WO2013058091A1 - 電気デバイス用負極活物質 - Google Patents

電気デバイス用負極活物質 Download PDF

Info

Publication number
WO2013058091A1
WO2013058091A1 PCT/JP2012/075391 JP2012075391W WO2013058091A1 WO 2013058091 A1 WO2013058091 A1 WO 2013058091A1 JP 2012075391 W JP2012075391 W JP 2012075391W WO 2013058091 A1 WO2013058091 A1 WO 2013058091A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
electric device
size
Prior art date
Application number
PCT/JP2012/075391
Other languages
English (en)
French (fr)
Inventor
貴志 真田
荻原 航
渡邉 学
伊藤 淳史
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201280050413.XA priority Critical patent/CN103875100B/zh
Priority to EP12841333.3A priority patent/EP2770561A4/en
Priority to US14/352,279 priority patent/US9979016B2/en
Publication of WO2013058091A1 publication Critical patent/WO2013058091A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material used for an electric device typified by, for example, a secondary battery suitably used for a motor driving power source such as an electric vehicle (EV) or a hybrid electric vehicle (HEV), or a capacitor. Furthermore, it is related with the negative electrode and electric device using this.
  • a motor driving power source such as an electric vehicle (EV) or a hybrid electric vehicle (HEV)
  • a capacitor a capacitor
  • Patent Document 1 discloses that a crystalline metal typified by silicon (Si) is used as one type of negative electrode active material.
  • the negative electrode active material mainly composed of a crystalline metal such as silicon has a high capacity
  • the pulverization due to the cracking of the active material particles caused by the volume change at the time of occlusion of lithium (Li) is a current collecting property.
  • the cycle life is short, and it has been a problem to solve such problems.
  • the negative electrode active material described in Patent Document 1 is a form in which crystalline silicon is scattered in an amorphous silicon thin film, and the crystal size of the crystalline silicon is less than 5 nm.
  • the crystalline silicon particles are three-dimensionally the same size. That is, the silicon particles can be said to be “isotropic particles”.
  • the present invention has been made to solve the above-mentioned problems in conventional negative electrode materials using a crystalline metal such as silicon. And the place made into the objective of this invention is providing the negative electrode active material for electrical devices provided with the outstanding cycle life. Furthermore, it is providing the negative electrode which applied such a negative electrode active material, and an electrical device, for example, a lithium ion secondary battery.
  • the negative electrode active material for an electric device is characterized in that it is made of a crystalline metal having a structure whose vertical size with respect to the crystal slip plane is 500 nm or less.
  • the negative electrode for an electric device according to an aspect of the present invention is characterized by including the negative electrode active material for an electric device of the present invention.
  • the electric device according to an aspect of the present invention is characterized by including the negative electrode active material for an electric device of the present invention or the negative electrode for an electric device of the present invention.
  • the electric device can be a lithium ion secondary battery.
  • FIG. 1A is a graph showing changes in the X-ray diffraction pattern on the silicon slip surface during the charging process.
  • FIG. 1B is a graph showing a charge curve of silicon.
  • FIG. 2 is a graph showing the change in the half width of the X-ray diffraction peak obtained from each crystal plane of silicon with respect to the charge capacity.
  • FIG. 3 is a graph showing the relationship between the upper limit value of the charge capacity and the cycle life for a battery using silicon as a negative electrode active material.
  • FIG. 4 is an SEM image showing an example of the shape of needle-like silicon.
  • FIG. 5 is a graph showing the influence of the size of the silicon active material in the direction perpendicular to the sliding surface on the capacity retention rate of the cell using the silicon active material.
  • FIG. 6 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to an embodiment of the present invention.
  • % means mass percentage unless otherwise specified.
  • dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
  • FIG. 1 shows the state of change in the charging process of the (111) crystal plane, which is a silicon slip plane, by X-ray diffraction measurement.
  • the active material used for the X-ray diffraction measurement crystalline silicon having a crystal grain size of 45 ⁇ m was used. Then, the active material: conductive auxiliary agent (carbon black): binder (polyvinylidene fluoride) is mixed at a mass ratio of 80: 5: 15, and diluted with N-methyl-2-pyrrolidone (NMP). The slurry was adjusted. Next, the obtained slurry was applied on a copper foil to obtain an electrode for in-situ XRD measurement. Here, an electrode having a diameter of 15 mm was used, and metallic lithium was used for the counter electrode.
  • the charge / discharge cell for X-ray diffraction measurement used beryllium (Be) as a window material.
  • Two porous films made of polypropylene having a thickness of 20 ⁇ m were interposed between the prepared silicon electrode and the counter electrode lithium foil, and both electrodes were opposed to each other.
  • a silicon electrode was placed on the upper surface (metal beryllium) of the charge / discharge cell for X-ray diffraction measurement, the electrolyte was injected using a syringe, and a spring and a spacer were laminated. Then, the lower part of the charging / discharging cell for X-ray diffraction measurement was piled up, and it was set as the battery.
  • FIG. 2 shows the result of plotting the change in the half width (FWHM / deg) of each crystal plane of silicon with respect to the charge capacity (Capacity / mAhg ⁇ 1 ). From this figure, it was confirmed that when the charge capacity exceeds 1500 mAh / g, only the (111) crystal plane, which is the silicon slip plane, abruptly increases in half width. Such a rapid increase of only the (111) plane is considered to be caused by cracking due to silicon cleavage starting from the (111) plane.
  • the upper limit value of the weight energy density affects the cycle life.
  • the upper limit weight energy density 1000 mAh / g
  • a good cycle life is exhibited.
  • the weight energy density 1500 mAh / g or more
  • the cycle life is abruptly shortened. From this result, it is considered that this is due to a rapid change in the half-value width of the X-ray diffraction peak of the silicon (111) plane shown in FIG. 2, that is, a silicon crack starting from the (111) plane. That is, the cycle life can be improved by controlling the change of the (111) plane of silicon, which is the slip plane.
  • a negative electrode active material for an electric device containing a crystalline metal having a structure whose size in the direction perpendicular to the crystal slip plane is 500 nm or less is used.
  • the thickness of the slip plane orientation is controlled to be sufficiently small, the thickness of the slip plane orientation is small. Therefore, even if a crack occurs from the sliding surface as a starting point, miniaturization is suppressed. As a result, deterioration of cycle life can be prevented.
  • it can measure using observation means, such as a scanning electron microscope (SEM), for example as a value of the magnitude
  • the crystalline metal has an anisotropic structure.
  • the “anisotropic structure” means that the size in the three-dimensional direction is not isotropic and the size in only a specific direction is adjusted. Specifically, in the case of silicon, for example, it means a direction perpendicular to the (111) plane that is the sliding surface. Thus, by having an anisotropic structure, particle breakage due to the crystal slip plane is suppressed. As a result, deterioration of cycle life can be prevented more effectively.
  • the size in the crystal slip plane direction is larger than the size in the direction perpendicular to the crystal slip plane from the viewpoint of weight energy density. Thereby, the number of crystal slip surfaces per particle can be reduced.
  • the cross-sectional shape in the direction perpendicular to the crystal slip plane is preferably a circular shape, a triangular shape, a square shape, a rectangular shape, a rhombus shape, a trapezoidal shape or a polygonal shape.
  • the crystalline metal according to this embodiment includes germanium (Ge), tin (Sn), aluminum (Al), zinc (Zn), lead (Pb), antimony (Sb), magnesium (Mg), indium ( In), bismuth (Bi), or cadmium (Cd) can be employed.
  • the negative electrode active material in the present embodiment can be composed of only a crystalline metal having a structure whose vertical direction with respect to the crystal slip plane is 500 nm or less and inevitable impurities.
  • the above metals excluding the main component metals can be exemplified.
  • the negative electrode for an electric device includes the above-described negative electrode active material for an electric device made of a crystalline metal having anisotropy. And the electric device which concerns on one Embodiment of this invention is equipped with the above negative electrode active materials or the negative electrode for electric devices.
  • a lithium ion secondary battery will be given, and its configuration and its material will be described.
  • FIG. 6 illustrates a lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery 1 of this embodiment has a configuration in which a battery element 10 to which a positive electrode tab 21 and a negative electrode tab 22 are attached is enclosed in an exterior body 30.
  • the positive electrode is produced by applying a positive electrode active material or the like to a positive electrode current collector
  • the negative electrode is produced by applying a negative electrode active material or the like to a negative electrode current collector.
  • the positive electrode tab 21 and the negative electrode tab 22 are led out in opposite directions from the inside of the exterior body 30 toward the outside.
  • the positive electrode tab and the negative electrode tab may be led out in the same direction from the inside of the exterior body toward the outside.
  • Such a positive electrode tab and a negative electrode tab can be attached to the positive electrode collector and negative electrode collector which will be described later by, for example, ultrasonic welding or resistance welding.
  • the positive electrode tab 21 and the negative electrode tab 22 are made of materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), stainless steel (SUS), and alloys thereof.
  • the material is not limited thereto, and a conventionally known material that can be used as a tab for a lithium ion secondary battery can be used.
  • the positive electrode tab and the negative electrode tab may be made of the same material or different materials.
  • a separately prepared tab may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are in a foil shape. In some cases, tabs may be formed by extending each one.
  • the exterior body 30 is preferably formed of a film-shaped exterior material from the viewpoint of size reduction and weight reduction.
  • a film-shaped exterior material from the viewpoint of size reduction and weight reduction.
  • the conventionally well-known material which can be used for the exterior body for lithium ion secondary batteries can be used.
  • a polymer-metal composite laminate sheet with excellent thermal conductivity should be used to efficiently transfer heat from the heat source of the automobile and to quickly heat the inside of the battery to the battery operating temperature. Is preferred.
  • the battery element 10 in the lithium ion secondary battery 1 of the present embodiment has a configuration in which a plurality of unit cell layers 14 including a positive electrode 11, an electrolyte layer 13, and a negative electrode 12 are stacked. Yes.
  • the positive electrode 11 has a configuration in which a positive electrode active material layer 11B is formed on both main surfaces of the positive electrode current collector 11A.
  • the negative electrode 12 has a configuration in which a negative electrode active material layer 12B is formed on both main surfaces of the negative electrode current collector 12A.
  • the negative electrode active material layer 12 ⁇ / b> B formed on the opposite side is opposed to the electrolyte layer 13.
  • a plurality of positive electrodes, electrolyte layers, and negative electrodes are laminated in this order, and the adjacent positive electrode active material layer 11B, electrolyte layer 13, and negative electrode active material layer 12B constitute one single battery layer. That is, the lithium ion secondary battery 1 according to the present embodiment has a configuration in which a plurality of single battery layers 14 are stacked and electrically connected in parallel.
  • the negative electrode current collector 12A located on the outermost layer of the battery element 10 has a negative electrode active material layer 12B formed only on one side.
  • an insulating layer may be provided on the outer periphery of the unit cell layer 14 in order to insulate between the adjacent positive electrode current collector 11A and negative electrode current collector 12A.
  • Such an insulating layer is preferably formed on the outer periphery of the unit cell layer by a material capable of holding the electrolyte contained in the electrolyte layer and preventing electrolyte leakage.
  • general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polystyrene (PS), etc.
  • PP polypropylene
  • PE polyethylene
  • PUR polyurethane
  • PA polyamide resin
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PS polystyrene
  • thermoplastic olefin rubber, silicone rubber, etc. can also be used
  • the positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material such as foil or mesh aluminum, copper, stainless steel (SUS), for example.
  • the material is not limited to these, and a conventionally known material that can be used as a current collector for a lithium ion secondary battery can be used.
  • the size of the current collector can be determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited.
  • a mesh shape (expanded grid or the like) can be used.
  • current collection foil when forming the thin film alloy which is a negative electrode active material directly on the negative electrode collector 12A by sputtering method etc., it is desirable to use current collection foil.
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • the conductive polymer material examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS), and the like.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polyt
  • a conductive filler can be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is essential to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
  • a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion interruption
  • the metal is not particularly limited, but includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals.
  • the conductive carbon is not particularly limited, but preferably acetylene black, Vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon It contains at least one selected from the group consisting of nanoballoons and fullerenes.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass of the entire current collector.
  • the material is not limited to these, and a conventionally known material used as a current collector for a lithium ion secondary battery can be used.
  • the positive electrode 11 is configured by forming a positive electrode active material layer 11B on one or both sides of a positive electrode current collector 11A made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil. Is done.
  • the thickness of the positive electrode current collector is not particularly limited as described above, and is generally preferably about 1 to 30 ⁇ m.
  • the positive electrode active material layer 11B includes any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and includes a conductive auxiliary agent and a binder as necessary. May be. In addition, it is not specifically limited as a compounding ratio of these positive electrode active materials, a conductive support agent, and a binder in a positive electrode active material layer.
  • Examples of the positive electrode active material include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, solid solution systems, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. It is done.
  • lithium-transition metal composite oxide examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , and LiFePO 4. Can be mentioned. In addition, those in which part of the transition metal of these composite oxides is replaced with other elements can also be used.
  • Examples of the ternary system include nickel / cobalt / manganese composite cathode materials.
  • Examples of the spinel Mn system include LiMn 2 O 4 .
  • As the NiMn system include LiNi 0.5 Mn 1.5 O 4 and the like.
  • Examples of the NiCo system include Li (NiCo) O 2 .
  • two or more positive electrode active materials may be used in combination. From the viewpoint of capacity and output characteristics, a lithium-transition metal composite oxide is preferably used as the positive electrode active material.
  • the particle size of the positive electrode active material is not particularly limited, but generally finer is more desirable. In consideration of work efficiency and ease of handling, the average particle diameter may be about 1 to 30 ⁇ m, and more preferably about 5 to 20 ⁇ m. Of course, positive electrode active materials other than those described above can also be employed. In the case where the optimum particle diameter is different for expressing the unique effect of each active material, the optimum particle diameters for expressing the unique effect may be blended. That is, it is not always necessary to make the particle sizes of all the active materials uniform.
  • the binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
  • a binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins
  • rubber-based materials such as styrene butadiene rubber (SBR) can be used.
  • the conductive assistant is also referred to as a conductive agent, and refers to a conductive additive that is blended to improve conductivity.
  • the conductive auxiliary agent used in the present invention is not particularly limited, and conventionally known ones can be used.
  • carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber can be given.
  • a conductive additive By containing a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improving the output characteristics of the battery and improving reliability by improving the liquid retention of the electrolytic solution.
  • the negative electrode 12 is configured by forming a negative electrode active material layer 12B on one or both surfaces of a negative electrode current collector 12A made of a conductive material as described above, similarly to the positive electrode.
  • the negative electrode active material layer 12B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and, if necessary, the above-described positive electrode active material.
  • the same conductive assistant and binder may be included. In addition, it is not specifically limited as a compounding ratio of these negative electrode active materials, a conductive support agent, and a binder in a negative electrode active material layer.
  • a negative electrode active material made of a crystalline metal having a size in a direction perpendicular to the crystal slip plane of 500 nm or less and having anisotropy is used.
  • a negative electrode having a negative electrode active material layer formed by applying a slurry containing a conductive additive or a binder together with the negative electrode active material as described above to the current collector surface is used.
  • the positive electrode active material layer and the negative electrode active material layer are formed on one surface or both surfaces of each current collector, as described above.
  • the negative electrode active material layer can also be formed on the other surface.
  • Such an electrode can be applied to a bipolar battery.
  • the electrolyte layer 13 is a layer containing a non-aqueous electrolyte, and the non-aqueous electrolyte functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge.
  • the thickness of the electrolyte layer 13 is preferably as thin as possible from the viewpoint of reducing the internal resistance, and is usually in the range of about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the non-aqueous electrolyte contained in the electrolyte layer 13 is not particularly limited as long as it can function as a lithium ion carrier, and a liquid electrolyte or a polymer electrolyte can be used.
  • the liquid electrolyte has a configuration in which a lithium salt (electrolyte salt) is dissolved in an organic solvent.
  • organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), And carbonates such as methylpropyl carbonate (MPC).
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc.
  • a compound that can be added to the electrode active material layer can be used.
  • polymer electrolytes are classified into gel polymer electrolytes containing an electrolytic solution (gel electrolytes) and intrinsic polymer electrolytes not containing an electrolytic solution.
  • the gel polymer electrolyte preferably has a structure in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • host polymer made of an ion conductive polymer.
  • the use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.
  • the ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited.
  • polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), polyvinylidene fluoride and hexafluoropropylene are used.
  • the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same.
  • the type of the electrolytic solution, that is, the lithium salt and the organic solvent is not particularly limited, and an electrolytic salt such as the lithium salt and an organic solvent such as carbonates are used.
  • the intrinsic polymer electrolyte is obtained by dissolving a lithium salt in the matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability is improved.
  • the matrix polymer of the gel polymer electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
  • a polymerization treatment may be performed on a polymerizable polymer for forming a polymer electrolyte (for example, PEO or PPO) using an appropriate polymerization initiator.
  • a polymerization treatment thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, or the like can be used.
  • the nonaqueous electrolyte contained in the electrolyte layer 13 may be a single type consisting of only one type or a mixture of two or more types.
  • the electrolyte layer 13 is composed of a liquid electrolyte or a gel polymer electrolyte, it is preferable to use a separator for the electrolyte layer 13.
  • the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
  • a lithium ion secondary battery has a structure in which a battery element is housed in a battery case such as a can or a laminate container (packaging body).
  • the battery element (electrode structure) is configured by connecting a positive electrode and a negative electrode via an electrolyte layer.
  • the battery element is roughly divided into a wound type battery having a structure in which a positive electrode, an electrolyte layer and a negative electrode are wound, and a stacked type battery in which a positive electrode, an electrolyte layer and a negative electrode are stacked.
  • it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.
  • negative electrode active materials having sizes in the direction perpendicular to the crystal slip plane of 75 ⁇ m, 45 ⁇ m, 20 ⁇ m, 0.5 ⁇ m, 0.05 ⁇ m, and 0.002 ⁇ m were obtained. All of these negative electrode active materials had a polygonal cross-sectional shape perpendicular to the crystal slip plane. Further, when the size in the direction perpendicular to the crystal slip surface is L1, and the size in the crystal slip surface direction is L2, L1 / L2 ⁇ 1.
  • FIG. 4 shows an SEM image of a representative sample. As can be seen from this figure, the average size in the short side direction is about 500 nm. In the etching, the etching process was terminated when the size in the longitudinal direction of the silicon crystal reached a desired size. Finally, these needle-shaped silicons were peeled from the silicon wafer to obtain powder-like negative electrode active materials of the respective sizes.
  • Negative Electrode A negative electrode was produced using each of the powdered negative electrode active materials made of silicon obtained as described above. That is, the negative electrode active material: conductive auxiliary agent (carbon black): binder (polyvinylidene fluoride) is mixed at a mass ratio of 80: 5: 15, and diluted with N-methyl-2-pyrrolidone (NMP). Each slurry was prepared by. The obtained slurry was applied onto a copper foil and dried to obtain negative electrodes each having a diameter of 15 mm.
  • the negative electrode active material conductive auxiliary agent (carbon black): binder (polyvinylidene fluoride) is mixed at a mass ratio of 80: 5: 15, and diluted with N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • ethylene carbonate (EC) and diethyl carbonate (DEC) 1 in a mixed nonaqueous solvent were mixed at a volume ratio, and the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved was used.
  • LiPF 6 a lithium hexafluorophosphate
  • the above charging / discharging cycle was made into 1 cycle, and this was repeated 50 times. And the discharge capacity of 50th cycle was calculated
  • the discharge capacity retention ratio is calculated by (discharge capacity at the 50th cycle) / (discharge capacity at the first cycle) ⁇ 100. Moreover, the value calculated per alloy weight is employ
  • the negative electrode active material for an electric device is made of a crystalline metal having a structure whose vertical direction with respect to the crystal slip plane is 500 nm or less.
  • the thickness of the slip plane orientation is controlled to be sufficiently small, even if cracks occur from the slip plane as a starting point, miniaturization is suppressed. Therefore, deterioration of cycle life can be prevented by applying such a negative electrode active material for an electric device or a negative electrode to which the negative electrode active material is applied to an electric device such as a lithium ion secondary battery.

Abstract

 本発明の電気デバイス用負極活物質は、結晶すべり面に対する垂直方向の大きさが500nm以下の構造を有する結晶性金属から成ることを特徴とする。さらに好ましくは、当該結晶すべり面に対する垂直方向の大きさを100nm以下になるように制御する。このように、すべり面方位の厚みを十分に小さくなるように制御したため、当該すべり面を起点に割れが生じたとしても、微細化が抑制されることとなる。したがって、このような電気デバイス用負極活物質又はこれを適用した負極を、例えばリチウムイオン二次電池のような電気デバイスに適用することで、サイクル寿命の劣化を防止することができる。

Description

電気デバイス用負極活物質
 本発明は、例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)などのモータ駆動用電源に好適に用いられる二次電池や、キャパシタなどに代表される電気デバイスに用いられる負極活物質に関する。さらに、これを用いた負極及び電気デバイスに関する。
 近年、大気汚染や地球温暖化への対策として、CO排出量の低減に向けた種々の対策がなされている。特に、自動車業界においては、電気自動車やハイブリッド電気自動車の導入によるCO排出量の削減が期待されている。これらの車両のモータ駆動用電源としては、高性能な二次電池の開発が進められている。このような二次電池としては、特に高容量であることやサイクル特性に優れていることが求められることから、各種二次電池の中でも、高い理論エネルギーを有するリチウムイオン二次電池が注目されている。
 このようなリチウムイオン二次電池におけるエネルギー密度を高めるためには、正極と負極の単位質量当たりに蓄えられる電気量を高める必要がある。そして、このような要求を満たすためには、それぞれの活物質の選定が極めて重要なものとなる。このような活物質のうち、負極活物質を構成する材料としては種々のものが用いられている。例えば、特許文献1では、負極活物質の1種として、シリコン(Si)に代表される結晶性金属を用いることが開示されている。
特開2007-194204号公報
 しかしながら、シリコンのような結晶性金属を主成分とする負極活物質は、高容量である一方、リチウム(Li)吸蔵時の体積変化から生じる活物質粒子の割れに起因する微粉化が集電性の劣化を引き起こすという欠点があった。そのため、サイクル寿命が短いという問題があり、このような問題点の解消が課題となっていた。なお、上記特許文献1に記載の負極活物質はアモルファスシリコン薄膜中に結晶性シリコンが点在する形態であり、さらには結晶性シリコンの結晶サイズが5nm未満である。また、シリコンの結晶成長メカニズムの物理的常識の観点からすれば、上記結晶性シリコン粒子は三次元的に同じ大きさである。すなわち、当該シリコン粒子は「等方的粒子」といえる。
 本発明は、シリコンのような結晶性金属を用いた従来の負極材料における上記のような課題を解決すべくなされたものである。そして、本発明の目的とするところは、優れたサイクル寿命を備えた電気デバイス用の負極活物質を提供することにある。さらに、このような負極活物質を適用した負極や、電気デバイス、例えばリチウムイオン二次電池を提供することにある。
 本発明の態様に係る電気デバイス用負極活物質は、結晶すべり面に対する垂直方向の大きさが500nm以下の構造を有する結晶性金属から成ることを特徴としている。
 また、本発明の態様に係る電気デバイス用負極は、本発明の電気デバイス用負極活物質を備えることを特徴としている。さらに、本発明の態様に係る電気デバイスは、本発明の電気デバイス用負極活物質又は本発明の電気デバイス用負極を備えることを特徴としている。なお、代表例として、電気デバイスをリチウムイオン二次電池とすることができる。
図1(a)は、充電過程でのシリコンのすべり面におけるX線回折パターンの変化を示すグラフである。また、図1(b)は、シリコンの充電曲線を示すグラフである。 図2は、充電容量に対するシリコンの各結晶面から得られるX線回折ピーク半値幅の変化を示すグラフである。 図3は、シリコンを負極活物質として用いた電池について、充電容量の上限値とサイクル寿命との関係を示すグラフである。 図4は、針状シリコンの形状例を示すSEM画像である。 図5は、シリコン活物質を用いたセルの容量維持率に及ぼすシリコン活物質のすべり面に対する垂直方向の大きさの影響を示すグラフである。 図6は、本発明の実施形態に係るリチウムイオン二次電池の一例を示す概略断面図である。
 以下、本発明の一実施形態に係る電気デバイス用負極活物質、電気デバイス用負極及び電気デバイスについて詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を意味するものとする。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、X線回折測定により、シリコンのすべり面である(111)結晶面の充電過程における変化の様子を示すものである。
 X線回折測定に供する活物質として、45μmの結晶粒サイズを有する結晶性シリコンを用いた。そして、当該活物質:導電助剤(カーボンブラック):結着材(ポリフッ化ビニリデン)を80:5:15の質量比で混合し、N-メチル-2-ピロリドン(NMP)により希釈することによりスラリーを調整した。次いで、得られたスラリーを銅箔上に塗布し、in-situXRD測定用の電極を得た。ここで、電極は15mm径のものを使用し、対極には金属リチウムを用いた。なお、X線回折測定用の充放電セルは、窓材としてベリリウム(Be)を使用した。
 作成したシリコン電極と対極リチウム箔との間に、厚さ20μmのポリプロピレンからなる多孔質膜2枚を介在させて、両極を対向させた。ここで、X線回折測定用の充放電セルの上面(金属ベリリウム)にシリコン電極を置き、シリンジを用いて電解液を注液して、スプリング及びスペーサーを積層した。その後、X線回折測定用の充放電セルの下部を重ね合わせて電池とした。なお、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、六フッ化リン酸リチウム(LiPF)を1Mの濃度となるように溶解させたものを用いた。そして、充放電過程における結晶構造変化をX線回折測定にて観察した。充電条件としては、電流レートは1/20C、測定モードは定電流モードとした。
 図1(a),(b)からわかるように、充電深度が高まることによる重量当りのエネルギー密度の増加に伴って、X線回折ピークの半値幅の増加が確認される。すなわち、リチウムの吸蔵に起因する結晶性の低下が認められる。
 図2は、シリコンの各結晶面の半値幅(F.W.H.M./deg)の変化を充電容量(Capacity/mAhg-1)に対してプロットした結果を示すものである。この図から、充電容量が1500mAh/gを超えると、シリコンのすべり面である(111)結晶面だけが急激に半値幅が増加する現象が確認された。このような(111)面のみの急激な増加は、(111)面を起点としてシリコンのへき開による割れが原因と考えられる。
 また、上記同様にして得られたシリコン負極を用い、同様の対極、セパレータ、電解液により作製したコインセルを用いて、サイクル試験を行った。その際、電流レートを1/3C、充電時は定電流-定電圧モード、放電時は定電流モードとし、それぞれ充電容量上限値を規制することとした。
 図3に示す上記サイクル試験の結果から、重量エネルギー密度の上限値は、サイクル寿命に影響を与えることがわかる。特に、上限の重量エネルギー密度を1000mAh/gとした場合には、良好なサイクル寿命を示すことがわかる。それに対して、重量エネルギー密度が1500mAh/g以上の場合には、急激にサイクル寿命が短くなることが確認された。この結果から、図2に示すシリコン(111)面のX線回折ピーク半値幅の急激な変化、すなわち(111)面を起点とするシリコンの割れによるものと考えられる。つまり、すべり面であるシリコンの(111)面の変化を制御すれば、サイクル寿命を向上させることができることになる。
 本発明においては、電気デバイス用負極活物質として、結晶すべり面に対する垂直方向の大きさが500nm以下の構造を有する結晶性金属を含むものを用いた。このように、すべり面方位の厚みを十分に小さくなるように制御したため、すべり面方位の厚みが小さくなる。そのため、当該すべり面を起点に割れが生じたとしても、微細化が抑制されることとなる。その結果、サイクル寿命の劣化を防止することができる。なお、本明細中において、結晶性金属のすべり面に対する垂直方向の大きさの値としては、例えば、走査型電子顕微鏡(SEM)などの観察手段を用いて測定することができる。
 上記結晶性金属としては、異方的な構造を有していることが望ましい。なお、本発明において、「異方的な構造」とは、3次元方向の大きさが等方ではなく、特定方向のみのサイズを調整したものであることを意味する。具体的には、例えばシリコンの場合、そのすべり面である(111)面に対して垂直方向をいう。このように、異方的な構造を有することによって、結晶すべり面に起因した粒子破壊が抑制される。その結果、サイクル寿命の劣化をより効果的に防止することができる。
 また、本発明の負極活物質においては、重量エネルギー密度の観点から、結晶すべり面方向の大きさが、結晶すべり面に対する垂直方向の大きさよりも大きいことが好ましい。これにより、一つの粒子当たりの結晶すべり面の数を少なくすることができる。
 さらに、結晶すべり面に対する垂直方向の断面形状として、円形状、三角形状、正方形状、長方形状、菱形状、台形状又は多角形状であることが好ましい。このような形状とすることによって、導電助剤やバインダとの結合性、電極の空孔率の調整が容易になる。
 上記においては、負極活物質として適用可能な結晶性金属の典型例として、シリコンを例に挙げて説明してきた。本形態に係る結晶性金属としてはこの他に、ゲルマニウム(Ge)、スズ(Sn)、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、アンチモン(Sb)、マグネシウム(Mg)、インジウム(In)、ビスマス(Bi)あるいはカドミウム(Cd)を採用することができる。
 本発明においては、上記金属を主成分として98%を超えて含有するものを用いることができる。つまり、2%以下であれば不純物の存在を許容することができる。さらに、換言すると、本実施形態における負極活物質は、結晶すべり面に対する垂直方向の大きさが500nm以下の構造を有する結晶性金属と、不可避不純物のみからなるものとすることができる。このように不可避不純物として許容される元素としては、主成分金属を除く上記金属を挙げることができる。その他にも、チタニウム(Ti)、バナジウム(V)、鉄(Fe)、ホウ素(B)、炭素(C)、窒素(N)、酸素(O)、フッ素(F)、リン(P)、硫黄(S)、塩素(Cl)、砒素(As)セレン(Se)、臭素(Br)等を挙げることができる。
 本発明の一実施形態に係る電気デバイス用負極は、異方性を有する結晶性金属から成る上記のような電気デバイス用負極活物質を備えるものである。そして、本発明の一実施形態に係る電気デバイスは、上記のような負極活物質又は電気デバイス用負極を備えるものである。以下、このような電気デバイスの代表例として、リチウムイオン二次電池を挙げ、その構成やその材料などについて説明する。
 図6に、本発明の一実施形態に係るリチウムイオン二次電池を例示する。図6に示すように、本実施形態のリチウムイオン二次電池1は、正極タブ21及び負極タブ22が取り付けられた電池要素10が外装体30の内部に封入された構成を有している。そして、正極は、正極集電体に正極活物質等を塗布して作製され、負極は、負極集電体に負極活物質等を塗布して作製される。なお、本実施形態においては、正極タブ21及び負極タブ22が、外装体30の内部から外部に向かって、それぞれ反対の方向に導出されている。また、図示しないが、正極タブ及び負極タブが、外装体の内部から外部に向かって、同一方向に導出される構成としてもよい。このような正極タブ及び負極タブは、例えば、超音波溶接や抵抗溶接などにより後述する正極集電体及び負極集電体に取り付けることができる。
(正極タブ及び負極タブ)
 正極タブ21及び負極タブ22は、例えば、アルミニウム(Al)や銅(Cu)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼(SUS)、これらの合金などの材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のタブとして用いることができる従来公知の材料を用いることができる。なお、正極タブ及び負極タブは、同一材質のものを用いてもよく、異なる材質のものを用いてもよい。また、本実施形態のように、別途準備したタブを後述する正極集電体及び負極集電体に接続してもよいし、後述する各正極集電体及び各負極集電体が箔状である場合は、それぞれを延長することによってタブを形成してもよい。
(外装体)
 外装体30は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましい。ただし、これに限定されるものではなく、リチウムイオン二次電池用の外装体に使用可能な従来公知の材料で形成されたものを用いることができる。なお、自動車に適用する場合、自動車の熱源から効率よく熱を伝え、電池内部を迅速に電池動作温度まで加熱するために、例えば、熱伝導性に優れた高分子-金属複合ラミネートシートを用いることが好適である。
(電池要素)
 図6に示すように、本実施形態のリチウムイオン二次電池1における電池要素10は、正極11と、電解質層13と、負極12とからなる単電池層14を複数積層した構成を有している。正極11は、正極集電体11Aの両方の主面上に正極活物質層11Bが形成された構成を有している。また、負極12は、負極集電体12Aの両方の主面上に負極活物質層12Bが形成された構成を有している。
 このとき、一の正極11における正極集電体11Aの片方の主面上に形成された正極活物質層11Bと、その正極11に隣接する負極12における負極集電体12Aの片方の主面上に形成された負極活物質層12Bとが電解質層13を介して対向する。このようにして、正極、電解質層、負極が、この順に複数積層されており、隣接する正極活物質層11B、電解質層13及び負極活物質層12Bは、1つの単電池層14を構成する。すなわち、本実施形態のリチウムイオン二次電池1は、単電池層14が複数積層されることにより、電気的に並列接続された構成を有するものとなる。なお、電池要素10の最外層に位置する負極集電体12Aには、片面のみに、負極活物質層12Bが形成されている。
 また、単電池層14の外周には、隣接する正極集電体11Aや負極集電体12Aの間を絶縁するために、図示しない絶縁層が設けられていてもよい。このような絶縁層としては、電解質層などに含まれる電解質を保持し電解質の液漏れを防止できる材料により、単電池層の外周に形成されることが好ましい。具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリウレタン(PUR)、ポリアミド系樹脂(PA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などの汎用プラスチックを使用することができる。また、熱可塑オレフィンゴムやシリコーンゴムなどを使用することもできる。
(正極集電体及び負極集電体)
 正極集電体11A及び負極集電体12Aは、例えば、箔状又はメッシュ状のアルミニウム、銅、ステンレス(SUS)などの導電性の材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として使用可能な従来公知の材料を用いることができる。また、集電体の大きさは、電池の使用用途に応じて決定することができる。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図6に示す電池要素10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、スパッタ法等により、負極活物質たる薄膜合金を負極集電体12A上に直接形成する場合には、集電箔を用いるのが望ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料又は非導電性高分子材料に導電性フィラーが添加された樹脂を採用することができる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン及び銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、又はこれらの金属の組み合わせのめっき材などを用いることが好ましい。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。中でも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅及びニッケルが好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾールなどが挙げられる。このような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化又は集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などが挙げられる。このような非導電性高分子材料は、優れた耐電位性又は耐溶媒性を有する。
 上記の導電性高分子材料又は非導電性高分子材料には、必要に応じて導電性フィラーを添加することができる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性又はリチウムイオン遮断性に優れた材料として、金属、導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb及びKからなる群から選ばれる少なくとも1種の金属若しくはこれらの金属を含む合金又は金属酸化物を含むことが好ましい。また、導電性カーボンとしては特に制限はないが、好ましくはアセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン及びフラーレンからなる群より選ばれる少なくとも1種を含むものである。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には集電体全体の5~35質量%程度である。
 しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として用いられている従来公知の材料を用いることができる。
(正極)
 リチウムイオン二次電池において、正極11は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの導電性材料からなる正極集電体11Aの片面又は両面に、正極活物質層11Bが形成されて構成される。なお、正極集電体の厚さとしては、前述したように特に限定されず、一般には1~30μm程度であることが好ましい。
 正極活物質層11Bは、正極活物質として、リチウムを吸蔵及び放出することが可能な正極材料のいずれか1種又は2種以上を含んでおり、必要に応じて導電助剤やバインダを含んでいてもよい。なお、正極活物質層中におけるこれら正極活物質、導電助剤、バインダの配合比としては、特に限定されない。
 正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
 リチウム-遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePOなどを挙げることができる。また、これら複合酸化物の遷移金属の一部が他の元素により置換されたもの等も採用できる。固溶体系としては、xLiMO・(1-x)LiNO(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO-LiMn(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。
 3元系としては、ニッケル・コバルト・マンガン系複合正極材等が挙げられる。スピネルMn系としてはLiMn等が挙げられる。また、NiMn系としては、LiNi0.5Mn1.5等が挙げられる。NiCo系としては、Li(NiCo)O等が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として好適に用いられる。
 なお、上記正極活物質の粒径としては、特に限定するものではないが、一般には細かいほど望ましい。また、作業能率や取り扱いの容易さなどを考慮すると、平均粒径で、1~30μm程度であればよく、より好ましくは5~20μm程度である。また、もちろん上記以外の正極活物質も採用できる。活物質それぞれの固有の効果を発現する上で最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士をブレンドして用いればよい。つまり、全ての活物質の粒径を必ずしも均一化させる必要はない。
 バインダは、活物質同士又は活物質と集電体とを結着させて電極構造を維持する目的で添加される。このようなバインダとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)およびポリアクリロニトリル(PAN)などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料を用いることができる。
 導電助剤は、単に導電剤とも言い、導電性を向上させるために配合される導電性の添加物をいう。本発明に使用する導電助剤としては、特に制限されず、従来公知のものを利用することができる。例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料を挙げることができる。導電助剤を含有させることによって、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上、電解液の保液性の向上による信頼性向上に寄与する。
(負極)
 一方、負極12は、正極と同様に、上記したような導電性材料からなる負極集電体12Aの片面又は両面に、負極活物質層12Bが形成されて構成される。
 負極活物質層12Bは、負極活物質として、リチウムを吸蔵及び放出することが可能な負極材料のいずれか1種又は2種以上を含んでおり、必要に応じて、上記した正極活物質の場合と同様の導電助剤やバインダを含んでいてもよい。なお、負極活物質層中におけるこれら負極活物質、導電助剤、バインダの配合比としては、特に限定されない。
 本形態の電気デバイスとしてのリチウムイオン二次電池においては、結晶すべり面に対する垂直方向の大きさが500nm以下である結晶性金属から成り、異方性を有する負極活物質が用いられる。負極としては、上記したように、上記のような負極活物質と共に導電助剤やバインダを含むスラリーを集電体表面に塗布することによって負極極活物質層を形成したものが用いられる。
 なお、上記において、正極活物質層及び負極活物質層をそれぞれの集電体の片面又は両面上に形成するものとして説明したように、1枚の集電体における一方の面に正極活物質層を、他方の面に負極活物質層をそれぞれに形成することもできる。このような電極は、双極型電池に適用することができる。
(電解質層)
 電解質層13は非水電解質を含む層であり、その非水電解質は充放電時に正負極間を移動するリチウムイオンのキャリアとしての機能を有する。なお、電解質層13の厚さとしては、内部抵抗を低減させる観点から薄いほどよく、通常1~100μm程度、好ましくは5~50μmの範囲とする。
 電解質層13に含有される非水電解質としては、リチウムイオンのキャリアとしての機能を発揮できるものであれば特に限定されず、液体電解質又はポリマー電解質を用いることができる。
 液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した構成を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が挙げられる。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極活物質層に添加され得る化合物を使用することができる。
 一方、ポリマー電解質は、電解液を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質とに分類される。ゲルポリマー電解質は、好ましくはイオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記液体電解質が注入されて成る構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になる点で優れている。
 マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されず、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVDF-HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びこれらの共重合体等が挙げられる。
 ここで、上記のイオン伝導性ポリマーは、活物質層において電解質として用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。電解液、つまりリチウム塩及び有機溶媒の種類は特に制限されず、上記リチウム塩などの電解質塩及びカーボネート類などの有機溶媒が用いられる。
 真性ポリマー電解質は、上記マトリックスポリマーにリチウム塩が溶解してなるものであって、有機溶媒を含まない。したがって、電解質として真性ポリマー電解質を用いることによって電池からの液漏れの心配がなくなり、電池の信頼性が向上する。
 ゲルポリマー電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現することができる。このような架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して重合処理を施せばよい。重合処理としては、熱重合、紫外線重合、放射線重合、電子線重合等を用いることができる。なお、電解質層13に含まれる非水電解質は、1種のみからなる単独のものでも、2種以上を混合したものであってもよい。
 また、電解質層13が液体電解質やゲルポリマー電解質から構成される場合には、電解質層13にセパレータを用いることが好ましい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンから成る微多孔膜が挙げられる。
〔電池の形状〕
 リチウムイオン二次電池は、電池素子を缶体やラミネート容器(包装体)などの電池ケースに収容した構造を有している。電池素子(電極構造体)は、正極と負極とが電解質層を介して接続されて構成されている。なお、電池素子が正極、電解質層及び負極を巻回した構造を有する巻回型の電池と、正極、電解質層及び負極を積層した積層型の電池に大別され、上述の双極型電池は積層型の構造を有する。また、電池ケースの形状や構造に応じて、いわゆるコインセル、ボタン電池、ラミネート電池などと称されることもある。
 以下、本発明を実施例に基づいて詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。
〔1〕負極活物質の作製
 シリコンウエハー上に、室温にてフッ酸、硝酸銀、水からなる混合溶液を用いて銀ナノ粒子を析出させた。次いで、MAE(Metal Assist Etching)法によってエッチングを行い、負極活物質となるシリコン結晶におけるすべり面の大きさを大まかに制御した。その後、酸素雰囲気中1000℃にて構造体表面を酸化させた。次いで、フッ酸によって酸化シリコンを除去することで、すべり面に対する垂直方向の大きさを精密に制御した。
 上記のようにして、結晶すべり面に対する垂直方向の大きさが、それぞれ75μm、45μm、20μm、0.5μm、0.05μm、0.002μmである負極活物質を得た。なお、これらの負極活物質は、いずれも結晶すべり面に対する垂直方向の断面形状が多角形であった。また、結晶すべり面に対する垂直方向の大きさをL1、結晶すべり面方向の大きさをL2としたとき、L1/L2<1となるように作製した。
 図4は、代表的なサンプルのSEM画像を示すものであって、この図から判るように、短辺方向のサイズとしては平均500nm程度である。エッチングに際しては、シリコン結晶における長手方向の大きさが所望の大きさとなったところでエッチング処理を終了することとした。最終的に、これら針状シリコンをシリコンウエハーから剥離させることによって、上記それぞれのサイズの粉末状負極活物質を得た。
〔2〕負極の作製
 上記によって得られたシリコンから成る粉末状負極活物質をそれぞれ用いて負極を作製した。すなわち、当該負極活物質:導電助剤(カーボンブラック):結着材(ポリフッ化ビニリデン)を80:5:15の質量比で混合し、N-メチル-2-ピロリドン(NMP)により希釈することにより各スラリーを調整した。得られたスラリーを銅箔上に塗布し、乾燥することによって15mm径の負極をそれぞれ得た。
〔3〕電池の作製
 上記により得られた負極と対極としてのリチウム箔との間に、厚さ20μmのポリプロピレンから成る多孔質膜2枚を介在させて、両極を対向させた。次いで、コインセルの底部の上に重ね合わせ、電極間の絶縁性を保つためにガスケットを装着した。その後、シリンジを用いて電解液を注液した。そして、スプリング及びスペーサーを積層した後、コインセルの上部を重ね合わせ、かしめを行ってそれぞれの電池を得た。なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
〔4〕充放電サイクル耐久性試験
 上記により得られたそれぞれのコインセルに対して、以下の充放電試験を実施した。すなわち、充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、300K(27℃)の温度に設定された恒温槽(エスペック株式会社製PFU-3K)中にて、1/3Cの電流レートで実施した。なお、充電過程では、定電流-定電圧モードとして、0.1mAにて2Vから10mVまで充電した。放電過程では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを50回繰り返した。そして、50サイクル目の放電容量を求め、1サイクル目の放電容量に対する維持率を算出した。その結果を図5に示す。なお、放電容量維持率は、(50サイクル目の放電容量)/(1サイクル目の放電容量)×100で算出される。また、放電容量は、合金重量当りで算出した値を採用している。
〔5〕試験結果
 図5から、負極活物質であるシリコン結晶のすべり面に対する垂直方向の大きさが、容量維持率に影響を及ぼすことがわかる。すなわち、すべり面に対する垂直方向の大きさが小さくなるほど、容量維持率が向上することが確認された。すべり面に対する垂直方向の大きさが平均500nmを超えると、サイクル耐久後における容量維持率の減少が顕著である。したがって、すべり面に対する垂直方向の大きさとして平均500nm以下であることが好ましい。また、すべり面に対する垂直方向の大きさが小さいほど、容量維持率が向上する傾向が認められる。特に、100nm以下のサイズの場合に容量維持率の高さが顕著であることが判る。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 日本国特許出願特願2011-227860号(出願日:2011年10月17日)の全内容は、ここに引用される。
 本発明によれば、電気デバイス用負極活物質として、結晶すべり面に対する垂直方向の大きさが500nm以下の構造を有する結晶性金属から成るものを用いた。このように、すべり面方位の厚みを十分に小さくなるように制御したため、当該すべり面を起点に割れが生じたとしても、微細化が抑制されることとなる。したがって、このような電気デバイス用負極活物質又はこれを適用した負極を、例えばリチウムイオン二次電池のような電気デバイスに適用することで、サイクル寿命の劣化を防止することができる。
  1 リチウムイオン二次電池
  10 電池要素
  11 正極
  11A 正極集電体
  11B 正極活物質層
  12 負極
  12A 負極集電体
  12B 負極活物質層
  13 電解質層
  14 単電池層
  21 正極タブ
  22 負極タブ
  30 外装体

Claims (10)

  1.  結晶すべり面に対する垂直方向の大きさが500nm以下の構造を有する結晶性金属から成ることを特徴とする電気デバイス用負極活物質。
  2.  前記結晶すべり面に対する垂直方向の大きさが100nm以下であることを特徴とする請求項1に記載の電気デバイス用負極活物質。
  3.  前記結晶性金属の3次元サイズが異方性を有していることを特徴とする請求項1又は2に記載の電気デバイス用負極活物質。
  4.  前記結晶性金属における結晶すべり面方向の大きさが、結晶すべり面に対する垂直方向の大きさよりも大きいことを特徴とする請求項1~3のいずれか1つの項に記載の電気デバイス用負極活物質。
  5.  前記結晶性金属における結晶すべり面に対する垂直方向の断面形状が円形状、三角形状、正方形状、長方形状、菱形状、台形状又は多角形状であることを特徴とする請求項1~4のいずれか1つの項に記載の電気デバイス用負極活物質。
  6.  シリコン、ゲルマニウム、スズ、アルミニウム、亜鉛、鉛、アンチモン、マグネシウム、インジウム、ビスマス及びカドミウムのいずれかが主成分であることを特徴とする請求項1~5のいずれか1つの項に記載の電気デバイス用負極活物質。
  7.  請求項1~6のいずれか1つの項に記載の電気デバイス用負極活物質を備えることを特徴とする電気デバイス用負極。
  8.  請求項1~6のいずれか1つの項に記載の電気デバイス用負極活物質を備えることを特徴とする電気デバイス。
  9.  請求項7に記載の電気デバイス用負極を備えることを特徴とする電気デバイス。
  10.  リチウムイオン二次電池であることを特徴とする請求項8に記載の電気デバイス。
PCT/JP2012/075391 2011-10-17 2012-10-01 電気デバイス用負極活物質 WO2013058091A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280050413.XA CN103875100B (zh) 2011-10-17 2012-10-01 电气器件用负极活性物质
EP12841333.3A EP2770561A4 (en) 2011-10-17 2012-10-01 NEGATIVE ELECTRODE ACTIVE SUBSTANCE FOR USE IN AN ELECTRICAL DEVICE
US14/352,279 US9979016B2 (en) 2011-10-17 2012-10-01 Negative electrode active material for electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-227860 2011-10-17
JP2011227860A JP5857614B2 (ja) 2011-10-17 2011-10-17 リチウムイオン二次電池用負極活物質

Publications (1)

Publication Number Publication Date
WO2013058091A1 true WO2013058091A1 (ja) 2013-04-25

Family

ID=48140744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075391 WO2013058091A1 (ja) 2011-10-17 2012-10-01 電気デバイス用負極活物質

Country Status (5)

Country Link
US (1) US9979016B2 (ja)
EP (1) EP2770561A4 (ja)
JP (1) JP5857614B2 (ja)
CN (1) CN103875100B (ja)
WO (1) WO2013058091A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979009B2 (en) * 2015-12-17 2018-05-22 Intel Corporation Energy storage device having a laser weld
KR20220116167A (ko) 2019-12-19 2022-08-22 스미또모 가가꾸 가부시키가이샤 집전체 일체형 이차 전지용 부극 및 리튬 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194204A (ja) 2006-01-20 2007-08-02 Samsung Sdi Co Ltd 負極活物質、その製造方法、及びこれを採用した負極とリチウム電池
WO2007114168A1 (ja) * 2006-03-30 2007-10-11 Sanyo Electric Co., Ltd. リチウム二次電池及びその製造方法
JP2009524264A (ja) * 2006-01-23 2009-06-25 ネクソン・リミテッド シリコン系材料のエッチング方法
JP2009212074A (ja) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2010533637A (ja) * 2007-07-17 2010-10-28 ネグゼオン・リミテッド シリコン又はシリコンベースの材料で構成される構造化粒子の製造方法及びリチウム蓄電池におけるそれらの使用
US20110117436A1 (en) * 2009-11-17 2011-05-19 Physical Sciences, Inc. Silicon Whisker and Carbon Nanofiber Composite Anode
JP2011523902A (ja) * 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344121B2 (ja) * 2002-09-06 2009-10-14 パナソニック株式会社 非水電解質二次電池用負極材料と非水電解質二次電池
DK3859830T3 (da) * 2009-05-19 2022-04-11 Oned Mat Inc Nanostrukturerede materialer til batterianvendelser
WO2011017173A2 (en) * 2009-07-28 2011-02-10 Bandgap Engineering Inc. Silicon nanowire arrays on an organic conductor
CN102598373B (zh) * 2009-09-29 2015-04-08 乔治亚技术研究责任有限公司 电极、锂离子电池及其制造和使用方法
CN101841035B (zh) 2009-12-07 2013-02-13 大连丽昌新材料有限公司 一种用作锂离子电池负极的高能复合材料的制造工艺
CN102208632A (zh) * 2011-04-12 2011-10-05 湘潭大学 锂离子电池用硅纳米线-富勒烯综合体负极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194204A (ja) 2006-01-20 2007-08-02 Samsung Sdi Co Ltd 負極活物質、その製造方法、及びこれを採用した負極とリチウム電池
JP2009524264A (ja) * 2006-01-23 2009-06-25 ネクソン・リミテッド シリコン系材料のエッチング方法
WO2007114168A1 (ja) * 2006-03-30 2007-10-11 Sanyo Electric Co., Ltd. リチウム二次電池及びその製造方法
JP2010533637A (ja) * 2007-07-17 2010-10-28 ネグゼオン・リミテッド シリコン又はシリコンベースの材料で構成される構造化粒子の製造方法及びリチウム蓄電池におけるそれらの使用
JP2009212074A (ja) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011523902A (ja) * 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス
US20110117436A1 (en) * 2009-11-17 2011-05-19 Physical Sciences, Inc. Silicon Whisker and Carbon Nanofiber Composite Anode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770561A4 *

Also Published As

Publication number Publication date
JP2013089408A (ja) 2013-05-13
US20140272589A1 (en) 2014-09-18
US9979016B2 (en) 2018-05-22
EP2770561A1 (en) 2014-08-27
EP2770561A4 (en) 2015-03-25
JP5857614B2 (ja) 2016-02-10
CN103875100B (zh) 2017-02-22
CN103875100A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
US9293764B2 (en) Negative electrode active material for electric device, negative electrode for electric device and electric device
US9209453B2 (en) Negative electrode active material for electric device
WO2013099441A1 (ja) 電気デバイス用負極活物質
KR101660100B1 (ko) 전기 디바이스용 부극 활물질
KR101720832B1 (ko) 전기 디바이스용 부극 활물질
US9843040B2 (en) Negative electrode active material for electric device
US10547053B2 (en) Negative electrode active material for electric device, negative electrode for electric device and electric device
JP6098719B2 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス
EP2717356B1 (en) Negative electrode active material for electrical devices
CN111183537A (zh) 负极活性物质的预掺杂方法、以及电气设备用电极及电气设备的制造方法
JP6232764B2 (ja) 電気デバイス用負極、およびこれを用いた電気デバイス
US9979016B2 (en) Negative electrode active material for electric device
WO2014199783A1 (ja) 電気デバイス用負極活物質、およびこれを用いた電気デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012841333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012841333

Country of ref document: EP