WO2013062182A1 - Method for manufacturing a graphene composite film by using microwave and ipl irradiation - Google Patents

Method for manufacturing a graphene composite film by using microwave and ipl irradiation Download PDF

Info

Publication number
WO2013062182A1
WO2013062182A1 PCT/KR2012/000464 KR2012000464W WO2013062182A1 WO 2013062182 A1 WO2013062182 A1 WO 2013062182A1 KR 2012000464 W KR2012000464 W KR 2012000464W WO 2013062182 A1 WO2013062182 A1 WO 2013062182A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
graphene
composite film
layer
irradiation
Prior art date
Application number
PCT/KR2012/000464
Other languages
French (fr)
Korean (ko)
Inventor
유명재
양우석
이우성
김형근
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2013062182A1 publication Critical patent/WO2013062182A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation

Definitions

  • the present invention relates to a graphene composite film manufacturing method, and more particularly to a graphene composite film manufacturing method using microwave and IPL (high sensitivity light source) irradiation.
  • Graphene (Graphene), which is in the spotlight recently, is flexible, has a very high electrical conductivity, and is transparent. Therefore, studies are being actively conducted to use it as a transparent and curved electrode or as an electron transport material such as an electron transport layer in an electronic device.
  • a graphene is grown by supplying a reaction source including a carbon source on the metal catalyst and performing heat treatment at atmospheric pressure, which has a problem that a high temperature of 1000 or more is required.
  • a reaction source including a carbon source on the metal catalyst
  • heat treatment at atmospheric pressure
  • Embodiments of the present invention to form a graphene layer by microwave and / or IPL (high sensitivity light source) irradiation, to provide a graphene composite film manufacturing method capable of forming a graphene layer at a high speed at a relatively low temperature.
  • IPL high sensitivity light source
  • IPL Intensed Pulse Light
  • the substrate is a non-catalyst substrate, a metal substrate or a substrate on which a metal base layer is formed
  • the non-catalytic substrate is a polyethylene terephthalate (PET) substrate, a polyethersulfone (PES) substrate, a polyimide substrate, a boron nitride substrate, Si A substrate, a Si / Si02 substrate, a Si3N4 substrate, a sapphire substrate, a quartz substrate, and a glass substrate.
  • the metal substrate or the metal substrate layer may be formed of silicon, Ni, Co, Fe, Pt, At least one metal selected from the group consisting of Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge or It can be made of an alloy.
  • the polymer layer including the carbon source may be at least one selected from polymethacrylate, polystyrene, acrylonitrile butadiene styrene (ABS), self-assembled monolayer (SAM), and polyimide.
  • the second step may heat the polymer layer to 1000 to 1500 through at least one heat source of the microwave irradiation and IPL (Intensed Pulse Light) irradiation.
  • IPL Intensed Pulse Light
  • the graphene composite film manufacturing method may further include a third step of coating the metal catalyst particles on the first graphene layer after the second step.
  • the metal catalyst particles are silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, One or more metals or alloys selected from the group consisting of bronze, cupronickel, stainless steel and Ge.
  • the graphene composite film manufacturing method after the third step, by laminating a second graphene layer on the first graphene layer, at least of microwave irradiation and IPL (Intensed Pulse Light) irradiation
  • the method may further include a fourth step of locally melting the metal catalyst particles through at least one heat source to bond the second graphene layer to an upper portion of the first graphene layer.
  • a graphene composite film manufactured by the graphene composite film manufacturing method according to an aspect of the present invention may be provided.
  • Embodiments of the present invention by heating the polymer layer containing a carbon source through microwave and / or IPL (high sensitivity light source) irradiation, it is possible to form a graphene layer at a low speed at a high speed.
  • IPL high sensitivity light source
  • FIG. 1 is a first process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a second process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • FIG. 3 is a third process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • FIG. 4 is a fourth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • FIG. 5 is a fifth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • FIG. 1 is a first process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • a polymer layer 120 including a carbon source is coated on the substrate 110.
  • the substrate 110 may have transparency, flexibility, stretchability, or a combination thereof.
  • the substrate 110 may be a catalyst-free substrate.
  • the catalyst-free substrate may be a polyethyleneterephthalate (PET) substrate, a polyethersulfone (PES) substrate, a polyimide substrate, a boron nitride substrate, a Si substrate, or a Si / Si0 2. It may be at least one selected from a substrate, a Si 3 N 4 substrate, a sapphire substrate, a quartz substrate, and a glass substrate.
  • the substrate 110 may be a metal substrate or may further include a metal substrate layer (not shown) formed between the substrate 110 and the polymer layer 120.
  • the metal substrate layer may be formed on the substrate 110 using a conventional deposition or coating method.
  • the metal in the metal substrate or the metal substrate layer is, for example, silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, At least one metal or alloy selected from the group consisting of W, U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge. 1 to 5 show that the substrate 110 is shown only in the case of a non-catalyst substrate.
  • the shape of the substrate 110 is not limited.
  • the substrate 110 may have the form of a sheet, rod or wire.
  • the following description will be made with respect to the case where the substrate 110 is formed in a sheet shape.
  • the polymer layer 120 (hereinafter, referred to as a polymer layer) including a carbon source may serve as a seed layer for graphene synthesis.
  • the polymer layer 120 may be, for example, at least one selected from polymethacrylate, polystyrene, acrylonitrile butadiene styrene (ABS), self-assembled monolayer (SAM), and polyimide.
  • Examples of the carbon source may be carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
  • the method of forming the polymer layer 120 is not limited.
  • the polymer layer 120 may use a conventional coating method or a coating method such as spin coating, dip coating, and spray coating on the substrate 110 (first step above).
  • FIG. 2 is a second process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • the polymer layer 120 is heated through at least one heat source of microwave irradiation and IPL (Intensed Pulsed Light) irradiation in which the polymer layer 120 is coated on the substrate 110.
  • the first graphene layer 130 is formed.
  • the polymer layer 120 may be heated to 300 to 1000 through the heat source. Therefore, it is possible to form a graphene layer at a temperature relatively lower than the conventional graphene synthesis temperature.
  • microwave refers to electromagnetic radiation having a wavelength between 1 and 0.1 m generated by Klystron and Magnetron in an electromagnetic wave having a wavelength between radio waves and infrared rays.
  • the microwave heating method has the advantage of heating the inside of the material at the same time by selectively heating only the material absorbing the frequency to vibrate the molecules according to the frequency.
  • IPL Intensed Pulsed Light, short white wavelength
  • the IPL irradiation has the advantage of changing pulses at high speed and heating without damaging the substrate.
  • the microwave irradiation and / or IPL irradiation may be performed using a microwave irradiation device and an IPL irradiation device that are commonly used.
  • a photoreactive polymer for example, polyvinyl alcohol (PVP)
  • PVP polyvinyl alcohol
  • the graphene layer may be directly synthesized at the same time by removing the surface oxide layer by rapidly heating at a relatively low temperature.
  • the first graphene layer 130 formed through microwave irradiation and / or IPL irradiation is a graphene layer in which a plurality of carbon atoms are covalently connected to each other to form polycyclic aromatic molecules to form a layer or sheet.
  • the covalently linked carbon atoms form a 6-membered ring as shown in FIG. 1 as a basic repeating unit, but is not limited thereto. That is, the carbon atoms may be formed of a 5-membered ring, a 7-membered ring, or the like.
  • the first graphene layer 130 may be formed of a single layer, but is not limited thereto and may be formed of a plurality of layers.
  • the first graphene layer 130 may be formed of 50 layers.
  • the first graphene layer 130 may be formed in a large area, and for example, the first graphene layer 130 may be formed to have a length in the transverse or longitudinal direction of about 1 mm or more to 1000 m (above the second step).
  • FIG. 3 is a third process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • the graphene composite film manufacturing method according to an embodiment of the present invention may further include coating the metal catalyst particles 140 on the first graphene layer 130.
  • the metal catalyst particles 140 may serve as a medium for bonding the first graphene layer 130 and the second graphene layer 150 to be described later.
  • the metal in the metal catalyst particles 140 is not limited to a specific kind, for example, silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta And at least one metal or alloy selected from the group consisting of Ti, W, U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge.
  • the method of coating the metal catalyst particles 140 on the first graphene layer 130 is not limited.
  • FIG. 4 is a fourth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention
  • Figure 5 is a fifth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
  • the second graphene layer 150 is laminated on the first graphene layer 130, microwave irradiation and / or IPL.
  • the method may further include locally melting the metal catalyst particles 140 through irradiation to bond the second graphene layer 150 to an upper portion of the first graphene layer 130.
  • the second graphene layer 150 is the same as or similar to the first graphene layer 130 and may be manufactured by the same or similar method as the first graphene layer 130. The duplicate description will be omitted.
  • the second graphene layer 150 may be manufactured by a method different from the first graphene layer 130. For example, it is possible to manufacture the second graphene layer 150 by directly growing graphene on a metal catalyst and then removing the metal catalyst.
  • the microwave irradiation and the IPL irradiation may selectively and locally melt the metal catalyst particles 140 coated on the first graphene layer 130, and thus, the first graphene layer 130 and the second graphene without remaining contaminants.
  • the graphene layer 150 may be bonded.
  • a graphene composite film manufactured according to the graphene composite film manufacturing method according to the above embodiments may be provided.
  • the graphene composite film may be used in the manufacture of electrodes (especially transparent electrodes) of various electronic and electronic devices such as next-generation field effect transistors or diodes requiring flexibility and / or stretchability, or in photovoltaics, touch sensors, and related flexible electronic technologies. It is possible to be used as graphene transparent electrode for miracle applications.
  • embodiments of the present invention can form a graphene layer at a low speed at a low speed by heating a polymer layer including a carbon source through microwave and / or IPL (high sensitivity light source) irradiation.
  • a polymer layer including a carbon source through microwave and / or IPL (high sensitivity light source) irradiation.
  • IPL high sensitivity light source

Abstract

Provided is a method for manufacturing a graphene composite film. The method for manufacturing a graphene composite film according to an embodiment of the present invention includes: a first step of applying a polymer layer containing a carbon source on a top surface of a substrate; and a second step of heating the polymer layer by using at least one heating source of microwave irradiation and intensed pulse light (IPL) irradiation to form a first graphene layer.

Description

마이크로파 및 IPL조사를 이용한 그래핀 복합필름 제조방법Graphene composite film manufacturing method using microwave and IPL irradiation
본 발명은 그래핀 복합필름 제조방법에 관한 것으로, 보다 상세하게는 마이크로파 및 IPL(고감도 광원) 조사를 이용한 그래핀 복합필름 제조방법에 관한 것이다.The present invention relates to a graphene composite film manufacturing method, and more particularly to a graphene composite film manufacturing method using microwave and IPL (high sensitivity light source) irradiation.
최근 각광받고 있는 그래핀(Graphene)은 유연하고 전기 전도도가 매우 높으며 투명하기 때문에, 투명하고 휘어지는 전극으로 사용하거나 전자 소자에서 전자 수송층과 같은 전자 전송 물질로 활용하려는 연구가 활발히 진행되고 있다. Graphene (Graphene), which is in the spotlight recently, is flexible, has a very high electrical conductivity, and is transparent. Therefore, studies are being actively conducted to use it as a transparent and curved electrode or as an electron transport material such as an electron transport layer in an electronic device.
그래핀 기반의 필름의 대량 생산을 위해서는 그래핀을 합성함에 있어 온도, 합성 속도, 대면적 합성 가능 여부 등과 같은 기준들이 고려되어야 한다. 이와 관련하여, 종래 그래핀을 합성하는 방법은 다양할 수 있으나, 통상적으로는 박리법(일명 스카치 테치프법) 또는 금속 촉매상에 그래핀을 직접 성장시키는 방법이 이용되고 있다. For mass production of graphene-based films, criteria such as temperature, synthesis rate, and large-area synthesis should be taken into account in graphene synthesis. In this regard, conventional methods for synthesizing graphene may vary, but typically, a peeling method (also known as Scotch Tetch) or a method of directly growing graphene on a metal catalyst is used.
그런데, 박리법(exfolidation)의 경우에는, 기본적으로 우연에 기대하는 공정으로 스카치 테이프로 기판 위에 증착하는 과정에서 그래핀과 여러층의 그래파이트가 쉽게 부셔지면서 그래핀과 그래파이트 조각들이 기판위에 무질서하게 섞이는 문제점이 있었다. By the way, in the case of exfolidation, the graphene and the graphite pieces are randomly mixed on the substrate while graphene and multiple layers of graphite are easily broken in the process of depositing on the substrate with Scotch tape in a process that is expected by chance. There was a problem.
또한, 금속 촉매상에 그래핀을 직접 성장시키는 방법의 경우에는 금속 촉매 상에 탄소 소스를 포함하는 반응소스를 공급하고 상압에서 열처리 함으로써 그래핀을 성장시키게 되는데, 1000 이상의 고온이 요구된다는 문제점이 있었으며, 그래핀 성장 후에 금속 촉매를 에칭 등의 방법을 이용하여 제거하는 과정에서 금속 촉매 상부에 형성된 그래핀에 존재하는 오염물질의 완벽한 제거가 어렵다는 문제점이 있었다. 따라서, 그래핀 복합필름을 제조함에 있어, 저온에서 대면적 기판 상에 균일한 그래핀을 합성하는 방법의 개발이 여전히 요구되고 있는 실정이다.In addition, in the case of directly growing graphene on a metal catalyst, a graphene is grown by supplying a reaction source including a carbon source on the metal catalyst and performing heat treatment at atmospheric pressure, which has a problem that a high temperature of 1000 or more is required. In the process of removing the metal catalyst after the graphene growth by using an etching method, there is a problem in that it is difficult to completely remove the contaminants present in the graphene formed on the metal catalyst. Therefore, in manufacturing a graphene composite film, the development of a method for synthesizing uniform graphene on a large area substrate at a low temperature is still required.
본 발명의 실시예들은 마이크로파 및/또는 IPL(고감도 광원) 조사를 통해 그래핀층을 형성함으로써, 상대적으로 저온에서 빠른 속도로 그래핀층을 형성 가능한 그래핀 복합필름 제조방법을 제공하고자 한다. Embodiments of the present invention to form a graphene layer by microwave and / or IPL (high sensitivity light source) irradiation, to provide a graphene composite film manufacturing method capable of forming a graphene layer at a high speed at a relatively low temperature.
또한, 마이크로파 조사를 통해 금속 촉매 입자를 국부적으로 융해시켜 오염물질의 잔류 없이 그래핀 및 그래핀을 접합 가능한 그래핀 복합필름 제조 방법을 제공하고자 한다.In addition, it is to provide a graphene composite film manufacturing method capable of bonding graphene and graphene without remaining of contaminants by locally melting the metal catalyst particles through microwave irradiation.
본 발명의 일 측면에 따르면, 기판 상부에 카본 소스를 포함하는 고분자층을 코팅하는 제1 단계; 및 마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해, 상기 고분자층을 가열하여 제1 그래핀층을 형성하는 제2 단계를 포함하는 그래핀 복합필름 제조방법이 제공될 수 있다. According to an aspect of the invention, the first step of coating a polymer layer comprising a carbon source on the substrate; And a second step of forming the first graphene layer by heating the polymer layer through at least one heat source of microwave irradiation and IPL (Intensed Pulse Light) irradiation.
이 때, 상기 기판은 무촉매 기판, 금속 기판 또는 상부에 금속 기재층이 형성되는 기판이고, 상기 무촉매 기판은 PET(polyethyleneterephthalate) 기판, PES(polyethersulfone) 기판, 폴리이미드 기판, 질화 붕소 기판, Si 기판, Si/Si02 기판, Si3N4 기판, 사파이어 기판, 쿼츠(Quartz) 기판 및 유리 기판 중에서 선택되는 1종 이상으로 제조되고, 상기 금속 기판 또는 상기 금속 기재층은 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택되는 하나 이상의 금속 또는 합금으로 제조될 수 있다.In this case, the substrate is a non-catalyst substrate, a metal substrate or a substrate on which a metal base layer is formed, and the non-catalytic substrate is a polyethylene terephthalate (PET) substrate, a polyethersulfone (PES) substrate, a polyimide substrate, a boron nitride substrate, Si A substrate, a Si / Si02 substrate, a Si3N4 substrate, a sapphire substrate, a quartz substrate, and a glass substrate. The metal substrate or the metal substrate layer may be formed of silicon, Ni, Co, Fe, Pt, At least one metal selected from the group consisting of Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge or It can be made of an alloy.
또한, 상기 카본 소스를 포함하는 고분자층은 폴리메타크릴레이트, 폴리스티렌, 아크릴로니트릴부타디엔스티렌(Acrylonitrile Butadiene Styrene, ABS), SAM(Self-assembled monolayer), 폴리이미드 중에서 선택되는 1종 이상일 수 있다. In addition, the polymer layer including the carbon source may be at least one selected from polymethacrylate, polystyrene, acrylonitrile butadiene styrene (ABS), self-assembled monolayer (SAM), and polyimide.
또한, 상기 제2 단계는, 상기 마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해 상기 고분자층을 1000 내지 1500로 가열할 수 있다. In addition, the second step may heat the polymer layer to 1000 to 1500 through at least one heat source of the microwave irradiation and IPL (Intensed Pulse Light) irradiation.
한편, 본 발명의 일 측면에 따른 그래핀 복합필름 제조방법은 상기 제2 단계 이후에, 상기 제1 그래핀층 상부에 금속 촉매 입자를 코팅하는 제3 단계를 더 포함할 수 있다. Meanwhile, the graphene composite film manufacturing method according to an aspect of the present invention may further include a third step of coating the metal catalyst particles on the first graphene layer after the second step.
이 때, 상기 금속 촉매 입자는 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택되는 하나 이상의 금속 또는 합금일 수 있다.At this time, the metal catalyst particles are silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, One or more metals or alloys selected from the group consisting of bronze, cupronickel, stainless steel and Ge.
또한, 본 발명의 일 측면에 따른 그래핀 복합필름 제조방법은 상기 제3 단계 이후에, 상기 제1 그래핀층 상부에 제2 그래핀층을 적층하고, 마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해, 상기 금속 촉매 입자를 국부적으로 융해시켜 상기 제2 그래핀층을 상기 제1 그래핀층 상부와 접합시키는 제4 단계를 더 포함할 수 있다. In addition, the graphene composite film manufacturing method according to an aspect of the present invention after the third step, by laminating a second graphene layer on the first graphene layer, at least of microwave irradiation and IPL (Intensed Pulse Light) irradiation The method may further include a fourth step of locally melting the metal catalyst particles through at least one heat source to bond the second graphene layer to an upper portion of the first graphene layer.
본 발명의 다른 측면에 따르면, 본 발명의 일 측면에 따른 그래핀 복합필름 제조방법에 의해 제조되는 그래핀 복합필름이 제공될 수 있다.According to another aspect of the present invention, a graphene composite film manufactured by the graphene composite film manufacturing method according to an aspect of the present invention may be provided.
본 발명의 실시예들은 마이크로파 및/또는 IPL(고감도 광원) 조사를 통해 탄소 소스를 포함하는 고분자층을 가열함으로써, 저온에서 빠른 속도로 그래핀층을 형성 가능하다. Embodiments of the present invention by heating the polymer layer containing a carbon source through microwave and / or IPL (high sensitivity light source) irradiation, it is possible to form a graphene layer at a low speed at a high speed.
또한, 마이크로파 및/또는 IPL(고감도 광원) 조사를 통해 금속 촉매 입자를 국부적으로 융해시켜 복수의 그래핀층을 접합함으로써, 오염물질의 잔류 없이 그래핀 및 그래핀을 접합 가능하다.In addition, by melting the metal catalyst particles locally through microwave and / or IPL (high sensitivity light source) irradiation to bond a plurality of graphene layers, it is possible to bond graphene and graphene without remaining contaminants.
도 1은 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제1 공정도이다.1 is a first process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제2 공정도이다.2 is a second process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제3 공정도이다.3 is a third process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제4 공정도이다.도 5는 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제5 공정도이다.4 is a fourth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention. FIG. 5 is a fifth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
<부호의 설명><Description of the code>
100: 그래핀 복합필름 110: 기판 100: graphene composite film 110: substrate
120: 고분자층 130: 제1 그래핀층 120: polymer layer 130: first graphene layer
140: 금속 촉매 입자 150: 제2 그래핀층140: metal catalyst particles 150: second graphene layer
이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 대하여 설명하도록 한다. Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제1 공정도이다.1 is a first process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 그래핀 복합필름(100) 제조방법은 우선 기판(110) 상부에 카본 소스를 포함하는 고분자층(120)을 코팅한다. Referring to FIG. 1, in the graphene composite film 100 manufacturing method according to an exemplary embodiment of the present invention, first, a polymer layer 120 including a carbon source is coated on the substrate 110.
기판(110)은 투명성, 유연성, 연신가능성 또는 이들의 조합 특성을 가질 수 있다. 또한, 기판(110)은 무촉매 기판일 수 있으며, 예를 들어, 상기 무촉매 기판은 PET(polyethyleneterephthalate) 기판, PES(polyethersulfone) 기판, 폴리이미드 기판, 질화 붕소 기판, Si 기판, Si/Si02 기판, Si3N4 기판, 사파이어 기판, 쿼츠(Quartz) 기판 및 유리 기판 중에서 선택되는 1종 이상일 수 있다. The substrate 110 may have transparency, flexibility, stretchability, or a combination thereof. In addition, the substrate 110 may be a catalyst-free substrate. For example, the catalyst-free substrate may be a polyethyleneterephthalate (PET) substrate, a polyethersulfone (PES) substrate, a polyimide substrate, a boron nitride substrate, a Si substrate, or a Si / Si0 2. It may be at least one selected from a substrate, a Si 3 N 4 substrate, a sapphire substrate, a quartz substrate, and a glass substrate.
한편, 기판(110)은 금속 기판이거나, 기판(110) 및 고분자층(120) 사이에 형성되는 금속 기재층(미도시)을 더 포함할 수 있다. 상기 금속 기재층은 기판(110) 상부에 통상적인 증착 또는 코팅 방법을 사용하여 형성될 수 있다. On the other hand, the substrate 110 may be a metal substrate or may further include a metal substrate layer (not shown) formed between the substrate 110 and the polymer layer 120. The metal substrate layer may be formed on the substrate 110 using a conventional deposition or coating method.
이 때, 상기 금속 기판 또는 금속 기재층에서의 금속은 예를 들면, 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금일 수 있다. 한편, 도 1 내지 도 5에서는 기판(110)이 무촉매 기판인 경우에 한하여 도시하였음을 밝혀둔다.At this time, the metal in the metal substrate or the metal substrate layer is, for example, silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, At least one metal or alloy selected from the group consisting of W, U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge. 1 to 5 show that the substrate 110 is shown only in the case of a non-catalyst substrate.
또한, 상기 기판(110)의 형상은 한정되지 않는다. 예를 들어, 기판(110)은 시트(sheet), 막대(rod) 또는 와이어 형태를 가질 수 있다. 다만, 설명의 편의를 위하여 이하에서는 기판(110)이 시트형상으로 형성된 경우를 중심으로 설명하도록 한다.In addition, the shape of the substrate 110 is not limited. For example, the substrate 110 may have the form of a sheet, rod or wire. However, for convenience of description, the following description will be made with respect to the case where the substrate 110 is formed in a sheet shape.
카본 소스를 포함하는 고분자층(120, 이하 고분자층)은 그래핀 합성을 위한 시드층의 역할을 수행할 수 있다. 고분자층(120)은 예를 들어, 폴리메타크릴레이트, 폴리스티렌, 아크릴로니트릴부타디엔스티렌(Acrylonitrile Butadiene Styrene, ABS), SAM(Self-assembled monolayer), 폴리이미드 중에서 선택되는 1종 이상일 수 있다. The polymer layer 120 (hereinafter, referred to as a polymer layer) including a carbon source may serve as a seed layer for graphene synthesis. The polymer layer 120 may be, for example, at least one selected from polymethacrylate, polystyrene, acrylonitrile butadiene styrene (ABS), self-assembled monolayer (SAM), and polyimide.
상기 카본 소스의 예로는 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등이 있을 수 있다.Examples of the carbon source may be carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
고분자층(120)을 형성하는 방법은 한정되지 않는다. 예를 들어, 고분자층(120)은 기판(110) 상부에 스핀코팅, 딥코팅, 스프레이 코팅 등 통상의 코팅 방법 내지는 도포 방법을 사용하는 것이 가능하다(이상 제1 단계).The method of forming the polymer layer 120 is not limited. For example, the polymer layer 120 may use a conventional coating method or a coating method such as spin coating, dip coating, and spray coating on the substrate 110 (first step above).
도 2는 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제2 공정도이다.2 is a second process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 2를 참조하면, 고분자층(120)을 기판(110) 상부에 코팅한 마이크로파(Microwaves) 조사 및 IPL(Intensed Pulsed Light, 백색단파장) 조사 중 적어도 1 이상의 열원을 통해 고분자층(120)을 가열하여 제1 그래핀층(130)을 형성한다. 예를 들면, 상기 열원을 통해 고분자층(120)을 300 내지 1000로 가열시킬 수 있다. 따라서, 종래 그래핀 합성온도보다 상대적으로 낮은 온도에서 그래핀층을 형성 가능하다.Referring to FIG. 2, the polymer layer 120 is heated through at least one heat source of microwave irradiation and IPL (Intensed Pulsed Light) irradiation in which the polymer layer 120 is coated on the substrate 110. The first graphene layer 130 is formed. For example, the polymer layer 120 may be heated to 300 to 1000 through the heat source. Therefore, it is possible to form a graphene layer at a temperature relatively lower than the conventional graphene synthesis temperature.
한편, 상기 열원으로 마이크로파 조사만을 행하거나, IPL 조사만을 행하는 것이 가능하다. 또한, 상기 마이크로파 조사 및 IPL 조사를 동시에 행하는 것도 가능하다.On the other hand, it is possible to perform only microwave irradiation or only IPL irradiation with the heat source. It is also possible to carry out the microwave irradiation and the IPL irradiation at the same time.
여기에서 마이크로파는 라디오파와 적외선 사이의 파장을 가진 전자기파에 클라이스트론과 마그네트론에 의해 발생되는 파장이 1와 0.1m 사이의 전자기 방사를 의미한다. 마이크로파를 이용한 가열방식은 주파수를 흡수하는 물질만 선택적으로 가열하여 상기 주파수에 따른 분자를 진동시키는 방식으로 물질의 내부도 동시에 가열할 수 있는 장점을 갖는다.Here, microwave refers to electromagnetic radiation having a wavelength between 1 and 0.1 m generated by Klystron and Magnetron in an electromagnetic wave having a wavelength between radio waves and infrared rays. The microwave heating method has the advantage of heating the inside of the material at the same time by selectively heating only the material absorbing the frequency to vibrate the molecules according to the frequency.
한편, IPL(Intensed Pulsed Light, 백색단파장)은 350nm 내지 1200nm의 넓은 대역의 빛을 발생시키는 플래시 램프 또는 제논 램프(xenon lamp)를 이용하는 열원을 의미한다. 상기 IPL 조사는 빠른 속도로 펄스를 바꾸어주며 기판을 손상하지 않고 가열시킬 수 있는 장점을 갖는다.On the other hand, IPL (Intensed Pulsed Light, short white wavelength) means a heat source using a flash lamp or xenon lamp (generate) to generate a wide band of light of 350nm to 1200nm. The IPL irradiation has the advantage of changing pulses at high speed and heating without damaging the substrate.
상기 마이크로파 조사 및/또는 IPL 조사는 통상적으로 이용되는 마이크로파 조사 장치 및 IPL 조사 장치를 이용하여 수행될 수 있다. 한편, 상기 IPL 조사에 의한 효과를 높이기 위하여 기판(110) 표면에 광반응성 고분자(예를 들면, 폴리비닐알콜(PVP))를 코팅하여 광촉매 반응을 유도시키는 것이 가능하다. 상기 광촉매 반응의 일 예는 하기 [식1]에 기재되어 있다. The microwave irradiation and / or IPL irradiation may be performed using a microwave irradiation device and an IPL irradiation device that are commonly used. On the other hand, in order to enhance the effect of the IPL irradiation it is possible to induce a photocatalytic reaction by coating a photoreactive polymer (for example, polyvinyl alcohol (PVP)) on the surface of the substrate 110. An example of the photocatalytic reaction is described in the following [Formula 1].
[식 1][Equation 1]
Cu2O+CH3OH(g)2Cu+H2O(g)+CO2(g) *G(310 )=-161 kJCu 2 O + CH 3 OH (g) 2 Cu + H 2 O (g) + CO 2 (g) * G (310) =-161 kJ
Cu2O+HCOOH(g)2Cu+H2O(g)+HCHO(g) *G(310 )=-69 kJCu 2 O + HCOOH (g) 2 Cu + H 2 O (g) + HCHO (g) * G (310) =-69 kJ
따라서, 카본 소스를 포함하는 고분자층(120)을 마이크로파 및/또는 IPL조사를 이용하여 가열할 경우에는 상대적으로 저온에서 빠른 속도로 가열시켜 표면 산화층을 제거함과 동시에 그래핀층을 직접 합성 가능하다.Accordingly, when the polymer layer 120 including the carbon source is heated by using microwave and / or IPL irradiation, the graphene layer may be directly synthesized at the same time by removing the surface oxide layer by rapidly heating at a relatively low temperature.
상기 마이크로파 조사 및/또는 IPL 조사를 통해 형성된 제1 그래핀층(130)은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 그래핀이 층 또는 시트 형태를 형성한 것이다. The first graphene layer 130 formed through microwave irradiation and / or IPL irradiation is a graphene layer in which a plurality of carbon atoms are covalently connected to each other to form polycyclic aromatic molecules to form a layer or sheet.
상기 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 도 1에 도시된 바와 같이 6원환을 형성하나, 이에 한정되지 않는다. 즉, 상기 탄소원자들은 5원환, 7원환 등으로 형성되는 것도 가능하다. The covalently linked carbon atoms form a 6-membered ring as shown in FIG. 1 as a basic repeating unit, but is not limited thereto. That is, the carbon atoms may be formed of a 5-membered ring, a 7-membered ring, or the like.
제1 그래핀층(130)은 단일층으로 이루어질 수 있으나, 이에 한정되지 않고 복수층으로 형성되는 것도 가능하다. 예를 들면, 제1 그래핀층(130)은 50층으로 형성되는 것이 가능하다. 또한, 제1 그래핀층(130)은 대면적으로 형성될 수 있으며, 예를 들면 횡방향 또는 종방향의 길이가 약 1mm 이상 내지 1000m에 이르도록 형성되는 것이 가능하다(이상 제2 단계).The first graphene layer 130 may be formed of a single layer, but is not limited thereto and may be formed of a plurality of layers. For example, the first graphene layer 130 may be formed of 50 layers. In addition, the first graphene layer 130 may be formed in a large area, and for example, the first graphene layer 130 may be formed to have a length in the transverse or longitudinal direction of about 1 mm or more to 1000 m (above the second step).
도 3은 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제3 공정도이다.3 is a third process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법은 제1 그래핀층(130) 상부에 금속 촉매 입자(140)를 코팅하는 단계를 더 포함할 수 있다.Referring to FIG. 3, the graphene composite film manufacturing method according to an embodiment of the present invention may further include coating the metal catalyst particles 140 on the first graphene layer 130.
금속 촉매 입자(140)는 제1 그래핀층(130)과 후술할 제2 그래핀층(150)을 접합시키기 위한 매개체로의 역할을 수행할 수 있다. The metal catalyst particles 140 may serve as a medium for bonding the first graphene layer 130 and the second graphene layer 150 to be described later.
금속 촉매 입자(140)에서 상기 금속은 특정 종류로 한정되지 아니하며, 예를 들면, 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금을 포함할 수 있다.The metal in the metal catalyst particles 140 is not limited to a specific kind, for example, silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta And at least one metal or alloy selected from the group consisting of Ti, W, U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge.
또한, 제1 그래핀층(130) 상부에 금속 촉매 입자(140)를 코팅하는 방법은 한정되지 않는다. 예를 들면, 제1 그래핀층(130) 상부에 금속 촉매 입자(140)를 스핀코팅, 딥코팅, 스프레이 코팅 등 통상의 코팅 방법 내지는 도포 방법을 사용하는 것이 가능하다(이상 제3 단계)In addition, the method of coating the metal catalyst particles 140 on the first graphene layer 130 is not limited. For example, it is possible to use a conventional coating method or a coating method such as spin coating, dip coating or spray coating the metal catalyst particles 140 on the first graphene layer 130 (above third step).
도 4는 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제4 공정도이고, 도 5는 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법의 제5 공정도이다.4 is a fourth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention, Figure 5 is a fifth process chart of the graphene composite film manufacturing method according to an embodiment of the present invention.
도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 그래핀 복합필름 제조방법은 제1 그래핀층(130) 상부에 제2 그래핀층(150)을 적층하고, 마이크로파 조사 및/또는 IPL 조사를 통해 금속 촉매 입자(140)를 국부적으로 융해시켜 제2 그래핀층(150)을 제1 그래핀층(130) 상부와 접합시키는 단계를 더 포함할 수 있다. 4 and 5, in the graphene composite film manufacturing method according to an embodiment of the present invention, the second graphene layer 150 is laminated on the first graphene layer 130, microwave irradiation and / or IPL. The method may further include locally melting the metal catalyst particles 140 through irradiation to bond the second graphene layer 150 to an upper portion of the first graphene layer 130.
제2 그래핀층(150)은 제1 그래핀층(130)과 동일 또는 유사한 것으로, 제1 그래핀층(130)과 동일 또는 유사한 방법에 의해 제조될 수 있다. 이에 대해서 중복 설명은 생략하도록 한다. 한편, 제2 그래핀층(150)은 제1 그래핀층(130)과는 다른 방법으로 제조되는 것도 가능하다. 예를 들면, 금속 촉매상에 그래핀을 직접 성장시킨 후, 상기 금속 촉매를 제거함으로써 제2 그래핀층(150)을 제조하는 것이 가능하다. The second graphene layer 150 is the same as or similar to the first graphene layer 130 and may be manufactured by the same or similar method as the first graphene layer 130. The duplicate description will be omitted. On the other hand, the second graphene layer 150 may be manufactured by a method different from the first graphene layer 130. For example, it is possible to manufacture the second graphene layer 150 by directly growing graphene on a metal catalyst and then removing the metal catalyst.
상기 마이크로파 조사 및 IPL 조사에 대해서는 전술하였으므로, 중복 설명은 생략하도록 한다. 상기 마이크로파 조사 및 IPL조사는 제1 그래핀층(130) 상부에 코팅된 금속 촉매 입자(140)를 선택적으로 및 국부적으로 융해시킬 수 있으므로, 오염물질의 잔류 없이 제1 그래핀층(130) 및 제2 그래핀층(150)을 접합 시킬 수 있다. Since the microwave irradiation and the IPL irradiation have been described above, redundant descriptions will be omitted. The microwave irradiation and the IPL irradiation may selectively and locally melt the metal catalyst particles 140 coated on the first graphene layer 130, and thus, the first graphene layer 130 and the second graphene without remaining contaminants. The graphene layer 150 may be bonded.
한편, 본 발명의 다른 측면에 따르면 전술한 실시예들에 따른 그래핀 복합필름 제조방법에 따라 제조된 그래핀 복합필름이 제공될 수 있다.Meanwhile, according to another aspect of the present invention, a graphene composite film manufactured according to the graphene composite film manufacturing method according to the above embodiments may be provided.
상기 그래핀 복합필름은 유연성 및/또는 연신가능성이 요구되는 차세대 전계 효과 트랜지스터 또는 다이오드 등 각종 전자 전기 소자의 전극 제조(특히, 투명 전극), 또는 태양 전지, 터치 센서 및 관련된 유연성 전자 기술 분야에서 광전자기적 응용을 위한 그래핀 투명 전극으로 사용되는 것이 가능하다.The graphene composite film may be used in the manufacture of electrodes (especially transparent electrodes) of various electronic and electronic devices such as next-generation field effect transistors or diodes requiring flexibility and / or stretchability, or in photovoltaics, touch sensors, and related flexible electronic technologies. It is possible to be used as graphene transparent electrode for miracle applications.
상술한 바와 같이, 본 발명의 실시예들은 마이크로파 및/또는 IPL(고감도광원)조사를 통해 탄소 소스를 포함하는 고분자층을 가열함으로써, 저온에서 빠른 속도로 그래핀층을 형성 가능하다. 또한, 마이크로파 조사 및/또는 IPL(고감도 광원) 조사를 통해 금속 촉매 입자를 국부적으로 융해시켜 복수의 그래핀층을 접합함으로써, 오염물질의 잔류 없이 그래핀 및 그래핀을 접합 가능하다.As described above, embodiments of the present invention can form a graphene layer at a low speed at a low speed by heating a polymer layer including a carbon source through microwave and / or IPL (high sensitivity light source) irradiation. In addition, by melting the metal catalyst particles locally through microwave irradiation and / or IPL (high sensitivity light source) irradiation to bond a plurality of graphene layers, it is possible to bond graphene and graphene without remaining contaminants.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As described above, embodiments of the present invention have been described, but those skilled in the art may add, change, delete, or add elements within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

Claims (8)

  1. 기판 상부에 카본 소스를 포함하는 고분자층을 코팅하는 제1 단계; 및 Coating a polymer layer including a carbon source on the substrate; And
    마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해, 상기 고분자층을 가열하여 제1 그래핀층을 형성하는 제2 단계를 포함하는 그래핀 복합필름 제조방법.Graphene composite film manufacturing method comprising a second step of forming a first graphene layer by heating the polymer layer through at least one or more heat sources of microwave irradiation and IPL (Intensed Pulse Light) irradiation.
  2. 제 1항에 있어서, The method of claim 1,
    상기 기판은 무촉매 기판, 금속 기판 또는 상부에 금속 기재층이 형성되는 기판이고, The substrate is a non-catalyst substrate, a metal substrate or a substrate on which a metal substrate layer is formed,
    상기 무촉매 기판은 PET(polyethyleneterephthalate) 기판, PES(polyethersulfone) 기판, 폴리이미드 기판, 질화 붕소 기판, Si 기판, Si/Si02 기판, Si3N4 기판, 사파이어 기판, 쿼츠(Quartz) 기판 및 유리 기판 중에서 선택되는 1종 이상으로 제조되고, The non-catalyst substrate is selected from a polyethyleneterephthalate (PET) substrate, a polyethersulfone (PES) substrate, a polyimide substrate, a boron nitride substrate, a Si substrate, a Si / Si02 substrate, a Si3N4 substrate, a sapphire substrate, a quartz substrate, and a glass substrate. Is made of one or more,
    상기 금속 기판 또는 상기 금속 기재층은 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택되는 하나 이상의 금속 또는 합금으로 제조되는 그래핀 복합필름 제조방법.The metal substrate or the metal substrate layer is silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass Graphene composite film manufacturing method made of at least one metal or alloy selected from the group consisting of, bronze, cupronickel, stainless steel and Ge.
  3. 제 1항에 있어서, The method of claim 1,
    상기 카본 소스를 포함하는 고분자층은 폴리메타크릴레이트, 폴리스티렌, 아크릴로니트릴부타디엔스티렌(Acrylonitrile Butadiene Styrene, ABS), SAM(Self-assembled monolayer), 폴리이미드 중에서 선택되는 1종 이상인 그래핀 복합필름 제조방법.The polymer layer including the carbon source is at least one selected from polymethacrylate, polystyrene, acrylonitrile butadiene styrene (ABS), self-assembled monolayer (SAM), polyimide, and graphene composite film production. Way.
  4. 제 1항에 있어서, The method of claim 1,
    상기 제2 단계는,The second step,
    상기 마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해 상기 고분자층을 300 내지 1000로 가열하는 그래핀 복합필름 제조방법.Graphene composite film manufacturing method for heating the polymer layer to 300 to 1000 through at least one heat source of the microwave irradiation and IPL (Intensed Pulse Light) irradiation.
  5. 제 1항에 있어서, The method of claim 1,
    상기 제2 단계 이후에, After the second step,
    상기 제1 그래핀층 상부에 금속 촉매 입자를 코팅하는 제3 단계를 더 포함하는 그래핀 복합필름 제조방법.Graphene composite film manufacturing method further comprising a third step of coating a metal catalyst particles on the first graphene layer.
  6. 제 5항에 있어서, The method of claim 5,
    상기 금속 촉매 입자는 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택되는 하나 이상의 금속 또는 합금인 그래핀 복합필름 제조방법.The metal catalyst particles are silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel And at least one metal or alloy selected from the group consisting of stainless steel and Ge.
  7. 제 5항에 있어서, The method of claim 5,
    상기 제3 단계 이후에, After the third step,
    상기 제1 그래핀층 상부에 제2 그래핀층을 적층하고, Laminating a second graphene layer on the first graphene layer,
    마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해, 상기 금속 촉매 입자를 국부적으로 융해시켜 상기 제2 그래핀층을 상기 제1 그래핀층 상부와 접합시키는 제4 단계를 더 포함하는 그래핀 복합필름 제조방법.And a fourth step of locally melting the metal catalyst particles to bond the second graphene layer to an upper portion of the first graphene layer through at least one heat source of microwave irradiation and IPL (Intensed Pulse Light) irradiation. Pin composite film manufacturing method.
  8. 제1 항 내지 제7 항 중 어느 한 항에 따른 그래핀 복합필름 제조방법에 의해 제조되는 그래핀 복합필름.Graphene composite film prepared by the graphene composite film manufacturing method according to any one of claims 1 to 7.
PCT/KR2012/000464 2011-10-26 2012-01-19 Method for manufacturing a graphene composite film by using microwave and ipl irradiation WO2013062182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0110007 2011-10-26
KR1020110110007A KR101236138B1 (en) 2011-10-26 2011-10-26 Method for graphene hybrid film using microwaves and intense pulsed light

Publications (1)

Publication Number Publication Date
WO2013062182A1 true WO2013062182A1 (en) 2013-05-02

Family

ID=47899998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000464 WO2013062182A1 (en) 2011-10-26 2012-01-19 Method for manufacturing a graphene composite film by using microwave and ipl irradiation

Country Status (2)

Country Link
KR (1) KR101236138B1 (en)
WO (1) WO2013062182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832363A (en) * 2016-12-31 2017-06-13 南京新月材料科技有限公司 The preparation method and flexible PCB of Graphene modified polyimide based coextruded film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101918299B1 (en) * 2011-11-09 2018-11-13 주식회사 삼천리 Method for preparing of a metal wire or substrate graphene formed on the surface of the metal wire or substrate
KR101512412B1 (en) 2013-03-06 2015-04-15 성균관대학교산학협력단 Transparent electrode and manufacturing method thereof
KR101600395B1 (en) * 2014-04-01 2016-03-07 성균관대학교산학협력단 Transparent electrode and manufacturing method thereof
CN104211977B (en) * 2014-09-10 2017-01-25 浙江碳谷上希材料科技有限公司 Preparation method of graphene-based composite membrane
US10626231B2 (en) 2016-12-28 2020-04-21 King Fahd University Of Petroleum And Minerals Microwave irradiated poly(vinyl alcohol) and graphene nanocomposite
KR102131057B1 (en) * 2018-10-04 2020-07-07 한국기계연구원 Method for fabricating graphene film
KR102606035B1 (en) * 2019-08-28 2023-11-24 부산대학교 산학협력단 Sensor manufacturing method using laser and the sensor manufactured by the method
KR20230031641A (en) 2021-08-27 2023-03-07 부산대학교 산학협력단 Control method of surface hardness and toughness for nanopatterned polymer film
CN115108550B (en) * 2022-07-18 2023-02-28 哈尔滨工业大学 Modification treatment method for reducing defects in graphite film surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090026568A (en) * 2007-09-10 2009-03-13 삼성전자주식회사 Graphene sheet and process for preparing the same
KR100923304B1 (en) * 2007-10-29 2009-10-23 삼성전자주식회사 Graphene sheet and process for preparing the same
KR20100107403A (en) * 2009-03-25 2010-10-05 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Method of production of graphene
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR20110102132A (en) * 2010-03-09 2011-09-16 국립대학법인 울산과학기술대학교 산학협력단 Method for manufacturing graphene, transparent electrode, active layer comprising thereof, display, electronic device, optoelectronic device, solar cell and dye-sensitized solar cell including the electrode or active layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090026568A (en) * 2007-09-10 2009-03-13 삼성전자주식회사 Graphene sheet and process for preparing the same
KR100923304B1 (en) * 2007-10-29 2009-10-23 삼성전자주식회사 Graphene sheet and process for preparing the same
KR20100107403A (en) * 2009-03-25 2010-10-05 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Method of production of graphene
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR20110102132A (en) * 2010-03-09 2011-09-16 국립대학법인 울산과학기술대학교 산학협력단 Method for manufacturing graphene, transparent electrode, active layer comprising thereof, display, electronic device, optoelectronic device, solar cell and dye-sensitized solar cell including the electrode or active layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832363A (en) * 2016-12-31 2017-06-13 南京新月材料科技有限公司 The preparation method and flexible PCB of Graphene modified polyimide based coextruded film

Also Published As

Publication number Publication date
KR101236138B1 (en) 2013-02-22

Similar Documents

Publication Publication Date Title
WO2013062182A1 (en) Method for manufacturing a graphene composite film by using microwave and ipl irradiation
KR102109380B1 (en) Method of manufacturing a graphene monolayer on insulating substrates
EP3157867B1 (en) Method for the fabrication and transfer of graphene
KR101262327B1 (en) Graphene roll-to-roll transfer method, graphene roll-to-roll transfer apparatus, and graphene roll
KR100923304B1 (en) Graphene sheet and process for preparing the same
KR101429518B1 (en) Method and apparatus for transferring graphene
EP1373130B1 (en) Process and apparatus for the production of carbon nanotubes
WO2011087301A2 (en) Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
KR101221581B1 (en) Fabrication method of flexible transparent electrode substrate with graphene, and the flexible transparent electrode substrate substrate thereby
WO2011108878A2 (en) Electromagnetic shielding method using graphene and electromagnetic shielding material
US20120025427A1 (en) Method of making transparent conductive film
TW200903524A (en) Transparent conducting film and method for manufacturing transparent conducting film
JP2001234341A (en) Thermochemical vapor phase deposition system and method for synthesizing carbon nanotube using the same
KR101307982B1 (en) Method for metal wire with graphene surface
KR20140091374A (en) Tranfering method for graphene using self-adhesive film
KR101437449B1 (en) Method for constructing laminate with graphene
TW200929725A (en) Electromagnetic shielding layer and method for making the same
KR101465419B1 (en) Pruducing method for graphite sheet
WO2014077503A1 (en) Method for preparing graphene and said graphene, electronic device using said graphene
WO2012002666A2 (en) Graphene manufacturing apparatus and method
JP2010254531A (en) Carbon nanotube assembly
KR101915194B1 (en) Transparent electrode board including graphene and method thereof
KR20130136241A (en) Lead frame with surface treatment and method thereof
KR101829836B1 (en) Method for manufacturing electrode including graphene
KR101461978B1 (en) Method for manufacturing patterned graphene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843008

Country of ref document: EP

Kind code of ref document: A1