WO2013058319A1 - Film formation device and film formation method - Google Patents

Film formation device and film formation method Download PDF

Info

Publication number
WO2013058319A1
WO2013058319A1 PCT/JP2012/076955 JP2012076955W WO2013058319A1 WO 2013058319 A1 WO2013058319 A1 WO 2013058319A1 JP 2012076955 W JP2012076955 W JP 2012076955W WO 2013058319 A1 WO2013058319 A1 WO 2013058319A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inert gas
film forming
forming apparatus
processed
Prior art date
Application number
PCT/JP2012/076955
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 江面
安達 千波矢
Original Assignee
東京エレクトロン株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 国立大学法人九州大学 filed Critical 東京エレクトロン株式会社
Publication of WO2013058319A1 publication Critical patent/WO2013058319A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Definitions

  • the present invention relates to a film forming apparatus and a film forming method.
  • a film forming method for depositing a film on a substrate by spraying a mixed gas of a deposition material and a carrier gas onto the substrate is known (see, for example, Patent Document 1).
  • a plurality of organic films can be continuously deposited on a substrate by spraying a deposition material onto the substrate in order from a plurality of nozzles. Thereby, an organic EL element can be manufactured.
  • the temperature of the surface of the object on which the film is deposited or the temperature of the deposited film is not performed to adjust the temperature of the surface of the object on which the film is deposited or the temperature of the deposited film.
  • the entire object to be processed is heated. Will be affected.
  • the object to be processed includes an organic film that is weak against heat, the influence of heat becomes significant.
  • the organic film already formed on the substrate may be altered or decomposed when the substrate is heated by a heater in the stage. is there. For this reason, it is difficult to adjust the temperature when forming a film on a heat-sensitive film (for example, an organic film).
  • the present invention has been made in view of the above circumstances, and a film forming apparatus capable of locally adjusting a surface of a target object or a surface of a film deposited on the target object to a desired temperature, and An object is to provide a film forming method.
  • a film forming apparatus includes a processing chamber for storing a target object, a gas containing a deposition material and a carrier gas for depositing a film on the target object.
  • a first nozzle that sprays the object to be processed, a second nozzle that sprays the first inert gas onto the film, and a temperature controller that adjusts the temperature of the first inert gas.
  • the first inert gas whose temperature is adjusted by the temperature controller is sprayed from the second nozzle onto the film deposited on the object to be processed.
  • membrane can be locally adjusted to desired temperature, suppressing the temperature change of a to-be-processed object.
  • a film forming apparatus includes a processing chamber for storing a target object, and a gas containing a deposition material and a carrier gas for depositing a film on the target target object.
  • a temperature controller for adjusting the temperature.
  • the first inert gas whose temperature is adjusted by the temperature controller is sprayed from the second nozzle to the object to be processed.
  • the surface of a to-be-processed object can be locally adjusted to desired temperature.
  • a film can be deposited on the object to be processed under favorable conditions.
  • the vapor deposition material may not be substantially added to the first inert gas. In this case, it is possible to suppress the deposition of an unintended film on the surface of the object to be processed or the film.
  • the inert gas to which substantially no vapor deposition material is added includes not only an inert gas to which no vapor deposition material is added, but also an inert gas to which a very small amount of vapor deposition material to which no film is deposited is added.
  • the heater may be a heater that heats the first inert gas.
  • the surface of the object to be processed or the film can be locally heated.
  • the temperature controller may be a cooler that cools the first inert gas.
  • the surface of the object to be processed or the film can be locally cooled.
  • the temperature controller is a heater that heats the first inert gas, and the film forming apparatus sprays the heated first inert gas onto the film, and then a second inert gas. You may further provide the 3rd nozzle which sprays gas on the said film
  • the surface of the heated film can be locally cooled.
  • the second inert gas may be the same as or different from the first inert gas.
  • the temperature controller is a heater for heating the first inert gas, and the film forming apparatus sprays the heated first inert gas on the object to be processed, and then the gas is Prior to spraying on the object to be processed, a third nozzle for spraying the second inert gas onto the object to be processed and a cooler for cooling the second inert gas may be further provided.
  • the surface of the heated object to be processed can be locally cooled.
  • a film can be deposited on the object to be processed under favorable conditions.
  • a film forming method includes a step of depositing a film on a target object by spraying a gas containing a deposition material and a carrier gas on the target object, and a temperature-controlled first. Spraying the inert gas on the film.
  • the temperature-controlled first inert gas is sprayed onto the film deposited on the object to be processed.
  • membrane can be locally adjusted to desired temperature, suppressing the temperature change of a to-be-processed object.
  • a film forming method includes a step of spraying a temperature-adjusted first inert gas onto a target object, and after spraying the first inert gas onto a target object. And depositing a film on the target object by spraying a gas containing a deposition material and a carrier gas on the target object.
  • the temperature-controlled first inert gas is sprayed on the object to be processed.
  • the surface of a to-be-processed object can be locally adjusted to desired temperature.
  • a film can be deposited on the object to be processed under favorable conditions.
  • the vapor deposition material may not be substantially added to the first inert gas. In this case, it is possible to suppress the deposition of an unintended film on the surface of the object to be processed or the film.
  • the film may be heated by spraying the heated first inert gas onto the film.
  • the surface of the film can be locally heated.
  • the film forming method may further include a step of cooling the film by heating the film and then spraying a cooled second inert gas onto the film.
  • the surface of the heated film can be locally cooled.
  • the film may be cooled by spraying the cooled first inert gas onto the film.
  • the surface of the film can be locally cooled.
  • the target object may be heated by spraying the heated first inert gas on the target object.
  • the surface of the object to be processed can be locally heated.
  • the film forming method further includes a step of cooling the object to be processed by heating the object to be processed and then spraying a cooled second inert gas onto the object to be processed. After cooling the body, a film may be deposited on the object to be processed. In this case, the surface of the heated object to be processed can be locally cooled. As a result, a film can be deposited on the object to be processed under favorable conditions.
  • the object to be processed may be cooled by spraying the cooled first inert gas on the object to be processed.
  • the surface of the object to be processed can be locally cooled.
  • a film forming apparatus and a film forming method capable of locally adjusting the surface of a target object or the surface of a film deposited on the target object to a desired temperature.
  • FIG. 1 is a diagram schematically showing a film forming apparatus according to the first embodiment.
  • FIG. 1 shows an XYZ orthogonal coordinate system.
  • the film forming apparatus 10 shown in FIG. 1 includes a processing chamber 12 that accommodates a workpiece P.
  • One surface (film formation surface) of the workpiece P is directed downward in the vertical direction (Z direction), for example. That is, the film forming apparatus 10 is a face-down type film forming apparatus.
  • the workpiece P includes, for example, a substrate S, an electrode 52 formed on the substrate S, and a film 56a formed on the electrode 52.
  • the substrate S is a transparent substrate such as a glass substrate.
  • the shape of the substrate S is, for example, a rectangle.
  • the electrode 52 is a transparent electrode such as ITO.
  • a vacuum pump 15 is connected to the processing chamber 12 via a pipe 12g. The inside of the processing chamber 12 can be depressurized by the vacuum pump 15.
  • the film forming apparatus 10 includes a nozzle 16b (first nozzle) for spraying a gas containing a deposition material and a carrier gas for depositing the film 56b on the target object P onto the target object P.
  • the vapor deposition material may be one or more kinds of vaporized organic materials.
  • the carrier gas include inert gases such as Ar gas and nitrogen gas.
  • the film forming apparatus 10 may include a nozzle 16a and a nozzle 16c having the same structure as the nozzle 16b.
  • the nozzle 16 a sprays a deposition material and a carrier gas for depositing the film 56 a on the electrode 52 onto the electrode 52.
  • the nozzle 16c sprays a deposition material and a carrier gas for depositing the film 56c (see FIG. 2) on the film 56b.
  • the nozzles 16a to 16c are arranged in this order along the moving direction (X direction) of the workpiece P.
  • the films 56a to 56c are, for example, organic films.
  • Vapor deposition material supply sources 20a to 20c disposed outside the processing chamber 12 are connected to the nozzles 16a to 16c via pipes 12a to 12c, respectively.
  • the vapor deposition material supply sources 20a to 20c contain, for example, solid organic materials. Solid organic material is vaporized by heating.
  • An inert gas supply source 24 is connected to the vapor deposition material supply sources 20a to 20c via pipes 22a to 22c, respectively. The inert gas supplied from the inert gas supply source 24 is mixed with the vapor deposition material vaporized in the vapor deposition material supply sources 20a to 20c, and introduced into the processing chamber 12. Thereby, a plurality of types of films 56 a to 56 c can be continuously deposited on the substrate S and the electrode 52.
  • a valve 26a is disposed in the middle of the pipe 12a.
  • a connecting portion 28a for connecting the pipe 12a is disposed between the valve 26a and the vapor deposition material supply source 20a.
  • a valve 32a is arranged in the middle of the pipe 22a.
  • the connection part 30a which connects the piping 22a is arrange
  • a mass flow controller 34 a is disposed between the valve 32 a and the inert gas supply source 24.
  • valve 26b the connection part 28b, the connection part 30b, the valve 32b, and the mass flow controller 34b are arranged in this order.
  • valve 26c a valve 26c, a connection portion 28c, a connection portion 30c, a valve 32c, and a mass flow controller 34c are arranged in this order.
  • the film forming apparatus 10 includes a nozzle 18 (second nozzle) that sprays an inert gas G1 (first inert gas) onto the film 56b.
  • the inert gas G1 may be a rare gas such as Ar gas or nitrogen gas.
  • the inert gas G1 may be the same as or different from the carrier gas.
  • a vapor deposition material may not be intentionally added to the inert gas G1, or a trace amount of a vapor deposition material that does not deposit a film may be added in a trace amount.
  • the film forming apparatus 10 includes a temperature controller 36 that adjusts the temperature of the inert gas G1.
  • the temperature controller 36 is connected to the nozzle 18 through the pipe 12e.
  • An inert gas supply source 24 is connected to the temperature controller 36 via a pipe 22e. Between the nozzle 18 and the temperature controller 36, the valve 26e and the connection part 28e are arranged in this order. Between the temperature controller 36 and the inert gas supply source 24, the connection part 30e, the valve 32e, and the mass flow controller 34e are arranged in this order.
  • the temperature of the inert gas supplied from the inert gas supply source 24 is adjusted by the temperature controller 36 and is introduced into the processing chamber 12 as the temperature-controlled inert gas G1.
  • the film forming apparatus 10 is a so-called linear source type film forming apparatus.
  • a gas containing a deposition material and a carrier gas is released from the openings of the nozzles 16a to 16c.
  • shutters 17a to 17c capable of blocking the vapor deposition material may be disposed, respectively.
  • a rectangular opening extending in the Y direction is formed at the tip of the nozzle 18.
  • the temperature-controlled inert gas G1 is released from the opening of the nozzle 18.
  • a shutter 17e capable of blocking the inert gas G1 may be disposed on the opening of the nozzle 18.
  • the inert gas G1 ejected from the opening of the nozzle 18 reaches the surface of the film 56b. Since the shutters 17a to 17c are closed, the gas ejected from the openings of the nozzles 16a to 16c does not reach the film 56b.
  • the shutters 17a to 17c and 17e are connected to the processing chamber 12, and rotate around a rotation axis along the Y direction, for example. As a result, the shutters 17a to 17c and 17e can be arranged on the openings of the nozzles 16a to 16c and 18 and can be retracted from the openings as necessary.
  • the film forming apparatus 10 may include a driving device 40 that drives the stage 38 holding the workpiece P in the X direction.
  • a driving device 40 that drives the stage 38 holding the workpiece P in the X direction.
  • the workpiece P moves in the X direction relative to the nozzles 16a to 16c and 18.
  • An arrow A indicates the moving direction of the stage 38.
  • the nozzle 18 is disposed downstream of the nozzle 16b and upstream of the nozzle 16c. Accordingly, the object P to be processed is disposed so as to face the openings of the nozzles 16a, 16b, 18, 16c in order by moving in the X direction.
  • the stage 38 may incorporate an electrostatic chuck that holds the workpiece P.
  • the stage 38 is connected to the rail 42 by, for example, a support portion 38a.
  • the rail 42 is connected to the processing chamber 12.
  • the stage 38 and the support portion 38 a are moved by the drive device 40 so as to slide on the rail 42.
  • the workpiece P can be introduced into the processing chamber 12 through a gate valve 44a formed in the processing chamber 12, and can be carried out of the processing chamber 12 through a gate valve 44b formed in the processing chamber 12. is there.
  • the inert gas G ⁇ b> 1 whose temperature has been adjusted by the temperature controller 36 is sprayed from the nozzle 18 onto the film 56 b deposited on the workpiece P.
  • the surface of the film 56b can be locally adjusted to a desired temperature while suppressing the temperature change of the workpiece P.
  • the crystallization speed of the film 56b or the film formation speed of the film 56c can be controlled.
  • the linear region on the surface of the film 56b can be adjusted to a desired temperature.
  • the line-shaped region can be used as a circuit pattern, for example.
  • the temperature controller 36 may be a heater that heats the inert gas G1.
  • the surface of the film 56b can be locally heated.
  • crystallization can be promoted by annealing the surface of the film 56b.
  • a substance or moisture that can be a nucleus in crystallization can be removed, so that a film 56b made of crystals with few crystal grain boundaries can be formed.
  • Such a film 56b is effective in a device that requires high mobility (for example, an organic transistor).
  • the film 56c can be deposited on the film 56b under favorable conditions.
  • diffusion of the dopant can be controlled by heating the surface of the film 56b.
  • the film 56c is deposited on the film 56b, the film 56c can be deposited on the film 56b under favorable conditions.
  • the temperature of the inert gas G1 is adjusted to 300 to 400K, for example. Since the entire object to be processed P is not heated, the substrate S, the electrode 52, the film 56a, etc. in the object to be processed P are hardly damaged.
  • the temperature controller 36 may be a cooler that cools the inert gas G1.
  • the surface of the film 56b can be locally cooled. By cooling the surface of the film 56b to a desired temperature, the film 56c can be deposited on the film 56b under favorable conditions.
  • FIG. 2 is a diagram schematically illustrating an example of an electronic device manufactured using the film forming apparatus according to the first embodiment.
  • the electronic device 50 shown in FIG. 2 is, for example, an organic EL element.
  • the electronic device 50 includes an electrode 52 (anode) and an electrode 54 (cathode) formed on the substrate S.
  • a light emitting layer 56 is provided between the electrode 52 and the electrode 54.
