of the final cold rolling, the arithmetic average roughness Ra 1roll in the circumferential direction of the rolling roll Rolling is performed using a rolling roll in which the ratio Ra 1roll / Ra 2roll of the arithmetic average roughness Ra 2roll in the width direction is 0.8 ⁇ (Ra 1roll / Ra 2roll ) ⁇ 1.2.
  • the graphene production method of the present invention uses the graphene production copper foil, arranges the heated graphene production copper foil in a predetermined chamber, supplies hydrogen gas and a carbon-containing gas, and supplies the graphene.
  • a copper foil capable of producing large area graphene at low cost can be obtained.
  • % means “% by mass” unless otherwise specified.
  • composition of copper foil As the copper foil, tough pitch copper (TPC) standardized to JIS-H3100, or oxygen-free copper (OFC) standardized to JIS-H3510 or JIS-H3100 can be used. Moreover, the composition containing 0.15 mass% or less in total of 1 or more types of elements chosen from the group of Sn and Ag with respect to these tough pitch copper or oxygen free copper can also be used. When the above elements are contained, the strength of the copper foil is improved, the film has an appropriate elongation, and the crystal grain size can be increased.
  • the content ratio of the above elements is 0.10% by mass or less in total, more preferably 0.050% by mass or less, and most preferably 0.040% by mass or less in total.
  • the minimum of the content rate which totaled the said element is not restrict
  • the lower limit of the content ratio of the element is 0.003% by mass or more, more preferably 0.004% by mass or more, and most preferably 0.005% by mass or more.
  • the thickness of the copper foil is not particularly limited, but is generally 5 to 150 ⁇ m. Furthermore, it is preferable to set the thickness of the copper foil base material to 12 to 50 ⁇ m in order to facilitate the etching removal described later while ensuring handling properties. When the thickness of the copper foil base material is less than 12 ⁇ m, it is easy to break and inferior in handling properties, and when the thickness exceeds 50 ⁇ m, it may be difficult to remove by etching.
  • ⁇ Arithmetic mean roughness Ra of the copper foil surface > The ratio (Ra 1 / Ra 2 ) between the arithmetic average roughness Ra 1 in the rolling parallel direction of the copper foil surface (before heating at 1000 ° C. for 1 hour) and the arithmetic average roughness Ra 2 in the direction perpendicular to the rolling is 0. 7 ⁇ (Ra 1 / Ra 2 ) ⁇ 1.3.
  • the present inventors examined a copper foil having a smooth surface without using high-purity (purity of 99.999% or more) copper, and electropolishing the surface of the copper foil substrate to a depth of 0.5 ⁇ m or more.
  • (Ra 1 / Ra 2 ) is 0.7 or more and 1.3 or less, the anisotropy of Ra of the copper foil is reduced, the surface is also smoothed, and the graphene growth is not hindered. It was. Therefore, if (Ra 1 / Ra 2 ) exceeds 1.3 or is less than 0.7, the anisotropy of Ra of the copper foil increases and large area graphene does not grow. Note that (Ra 1 / Ra 2 ) is preferably 1.1 ⁇ (Ra 1 / Ra 2 ) ⁇ 1.3.
  • the electrolytic polishing can be performed, for example, at a voltage of 8 to 15 V / cm 2 for 10 to 30 seconds.
  • the present inventors perform rolling by reducing the difference in roughness between the circumferential direction and the width direction of the rolling roll surface used for the final pass of the final cold rolling.
  • the inventors have found that the same effect as that obtained when electrolytic polishing is performed at a depth of 0.5 ⁇ m or more can be obtained. This is because the surface of the rolling roll is transferred to the surface of the copper foil base material.
  • the rolling roll surface is ground with a grinding wheel and further buffed.
  • the ratio of the arithmetic average roughness Ra 1roll in the circumferential direction of the rolling roll to the arithmetic average roughness Ra 2roll in the width direction is 0.8 ⁇ (Ra 1roll / Ra 2roll ) ⁇ 1.2
  • the ratio (Ra 1 / Ra 2 ) is 0.8 ⁇ (Ra 1 / Ra 2 ) ⁇ 1.2. It is preferable that it is.
  • the above heating conditions simulate the conditions for heating the graphene-producing copper foil to a temperature higher than the decomposition temperature of the carbon-containing gas when producing graphene.
  • Ra 1 and Ra 2 on the copper foil surface are non-contact laser surface roughness meters (confocal microscope (HD100D manufactured by Lasertec Corporation) and arithmetic average roughness (Ra; ⁇ m) in accordance with JIS-B0601)
  • the measurement position was changed parallel and perpendicular to the rolling direction under the conditions of a measurement reference length of 0.8 mm, an evaluation length of 4 mm, a cut-off value of 0.8 mm, and a feed rate of 0.1 mm / second. It is only necessary to perform 10 times and obtain values in 10 measurements in each direction.
  • both the 60-degree glossiness (JIS Z 8741) of the copper foil surface in the rolling parallel direction and the rolling perpendicular direction is 200% or more.
  • the upper limit of 60 degree glossiness in the rolling parallel direction and the direction perpendicular to the rolling direction is not particularly limited, but if it is less than 500%, it is not necessary to strictly define the production conditions such as the degree of rolling work when producing the copper foil base material. It is preferable because the degree of freedom in manufacturing is high. Further, the upper limit of 60 degree gloss in the rolling parallel direction and the direction perpendicular to the rolling is practically about 800%.
  • the arithmetic average roughness Ra 1 is preferably 0.13 ⁇ m or less.
  • the copper foil for producing graphene according to the embodiment of the present invention can be produced, for example, as follows. First, after manufacturing the copper ingot of a predetermined composition and performing hot rolling, annealing and cold rolling are repeated and a rolled sheet is obtained. The rolled sheet is annealed and recrystallized, and finally cold-rolled to a predetermined thickness with a reduction ratio of 80 to 99.9% (preferably 85 to 99.9%, more preferably 90 to 99.9%). To obtain a copper foil base material. Next, the surface of the copper foil base material is electrolytically polished by a depth of 0.5 ⁇ m or more.
  • Electrolytic polishing removes the sulfide on the surface of the copper foil base material, and when the copper foil for graphene production is heated to a temperature higher than the decomposition temperature of the carbon-containing gas, a smooth surface with less swelling and dents due to sulfide is obtained. It is done.
  • the electrolytic polishing is preferably performed by polishing at a voltage of about 10 V / cm 2 using various acid solutions (for example, sulfuric acid aqueous solution, phosphoric acid 65% + sulfuric acid 10% + water 25% solution).
  • the value of Ra 1roll / Ra 2roll of the rolling roll can be adjusted by buffing the rolling roll after performing normal cylindrical grinding. It can also be adjusted by subjecting the rolling roll to normal cylindrical grinding, followed by hard chromium plating (plating thickness of 5 ⁇ m or more) and then buffing.
  • the graphene producing copper foil 10 of the present invention described above is placed in a chamber (vacuum chamber or the like) 100, the graphene producing copper foil 10 is heated by the heater 104, and the inside of the chamber 100 is decompressed or evacuated. .
  • the carbon-containing gas G is supplied together with hydrogen gas from the gas inlet 102 into the chamber 100 (FIG. 1 (a)).
  • the carbon-containing gas G include, but are not limited to, carbon dioxide, carbon monoxide, methane, ethane, propane, ethylene, acetylene, alcohol, and the like. Good.
  • the heating temperature of the graphene-producing copper foil 10 may be equal to or higher than the decomposition temperature of the carbon-containing gas G, for example, 1000 ° C. or higher.
  • the carbon-containing gas G may be heated to a decomposition temperature or higher in the chamber 100, and the decomposition gas may be brought into contact with the copper foil 10 for producing graphene.
  • the copper plating layer is in a semi-molten state and flows into the concave portion on the surface of the copper foil base material, and the unevenness on the outermost surface of the copper foil 10 for producing graphene becomes small.
  • the cracked gas comes into contact with the smooth surface of the graphene-producing copper foil 10 as described above, and the graphene 20 is formed on the surface of the graphene-producing copper foil 10 (FIG. 1B).
  • the transfer sheet 30 is laminated
  • FIG. 1C this laminated body is continuously immersed in the etching tank 110 through the sink roll 120, and the copper foil 10 for graphene production is removed by etching (FIG. 1C).
  • the graphene 20 laminated on the predetermined transfer sheet 30 can be manufactured.
  • the substrate 40 is laminated on the surface of the graphene 20, and the transfer sheet 30 is peeled off while transferring the graphene 20 onto the substrate 40,
  • the stacked graphene 20 can be manufactured.
  • various resin sheets can be used.
  • an etchant for removing the copper foil 10 for producing graphene by etching for example, a sulfuric acid solution, a sodium persulfate solution, hydrogen peroxide, a sodium persulfate solution, or a solution obtained by adding sulfuric acid to hydrogen peroxide can be used.
  • the substrate 40 for example, Si, SiC, Ni, or Ni alloy can be used.
  • a copper ingot having the composition shown in Table 1 was manufactured, hot rolled at 800 to 900 ° C., and then rolled and cold rolled at a continuous annealing line of 300 to 700 ° C. to obtain 600 to 800 rolled sheets.
  • the copper foil base material having the thickness shown in Table 1 was obtained by annealing and recrystallization in a continuous annealing line at 0 ° C. and final cold rolling to a thickness of 7 to 50 ⁇ m.
  • the value of Ra 1roll / Ra 2roll of the rolling roll was adjusted by performing buffing after performing normal cylindrical grinding on the rolling roll.
  • oil film equivalent ⁇ (rolling oil viscosity, kinematic viscosity at 40 ° C .; cSt) ⁇ (rolling speed; m / min) ⁇ / ⁇ (yield stress of material; kg / mm 2 ) ⁇ (roll biting angle; rad ) ⁇
  • One side of the copper foil base material was electropolished with a solution of 65% phosphoric acid + 10% sulfuric acid + 25% water at a voltage of 10 V / cm 2 to produce a copper foil.
  • the electrolytic polishing amount (depth) is shown in Table 1. The amount (depth) of electropolishing was calculated from the weight of the sample before and after electropolishing by masking the area (10 ⁇ 10 mm) to be electropolished. In Example 10, electrolytic polishing was not performed.
  • JIS B0601 expressed in the system -2001 is defined as “average unevenness interval” of unevenness, and means the average of the contour length of each unevenness within the reference length.
  • the symbols “//” and “ ⁇ ” in the table are surface roughnesses in the rolling parallel direction and the rolling perpendicular direction, respectively.
  • Tables 1 and 2 The obtained results are shown in Tables 1 and 2.
  • G60 RD and G60 TD indicate 60 degree glossiness in the rolling parallel direction and the rolling perpendicular direction, respectively.
  • TPC represents tough pitch copper standardized to JIS-H3100
  • OFC of Example 13 represents oxygen-free copper standardized to JIS-H3100.
  • OFC in Examples 14 to 17 represents oxygen-free copper standardized in JIS-H3510. Therefore, “OFC + Sn 1200 ppm” represents that 1200 wtppm of Sn was added to oxygen-free copper specified in JIS-H3100.
  • the surface of the copper foil was buffed in the case of Examples 1 to 9 and 11 to 20 in which the depth was 0.5 ⁇ m or more and in the final pass of the final cold rolling.
  • Example 10 using a rolling roll in which the difference in roughness between the circumferential direction and the width direction was reduced 0.7 ⁇ (Ra 1 / Ra 2 ) ⁇ 1.3 was satisfied, and the graphene production yield was It was excellent.
  • FIG. 2 shows the samples of Example 6 after final cold rolling (FIG. 2 (a)), after electropolishing (FIG. 2 (b)), and after electropolishing after heating at 1000 ° C. for 1 hour ( It is a confocal micrograph of the surface of FIG.2 (c). It can be seen that by electropolishing, the rolling marks and oil pits on the surface of the copper foil are smoothed, and the value of (Ra 1 / Ra 2 ) is decreased to reduce anisotropy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

本発明は、大面積のグラフェンを低コストで生産可能なグラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法を提供することを目的・課題とする。 そして、本発明のグラフェン製造用銅箔は、圧延平行方向の算術平均粗さRa1 と、圧延直角方向の算術平均粗さRa2 との比(Ra1/Ra2)が、0.7≦(Ra1/Ra2)≦1.3 であることを特徴とする。

Description

グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法
 本発明は、グラフェンを製造するための銅箔及びその製造方法、並びにグラフェンの製造方法に関する。
 グラファイトは平らに並んだ炭素6員環の層がいくつも積み重なった層状構造をもつが、その単原子層~数原子層程度のものはグラフェン又はグラフェンシートと呼ばれる。グラフェンシートは独自の電気的、光学的及び機械的特性を有し、特にキャリア移動速度が高速である。そのため、グラフェンシートは、例えば、燃料電池用セパレータ、透明電極、表示素子の導電性薄膜、無水銀蛍光灯、コンポジット材、ドラッグデリバリーシステム(DDS)のキャリアーなど、産業界での幅広い応用が期待されている。
 グラフェンシートを製造する方法として、グラファイトを粘着テープで剥がす方法が知られているが、得られるグラフェンシートの層数が一定でなく、大面積のグラフェンシートが得難く、大量生産にも適さないという問題がある。
 そこで、シート状の単結晶グラファイト化金属触媒上に炭素系物質を接触させた後、熱処理することによりグラフェンシートを成長させる技術(化学気相成長(CVD)法)が開発されている(特許文献1)。この単結晶グラファイト化金属触媒としては、Ni、Cu、Wなどの金属基板が記載されている。
 同様に,NiやCuの金属箔やSi基板上に形成した銅層上に化学気相成長法でグラフェンを製膜する技術が報告されている。なお,グラフェンの製膜は1000℃程度で行われる(非特許文献1)。
 又、電解研磨した銅箔にグラフェンを製膜する技術が報告されている(非特許文献2)。
特開2009-143799号公報
SCIENCE Vol.324 (2009) P1312-1314 Zhengtang et al, Chemistry of Materials, vol.23 No.6, American Chemical Society, (2011) P1441-1447
 しかしながら、特許文献1のように単結晶の金属基板を製造することは容易でなく極めて高コストであり、又、大面積の基板が得られ難く、ひいては大面積のグラフェンシートが得難いという問題がある。一方,非特許文献1には、Cuを基板として使用することが記載されているが,Cu箔上では短時間にグラフェンが面方向に成長せず,Si基板上に形成したCu層を焼鈍で粗大粒として基板としている。この場合、グラフェンの大きさはSi基板サイズに制約され,製造コストも高い。 そこで、本発明者が銅箔を基板としてグラフェンを製造したところ、銅箔表面を極めて平滑にしないとグラフェンの製造歩留が高くならないことが判明した。これは、銅箔表面が平滑であるほど、グラフェンの成長を妨げる段差が少なくなり、グラフェンが銅箔表面に均一に製膜されるためである。このように表面が平滑な銅箔は、高純度(純度が99.999%以上)の銅を使用することで製造できるが、高コストであると共に寸法も限られてしまう。又、光沢圧延等によって銅箔表面を平滑にするには、圧延加工度等の製造条件を厳密に規定する必要があり、やはりコストアップに繋がる。
 ここで、非特許文献2の技術は、リン酸を含む電解液を用いて1.0~2.0Vで0.5時間の電解研磨を行っている(p1442)。この場合の銅箔試料の面積は非特許文献2に記載されていないが、電解研磨後に1インチ(=2.5cm)の石英管内に銅箔試料を配置し、CVDによりグラフェンを製膜することから(p1442)、仮に銅箔試料の面積を1cm2として本発明者が追試を行ったところ、電解研磨量が少なく(研磨厚みが約0.3μm)、グラフェンの製造歩留が高くならなかった。 すなわち、本発明は、大面積のグラフェンを低コストで生産可能なグラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法の提供を目的とする。
 本発明のグラフェン製造用銅箔は、圧延平行方向の算術平均粗さRaと、圧延直角方向の算術平均粗さRaとの比(Ra/Ra)が、0.7≦(Ra/Ra)≦1.3である。
 又、本発明のグラフェン製造用銅箔は、水素を20体積%以上含有し残部アルゴンの雰囲気中で1000℃で1時間加熱後において、比(Ra/Ra)が、0.8≦(Ra/Ra)≦1.2である。
 本発明のグラフェン製造用銅箔において、JIS-H3100に規格するタフピッチ銅、JIS-H3100に規格する無酸素銅、JIS-H3510に規格する無酸素銅、又は前記タフピッチ銅若しくは前記無酸素銅に対してSn及びAgの群から選ばれる1種以上の元素を合計で0.001質量%以上0.15質量%以下含有する組成からなることが好ましい。
 表面の圧延平行方向及び圧延直角方向の60度光沢度が共に200%以上であることが好ましい。
 又、本発明のグラフェン製造用銅箔の製造方法は、前記グラフェン製造用銅箔の製造方法であって、銅箔基材の表面を、深さ0.5μm以上電解研磨する。
 又、本発明のグラフェン製造用銅箔の製造方法は、前記グラフェン製造用銅箔の製造方法であって、最終冷間圧延の最終パスにおいて、圧延ロールの円周方向の算術平均粗さRa1rollと幅方向の算術平均粗さRa2rollの比Ra1roll/Ra2rollが0.8≦(Ra1roll/Ra2roll)≦1.2である圧延ロールを使用して圧延を行う。
 又、本発明のグラフェンの製造方法は、前記グラフェン製造用銅箔を用い、所定の室内に、加熱した前記グラフェン製造用銅箔を配置すると共に、水素ガスと炭素含有ガスを供給し、前記グラフェン製造用銅箔の前記銅めっき層の表面にグラフェンを形成するグラフェン形成工程と、前記グラフェンの表面に転写シートを積層し、前記グラフェンを前記転写シート上に転写しながら、前記グラフェン製造用銅箔をエッチング除去するグラフェン転写工程と、を有する。
 本発明によれば、大面積のグラフェンを低コストで生産可能とする銅箔が得られる。
本発明の実施形態に係るグラフェンの製造方法を示す工程図である。 実施例6の試料のそれぞれ、最終冷間圧延後、電解研磨後、及び電解研磨後に1000℃で1時間加熱後の表面のコンフォーカル顕微鏡写真を示す図である。
 以下、本発明の実施形態に係るグラフェン製造用銅箔及びグラフェンの製造方法について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
<銅箔の組成>
 銅箔としては、JIS-H3100に規格するタフピッチ銅(TPC)、又はJIS-H3510若しくはJIS-H3100に規格する無酸素銅(OFC)を用いることができる。
 又、これらタフピッチ銅又は無酸素銅に対し、Sn及びAgの群から選ばれる1種以上の元素を合計で0.15質量%以下含有する組成を用いることもできる。上記元素を含有すると、銅箔の強度が向上し適度な伸びを有すると共に、結晶粒径を大きくすることができる。上記元素の含有割合が合計で0.15質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化すると共に結晶粒径の成長が抑制される場合がある。より好ましくは上記元素の含有割合が合計で0.10質量%以下であり、更に好ましくは合計で0.050質量%以下であり、最も好ましくは合計で0.040質量%以下である。
 なお、上記元素を合計した含有割合の下限は特に制限されないが、例えば0.001質量%を下限とすることができる。上記元素の含有割合が0.001質量%未満であると、含有割合が小さいためその含有割合を制御することが困難になる場合がある。好ましくは、上記元素の含有割合の下限値は0.003質量%以上、更に好ましくは0.004質量%以上、最も好ましくは0.005質量%以上である。
<銅箔の厚み>
 銅箔の厚みは特に制限されないが、一般的には5~150μmである。さらに、ハンドリング性を確保しつつ、後述するエッチング除去を容易に行うため、銅箔基材の厚みを12~50μmとすると好ましい。銅箔基材の厚みが12μm未満であると、破断し易くなってハンドリング性に劣り、厚みが50μmを超えるとエッチング除去がし難くなる場合がある。
<銅箔表面の算術平均粗さRa>
 (1000℃で1時間加熱前の)銅箔表面の圧延平行方向の算術平均粗さRaと、圧延直角方向の算術平均粗さRaとの比(Ra/Ra)が、0.7≦(Ra/Ra)≦1.3である。
 本発明者らは、高純度(純度が99.999%以上)の銅を使用しなくても表面が平滑な銅箔について検討し、銅箔基材の表面を深さ0.5μm以上電解研磨することで、(Ra/Ra)が0.7以上1.3以下になって銅箔のRaの異方性が低減し、表面も平滑になってグラフェンの成長を妨げないことを見出した。従って、(Ra/Ra)が1.3を超えるか又は0.7未満であると、銅箔のRaの異方性が大きくなって大面積のグラフェンが成長しない。なお、(Ra/Ra)は、好ましくは1.1≦(Ra/Ra)≦1.3である。電解研磨は、例えば8~15V/cm2の電圧で10~30秒行うことができる。
 又、本発明者らは、銅箔基材の表面を電解研磨しない場合は、最終冷間圧延の最終パスに用いる圧延ロール表面の周方向と幅方向の粗さの差を小さくして圧延すると、電解研磨を深さ0.5μm以上行うのと同等の効果が得られることを見出した。これは、圧延ロールの表面が銅箔基材の表面に転写されるからである。なお、圧延ロール表面の周方向と幅方向の粗さの差を小さくする方法としては、圧延ロール表面を研削砥石で研削し、さらにバフ研磨することが挙げられる。例えば、圧延ロールの周方向の算術平均粗さRa1rollと幅方向の算術平均粗さRa2rollの比(Ra1roll/Ra2roll)が0.8≦(Ra1roll/Ra2roll)≦1.2である圧延ロールを使用することができる。
 さらに、水素を20体積%以上含有し残部アルゴンの雰囲気中で1000℃で1時間加熱後において、比(Ra/Ra)が、0.8≦(Ra/Ra)≦1.2であるであることが好ましい。ここで、上記した加熱条件は、グラフェンを製造する際、グラフェン製造用銅箔を炭素含有ガスの分解温度以上に加熱する条件を模したものである。
 なお、銅箔表面のRa、Raは、非接触のレーザー表面粗さ計(コンフォーカル顕微鏡(レーザーテック社製HD100D)を使用し、JIS-B0601に準拠した算術平均粗さ(Ra;μm)を測定し得られる。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向とそれぞれ平行及び直角に測定位置を変えて10回行ない、各方向で10回の測定での値を求めればよい。
<銅箔の60度光沢度>
 銅箔表面の圧延平行方向及び圧延直角方向の60度光沢度(JIS Z 8741)が共に200%以上であることが好ましい。
 後述するように、本発明のグラフェン製造用銅箔を用いてグラフェンを製造した後、銅箔から転写シートへグラフェンを転写する必要があるが、銅箔の表面が粗いと転写がし難く、グラフェンが破損することがわかった。そこで、銅箔の表面凹凸が平滑である必要がある。
 なお、圧延平行方向及び圧延直角方向の60度光沢度の上限は特に制限されないが、500%未満とすれば銅箔基材の製造時に圧延加工度等の製造条件を厳密に規定しなくてもよく、製造の自由度が高くなるので好ましい。又、圧延平行方向及び圧延直角方向の60度光沢度の上限は実用上、800%程度である。
 又、このように転写シートへグラフェンを転写し易くするため、上記算術平均粗さRaが0.13μm以下であることが好ましい。
 以上のように規定したグラフェン製造用銅箔を用いることで、大面積のグラフェンを低コストで、かつ高い歩留りで生産することができる。
<グラフェン製造用銅箔の製造>
 本発明の実施形態に係るグラフェン製造用銅箔は、例えば以下のようにして製造することができる。まず、所定の組成の銅インゴットを製造し、熱間圧延を行った後、焼鈍と冷間圧延を繰り返し、圧延板を得る。この圧延板を焼鈍して再結晶させ,所定の厚みまで圧下率を80~99.9%(好ましくは85~99.9%、更に好ましくは90~99.9%)として最終冷間圧延して銅箔基材を得る。
 次に、銅箔基材の表面を深さ0.5μm以上電解研磨する。電解研磨により、銅箔基材の表面の硫化物が除去され、グラフェン製造用銅箔を炭素含有ガスの分解温度以上に加熱した際に硫化物に起因した膨れやヘコミが少なく平滑な表面が得られる。
 電解研磨は、各種酸溶液(例えば、硫酸水溶液や、燐酸65%+硫酸10%+水25%溶液)を使用して10V/cm2程度の電圧で研磨して行うのが好ましい。
 又、本発明の実施形態に係るグラフェン製造用銅箔を、上記電解研磨を行う代わりに、最終冷間圧延の最終パスにおいて、圧延ロールの円周方向の算術平均粗さRa1rollと幅方向の算術平均粗さRa2rollの比Ra1roll/Ra2rollが0.8≦(Ra1roll/Ra2roll)≦1.2である圧延ロールを使用して製造してもよい。このようにすると、圧延される銅箔表面の圧延平行方向の算術平均粗さRaと、圧延直角方向の算術平均粗さRaとの比を小さく(1.0に近づけて)して製造することができる。
 圧延ロールのRa1roll/Ra2rollの値は、圧延ロールを通常の円筒研削を行った後に、バフ研磨を行うことで調整することができる。また、圧延ロールを通常の円筒研削を行った後に、硬質クロムめっきを行い(めっき厚を5μm以上)、その後バフ研磨を行うことによっても調整することができる。
<グラフェンの製造方法>
 次に、図1を参照し、本発明の実施形態に係るグラフェンの製造方法について説明する。
 まず、室(真空チャンバ等)100内に、上記した本発明のグラフェン製造用銅箔10を配置し、グラフェン製造用銅箔10をヒータ104で加熱すると共に、室100内を減圧又は真空引きする。そして、ガス導入口102から室100内に炭素含有ガスGを水素ガスと共に供給する(図1(a))。炭素含有ガスGとしては、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン、アルコール等が挙げられるがこれらに限定されず、これらのうち1種又は2種以上の混合ガスとしてもよい。又、グラフェン製造用銅箔10の加熱温度は炭素含有ガスGの分解温度以上とすればよく、例えば1000℃以上とすることができる。又、室100内で炭素含有ガスGを分解温度以上に加熱し、分解ガスをグラフェン製造用銅箔10に接触させてもよい。このとき、グラフェン製造用銅箔10を加熱することで、銅めっき層が半溶融状態になって銅箔基材表面の凹部に流動し、グラフェン製造用銅箔10の最表面の凹凸が小さくなる。そして、このように平滑となったグラフェン製造用銅箔10の表面に分解ガス(炭素ガス)が接触し、グラフェン製造用銅箔10の表面にグラフェン20を形成する(図1(b))。
 そして、グラフェン製造用銅箔10を常温に冷却し、グラフェン20の表面に転写シート30を積層し、グラフェン20を転写シート30上に転写する。次に、この積層体をシンクロール120を介してエッチング槽110に連続的に浸漬し、グラフェン製造用銅箔10をエッチング除去する(図1(c))。このようにして、所定の転写シート30上に積層されたグラフェン20を製造することができる。
 さらに、グラフェン製造用銅箔10が除去された積層体を引き上げ、グラフェン20の表面に基板40を積層し、グラフェン20を基板40上に転写しながら、転写シート30を剥がすと、基板40上に積層されたグラフェン20を製造することができる。
 転写シート30としては、各種樹脂シート(ポリエチレン、ポリウレタン等のポリマーシート)を用いることができる。グラフェン製造用銅箔10をエッチング除去するエッチング液としては、例えば硫酸溶液、過硫酸ナトリウム溶液、過酸化水素、及び過硫酸ナトリウム溶液又は過酸化水素に硫酸を加えた溶液を用いることができる。又、基板40としては、例えばSi、 SiC、Ni又はNi合金を用いることができる。
<試料の作製>
 表1に示す組成の銅インゴットを製造し、800~900℃で熱間圧延を行った後、300~700℃の連続焼鈍ラインで焼鈍と冷間圧延を繰り返して得た圧延板を600~800℃の連続焼鈍ラインで焼鈍して再結晶させ,7~50μmの厚みまで最終冷間圧延し、表1に示す厚みの銅箔基材を得た。
 なお、実施例10については、最終冷間圧延の最終パスにおいて、圧延ロールの円周方向の算術平均粗さRa1rollと幅方向の算術平均粗さRa2rollの比Ra1roll/Ra2rollが(Ra1roll/Ra2roll)=1.05である圧延ロールを使用した。圧延ロールのRa1roll/Ra2rollの値は、圧延ロールを通常の円筒研削を行った後に、バフ研磨を行うことで調整した。
 ここで、最終冷間圧延の最終パスの油膜当量を表1に示す値に調整した。
 油膜当量は下記式で表される。
  (油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm2)×(ロール噛込角;rad)}
 銅箔基材の片面を、燐酸65%+硫酸10%+水25%溶液にて10V/cm2の電圧で電解研磨し、銅箔を製造した。電解研磨量(深さ)を表1に示す。なお、電解研磨量(深さ)は、電解研磨する面積(10×10mm)をマスキングし、電解研磨前後の試料重量から算出した。
 なお、実施例10については電解研磨を行わなかった。
<60度光沢度G60の測定>
 各実施例及び比較例の銅箔(基材)の最終冷間圧延後、電解研磨後、及び電解研磨後に水素を20体積%以上含有し残部アルゴンの雰囲気中で1000℃で1時間加熱後の表面の60度光沢度を測定した。水素を20体積%以上含有し残部アルゴンの雰囲気中で、1000℃で1時間加熱したのは、グラフェン製造条件を模したためである。
 60度光沢度は、JIS-Z8741に準拠した光沢度計(日本電色工業製、商品名「PG-1M」)を使用して測定した。
<表面粗さ(Ra,Rz,Sm)の測定>
 各実施例及び比較例の銅箔(基材)の最終冷間圧延後、電解研磨後、及び電解研磨後に水素を20体積%以上含有し残部アルゴンの雰囲気中で1000℃で1時間加熱後の表面粗さを測定した。
 非接触のレーザー表面粗さ計(コンフォーカル顕微鏡(レーザーテック社製HD100D)を使用し、JIS-B0601に準拠した算術平均粗さ(Ra;μm)を測定し、オイルピット深さRzはJIS B0601-1994に準拠して十点平均粗さを測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、各方向で10回の測定での値を求めた。また凹凸の平均間隔(Sm;mm)は、測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、10回の測定での値を求めた。なお、Smは表面性状を輪郭曲線方式で表すJIS B0601-2001(ISO4287-1997準拠)において、凹凸の「凹凸の平均間隔」と規定されており、基準長さ内での各凹凸の輪郭長さの平均をいう。
 なお、表中の記号「//」、「⊥」はそれぞれ圧延平行方向、圧延直角方向の表面粗さである。
<グラフェンの製造>
 各実施例のグラフェン製造用銅箔(縦横100X100mm)を真空チャンバーに設置し、1000℃に加熱した。真空(圧力:0.2Torr)下でこの真空チャンバーに水素ガスとメタンガスを供給し(供給ガス流量:10~100cc/min)、銅箔を1000℃まで30分で昇温した後、1時間保持し、銅箔表面にグラフェンを成長させた。
 各実施例について、上記条件でグラフェンの製造を10回行い、銅箔表面のグラフェンの有無を原子間力顕微鏡(AFM)で観察して評価した。AFMにより、表面全体にうろこ状の凹凸が観察されたものをグラフェンが製造されたものとみなし、10回の製造のうちグラフェンが製造された回数により以下の基準で歩留を評価した。評価が◎、○又は△であれば実用上問題はない。
  ◎:10回の製造のうち、5回以上グラフェンが製造された
  ○:10回の製造のうち、4回グラフェンが製造された
  △:10回の製造のうち、3回グラフェンが製造された
  ×:10回の製造のうち、グラフェンが製造された回数が2回以下
 得られた結果を表1、表2に示す。なお、表1、表2において、G60RD、G60TDはそれぞれ圧延平行方向及び圧延直角方向の60度光沢度を示す。
 又、表中のTPCは、JIS-H3100に規格するタフピッチ銅を表し、実施例13のOFCはJIS-H3100に規格する無酸素銅を表す。また、実施例14~17のOFCはJIS-H3510に規格する無酸素銅を表す。従って、「OFC+Sn1200ppm」は、JIS-H3100に規格する無酸素銅にSnを1200wtppm添加したことを表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~表2から明らかなように、銅箔表面を深さ0.5μm以上電解研磨した実施例1~9、11~20の場合、及び最終冷間圧延の最終パスにおいて表面をバフ研磨して周方向と幅方向の粗さの差を小さくした圧延ロールを使用した実施例10の場合、0.7≦(Ra/Ra)≦1.3をみたし、グラフェンの製造歩留が優れていた。
 一方、銅箔表面を電解研磨しなかった比較例1,3,5,7,9、10及び電解研磨量が0.5μm未満である比較例2,4,6,8,11~13の場合、0.7≦(Ra/Ra)≦1.3を見たさず、グラフェンの製造歩留が劣った。なお、比較例13は、上記した非特許文献2と同等の電解研磨条件(燐酸65%+硫酸10%+水25%溶液にて1.0V/cm2の電圧で30分間)で電解研磨した。
 なお、図2は、実施例6の試料のそれぞれ、最終冷間圧延後(図2(a))、電解研磨後(図2(b))、及び電解研磨後に1000℃で1時間加熱後(図2(c))の表面のコンフォーカル顕微鏡写真である。電解研磨により銅箔表面の圧延目やオイルピットが平滑化されると共に、(Ra/Ra)の値が小さくなって異方性が小さくなることがわかる。
 10             グラフェン製造用銅箔
 20             グラフェン
 30             転写シート

Claims (7)

  1.  圧延平行方向の算術平均粗さRaと、圧延直角方向の算術平均粗さRaとの比(Ra/Ra)が、0.7≦(Ra/Ra)≦1.3であるグラフェン製造用銅箔。
  2.  水素を20体積%以上含有し残部アルゴンの雰囲気中で1000℃で1時間加熱後において、比(Ra/Ra)が、0.8≦(Ra/Ra)≦1.2である請求項1に記載のグラフェン製造用銅箔。
  3.  JIS-H3100に規格するタフピッチ銅、JIS-H3100に規格する無酸素銅、JIS-H3510に規格する無酸素銅、又は前記タフピッチ銅若しくは前記無酸素銅に対してSn及びAgの群から選ばれる1種以上の元素を合計で0.001質量%以上0.15質量%以下含有する組成からなる請求項1又は2に記載のグラフェン製造用銅箔。
  4.  表面の圧延平行方向及び圧延直角方向の60度光沢度が共に200%以上である請求項1~3のいずれかに記載のグラフェン製造用銅箔。
  5.  請求項1~4のいずれかに記載のグラフェン製造用銅箔の製造方法であって、
     銅箔基材の表面を、深さ0.5μm以上電解研磨するグラフェン製造用銅箔の製造方法。
  6.  請求項1~4のいずれかに記載のグラフェン製造用銅箔の製造方法であって、
     最終冷間圧延の最終パスにおいて、圧延ロールの円周方向の算術平均粗さRa1rollと幅方向の算術平均粗さRa2rollの比Ra1roll/Ra2rollが0.8≦(Ra1roll/Ra2roll)≦1.2である圧延ロールを使用して圧延を行うグラフェン製造用銅箔の製造方法。
  7.  請求項1~4のいずれかに記載のグラフェン製造用銅箔を用いたグラフェンの製造方法であって、
     所定の室内に、加熱した前記グラフェン製造用銅箔を配置すると共に水素ガスと炭素含有ガスを供給し、前記グラフェン製造用銅箔の前記銅めっき層の表面にグラフェンを形成するグラフェン形成工程と、
     前記グラフェンの表面に転写シートを積層し、前記グラフェンを前記転写シート上に転写しながら、前記グラフェン製造用銅箔をエッチング除去するグラフェン転写工程と、を有するグラフェンの製造方法。
PCT/JP2012/077745 2011-11-04 2012-10-26 グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法 WO2013065601A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES12845162.2T ES2639493T3 (es) 2011-11-04 2012-10-26 Lámina de cobre para producción de grafeno y procedimiento de producción de la misma, y procedimiento de producción de grafeno
CN201280053628.7A CN104024156B (zh) 2011-11-04 2012-10-26 石墨烯制造用铜箔及其制造方法、以及石墨烯的制造方法
KR1020147010266A KR101589392B1 (ko) 2011-11-04 2012-10-26 그래핀 제조용 동박 및 그 제조 방법, 그리고 그래핀의 제조 방법
EP12845162.2A EP2762446B1 (en) 2011-11-04 2012-10-26 Copper foil for graphene production and production method therefor, and graphene production method
JP2013541754A JP5847834B2 (ja) 2011-11-04 2012-10-26 グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法
US14/355,348 US20140246399A1 (en) 2011-11-04 2012-10-26 Copper foil for producing graphene, production method thereof and method of producing graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-241953 2011-11-04
JP2011241953 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065601A1 true WO2013065601A1 (ja) 2013-05-10

Family

ID=48191950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077745 WO2013065601A1 (ja) 2011-11-04 2012-10-26 グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法

Country Status (8)

Country Link
US (1) US20140246399A1 (ja)
EP (1) EP2762446B1 (ja)
JP (1) JP5847834B2 (ja)
KR (1) KR101589392B1 (ja)
CN (1) CN104024156B (ja)
ES (1) ES2639493T3 (ja)
TW (1) TWI456079B (ja)
WO (1) WO2013065601A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027528A1 (ja) * 2012-08-16 2014-02-20 Jx日鉱日石金属株式会社 グラフェン製造用圧延銅箔、及びグラフェンの製造方法
JP2014037578A (ja) * 2012-08-16 2014-02-27 Jx Nippon Mining & Metals Corp グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
US9255007B2 (en) 2011-06-02 2016-02-09 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9260310B2 (en) 2011-02-18 2016-02-16 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9359212B2 (en) 2011-11-15 2016-06-07 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9487404B2 (en) 2011-06-02 2016-11-08 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9840757B2 (en) 2014-06-13 2017-12-12 Jx Nippon Mining & Metals Corporation Rolled copper foil for producing two-dimensional hexagonal lattice compound and method of producing two-dimensional hexagonal lattice compound
JP2019514228A (ja) * 2016-03-08 2019-05-30 シーアン、ユニバーシティーXidian University グラフェンおよびマグネトロンスパッタリングされた窒化アルミニウム上での窒化ガリウム成長方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI592294B (zh) * 2015-06-22 2017-07-21 Univ Chung Yuan Christian Metal foil and its composite heat sink
CN105058213A (zh) * 2015-08-10 2015-11-18 常州二维碳素科技股份有限公司 一种连续抛光设备
JP6177299B2 (ja) * 2015-11-04 2017-08-09 Jx金属株式会社 メタルマスク材料及びメタルマスク
KR101802948B1 (ko) * 2016-04-28 2017-11-29 일진머티리얼즈 주식회사 그래핀용 전해동박 및 그의 제조방법
CN111349905B (zh) * 2019-10-29 2022-03-29 北京碳垣新材料科技有限公司 增强型铜基复合线材的制备方法
US11447887B2 (en) 2020-12-10 2022-09-20 Saudi Arabian Oil Company Surface smoothing of copper by electropolishing
US11512400B2 (en) 2020-12-10 2022-11-29 Saudi Arabian Oil Company Electrochemical reduction of carbon dioxide
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074214A (ja) * 2002-08-16 2004-03-11 Nikko Metal Manufacturing Co Ltd ラミネート材とのピーリング強度を向上した金属圧延箔
JP2009143799A (ja) 2007-12-17 2009-07-02 Samsung Electronics Co Ltd 単結晶グラフェンシートおよびその製造方法
JP2010227971A (ja) * 2009-03-27 2010-10-14 Nippon Mining & Metals Co Ltd 圧延銅箔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822669B2 (ja) * 2011-02-18 2015-11-24 Jx日鉱日石金属株式会社 グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
JP2014037577A (ja) * 2012-08-16 2014-02-27 Jx Nippon Mining & Metals Corp グラフェン製造用圧延銅箔、及びグラフェンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074214A (ja) * 2002-08-16 2004-03-11 Nikko Metal Manufacturing Co Ltd ラミネート材とのピーリング強度を向上した金属圧延箔
JP2009143799A (ja) 2007-12-17 2009-07-02 Samsung Electronics Co Ltd 単結晶グラフェンシートおよびその製造方法
JP2010227971A (ja) * 2009-03-27 2010-10-14 Nippon Mining & Metals Co Ltd 圧延銅箔

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCIENCE, vol. 324, 2009, pages 1312 - 1314
See also references of EP2762446A4
ZHENGTANG LUO ET AL.: "Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure", CHEMISTRY OF MATERIALS, vol. 23, no. 6, 22 March 2011 (2011-03-22), pages 1441 - 1447, XP002695338 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260310B2 (en) 2011-02-18 2016-02-16 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
USRE47195E1 (en) 2011-02-18 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9255007B2 (en) 2011-06-02 2016-02-09 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9487404B2 (en) 2011-06-02 2016-11-08 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9359212B2 (en) 2011-11-15 2016-06-07 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
WO2014027528A1 (ja) * 2012-08-16 2014-02-20 Jx日鉱日石金属株式会社 グラフェン製造用圧延銅箔、及びグラフェンの製造方法
JP2014037578A (ja) * 2012-08-16 2014-02-27 Jx Nippon Mining & Metals Corp グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
US9840757B2 (en) 2014-06-13 2017-12-12 Jx Nippon Mining & Metals Corporation Rolled copper foil for producing two-dimensional hexagonal lattice compound and method of producing two-dimensional hexagonal lattice compound
JP2019514228A (ja) * 2016-03-08 2019-05-30 シーアン、ユニバーシティーXidian University グラフェンおよびマグネトロンスパッタリングされた窒化アルミニウム上での窒化ガリウム成長方法
US11031240B2 (en) 2016-03-08 2021-06-08 Xidian University Method for growing gallium nitride based on graphene and magnetron sputtered aluminum nitride

Also Published As

Publication number Publication date
JPWO2013065601A1 (ja) 2015-04-02
JP5847834B2 (ja) 2016-01-27
KR20140092310A (ko) 2014-07-23
EP2762446B1 (en) 2017-06-07
EP2762446A1 (en) 2014-08-06
ES2639493T3 (es) 2017-10-26
CN104024156A (zh) 2014-09-03
KR101589392B1 (ko) 2016-01-27
CN104024156B (zh) 2016-03-30
TWI456079B (zh) 2014-10-11
US20140246399A1 (en) 2014-09-04
EP2762446A4 (en) 2015-01-28
TW201323633A (zh) 2013-06-16

Similar Documents

Publication Publication Date Title
JP5847834B2 (ja) グラフェン製造用銅箔及びその製造方法、並びにグラフェンの製造方法
JP5822669B2 (ja) グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
JP5721609B2 (ja) グラフェン製造用銅箔、及びグラフェンの製造方法
JP5959510B2 (ja) グラフェン製造用銅箔、及びグラフェンの製造方法
JP5850720B2 (ja) グラフェン製造用銅箔、及びグラフェンの製造方法
JP5758205B2 (ja) グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
WO2014027528A1 (ja) グラフェン製造用圧延銅箔、及びグラフェンの製造方法
JP5909082B2 (ja) グラフェン製造用銅箔及びグラフェンの製造方法
JP5865211B2 (ja) グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
JP2012251209A (ja) グラフェン製造用銅箔、及びグラフェンの製造方法
JP2014036986A (ja) グラフェン製造用圧延銅箔、及びグラフェンの製造方法
JP5918010B2 (ja) グラフェン製造用銅箔、グラフェン製造用銅箔の製造方法、及びグラフェンの製造方法
JP6037813B2 (ja) 多層グラフェン製造用圧延銅箔、及び多層グラフェンの製造方法
JP2013006709A (ja) グラフェン製造用銅箔、グラフェン製造用銅の製造方法、及びグラフェンの製造方法
TWI516316B (zh) A copper foil for graphene production, and a method for producing graphene using the same
JP5918075B2 (ja) グラフェン製造用圧延銅箔、及びグラフェンの製造方法
WO2014128833A1 (ja) グラフェン製造用銅箔及びグラフェンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280053628.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541754

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147010266

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012845162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012845162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14355348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE