WO2013061808A1 - Vehicle-driving induction motor controller - Google Patents

Vehicle-driving induction motor controller Download PDF

Info

Publication number
WO2013061808A1
WO2013061808A1 PCT/JP2012/076567 JP2012076567W WO2013061808A1 WO 2013061808 A1 WO2013061808 A1 WO 2013061808A1 JP 2012076567 W JP2012076567 W JP 2012076567W WO 2013061808 A1 WO2013061808 A1 WO 2013061808A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
torque
axis current
phase
unit
Prior art date
Application number
PCT/JP2012/076567
Other languages
French (fr)
Japanese (ja)
Inventor
翔 八重垣
山田 博之
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013061808A1 publication Critical patent/WO2013061808A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a control device for an induction motor for driving a vehicle.
  • Hybrid motors and electric vehicles are equipped with a large number of electric motors, among which high output motors are used for driving.
  • a speed detector that detects the rotational speed of the induction motor is provided, and control is performed based on the speed by the speed detector.
  • a vector control method is adopted in which a three-phase alternating current is converted into a rotating coordinate system having two orthogonal axes (see, for example, Patent Document 1).
  • the torque Tm of the induction motor in the vector control method is expressed by the following equation (1) at a target operating point where the motor constant has no error and the secondary magnetic flux coincides with the d axis.
  • m is a conversion coefficient
  • Pp is the number of pole pairs
  • M is a mutual inductance
  • l2 is a secondary leakage inductance
  • ⁇ ′ is a secondary linkage flux
  • Iq is a q-axis current.
  • the torque Tm of the induction motor is estimated by Equation (1), and the primary frequency is corrected according to the difference between the estimated torque value and the torque command value. The error from the estimated torque value is corrected.
  • the present invention is a control device that outputs a control signal to an inverter that drives a vehicle drive induction motor at a high frequency based on a torque command and a magnetic flux command input from a host controller, and the drive frequency that sets the drive frequency of the inverter
  • a setting unit a current value detection unit that detects a three-phase current value of the induction motor, a conversion unit that converts the detected three-phase current value into a d-axis current value and a q-axis current value, and an output torque of the induction motor
  • a torque estimation unit for estimating, based on a phase compensation amount for correcting a current phase change from current detection by the current value detection unit to torque estimation, and a d-axis current value and a q-axis current value. Then, the output torque is estimated.
  • the accuracy of torque estimation can be improved.
  • FIG. 1 is an overall block diagram of a vehicle equipped with a motor control device according to an embodiment of the present invention.
  • 3 is a block diagram showing in detail a motor control calculation unit in a motor controller 109. It is a figure which shows the relationship between UVW phase stationary coordinate system, (alpha) (beta) axis
  • the block diagram which shows the structure of the torque estimation part 211 in the case of changing the value of C0 and C1 by power running and regeneration.
  • FIG. 1 is an overall block diagram of an electric vehicle equipped with a motor control device according to an embodiment of the present invention.
  • the electric vehicle includes a power supply unit 101 and a motor drive unit 102.
  • the power supply unit 101 includes a battery 103, a cell controller 104, a relay circuit 105, and a battery controller 106.
  • the relay circuit 105 can connect and disconnect the inverter 107 and the battery 103.
  • the cell controller 104 acquires battery information and monitors the state of the battery 103.
  • the battery information acquired by the cell controller 104 is transmitted to the battery controller 106 by communication means (not shown).
  • the battery controller 106 performs SOC calculation of the battery 103, calculation of a power limit value to the motor driving unit 102, and the like based on the received battery information, and controls power supply to and interruption of the motor driving unit 102.
  • the motor drive unit 102 includes at least one inverter and one motor.
  • the motor drive unit 102 is provided with an induction motor 108 for driving the vehicle, an inverter 107 for driving the induction motor 108, and a motor controller 109 for motor control.
  • the motor controller 109 generates a drive signal to the inverter 107 based on the torque target value or the rotational speed target value received from the host controller 110 that controls the entire vehicle by communication means or the like, and generates the generated torque or rotational speed of the motor. Control.
  • a converter or the like these devices may be included.
  • FIG. 2 is a block diagram showing in detail a motor control calculation unit in the motor controller 109 of FIG.
  • the motor control calculation unit 201 includes a DC voltage detection unit 204, a motor rotation number calculation unit 207, a motor current detection unit 209, a current command calculation unit 214, a slip frequency calculation unit 217, a primary frequency calculation unit 219, a coordinate conversion unit 223, a current An FB control calculation unit 225, a voltage FF control calculation unit 227, a coordinate conversion unit 231, and a PWM duty calculation unit 233 are provided.
  • the motor control calculation unit 201 controls the induction motor 108 by vector control, and the relationship of each coordinate system used in vector control is shown in FIG.
  • FIG. 3 shows the relationship between the output current and the UVW phase stationary coordinate system, the ⁇ axis stationary coordinate system and the dq axis rotational coordinate system.
  • the phase angle from the stationary coordinate system ⁇ -axis to the rotating coordinate system d-axis is ⁇ dq
  • the phase angle from the rotating coordinate system d-axis to the current vector I1 is ⁇ .
  • the dq-axis rotating coordinate system rotates at a primary frequency ⁇ 1, which will be described later, with respect to the ⁇ stationary coordinate system.
  • the three-phase current detection value is expressed as a primary current vector I1 having Id and Iq as components when coordinate transformation is performed based on vector control theory.
  • the target operating point for vector control is a state where the secondary magnetic flux vector coincides with the d-axis.
  • the current command calculation unit 214 controls the d (magnetic flux) axis current command Idref and q (torque) axis current command Iqref which are control current commands.
  • Is calculated. Idref is expressed by equation (2)
  • Iqref is expressed by equation (3).
  • M is a mutual inductance
  • L2 is a secondary side self-inductance
  • p is the number of pole pairs.
  • the optimum value of the secondary magnetic flux command ⁇ 2ref changes according to the battery voltage. Therefore, the correction value of the secondary magnetic flux command ⁇ 2ref corresponding to the DC voltage 203 output from the DC voltage detector 204 is calculated, and Idref and Iqref are calculated based on the correction values.
  • the motor current detection unit 209 detects the U-phase current Iu and the W-phase current Iw of the induction motor 108 based on the motor drive current data acquired by the current sensor 208.
  • the coordinate conversion unit 223 separately generates the d-axis (excitation) current Id and the q-axis (torque) current Iq based on the phase angle ⁇ dq (current phase) from the ⁇ axis to the d axis. A method for calculating the phase angle ⁇ dq will be described later.
  • Id is expressed by equation (4)
  • Iq is expressed by equation (5).
  • the current FB control calculation unit 225 corrects the d-axis voltage command VdRef so that the d-axis current command IdRef and the d-axis current Id match. Similarly, the current FB control calculation unit 225 corrects the q-axis voltage command VqRef so that the q-axis current command IqRef and the q-axis current Iq match. These voltage command values are output as the FB voltage command 226. Further, the voltage FF control calculation unit 227 performs feedforward control that compensates for the voltage drop and induced voltage of the primary resistance, and outputs the FF voltage command 228.
  • the voltage command applied to the motor is the sum of the FB voltage command and the FF voltage command, and is expressed as Equation (6) and Equation (7).
  • L1 is the primary self-inductance
  • ⁇ L1 is the primary leakage inductance
  • Kp is the proportional gain
  • Ki is the integral gain.
  • VdRef and VqRef are converted into three-phase voltage commands VuRef, VvRef and VwRef by the coordinate conversion unit 231 and output as the voltage command 230.
  • Vuref is expressed by equation (8)
  • Vvref is expressed by equation (9)
  • Vwref is expressed by equation (10).
  • the PWM duty calculator 233 generates a gate command 234 for the switching element in the inverter 107 based on the three-phase voltage commands VuRef, VvRef, and VwRef, and outputs it to the inverter 107. Since this PWM control is a well-known technique, its detailed description is omitted here.
  • the induction motor 108 is provided with a motor rotation sensor 205.
  • the motor rotation number calculation unit 207 calculates the motor rotation number ⁇ r based on the data acquired by the motor rotation sensor 205.
  • the slip frequency calculation unit 217 calculates the slip frequency reference ⁇ s * based on the d-axis (excitation) current command IdRef and the q-axis (torque) current command IqRef. ⁇ s * is expressed by equation (11).
  • R2 is a secondary resistance
  • L2 is a secondary self-inductance.
  • the primary frequency calculation unit 219 calculates ⁇ 1 which is the output frequency of the inverter 107 and is the motor primary frequency. ⁇ 1 is expressed by the following equation (12). That is, the output frequency of the inverter 107 is set to ⁇ 1 calculated by the equation (12). Then, by integrating the primary frequency ⁇ 1 by the integration calculation unit 220, the phase angle ⁇ dq (current phase) from the stationary coordinate system ⁇ -axis to the d-axis of the rotating coordinate system shown in FIG. 3 is calculated.
  • the torque Tm of the induction motor 108 is expressed by the equation (1) at the target operating point where the motor constant has no error and the secondary flux linkage coincides with the d-axis.
  • m is a conversion coefficient
  • Pp is the number of pole pairs
  • M is a mutual inductance
  • l2 is a secondary leakage inductance
  • ⁇ ' is a secondary linkage flux
  • Iq is a q-axis current.
  • Id ⁇ Iq is calculated by taking the three-phase current value detected by the current detector 208 into the motor controller 108 and converting the three-phase current value based on the phase information (phase angle ⁇ dq).
  • FIG. 4 is a diagram showing a relationship when the current phase changes by ⁇ during the time lag from the current detection to the calculation of Id ⁇ Iq (that is, the calculation of the estimated torque value).
  • the three-phase current detection value is expressed as a primary current vector I1 having Id and Iq as components when coordinate transformation is performed based on the vector control theory.
  • the primary current vector I1 has a phase angle ⁇ with respect to the rotating coordinate system d-axis, and the relationships shown in the following equations (15) and (16) are established between I1 and Id and Iq.
  • phase shift ⁇ can be expressed as the following equation (22).
  • the coefficients C0 and C1 included in the equation (22) are constants specific to the motor drive system, and are determined by actual measurement, for example, and stored in advance in the torque estimation unit 211 of FIG.
  • the torque estimation unit 211 calculates a phase shift ⁇ from the primary frequency ⁇ 1 calculated by the primary frequency calculation unit 219 and the equation (22), and based on the calculated ⁇ and Id and Iq from the coordinate conversion unit 223.
  • the corrected torque estimated value Tm shown in equation (21) is calculated.
  • the calculated estimated torque value Tm is output to the host controller 110.
  • the phase shift ⁇ is calculated based on predetermined C0 and C1 regardless of the driving state of the induction motor 108 (power running drive, regenerative drive), but whether the induction motor 108 is power running drive or regenerative drive.
  • the values of C0 and C1 may differ depending on whether or not. Therefore, as shown in FIG. 7, a torque command Tmref is input to the torque estimation unit 211, and torque estimation according to power running and regeneration is performed.
  • the switching control unit 304 connects the switching unit 303 to the storage unit 301 when the input torque command Tmref is positive (powering driving), and switches the switching unit 303 when the torque command Tmref is negative (regenerative driving).
  • may be calculated using the same C0 and C1 regardless of whether it is power running drive or regenerative drive.
  • the current phase shift ⁇ may be a constant instead of changing according to the primary frequency ⁇ 1.
  • an average value of the primary frequency ⁇ 1 is adopted as a constant.
  • the input of ⁇ 1 to the torque estimation unit 211 as shown in FIG. 1 is not necessary.
  • FIG. 5 and 6 are comparisons between the actual measured motor torque value and the estimated torque value calculated by the motor control calculation unit 201.
  • FIG. FIG. 5 shows a case of a conventional torque estimated value (torque estimated value calculated by Expression (14)), and FIG. 6 shows a case of the torque estimated value of the present embodiment.
  • the motor rotation speed ⁇ r is kept constant, and the motor torque command value is increased in a ramp shape.
  • the output frequency of the inverter 107 (the primary frequency ⁇ 1), which is the drive frequency, is set by the primary frequency calculation unit 219.
  • the torque estimator 211 includes a phase compensation amount (for example, a phase shift ⁇ calculated by the equation (22)) for correcting a current phase change from current detection by the motor current detector 209 to torque estimation, a d-axis current value, and q Based on the shaft current value, the output torque Tm of the induction motor 108 is estimated. As a result, the influence of the time lag from the current detection to the torque estimation value calculation on the torque estimation is reduced, and the torque estimation accuracy can be improved.
  • the host controller 110 inputs an appropriate torque command Tmref and secondary magnetic flux command ⁇ 2ref to the motor controller 109 based on the estimated torque value calculated by the motor controller 109. Therefore, by improving the accuracy of the estimated torque value input from the motor controller 109, an appropriate torque command Tmref and secondary magnetic flux command ⁇ 2ref corresponding to the driving status of the induction motor 108 can be given to the motor controller 109.
  • phase compensation amount may be a constant as described above.
  • the switching control unit 304 determines power running and regeneration of the induction motor 108 based on the input torque command Tmref.
  • the calculation unit 305 of the torque estimation unit 211 calculates the power running phase compensation amount ⁇ using the values C01 and C11 of the storage unit 301, and sets the power running phase compensation amount ⁇ to the power running phase compensation amount ⁇ . Based on this, an estimated torque value is calculated.
  • the calculation unit 305 of the torque estimation unit 211 calculates the regeneration phase compensation amount ⁇ using the values C02 and C12 of the storage unit 301, and the regeneration phase compensation amount. An estimated torque value is calculated based on ⁇ .
  • phase compensation amount is a constant
  • the values of C0 and C1 are changed between power running and regeneration.
  • a constant value for power running and a constant value for regeneration are obtained.
  • 101 power supply unit
  • 102 motor drive unit
  • 107 inverter
  • 108 induction motor
  • 109 motor controller
  • 110 host controller
  • 209 motor current detection unit
  • 211 torque estimation unit
  • 214 current command calculation unit
  • 219 primary frequency calculation unit
  • 223, 230 coordinate conversion unit
  • 301, 302 storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A controller for a vehicle-driving induction motor capable of improving accuracy of torque estimation. A motor controller (109) for outputting a control signal, on the basis of a secondary magnetic flux command (φ2ref) and a torque command (Tmref) inputted from a host controller (110), to an inverter (107) for driving a vehicle-driving induction motor (108) at a high frequency is provided with a primary frequency computation unit (219) for setting a drive frequency (ω1) of the inverter (107), a motor-current value detecting unit (209) for detecting a three-phase current value of the induction motor (108), a coordinate conversion unit (223) for converting the detected three-phase current value into a d-axis current value (Id) and a q-axis current value (Iq), and a torque estimating unit (211) for estimating an output torque of the induction motor (108). The torque estimating unit (211) estimates an output torque (Tm) on the basis of a phase compensation quantity which corrects the current phase change between the current detected by the motor-current value detecting unit (209) and the torque estimation, the d-axis current value, and q-axis current value.

Description

車両駆動用誘導電動機の制御装置Control device for induction motor for vehicle drive
 本発明は、車両駆動用誘導電動機の制御装置に関する。 The present invention relates to a control device for an induction motor for driving a vehicle.
 ハイブリッド自動車や電気自動車などには多数の電動機が搭載されており、中でも駆動用に高出力電動機が用いられている。誘導電動機の制御装置では、誘導電動機の回転速度を検出する速度検出器が備えられ、当該速度検出器により速度に基づいて制御が行われている。一般に、誘導電動機の制御においては、三相交流電流を直交する2軸を持つ回転座標系に変換して取り扱うベクトル制御方式が採用されている(例えば、特許文献1参照)。 Hybrid motors and electric vehicles are equipped with a large number of electric motors, among which high output motors are used for driving. In the induction motor control device, a speed detector that detects the rotational speed of the induction motor is provided, and control is performed based on the speed by the speed detector. In general, in the control of induction motors, a vector control method is adopted in which a three-phase alternating current is converted into a rotating coordinate system having two orthogonal axes (see, for example, Patent Document 1).
 ベクトル制御方式における誘導電動機のトルクTmは、電動機定数に誤差が無く、二次磁束がd軸に一致した目標動作点において、次式(1)により表される。式(1)において、mは変換係数、Ppは極対数、Mは相互インダクタンス、l2は2次側漏れインダクタンス、φ'は二次鎖交磁束、Iqはq軸電流を示す。 The torque Tm of the induction motor in the vector control method is expressed by the following equation (1) at a target operating point where the motor constant has no error and the secondary magnetic flux coincides with the d axis. In Expression (1), m is a conversion coefficient, Pp is the number of pole pairs, M is a mutual inductance, l2 is a secondary leakage inductance, φ ′ is a secondary linkage flux, and Iq is a q-axis current.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 特許文献1に記載の発明では、式(1)により誘導電動機のトルクTmを推定し、このトルク推定値とトルク指令値との差分に応じて一次周波数の補正を行うことで、トルク指令値とトルク推定値との誤差を修正するようにしている。 In the invention described in Patent Document 1, the torque Tm of the induction motor is estimated by Equation (1), and the primary frequency is corrected according to the difference between the estimated torque value and the torque command value. The error from the estimated torque value is corrected.
特開2003-219697号公報JP 2003-219697 A
 上述のようにベクトル制御理論に基づきトルク推定を行う場合、検出した三相電流よりd軸電流Idおよびq軸電流Iqを算出する必要がある。しかし、電流センサにより検出された電流をモータコントローラが取得してから、三相-二相変換によってIdおよびIqを算出し、さらにトルク推定演算を行うまでにはタイムラグが生じる。 When performing torque estimation based on the vector control theory as described above, it is necessary to calculate the d-axis current Id and the q-axis current Iq from the detected three-phase current. However, there is a time lag from when the motor controller acquires the current detected by the current sensor to when Id and Iq are calculated by three-phase to two-phase conversion and further the torque estimation calculation is performed.
 そのタイムラグの間にも電流の位相は変化するため、トルク推定演算に用いられる三相電流値と、トルク推定演算を行う瞬間に検出される三相電流との間には、電流の位相変化に起因するずれが生じている。そのため、このずれの発生によりトルク推定に必要なId、Iqを正確に算出できず、トルク推定値の精度が低下するという問題があった。 Since the current phase also changes during the time lag, the current phase changes between the three-phase current value used for torque estimation calculation and the three-phase current detected at the moment of torque estimation calculation. The resulting shift has occurred. Therefore, there is a problem that due to the occurrence of this deviation, Id and Iq necessary for torque estimation cannot be accurately calculated, and the accuracy of the torque estimation value is lowered.
 本発明は、上位コントローラから入力されるトルク指令および磁束指令に基づいて、車両駆動用誘導電動機を高周波駆動するインバータに制御信号を出力する制御装置であって、インバータの駆動周波数を設定する駆動周波数設定部と、誘導電動機の三相電流値を検出する電流値検出部と、検出された三相電流値をd軸電流値およびq軸電流値に変換する変換部と、誘導電動機の出力トルクを推定するトルク推定部と、を備え、トルク推定部は、電流値検出部による電流検出からトルク推定までの電流位相変化を補正する位相補償量と、d軸電流値およびq軸電流値とに基づいて、出力トルクを推定することを特徴とする。 The present invention is a control device that outputs a control signal to an inverter that drives a vehicle drive induction motor at a high frequency based on a torque command and a magnetic flux command input from a host controller, and the drive frequency that sets the drive frequency of the inverter A setting unit, a current value detection unit that detects a three-phase current value of the induction motor, a conversion unit that converts the detected three-phase current value into a d-axis current value and a q-axis current value, and an output torque of the induction motor A torque estimation unit for estimating, based on a phase compensation amount for correcting a current phase change from current detection by the current value detection unit to torque estimation, and a d-axis current value and a q-axis current value. Then, the output torque is estimated.
 本発明によれば、トルク推定の精度を向上させることができる。 According to the present invention, the accuracy of torque estimation can be improved.
本発明の実施の形態によるモータ制御装置を搭載した車両の全体ブロック図である。1 is an overall block diagram of a vehicle equipped with a motor control device according to an embodiment of the present invention. モータコントローラ109におけるモータ制御演算部を詳細に示すブロック図である。3 is a block diagram showing in detail a motor control calculation unit in a motor controller 109. UVW相静止座標系、αβ軸静止座標系およびdq軸回転座標系と出力電流との関係を示す図である。It is a figure which shows the relationship between UVW phase stationary coordinate system, (alpha) (beta) axis | shaft stationary coordinate system, dq axis | shaft rotation coordinate system, and output current. タイムラグの間に電流位相がΔθだけ変化した場合を説明する図である。It is a figure explaining the case where an electric current phase changes only (DELTA) (theta) during a time lag. モータトルク実測値と従来のトルク推定値とを示す図である。It is a figure which shows a motor torque actual value and the conventional torque estimated value. モータトルク実測値と本実施の形態のトルク推定値とを示す図である。It is a figure which shows a motor torque actual value and the torque estimated value of this Embodiment. 力行、回生でC0、C1の値を変更する場合のトルク推定部211の構成を示すブロック図。The block diagram which shows the structure of the torque estimation part 211 in the case of changing the value of C0 and C1 by power running and regeneration.
 以下、図を参照して本発明を実施するための形態について説明する。 図1は、本発明の実施の形態によるモータ制御装置を搭載した電気自動車の全体ブロック図である。電気自動車は電源部101およびモータ駆動部102を備えている。電源部101は、バッテリ103、セルコントローラ104、リレー回路105、および、バッテリコントローラ106を備えている。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an overall block diagram of an electric vehicle equipped with a motor control device according to an embodiment of the present invention. The electric vehicle includes a power supply unit 101 and a motor drive unit 102. The power supply unit 101 includes a battery 103, a cell controller 104, a relay circuit 105, and a battery controller 106.
 リレー回路105は、インバータ107とバッテリ103とを接続し、また、それらを切り離すことができる。セルコントローラ104は、バッテリ情報を取得し、バッテリ103の状態を監視する。セルコントローラ104で取得されたバッテリ情報は、不図示の通信手段によりバッテリコントローラ106へ伝送される。バッテリコントローラ106は、受信したバッテリ情報に基づいてバッテリ103のSOC演算やモータ駆動部102への電力制限値算出などを行い、モータ駆動部102への電力供給および遮断などを制御する。 The relay circuit 105 can connect and disconnect the inverter 107 and the battery 103. The cell controller 104 acquires battery information and monitors the state of the battery 103. The battery information acquired by the cell controller 104 is transmitted to the battery controller 106 by communication means (not shown). The battery controller 106 performs SOC calculation of the battery 103, calculation of a power limit value to the motor driving unit 102, and the like based on the received battery information, and controls power supply to and interruption of the motor driving unit 102.
 一方、モータ駆動部102は、少なくとも一つのインバータおよび一つのモータを備えている。図1に示す例では、モータ駆動部102には、車両走行用の誘導電動機108と、誘導電動機108を駆動するためのインバータ107と、モータ制御用のモータコントローラ109とが設けられている。モータコントローラ109は、車両全体を統御する上位コントローラ110から通信手段等により受信したトルク目標値或いは回転数目標値に基づいて、インバータ107への駆動信号を生成し、モータの発生トルクあるいは回転数を制御する。図1ではコンバータ等の記載は無いが、これら機器を有していても構わない。 On the other hand, the motor drive unit 102 includes at least one inverter and one motor. In the example shown in FIG. 1, the motor drive unit 102 is provided with an induction motor 108 for driving the vehicle, an inverter 107 for driving the induction motor 108, and a motor controller 109 for motor control. The motor controller 109 generates a drive signal to the inverter 107 based on the torque target value or the rotational speed target value received from the host controller 110 that controls the entire vehicle by communication means or the like, and generates the generated torque or rotational speed of the motor. Control. Although there is no description of a converter or the like in FIG. 1, these devices may be included.
 図2は、図1のモータコントローラ109におけるモータ制御演算部を詳細に示すブロック図である。モータ制御演算部201は、直流電圧検出部204、モータ回転数算出部207、モータ電流検出部209、電流指令演算部214、すべり周波数演算部217、一次周波数演算部219、座標変換部223、電流FB制御演算部225、電圧FF制御演算部227、座標変換部231、およびPWMデューティ算出部233を備えている。 FIG. 2 is a block diagram showing in detail a motor control calculation unit in the motor controller 109 of FIG. The motor control calculation unit 201 includes a DC voltage detection unit 204, a motor rotation number calculation unit 207, a motor current detection unit 209, a current command calculation unit 214, a slip frequency calculation unit 217, a primary frequency calculation unit 219, a coordinate conversion unit 223, a current An FB control calculation unit 225, a voltage FF control calculation unit 227, a coordinate conversion unit 231, and a PWM duty calculation unit 233 are provided.
 モータ制御演算部201はベクトル制御により誘導電動機108を制御するものであり、ベクトル制御において用いられる各座標系の関係を図3に示す。図3は、UVW相静止座標系、αβ軸静止座標系およびdq軸回転座標系と出力電流との関係を示している。図3において,静止座標系α軸から回転座標系d軸までの位相角をθdq、回転座標系d軸から電流ベクトルI1までの位相角をθとする。dq軸回転座標系は、αβ静止座標系に対して後述する一次周波数ω1で回転している。三相電流検出値は、ベクトル制御理論に基づき座標変換を施すとId及びIqを成分とする一次電流ベクトルI1として表現される。そして、ベクトル制御の目標とする動作点は、二次磁束ベクトルがd軸と一致する状態である。 The motor control calculation unit 201 controls the induction motor 108 by vector control, and the relationship of each coordinate system used in vector control is shown in FIG. FIG. 3 shows the relationship between the output current and the UVW phase stationary coordinate system, the αβ axis stationary coordinate system and the dq axis rotational coordinate system. In FIG. 3, the phase angle from the stationary coordinate system α-axis to the rotating coordinate system d-axis is θdq, and the phase angle from the rotating coordinate system d-axis to the current vector I1 is θ. The dq-axis rotating coordinate system rotates at a primary frequency ω1, which will be described later, with respect to the αβ stationary coordinate system. The three-phase current detection value is expressed as a primary current vector I1 having Id and Iq as components when coordinate transformation is performed based on vector control theory. The target operating point for vector control is a state where the secondary magnetic flux vector coincides with the d-axis.
 以下、図2のモータ制御演算部201と対応させながら説明する。電流指令演算部214は、上位コントローラ110から入力されたトルク指令Tmrefと二次磁束指令φ2refとに基づいて、制御電流指令であるd(磁束)軸電流指令Idrefおよびq(トルク)軸電流指令Iqrefを算出する。Idrefは式(2)で表現され、Iqrefは式(3)で表現される。ここで、Mは相互インダクタンス、L2は二次側自己インダクタンス、pは極対数である。 Hereinafter, description will be made while corresponding to the motor control calculation unit 201 of FIG. Based on the torque command Tmref and the secondary magnetic flux command φ2ref input from the host controller 110, the current command calculation unit 214 controls the d (magnetic flux) axis current command Idref and q (torque) axis current command Iqref which are control current commands. Is calculated. Idref is expressed by equation (2), and Iqref is expressed by equation (3). Here, M is a mutual inductance, L2 is a secondary side self-inductance, and p is the number of pole pairs.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、二次磁束指令φ2refはバッテリ電圧に応じて最適値が変化する。よって直流電圧検出部204から出力された直流電圧203に応じた二次磁束指令φ2refの補正値の算出を行い,その補正値を基にIdref,Iqrefを算出する。 Here, the optimum value of the secondary magnetic flux command φ2ref changes according to the battery voltage. Therefore, the correction value of the secondary magnetic flux command φ2ref corresponding to the DC voltage 203 output from the DC voltage detector 204 is calculated, and Idref and Iqref are calculated based on the correction values.
 モータ電流検出部209は、電流センサ208により取得したモータ駆動電流データに基づき、誘導電動機108のU相電流IuとW相電流Iwを検出する。座標変換部223は、α軸からd軸までの位相角θdq(電流位相)に基づいて、d軸(励磁)電流Idとq軸(トルク)電流Iqとを分離生成する。位相角θdqの算出方法については後述する。Idは式(4)で,Iqは式(5)で表現される。 The motor current detection unit 209 detects the U-phase current Iu and the W-phase current Iw of the induction motor 108 based on the motor drive current data acquired by the current sensor 208. The coordinate conversion unit 223 separately generates the d-axis (excitation) current Id and the q-axis (torque) current Iq based on the phase angle θdq (current phase) from the α axis to the d axis. A method for calculating the phase angle θdq will be described later. Id is expressed by equation (4), and Iq is expressed by equation (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 電流FB制御演算部225は、d軸電流指令IdRefとd軸電流Idとが一致するようにd軸電圧指令VdRefを補正する。電流FB制御演算部225は、同様に、q軸電流指令IqRefとq軸電流Iqとが一致するように,q軸電圧指令VqRefを補正する。これらの電圧指令値がFB電圧指令226として出力される。また,電圧FF制御演算部227により一次抵抗の電圧降下と誘起電圧を補償するフィードフォワード制御が行われ、FF電圧指令228として出力される。モータに印加される電圧指令は,このFB電圧指令及びFF電圧指令の和となり,式(6)及び式(7)のように表現される。式(6)、(7)において、L1は一次側自己インダクタンス、σL1は一次漏れインダクタンス、Kpは比例ゲイン、Kiは積分ゲインである。 The current FB control calculation unit 225 corrects the d-axis voltage command VdRef so that the d-axis current command IdRef and the d-axis current Id match. Similarly, the current FB control calculation unit 225 corrects the q-axis voltage command VqRef so that the q-axis current command IqRef and the q-axis current Iq match. These voltage command values are output as the FB voltage command 226. Further, the voltage FF control calculation unit 227 performs feedforward control that compensates for the voltage drop and induced voltage of the primary resistance, and outputs the FF voltage command 228. The voltage command applied to the motor is the sum of the FB voltage command and the FF voltage command, and is expressed as Equation (6) and Equation (7). In equations (6) and (7), L1 is the primary self-inductance, σL1 is the primary leakage inductance, Kp is the proportional gain, and Ki is the integral gain.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 dq軸電圧指令VdRef,VqRefは、座標変換部231において三相電圧指令VuRef,VvRef,VwRefへと変換され、電圧指令230として出力される。Vurefは式(8)で表現され、Vvrefは式(9)で表現され、Vwrefは式(10)で表現される。 The dq axis voltage commands VdRef and VqRef are converted into three-phase voltage commands VuRef, VvRef and VwRef by the coordinate conversion unit 231 and output as the voltage command 230. Vuref is expressed by equation (8), Vvref is expressed by equation (9), and Vwref is expressed by equation (10).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 PWMデューティ算出部233は、三相電圧指令VuRef,VvRef,VwRefに基づいて、インバータ107内のスイッチング素子に対するゲート指令234を生成し、それをインバータ107へ出力する。なお、このPWM制御は周知の技術であるので、ここではその詳細な説明については省略する。 The PWM duty calculator 233 generates a gate command 234 for the switching element in the inverter 107 based on the three-phase voltage commands VuRef, VvRef, and VwRef, and outputs it to the inverter 107. Since this PWM control is a well-known technique, its detailed description is omitted here.
 誘導電動機108にはモータ回転センサ205が備えられている。モータ回転数算出部207は、モータ回転センサ205により取得したデータに基づきモータ回転数ωrを算出する。すべり周波数演算部217は、d軸(励磁)電流指令IdRefとq軸(トルク)電流指令IqRefとに基づいて、すべり周波数基準ωs*を算出する。ωs*は式(11)で表現される。式(11)において、R2は2次抵抗、L2は2次側自己インダクタンスである。 The induction motor 108 is provided with a motor rotation sensor 205. The motor rotation number calculation unit 207 calculates the motor rotation number ωr based on the data acquired by the motor rotation sensor 205. The slip frequency calculation unit 217 calculates the slip frequency reference ωs * based on the d-axis (excitation) current command IdRef and the q-axis (torque) current command IqRef. ωs * is expressed by equation (11). In Expression (11), R2 is a secondary resistance, and L2 is a secondary self-inductance.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 一次周波数演算部219は、インバータ107の出力周波数であって電動機一次周波数であるω1を算出する。ω1は次式(12)で表現される。すなわち、インバータ107の出力周波数が式(12)で算出されるω1に設定される。そして、一次周波数ω1を積分演算部220で積分することにより、図3に示す静止座標系α軸から回転座標系のd軸までの位相角θdq(電流位相)が算出される。 The primary frequency calculation unit 219 calculates ω1 which is the output frequency of the inverter 107 and is the motor primary frequency. ω1 is expressed by the following equation (12). That is, the output frequency of the inverter 107 is set to ω1 calculated by the equation (12). Then, by integrating the primary frequency ω1 by the integration calculation unit 220, the phase angle θdq (current phase) from the stationary coordinate system α-axis to the d-axis of the rotating coordinate system shown in FIG. 3 is calculated.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ところで、前述したように、誘導電動機108のトルクTmは、電動機定数に誤差が無く、二次鎖交磁束がd軸に一致した目標動作点において、式(1)により表される。ここで、mは変換係数、Ppは極対数、Mは相互インダクタンス、l2は2次側漏れインダクタンス、φ'は二次鎖交磁束、Iqはq軸電流を示す。 Incidentally, as described above, the torque Tm of the induction motor 108 is expressed by the equation (1) at the target operating point where the motor constant has no error and the secondary flux linkage coincides with the d-axis. Here, m is a conversion coefficient, Pp is the number of pole pairs, M is a mutual inductance, l2 is a secondary leakage inductance, φ 'is a secondary linkage flux, and Iq is a q-axis current.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 二次鎖交磁束φ'はd軸に一致しているので、座標変換部223から出力されたIdを用いて式(13)で示される。よって、式(1)は次式(14)のように変換できる。 Since the secondary interlinkage magnetic flux φ ′ coincides with the d axis, it is expressed by Expression (13) using Id output from the coordinate conversion unit 223. Therefore, the equation (1) can be converted into the following equation (14).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
(従来の問題点)
 前述したように、Id・Iqは電流検出器208より検出された三相電流値をモータコントローラ108に取り込み、その三相電流値を位相情報(位相角θdq)に基づいて変換することで算出される。モータコントローラ108はデジタル制御により駆動するため、三相電流値の取り込みと電流変換処理を同時に行うことはできず、電流検出の後に変換処理を行いId・Iqを確定させ、そのId・Iqに基づいてトルク推定値算出を行うまでにタイムラグが生じることとなる。
(Conventional problem)
As described above, Id · Iq is calculated by taking the three-phase current value detected by the current detector 208 into the motor controller 108 and converting the three-phase current value based on the phase information (phase angle θdq). The Since the motor controller 108 is driven by digital control, it is not possible to simultaneously capture a three-phase current value and perform current conversion processing. After current detection, conversion processing is performed to determine Id / Iq, and based on the Id / Iq Thus, a time lag occurs until the torque estimated value is calculated.
 ところで、実際に誘導電動機108に流れる電流の位相はこのタイムラグの間にも変化しているので、算出されたId・Iqと実際のId・Iqとの間にずれが生じるという問題が発生する。 Incidentally, since the phase of the current that actually flows through the induction motor 108 also changes during this time lag, there arises a problem that a deviation occurs between the calculated Id · Iq and the actual Id · Iq.
(本実施の形態におけるトルク推定)
 図4は、電流検出からId・Iq算出まで(すなわちトルク推定値算出まで)のタイムラグの間に、電流位相がΔθだけ変化した場合の関係を示す図である。図4に示すように、三相電流検出値は、ベクトル制御理論に基づき座標変換を施すと、Id及びIqを成分とする一次電流ベクトルI1として表現される。そのとき、一次電流ベクトルI1は回転座標系d軸に対し位相角θを有し、I1とId、Iqとの間には次式(15)、(16)に示すような関係が成立する。
(Torque estimation in the present embodiment)
FIG. 4 is a diagram showing a relationship when the current phase changes by Δθ during the time lag from the current detection to the calculation of Id · Iq (that is, the calculation of the estimated torque value). As shown in FIG. 4, the three-phase current detection value is expressed as a primary current vector I1 having Id and Iq as components when coordinate transformation is performed based on the vector control theory. At this time, the primary current vector I1 has a phase angle θ with respect to the rotating coordinate system d-axis, and the relationships shown in the following equations (15) and (16) are established between I1 and Id and Iq.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、検出データに基づく一次電流ベクトル検出値I1とタイムラグ後の値である真値I1'との間には、Δθだけの位相のずれがある。そのため、位相角θを用いるとId', Iq'は位相ずれΔθを用いて次式(17)、(18)のように表現できる。 Here, there is a phase shift of Δθ between the primary current vector detection value I1 based on the detection data and the true value I1 ′ that is the value after the time lag. Therefore, if the phase angle θ is used, Id ′ and qIq ′ can be expressed as in the following equations (17) and (18) using the phase shift Δθ.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 位相ずれΔθが非常に小さい値であると仮定すると、式(17)、(18)は次式(19)、(20)のように近似できる。 Assuming that the phase shift Δθ is a very small value, the equations (17) and (18) can be approximated as the following equations (19) and (20).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 よって、上述したトルク推定式(14)は次式(21)のように補正される。 Therefore, the torque estimation formula (14) described above is corrected as the following formula (21).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、電流位相は一次周波数ω1で変化するので、電流位相のずれΔθもω1に比例する。よって、位相ずれΔθは次式(22)のように表現できる。 Here, since the current phase changes at the primary frequency ω1, the current phase shift Δθ is also proportional to ω1. Therefore, the phase shift Δθ can be expressed as the following equation (22).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 式(22)に含まれる係数C0、C1はモータ駆動システム固有の定数であり、例えば、実測によって決定し、図2のトルク推定部211に予め記憶されている。トルク推定部211は、一次周波数演算部219で算出された一次周波数ω1と式(22)とから位相ずれΔθを算出し、その算出されたΔθと座標変換部223からのId、Iqとに基づいて式(21)に示す補正されたトルク推定値Tmを算出する。算出されたトルク推定値Tmは上位コントローラ110に出力される。 The coefficients C0 and C1 included in the equation (22) are constants specific to the motor drive system, and are determined by actual measurement, for example, and stored in advance in the torque estimation unit 211 of FIG. The torque estimation unit 211 calculates a phase shift Δθ from the primary frequency ω1 calculated by the primary frequency calculation unit 219 and the equation (22), and based on the calculated Δθ and Id and Iq from the coordinate conversion unit 223. The corrected torque estimated value Tm shown in equation (21) is calculated. The calculated estimated torque value Tm is output to the host controller 110.
 上述した例では、誘導電動機108の駆動状態(力行駆動、回生駆動)によらず所定のC0、C1により位相ずれΔθを算出するようにしているが、誘導電動機108が力行駆動であるか回生駆動であるかによってC0、C1の値が異なる場合がある。そこで、図7に示すようにトルク推定部211にトルク指令Tmrefが入力される構成とし、力行、回生に応じたトルク推定を行うようにする。 In the example described above, the phase shift Δθ is calculated based on predetermined C0 and C1 regardless of the driving state of the induction motor 108 (power running drive, regenerative drive), but whether the induction motor 108 is power running drive or regenerative drive. The values of C0 and C1 may differ depending on whether or not. Therefore, as shown in FIG. 7, a torque command Tmref is input to the torque estimation unit 211, and torque estimation according to power running and regeneration is performed.
 図7では、記憶部301に力行駆動用のC01、C11が記憶され、記憶部302に回生駆動用のC02、C12が記憶されている。切換制御部304は、入力されるトルク指令Tmrefが正(力行駆動)の場合には切換部303を記憶部301へ接続し、トルク指令Tmrefが負(回生駆動)の場合には切換部303を記憶部302へ接続する。演算部305は、力行駆動時にはC0=C01、C1=C11を用いてΔθを算出し、そのΔθに基づいてトルク推定値Tmを演算する。また、力行駆動の場合には力行駆動用のC0=C02、C1=C12を用いてΔθを算出し、そのΔθに基づいてトルク推定値Tmを演算する。このような構成とすることで、誘導電動機108の駆動状態に応じたより高精度なトルク推定値を得ることができる。 7, C01 and C11 for power driving are stored in the storage unit 301, and C02 and C12 for regenerative driving are stored in the storage unit 302. The switching control unit 304 connects the switching unit 303 to the storage unit 301 when the input torque command Tmref is positive (powering driving), and switches the switching unit 303 when the torque command Tmref is negative (regenerative driving). Connect to the storage unit 302. The calculation unit 305 calculates Δθ using C0 = C01 and C1 = C11 during powering driving, and calculates a torque estimated value Tm based on the Δθ. In the case of powering driving, Δθ is calculated using C0 = C02 and C1 = C12 for powering driving, and an estimated torque value Tm is calculated based on Δθ. With such a configuration, it is possible to obtain a more accurate estimated torque value according to the driving state of the induction motor 108.
 なお、力行駆動であるか回生駆動であるかによらず同一のC0、C1を用いてΔθを算出するようにしても良い。 It should be noted that Δθ may be calculated using the same C0 and C1 regardless of whether it is power running drive or regenerative drive.
 また、電流位相のずれΔθを、一次周波数ω1に応じて変化させるのではなく定数としても良い。例えば、定数として一次周波数ω1の平均的な値を採用する。この場合、図1に示すような、トルク推定部211へのω1の入力は必要ない。力行時と回生時とで位相補償量を変える場合には、図7の記憶部301に力行時の位相補償量が記憶され、記憶部302に回生時の位相補償量が記憶される。 The current phase shift Δθ may be a constant instead of changing according to the primary frequency ω1. For example, an average value of the primary frequency ω1 is adopted as a constant. In this case, the input of ω1 to the torque estimation unit 211 as shown in FIG. 1 is not necessary. When the phase compensation amount is changed between power running and regeneration, the phase compensation amount during power running is stored in the storage unit 301 of FIG. 7, and the phase compensation amount during regeneration is stored in the storage unit 302.
 図5,6は、モータトルク実測値とモータ制御演算部201で算出されるトルク推定値とを比較したものである。図5は従来のトルク推定値(式(14)で算出したトルク推定値)の場合を示し、図6は本実施の形態のトルク推定値の場合を示す。なお、ここでは、モータ回転数ωrを一定に保ち、モータトルク指令値をランプ状に上昇させるようにした。 5 and 6 are comparisons between the actual measured motor torque value and the estimated torque value calculated by the motor control calculation unit 201. FIG. FIG. 5 shows a case of a conventional torque estimated value (torque estimated value calculated by Expression (14)), and FIG. 6 shows a case of the torque estimated value of the present embodiment. Here, the motor rotation speed ωr is kept constant, and the motor torque command value is increased in a ramp shape.
 いずれの場合も、モータトルク指令の上昇に伴いトルク推定値とトルク実測値との間にずれが生じている。これは、モータトルク指令の上昇により(11)のq軸電流指令IqRefが上昇すると、すべり周波数基準ωs*が増加する。モータ回転数ωrは一定なので、式(12)で算出される一次周波数ω1も増加することになる。トルク推定値とトルク実測値と間のずれ量は一次周波数ω1の大きさに依存するので、モータトルク指令が大きくなるほどずれ量が大きくなる。 In any case, there is a difference between the estimated torque value and the actually measured torque value as the motor torque command increases. This is because the slip frequency reference ωs * increases when the q-axis current command IqRef of (11) increases due to the increase of the motor torque command. Since the motor rotation speed ωr is constant, the primary frequency ω1 calculated by Expression (12) also increases. Since the deviation amount between the estimated torque value and the actually measured torque value depends on the magnitude of the primary frequency ω1, the deviation amount increases as the motor torque command increases.
 図6に示す本実施の形態では、式(21)に示すように、タイムラグに起因する位相ずれΔθに応じてトルク推定値を補正しているので、従来の場合(図5)に比べてトルク推定値とトルク実測値と間のずれ量が小さくなっていることが分かる。 In the present embodiment shown in FIG. 6, since the estimated torque value is corrected according to the phase shift Δθ caused by the time lag as shown in the equation (21), the torque is compared with the conventional case (FIG. 5). It can be seen that the amount of deviation between the estimated value and the actually measured torque value is small.
(1)このように、本実施の形態のモータコントローラ109では、駆動周波数であるインバータ107の出力周波数(上記一次周波数ω1)が一次周波数演算部219で設定される。トルク推定部211は、モータ電流検出部209による電流検出からトルク推定までの電流位相変化を補正する位相補償量(例えば式(22)で算出される位相ずれΔθ)と、d軸電流値およびq軸電流値とに基づいて、誘導電動機108の出力トルクTmを推定する。その結果、電流検出からトルク推定値演算までのタイムラグのトルク推定への影響が低減され、トルク推定精度の向上を図ることができる。 (1) As described above, in the motor controller 109 according to the present embodiment, the output frequency of the inverter 107 (the primary frequency ω1), which is the drive frequency, is set by the primary frequency calculation unit 219. The torque estimator 211 includes a phase compensation amount (for example, a phase shift Δθ calculated by the equation (22)) for correcting a current phase change from current detection by the motor current detector 209 to torque estimation, a d-axis current value, and q Based on the shaft current value, the output torque Tm of the induction motor 108 is estimated. As a result, the influence of the time lag from the current detection to the torque estimation value calculation on the torque estimation is reduced, and the torque estimation accuracy can be improved.
 上位コントローラ110は、モータコントローラ109で算出されたトルク推定値に基づいて、適切なトルク指令Tmrefおよび二次磁束指令φ2refをモータコントローラ109に入力している。そのため、モータコントローラ109から入力されるトルク推定値の精度向上により、誘導電動機108の駆動状況に応じた適切なトルク指令Tmrefおよび二次磁束指令φ2refをモータコントローラ109に与えることができる。 The host controller 110 inputs an appropriate torque command Tmref and secondary magnetic flux command φ2ref to the motor controller 109 based on the estimated torque value calculated by the motor controller 109. Therefore, by improving the accuracy of the estimated torque value input from the motor controller 109, an appropriate torque command Tmref and secondary magnetic flux command φ2ref corresponding to the driving status of the induction motor 108 can be given to the motor controller 109.
(2)位相補償量としての位相ずれΔθを、上述の式(22)で算出されるように一次周波数ω1の大きさに応じて変化させるのが好ましい。その結果、時々刻々と変化する一次周波数ω1に応じて位相補償量が変化するので、広範なモータ駆動範囲においてトルク推定値を精度良く行うことができる。また、位相補償量を上述のように定数としても良い。 (2) It is preferable to change the phase shift Δθ as the phase compensation amount in accordance with the magnitude of the primary frequency ω1 as calculated by the above equation (22). As a result, the amount of phase compensation changes in accordance with the primary frequency ω1 that changes from moment to moment, so that a torque estimation value can be accurately performed in a wide motor drive range. Further, the phase compensation amount may be a constant as described above.
(3)切換制御部304は、入力されたトルク指令Tmrefに基づいて誘導電動機108の力行および回生を判定する。切換制御部304によって力行と判定されると、トルク推定部211の演算部305は、記憶部301の値C01、C11用いて力行用位相補償量Δθを算出し、その力行用位相補償量Δθに基づいてトルク推定値を算出する。一方、切換制御部304によって回生と判定されると、トルク推定部211の演算部305は、記憶部301の値C02、C12用いて回生用位相補償量Δθを算出し、その回生用位相補償量Δθに基づいてトルク推定値を算出する。 (3) The switching control unit 304 determines power running and regeneration of the induction motor 108 based on the input torque command Tmref. When the switching control unit 304 determines that the power running, the calculation unit 305 of the torque estimation unit 211 calculates the power running phase compensation amount Δθ using the values C01 and C11 of the storage unit 301, and sets the power running phase compensation amount Δθ to the power running phase compensation amount Δθ. Based on this, an estimated torque value is calculated. On the other hand, when the switching control unit 304 determines that regeneration is performed, the calculation unit 305 of the torque estimation unit 211 calculates the regeneration phase compensation amount Δθ using the values C02 and C12 of the storage unit 301, and the regeneration phase compensation amount. An estimated torque value is calculated based on Δθ.
 また、位相補償量を定数とする場合、例えば、一次周波数ω1の平均的な値を式(22)のω1とする場合も、力行時と回生時とでC0,C1の値を変更することで、力行時用の定数値および回生時用の定数値が得られる。もちろん、式(22)でω1=0とした場合のΔθを位相補償量としても良い。 In addition, when the phase compensation amount is a constant, for example, when the average value of the primary frequency ω1 is ω1 in Expression (22), the values of C0 and C1 are changed between power running and regeneration. A constant value for power running and a constant value for regeneration are obtained. Of course, Δθ when ω1 = 0 in the equation (22) may be used as the phase compensation amount.
 その結果、誘導電動機108の駆動状態(力行、回生)に応じた、より正確なトルク推定値を算出することができる。 As a result, it is possible to calculate a more accurate estimated torque value according to the driving state (power running, regeneration) of the induction motor 108.
 なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。また、上述の実施形態では電気自動車を例に説明したが、例えば、ハイブリッド自動車のような電動車両にも適用することができる。 Note that the above description is merely an example, and when interpreting the invention, there is no limitation or restriction on the correspondence between the items described in the above embodiment and the items described in the claims. In the above-described embodiment, an electric vehicle has been described as an example, but the present invention can also be applied to an electric vehicle such as a hybrid vehicle.
 101:電源部、102:モータ駆動部、107:インバータ、108:誘導電動機、109:モータコントローラ、110:上位コントローラ、209:モータ電流検出部、211:トルク推定部、214:電流指令演算部、219:一次周波数演算部、223,230:座標変換部、301,302:記憶部、303:切換部、304:切換制御部、305:演算部 101: power supply unit, 102: motor drive unit, 107: inverter, 108: induction motor, 109: motor controller, 110: host controller, 209: motor current detection unit, 211: torque estimation unit, 214: current command calculation unit, 219: primary frequency calculation unit, 223, 230: coordinate conversion unit, 301, 302: storage unit, 303: switching unit, 304: switching control unit, 305: calculation unit

Claims (5)

  1.  上位コントローラから入力されたトルク指令および二次磁束指令に基づく制御信号を、車両駆動用誘導電動機を高周波駆動するインバータへ出力する制御装置であって、
     前記誘導電動機の三相電流値を検出する電流値検出部と、
     前記検出された三相電流値をd軸電流値およびq軸電流値に変換する変換部と、
     前記誘導電動機の出力トルクを推定するトルク推定部と、を備え、
     前記トルク推定部は、前記電流値検出部による電流検出からトルク推定までの電流位相変化を補正する位相補償量と、前記d軸電流値およびq軸電流値とに基づいて、前記出力トルクを推定することを特徴とする制御装置。
    A control device that outputs a control signal based on a torque command and a secondary magnetic flux command input from a host controller to an inverter that drives a vehicle drive induction motor at a high frequency,
    A current value detector for detecting a three-phase current value of the induction motor;
    A converter that converts the detected three-phase current value into a d-axis current value and a q-axis current value;
    A torque estimation unit for estimating the output torque of the induction motor,
    The torque estimation unit estimates the output torque based on a phase compensation amount for correcting a current phase change from current detection to torque estimation by the current value detection unit, and the d-axis current value and the q-axis current value. A control device.
  2.  請求項1に記載の制御装置において、
     前記誘導電動機の回転数に基づいて前記インバータの駆動周波数を設定する駆動周波数設定部を備え、
     前記トルク推定部は、前記駆動周波数に基づいて前記d軸電流値およびq軸電流値に対する前記位相補償量を算出し、算出された該位相補償量と前記d軸電流値およびq軸電流値とに基づいて前記出力トルクを推定することを特徴とする制御装置。
    The control device according to claim 1,
    A drive frequency setting unit for setting the drive frequency of the inverter based on the number of rotations of the induction motor;
    The torque estimation unit calculates the phase compensation amount for the d-axis current value and the q-axis current value based on the drive frequency, and calculates the phase compensation amount, the d-axis current value, and the q-axis current value, A control device that estimates the output torque based on
  3.  請求項2に記載の制御装置において、
     前記トルク指令に基づいて誘導電動機の力行および回生を判定する判定部を備え、
     前記トルク推定部は、前記判定部により力行と判定された場合には力行時の前記電流位相変化を補正する第1の位相補償量を算出し、前記判定部により回生と判定された場合には回生時の前記電流位相変化を補正する第2の位相補償量を算出することを特徴とする制御装置。
    The control device according to claim 2,
    A determination unit that determines power running and regeneration of the induction motor based on the torque command;
    The torque estimating unit calculates a first phase compensation amount for correcting the current phase change during powering when the determination unit determines that the power running, and when the determination unit determines regeneration, A control device that calculates a second phase compensation amount for correcting the current phase change during regeneration.
  4.  請求項1に記載の制御装置において、
     前記位相補償量として一定の値が予め記憶された記憶部を備え、
     前記トルク推定部は、前記記憶部に記憶された前記位相補償量と、前記d軸電流値およびq軸電流値とに基づいて前記出力トルクを推定することを特徴とする制御装置。
    The control device according to claim 1,
    A storage unit in which a constant value is stored in advance as the phase compensation amount;
    The torque estimation unit estimates the output torque based on the phase compensation amount stored in the storage unit, and the d-axis current value and the q-axis current value.
  5.  請求項4に記載の制御装置において、
     前記トルク指令に基づいて誘導電動機の力行および回生を判定する判定部を備え、
     前記記憶部には、力行時の前記電流位相変化を補正する第1の位相補償量と回生時の前記電流位相変化を補正する第2の位相補償量とが予め記憶され、
     前記トルク推定部は、前記判定部により力行と判定された場合には前記第1の位相補償量と前記d軸電流値およびq軸電流値とに基づいて前記出力トルクを推定し、前記判定部により回生と判定された場合には前記第2の位相補償量と前記d軸電流値およびq軸電流値とに基づいて前記出力トルクを推定することを特徴とする制御装置。
    The control device according to claim 4,
    A determination unit that determines power running and regeneration of the induction motor based on the torque command;
    The storage unit stores in advance a first phase compensation amount for correcting the current phase change during power running and a second phase compensation amount for correcting the current phase change during regeneration,
    The torque estimation unit estimates the output torque based on the first phase compensation amount, the d-axis current value, and the q-axis current value when the determination unit determines that the power running is performed, and the determination unit When the control unit determines that regeneration is performed, the control device estimates the output torque based on the second phase compensation amount, the d-axis current value, and the q-axis current value.
PCT/JP2012/076567 2011-10-27 2012-10-15 Vehicle-driving induction motor controller WO2013061808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236127A JP5731355B2 (en) 2011-10-27 2011-10-27 Control device for induction motor for vehicle drive
JP2011-236127 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013061808A1 true WO2013061808A1 (en) 2013-05-02

Family

ID=48167641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076567 WO2013061808A1 (en) 2011-10-27 2012-10-15 Vehicle-driving induction motor controller

Country Status (2)

Country Link
JP (1) JP5731355B2 (en)
WO (1) WO2013061808A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208138A1 (en) * 2016-02-17 2017-08-23 ALSTOM Transport Technologies Method for estimating a torque of an asynchronous electric machine, a torque controller and an electric vehicle
CN114244228A (en) * 2021-12-14 2022-03-25 北京国家新能源汽车技术创新中心有限公司 Motor controller bus current estimation optimization method, system, storage medium and computer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295183B2 (en) * 2014-11-06 2018-03-14 日立オートモティブシステムズ株式会社 Motor control device
JPWO2017122490A1 (en) * 2016-01-12 2018-08-30 日立オートモティブシステムズ株式会社 Motor control system
JP7318470B2 (en) * 2019-10-03 2023-08-01 株式会社豊田自動織機 Model characteristics calculation device, model characteristics calculation method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298698A (en) * 1994-04-21 1995-11-10 Hitachi Ltd Controller for induction motor
JP2002291298A (en) * 2002-03-25 2002-10-04 Hitachi Ltd Motor controller and controller for electric rolling stock
JP2003219697A (en) * 2002-01-22 2003-07-31 Railway Technical Res Inst Induction motor controller
JP2004112898A (en) * 2002-09-18 2004-04-08 Hitachi Ltd Control method and device for motor in position sensorless

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095105A (en) * 2001-07-23 2002-03-29 Hitachi Ltd Controlling method of regenerative braking and controller for electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298698A (en) * 1994-04-21 1995-11-10 Hitachi Ltd Controller for induction motor
JP2003219697A (en) * 2002-01-22 2003-07-31 Railway Technical Res Inst Induction motor controller
JP2002291298A (en) * 2002-03-25 2002-10-04 Hitachi Ltd Motor controller and controller for electric rolling stock
JP2004112898A (en) * 2002-09-18 2004-04-08 Hitachi Ltd Control method and device for motor in position sensorless

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208138A1 (en) * 2016-02-17 2017-08-23 ALSTOM Transport Technologies Method for estimating a torque of an asynchronous electric machine, a torque controller and an electric vehicle
CN114244228A (en) * 2021-12-14 2022-03-25 北京国家新能源汽车技术创新中心有限公司 Motor controller bus current estimation optimization method, system, storage medium and computer

Also Published As

Publication number Publication date
JP5731355B2 (en) 2015-06-10
JP2013094031A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
US10418929B2 (en) Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
US9350282B2 (en) Motor control device and motor control method
US9312799B2 (en) Motor control device and motor control method
US9419555B2 (en) Synchronous machine control apparatus
US20140225540A1 (en) Control apparatus for ac motor
JP5790123B2 (en) Motor drive control device and motor drive method
JP5731355B2 (en) Control device for induction motor for vehicle drive
JP4912516B2 (en) Power converter
JP5416183B2 (en) Control device for permanent magnet synchronous motor
JP5278326B2 (en) Inverter control device and control method thereof
JP7151872B2 (en) Controller for permanent magnet synchronous machine
JP6784061B2 (en) Vector control compensation method and vector control device for induction motors
JP2009278760A (en) Motor control device and motor control method
JP3795477B2 (en) Motor drive device
JP5397664B2 (en) Motor control device
JP2000037098A (en) Power conversion apparatus using speed sensor-less vector control
JP2003255006A (en) Current sensor fault sensing device for ac motor
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
JP5726273B2 (en) Synchronous machine control device having permanent magnet state estimation function and method thereof
JP5326284B2 (en) Control device for synchronous motor
JP2005160199A (en) Apparatus and method for controlling three-phase ac motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
WO2016199444A1 (en) Power conversion device for induction machine, secondary time constant measurement method and speed control method
JP5456873B1 (en) Synchronous machine controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843688

Country of ref document: EP

Kind code of ref document: A1