  • the light emitting layer 56 includes films 56a to 56c such as organic films.
  • the films 56a to 56c are provided in this order from the electrode 52 to the electrode 54.
  • a power source 58 is connected between the electrode 52 and the electrode 54 via wiring. When a current is injected into the light emitting layer 56 by the power source 58, the light 60 emitted from the light emitting layer 56 passes through the electrode 52 and the substrate S and is emitted to the outside.
  • the films 56a to 56c can be formed by the film forming apparatus 10.
  • three kinds of vapor deposition materials for forming these three layers are supplied from the nozzles 16a to 16c, respectively.
  • the surface of the film 56b can be locally adjusted to a desired temperature, so that the electronic device 50 having good characteristics can be manufactured.
  • the electronic device 50 may be, for example, a semiconductor device, a solar cell, an optical device, or the like.
  • FIG. 3 is a flowchart showing the film forming method according to the first embodiment.
  • the film forming method according to the present embodiment can be performed as follows using the film forming apparatus 10 described above.
  • a film 56a is deposited on the electrode 52 by spraying a gas containing a deposition material and a carrier gas for depositing the film 56a onto the electrode 52 on the substrate S (step S1). At this time, the substrate S and the electrode 52 are disposed to face the opening of the nozzle 16a.
  • the film 56b is vapor-deposited on the to-be-processed object P by spraying the gas containing the vapor deposition material and carrier gas for vapor-depositing the film 56b on the to-be-processed object P (process S2).
  • the substrate S, the electrode 52, and the film 56a are disposed to face the opening of the nozzle 16b.
  • step S3 the heated inert gas G1 is sprayed onto the film 56b (step S3).
  • the workpiece P is disposed opposite to the opening of the nozzle 18 (see FIG. 1).
  • a film 56c is deposited on the film 56b by spraying a gas containing a deposition material and a carrier gas for depositing the film 56c onto the film 56b (Step S4). At this time, the object to be processed P and the film 56c are disposed to face the opening of the nozzle 16c.
  • the heated inert gas G1 is sprayed onto the film 56b deposited on the workpiece P in step S2.
  • the surface of the film 56b can be locally heated to a desired temperature while suppressing the temperature rise of the workpiece P.
  • the film 56b may be cooled by spraying a cooled inert gas G1 on the film 56b instead of the heated inert gas G1.
  • the surface of the film 56b can be locally cooled to a desired temperature while suppressing the temperature drop of the workpiece P.
  • FIG. 4 is a diagram schematically showing a film forming apparatus according to the second embodiment.
  • the film forming apparatus 10A shown in FIG. 4 has the same configuration as the film forming apparatus 10 except that the distance D2 between the nozzle 18 and the nozzle 16c is larger than the distance D1 between the nozzle 18 and the nozzle 16b. Yes.
  • the film forming apparatus 10A at least the same effects as the film forming apparatus 10 can be obtained.
  • the film forming method according to the second embodiment can be carried out by using the film forming device 10A instead of the film forming device 10 in the same manner as the film forming method according to the first embodiment.
  • the temperature controller 36 is a heater that heats the inert gas G1
  • the heated film 56b can be sufficiently cooled by making the distance D2 wider than the distance D1. Therefore, after cooling the surface of the film 56b to a desired temperature, the film 56c can be deposited on the film 56b.
  • the crystallization speed of the film 56b can be controlled by appropriately adjusting the distance D2.
  • FIG. 5 is a diagram schematically showing a film forming apparatus according to the third embodiment.
  • the temperature controller 36 of the film forming apparatus 10B shown in FIG. 5 is a heater that heats the inert gas G1.
  • the film forming apparatus 10B includes a nozzle 18a (third nozzle) that sprays an inert gas G2 (second inert gas) onto the film 56b after the heated inert gas G1 is sprayed onto the film 56b.
  • the cooler 36a is connected to the nozzle 18a via the pipe 12f.
  • An inert gas supply source 24 is connected to the cooler 36a via a pipe 22f.
  • the valve 26f and the connection part 28f are arranged in this order.
  • a connecting portion 30f, a valve 32f, and a mass flow controller 34f are arranged in this order.
  • the inert gas supplied from the inert gas supply source 24 is cooled in the cooler 36a, and is introduced into the processing chamber 12 as the inert gas G2.
  • a shutter 17f capable of blocking the inert gas G2 may be disposed on the opening of the nozzle 18a.
  • the film forming apparatus 10B has the same configuration as the film forming apparatus 10 except for the above configuration.
  • the film forming apparatus 10B at least the same effects as the film forming apparatus 10 can be obtained.
  • the surface of the heated film 56b can be locally cooled by the inert gas G2 injected from the nozzle 18a.
  • the same effect as the film forming apparatus 10A can be obtained.
  • the film forming apparatus 10B after the surface of the film 56b is heated by the inert gas G1, the surface of the film 56b is quenched (quenched) by the inert gas G2, so that the surface of the film 56b is flattened by reflow. Can do.
  • FIG. 6 is a flowchart showing a film forming method according to the third embodiment.
  • the film forming method according to the present embodiment can be performed using the above-described film forming apparatus 10B.
  • the film forming method according to the present embodiment further includes a step S3a for cooling the film 56b by spraying the cooled inert gas G2 onto the film 56b between the step S3 and the step S4 in FIG. For this reason, the surface of the film 56b heated in the step S3 can be locally cooled in the step S3a.
  • FIG. 7 is a diagram schematically showing a film forming apparatus according to the fourth embodiment.
  • the film forming apparatus 10C shown in FIG. 7 has the same configuration as the film forming apparatus 10 except that the arrangement order of the nozzles 16a, 16b and 18 is different.
  • the nozzle 18 is arranged in front of the nozzle 16a in the X direction.
  • the film forming apparatus 10C includes a nozzle 16a (first nozzle) for spraying a gas containing a deposition material and a carrier gas for depositing the film 56a on the target object P1, and the nozzle 16a.
  • a nozzle 18 (second nozzle) for spraying an inert gas G1 onto the object to be treated P1 before the gas is sprayed onto the object to be treated P1 is provided.
  • the object P1 includes a substrate S and an electrode 52.
  • the inert gas G1 whose temperature has been adjusted by the temperature controller 36 is sprayed from the nozzle 18 onto the object P1.
  • the surface of the to-be-processed object P1 can be locally adjusted to desired temperature.
  • the film 56a can be deposited on the workpiece P1 under favorable conditions.
  • the crystallization speed of the film 56a can be controlled.
  • the temperature controller 36 is a heater that heats the inert gas G1
  • the surface of the object P1 can be locally heated.
  • the surface of the target object P1 can be cleaned by heating the surface of the target object P1 to vaporize the foreign substance.
  • the film 56a can be deposited on the target object P1 under favorable conditions.
  • the temperature controller 36 is a cooler that cools the inert gas G1
  • the surface of the workpiece P1 can be locally cooled.
  • the film 56a can be deposited on the object P1 under favorable conditions.
  • FIG. 8 is a flowchart showing a film forming method according to the fourth embodiment.
  • the film forming method according to the present embodiment can be performed using the above-described film forming apparatus 10C.
  • step S3 is performed before step S1.
  • the heated inert gas G1 is sprayed onto the workpiece P1.
  • the surface of the to-be-processed object P1 can be heated locally to desired temperature.
  • the film 56a can be deposited on the workpiece P1 under favorable conditions.
  • the object P1 may be cooled by spraying the object P1 with the cooled inert gas G1 instead of the heated inert gas G1.
  • the surface of the workpiece P1 can be locally cooled to a desired temperature.
  • FIG. 9 is a diagram schematically showing a film forming apparatus according to the fifth embodiment.
  • the film forming apparatus 10D shown in FIG. 9 has the same configuration as the film forming apparatus 10C except that the distance D4 between the nozzle 18 and the nozzle 16a is wider than the distance D3 between the nozzle 16a and the nozzle 16b. Yes.
  • the film forming apparatus 10D can obtain at least the same effects as the film forming apparatus 10C.
  • the film forming method according to the fifth embodiment can be performed in the same manner as the film forming method according to the fourth embodiment, using the film forming device 10D instead of the film forming device 10C.
  • the temperature controller 36 is a heater that heats the inert gas G1
  • the heated object P1 can be sufficiently cooled by making the interval D4 wider than the interval D3. . Therefore, the film 56a can be deposited on the target object P1 after the surface of the target object P1 is cooled to a desired temperature.
  • FIG. 10 is a diagram schematically showing a film forming apparatus according to the sixth embodiment.
  • the temperature controller 36 of the film forming apparatus 10E shown in FIG. 10 is a heater that heats the inert gas G1.
  • the film forming apparatus 10E is a nozzle that sprays the inert gas G2 onto the film 56b after spraying the heated inert gas G1 onto the target object P1 and before spraying the gas from the nozzle 16a onto the target object P1.
  • 18a and a cooler 36a for cooling the inert gas G2.
  • the film forming apparatus 10E has the same configuration as the film forming apparatus 10C except for the above configuration.
  • the film forming apparatus 10E can obtain at least the same effects as the film forming apparatus 10C.
  • the surface of the object P1 heated to a desired temperature can be locally cooled.
  • the same effects as those of the other embodiments can be obtained by the respective configurations of the film forming apparatus 10E.
  • FIG. 11 is a flowchart showing a film forming method according to the sixth embodiment.
  • the film forming method according to the present embodiment can be performed using the above-described film forming apparatus 10E.
  • the surface of the to-be-processed object P1 heated in process S3 can be cooled locally in process S3a.
  • the film 56a can be deposited on the workpiece P1 under good conditions.
  • FIG. 12 is a diagram schematically showing a film forming apparatus according to the seventh embodiment.
  • a film forming apparatus 10F shown in FIG. 12 includes a nozzle 16d that sprays a gas containing a deposition material and a carrier gas for depositing a film 56d (see FIG. 13) on the film 56c onto the film 56c.
  • a vapor deposition material supply source 20d disposed outside the processing chamber 12 is connected to the nozzle 16d via a pipe 12d.
  • An inert gas supply source 24 is connected to the vapor deposition material supply source 20d through a pipe 22d.
  • a valve 26d, a connection portion 28d, a connection portion 30d, a valve 32d, and a mass flow controller 34d are arranged in this order.
  • the film forming apparatus 10F has the same configuration as the film forming apparatus 10 except for the above configuration. In the film forming apparatus 10F, at least the same effects as the film forming apparatus 10 can be obtained. In the film forming apparatus 10F, the same effects as those of the other embodiments can be obtained by the components of the film forming apparatus 10F.
  • FIG. 13 is a diagram schematically illustrating an example of an electronic device manufactured using the film forming apparatus according to the seventh embodiment.
  • a solar cell 50A shown in FIG. 13 includes electrodes 52a and 52b, films 56a to 56d, and an electrode 54 provided in this order on a substrate S.
  • Substrate S Glass substrate electrode 52a: ITO film (thickness 100 nm) Electrode 52b: MoO 3 film (thickness 13 nm) Film 56a: ClAlPc film (thickness 13 nm) Film 56b: Co-deposited film (thickness 13 nm) made of ClAlPc and C70 Film 56c: C60 film (thickness 22 nm) Film 56d: BCP film (thickness 10 nm) Electrode 54; Ag film (100 nm thickness)
  • the films 56a to 56d can be formed by the film forming apparatus 10F.
  • four types of vapor deposition materials for forming these four layers are supplied from the nozzles 16a to 16d, respectively.
  • the surface of the film 56b can be locally adjusted to a desired temperature, so that a solar cell 50A having good characteristics can be manufactured.
  • the film 56b is a layer that generates holes and carriers, high mobility is required.
  • ClAlPc is crystalline and C70 (fullerene) is amorphous.
  • the film 56d is an organic film that functions as a hole block layer.
  • FIG. 14 is a diagram schematically showing a film forming apparatus according to the eighth embodiment.
  • a film forming apparatus 10G shown in FIG. 14 has the same configuration as that of the film forming apparatus 10B except that the nozzles 16a and 16c and the related configuration are not provided.
  • the nozzle 16b sprays a gas including a deposition material and a carrier gas for depositing the film 56b on the target object P2 to the target object P2.
  • the nozzle 18 sprays the heated inert gas G1 onto the film 56b.
  • the nozzle 18a sprays the cooled inert gas G2 onto the film 56b.
  • the film 56b is an organic semiconductor film having a low glass transition temperature. Examples of the organic semiconductor material contained in the organic semiconductor film include alkylbenzothienobenzothiophene (Cn-BTBT).
  • the film forming apparatus 10G may not include the nozzle 18a and the configuration related thereto. In that case, the film 56b can be cooled by natural cooling.
  • the surface of the film 56b can be locally heated by the inert gas G1 ejected from the nozzle 18.
  • the membrane 56b is fluidized or liquefied.
  • the fluidized or liquefied organic semiconductor material wets and spreads on the workpiece P2 due to surface tension. Therefore, the film 56b having a surface with less unevenness can be obtained. Even when the workpiece P2 has a trench, the coverage of the film 56b with respect to the workpiece P2 can be improved. Since the film 56b is heated in a vacuum atmosphere or an inert gas atmosphere, a chemical reaction such as oxidation is suppressed.
  • the surface of the heated film 56b After heating the surface of the film 56b with the inert gas G1, the surface of the heated film 56b can be locally cooled by the inert gas G2 sprayed from the nozzle 18a or by natural cooling. Thereby, recrystallization (single crystallization) of the organic semiconductor material proceeds. As a result, a film 56b with few carrier traps due to grain boundaries is obtained. Such a film 56b has a high mobility.
  • FIG. 15 is a diagram schematically illustrating an example of an electronic device manufactured using the film forming apparatus according to the eighth embodiment.
  • the organic transistor 50B shown in FIG. 15 has a bottom gate bottom contact (BGBC) structure.
  • the organic transistor 50B includes a gate electrode GT provided on the substrate SB.
  • the gate electrode GT is covered with an insulating film IS.
  • a source electrode SC and a drain electrode DN which are separated from each other are provided.
  • a trench T is formed on the surface of the insulating film IS between the source electrode SC and the drain electrode DN.
  • the side wall of the trench T may have a vertical shape or may have a reverse taper shape.
  • a film 56b is provided on the source electrode SC, the drain electrode DN, and the trench T.
  • a bank portion BN is provided so as to surround the source electrode SC and the drain electrode DN.
  • a film 56b is also provided on the top surface of the bank portion BN.
  • the film 56b can be formed by the film forming apparatus 10G in FIG.
  • the configuration other than the film 56b of the organic transistor 50B corresponds to the target object P2 in FIG.
  • the film 56b heated by the inert gas G1 is fluidized or liquefied
  • the fluidized or liquefied organic semiconductor material wets and spreads over the insulating film IS, the source electrode SC, and the drain electrode DN.
  • a film 56b having a surface with less unevenness is obtained.
  • the coverage of the film 56b particularly in the trench T is improved. Therefore, in the organic transistor 50B, excellent transistor characteristics (for example, Id-Vds characteristics, Id-Vgs characteristics, etc.) can be obtained.
  • the present invention is not limited to the above-mentioned embodiment.
  • the configurations of the above embodiments may be arbitrarily combined.
  • the film forming apparatus 10 may not include at least one of the nozzles 16a and 16c.
  • the film forming apparatus 10 may be a face-up type film forming apparatus. That is, one surface (film formation surface) of the workpiece P may face upward in the vertical direction. Further, the nozzle 18 may be disposed between the nozzle 16a and the nozzle 16b.

Abstract

 This film formation device is provided with: a processing chamber that accommodates an object to be processed; a first nozzle that sprays the object to be processed with a gas including a carrier gas and a vapor deposition material for depositing a film on the object to be processed; a second nozzle that sprays a first inert gas on the film; and a temperature adjuster that adjusts the temperature of the first inert gas.

Description

成膜装置及び成膜方法Film forming apparatus and film forming method
 本発明は、成膜装置及び成膜方法に関する。 The present invention relates to a film forming apparatus and a film forming method.
 蒸着材料とキャリアガスの混合ガスを基板上に噴き付けることによって、基板上に膜を蒸着する成膜方法が知られている(例えば特許文献1参照)。この成膜方法では、複数のノズルから順番に蒸着材料を基板に噴き付けることによって、基板上に複数の有機膜を連続的に蒸着することができる。これにより、有機EL素子を製造することができる。 A film forming method for depositing a film on a substrate by spraying a mixed gas of a deposition material and a carrier gas onto the substrate is known (see, for example, Patent Document 1). In this film forming method, a plurality of organic films can be continuously deposited on a substrate by spraying a deposition material onto the substrate in order from a plurality of nozzles. Thereby, an organic EL element can be manufactured.
特開2007-169728号公報JP 2007-169728 A
 しかしながら、膜が蒸着される被処理体の表面、又は、蒸着された膜の表面の温度を調節することは行われていない。被処理体又は膜の温度を調節するために、例えば被処理体を保持するステージ内に埋め込まれたヒーターで加熱を行うと、被処理体全体が加熱されるので、被処理体の内部が熱の影響を受けてしまう。被処理体が熱に弱い有機膜を含む場合には、熱の影響が顕著となる。例えば、有機EL素子又は太陽電池等に用いられる複数の有機膜を基板上に形成する場合、ステージ内のヒーターにより基板を加熱すると、既に基板上に形成された有機膜が変質又は分解するおそれがある。このため、熱に弱い膜(例えば有機膜)上に膜を形成する際に温度調節を行うことは困難である。 However, it is not performed to adjust the temperature of the surface of the object on which the film is deposited or the temperature of the deposited film. In order to adjust the temperature of the object to be processed or the film, for example, when heating is performed with a heater embedded in a stage that holds the object to be processed, the entire object to be processed is heated. Will be affected. When the object to be processed includes an organic film that is weak against heat, the influence of heat becomes significant. For example, when a plurality of organic films used for an organic EL element or a solar cell are formed on a substrate, the organic film already formed on the substrate may be altered or decomposed when the substrate is heated by a heater in the stage. is there. For this reason, it is difficult to adjust the temperature when forming a film on a heat-sensitive film (for example, an organic film).
 本発明は、上記事情に鑑みて為されたものであり、被処理体の表面又は被処理体上に蒸着された膜の表面を局所的に所望の温度に調節することができる成膜装置及び成膜方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a film forming apparatus capable of locally adjusting a surface of a target object or a surface of a film deposited on the target object to a desired temperature, and An object is to provide a film forming method.
 上述の課題を解決するため、本発明の一側面に係る成膜装置は、被処理体を収容する処理チャンバと、前記被処理体上に膜を蒸着するための蒸着材料及びキャリアガスを含むガスを前記被処理体に噴き付ける第1のノズルと、第1の不活性ガスを前記膜に噴き付ける第2のノズルと、前記第1の不活性ガスの温度を調節する温度調節器とを備える。 In order to solve the above-described problem, a film forming apparatus according to one aspect of the present invention includes a processing chamber for storing a target object, a gas containing a deposition material and a carrier gas for depositing a film on the target object. A first nozzle that sprays the object to be processed, a second nozzle that sprays the first inert gas onto the film, and a temperature controller that adjusts the temperature of the first inert gas. .
 この成膜装置では、温度調節器によって温度調節された第1の不活性ガスが、被処理体上に蒸着された膜に第2のノズルから噴き付けられる。これにより、被処理体の温度変化を抑制しながら、膜の表面を局所的に所望の温度に調節することができる。 In this film forming apparatus, the first inert gas whose temperature is adjusted by the temperature controller is sprayed from the second nozzle onto the film deposited on the object to be processed. Thereby, the surface of a film | membrane can be locally adjusted to desired temperature, suppressing the temperature change of a to-be-processed object.
 本発明の別の一側面に係る成膜装置は、被処理体を収容する処理チャンバと、前記被処理体上に膜を蒸着するための蒸着材料及びキャリアガスを含むガスを前記被処理体に噴き付ける第1のノズルと、前記ガスを前記被処理体に噴き付ける前に、第1の不活性ガスを前記被処理体に噴き付ける第2のノズルと、前記第1の不活性ガスの温度を調節する温度調節器とを備える。 According to another aspect of the present invention, a film forming apparatus includes a processing chamber for storing a target object, and a gas containing a deposition material and a carrier gas for depositing a film on the target target object. A first nozzle for spraying, a second nozzle for spraying a first inert gas on the object to be processed before the gas is sprayed on the object to be processed, and a temperature of the first inert gas And a temperature controller for adjusting the temperature.
 この成膜装置では、温度調節器によって温度調節された第1の不活性ガスが被処理体に第2のノズルから噴き付けられる。これにより、被処理体の表面を局所的に所望の温度に調節することができる。その結果、良好な条件で被処理体上に膜を蒸着することができる。 In this film forming apparatus, the first inert gas whose temperature is adjusted by the temperature controller is sprayed from the second nozzle to the object to be processed. Thereby, the surface of a to-be-processed object can be locally adjusted to desired temperature. As a result, a film can be deposited on the object to be processed under favorable conditions.
 前記第1の不活性ガスには実質的に蒸着材料が添加されていなくてもよい。この場合、被処理体又は膜の表面に意図しない膜が蒸着することを抑制できる。 The vapor deposition material may not be substantially added to the first inert gas. In this case, it is possible to suppress the deposition of an unintended film on the surface of the object to be processed or the film.
 実質的に蒸着材料が添加されていない不活性ガスは、蒸着材料が全く添加されていない不活性ガスだけでなく、膜が蒸着されない程度の微量の蒸着材料が添加された不活性ガスも含む。 The inert gas to which substantially no vapor deposition material is added includes not only an inert gas to which no vapor deposition material is added, but also an inert gas to which a very small amount of vapor deposition material to which no film is deposited is added.
 前記温度調節器が、前記第1の不活性ガスを加熱するヒーターであってもよい。この場合、被処理体又は膜の表面を局所的に加熱することができる。 The heater may be a heater that heats the first inert gas. In this case, the surface of the object to be processed or the film can be locally heated.
 前記温度調節器が、前記第1の不活性ガスを冷却する冷却器であってもよい。この場合、被処理体又は膜の表面を局所的に冷却することができる。 The temperature controller may be a cooler that cools the first inert gas. In this case, the surface of the object to be processed or the film can be locally cooled.
 前記温度調節器が、前記第1の不活性ガスを加熱するヒーターであり、上記成膜装置が、加熱された前記第1の不活性ガスを前記膜に噴き付けた後、第2の不活性ガスを前記膜に噴き付ける第3のノズルと、前記第2の不活性ガスを冷却する冷却器とを更に備えてもよい。 The temperature controller is a heater that heats the first inert gas, and the film forming apparatus sprays the heated first inert gas onto the film, and then a second inert gas. You may further provide the 3rd nozzle which sprays gas on the said film | membrane, and the cooler which cools the said 2nd inert gas.
 この場合、加熱された膜の表面を局所的に冷却することができる。第2の不活性ガスは、第1の不活性ガスと同じでもよいし、異なってもよい。 In this case, the surface of the heated film can be locally cooled. The second inert gas may be the same as or different from the first inert gas.
 前記温度調節器が、前記第1の不活性ガスを加熱するヒーターであり、上記成膜装置が、加熱された前記第1の不活性ガスを前記被処理体に噴き付けた後、前記ガスを前記被処理体に噴き付ける前に、第2の不活性ガスを前記被処理体に噴き付ける第3のノズルと、前記第2の不活性ガスを冷却する冷却器とを更に備えてもよい。 The temperature controller is a heater for heating the first inert gas, and the film forming apparatus sprays the heated first inert gas on the object to be processed, and then the gas is Prior to spraying on the object to be processed, a third nozzle for spraying the second inert gas onto the object to be processed and a cooler for cooling the second inert gas may be further provided.
 この場合、加熱された被処理体の表面を局所的に冷却することができる。その結果、良好な条件で被処理体上に膜を蒸着することができる。 In this case, the surface of the heated object to be processed can be locally cooled. As a result, a film can be deposited on the object to be processed under favorable conditions.
 本発明の一側面に係る成膜方法は、蒸着材料及びキャリアガスを含むガスを被処理体上に噴き付けることによって、前記被処理体上に膜を蒸着する工程と、温度調節された第1の不活性ガスを前記膜に噴き付ける工程とを含む。 A film forming method according to one aspect of the present invention includes a step of depositing a film on a target object by spraying a gas containing a deposition material and a carrier gas on the target object, and a temperature-controlled first. Spraying the inert gas on the film.
 この成膜方法では、温度調節された第1の不活性ガスが、被処理体上に蒸着された膜に噴き付けられる。これにより、被処理体の温度変化を抑制しながら、膜の表面を局所的に所望の温度に調節することができる。 In this film formation method, the temperature-controlled first inert gas is sprayed onto the film deposited on the object to be processed. Thereby, the surface of a film | membrane can be locally adjusted to desired temperature, suppressing the temperature change of a to-be-processed object.
 本発明の別の一側面に係る成膜方法は、温度調節された第1の不活性ガスを被処理体に噴き付ける工程と、前記第1の不活性ガスを被処理体に噴き付けた後、蒸着材料及びキャリアガスを含むガスを前記被処理体上に噴き付けることによって、前記被処理体上に膜を蒸着する工程とを含む。 A film forming method according to another aspect of the present invention includes a step of spraying a temperature-adjusted first inert gas onto a target object, and after spraying the first inert gas onto a target object. And depositing a film on the target object by spraying a gas containing a deposition material and a carrier gas on the target object.
 この成膜方法では、温度調節された第1の不活性ガスが、被処理体に噴き付けられる。これにより、被処理体の表面を局所的に所望の温度に調節することができる。その結果、良好な条件で被処理体上に膜を蒸着することができる。 In this film forming method, the temperature-controlled first inert gas is sprayed on the object to be processed. Thereby, the surface of a to-be-processed object can be locally adjusted to desired temperature. As a result, a film can be deposited on the object to be processed under favorable conditions.
 前記第1の不活性ガスには実質的に蒸着材料が添加されていなくてもよい。この場合、被処理体又は膜の表面に意図しない膜が蒸着することを抑制できる。 The vapor deposition material may not be substantially added to the first inert gas. In this case, it is possible to suppress the deposition of an unintended film on the surface of the object to be processed or the film.
 加熱された前記第1の不活性ガスを前記膜に噴き付けることによって、前記膜を加熱してもよい。この場合、膜の表面を局所的に加熱することができる。 The film may be heated by spraying the heated first inert gas onto the film. In this case, the surface of the film can be locally heated.
 上記成膜方法は、前記膜を加熱した後、冷却された第2の不活性ガスを前記膜に噴き付けることによって、前記膜を冷却する工程を更に含んでもよい。この場合、加熱された膜の表面を局所的に冷却することができる。 The film forming method may further include a step of cooling the film by heating the film and then spraying a cooled second inert gas onto the film. In this case, the surface of the heated film can be locally cooled.
 冷却された前記第1の不活性ガスを前記膜に噴き付けることによって、前記膜を冷却してもよい。この場合、膜の表面を局所的に冷却することができる。 The film may be cooled by spraying the cooled first inert gas onto the film. In this case, the surface of the film can be locally cooled.
 加熱された前記第1の不活性ガスを前記被処理体に噴き付けることによって、前記被処理体を加熱してもよい。この場合、被処理体の表面を局所的に加熱することができる。 The target object may be heated by spraying the heated first inert gas on the target object. In this case, the surface of the object to be processed can be locally heated.
 上記成膜方法は、前記被処理体を加熱した後、冷却された第2の不活性ガスを前記被処理体に噴き付けることによって、前記被処理体を冷却する工程を更に含み、前記被処理体を冷却した後、前記被処理体上に膜を蒸着してもよい。この場合、加熱された被処理体の表面を局所的に冷却することができる。その結果、良好な条件で被処理体上に膜を蒸着することができる。 The film forming method further includes a step of cooling the object to be processed by heating the object to be processed and then spraying a cooled second inert gas onto the object to be processed. After cooling the body, a film may be deposited on the object to be processed. In this case, the surface of the heated object to be processed can be locally cooled. As a result, a film can be deposited on the object to be processed under favorable conditions.
 冷却された前記第1の不活性ガスを前記被処理体に噴き付けることによって、前記被処理体を冷却してもよい。この場合、被処理体の表面を局所的に冷却することができる。 The object to be processed may be cooled by spraying the cooled first inert gas on the object to be processed. In this case, the surface of the object to be processed can be locally cooled.
 本発明によれば、被処理体の表面又は被処理体上に蒸着された膜の表面を局所的に所望の温度に調節することができる成膜装置及び成膜方法が提供される。 According to the present invention, there is provided a film forming apparatus and a film forming method capable of locally adjusting the surface of a target object or the surface of a film deposited on the target object to a desired temperature.
第1実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 1st Embodiment. 第1実施形態に係る成膜装置を用いて製造される電子デバイスの一例を模式的に示す図である。It is a figure which shows typically an example of the electronic device manufactured using the film-forming apparatus which concerns on 1st Embodiment. 第1実施形態に係る成膜方法を示すフローチャートである。It is a flowchart which shows the film-forming method which concerns on 1st Embodiment. 第2実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 2nd Embodiment. 第3実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 3rd Embodiment. 第3実施形態に係る成膜方法を示すフローチャートである。It is a flowchart which shows the film-forming method which concerns on 3rd Embodiment. 第4実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 4th Embodiment. 第4実施形態に係る成膜方法を示すフローチャートである。It is a flowchart which shows the film-forming method which concerns on 4th Embodiment. 第5実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 5th Embodiment. 第6実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 6th Embodiment. 第6実施形態に係る成膜方法を示すフローチャートである。It is a flowchart which shows the film-forming method which concerns on 6th Embodiment. 第7実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 7th Embodiment. 第7実施形態に係る成膜装置を用いて製造される電子デバイスの一例を模式的に示す図である。It is a figure which shows typically an example of the electronic device manufactured using the film-forming apparatus which concerns on 7th Embodiment. 第8実施形態に係る成膜装置を模式的に示す図である。It is a figure which shows typically the film-forming apparatus which concerns on 8th Embodiment. 第8実施形態に係る成膜装置を用いて製造される電子デバイスの一例を模式的に示す図である。It is a figure which shows typically an example of the electronic device manufactured using the film-forming apparatus which concerns on 8th Embodiment.
 以下、添付図面を参照しながら本発明の第1~第8実施形態を詳細に説明する。図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。 Hereinafter, first to eighth embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant descriptions are omitted.
<第1実施形態>
 図1は、第1実施形態に係る成膜装置を模式的に示す図である。図1には、XYZ直交座標系が示されている。
<First Embodiment>
FIG. 1 is a diagram schematically showing a film forming apparatus according to the first embodiment. FIG. 1 shows an XYZ orthogonal coordinate system.
 図1に示される成膜装置10は、被処理体Pを収容する処理チャンバ12を備える。被処理体Pの一方の面(成膜面)は例えば鉛直方向(Z方向)において下を向いている。すなわち、成膜装置10はフェースダウン型の成膜装置である。被処理体Pは、例えば、基板Sと、基板S上に形成された電極52と、電極52上に形成された膜56aとを備える。基板Sは、例えばガラス基板等の透明基板である。基板Sの形状は、例えば矩形である。電極52は、例えばITO等の透明電極である。処理チャンバ12には、配管12gを介して真空ポンプ15が接続されている。真空ポンプ15により、処理チャンバ12内を減圧することができる。 The film forming apparatus 10 shown in FIG. 1 includes a processing chamber 12 that accommodates a workpiece P. One surface (film formation surface) of the workpiece P is directed downward in the vertical direction (Z direction), for example. That is, the film forming apparatus 10 is a face-down type film forming apparatus. The workpiece P includes, for example, a substrate S, an electrode 52 formed on the substrate S, and a film 56a formed on the electrode 52. The substrate S is a transparent substrate such as a glass substrate. The shape of the substrate S is, for example, a rectangle. The electrode 52 is a transparent electrode such as ITO. A vacuum pump 15 is connected to the processing chamber 12 via a pipe 12g. The inside of the processing chamber 12 can be depressurized by the vacuum pump 15.
 成膜装置10は、被処理体P上に膜56bを蒸着するための蒸着材料及びキャリアガスを含むガスを被処理体Pに噴き付けるノズル16b(第1のノズル)を備える。蒸着材料は、気化した1種類又は複数種類の有機材料であってもよい。キャリアガスとしては、例えばArガス、窒素ガス等の不活性ガスが挙げられる。成膜装置10は、ノズル16bと同様の構造を有するノズル16a及びノズル16cを備えてもよい。ノズル16aは、電極52上に膜56aを蒸着するための蒸着材料及びキャリアガスを電極52に噴き付ける。ノズル16cは、膜56b上に膜56c(図2参照)を蒸着するための蒸着材料及びキャリアガスを膜56bに噴き付ける。ノズル16a~16cは、被処理体Pの移動方向(X方向)に沿ってこの順に配列される。膜56a~膜56cは、例えば有機膜である。 The film forming apparatus 10 includes a nozzle 16b (first nozzle) for spraying a gas containing a deposition material and a carrier gas for depositing the film 56b on the target object P onto the target object P. The vapor deposition material may be one or more kinds of vaporized organic materials. Examples of the carrier gas include inert gases such as Ar gas and nitrogen gas. The film forming apparatus 10 may include a nozzle 16a and a nozzle 16c having the same structure as the nozzle 16b. The nozzle 16 a sprays a deposition material and a carrier gas for depositing the film 56 a on the electrode 52 onto the electrode 52. The nozzle 16c sprays a deposition material and a carrier gas for depositing the film 56c (see FIG. 2) on the film 56b. The nozzles 16a to 16c are arranged in this order along the moving direction (X direction) of the workpiece P. The films 56a to 56c are, for example, organic films.
 ノズル16a~16cには、処理チャンバ12外に配置された蒸着材料供給源20a~20cがそれぞれ配管12a~12cを介して接続されている。蒸着材料供給源20a~20cでは、互いに異なる蒸着材料が気化する。蒸着材料供給源20a~20cには、例えば固体の有機材料が収容されている。加熱により固体の有機材料が気化する。蒸着材料供給源20a~20cには、それぞれ配管22a~22cを介して不活性ガス供給源24が接続されている。不活性ガス供給源24から供給される不活性ガスは、蒸着材料供給源20a~20cにおいて気化された蒸着材料とそれぞれ混合され、処理チャンバ12内に導入される。これにより、基板S及び電極52上に、複数種類の膜56a~56cを連続的に蒸着させることができる。 Vapor deposition material supply sources 20a to 20c disposed outside the processing chamber 12 are connected to the nozzles 16a to 16c via pipes 12a to 12c, respectively. In the vapor deposition material supply sources 20a to 20c, different vapor deposition materials are vaporized. The vapor deposition material supply sources 20a to 20c contain, for example, solid organic materials. Solid organic material is vaporized by heating. An inert gas supply source 24 is connected to the vapor deposition material supply sources 20a to 20c via pipes 22a to 22c, respectively. The inert gas supplied from the inert gas supply source 24 is mixed with the vapor deposition material vaporized in the vapor deposition material supply sources 20a to 20c, and introduced into the processing chamber 12. Thereby, a plurality of types of films 56 a to 56 c can be continuously deposited on the substrate S and the electrode 52.
 ノズル16aと蒸着材料供給源20aとの間には、配管12aの途中に弁26aが配置されている。弁26aと蒸着材料供給源20aとの間には、配管12aを接続する接続部28aが配置されている。蒸着材料供給源20aと不活性ガス供給源24との間には、配管22aの途中に弁32aが配置されている。弁32aと蒸着材料供給源20aとの間には、配管22aを接続する接続部30aが配置されている。弁32aと不活性ガス供給源24との間には、マスフローコントローラー34aが配置されている。同様に、ノズル16bと不活性ガス供給源24との間には、弁26b、接続部28b、接続部30b、弁32b及びマスフローコントローラー34bがこの順に配列されている。同様に、ノズル16cと不活性ガス供給源24との間には、弁26c、接続部28c、接続部30c、弁32c及びマスフローコントローラー34cがこの順に配列されている。 Between the nozzle 16a and the vapor deposition material supply source 20a, a valve 26a is disposed in the middle of the pipe 12a. A connecting portion 28a for connecting the pipe 12a is disposed between the valve 26a and the vapor deposition material supply source 20a. Between the vapor deposition material supply source 20a and the inert gas supply source 24, a valve 32a is arranged in the middle of the pipe 22a. Between the valve 32a and the vapor deposition material supply source 20a, the connection part 30a which connects the piping 22a is arrange | positioned. A mass flow controller 34 a is disposed between the valve 32 a and the inert gas supply source 24. Similarly, between the nozzle 16b and the inert gas supply source 24, the valve 26b, the connection part 28b, the connection part 30b, the valve 32b, and the mass flow controller 34b are arranged in this order. Similarly, between the nozzle 16c and the inert gas supply source 24, a valve 26c, a connection portion 28c, a connection portion 30c, a valve 32c, and a mass flow controller 34c are arranged in this order.
 成膜装置10は、不活性ガスG1(第1の不活性ガス)を膜56bに噴き付けるノズル18(第2のノズル)を備える。不活性ガスG1は、例えばArガス等の希ガスでもよいし、窒素ガスでもよい。不活性ガスG1は、上記キャリアガスと同じでもよいし、異なってもよい。不活性ガスG1には、蒸着材料が意図的に添加されなくてもよいし、膜が蒸着されない程度の微量の蒸着材料が微量に添加されてもよい。 The film forming apparatus 10 includes a nozzle 18 (second nozzle) that sprays an inert gas G1 (first inert gas) onto the film 56b. The inert gas G1 may be a rare gas such as Ar gas or nitrogen gas. The inert gas G1 may be the same as or different from the carrier gas. A vapor deposition material may not be intentionally added to the inert gas G1, or a trace amount of a vapor deposition material that does not deposit a film may be added in a trace amount.
 成膜装置10は、不活性ガスG1の温度を調節する温度調節器36を備える。温度調節器36は、配管12eを介してノズル18に接続されている。温度調節器36には、配管22eを介して不活性ガス供給源24が接続されている。ノズル18と温度調節器36との間には、弁26e及び接続部28eがこの順に配列されている。温度調節器36と不活性ガス供給源24との間には、接続部30e、弁32e及びマスフローコントローラー34eがこの順に配列されている。不活性ガス供給源24から供給される不活性ガスは、温度調節器36において温度調節され、温度調節された不活性ガスG1として処理チャンバ12内に導入される。 The film forming apparatus 10 includes a temperature controller 36 that adjusts the temperature of the inert gas G1. The temperature controller 36 is connected to the nozzle 18 through the pipe 12e. An inert gas supply source 24 is connected to the temperature controller 36 via a pipe 22e. Between the nozzle 18 and the temperature controller 36, the valve 26e and the connection part 28e are arranged in this order. Between the temperature controller 36 and the inert gas supply source 24, the connection part 30e, the valve 32e, and the mass flow controller 34e are arranged in this order. The temperature of the inert gas supplied from the inert gas supply source 24 is adjusted by the temperature controller 36 and is introduced into the processing chamber 12 as the temperature-controlled inert gas G1.
 ノズル16a~16cの先端には、例えばY方向に延びる矩形の開口が形成されている。すなわち、成膜装置10は、いわゆるリニアソース型の成膜装置である。ノズル16a~16cの開口から蒸着材料及びキャリアガスを含むガスが放出される。ノズル16a~16cの開口上には、蒸着材料を遮断可能なシャッター17a~17cがそれぞれ配置されてもよい。ノズル18の先端には、例えばY方向に延びる矩形の開口が形成されている。ノズル18の開口から温度調節された不活性ガスG1が放出される。ノズル18の開口上には、不活性ガスG1を遮断可能なシャッター17eが配置されてもよい。図1ではシャッター17eが開いているので、ノズル18の開口から噴き出す不活性ガスG1が膜56bの表面に到達する。シャッター17a~17cは閉じているので、ノズル16a~16cの開口から噴き出すガスは膜56bに到達しない。シャッター17a~17c及び17eは、処理チャンバ12に接続されており、例えばY方向に沿った回転軸を中心に回転する。これにより、シャッター17a~17c及び17eを、必要に応じてノズル16a~16c及び18の開口上に配置したり当該開口上から退避させたりすることができる。 At the tip of the nozzles 16a to 16c, for example, a rectangular opening extending in the Y direction is formed. That is, the film forming apparatus 10 is a so-called linear source type film forming apparatus. A gas containing a deposition material and a carrier gas is released from the openings of the nozzles 16a to 16c. On the openings of the nozzles 16a to 16c, shutters 17a to 17c capable of blocking the vapor deposition material may be disposed, respectively. For example, a rectangular opening extending in the Y direction is formed at the tip of the nozzle 18. The temperature-controlled inert gas G1 is released from the opening of the nozzle 18. A shutter 17e capable of blocking the inert gas G1 may be disposed on the opening of the nozzle 18. In FIG. 1, since the shutter 17e is open, the inert gas G1 ejected from the opening of the nozzle 18 reaches the surface of the film 56b. Since the shutters 17a to 17c are closed, the gas ejected from the openings of the nozzles 16a to 16c does not reach the film 56b. The shutters 17a to 17c and 17e are connected to the processing chamber 12, and rotate around a rotation axis along the Y direction, for example. As a result, the shutters 17a to 17c and 17e can be arranged on the openings of the nozzles 16a to 16c and 18 and can be retracted from the openings as necessary.
 成膜装置10は、被処理体Pを保持するステージ38をX方向に駆動する駆動装置40を備えてもよい。これにより、ノズル16a~16c及び18に対して相対的に被処理体PがX方向に沿って移動する。矢印Aはステージ38の移動方向を示す。X方向において、ノズル18は、ノズル16bの後段かつノズル16cの前段に配置されている。したがって、被処理体Pは、X方向に移動することによって、ノズル16a、16b、18、16cの開口に順番に対向配置されることとなる。 The film forming apparatus 10 may include a driving device 40 that drives the stage 38 holding the workpiece P in the X direction. As a result, the workpiece P moves in the X direction relative to the nozzles 16a to 16c and 18. An arrow A indicates the moving direction of the stage 38. In the X direction, the nozzle 18 is disposed downstream of the nozzle 16b and upstream of the nozzle 16c. Accordingly, the object P to be processed is disposed so as to face the openings of the nozzles 16a, 16b, 18, 16c in order by moving in the X direction.
 ステージ38は、被処理体Pを保持する静電チャックを内蔵してもよい。ステージ38は、例えば支持部38aによってレール42に接続されている。レール42は処理チャンバ12に接続されている。この場合、駆動装置40によってステージ38及び支持部38aはレール42上をスライドするように移動する。被処理体Pは、処理チャンバ12に形成されたゲートバルブ44aを通って処理チャンバ12内に導入可能であり、処理チャンバ12に形成されたゲートバルブ44bを通って処理チャンバ12外に搬出可能である。 The stage 38 may incorporate an electrostatic chuck that holds the workpiece P. The stage 38 is connected to the rail 42 by, for example, a support portion 38a. The rail 42 is connected to the processing chamber 12. In this case, the stage 38 and the support portion 38 a are moved by the drive device 40 so as to slide on the rail 42. The workpiece P can be introduced into the processing chamber 12 through a gate valve 44a formed in the processing chamber 12, and can be carried out of the processing chamber 12 through a gate valve 44b formed in the processing chamber 12. is there.
 成膜装置10では、温度調節器36によって温度調節された不活性ガスG1が、被処理体P上に蒸着された膜56bにノズル18から噴き付けられる。これにより、被処理体Pの温度変化を抑制しながら、膜56bの表面を局所的に所望の温度に調節することができる。その結果、膜56bの結晶化速度又は膜56cの成膜速度をコントロールすることができる。膜56bの表面においてライン状の領域を所望の温度に調節することができる。ライン状の領域は、例えば回路パターンとして利用可能である。不活性ガスG1に実質的に蒸着材料が添加されていない場合には、膜56bの表面に意図しない膜が蒸着することを抑制できる。 In the film forming apparatus 10, the inert gas G <b> 1 whose temperature has been adjusted by the temperature controller 36 is sprayed from the nozzle 18 onto the film 56 b deposited on the workpiece P. Thereby, the surface of the film 56b can be locally adjusted to a desired temperature while suppressing the temperature change of the workpiece P. As a result, the crystallization speed of the film 56b or the film formation speed of the film 56c can be controlled. The linear region on the surface of the film 56b can be adjusted to a desired temperature. The line-shaped region can be used as a circuit pattern, for example. When the vapor deposition material is not substantially added to the inert gas G1, it is possible to suppress the deposition of an unintended film on the surface of the film 56b.
 温度調節器36は、不活性ガスG1を加熱するヒーターであってもよい。この場合、膜56bの表面を局所的に加熱することができる。例えば、膜56bがアモルファス膜の場合、膜56bの表面をアニール処理することによって結晶化を促進することができる。加熱によって、結晶化の際に核となりうる物質又は水分を除去することができるので、結晶粒界の少ない結晶からなる膜56bを形成することができる。このような膜56bは、高い移動度が求められるデバイス(例えば有機トランジスタ等)において有効である。膜56bの表面を所望の温度に加熱することにより、良好な条件で膜56b上に膜56cを蒸着することができる。膜56bにドーパントが含まれている場合、膜56bの表面を加熱することによって当該ドーパントの拡散を制御することができる。膜56b上に膜56cが蒸着される場合には、良好な条件で膜56b上に膜56cを蒸着することができる。不活性ガスG1の温度は、例えば300~400Kに調節される。被処理体P全体が加熱されるわけではないので、被処理体P中の基板S、電極52、膜56a等がダメージを受け難い。 The temperature controller 36 may be a heater that heats the inert gas G1. In this case, the surface of the film 56b can be locally heated. For example, when the film 56b is an amorphous film, crystallization can be promoted by annealing the surface of the film 56b. By heating, a substance or moisture that can be a nucleus in crystallization can be removed, so that a film 56b made of crystals with few crystal grain boundaries can be formed. Such a film 56b is effective in a device that requires high mobility (for example, an organic transistor). By heating the surface of the film 56b to a desired temperature, the film 56c can be deposited on the film 56b under favorable conditions. In the case where a dopant is contained in the film 56b, diffusion of the dopant can be controlled by heating the surface of the film 56b. In the case where the film 56c is deposited on the film 56b, the film 56c can be deposited on the film 56b under favorable conditions. The temperature of the inert gas G1 is adjusted to 300 to 400K, for example. Since the entire object to be processed P is not heated, the substrate S, the electrode 52, the film 56a, etc. in the object to be processed P are hardly damaged.
 温度調節器36は、不活性ガスG1を冷却する冷却器であってもよい。この場合、膜56bの表面を局所的に冷却することができる。膜56bの表面を所望の温度に冷却することにより、良好な条件で膜56b上に膜56cを蒸着することができる。 The temperature controller 36 may be a cooler that cools the inert gas G1. In this case, the surface of the film 56b can be locally cooled. By cooling the surface of the film 56b to a desired temperature, the film 56c can be deposited on the film 56b under favorable conditions.
 図2は、第1実施形態に係る成膜装置を用いて製造される電子デバイスの一例を模式的に示す図である。図2に示される電子デバイス50は、例えば有機EL素子である。電子デバイス50は、基板S上に形成された電極52(陽極)と電極54(陰極)とを備えている。電極52と電極54との間には、発光層56が設けられている。発光層56は、例えば有機膜等の膜56a~56cを備えている。膜56a~56cは、電極52から電極54に向かってこの順に設けられている。電極52と電極54との間には、配線を介して電源58が接続されている。電源58により電流が発光層56に注入されると、発光層56から放出された光60が電極52及び基板Sを通過して外部に放出される。 FIG. 2 is a diagram schematically illustrating an example of an electronic device manufactured using the film forming apparatus according to the first embodiment. The electronic device 50 shown in FIG. 2 is, for example, an organic EL element. The electronic device 50 includes an electrode 52 (anode) and an electrode 54 (cathode) formed on the substrate S. A light emitting layer 56 is provided between the electrode 52 and the electrode 54. The light emitting layer 56 includes films 56a to 56c such as organic films. The films 56a to 56c are provided in this order from the electrode 52 to the electrode 54. A power source 58 is connected between the electrode 52 and the electrode 54 via wiring. When a current is injected into the light emitting layer 56 by the power source 58, the light 60 emitted from the light emitting layer 56 passes through the electrode 52 and the substrate S and is emitted to the outside.
 膜56a~56cは、成膜装置10により形成可能である。この場合、これら3層を形成するための3種類の蒸着材料をノズル16a~16cからそれぞれ供給する。成膜装置10を用いると膜56bの表面を局所的に所望の温度に調節することができるので、良好な特性を有する電子デバイス50を製造することができる。 The films 56a to 56c can be formed by the film forming apparatus 10. In this case, three kinds of vapor deposition materials for forming these three layers are supplied from the nozzles 16a to 16c, respectively. When the film forming apparatus 10 is used, the surface of the film 56b can be locally adjusted to a desired temperature, so that the electronic device 50 having good characteristics can be manufactured.
 電子デバイス50は、例えば半導体デバイス、太陽電池、光デバイス等であってもよい。 The electronic device 50 may be, for example, a semiconductor device, a solar cell, an optical device, or the like.
 図3は、第1実施形態に係る成膜方法を示すフローチャートである。本実施形態に係る成膜方法は、上述の成膜装置10を用いて以下のように実施可能である。 FIG. 3 is a flowchart showing the film forming method according to the first embodiment. The film forming method according to the present embodiment can be performed as follows using the film forming apparatus 10 described above.
(膜56aの成膜)
 まず、必要に応じて、膜56aを蒸着するための蒸着材料及びキャリアガスを含むガスを基板S上の電極52に噴き付けることによって、電極52上に膜56aを蒸着する(工程S1)。この時、基板S及び電極52は、ノズル16aの開口に対向配置される。
(Deposition of the film 56a)
First, as necessary, a film 56a is deposited on the electrode 52 by spraying a gas containing a deposition material and a carrier gas for depositing the film 56a onto the electrode 52 on the substrate S (step S1). At this time, the substrate S and the electrode 52 are disposed to face the opening of the nozzle 16a.
(膜56bの成膜)
 次に、膜56bを蒸着するための蒸着材料及びキャリアガスを含むガスを被処理体P上に噴き付けることによって、被処理体P上に膜56bを蒸着する(工程S2)。この時、基板S、電極52及び膜56aは、ノズル16bの開口に対向配置される。
(Deposition of the film 56b)
Next, the film 56b is vapor-deposited on the to-be-processed object P by spraying the gas containing the vapor deposition material and carrier gas for vapor-depositing the film 56b on the to-be-processed object P (process S2). At this time, the substrate S, the electrode 52, and the film 56a are disposed to face the opening of the nozzle 16b.
(加熱された不活性ガスG1の噴き付け)
 次に、加熱された不活性ガスG1を膜56bに噴き付ける(工程S3)。この時、被処理体Pは、ノズル18の開口に対向配置される(図1参照)。
(Blowing of heated inert gas G1)
Next, the heated inert gas G1 is sprayed onto the film 56b (step S3). At this time, the workpiece P is disposed opposite to the opening of the nozzle 18 (see FIG. 1).
(膜56cの成膜)
 次に、必要に応じて、膜56cを蒸着するための蒸着材料及びキャリアガスを含むガスを膜56bに噴き付けることによって、膜56b上に膜56cを蒸着する(工程S4)。この時、被処理体P及び膜56cは、ノズル16cの開口に対向配置される。
(Deposition of the film 56c)
Next, if necessary, a film 56c is deposited on the film 56b by spraying a gas containing a deposition material and a carrier gas for depositing the film 56c onto the film 56b (Step S4). At this time, the object to be processed P and the film 56c are disposed to face the opening of the nozzle 16c.
 本実施形態の成膜方法では、工程S2において、加熱された不活性ガスG1が、被処理体P上に蒸着された膜56bに噴き付けられる。これにより、被処理体Pの温度上昇を抑制しながら、膜56bの表面を局所的に所望の温度に加熱することができる。 In the film forming method of the present embodiment, the heated inert gas G1 is sprayed onto the film 56b deposited on the workpiece P in step S2. Thereby, the surface of the film 56b can be locally heated to a desired temperature while suppressing the temperature rise of the workpiece P.
 工程S3において、加熱された不活性ガスG1に代えて冷却された不活性ガスG1を膜56bに噴き付けることによって、膜56bを冷却してもよい。この場合、被処理体Pの温度降下を抑制しながら、膜56bの表面を局所的に所望の温度に冷却することができる。 In step S3, the film 56b may be cooled by spraying a cooled inert gas G1 on the film 56b instead of the heated inert gas G1. In this case, the surface of the film 56b can be locally cooled to a desired temperature while suppressing the temperature drop of the workpiece P.
<第2実施形態>
 図4は、第2実施形態に係る成膜装置を模式的に示す図である。図4に示される成膜装置10Aは、ノズル18とノズル16cとの間隔D2がノズル18とノズル16bとの間隔D1よりも広くなっていること以外は成膜装置10と同一の構成を備えている。成膜装置10Aでは、少なくとも成膜装置10と同様の作用効果が得られる。成膜装置10に代えて成膜装置10Aを用いて、上記第1実施形態に係る成膜方法と同様に、第2実施形態に係る成膜方法を実施することもできる。成膜装置10Aでは、温度調節器36が不活性ガスG1を加熱するヒーターである場合、間隔D2を間隔D1よりも広くすることによって、加熱された膜56bを十分に冷却することができる。そのため、膜56bの表面を所望の温度まで冷却した後に、膜56b上に膜56cを蒸着することができる。例えば、間隔D2を適宜調整することによって、膜56bの結晶化速度をコントロールすることができる。
<Second Embodiment>
FIG. 4 is a diagram schematically showing a film forming apparatus according to the second embodiment. The film forming apparatus 10A shown in FIG. 4 has the same configuration as the film forming apparatus 10 except that the distance D2 between the nozzle 18 and the nozzle 16c is larger than the distance D1 between the nozzle 18 and the nozzle 16b. Yes. In the film forming apparatus 10A, at least the same effects as the film forming apparatus 10 can be obtained. The film forming method according to the second embodiment can be carried out by using the film forming device 10A instead of the film forming device 10 in the same manner as the film forming method according to the first embodiment. In the film forming apparatus 10A, when the temperature controller 36 is a heater that heats the inert gas G1, the heated film 56b can be sufficiently cooled by making the distance D2 wider than the distance D1. Therefore, after cooling the surface of the film 56b to a desired temperature, the film 56c can be deposited on the film 56b. For example, the crystallization speed of the film 56b can be controlled by appropriately adjusting the distance D2.
<第3実施形態>
 図5は、第3実施形態に係る成膜装置を模式的に示す図である。図5に示される成膜装置10Bの温度調節器36は、不活性ガスG1を加熱するヒーターである。成膜装置10Bは、加熱された不活性ガスG1を膜56bに噴き付けた後、不活性ガスG2(第2の不活性ガス)を膜56bに噴き付けるノズル18a(第3のノズル)と、不活性ガスG2を冷却する冷却器36aとを備える。冷却器36aは、配管12fを介してノズル18aに接続されている。冷却器36aには、配管22fを介して不活性ガス供給源24が接続されている。ノズル18aと冷却器36aとの間には、弁26f及び接続部28fがこの順に配列されている。冷却器36aと不活性ガス供給源24との間には、接続部30f、弁32f及びマスフローコントローラー34fがこの順に配列されている。不活性ガス供給源24から供給される不活性ガスは、冷却器36aにおいて冷却され、不活性ガスG2として処理チャンバ12内に導入される。ノズル18aの開口上には、不活性ガスG2を遮断可能なシャッター17fが配置されてもよい。
<Third Embodiment>
FIG. 5 is a diagram schematically showing a film forming apparatus according to the third embodiment. The temperature controller 36 of the film forming apparatus 10B shown in FIG. 5 is a heater that heats the inert gas G1. The film forming apparatus 10B includes a nozzle 18a (third nozzle) that sprays an inert gas G2 (second inert gas) onto the film 56b after the heated inert gas G1 is sprayed onto the film 56b. And a cooler 36a for cooling the inert gas G2. The cooler 36a is connected to the nozzle 18a via the pipe 12f. An inert gas supply source 24 is connected to the cooler 36a via a pipe 22f. Between the nozzle 18a and the cooler 36a, the valve 26f and the connection part 28f are arranged in this order. Between the cooler 36a and the inert gas supply source 24, a connecting portion 30f, a valve 32f, and a mass flow controller 34f are arranged in this order. The inert gas supplied from the inert gas supply source 24 is cooled in the cooler 36a, and is introduced into the processing chamber 12 as the inert gas G2. A shutter 17f capable of blocking the inert gas G2 may be disposed on the opening of the nozzle 18a.
 成膜装置10Bは、上記構成以外は成膜装置10と同一の構成を備えている。成膜装置10Bでは、少なくとも成膜装置10と同様の作用効果が得られる。成膜装置10Bでは、ノズル18aから噴射される不活性ガスG2によって、加熱された膜56bの表面を局所的に冷却することができる。成膜装置10Bでは、成膜装置10Aと同様の作用効果が得られる。成膜装置10Bでは、不活性ガスG1によって膜56bの表面が加熱された後、不活性ガスG2によって膜56bの表面が急冷(クエンチ)されるので、リフローにより膜56bの表面を平坦化することができる。 The film forming apparatus 10B has the same configuration as the film forming apparatus 10 except for the above configuration. In the film forming apparatus 10B, at least the same effects as the film forming apparatus 10 can be obtained. In the film forming apparatus 10B, the surface of the heated film 56b can be locally cooled by the inert gas G2 injected from the nozzle 18a. In the film forming apparatus 10B, the same effect as the film forming apparatus 10A can be obtained. In the film forming apparatus 10B, after the surface of the film 56b is heated by the inert gas G1, the surface of the film 56b is quenched (quenched) by the inert gas G2, so that the surface of the film 56b is flattened by reflow. Can do.
 図6は、第3実施形態に係る成膜方法を示すフローチャートである。本実施形態に係る成膜方法は、上述の成膜装置10Bを用いて実施可能である。本実施形態に係る成膜方法は、図3の工程S3と工程S4との間に、冷却された不活性ガスG2を膜56bに噴き付けることによって、膜56bを冷却する工程S3aを更に含む。このため、工程S3において加熱された膜56bの表面を、工程S3aにおいて局所的に冷却することができる。 FIG. 6 is a flowchart showing a film forming method according to the third embodiment. The film forming method according to the present embodiment can be performed using the above-described film forming apparatus 10B. The film forming method according to the present embodiment further includes a step S3a for cooling the film 56b by spraying the cooled inert gas G2 onto the film 56b between the step S3 and the step S4 in FIG. For this reason, the surface of the film 56b heated in the step S3 can be locally cooled in the step S3a.
<第4実施形態>
 図7は、第4実施形態に係る成膜装置を模式的に示す図である。図7に示される成膜装置10Cは、ノズル16a、16b及び18の配列順序が異なっていること以外は成膜装置10と同一の構成を備えている。成膜装置10Cでは、X方向において、ノズル18がノズル16aの前段に配置されている。したがって、成膜装置10Cは、被処理体P1上に膜56aを蒸着するための蒸着材料及びキャリアガスを含むガスを被処理体P1に噴き付けるノズル16a(第1のノズル)と、ノズル16aからガスを被処理体P1に噴き付ける前に、不活性ガスG1を被処理体P1に噴き付けるノズル18(第2のノズル)とを備える。被処理体P1は、基板S及び電極52を備える。
<Fourth embodiment>
FIG. 7 is a diagram schematically showing a film forming apparatus according to the fourth embodiment. The film forming apparatus 10C shown in FIG. 7 has the same configuration as the film forming apparatus 10 except that the arrangement order of the nozzles 16a, 16b and 18 is different. In the film forming apparatus 10C, the nozzle 18 is arranged in front of the nozzle 16a in the X direction. Accordingly, the film forming apparatus 10C includes a nozzle 16a (first nozzle) for spraying a gas containing a deposition material and a carrier gas for depositing the film 56a on the target object P1, and the nozzle 16a. A nozzle 18 (second nozzle) for spraying an inert gas G1 onto the object to be treated P1 before the gas is sprayed onto the object to be treated P1 is provided. The object P1 includes a substrate S and an electrode 52.
 成膜装置10Cでは、温度調節器36によって温度調節された不活性ガスG1が被処理体P1にノズル18から噴き付けられる。これにより、被処理体P1の表面を局所的に所望の温度に調節することができる。その結果、良好な条件で被処理体P1上に膜56aを蒸着することができる。さらに、膜56aの結晶化速度をコントロールすることができる。不活性ガスG1に実質的に蒸着材料が添加されていない場合には、被処理体P1の表面に意図しない膜が蒸着することを抑制できる。 In the film forming apparatus 10C, the inert gas G1 whose temperature has been adjusted by the temperature controller 36 is sprayed from the nozzle 18 onto the object P1. Thereby, the surface of the to-be-processed object P1 can be locally adjusted to desired temperature. As a result, the film 56a can be deposited on the workpiece P1 under favorable conditions. Furthermore, the crystallization speed of the film 56a can be controlled. When the vapor deposition material is not substantially added to the inert gas G1, it is possible to suppress the deposition of an unintended film on the surface of the object P1.
 温度調節器36が不活性ガスG1を加熱するヒーターである場合、被処理体P1の表面を局所的に加熱することができる。例えば、被処理体P1の表面に異物が付着している場合、被処理体P1の表面を加熱することによって異物を気化させ、被処理体P1の表面をクリーニングすることができる。被処理体P1の表面を所望の温度に加熱することにより、良好な条件で被処理体P1上に膜56aを蒸着することができる。 When the temperature controller 36 is a heater that heats the inert gas G1, the surface of the object P1 can be locally heated. For example, when a foreign substance adheres to the surface of the target object P1, the surface of the target object P1 can be cleaned by heating the surface of the target object P1 to vaporize the foreign substance. By heating the surface of the target object P1 to a desired temperature, the film 56a can be deposited on the target object P1 under favorable conditions.
 温度調節器36が不活性ガスG1を冷却する冷却器である場合、被処理体P1の表面を局所的に冷却することができる。被処理体P1の表面を所望の温度に冷却することにより、良好な条件で被処理体P1上に膜56aを蒸着することができる。 When the temperature controller 36 is a cooler that cools the inert gas G1, the surface of the workpiece P1 can be locally cooled. By cooling the surface of the object P1 to a desired temperature, the film 56a can be deposited on the object P1 under favorable conditions.
 図8は、第4実施形態に係る成膜方法を示すフローチャートである。本実施形態に係る成膜方法は、上述の成膜装置10Cを用いて実施可能である。本実施形態に係る成膜方法では、工程S3を工程S1の前に行う。この方法では、工程S3において、加熱された不活性ガスG1が、被処理体P1に噴き付けられる。これにより、被処理体P1の表面を局所的に所望の温度に加熱することができる。その結果、良好な条件で被処理体P1上に膜56aを蒸着することができる。 FIG. 8 is a flowchart showing a film forming method according to the fourth embodiment. The film forming method according to the present embodiment can be performed using the above-described film forming apparatus 10C. In the film forming method according to the present embodiment, step S3 is performed before step S1. In this method, in step S3, the heated inert gas G1 is sprayed onto the workpiece P1. Thereby, the surface of the to-be-processed object P1 can be heated locally to desired temperature. As a result, the film 56a can be deposited on the workpiece P1 under favorable conditions.
 工程S3において、加熱された不活性ガスG1に代えて冷却された不活性ガスG1を被処理体P1に噴き付けることによって、被処理体P1を冷却してもよい。この場合、被処理体P1の表面を局所的に所望の温度に冷却することができる。 In step S3, the object P1 may be cooled by spraying the object P1 with the cooled inert gas G1 instead of the heated inert gas G1. In this case, the surface of the workpiece P1 can be locally cooled to a desired temperature.
<第5実施形態>
 図9は、第5実施形態に係る成膜装置を模式的に示す図である。図9に示される成膜装置10Dは、ノズル18とノズル16aとの間隔D4がノズル16aとノズル16bとの間隔D3よりも広くなっていること以外は成膜装置10Cと同一の構成を備えている。成膜装置10Dでは、少なくとも成膜装置10Cと同様の作用効果が得られる。成膜装置10Cに代えて成膜装置10Dを用いて、上記第4実施形態に係る成膜方法と同様に、第5実施形態に係る成膜方法を実施することもできる。成膜装置10Dでは、温度調節器36が不活性ガスG1を加熱するヒーターである場合、間隔D4を間隔D3よりも広くすることによって、加熱された被処理体P1を十分に冷却することができる。そのため、被処理体P1の表面を所望の温度まで冷却した後に、被処理体P1上に膜56aを蒸着することができる。
<Fifth Embodiment>
FIG. 9 is a diagram schematically showing a film forming apparatus according to the fifth embodiment. The film forming apparatus 10D shown in FIG. 9 has the same configuration as the film forming apparatus 10C except that the distance D4 between the nozzle 18 and the nozzle 16a is wider than the distance D3 between the nozzle 16a and the nozzle 16b. Yes. The film forming apparatus 10D can obtain at least the same effects as the film forming apparatus 10C. The film forming method according to the fifth embodiment can be performed in the same manner as the film forming method according to the fourth embodiment, using the film forming device 10D instead of the film forming device 10C. In the film forming apparatus 10D, when the temperature controller 36 is a heater that heats the inert gas G1, the heated object P1 can be sufficiently cooled by making the interval D4 wider than the interval D3. . Therefore, the film 56a can be deposited on the target object P1 after the surface of the target object P1 is cooled to a desired temperature.
<第6実施形態>
 図10は、第6実施形態に係る成膜装置を模式的に示す図である。図10に示される成膜装置10Eの温度調節器36は、不活性ガスG1を加熱するヒーターである。成膜装置10Eは、加熱された不活性ガスG1を被処理体P1に噴き付けた後、ノズル16aからガスを被処理体P1に噴き付ける前に、不活性ガスG2を膜56bに噴き付けるノズル18aと、不活性ガスG2を冷却する冷却器36aとを備える。
<Sixth Embodiment>
FIG. 10 is a diagram schematically showing a film forming apparatus according to the sixth embodiment. The temperature controller 36 of the film forming apparatus 10E shown in FIG. 10 is a heater that heats the inert gas G1. The film forming apparatus 10E is a nozzle that sprays the inert gas G2 onto the film 56b after spraying the heated inert gas G1 onto the target object P1 and before spraying the gas from the nozzle 16a onto the target object P1. 18a and a cooler 36a for cooling the inert gas G2.
 成膜装置10Eは、上記構成以外は成膜装置10Cと同一の構成を備えている。成膜装置10Eでは、少なくとも成膜装置10Cと同様の作用効果が得られる。成膜装置10Eでは、所望の温度に加熱された被処理体P1の表面を局所的に冷却することができる。成膜装置10Eでは、成膜装置10Eの各構成によって、他の実施形態と同様の作用効果が得られる。 The film forming apparatus 10E has the same configuration as the film forming apparatus 10C except for the above configuration. The film forming apparatus 10E can obtain at least the same effects as the film forming apparatus 10C. In the film forming apparatus 10E, the surface of the object P1 heated to a desired temperature can be locally cooled. In the film forming apparatus 10E, the same effects as those of the other embodiments can be obtained by the respective configurations of the film forming apparatus 10E.
 図11は、第6実施形態に係る成膜方法を示すフローチャートである。本実施形態に係る成膜方法は、上述の成膜装置10Eを用いて実施可能である。本実施形態に係る成膜方法は、図8の工程S3と工程S1との間において、冷却された不活性ガスG2を被処理体P1に噴き付けることによって、被処理体P1を冷却する工程S3aを更に含む。これにより、工程S3において加熱された被処理体P1の表面を、工程S3aにおいて局所的に冷却することができる。良好な条件で被処理体P1上に膜56aを蒸着することができる。 FIG. 11 is a flowchart showing a film forming method according to the sixth embodiment. The film forming method according to the present embodiment can be performed using the above-described film forming apparatus 10E. In the film forming method according to the present embodiment, a process S3a for cooling the object to be processed P1 by spraying the cooled inert gas G2 onto the object to be processed P1 between the processes S3 and S1 in FIG. Is further included. Thereby, the surface of the to-be-processed object P1 heated in process S3 can be cooled locally in process S3a. The film 56a can be deposited on the workpiece P1 under good conditions.
<第7実施形態>
 図12は、第7実施形態に係る成膜装置を模式的に示す図である。図12に示される成膜装置10Fは、膜56c上に膜56d(図13参照)を蒸着するための蒸着材料及びキャリアガスを含むガスを膜56cに噴き付けるノズル16dを備える。他のノズル16a~16cと同様に、ノズル16dには、処理チャンバ12外に配置された蒸着材料供給源20dが配管12dを介して接続されている。蒸着材料供給源20dには、配管22dを介して不活性ガス供給源24が接続されている。ノズル16dと不活性ガス供給源24との間には、弁26d、接続部28d、接続部30d、弁32d及びマスフローコントローラー34dがこの順に配列されている。
<Seventh embodiment>
FIG. 12 is a diagram schematically showing a film forming apparatus according to the seventh embodiment. A film forming apparatus 10F shown in FIG. 12 includes a nozzle 16d that sprays a gas containing a deposition material and a carrier gas for depositing a film 56d (see FIG. 13) on the film 56c onto the film 56c. Similarly to the other nozzles 16a to 16c, a vapor deposition material supply source 20d disposed outside the processing chamber 12 is connected to the nozzle 16d via a pipe 12d. An inert gas supply source 24 is connected to the vapor deposition material supply source 20d through a pipe 22d. Between the nozzle 16d and the inert gas supply source 24, a valve 26d, a connection portion 28d, a connection portion 30d, a valve 32d, and a mass flow controller 34d are arranged in this order.
 成膜装置10Fは、上記構成以外は成膜装置10と同一の構成を備えている。成膜装置10Fでは、少なくとも成膜装置10と同様の作用効果が得られる。成膜装置10Fでは、成膜装置10Fの各構成によって、他の実施形態と同様の作用効果が得られる。 The film forming apparatus 10F has the same configuration as the film forming apparatus 10 except for the above configuration. In the film forming apparatus 10F, at least the same effects as the film forming apparatus 10 can be obtained. In the film forming apparatus 10F, the same effects as those of the other embodiments can be obtained by the components of the film forming apparatus 10F.
 図13は、第7実施形態に係る成膜装置を用いて製造される電子デバイスの一例を模式的に示す図である。図13に示される太陽電池50Aは、基板S上に順に設けられた電極52a及び52b、膜56a~56d、電極54を備える。 FIG. 13 is a diagram schematically illustrating an example of an electronic device manufactured using the film forming apparatus according to the seventh embodiment. A solar cell 50A shown in FIG. 13 includes electrodes 52a and 52b, films 56a to 56d, and an electrode 54 provided in this order on a substrate S.
 太陽電池50Aの一実施例の構成を以下に示す。
基板S:ガラス基板
電極52a:ITO膜(厚さ100nm)
電極52b:MoO膜(厚さ13nm)
膜56a:ClAlPc膜(厚さ13nm)
膜56b:ClAlPc及びC70からなる共蒸着膜(厚さ13nm)
膜56c:C60膜(厚さ22nm)
膜56d:BCP膜(厚さ10nm)
電極54;Ag膜(厚さ100nm)
The configuration of one embodiment of the solar cell 50A is shown below.
Substrate S: Glass substrate electrode 52a: ITO film (thickness 100 nm)
Electrode 52b: MoO 3 film (thickness 13 nm)
Film 56a: ClAlPc film (thickness 13 nm)
Film 56b: Co-deposited film (thickness 13 nm) made of ClAlPc and C70
Film 56c: C60 film (thickness 22 nm)
Film 56d: BCP film (thickness 10 nm)
Electrode 54; Ag film (100 nm thickness)
 膜56a~56dは、成膜装置10Fにより形成可能である。この場合、これら4層を形成するための4種類の蒸着材料をノズル16a~16dからそれぞれ供給する。成膜装置10Fを用いると膜56bの表面を局所的に所望の温度に調節することができるので、良好な特性を有する太陽電池50Aを製造することができる。膜56bはホール及びキャリアを生成する層であるため、高い移動度が求められる。高い移動度を得るためには、ClAlPcが結晶、C70(フラーレン)がアモルファスであることが望ましい。膜56bの表面を局所的に特定の温度に調節することによって、高い移動度の膜56bを得ることができる。膜56dはホールブロック層として機能する有機膜である。電極52b、膜56a~56dのうち少なくとも1つに不活性ガスG1を噴き付けることによって、その表面を所望の温度に調節することができる。 The films 56a to 56d can be formed by the film forming apparatus 10F. In this case, four types of vapor deposition materials for forming these four layers are supplied from the nozzles 16a to 16d, respectively. When the film formation apparatus 10F is used, the surface of the film 56b can be locally adjusted to a desired temperature, so that a solar cell 50A having good characteristics can be manufactured. Since the film 56b is a layer that generates holes and carriers, high mobility is required. In order to obtain high mobility, it is desirable that ClAlPc is crystalline and C70 (fullerene) is amorphous. By adjusting the surface of the film 56b locally to a specific temperature, the film 56b with high mobility can be obtained. The film 56d is an organic film that functions as a hole block layer. By spraying an inert gas G1 onto at least one of the electrode 52b and the films 56a to 56d, the surface thereof can be adjusted to a desired temperature.
<第8実施形態>
 図14は、第8実施形態に係る成膜装置を模式的に示す図である。図14に示される成膜装置10Gは、ノズル16a及び16c、及びそれらに関連する構成を備えないこと以外は成膜装置10Bと同様の構成を備えている。成膜装置10Gでは、ノズル16bが、被処理体P2上に膜56bを蒸着するための蒸着材料及びキャリアガスを含むガスを被処理体P2に噴き付ける。ノズル18は、加熱された不活性ガスG1を膜56bに噴き付ける。ノズル18aは、冷却された不活性ガスG2を膜56bに噴き付ける。本実施形態において、膜56bはガラス転移温度の低い有機半導体膜である。有機半導体膜に含有される有機半導体材料としては、例えばアルキルベンゾチエノベンゾチオフェン(Cn-BTBT)等が挙げられる。
<Eighth Embodiment>
FIG. 14 is a diagram schematically showing a film forming apparatus according to the eighth embodiment. A film forming apparatus 10G shown in FIG. 14 has the same configuration as that of the film forming apparatus 10B except that the nozzles 16a and 16c and the related configuration are not provided. In the film forming apparatus 10G, the nozzle 16b sprays a gas including a deposition material and a carrier gas for depositing the film 56b on the target object P2 to the target object P2. The nozzle 18 sprays the heated inert gas G1 onto the film 56b. The nozzle 18a sprays the cooled inert gas G2 onto the film 56b. In the present embodiment, the film 56b is an organic semiconductor film having a low glass transition temperature. Examples of the organic semiconductor material contained in the organic semiconductor film include alkylbenzothienobenzothiophene (Cn-BTBT).
 成膜装置10Gは、ノズル18a及びそれに関連する構成も備えなくてもよい。その場合、自然冷却により膜56bを冷却することができる。 The film forming apparatus 10G may not include the nozzle 18a and the configuration related thereto. In that case, the film 56b can be cooled by natural cooling.
 成膜装置10Gでは、ノズル18から噴射される不活性ガスG1によって、膜56bの表面を局所的に加熱することができる。これにより、膜56bが流動化又は液化する。その結果、流動化又は液化した有機半導体材料が、表面張力により被処理体P2上に濡れ広がる。よって、凹凸の少ない表面を有する膜56bが得られる。被処理体P2がトレンチを有する場合であっても、被処理体P2に対する膜56bのカバレッジ性を向上させることができる。膜56bは、真空雰囲気下又は不活性ガス雰囲気下で加熱されるので、例えば酸化等の化学反応が抑制される。 In the film forming apparatus 10G, the surface of the film 56b can be locally heated by the inert gas G1 ejected from the nozzle 18. Thereby, the membrane 56b is fluidized or liquefied. As a result, the fluidized or liquefied organic semiconductor material wets and spreads on the workpiece P2 due to surface tension. Therefore, the film 56b having a surface with less unevenness can be obtained. Even when the workpiece P2 has a trench, the coverage of the film 56b with respect to the workpiece P2 can be improved. Since the film 56b is heated in a vacuum atmosphere or an inert gas atmosphere, a chemical reaction such as oxidation is suppressed.
 不活性ガスG1によって膜56bの表面を加熱した後、ノズル18aから噴射される不活性ガスG2又は自然冷却によって、加熱された膜56bの表面を局所的に冷却することができる。これにより、有機半導体材料の再結晶化(単結晶化)が進行する。その結果、粒界(グレインバウンダリ)に起因するキャリアトラップの少ない膜56bが得られる。このような膜56bは、高い移動度を有する。 After heating the surface of the film 56b with the inert gas G1, the surface of the heated film 56b can be locally cooled by the inert gas G2 sprayed from the nozzle 18a or by natural cooling. Thereby, recrystallization (single crystallization) of the organic semiconductor material proceeds. As a result, a film 56b with few carrier traps due to grain boundaries is obtained. Such a film 56b has a high mobility.
 図15は、第8実施形態に係る成膜装置を用いて製造される電子デバイスの一例を模式的に示す図である。図15に示される有機トランジスタ50Bは、ボトムゲートボトムコンタクト(BGBC)構造を有する。有機トランジスタ50Bは、基板SB上に設けられたゲート電極GTを備える。ゲート電極GTは、絶縁膜ISによって覆われる。絶縁膜IS上には、互いに離間したソース電極SC及びドレイン電極DNが設けられている。ソース電極SCとドレイン電極DNとの間において、絶縁膜ISの表面にはトレンチTが形成されている。トレンチTの側壁は、垂直形状を有してもよいし、逆テーパー形状を有してもよい。ソース電極SC、ドレイン電極DN及びトレンチT上には膜56bが設けられている。絶縁膜IS上には、ソース電極SC及びドレイン電極DNを囲むように土手部BNが設けられている。土手部BNの上面にも膜56bが設けられている。 FIG. 15 is a diagram schematically illustrating an example of an electronic device manufactured using the film forming apparatus according to the eighth embodiment. The organic transistor 50B shown in FIG. 15 has a bottom gate bottom contact (BGBC) structure. The organic transistor 50B includes a gate electrode GT provided on the substrate SB. The gate electrode GT is covered with an insulating film IS. On the insulating film IS, a source electrode SC and a drain electrode DN which are separated from each other are provided. A trench T is formed on the surface of the insulating film IS between the source electrode SC and the drain electrode DN. The side wall of the trench T may have a vertical shape or may have a reverse taper shape. A film 56b is provided on the source electrode SC, the drain electrode DN, and the trench T. On the insulating film IS, a bank portion BN is provided so as to surround the source electrode SC and the drain electrode DN. A film 56b is also provided on the top surface of the bank portion BN.
 膜56bは、図14の成膜装置10Gにより形成可能である。有機トランジスタ50Bの膜56b以外の構成が、図14の被処理体P2に相当する。不活性ガスG1によって加熱された膜56bが流動化又は液化すると、流動化又は液化した有機半導体材料は、絶縁膜IS、ソース電極SC及びドレイン電極DN上に濡れ広がる。その結果、凹凸の少ない表面を有する膜56bが得られる。さらに、特にトレンチTにおける膜56bのカバレッジ性が向上する。したがって、有機トランジスタ50Bでは、優れたトランジスタ特性(例えばId-Vds特性、Id-Vgs特性等)が得られる。 The film 56b can be formed by the film forming apparatus 10G in FIG. The configuration other than the film 56b of the organic transistor 50B corresponds to the target object P2 in FIG. When the film 56b heated by the inert gas G1 is fluidized or liquefied, the fluidized or liquefied organic semiconductor material wets and spreads over the insulating film IS, the source electrode SC, and the drain electrode DN. As a result, a film 56b having a surface with less unevenness is obtained. Further, the coverage of the film 56b particularly in the trench T is improved. Therefore, in the organic transistor 50B, excellent transistor characteristics (for example, Id-Vds characteristics, Id-Vgs characteristics, etc.) can be obtained.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。例えば、上記各実施形態の構成を任意に組み合わせてもよい。 As mentioned above, although the suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment. For example, the configurations of the above embodiments may be arbitrarily combined.
 成膜装置10は、ノズル16a及び16cの少なくとも一方を備えなくてもよい。成膜装置10は、フェースアップ型の成膜装置であってもよい。すなわち、被処理体Pの一方の面(成膜面)が鉛直方向において上を向いてもよい。また、ノズル18をノズル16aとノズル16bとの間に配置してもよい。 The film forming apparatus 10 may not include at least one of the nozzles 16a and 16c. The film forming apparatus 10 may be a face-up type film forming apparatus. That is, one surface (film formation surface) of the workpiece P may face upward in the vertical direction. Further, the nozzle 18 may be disposed between the nozzle 16a and the nozzle 16b.
 10,10A、10B,10C,10D,10E,10F,10G…成膜装置、12…処理チャンバ、16b…第1のノズル、18…第2のノズル、18a…第3のノズル、36…温度調節器、36a…冷却器、56a~56d…膜、G1…第1の不活性ガス、G2…第2の不活性ガス、P,P1,P2…被処理体。 10, 10A, 10B, 10C, 10D, 10E, 10F, 10G ... film forming apparatus, 12 ... processing chamber, 16b ... first nozzle, 18 ... second nozzle, 18a ... third nozzle, 36 ... temperature control 36a ... cooler, 56a-56d ... membrane, G1 ... first inert gas, G2 ... second inert gas, P, P1, P2 ... workpiece.

Claims (16)

  1.  被処理体を収容する処理チャンバと、
     前記被処理体上に膜を蒸着するための蒸着材料及びキャリアガスを含むガスを前記被処理体に噴き付ける第1のノズルと、
     第1の不活性ガスを前記膜に噴き付ける第2のノズルと、
     前記第1の不活性ガスの温度を調節する温度調節器と、
    を備える、成膜装置。
    A processing chamber for containing an object to be processed;
    A first nozzle that sprays a gas containing a deposition material and a carrier gas for depositing a film on the object to be processed onto the object;
    A second nozzle that sprays a first inert gas onto the membrane;
    A temperature controller for adjusting the temperature of the first inert gas;
    A film forming apparatus comprising:
  2.  被処理体を収容する処理チャンバと、
     前記被処理体上に膜を蒸着するための蒸着材料及びキャリアガスを含むガスを前記被処理体に噴き付ける第1のノズルと、
     前記ガスを前記被処理体に噴き付ける前に、第1の不活性ガスを前記被処理体に噴き付ける第2のノズルと、
     前記第1の不活性ガスの温度を調節する温度調節器と、
    を備える、成膜装置。
    A processing chamber for containing an object to be processed;
    A first nozzle that sprays a gas containing a deposition material and a carrier gas for depositing a film on the object to be processed onto the object;
    A second nozzle that sprays a first inert gas onto the object before the gas is sprayed onto the object;
    A temperature controller for adjusting the temperature of the first inert gas;
    A film forming apparatus comprising:
  3.  前記第1の不活性ガスには実質的に蒸着材料が添加されていない、請求項1又は2に記載の成膜装置。 The film forming apparatus according to claim 1, wherein a vapor deposition material is not substantially added to the first inert gas.
  4.  前記温度調節器が、前記第1の不活性ガスを加熱するヒーターである、請求項1~3のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 3, wherein the temperature controller is a heater for heating the first inert gas.
  5.  前記温度調節器が、前記第1の不活性ガスを冷却する冷却器である、請求項1~3のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 3, wherein the temperature controller is a cooler that cools the first inert gas.
  6.  前記温度調節器が、前記第1の不活性ガスを加熱するヒーターであり、
     加熱された前記第1の不活性ガスを前記膜に噴き付けた後、第2の不活性ガスを前記膜に噴き付ける第3のノズルと、
     前記第2の不活性ガスを冷却する冷却器と、
    を更に備える、請求項1に記載の成膜装置。
    The temperature controller is a heater for heating the first inert gas;
    A third nozzle for spraying a second inert gas on the film after spraying the heated first inert gas on the film;
    A cooler for cooling the second inert gas;
    The film forming apparatus according to claim 1, further comprising:
  7.  前記温度調節器が、前記第1の不活性ガスを加熱するヒーターであり、
     加熱された前記第1の不活性ガスを前記被処理体に噴き付けた後、前記ガスを前記被処理体に噴き付ける前に、第2の不活性ガスを前記被処理体に噴き付ける第3のノズルと、
     前記第2の不活性ガスを冷却する冷却器と、
    を更に備える、請求項2に記載の成膜装置。
    The temperature controller is a heater for heating the first inert gas;
    After spraying the heated first inert gas onto the object to be processed, before spraying the gas onto the object to be processed, a third inert gas is sprayed onto the object to be processed. Nozzles,
    A cooler for cooling the second inert gas;
    The film forming apparatus according to claim 2, further comprising:
  8.  蒸着材料及びキャリアガスを含むガスを被処理体上に噴き付けることによって、前記被処理体上に膜を蒸着する工程と、
     温度調節された第1の不活性ガスを前記膜に噴き付ける工程と、
    を含む、成膜方法。
    A step of depositing a film on the target object by spraying a gas containing a deposition material and a carrier gas on the target object;
    Spraying a temperature-controlled first inert gas onto the film;
    A film forming method comprising:
  9.  温度調節された第1の不活性ガスを被処理体に噴き付ける工程と、
     前記第1の不活性ガスを被処理体に噴き付けた後、蒸着材料及びキャリアガスを含むガスを前記被処理体上に噴き付けることによって、前記被処理体上に膜を蒸着する工程と、
    を含む、成膜方法。
    Spraying the temperature-adjusted first inert gas onto the object to be treated;
    A step of depositing a film on the target object by spraying a gas containing a deposition material and a carrier gas on the target object after spraying the first inert gas on the target object;
    A film forming method comprising:
  10.  前記第1の不活性ガスには実質的に蒸着材料が添加されていない、請求項8又は9に記載の成膜方法。 10. The film forming method according to claim 8, wherein a vapor deposition material is not substantially added to the first inert gas.
  11.  加熱された前記第1の不活性ガスを前記膜に噴き付けることによって、前記膜を加熱する、請求項8に記載の成膜方法。 The film forming method according to claim 8, wherein the film is heated by spraying the heated first inert gas onto the film.
  12.  前記膜を加熱した後、冷却された第2の不活性ガスを前記膜に噴き付けることによって、前記膜を冷却する工程を更に含む、請求項11に記載の成膜方法。 The film forming method according to claim 11, further comprising a step of cooling the film by spraying a cooled second inert gas onto the film after the film is heated.
  13.  冷却された前記第1の不活性ガスを前記膜に噴き付けることによって、前記膜を冷却する、請求項8に記載の成膜方法。 The film forming method according to claim 8, wherein the film is cooled by spraying the cooled first inert gas onto the film.
  14.  加熱された前記第1の不活性ガスを前記被処理体に噴き付けることによって、前記被処理体を加熱する、請求項9に記載の成膜方法。 The film forming method according to claim 9, wherein the object to be processed is heated by spraying the heated first inert gas on the object to be processed.
  15.  前記被処理体を加熱した後、冷却された第2の不活性ガスを前記被処理体に噴き付けることによって、前記被処理体を冷却する工程を更に含み、
     前記被処理体を冷却した後、前記被処理体上に膜を蒸着する、請求項14に記載の成膜方法。
    The method further includes the step of cooling the target object by spraying the cooled second inert gas on the target object after heating the target object,
    The film forming method according to claim 14, wherein after the object to be processed is cooled, a film is deposited on the object to be processed.
  16.  冷却された前記第1の不活性ガスを前記被処理体に噴き付けることによって、前記被処理体を冷却する、請求項9に記載の成膜方法。 The film forming method according to claim 9, wherein the object to be processed is cooled by spraying the cooled first inert gas onto the object to be processed.
PCT/JP2012/076955 2011-10-18 2012-10-18 Film formation device and film formation method WO2013058319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-229091 2011-10-18
JP2011229091A JP2015004078A (en) 2011-10-18 2011-10-18 Film deposition apparatus and film deposition method

Publications (1)

Publication Number Publication Date
WO2013058319A1 true WO2013058319A1 (en) 2013-04-25

Family

ID=48140962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076955 WO2013058319A1 (en) 2011-10-18 2012-10-18 Film formation device and film formation method

Country Status (3)

Country Link
JP (1) JP2015004078A (en)
TW (1) TW201335404A (en)
WO (1) WO2013058319A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023045207A (en) * 2021-09-21 2023-04-03 キオクシア株式会社 Semiconductor manufacturing device, manufacturing method of semiconductor device and deposition method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236776A (en) * 1991-01-12 1992-08-25 Seiko Instr Inc Sputtering system
JPH08125185A (en) * 1994-10-21 1996-05-17 Tadahiro Omi Method and system for fabricating thin film transistor
JP2003313654A (en) * 2001-12-12 2003-11-06 Semiconductor Energy Lab Co Ltd Apparatus and method for forming film, and method for cleaning
JP2004010989A (en) * 2002-06-10 2004-01-15 Sony Corp Thin-film forming apparatus
JP2004014246A (en) * 2002-06-05 2004-01-15 Sony Corp Organic film forming device and method
JP2005109081A (en) * 2003-09-30 2005-04-21 Hitachi Displays Ltd Method for manufacturing display device
JP2010034425A (en) * 2008-07-31 2010-02-12 Epiquest:Kk Locally pressurizing molecular-beam epitaxy apparatus, and method of driving molecular-beam epitaxy apparatus
WO2010127328A2 (en) * 2009-05-01 2010-11-04 Kateeva, Inc. Method and apparatus for organic vapor printing
JP2011068916A (en) * 2009-09-22 2011-04-07 Toshiba Corp Film deposition method and film deposition apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236776A (en) * 1991-01-12 1992-08-25 Seiko Instr Inc Sputtering system
JPH08125185A (en) * 1994-10-21 1996-05-17 Tadahiro Omi Method and system for fabricating thin film transistor
JP2003313654A (en) * 2001-12-12 2003-11-06 Semiconductor Energy Lab Co Ltd Apparatus and method for forming film, and method for cleaning
JP2004014246A (en) * 2002-06-05 2004-01-15 Sony Corp Organic film forming device and method
JP2004010989A (en) * 2002-06-10 2004-01-15 Sony Corp Thin-film forming apparatus
JP2005109081A (en) * 2003-09-30 2005-04-21 Hitachi Displays Ltd Method for manufacturing display device
JP2010034425A (en) * 2008-07-31 2010-02-12 Epiquest:Kk Locally pressurizing molecular-beam epitaxy apparatus, and method of driving molecular-beam epitaxy apparatus
WO2010127328A2 (en) * 2009-05-01 2010-11-04 Kateeva, Inc. Method and apparatus for organic vapor printing
JP2011068916A (en) * 2009-09-22 2011-04-07 Toshiba Corp Film deposition method and film deposition apparatus

Also Published As

Publication number Publication date
TW201335404A (en) 2013-09-01
JP2015004078A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
KR101057915B1 (en) Method of manufacturing film deposition apparatus and light emitting element
JP5288660B2 (en) Cleaning method
JP5373221B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
JP5324010B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
US8882922B2 (en) Organic layer deposition apparatus
US8277902B2 (en) Method for forming film and method for manufacturing light emitting device
JP5506147B2 (en) Film forming apparatus and film forming method
KR20070056190A (en) In-line equipment using metal-plate belt source for oled manufacturing
JP2008019477A (en) Vacuum vapor deposition apparatus
US20090279179A1 (en) Deposition donor substrate and deposition method using the same
WO2013058319A1 (en) Film formation device and film formation method
JP2010141368A (en) Device and method for adsorbing metal or metal compound
WO2012127982A1 (en) Film forming apparatus, film forming method, method for manufacturing organic light emitting element, and organic light emitting element
JP2004014311A (en) Forming method of organic thin film
KR100685808B1 (en) Vapor deposition apparatus for organic material
JP5460773B2 (en) Film forming apparatus and film forming method
JP2004014246A (en) Organic film forming device and method
KR100965408B1 (en) Apparatus for depositing organic and inorganic material of oled
KR102616039B1 (en) Thin film deposition apparatus for forming patterned organic thin film
WO2024070473A1 (en) Film formation device and film formation method
KR20230120774A (en) Vacuum effusion cell module and method for fabricating organic light emitting display device using the same
KR101334704B1 (en) Organic deposition apparatus and organic deposition method
JP2009057614A (en) Vapor deposition apparatus and vapor deposition method
KR102029427B1 (en) Thin film depositing method using mixed source gas
JP2023035655A (en) Film deposition apparatus, film deposition method and method for manufacturing electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP