WO2013061431A1 - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
WO2013061431A1
WO2013061431A1 PCT/JP2011/074717 JP2011074717W WO2013061431A1 WO 2013061431 A1 WO2013061431 A1 WO 2013061431A1 JP 2011074717 W JP2011074717 W JP 2011074717W WO 2013061431 A1 WO2013061431 A1 WO 2013061431A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
cooling
water
cooling water
Prior art date
Application number
PCT/JP2011/074717
Other languages
French (fr)
Japanese (ja)
Inventor
祥一 桑山
吉原 正朝
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2011/074717 priority Critical patent/WO2013061431A1/en
Publication of WO2013061431A1 publication Critical patent/WO2013061431A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold

Definitions

  • the present invention relates to a cooling apparatus for an internal combustion engine that circulates cooling water in a water-cooled cooling system through operation of a water pump to cool the internal combustion engine.
  • a water-cooled cooling system for cooling an internal combustion engine mounted on a vehicle such as an automobile as a drive source.
  • a cooling system includes a water jacket formed inside the internal combustion engine, a radiator that is a heat exchanger, and a cooling water passage that communicates the water jacket and the radiator.
  • the cooling system is provided with a water pump, and the cooling water filled in the cooling system is forcibly circulated through the operation of the water pump.
  • the cooling water When the cooling water is forcedly circulated, the cooling water whose temperature has been lowered after passing through the radiator flows into the water jacket, and the temperature of the internal combustion engine is lowered through heat exchange with the cooling water. To be cooled.
  • the internal combustion engine can be automatically stopped when the vehicle stops running at an intersection, etc., and the vehicle can be started by automatically starting the internal combustion engine at any time during the automatic stop.
  • a vehicle having a function to be used, that is, a so-called engine automatic stop / start function has been proposed and put into practical use.
  • Patent Document 1 employs an electric type water pump and stops the operation of the water pump when the internal combustion engine is automatically stopped during cold operation when the temperature of the cooling water in the water jacket is low. It has been proposed to let According to this device, a decrease in electromotive force of a battery that supplies electric power to the pump by stopping the operation of the water pump can be suppressed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a cooling device for an internal combustion engine that can suitably improve the fuel efficiency of the internal combustion engine.
  • a cooling device for an internal combustion engine having a water-cooled cooling system includes a water pump that pumps cooling water in the cooling system and that can change the pumping amount of the cooling water, an automatic stop start unit, and a limiting unit.
  • the automatic stop / start unit temporarily automatically stops the internal combustion engine under a predetermined stop condition, and restarts the internal combustion engine under a predetermined restart condition.
  • the limiting unit is configured to supply a cooling water pressure of the water pump during the automatic stop of the internal combustion engine and the water pump during operation after restarting the internal combustion engine, compared to when the temperature is high Limit the amount of cooling water pumped.
  • the cooling water pumping amount of the water pump by reducing the cooling water pumping amount of the water pump, the work amount of the water pump is reduced and the fuel consumption of the internal combustion engine is reduced, or the degree of cooling by the cooling system is reduced and the engine warming is reduced. Since the machine is completed at an early stage, the fuel efficiency of the internal combustion engine is improved.
  • the water pump is operated by the pump operating unit without limiting the cooling water pumping amount during engine operation immediately after the internal combustion engine is started by operating the operation start switch.
  • the water pump is operated by the pump operating unit without limiting the cooling water pumping amount for a predetermined period immediately after the start of the internal combustion engine.
  • a water pump having an input shaft connected to an output shaft of an internal combustion engine via a clutch mechanism and operating by forced rotation of the input shaft is employed.
  • the limiting unit limits the cooling water pumping amount of the water pump by disengaging the output shaft of the internal combustion engine and the input shaft of the water pump by disengaging the clutch mechanism.
  • the clutch mechanism is switched to a connected state every time the internal combustion engine is restarted in a situation where the clutch mechanism is in a non-connected state in order to limit the cooling water pumping amount of the water pump when the internal combustion engine is automatically stopped. Then, since the switching of the operating state of the clutch mechanism is frequently performed, this may reduce the durability of the clutch mechanism.
  • the number of times that the operating state of the clutch mechanism is switched can be extremely reduced, so that the durability of the clutch mechanism can be improved.
  • the cooling water pumping amount of the water pump is limited to “0” by the limiting unit.
  • the work amount of the water pump is set to “0” and the fuel consumption amount of the internal combustion engine is suitable. Therefore, the engine warm-up can be completed earlier by making the degree of cooling by the cooling system extremely small, and the fuel efficiency performance of the internal combustion engine can be improved more suitably.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a cooling device for an internal combustion engine according to an embodiment embodying the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows schematic structure of the vehicle to which the cooling device of this Embodiment is applied.
  • the flowchart which shows the execution procedure of an automatic stop process.
  • the flowchart which shows the execution procedure of a restart process.
  • the flowchart which shows notionally the execution procedure of a pump stop process.
  • the timing chart which shows an example of the execution aspect of a pump stop process.
  • the vehicle 1 is equipped with an internal combustion engine 10 as a drive source.
  • the internal combustion engine 10 is provided with a water cooling type cooling system 18 including a water jacket 11, a radiator 12, cooling water passages 13 and 14, a bypass water passage 15, a cooler water passage 16 and a valve water passage 17.
  • the water jacket 11 is formed in a shape extending inside the internal combustion engine 10.
  • the radiator 12 is a heat exchanger for cooling the cooling water passing through the radiator 12 through heat exchange with the outside air.
  • the cooling water passage 13 is a passage for guiding cooling water flowing out from the water jacket 11 to the radiator 12, and the cooling water passage 14 is a passage for returning the cooling water after passing through the radiator 12 to the water jacket 11.
  • the bypass water passage 15 is a passage that communicates the cooling water passages 13 and 14 so as to bypass the radiator 12.
  • the cooler water channel 16 and the valve water channel 17 will be described later.
  • the cooling system 18 is provided with a water pump 19.
  • a water pump 19 As the water pump 19, an engine drive type driven by the output shaft 10a of the internal combustion engine 10 is employed.
  • An electromagnetically driven clutch mechanism 20 is provided between the input shaft 19 a of the water pump 19 and the output shaft 10 a of the internal combustion engine 10. Then, by bringing the clutch mechanism 20 into a connected state, the output shaft 10a of the internal combustion engine 10 and the input shaft 19a of the water pump 19 are connected, and the water pump 19 is operated to fill the cooling system 18 with cooling. The water is pumped and the cooling water is forcedly circulated in the cooling system 18.
  • the connection between the output shaft 10 a of the internal combustion engine 10 and the input shaft 19 a of the water pump 19 is released, and the operation of the water pump 19 is stopped.
  • the circulation of the cooling water inside is also stopped.
  • the water pump 19 is operated through the operation control of the clutch mechanism 20 to switch between the state in which the cooling water is pumped and the state in which the cooling water is not pumped without being operated. .
  • the cooling system 18 is provided with a thermostat valve 21.
  • the thermostat valve 21 changes its opening according to the temperature of the cooling water that abuts.
  • the passage cross-sectional areas of the cooling water passage 14 and the bypass water passage 15 are changed by changing the opening degree of the thermostat valve 21, thereby adjusting the amount of cooling water flowing into the radiator 12.
  • the internal combustion engine 10 is provided with an EGR device 30 for returning a part of the exhaust gas in the exhaust passage to the intake passage for recirculation.
  • the EGR device 30 includes an EGR passage (not shown) that communicates an exhaust passage and an intake passage of the internal combustion engine 10, an EGR cooler 32 that cools exhaust gas (EGR gas) that passes through the EGR passage, and an EGR passage. And an EGR valve 33 for changing the cross-sectional area of the passage.
  • the cooling system 18 is provided with the cooler water passage 16 that passes through the inside of the EGR cooler 32 and the valve water passage 17 that passes through the inside of the EGR valve 33.
  • the cooler water channel 16 is branched from the cooling water passage 13 and extends in a shape returning to the cooling water passage 14 (specifically, downstream of the thermostat valve 21) after passing through the EGR cooler 32.
  • the valve water passage 17 is branched from the cooling water passage 13 and extends in a shape to return to the cooling water passage 14 (specifically, downstream of the thermostat valve 21) after passing through the inside of the EGR valve 33.
  • the power generated by the internal combustion engine 10 is output from the output shaft 10a of the internal combustion engine 10 to the output shaft 50 via the transmission 40 and the like, and finally transmitted to the wheels.
  • the power generated by the internal combustion engine 10 is also transmitted to the transmission belt 23 via a pulley 22 connected to the output shaft 10a. Then, the other pulleys 24 and 25 are rotated by the power transmitted by the transmission belt 23.
  • the pulley 24 is connected to the input shaft 19 a of the water pump 19 through the clutch mechanism 20.
  • the water pump 19 is driven and operated by the rotation of the pulley 24 when the clutch mechanism 20 is in the connected state, and stops operating without being driven by the pulley 24 when the clutch mechanism 20 is in the disconnected state.
  • the pulley 25 is connected to a motor generator (hereinafter referred to as “M / G”) 26.
  • M / G 26 is driven by the rotational torque transmitted to the pulley 25.
  • the M / G 26 functions as a generator.
  • the M / G 26 is electrically connected to the inverter 27.
  • the inverter 27 is switched so as to charge electric energy from the M / G 26 to the battery 28 by switching.
  • the M / G 26 functions as an electric motor when the internal combustion engine 10 is restarted. At this time, the M / G 26 forcibly rotates (cranks) the output shaft 10a of the internal combustion engine 10 to apply auxiliary torque for starting the internal combustion engine 10 to the output shaft 10a.
  • a starter motor 29 is attached to the internal combustion engine 10.
  • the starter motor 29 is driven.
  • auxiliary torque for starting the internal combustion engine 10 is applied by cranking by the starter motor 29.
  • the senor according to the present embodiment is provided with various sensors.
  • a speed sensor 62 for detecting the traveling speed (vehicle speed SPD) of the vehicle 1 or the temperature THW [en] of the cooling water inside the water jacket 11 is used.
  • a temperature sensor 63 for detecting and a temperature sensor 64 for detecting the temperature THW [egr] of the cooling water passing through the valve water channel 17 are provided.
  • a rotation sensor 65 for detecting the rotation speed of the output shaft 10a of the internal combustion engine 10 (engine rotation speed NE) and the operation start switch 61 operated when starting the internal combustion engine 10 are provided.
  • an accelerator operation amount sensor 66 for detecting the depression amount of an accelerator pedal (not shown), an idle switch 67 for detecting whether or not the accelerator pedal is depressed, and a brake for detecting whether or not a brake pedal (not shown) is depressed.
  • a switch 68 and the like are also provided.
  • the apparatus includes an electronic control unit 60 that includes, for example, a microcomputer.
  • the electronic control device 60 captures output signals of various sensors and executes various arithmetic processes based on the output signals. Based on the calculation results, the electronic control device 60 performs well-known engine control, clutch mechanism 20 operation control, Various controls relating to vehicle control such as control of the inverter 27 are executed.
  • the electronic control device 60 functions as an automatic stop / start unit, a limiting unit, and a pump operating unit.
  • the electronic control unit 60 executes an automatic stop process and a restart process of the internal combustion engine 10 as one of such various controls.
  • FIG. 3 is a flowchart showing the procedure of the automatic stop process
  • FIG. 4 is a flowchart showing the procedure of the restart process.
  • the series of processes shown in these flowcharts is executed by the electronic control unit 60 as an interrupt process for each predetermined period.
  • step S101 the operating states of the vehicle 1 and the internal combustion engine 10 are read through the detection signals of the various sensors.
  • step S102 it is determined from these operating states whether or not an automatic stop condition is satisfied. Specifically, for example, when all of the following [Condition 1] to [Condition 5] are satisfied, it is determined that the automatic stop condition is satisfied.
  • [Condition 1] The accelerator pedal is not depressed (the idle switch 67 is “ON”).
  • [Condition 2] The remaining capacity of the battery 28 is a predetermined amount or more.
  • [Condition 3] The brake pedal is depressed (the brake switch 68 is “ON”).
  • Condition 4 The vehicle 1 is stopped.
  • [Condition 5] After all of [Condition 1] to [Condition 4] are satisfied, there is no history that the internal combustion engine 10 has been automatically stopped.
  • step S102 NO
  • the automatic stop condition is not satisfied, and the internal combustion engine 10 is automatically stopped. Assuming that there is no condition, this processing is temporarily terminated.
  • step S102 stop processing is executed (S103). Specifically, the operation of the internal combustion engine 10 is stopped, for example, by stopping the fuel supply to the internal combustion engine 10. Thereafter, this process is temporarily terminated.
  • step S201 the operating states of the vehicle 1 and the internal combustion engine 10 are read through the detection signals of the various sensors.
  • step S202 it is determined whether or not the restart condition is satisfied from these operating states. Specifically, the restart condition is satisfied when one of the above [Condition 1] to [Condition 4] is not satisfied under the condition that the engine is stopped by the automatic stop processing described above. It is judged.
  • step S202 when any one of [Condition 1] to [Condition 4] is not satisfied in the automatic stop state of the internal combustion engine 10 (step S202: YES), the start process is started assuming that the restart condition is satisfied. (Step S203). More specifically, the M / G 26 is driven to execute the cranking, and well-known fuel injection control and ignition timing control are executed to restart the internal combustion engine 10. Thereafter, this process is temporarily terminated.
  • the electronic control unit 60 executes a process (pump stop process) for stopping the operation of the water pump 19 when the temperature of the cooling water is low as one of various controls.
  • the series of processes shown in the flowchart of FIG. 5 conceptually shows the execution procedure of the pump stop process, and the actual process is executed by the electronic control unit 60 as an interrupt process at predetermined intervals.
  • step S301 when the internal combustion engine 10 is started by the operation of the operation start switch 61 by an occupant, first, as shown in FIG. 5, the clutch mechanism 20 is brought into a connected state and the water pump 19 is operated (step S301). ). Thereafter, the operation of the water pump 19 is continued over a period until the estimated values of the cooling water temperature (estimated water temperatures VT [en], VT [egr]) are calculated (step S302: NO). .
  • the estimated water temperatures VT [en] and VT [egr] immediately after the internal combustion engine 10 is started are calculated based on the cooling water temperature THW [enn] when both [Condition 6] and [Condition 7] below are satisfied.
  • the temperature THW [en] is detected and stored as an estimated value of the cooling water.
  • the cooling water temperatures THW [en] and THW [egr] detected by the temperature sensors 63 and 64 after the internal combustion engine 10 is started are changed. When this condition is satisfied, it is determined that the water pump 19 is operating normally.
  • [Condition 7] The difference between the cooling water temperatures THW [en] and THW [egr] detected by the temperature sensors 63 and 64 is reduced. By satisfying this condition, unnecessary variations in the cooling water temperature in the cooling system 18 (specifically, in the water jacket 11 and the valve water passage 17) are suppressed, and the temperature sensors 63 and 64 perform this processing. It is determined that a useful temperature can be properly detected.
  • the clutch mechanism 20 is engaged for a predetermined period thereafter and the water pump 19 is operated. Calculation of VT [en] and VT [egr] is started.
  • the estimated water temperature VT [en] is set to a predetermined temperature TL (40 ° C. in the present embodiment). It is determined whether or not it is less than (step S303).
  • step S303: YES If the estimated water temperature VT [en] is lower than the predetermined temperature TL (step S303: YES), the operating state of the clutch mechanism 20 is switched to the non-connected state, and the operation of the water pump 19 is stopped (step). S304). At this time, since the temperature of the internal combustion engine 10 is low, it is desirable to raise the temperature early, and the operation of the water pump 19 is stopped to stop the cooling by the cooling system 18.
  • the clutch mechanism 20 is maintained in a disconnected state during a period in which the estimated water temperatures VT [en] and VT [egr] are both lower than a predetermined temperature TH (eg, 100 ° C.) (step S304: NO).
  • a predetermined temperature TH eg, 100 ° C.
  • the water pump 19 is maintained in the operation stopped state (step S304).
  • the pumping amount of the cooling water by the water pump 19 is set to “0” during the automatic stop of the internal combustion engine 10, and the water pump 19 also operates during the operation after the restart of the internal combustion engine 10.
  • the pumping amount of the cooling water is set to “0”.
  • the estimated water temperatures VT [en] and VT [egr] are calculated as follows.
  • the estimated water temperature VT [en] a value corresponding to the temperature of the cooling water at the highest temperature inside the water jacket 11 is calculated.
  • the endothermic amount at that time is calculated based on the engine speed NE and the fuel injection amount Q, and the heat release amount is calculated based on the coolant temperature THW [en] and the estimated water temperature VT [ en].
  • a temperature change amount ⁇ T1 is calculated based on the difference between the heat absorption amount and the heat dissipation amount (heat absorption amount ⁇ heat dissipation amount), and at this time, the estimated water temperature VT [en] stored in the electronic control unit 60 is set to the above temperature.
  • a new estimated water temperature VT [en] is calculated.
  • the relationship between the heat absorption amount, the engine rotational speed NE, and the fuel injection amount Q, the relationship between the heat dissipation amount, the cooling water temperature THW [en], and the estimated water temperature VT [en], as well as the heat absorption amount and the discharge amount As a relationship between the heat amount and the temperature change amount ⁇ T1, a relationship in which an appropriate value is calculated as the estimated water temperature VT [en] is obtained in advance based on the results of experiments and simulations. It is remembered.
  • a value corresponding to the temperature of the cooling water in the EGR cooler 32 is calculated as the estimated water temperature VT [egr].
  • the endothermic amount at that time is calculated based on the engine rotational speed NE, the fuel injection amount Q, and the estimated water temperature VT [egr].
  • a temperature change amount ⁇ T2 is calculated based on a difference from a predetermined constant value.
  • a new estimated water temperature VT [egr] is calculated by adding the temperature change amount ⁇ T2 to the estimated water temperature VT [egr] stored in the electronic control unit 60 at this time.
  • a relationship and a value that allow an appropriate value to be calculated as the estimated water temperature VT [egr] are obtained in advance based on the results of experiments and simulations, and are stored in the electronic control unit 60.
  • step S305: YES when the operation of the vehicle 1 is continued and one of the updated estimated water temperatures VT [en] and VT [egr] becomes equal to or higher than the predetermined temperature TH (step S305: YES), the clutch mechanism 20 After the operating state is switched to the connected state and the operation of the water pump 19 is resumed (step S306), this process is terminated. At this time, assuming that the temperature of the cooling water has risen to such an extent that there is a fear of boiling of the cooling water in the water jacket 11 or the cooler water channel 16, the operation of the water pump 19 is started to lower the temperature. .
  • step S302 YES
  • step S303 NO
  • the clutch mechanism 20 is maintained in the connected state, and the water pump 19 is continuously operated. At this time, the temperature of the internal combustion engine 10 is relatively high, and it is not necessary to positively increase the temperature, and the operation of the water pump 19 is continued.
  • FIG. 6 shows an example of the execution mode of the pump stop process.
  • the work amount of the water pump 19 is reduced and the fuel consumption of the internal combustion engine 10 is reduced. Since the degree of cooling by 18 is reduced and the warm-up of the internal combustion engine 10 is completed at an early stage, the fuel efficiency of the internal combustion engine 10 can be improved.
  • the cooling water pumping amount of the water pump 19 during the automatic stop of the internal combustion engine 10 is In addition to being set to “0”, the cooling water pumping amount of the water pump 19 during operation after restarting the internal combustion engine 10 is set to “0” (time t3 to t4 in FIG. 6).
  • the internal combustion engine 10 when the internal combustion engine 10 is automatically stopped or operated after restarting during cold operation where the temperature of the cooling water is low, that is, when cooling by the cooling system 18 is not necessary, the work load of the water pump 19 is increased.
  • the fuel consumption of the internal combustion engine 10 can be reduced by setting “0” to “0”.
  • the degree of cooling by the cooling system 18 can be made extremely small, and the warm-up of the internal combustion engine 10 can be completed early. Therefore, the fuel efficiency performance of the internal combustion engine 10 can be preferably improved.
  • the pumping amount of the cooling water by the water pump 19 is set to “0”, compared with an apparatus in which a small amount of cooling water is pumped and circulated in the cooling system 18.
  • the fuel consumption of the internal combustion engine 10 can be further reduced, and the degree of cooling by the cooling system 18 can be made extremely small, so that the warm-up of the internal combustion engine 10 can be completed earlier.
  • the water pump 19 is operated regardless of the temperature of the cooling water for a predetermined period (time t1 to t2 in FIG. 6) immediately after the start of the internal combustion engine 10 by the operation of the operation start switch 61.
  • the water pump 19 pumps cooling water. Therefore, unnecessary variations in the cooling water temperature inside the cooling system 18 are eliminated by circulating the cooling water inside the cooling system 18 (specifically, inside the water jacket 11 and inside the valve water channel 17) over a predetermined period.
  • the cooling water temperature can be detected by the temperature sensors 63 and 64. Therefore, it is possible to appropriately detect a temperature useful as the temperature of the cooling water in the cooling system 18 when the internal combustion engine 10 is started by operating the operation start switch 61.
  • the water pump 19 is operated by forced rotation of the input shaft 19a, and the input shaft 19a is connected to the output shaft 10a of the internal combustion engine 10 via the clutch mechanism 20. Is adopted. Then, by disengaging the clutch mechanism 20 from the input shaft 19a of the water pump 19 and the output shaft 10a of the internal combustion engine 10, the operation of the water pump 19 is stopped. The pumping amount of the cooling water is set to “0”.
  • the water pump 19 is restarted each time the internal combustion engine 10 is restarted in a situation where the clutch mechanism 20 is in a disconnected state so that the cooling water pumping amount of the water pump 19 is set to “0”.
  • the switching of the operating state of the clutch mechanism 20 is frequently performed (a state indicated by a one-dot chain line in FIG. 6). That is, the clutch mechanism 20 is disconnected when the internal combustion engine 10 is automatically stopped, and the clutch mechanism 20 is repeatedly connected when the internal combustion engine 10 is restarted thereafter. Such repeated switching operation of the clutch mechanism 20 may reduce the durability of the clutch mechanism 20.
  • the clutch mechanism 20 is switched from the non-connected state to the connected state every time the internal combustion engine 10 is restarted. Therefore, the number of times that the operating state of the clutch mechanism 20 is switched can be extremely reduced, and the durability performance of the clutch mechanism 20 can be improved.
  • the circulation mode of the cooling water is better as it is simpler, and the cooling water circulation is continued or the cooling water circulation is stopped. Is desirable.
  • the water pump 19 is maintained in the operation stopped state, so that it is possible to accurately estimate the cooling water temperature.
  • the cooling water pumping amount of the water pump 19 is set to “0”, the fuel consumption amount of the internal combustion engine 10 is compared with a device in which a small amount of cooling water is pumped and circulated in the cooling system 18.
  • the degree of cooling by the cooling system 18 can be made extremely small, and warming up of the internal combustion engine 10 can be completed earlier.
  • the water pump 19 is operated regardless of the temperature of the cooling water over a predetermined period immediately after the start of the internal combustion engine 10 by the operation start switch 61, and the water pump 19 pumps the cooling water. . Therefore, a temperature useful as the temperature of the cooling water in the cooling system 18 when the internal combustion engine 10 is started by operating the operation start switch 61 can be detected appropriately.
  • the method for calculating the estimated value of the cooling water temperature (in the above embodiment, the estimated water temperature VT [en], VT [egr]) can be arbitrarily changed.
  • the parameters used for the calculation engine rotational speed NE, fuel injection amount Q, cooling water temperature THW [en], THW [egr], or the like can be used.
  • a cooling device having a structure in which the input shaft 19a of the water pump 19 is connected to the output shaft 10a of the internal combustion engine 10 via the clutch mechanism 20, but a device provided with a water pump capable of changing the cooling water pumping amount. If there is, the cooling device according to the above embodiment can be applied after the configuration thereof is appropriately changed.
  • a water pump for example, an electric pump capable of changing the cooling water pumping amount by adjusting power supplied from the battery 28, a swash plate pump capable of changing the cooling water pumping amount by changing the angle of the swash plate, and the like. Can be mentioned.
  • the cooling water pumping amount of the water pump 19 may be limited to a smaller amount than when the temperature is high.
  • a predetermined period immediately after the start of the internal combustion engine 10 by the operation of the operation start switch 61 it is limited to setting a period from when the internal combustion engine 10 is started until [Condition 6] and [Condition 7] are both satisfied. Any period can be set. For example, a period from when the internal combustion engine 10 is started by operating the operation start switch 61 until only [condition 7] is satisfied, or a certain time (for example, several tens of seconds or several minutes) is set as the predetermined period. be able to.
  • the process of operating the water pump 19 without depending on the coolant temperature immediately after the internal combustion engine 10 is started by operating the operation start switch 61 may be omitted. That is, immediately after the temperature of the cooling water at the start of the internal combustion engine 10 is low, the cooling water pumping amount of the water pump 19 is set to “0” or compared to when the temperature is high. The cooling water pumping amount may be limited to a small amount.
  • Output shaft 60 ... Electronic control device, 61 ... Operation start switch, 62 ... Speed sensor, 63 ... Temperature sensor, 64 ... Temperature sensor, 65 ... Rotation sensor, 66 ... Accelerator operation amount sensor, 67 ... Idle switch, 68 ... Brake Switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The present invention is provided with a water pump that pumps cooling water in a cooling system, and with which the amount being pumped can be changed. An automatic stopping process, wherein the internal combustion engine is automatically stopped temporarily on the basis of a prescribed stopping condition, and a restarting process, wherein the internal combustion engine is restarted on the basis of a prescribed restarting condition, are executed. When the temperature of the cooling water in the cooling system is low, the amount of cooling water pumped by the water pump while the internal combustion engine is automatically stopped and the amount of cooling water pumped by the water pump during driving after restarting of the internal combustion engine is restricted (t3-t4) to an amount that is less than when the temperature of the cooling water is higher.

Description

内燃機関の冷却装置Cooling device for internal combustion engine
 本発明は、内燃機関を冷却するべくウォータポンプの作動を通じて水冷式の冷却系内に冷却水を循環させる、内燃機関の冷却装置に関するものである。 The present invention relates to a cooling apparatus for an internal combustion engine that circulates cooling water in a water-cooled cooling system through operation of a water pump to cool the internal combustion engine.
 近年、自動車などの車両に駆動源として搭載される内燃機関に同内燃機関を冷却するための水冷式の冷却系を設けることが多用されている。そうした冷却系は、内燃機関の内部に形成されたウォータジャケットと、熱交換器であるラジエータと、それらウォータジャケットおよびラジエータを連通する冷却水通路とを備えている。また冷却系にはウォータポンプが設けられており、ウォータポンプの作動を通じて冷却系の内部に充填された冷却水が強制的に循環される。そして、そうした冷却水の強制循環に際して、ラジエータを通過して温度が低下した冷却水がウォータジャケットに流入し、この冷却水との熱交換を通じて内燃機関の温度が低下するといったように同内燃機関が冷却される。 In recent years, it is often used to provide a water-cooled cooling system for cooling an internal combustion engine mounted on a vehicle such as an automobile as a drive source. Such a cooling system includes a water jacket formed inside the internal combustion engine, a radiator that is a heat exchanger, and a cooling water passage that communicates the water jacket and the radiator. The cooling system is provided with a water pump, and the cooling water filled in the cooling system is forcibly circulated through the operation of the water pump. When the cooling water is forcedly circulated, the cooling water whose temperature has been lowered after passing through the radiator flows into the water jacket, and the temperature of the internal combustion engine is lowered through heat exchange with the cooling water. To be cooled.
 また近年、燃費改善やエミッション低減を図るべく、交差点等で車両が走行停止したときに内燃機関を自動停止するとともに、同自動停止中における任意のタイミングで内燃機関を自動始動して車両を発進可能とさせる機能、いわゆるエンジン自動停止始動機能を有する車両が提案され、実用されている。 In recent years, to improve fuel efficiency and reduce emissions, the internal combustion engine can be automatically stopped when the vehicle stops running at an intersection, etc., and the vehicle can be started by automatically starting the internal combustion engine at any time during the automatic stop. A vehicle having a function to be used, that is, a so-called engine automatic stop / start function has been proposed and put into practical use.
 さらに特許文献1には、ウォータポンプとして電動式のものを採用するとともに、ウォータジャケット内の冷却水の温度が低い冷間運転時において内燃機関が自動停止された場合に、ウォータポンプの作動を停止させることが提案されている。この装置によれば、ウォータポンプの作動停止によって同ポンプに電力を供給するバッテリの起電力の低下が抑えられる。 Further, Patent Document 1 employs an electric type water pump and stops the operation of the water pump when the internal combustion engine is automatically stopped during cold operation when the temperature of the cooling water in the water jacket is low. It has been proposed to let According to this device, a decrease in electromotive force of a battery that supplies electric power to the pump by stopping the operation of the water pump can be suppressed.
特開2006-97529号公報JP 2006-97529 A
 ユーザーによる内燃機関の燃費性能の向上に対する要求は際限がなく、機関システムの開発に際しては常に、さらなる燃費性能の向上が望まれる。 There is no limit to the user's demands for improving the fuel efficiency of an internal combustion engine, and further improvements in fuel efficiency are desired whenever an engine system is developed.
 本発明は、そうした実情に鑑みてなされたものであり、その目的は、内燃機関の燃費性能を好適に向上させることのできる内燃機関の冷却装置を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a cooling device for an internal combustion engine that can suitably improve the fuel efficiency of the internal combustion engine.
 上記目的を達成するため、本発明に従い、水冷式の冷却系を有する内燃機関の冷却装置が提供される。同冷却装置は、冷却系内の冷却水を圧送するウォータポンプであって且つその冷却水の圧送量を変更可能なウォータポンプと、自動停止始動部と、制限部とを備える。自動停止始動部は、所定の停止条件のもとに内燃機関を一時的に自動停止させる一方で所定の再始動条件のもとに内燃機関を再始動させる。制限部は、冷却水の温度が低いときには、同温度が高いときと比較して、内燃機関の自動停止中におけるウォータポンプの冷却水圧送量および同内燃機関の再始動後の運転時におけるウォータポンプの冷却水圧送量を制限する。 In order to achieve the above object, according to the present invention, a cooling device for an internal combustion engine having a water-cooled cooling system is provided. The cooling device includes a water pump that pumps cooling water in the cooling system and that can change the pumping amount of the cooling water, an automatic stop start unit, and a limiting unit. The automatic stop / start unit temporarily automatically stops the internal combustion engine under a predetermined stop condition, and restarts the internal combustion engine under a predetermined restart condition. When the temperature of the cooling water is low, the limiting unit is configured to supply a cooling water pressure of the water pump during the automatic stop of the internal combustion engine and the water pump during operation after restarting the internal combustion engine, compared to when the temperature is high Limit the amount of cooling water pumped.
 上記装置では、ウォータポンプの冷却水圧送量を低減することにより、同ウォータポンプの仕事量が少なくなって内燃機関の燃料消費量が少なくなったり、冷却系による冷却の度合いが小さくなって機関暖機が早期に完了したりするために、内燃機関の燃費性能が向上するようになる。 In the above apparatus, by reducing the cooling water pumping amount of the water pump, the work amount of the water pump is reduced and the fuel consumption of the internal combustion engine is reduced, or the degree of cooling by the cooling system is reduced and the engine warming is reduced. Since the machine is completed at an early stage, the fuel efficiency of the internal combustion engine is improved.
 上記装置によれば、冷却水の温度が低い冷間運転時、すなわち冷却系による冷却の必要がないときに、そうしたウォータポンプの冷却水圧送量の制限を内燃機関の自動停止時において実行することに加えて、再始動後の機関運転時においても実行することができるようになる。そのため、内燃機関の燃費性能を好適に向上させることができる。 According to the above apparatus, when the cooling water temperature is low, that is, when there is no need for cooling by the cooling system, such water pump cooling water pumping amount restriction is executed when the internal combustion engine is automatically stopped. In addition to this, it can be executed during engine operation after restart. Therefore, the fuel efficiency performance of the internal combustion engine can be improved suitably.
 本発明の一態様では、ポンプ作動部により、運転開始スイッチの操作による内燃機関の始動直後の機関運転時においては冷却水圧送量の制限を行うことなくウォータポンプが作動される。 In one aspect of the present invention, the water pump is operated by the pump operating unit without limiting the cooling water pumping amount during engine operation immediately after the internal combustion engine is started by operating the operation start switch.
 好ましくは、前記ポンプ作動部により、内燃機関の始動直後の所定期間にわたり冷却水圧送量の制限を行うことなくウォータポンプを作動させる。 Preferably, the water pump is operated by the pump operating unit without limiting the cooling water pumping amount for a predetermined period immediately after the start of the internal combustion engine.
 こうした装置によれば、冷却系内の冷却水を所定期間にわたり循環させることによって同冷却系の内部における冷却水温度の不要なばらつきを解消したうえで該温度の検出を行うことができるようになり、冷却系内の冷却水の温度を適正に検出することが可能になる。 According to such an apparatus, it is possible to detect the temperature after eliminating unnecessary variation in the temperature of the cooling water in the cooling system by circulating the cooling water in the cooling system for a predetermined period. The temperature of the cooling water in the cooling system can be detected appropriately.
 本発明の一態様では、ウォータポンプとして、クラッチ機構を介して内燃機関の出力軸に連結される入力軸を有し、その入力軸の強制回転によって作動するものが採用される。また前記制限部は、クラッチ機構を非連結状態にして内燃機関の出力軸とウォータポンプの入力軸との連結を解除することによって同ウォータポンプの冷却水圧送量を制限する。 In one aspect of the present invention, a water pump having an input shaft connected to an output shaft of an internal combustion engine via a clutch mechanism and operating by forced rotation of the input shaft is employed. The limiting unit limits the cooling water pumping amount of the water pump by disengaging the output shaft of the internal combustion engine and the input shaft of the water pump by disengaging the clutch mechanism.
 ここで仮に、内燃機関の自動停止時においてウォータポンプの冷却水圧送量を制限するべくクラッチ機構が非連結状態になる状況において同内燃機関の再始動の度にクラッチ機構を連結状態に切り換えるようにすると、クラッチ機構の作動状態の切り換えが頻繁に行われるようになるために、これがクラッチ機構の耐久性能を低下させるおそれがある。 Here, suppose that the clutch mechanism is switched to a connected state every time the internal combustion engine is restarted in a situation where the clutch mechanism is in a non-connected state in order to limit the cooling water pumping amount of the water pump when the internal combustion engine is automatically stopped. Then, since the switching of the operating state of the clutch mechanism is frequently performed, this may reduce the durability of the clutch mechanism.
 上記態様によれば、クラッチ機構の作動状態が切り換えられる回数をごく少なくすることができるために、同クラッチ機構の耐久性能の向上を図ることができる。 According to the above aspect, the number of times that the operating state of the clutch mechanism is switched can be extremely reduced, so that the durability of the clutch mechanism can be improved.
 好ましくは、前記制限部によってウォータポンプの冷却水圧送量を「0」に制限する。同装置によれば、冷却水の温度が低い場合における内燃機関の自動停止時や再始動後の機関運転時において、同ウォータポンプの仕事量を「0」にして内燃機関の燃料消費量の好適な低減を図るとともに冷却系による冷却の度合いをごく小さくして機関暖機をより早期に完了させることができ、内燃機関の燃費性能をより好適に向上させることができる。 Preferably, the cooling water pumping amount of the water pump is limited to “0” by the limiting unit. According to this device, when the internal combustion engine is automatically stopped or when the engine is restarted when the temperature of the cooling water is low, the work amount of the water pump is set to “0” and the fuel consumption amount of the internal combustion engine is suitable. Therefore, the engine warm-up can be completed earlier by making the degree of cooling by the cooling system extremely small, and the fuel efficiency performance of the internal combustion engine can be improved more suitably.
本発明を具体化した一実施の形態にかかる内燃機関の冷却装置の概略構成を示す略図。1 is a schematic diagram showing a schematic configuration of a cooling device for an internal combustion engine according to an embodiment embodying the present invention. 本実施の形態の冷却装置が適用される車両の概略構成を示す略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows schematic structure of the vehicle to which the cooling device of this Embodiment is applied. 自動停止処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of an automatic stop process. 再始動処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of a restart process. ポンプ停止処理の実行手順を概念的に示すフローチャート。The flowchart which shows notionally the execution procedure of a pump stop process. ポンプ停止処理の実行態様の一例を示すタイミングチャート。The timing chart which shows an example of the execution aspect of a pump stop process.
 以下、本発明にかかる内燃機関の冷却装置を具体化した一実施の形態について説明する。 Hereinafter, an embodiment embodying a cooling device for an internal combustion engine according to the present invention will be described.
 図1に示すように、車両1には駆動源としての内燃機関10が搭載されている。この内燃機関10には、ウォータジャケット11、ラジエータ12、冷却水通路13,14、バイパス水路15、クーラ水路16およびバルブ水路17などにより構成された水冷式の冷却系18が設けられている。ウォータジャケット11は内燃機関10の内部において延びる形状に形成されている。ラジエータ12は、その内部を通過する冷却水を外気との熱交換を通じて冷却するための熱交換器である。冷却水通路13はウォータジャケット11から流出する冷却水をラジエータ12に導くための通路であり、冷却水通路14はラジエータ12を通過した後の冷却水をウォータジャケット11に戻すための通路である。また、バイパス水路15はラジエータ12を迂回するように各冷却水通路13,14を連通する通路である。クーラ水路16およびバルブ水路17については後述する。 As shown in FIG. 1, the vehicle 1 is equipped with an internal combustion engine 10 as a drive source. The internal combustion engine 10 is provided with a water cooling type cooling system 18 including a water jacket 11, a radiator 12, cooling water passages 13 and 14, a bypass water passage 15, a cooler water passage 16 and a valve water passage 17. The water jacket 11 is formed in a shape extending inside the internal combustion engine 10. The radiator 12 is a heat exchanger for cooling the cooling water passing through the radiator 12 through heat exchange with the outside air. The cooling water passage 13 is a passage for guiding cooling water flowing out from the water jacket 11 to the radiator 12, and the cooling water passage 14 is a passage for returning the cooling water after passing through the radiator 12 to the water jacket 11. The bypass water passage 15 is a passage that communicates the cooling water passages 13 and 14 so as to bypass the radiator 12. The cooler water channel 16 and the valve water channel 17 will be described later.
 冷却系18にはウォータポンプ19が設けられている。ウォータポンプ19としては、内燃機関10の出力軸10aによって駆動される機関駆動式のものが採用されている。このウォータポンプ19の入力軸19aと内燃機関10の出力軸10aとの間には電磁駆動式のクラッチ機構20が設けられている。そして、クラッチ機構20を連結状態にすることにより、内燃機関10の出力軸10aとウォータポンプ19の入力軸19aとが連結されてウォータポンプ19が作動して冷却系18の内部に充填された冷却水を圧送するようになり、同冷却水が冷却系18内において強制循環されるようになる。一方、クラッチ機構20を非連結状態にすることにより、内燃機関10の出力軸10aとウォータポンプ19の入力軸19aとの連結が解除されてウォータポンプ19の作動が停止して、冷却系18の内部における冷却水の循環も停止されるようになる。このように本実施の形態では、クラッチ機構20の作動制御を通じてウォータポンプ19が作動して冷却水を圧送する状態と作動せずに冷却水を圧送しない状態とを切り換え可能な構造になっている。 The cooling system 18 is provided with a water pump 19. As the water pump 19, an engine drive type driven by the output shaft 10a of the internal combustion engine 10 is employed. An electromagnetically driven clutch mechanism 20 is provided between the input shaft 19 a of the water pump 19 and the output shaft 10 a of the internal combustion engine 10. Then, by bringing the clutch mechanism 20 into a connected state, the output shaft 10a of the internal combustion engine 10 and the input shaft 19a of the water pump 19 are connected, and the water pump 19 is operated to fill the cooling system 18 with cooling. The water is pumped and the cooling water is forcedly circulated in the cooling system 18. On the other hand, by disengaging the clutch mechanism 20, the connection between the output shaft 10 a of the internal combustion engine 10 and the input shaft 19 a of the water pump 19 is released, and the operation of the water pump 19 is stopped. The circulation of the cooling water inside is also stopped. As described above, in this embodiment, the water pump 19 is operated through the operation control of the clutch mechanism 20 to switch between the state in which the cooling water is pumped and the state in which the cooling water is not pumped without being operated. .
 また冷却系18にはサーモスタット弁21が設けられている。サーモスタット弁21は、当接する冷却水の温度に応じて開度が変化するものである。このサーモスタット弁21の開度変化によって冷却水通路14およびバイパス水路15の通路断面積が変更され、これによりラジエータ12への冷却水の流入量が調節されるようになっている。 The cooling system 18 is provided with a thermostat valve 21. The thermostat valve 21 changes its opening according to the temperature of the cooling water that abuts. The passage cross-sectional areas of the cooling water passage 14 and the bypass water passage 15 are changed by changing the opening degree of the thermostat valve 21, thereby adjusting the amount of cooling water flowing into the radiator 12.
 また、内燃機関10には、その排気通路内の排気の一部を吸気通路に戻して再循環させるためのEGR装置30が設けられている。このEGR装置30は、内燃機関10の排気通路および吸気通路を連通するEGR通路(図示略)と、同EGR通路を通過する排気(EGRガス)を冷却するためのEGRクーラ32と、EGR通路の通路断面積を変更するためのEGRバルブ33とを備えている。上記冷却系18には、EGRクーラ32の内部を通過する前記クーラ水路16や、EGRバルブ33の内部を通過する前記バルブ水路17が設けられている。上記クーラ水路16は、冷却水通路13から分岐されて、EGRクーラ32の内部を通過した後、冷却水通路14(詳しくは、サーモスタット弁21の下流側)に戻る形状で延設される。また上記バルブ水路17は、冷却水通路13から分岐されて、EGRバルブ33の内部を通過した後、冷却水通路14(詳しくは、サーモスタット弁21の下流側)に戻る形状で延設される。 Further, the internal combustion engine 10 is provided with an EGR device 30 for returning a part of the exhaust gas in the exhaust passage to the intake passage for recirculation. The EGR device 30 includes an EGR passage (not shown) that communicates an exhaust passage and an intake passage of the internal combustion engine 10, an EGR cooler 32 that cools exhaust gas (EGR gas) that passes through the EGR passage, and an EGR passage. And an EGR valve 33 for changing the cross-sectional area of the passage. The cooling system 18 is provided with the cooler water passage 16 that passes through the inside of the EGR cooler 32 and the valve water passage 17 that passes through the inside of the EGR valve 33. The cooler water channel 16 is branched from the cooling water passage 13 and extends in a shape returning to the cooling water passage 14 (specifically, downstream of the thermostat valve 21) after passing through the EGR cooler 32. The valve water passage 17 is branched from the cooling water passage 13 and extends in a shape to return to the cooling water passage 14 (specifically, downstream of the thermostat valve 21) after passing through the inside of the EGR valve 33.
 図2に示すように、内燃機関10が発生する動力は、同内燃機関10の出力軸10aから変速機40などを介して出力軸50側に出力され、最終的に車輪に伝達される。一方、内燃機関10が発生する動力は出力軸10aに連結されたプーリ22を介して伝動ベルト23にも伝達される。そして、この伝動ベルト23により伝達された動力により、別のプーリ24,25が回転される。 As shown in FIG. 2, the power generated by the internal combustion engine 10 is output from the output shaft 10a of the internal combustion engine 10 to the output shaft 50 via the transmission 40 and the like, and finally transmitted to the wheels. On the other hand, the power generated by the internal combustion engine 10 is also transmitted to the transmission belt 23 via a pulley 22 connected to the output shaft 10a. Then, the other pulleys 24 and 25 are rotated by the power transmitted by the transmission belt 23.
 プーリ24はクラッチ機構20を介してウォータポンプ19の入力軸19aに連結されている。ウォータポンプ19は、クラッチ機構20が連結状態であるときにはプーリ24の回転によって駆動されて作動する一方、クラッチ機構20が非連結状態であるときにはプーリ24によって駆動されずに作動を停止する。 The pulley 24 is connected to the input shaft 19 a of the water pump 19 through the clutch mechanism 20. The water pump 19 is driven and operated by the rotation of the pulley 24 when the clutch mechanism 20 is in the connected state, and stops operating without being driven by the pulley 24 when the clutch mechanism 20 is in the disconnected state.
 また、上記プーリ25はモータジェネレータ(以下、「M/G」と称す)26に連結されている。このプーリ25に伝達された回転トルクによってM/G26が駆動され、このときM/G26は発電機として機能する。M/G26はインバータ27に電気的に接続されている。このインバータ27は、スイッチングによりM/G26からバッテリ28への電気エネルギーの充電を行うように切り替える。 The pulley 25 is connected to a motor generator (hereinafter referred to as “M / G”) 26. The M / G 26 is driven by the rotational torque transmitted to the pulley 25. At this time, the M / G 26 functions as a generator. The M / G 26 is electrically connected to the inverter 27. The inverter 27 is switched so as to charge electric energy from the M / G 26 to the battery 28 by switching.
 さらに、上記M/G26は、内燃機関10を再始動する際には電動機として機能する。このときM/G26は内燃機関10の出力軸10aを強制回転駆動(クランキング)して、同出力軸10aに内燃機関10の始動のための補助トルクを付与する。 Further, the M / G 26 functions as an electric motor when the internal combustion engine 10 is restarted. At this time, the M / G 26 forcibly rotates (cranks) the output shaft 10a of the internal combustion engine 10 to apply auxiliary torque for starting the internal combustion engine 10 to the output shaft 10a.
 また内燃機関10にはスタータモータ29が取り付けられている。乗員による運転開始スイッチ61の操作によって内燃機関10が始動される際には、このスタータモータ29が駆動される。このときには、スタータモータ29によるクランキングによって内燃機関10の始動のための補助トルクが付与される。 Also, a starter motor 29 is attached to the internal combustion engine 10. When the internal combustion engine 10 is started by operating the operation start switch 61 by the occupant, the starter motor 29 is driven. At this time, auxiliary torque for starting the internal combustion engine 10 is applied by cranking by the starter motor 29.
 また本実施の形態の装置には各種センサ類が設けられている。 In addition, the sensor according to the present embodiment is provided with various sensors.
 図1または図2に示すように、そうしたセンサ類としては、例えば車両1の走行速度(車速SPD)を検出するための速度センサ62や、ウォータジャケット11内部の冷却水の温度THW[en]を検出するための温度センサ63、バルブ水路17を通過する冷却水の温度THW[egr]を検出するための温度センサ64が設けられている。また、内燃機関10の出力軸10aの回転速度(機関回転速度NE)を検出するための回転センサ65や、内燃機関10の始動に際して操作される前記運転開始スイッチ61が設けられている。その他、図示しないアクセルペダルの踏み込み量を検出するためのアクセル操作量センサ66や、アクセルペダルの踏み込みの有無を検出するためのアイドルスイッチ67、図示しないブレーキペダルの踏み込みの有無を検出するためのブレーキスイッチ68なども設けられている。 As shown in FIG. 1 or FIG. 2, as such sensors, for example, a speed sensor 62 for detecting the traveling speed (vehicle speed SPD) of the vehicle 1 or the temperature THW [en] of the cooling water inside the water jacket 11 is used. A temperature sensor 63 for detecting and a temperature sensor 64 for detecting the temperature THW [egr] of the cooling water passing through the valve water channel 17 are provided. Further, a rotation sensor 65 for detecting the rotation speed of the output shaft 10a of the internal combustion engine 10 (engine rotation speed NE) and the operation start switch 61 operated when starting the internal combustion engine 10 are provided. In addition, an accelerator operation amount sensor 66 for detecting the depression amount of an accelerator pedal (not shown), an idle switch 67 for detecting whether or not the accelerator pedal is depressed, and a brake for detecting whether or not a brake pedal (not shown) is depressed. A switch 68 and the like are also provided.
 本実施の形態の装置は、例えばマイクロコンピュータを備えて構成される電子制御装置60を備えている。この電子制御装置60は、各種センサ類の出力信号を取り込むとともにそれら出力信号をもとに各種の演算処理を実行し、その演算結果に基づいて周知の機関制御やクラッチ機構20の作動制御、ならびにインバータ27の制御等、車両制御にかかる各種の制御を実行する。この電子制御装置60は自動停止始動部、制限部およびポンプ作動部として機能する。 The apparatus according to the present embodiment includes an electronic control unit 60 that includes, for example, a microcomputer. The electronic control device 60 captures output signals of various sensors and executes various arithmetic processes based on the output signals. Based on the calculation results, the electronic control device 60 performs well-known engine control, clutch mechanism 20 operation control, Various controls relating to vehicle control such as control of the inverter 27 are executed. The electronic control device 60 functions as an automatic stop / start unit, a limiting unit, and a pump operating unit.
 電子制御装置60は、こうした各種の制御の1つとして、内燃機関10の自動停止処理および再始動処理を実行する。 The electronic control unit 60 executes an automatic stop process and a restart process of the internal combustion engine 10 as one of such various controls.
 以下、この自動停止処理および再始動処理について、図3および図4を参照して説明する。なお、図3は自動停止処理の処理手順を示すフローチャートであり、図4は再始動処理の処理手順を示すフローチャートである。また、これらフローチャートに示される一連の処理は、それぞれ所定周期毎の割り込み処理として、上記電子制御装置60により実行される。 Hereinafter, the automatic stop process and the restart process will be described with reference to FIG. 3 and FIG. FIG. 3 is a flowchart showing the procedure of the automatic stop process, and FIG. 4 is a flowchart showing the procedure of the restart process. The series of processes shown in these flowcharts is executed by the electronic control unit 60 as an interrupt process for each predetermined period.
 ここでは先ず、自動停止処理の処理手順について説明する。 Here, first, the processing procedure of the automatic stop process will be described.
 図3に示すように、この処理では先ず、上記各種のセンサ類の検出信号を通じて、車両1や内燃機関10の運転状態が読み込まれる(ステップS101)。 As shown in FIG. 3, in this process, first, the operating states of the vehicle 1 and the internal combustion engine 10 are read through the detection signals of the various sensors (step S101).
 次に、これらの運転状態から自動停止条件が成立したか否かが判断される(ステップS102)。具体的には、例えば以下の[条件1]~[条件5]が全て満たされたことをもって、自動停止条件が成立したと判断される。
[条件1]アクセルペダルが踏まれていないこと(アイドルスイッチ67が「オン」されていること)。
[条件2]バッテリ28の残容量が所定量以上であること。
[条件3]ブレーキペダルが踏み込まれていること(ブレーキスイッチ68が「オン」されていること)。
[条件4]車両1が停止していること。
[条件5]上記[条件1]~[条件4]の全てが満たされた後において、内燃機関10の自動停止が実行された履歴がないこと。
Next, it is determined from these operating states whether or not an automatic stop condition is satisfied (step S102). Specifically, for example, when all of the following [Condition 1] to [Condition 5] are satisfied, it is determined that the automatic stop condition is satisfied.
[Condition 1] The accelerator pedal is not depressed (the idle switch 67 is “ON”).
[Condition 2] The remaining capacity of the battery 28 is a predetermined amount or more.
[Condition 3] The brake pedal is depressed (the brake switch 68 is “ON”).
[Condition 4] The vehicle 1 is stopped.
[Condition 5] After all of [Condition 1] to [Condition 4] are satisfied, there is no history that the internal combustion engine 10 has been automatically stopped.
 上記条件[条件1]~[条件5]のいずれか一つでも満足されていない場合には(ステップS102:NO)、自動停止条件が成立しておらず、内燃機関10の自動停止を実行する条件下にないとして、本処理は一旦終了される。 If any one of the above conditions [Condition 1] to [Condition 5] is not satisfied (step S102: NO), the automatic stop condition is not satisfied, and the internal combustion engine 10 is automatically stopped. Assuming that there is no condition, this processing is temporarily terminated.
 その後、交差点にて車両1が停止する等して、上記自動停止条件が成立したと判断されると(ステップS102:YES)、停止処理が実行される(S103)。具体的には、例えば内燃機関10への燃料供給が停止される等して、内燃機関10の運転が停止される。そしてその後、本処理は一旦終了される。 Thereafter, when it is determined that the automatic stop condition is satisfied because the vehicle 1 stops at the intersection (step S102: YES), stop processing is executed (S103). Specifically, the operation of the internal combustion engine 10 is stopped, for example, by stopping the fuel supply to the internal combustion engine 10. Thereafter, this process is temporarily terminated.
 次に、再始動処理の処理手順について説明する。 Next, the processing procedure for restart processing will be described.
 図4に示すように、この処理では先ず、上記各種のセンサ類の検出信号を通じて、車両1や内燃機関10の運転状態が読み込まれる(ステップS201)。 As shown in FIG. 4, in this process, first, the operating states of the vehicle 1 and the internal combustion engine 10 are read through the detection signals of the various sensors (step S201).
 次に、これらの運転状態から再始動条件が成立したか否かが判断される(ステップS202)。具体的には、上述した自動停止処理による機関停止状態にあるとの条件下において、上記[条件1]~[条件4]のうちの1つでも満足されなくなった場合に再始動条件が成立したと判断される。 Next, it is determined whether or not the restart condition is satisfied from these operating states (step S202). Specifically, the restart condition is satisfied when one of the above [Condition 1] to [Condition 4] is not satisfied under the condition that the engine is stopped by the automatic stop processing described above. It is judged.
 そして、内燃機関10が自動停止されていない場合、あるいは内燃機関10が自動停止されている場合であっても上記[条件1]~[条件4]の全てが満足されている場合には(ステップS202:NO)、再始動条件が成立しておらず、内燃機関10の再始動を実行する条件下にないとして、本処理は一旦終了される。 When the internal combustion engine 10 is not automatically stopped or when the internal combustion engine 10 is automatically stopped, if all of the above [condition 1] to [condition 4] are satisfied (steps) (S202: NO), the restart condition is not satisfied, and it is determined that the restart condition of the internal combustion engine 10 is not satisfied.
 そしてその後、内燃機関10の自動停止状態において上記[条件1]~[条件4]の一つでも満足されなくなると(ステップS202:YES)、再始動条件が成立したとして、始動処理の実行が開始される(ステップS203)。具体的には、M/G26が駆動されて前記クランキングが実行されるとともに、周知の燃料噴射制御や点火時期制御が実行されて、内燃機関10が再始動される。そしてその後、本処理は一旦終了される。 After that, when any one of [Condition 1] to [Condition 4] is not satisfied in the automatic stop state of the internal combustion engine 10 (step S202: YES), the start process is started assuming that the restart condition is satisfied. (Step S203). More specifically, the M / G 26 is driven to execute the cranking, and well-known fuel injection control and ignition timing control are executed to restart the internal combustion engine 10. Thereafter, this process is temporarily terminated.
 さらに電子制御装置60は、各種の制御の1つとして、冷却水の温度が低いときにおいてウォータポンプ19の作動を停止させる処理(ポンプ停止処理)を実行する。 Furthermore, the electronic control unit 60 executes a process (pump stop process) for stopping the operation of the water pump 19 when the temperature of the cooling water is low as one of various controls.
 以下、このポンプ停止処理について図5を参照しつつ説明する。 Hereinafter, the pump stop process will be described with reference to FIG.
 図5のフローチャートに示される一連の処理は、上記ポンプ停止処理の実行手順を概念的に示したものであり、実際の処理は所定周期毎の割り込み処理として電子制御装置60により実行される。 The series of processes shown in the flowchart of FIG. 5 conceptually shows the execution procedure of the pump stop process, and the actual process is executed by the electronic control unit 60 as an interrupt process at predetermined intervals.
 本実施の形態では、乗員による運転開始スイッチ61の操作によって内燃機関10が始動されると先ず、図5に示すように、クラッチ機構20が連結状態にされてウォータポンプ19が作動する(ステップS301)。そして、その後において冷却水温度の推定値(推定水温VT[en],VT[egr])が算出されるようになるまでの期間にわたり(ステップS302:NO)、ウォータポンプ19の作動が継続される。 In the present embodiment, when the internal combustion engine 10 is started by the operation of the operation start switch 61 by an occupant, first, as shown in FIG. 5, the clutch mechanism 20 is brought into a connected state and the water pump 19 is operated (step S301). ). Thereafter, the operation of the water pump 19 is continued over a period until the estimated values of the cooling water temperature (estimated water temperatures VT [en], VT [egr]) are calculated (step S302: NO). .
 なお内燃機関10の始動直後における推定水温VT[en],VT[egr]の算出は、以下の[条件6]および[条件7]が共に満たされたときに、冷却水温度THW[enn]を検出するとともに同温度THW[en]を冷却水の推定値として記憶するといったように実行される。
[条件6]内燃機関10の始動後において各温度センサ63,64により検出される冷却水温度THW[en],THW[egr]が変化したこと。この条件が満たされることによってウォータポンプ19が正常に作動していると判断される。
[条件7]各温度センサ63,64により検出される冷却水温度THW[en],THW[egr]の差が小さくなったこと。この条件が満たされることによって冷却系18内(詳しくは、ウォータジャケット11の内部やバルブ水路17の内部)の冷却水温度の不要なばらつきが抑えられて、各温度センサ63,64によって本処理において有用な温度を適正に検出可能な状態になったと判断される。
The estimated water temperatures VT [en] and VT [egr] immediately after the internal combustion engine 10 is started are calculated based on the cooling water temperature THW [enn] when both [Condition 6] and [Condition 7] below are satisfied. The temperature THW [en] is detected and stored as an estimated value of the cooling water.
[Condition 6] The cooling water temperatures THW [en] and THW [egr] detected by the temperature sensors 63 and 64 after the internal combustion engine 10 is started are changed. When this condition is satisfied, it is determined that the water pump 19 is operating normally.
[Condition 7] The difference between the cooling water temperatures THW [en] and THW [egr] detected by the temperature sensors 63 and 64 is reduced. By satisfying this condition, unnecessary variations in the cooling water temperature in the cooling system 18 (specifically, in the water jacket 11 and the valve water passage 17) are suppressed, and the temperature sensors 63 and 64 perform this processing. It is determined that a useful temperature can be properly detected.
 このように本実施の形態では、運転開始スイッチ61の操作によって内燃機関10が始動されると、その後の所定期間にわたってクラッチ機構20が連結状態にされてウォータポンプ19を作動させた後に、推定水温VT[en],VT[egr]の算出が開始される。 As described above, in the present embodiment, when the internal combustion engine 10 is started by operating the operation start switch 61, the clutch mechanism 20 is engaged for a predetermined period thereafter and the water pump 19 is operated. Calculation of VT [en] and VT [egr] is started.
 このようにして推定水温VT[en],VT[egr]が算出されると(ステップS302:YES)、推定水温VT[en]が予め定められた所定温度TL(本実施の形態では40℃)未満であるか否かが判断される(ステップS303)。 When the estimated water temperatures VT [en] and VT [egr] are calculated in this way (step S302: YES), the estimated water temperature VT [en] is set to a predetermined temperature TL (40 ° C. in the present embodiment). It is determined whether or not it is less than (step S303).
 そして、推定水温VT[en]が所定温度TL未満である場合には(ステップS303:YES)、クラッチ機構20の作動状態が非連結状態に切り換えられてウォータポンプ19の作動が停止される(ステップS304)。このとき内燃機関10の温度が低いために、同温度を早期に上昇させることが望ましいとして、冷却系18による冷却を停止させるべくウォータポンプ19の作動が停止される。 If the estimated water temperature VT [en] is lower than the predetermined temperature TL (step S303: YES), the operating state of the clutch mechanism 20 is switched to the non-connected state, and the operation of the water pump 19 is stopped (step). S304). At this time, since the temperature of the internal combustion engine 10 is low, it is desirable to raise the temperature early, and the operation of the water pump 19 is stopped to stop the cooling by the cooling system 18.
 その後において推定水温VT[en],VT[egr]が共に予め定められた所定温度TH(例えば、100℃)未満である期間(ステップS304:NO)、クラッチ機構20が非連結状態のままで維持されて、ウォータポンプ19が作動停止状態のままで維持される(ステップS304)。この期間では、内燃機関10の自動停止中においてウォータポンプ19による冷却水の圧送量が「0」に設定されることに加えて、内燃機関10の再始動後における運転時においてもウォータポンプ19による冷却水の圧送量が「0」に設定される。なお、このとき推定水温VT[en],VT[egr]は以下のようにして算出される。 Thereafter, the clutch mechanism 20 is maintained in a disconnected state during a period in which the estimated water temperatures VT [en] and VT [egr] are both lower than a predetermined temperature TH (eg, 100 ° C.) (step S304: NO). Thus, the water pump 19 is maintained in the operation stopped state (step S304). During this period, the pumping amount of the cooling water by the water pump 19 is set to “0” during the automatic stop of the internal combustion engine 10, and the water pump 19 also operates during the operation after the restart of the internal combustion engine 10. The pumping amount of the cooling water is set to “0”. At this time, the estimated water temperatures VT [en] and VT [egr] are calculated as follows.
 上記推定水温VT[en]としては、ウォータジャケット11内部において最も高温になる部分における冷却水の温度に対応する値が算出される。この推定水温VT[en]の更新に際しては先ず、そのときどきの吸熱量が機関回転速度NEおよび燃料噴射量Qに基づき算出されるとともに、放熱量が冷却水温度THW[en]および推定水温VT[en]に基づき算出される。そして、それら吸熱量および放熱量の差(吸熱量-放熱量)に基づいて温度変化量ΔT1が算出されるとともに、このとき電子制御装置60に記憶されている推定水温VT[en]に上記温度変化量ΔT1を加算することにより、新たな推定水温VT[en]が算出される。なお本実施の形態では、吸熱量と機関回転速度NEと燃料噴射量Qとの関係や、放熱量と冷却水温度THW[en]と推定水温VT[en]との関係、ならびに吸熱量と放熱量と温度変化量ΔT1との関係として、それぞれ推定水温VT[en]として適正な値が算出されるようになる関係が実験やシミュレーションの結果をもとに予め求められて、電子制御装置60に記憶されている。 As the estimated water temperature VT [en], a value corresponding to the temperature of the cooling water at the highest temperature inside the water jacket 11 is calculated. When updating the estimated water temperature VT [en], first, the endothermic amount at that time is calculated based on the engine speed NE and the fuel injection amount Q, and the heat release amount is calculated based on the coolant temperature THW [en] and the estimated water temperature VT [ en]. Then, a temperature change amount ΔT1 is calculated based on the difference between the heat absorption amount and the heat dissipation amount (heat absorption amount−heat dissipation amount), and at this time, the estimated water temperature VT [en] stored in the electronic control unit 60 is set to the above temperature. By adding the change amount ΔT1, a new estimated water temperature VT [en] is calculated. In the present embodiment, the relationship between the heat absorption amount, the engine rotational speed NE, and the fuel injection amount Q, the relationship between the heat dissipation amount, the cooling water temperature THW [en], and the estimated water temperature VT [en], as well as the heat absorption amount and the discharge amount. As a relationship between the heat amount and the temperature change amount ΔT1, a relationship in which an appropriate value is calculated as the estimated water temperature VT [en] is obtained in advance based on the results of experiments and simulations. It is remembered.
 一方、上記推定水温VT[egr]としては、EGRクーラ32内部における冷却水の温度に対応する値が算出される。この推定水温VT[egr]の更新に際しては先ず、そのときどきの吸熱量が機関回転速度NE、燃料噴射量Qおよび推定水温VT[egr]に基づき算出されるとともに、この吸熱量と放熱量(予め定められた一定値)との差に基づいて温度変化量ΔT2が算出される。そして、この温度変化量ΔT2をこのとき電子制御装置60に記憶されている推定水温VT[egr]に加算することにより、新たな推定水温VT[egr]が算出される。なお本実施の形態では、吸熱量と機関回転速度NEと燃料噴射量Qと推定水温VT[egr]との関係や、放熱量、吸熱量と放熱量と温度変化量ΔT2との関係として、それぞれ推定水温VT[egr]として適正な値が算出されるようになる関係や値が実験やシミュレーションの結果をもとに予め求められて、電子制御装置60に記憶されている。 On the other hand, a value corresponding to the temperature of the cooling water in the EGR cooler 32 is calculated as the estimated water temperature VT [egr]. In updating the estimated water temperature VT [egr], first, the endothermic amount at that time is calculated based on the engine rotational speed NE, the fuel injection amount Q, and the estimated water temperature VT [egr]. A temperature change amount ΔT2 is calculated based on a difference from a predetermined constant value. Then, a new estimated water temperature VT [egr] is calculated by adding the temperature change amount ΔT2 to the estimated water temperature VT [egr] stored in the electronic control unit 60 at this time. In the present embodiment, the relationship between the heat absorption amount, the engine rotational speed NE, the fuel injection amount Q, the estimated water temperature VT [egr], and the heat radiation amount, the heat absorption amount, the heat radiation amount, and the temperature change amount ΔT2, respectively. A relationship and a value that allow an appropriate value to be calculated as the estimated water temperature VT [egr] are obtained in advance based on the results of experiments and simulations, and are stored in the electronic control unit 60.
 そして、その後において車両1の運転が継続されて、更新された推定水温VT[en],VT[egr]のうちのいずれかが所定温度TH以上になると(ステップS305:YES)、クラッチ機構20の作動状態が連結状態に切り換えられてウォータポンプ19の作動が再開された後(ステップS306)、本処理は終了される。このときウォータジャケット11の内部やクーラ水路16の内部において冷却水の沸騰が懸念される程度に同冷却水の温度が高くなったとして、同温度を低下させるべくウォータポンプ19の作動が開始される。 After that, when the operation of the vehicle 1 is continued and one of the updated estimated water temperatures VT [en] and VT [egr] becomes equal to or higher than the predetermined temperature TH (step S305: YES), the clutch mechanism 20 After the operating state is switched to the connected state and the operation of the water pump 19 is resumed (step S306), this process is terminated. At this time, assuming that the temperature of the cooling water has risen to such an extent that there is a fear of boiling of the cooling water in the water jacket 11 or the cooler water channel 16, the operation of the water pump 19 is started to lower the temperature. .
 なお、推定水温VT[en],VT[egr]の算出が開始された直後に(ステップS302:YES)、推定水温VT[en]が所定温度TL以上である場合には(ステップS303:NO)、クラッチ機構20が連結状態のままで維持されて、引き続きウォータポンプ19が作動される。このとき内燃機関10の温度が比較的高い温度になっており、同温度を積極的に上昇させる必要はないとして、ウォータポンプ19の作動が継続される。 Note that immediately after the calculation of the estimated water temperatures VT [en] and VT [egr] is started (step S302: YES), when the estimated water temperature VT [en] is equal to or higher than the predetermined temperature TL (step S303: NO). The clutch mechanism 20 is maintained in the connected state, and the water pump 19 is continuously operated. At this time, the temperature of the internal combustion engine 10 is relatively high, and it is not necessary to positively increase the temperature, and the operation of the water pump 19 is continued.
 以下、こうしたポンプ停止処理を実行することによる作用について図6を参照しつつ説明する。なお図6は上記ポンプ停止処理の実行態様の一例を示している。 Hereinafter, the effect of executing such a pump stop process will be described with reference to FIG. FIG. 6 shows an example of the execution mode of the pump stop process.
 ここで本実施の形態の装置では、ウォータポンプ19による冷却水の圧送量を低減することにより、同ウォータポンプ19の仕事量が少なくなって内燃機関10の燃料消費量が少なくなったり、冷却系18による冷却の度合いが小さくなって内燃機関10の暖機が早期に完了したりするため、内燃機関10の燃費性能を向上させることが可能になる。 Here, in the apparatus of the present embodiment, by reducing the pumping amount of the cooling water by the water pump 19, the work amount of the water pump 19 is reduced and the fuel consumption of the internal combustion engine 10 is reduced. Since the degree of cooling by 18 is reduced and the warm-up of the internal combustion engine 10 is completed at an early stage, the fuel efficiency of the internal combustion engine 10 can be improved.
 本実施の形態では、冷却水の温度(詳しくは、推定水温VT[en]や推定水温VT[egr])が低いときに、内燃機関10の自動停止中におけるウォータポンプ19の冷却水圧送量が「0」に設定されることに加えて、内燃機関10の再始動後の運転時におけるウォータポンプ19の冷却水圧送量が「0」に設定される(図6の時刻t3~t4)。 In the present embodiment, when the temperature of the cooling water (specifically, the estimated water temperature VT [en] or the estimated water temperature VT [egr]) is low, the cooling water pumping amount of the water pump 19 during the automatic stop of the internal combustion engine 10 is In addition to being set to “0”, the cooling water pumping amount of the water pump 19 during operation after restarting the internal combustion engine 10 is set to “0” (time t3 to t4 in FIG. 6).
 そのため、冷却水の温度が低い冷間運転時、すなわち冷却系18による冷却の必要がないときにおいて内燃機関10が自動停止された場合や再始動後に運転された場合に、ウォータポンプ19の仕事量を「0」にして内燃機関10の燃料消費量を低減させることができる。しかも、このとき冷却系18による冷却の度合いをごく小さくして内燃機関10の暖機を早期に完了させることもできる。したがって、内燃機関10の燃費性能を好適に向上させることができるようになる。 Therefore, when the internal combustion engine 10 is automatically stopped or operated after restarting during cold operation where the temperature of the cooling water is low, that is, when cooling by the cooling system 18 is not necessary, the work load of the water pump 19 is increased. The fuel consumption of the internal combustion engine 10 can be reduced by setting “0” to “0”. In addition, at this time, the degree of cooling by the cooling system 18 can be made extremely small, and the warm-up of the internal combustion engine 10 can be completed early. Therefore, the fuel efficiency performance of the internal combustion engine 10 can be preferably improved.
 また、本実施の形態の装置では、ウォータポンプ19による冷却水の圧送量が「0」に設定されるために、若干量の冷却水が圧送されて冷却系18内を循環する装置と比較して、内燃機関10の燃料消費量をより大きく低減させることができ、冷却系18による冷却の度合いをごく小さくして内燃機関10の暖機をより早期に完了させることができる。 Further, in the apparatus of the present embodiment, since the pumping amount of the cooling water by the water pump 19 is set to “0”, compared with an apparatus in which a small amount of cooling water is pumped and circulated in the cooling system 18. Thus, the fuel consumption of the internal combustion engine 10 can be further reduced, and the degree of cooling by the cooling system 18 can be made extremely small, so that the warm-up of the internal combustion engine 10 can be completed earlier.
 本実施の形態の装置では、運転開始スイッチ61の操作による内燃機関10の始動直後の所定期間(図6の時刻t1~t2)にわたり、冷却水の温度によることなくウォータポンプ19を作動させて、同ウォータポンプ19による冷却水の圧送が行われる。そのため、冷却系18内(詳しくは、ウォータジャケット11の内部やバルブ水路17の内部)の冷却水を所定期間にわたり循環させることによって同冷却系18の内部における冷却水温度の不要なばらつきを解消したうえで、各各温度センサ63,64による冷却水温度の検出を行うことができるようになる。したがって、運転開始スイッチ61の操作による内燃機関10の始動時における冷却系18内の冷却水の温度として有用な温度を適正に検出することができる。 In the apparatus of the present embodiment, the water pump 19 is operated regardless of the temperature of the cooling water for a predetermined period (time t1 to t2 in FIG. 6) immediately after the start of the internal combustion engine 10 by the operation of the operation start switch 61. The water pump 19 pumps cooling water. Therefore, unnecessary variations in the cooling water temperature inside the cooling system 18 are eliminated by circulating the cooling water inside the cooling system 18 (specifically, inside the water jacket 11 and inside the valve water channel 17) over a predetermined period. In addition, the cooling water temperature can be detected by the temperature sensors 63 and 64. Therefore, it is possible to appropriately detect a temperature useful as the temperature of the cooling water in the cooling system 18 when the internal combustion engine 10 is started by operating the operation start switch 61.
 さらに本実施の形態の装置では、ウォータポンプ19として、その入力軸19aの強制回転によって作動するものであって、且つ入力軸19aがクラッチ機構20を介して内燃機関10の出力軸10aに連結されたものが採用される。そして、クラッチ機構20を非連結状態にしてウォータポンプ19の入力軸19aと内燃機関10の出力軸10aとの連結を解除することにより、ウォータポンプ19の作動が停止して、同ウォータポンプ19による冷却水の圧送量が「0」に設定される。 Furthermore, in the apparatus of the present embodiment, the water pump 19 is operated by forced rotation of the input shaft 19a, and the input shaft 19a is connected to the output shaft 10a of the internal combustion engine 10 via the clutch mechanism 20. Is adopted. Then, by disengaging the clutch mechanism 20 from the input shaft 19a of the water pump 19 and the output shaft 10a of the internal combustion engine 10, the operation of the water pump 19 is stopped. The pumping amount of the cooling water is set to “0”.
 ここで仮に、内燃機関10の自動停止時においてウォータポンプ19の冷却水圧送量を「0」にするべくクラッチ機構20が非連結状態になる状況において同内燃機関10の再始動の度にウォータポンプ19を作動させるようにすると、クラッチ機構20の作動状態の切り換えが頻繁に行われるようになる(図6中に一点鎖線で示すような状態になる)。すなわち、内燃機関10の自動停止に際してクラッチ機構20が非連結状態になり、その後の内燃機関10の再始動に際してクラッチ機構20が連結状態になるといった動作が繰り返されてしまう。そして、こうしたクラッチ機構20の切り換え動作の繰り返しは同クラッチ機構20の耐久性能を低下させるおそれがある。 Here, when the internal combustion engine 10 is automatically stopped, the water pump 19 is restarted each time the internal combustion engine 10 is restarted in a situation where the clutch mechanism 20 is in a disconnected state so that the cooling water pumping amount of the water pump 19 is set to “0”. When 19 is operated, the switching of the operating state of the clutch mechanism 20 is frequently performed (a state indicated by a one-dot chain line in FIG. 6). That is, the clutch mechanism 20 is disconnected when the internal combustion engine 10 is automatically stopped, and the clutch mechanism 20 is repeatedly connected when the internal combustion engine 10 is restarted thereafter. Such repeated switching operation of the clutch mechanism 20 may reduce the durability of the clutch mechanism 20.
 本実施の形態の装置では、内燃機関10の自動停止と再始動とが交互に繰り返されるとはいえ、内燃機関10が再始動される度にクラッチ機構20が非連結状態から連結状態に切り換えられることがないため、クラッチ機構20の作動状態が切り換えられる回数をごく少なくすることができ、クラッチ機構20の耐久性能の向上を図ることができる。 In the apparatus of the present embodiment, although the automatic stop and restart of the internal combustion engine 10 are alternately repeated, the clutch mechanism 20 is switched from the non-connected state to the connected state every time the internal combustion engine 10 is restarted. Therefore, the number of times that the operating state of the clutch mechanism 20 is switched can be extremely reduced, and the durability performance of the clutch mechanism 20 can be improved.
 また、冷却水の温度を精度良く推定するうえでは、冷却水の循環態様が単純であるほどよく、同冷却水の循環が継続される状態あるいは冷却水の循環停止が継続される状態になることが望ましい。本実施の形態では、冷却水の温度が低いときにおいてウォータポンプ19が作動停止状態で維持されるために冷却水温度の推定を精度良く実行することができる。 In addition, in order to accurately estimate the temperature of the cooling water, the circulation mode of the cooling water is better as it is simpler, and the cooling water circulation is continued or the cooling water circulation is stopped. Is desirable. In the present embodiment, when the temperature of the cooling water is low, the water pump 19 is maintained in the operation stopped state, so that it is possible to accurately estimate the cooling water temperature.
 以上説明したように、本実施の形態によれば、以下に記載する効果が得られるようになる。 As described above, according to the present embodiment, the following effects can be obtained.
 (1)冷却水の温度が低いときに、内燃機関10の自動停止中におけるウォータポンプ19の冷却水圧送量を「0」にすることに加えて、内燃機関10の再始動後の運転時におけるウォータポンプ19の冷却水圧送量を「0」にするようにした。そのため、内燃機関10の燃費性能を好適に向上させることができるようになる。 (1) When the temperature of the cooling water is low, in addition to setting the cooling water pumping amount of the water pump 19 during the automatic stop of the internal combustion engine 10 to “0”, at the time of operation after restarting the internal combustion engine 10 The cooling water pumping amount of the water pump 19 was set to “0”. Therefore, the fuel efficiency performance of the internal combustion engine 10 can be improved suitably.
 (2)ウォータポンプ19の冷却水圧送量を「0」にするようにしたため、若干量の冷却水が圧送されて冷却系18内を循環する装置と比較して、内燃機関10の燃料消費量をより大きく低減させることができ、冷却系18による冷却の度合いをごく小さくして内燃機関10の暖機をより早期に完了させることができる。 (2) Since the cooling water pumping amount of the water pump 19 is set to “0”, the fuel consumption amount of the internal combustion engine 10 is compared with a device in which a small amount of cooling water is pumped and circulated in the cooling system 18. The degree of cooling by the cooling system 18 can be made extremely small, and warming up of the internal combustion engine 10 can be completed earlier.
 (3)運転開始スイッチ61の操作による内燃機関10の始動直後の所定期間にわたり、冷却水の温度によることなくウォータポンプ19を作動させて、同ウォータポンプ19による冷却水の圧送を行うようにした。そのため、運転開始スイッチ61の操作による内燃機関10の始動時における冷却系18内の冷却水の温度として有用な温度を適正に検出することができる。 (3) The water pump 19 is operated regardless of the temperature of the cooling water over a predetermined period immediately after the start of the internal combustion engine 10 by the operation start switch 61, and the water pump 19 pumps the cooling water. . Therefore, a temperature useful as the temperature of the cooling water in the cooling system 18 when the internal combustion engine 10 is started by operating the operation start switch 61 can be detected appropriately.
 (4)ウォータポンプ19として、その入力軸19aの強制回転によって作動するものであって、且つ入力軸19aがクラッチ機構20を介して内燃機関10の出力軸10aに連結されたものを採用した。そして、クラッチ機構20を非連結状態にしてウォータポンプ19の入力軸19aと内燃機関10の出力軸10aとの連結を解除することにより、ウォータポンプ19の作動を停止させて、同ウォータポンプ19による冷却水圧送量を「0」にした。したがって、内燃機関10の自動停止と再始動とが交互に繰り返されるとはいえ、内燃機関10の再始動の度にクラッチ機構20が非連結状態から連結状態に切り換えられることがないため、クラッチ機構20の作動状態が切り換えられる回数をごく少なくすることができ、クラッチ機構20の耐久性能の向上を図ることができる。 (4) As the water pump 19, one that is operated by forced rotation of the input shaft 19 a and the input shaft 19 a is connected to the output shaft 10 a of the internal combustion engine 10 through the clutch mechanism 20 is adopted. Then, by disengaging the clutch mechanism 20 from the input shaft 19a of the water pump 19 and the output shaft 10a of the internal combustion engine 10, the operation of the water pump 19 is stopped, and the water pump 19 The cooling water pumping amount was set to “0”. Therefore, although the automatic stop and restart of the internal combustion engine 10 are alternately repeated, the clutch mechanism 20 is not switched from the non-connected state to the connected state every time the internal combustion engine 10 is restarted. The number of times that the operation state of 20 can be switched can be extremely reduced, and the durability performance of the clutch mechanism 20 can be improved.
 なお、上記実施の形態は、以下のように変更して実施してもよい。 Note that the above embodiment may be modified as follows.
 ・冷却水温度の推定値(上記実施の形態では、推定水温VT[en],VT[egr])の算出方法は任意に変更することができる。その算出に用いるパラメータとしては、機関回転速度NEや燃料噴射量Q、冷却水温度THW[en],THW[egr]などを用いることができる。 The method for calculating the estimated value of the cooling water temperature (in the above embodiment, the estimated water temperature VT [en], VT [egr]) can be arbitrarily changed. As the parameters used for the calculation, engine rotational speed NE, fuel injection amount Q, cooling water temperature THW [en], THW [egr], or the like can be used.
 ・ウォータポンプ19の入力軸19aがクラッチ機構20を介して内燃機関10の出力軸10aに連結される構造の冷却装置に限らず、冷却水圧送量を変更可能なウォータポンプが設けられた装置であれば、上記実施の形態にかかる冷却装置はその構成を適宜変更したうえで適用することができる。そうしたウォータポンプとしては、例えばバッテリ28からの供給電力の調節を通じて冷却水圧送量を変更可能な電動式のポンプや、斜板の角度変更を通じて冷却水圧送量を変更可能な斜板式のポンプなどを挙げることができる。 Not only a cooling device having a structure in which the input shaft 19a of the water pump 19 is connected to the output shaft 10a of the internal combustion engine 10 via the clutch mechanism 20, but a device provided with a water pump capable of changing the cooling water pumping amount. If there is, the cooling device according to the above embodiment can be applied after the configuration thereof is appropriately changed. As such a water pump, for example, an electric pump capable of changing the cooling water pumping amount by adjusting power supplied from the battery 28, a swash plate pump capable of changing the cooling water pumping amount by changing the angle of the swash plate, and the like. Can be mentioned.
 ・冷却水の温度が低いときに、ウォータポンプ19の冷却水圧送量を「0」にすることに代えて、ごく少量の冷却水を圧送させるようにしてもよい。要は、冷却水の温度が低いときに、同温度が高いときと比較して、ウォータポンプ19の冷却水圧送量を少ない量に制限することができればよい。 When the temperature of the cooling water is low, instead of setting the cooling water pumping amount of the water pump 19 to “0”, a very small amount of cooling water may be pumped. In short, when the temperature of the cooling water is low, the cooling water pumping amount of the water pump 19 may be limited to a smaller amount than when the temperature is high.
 ・運転開始スイッチ61の操作による内燃機関10の始動直後の所定期間として、同内燃機関10が始動されてから[条件6]および[条件7]が共に満たされるまでの期間を設定することに限らず、任意の期間を設定することができる。例えば運転開始スイッチ61の操作によって内燃機関10が始動されてから[条件7]のみが満たされるまでの期間や、一定の時間(例えば、数十秒や数分など)を上記所定期間として設定することができる。 As a predetermined period immediately after the start of the internal combustion engine 10 by the operation of the operation start switch 61, it is limited to setting a period from when the internal combustion engine 10 is started until [Condition 6] and [Condition 7] are both satisfied. Any period can be set. For example, a period from when the internal combustion engine 10 is started by operating the operation start switch 61 until only [condition 7] is satisfied, or a certain time (for example, several tens of seconds or several minutes) is set as the predetermined period. be able to.
 ・運転開始スイッチ61の操作による内燃機関10の始動直後において冷却水の温度によることなくウォータポンプ19を作動させる処理を省略してもよい。すなわち、内燃機関10の始動時における冷却水の温度が低いときにその直後から、ウォータポンプ19の冷却水圧送量を「0」に設定したり、同温度が高いときと比較してウォータポンプ19の冷却水圧送量を少ない量に制限したりしてもよい。 The process of operating the water pump 19 without depending on the coolant temperature immediately after the internal combustion engine 10 is started by operating the operation start switch 61 may be omitted. That is, immediately after the temperature of the cooling water at the start of the internal combustion engine 10 is low, the cooling water pumping amount of the water pump 19 is set to “0” or compared to when the temperature is high. The cooling water pumping amount may be limited to a small amount.
 1…車両、10…内燃機関、10a…出力軸、11…ウォージャケット、12…ラジエータ、13,14…冷却水通路、15…バイパス通路、16…クーラ水路、17…バルブ水路、18…冷却系、19…ウォータポンプ、19a…入力軸、20…クラッチ機構、21…サーモスタット弁、22,24,25…プーリ、23…伝動ベルト、26…モータジェネレータ(M/G)、27…インバータ、28…バッテリ、29…スタータモータ、30…EGR装置、32…EGRクーラ、33…EGRバルブ、40…変速機、50…出力軸、60…電子制御装置、61…運転開始スイッチ、62…速度センサ、63…温度センサ、64…温度センサ、65…回転センサ、66…アクセル操作量センサ、67…アイドルスイッチ、68…ブレーキスイッチ。 DESCRIPTION OF SYMBOLS 1 ... Vehicle, 10 ... Internal combustion engine, 10a ... Output shaft, 11 ... War jacket, 12 ... Radiator, 13, 14 ... Cooling water passage, 15 ... Bypass passage, 16 ... Cooler water passage, 17 ... Valve water passage, 18 ... Cooling system , 19 ... Water pump, 19a ... Input shaft, 20 ... Clutch mechanism, 21 ... Thermostat valve, 22, 24, 25 ... Pulley, 23 ... Transmission belt, 26 ... Motor generator (M / G), 27 ... Inverter, 28 ... Battery, 29 ... Starter motor, 30 ... EGR device, 32 ... EGR cooler, 33 ... EGR valve, 40 ... Transmission, 50 ... Output shaft, 60 ... Electronic control device, 61 ... Operation start switch, 62 ... Speed sensor, 63 ... Temperature sensor, 64 ... Temperature sensor, 65 ... Rotation sensor, 66 ... Accelerator operation amount sensor, 67 ... Idle switch, 68 ... Brake Switch.

Claims (5)

  1. 水冷式の冷却系を有する内燃機関の冷却装置において、
     前記冷却系内の冷却水を圧送するものであって且つその冷却水の圧送量を変更可能なウォータポンプと、
     所定の停止条件のもとに前記内燃機関を一時的に自動停止させるとともに所定の再始動条件のもとに同内燃機関を再始動させる自動停止始動部と、
     前記冷却水の温度が低いときに、同温度が高いときと比較して、前記自動停止中における前記ウォータポンプの冷却水圧送量および前記再始動後の機関運転時における前記ウォータポンプの冷却水圧送量を制限する制限部と
    を備える、内燃機関の冷却装置。
    In a cooling device for an internal combustion engine having a water-cooled cooling system,
    A water pump for pumping the cooling water in the cooling system and capable of changing the pumping amount of the cooling water;
    An automatic stop start unit for temporarily automatically stopping the internal combustion engine under a predetermined stop condition and restarting the internal combustion engine under a predetermined restart condition;
    When the temperature of the cooling water is low, compared to when the temperature is high, the cooling water pumping amount of the water pump during the automatic stop and the cooling water pumping of the water pump during engine operation after the restart A cooling device for an internal combustion engine, comprising: a limiting unit that limits the amount.
  2. 運転開始スイッチの操作による前記内燃機関の始動直後の機関運転時において、前記冷却水圧送量の制限を行うことなく前記ウォータポンプを作動させるポンプ作動部を備える
    請求項1に記載の内燃機関の冷却装置。
    2. The cooling of the internal combustion engine according to claim 1, further comprising: a pump operating unit that operates the water pump without limiting the cooling water pumping amount when the engine is operated immediately after starting the internal combustion engine by operating an operation start switch. apparatus.
  3. 前記ポンプ作動部は、前記始動直後の所定期間にわたり前記制限を行うことなく前記ウォータポンプを作動させる
    請求項2に記載の内燃機関の冷却装置。
    The cooling device for an internal combustion engine according to claim 2, wherein the pump operating unit operates the water pump without performing the restriction for a predetermined period immediately after the start-up.
  4. 前記ウォータポンプは、クラッチ機構を介して前記内燃機関の出力軸に連結される入力軸を有し、その入力軸の強制回転によって作動するものであり、
     前記制限部は、前記クラッチ機構を非連結状態にして前記入力軸と前記出力軸との連結を解除することにより前記冷却水圧送量を制限する
    請求項1~3のうちのいずれか一項に記載の内燃機関の冷却装置。
    The water pump has an input shaft connected to the output shaft of the internal combustion engine through a clutch mechanism, and operates by forced rotation of the input shaft.
    The restriction unit restricts the cooling water pumping amount by releasing the connection between the input shaft and the output shaft by disengaging the clutch mechanism. A cooling apparatus for an internal combustion engine as described.
  5. 前記制限部は、前記冷却水圧送量を「0」に制限する
    請求項1~4のうちのいずれか一項に記載の内燃機関の冷却装置。
    The cooling apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the restriction unit restricts the cooling water pumping amount to "0".
PCT/JP2011/074717 2011-10-26 2011-10-26 Cooling device for internal combustion engine WO2013061431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074717 WO2013061431A1 (en) 2011-10-26 2011-10-26 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074717 WO2013061431A1 (en) 2011-10-26 2011-10-26 Cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013061431A1 true WO2013061431A1 (en) 2013-05-02

Family

ID=48167298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074717 WO2013061431A1 (en) 2011-10-26 2011-10-26 Cooling device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013061431A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161748A (en) * 2000-11-27 2002-06-07 Denso Corp Automobile electric water pumping device
JP2006342680A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cooling system of internal combustion engine
WO2011104885A1 (en) * 2010-02-26 2011-09-01 トヨタ自動車 株式会社 Device for controlling internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161748A (en) * 2000-11-27 2002-06-07 Denso Corp Automobile electric water pumping device
JP2006342680A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cooling system of internal combustion engine
WO2011104885A1 (en) * 2010-02-26 2011-09-01 トヨタ自動車 株式会社 Device for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
US6889125B2 (en) Vehicle driving apparatus
JP2011116366A (en) Auxiliary pump scheme of cooling system in hybrid electric vehicle
US20130284127A1 (en) Engine cooling device
KR20110063167A (en) Variable water pump control system and method
KR101294424B1 (en) Water Cooling type Turbo Charger System and Operation Method thereof
JP2002161748A (en) Automobile electric water pumping device
KR102217930B1 (en) Hybrid vehicle
JP3956812B2 (en) Engine cooling control device and vehicle equipped with the cooling control device
CN110682764B (en) Vehicle heating device
JP5338761B2 (en) Cooling device for in-vehicle internal combustion engine
JP5381675B2 (en) Exhaust-driven supercharger cooling apparatus and internal combustion engine control apparatus having the same
JP2006051852A (en) Heating system for hybrid vehicle
EP3346115B1 (en) Vehicle travel control method and vehicle travel control device
JP2011007072A (en) Control device of internal combustion engine
WO2013061431A1 (en) Cooling device for internal combustion engine
JP5863360B2 (en) Control device for internal combustion engine
US11565686B2 (en) Hybrid vehicle control apparatus
JP5027289B2 (en) Engine cooling system
JP5609346B2 (en) Cooling device for in-vehicle internal combustion engine
JP2007326464A (en) Control device of hybrid vehicle
JP2012031811A (en) Device for controlling electric water pump
JP6354238B2 (en) Hybrid vehicle and control method thereof
JP2013173408A (en) Control device
JP2012172608A (en) Water-cooled engine control device
JP2017128293A (en) Cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP