WO2013057810A1 - Auxiliary machine driving mechanism - Google Patents

Auxiliary machine driving mechanism Download PDF

Info

Publication number
WO2013057810A1
WO2013057810A1 PCT/JP2011/074101 JP2011074101W WO2013057810A1 WO 2013057810 A1 WO2013057810 A1 WO 2013057810A1 JP 2011074101 W JP2011074101 W JP 2011074101W WO 2013057810 A1 WO2013057810 A1 WO 2013057810A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
driven
pulley
pulley piece
piece
Prior art date
Application number
PCT/JP2011/074101
Other languages
French (fr)
Japanese (ja)
Inventor
良昭 山田
邦彦 肥喜里
孝幸 土屋
幸一 井谷
隆朗 小早川
Original Assignee
Udトラックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Udトラックス株式会社 filed Critical Udトラックス株式会社
Priority to PCT/JP2011/074101 priority Critical patent/WO2013057810A1/en
Publication of WO2013057810A1 publication Critical patent/WO2013057810A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/067Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions mechanical actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/52Pulleys or friction discs of adjustable construction
    • F16H55/56Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable
    • F16H55/563Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable actuated by centrifugal masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • the present invention relates to a technology for driving an auxiliary device (auxiliary device) of a vehicle (for example, a commercial vehicle).
  • auxiliary machine such as hydraulic pump for power steering, air compressor for brake operation, compressor for air conditioner (air conditioner) working fluid, alternator (generator) for charging battery
  • auxiliary machine such as hydraulic pump for power steering, air compressor for brake operation, compressor for air conditioner (air conditioner) working fluid, alternator (generator) for charging battery
  • auxiliary machine many of these auxiliary machines are driven by an engine.
  • the auxiliary machine may be operated as necessary.
  • an auxiliary machine such as an unload mechanism of an air compressor (a mechanism that opens a discharge valve for compressed air using the constant pressure if the air pressure of the air reservoir is below a certain level) is mechanically turned on and off.
  • the mechanism is incorporated.
  • the mechanical mechanism does not perform highly accurate operation control.
  • the auxiliary machine since the auxiliary machine is driven by the engine, the auxiliary machine is operated at a rotational speed proportional to the engine rotational speed. Therefore, even when the operation of the auxiliary machine is not required (when the auxiliary machine is idling), a loss output is generated in the engine. Since this loss output is proportional to the engine speed, the influence on the fuel consumption is large especially when the engine is in a high speed range. Further, when the auxiliary machine is operating, even if the load torque of the engine is constant, the engine loss output increases as the engine speed increases, so the effect on fuel consumption increases.
  • the driving pulley has a groove width changed by the repulsive force of the spring, and when the engine output shaft (crankshaft) speed decreases, the groove width decreases, and the force that holds the V belt with the driving pulley is reduced. (Repulsive force of the spring) becomes small. Therefore, there exists a problem that the power transmission efficiency by a V belt falls.
  • the present invention has been proposed in view of the above-described problems of the prior art, and improves the response performance of changing the power transmitted to the auxiliary machine with respect to the fluctuation of the rotation of the engine output shaft (crankshaft).
  • the purpose is to provide an auxiliary machine drive mechanism that can be used.
  • the auxiliary machine drive mechanism (230) of the present invention is provided with a drive pulley (LP1) on the output shaft of the engine (for example, the crankshaft 11 of the engine) and a driven pulley (91) on the drive shaft (91) of the auxiliary machine (9).
  • PL2 is provided and is wound around the driving pulley (PL1) and the driven pulley (PL2) via the V belt (40).
  • the driven pulley (PL2) has a function of widening, and has a function of narrowing the V-belt groove width (W2) as the rotational speed increases.
  • the drive pulley (PL1) is attached to the crankshaft (11) of the engine, and the drive-side fixed pulley piece (22) fixed to the crankshaft (11) and the crankshaft (11).
  • the drive side movable pulley piece (23) that is restricted in rotation but movable in the axial direction, and the drive side disposed between the drive side fixed pulley piece (22) and the drive side movable pulley piece (23)
  • a flyweight (24) is provided, and a V-belt groove (G1) around which the V-belt (40) is wound is formed by the drive-side fixed pulley piece (22) and the drive-side movable pulley piece (23).
  • the surface (22t) in contact with the groove (24) has a taper (or a conical surface) in the radially outward direction that is close to the drive side movable pulley piece (23), and the drive side movable pulley piece (23) is driven.
  • the surface (23q) that is in contact with the side flyweight (24) has a taper (or conical surface) that is close to the drive side fixed pulley piece (22) in the radially outward direction, and the drive side movable pulley piece ( 23) is provided with a drive side elastic body (drive side spring 26) that urges the drive side fixed pulley piece (22).
  • the driven pulley (PL2) includes a driven-side fixed pulley piece (33) fixed to a drive shaft (91) of an auxiliary machine, an auxiliary machine-side plate (a flange portion 31f of the shaft member 31), and an auxiliary machine drive shaft.
  • (91) The axial direction of (91) is arranged between the driven side fixed pulley piece (33) and the auxiliary machine side plate (flange 31f of the shaft member 31), and the rotation is restrained with respect to the auxiliary machine drive shaft (91).
  • the driven-side movable pulley piece (32) that is movable in the axial direction is disposed between the auxiliary machine-side plate (the flange portion 31f of the shaft member 31) and the driven-side movable pulley piece (32).
  • the driven side flyweight (34), the driven side fixed pulley piece (33) and the driven side movable pulley piece (32) form a V belt groove (G2) around which the V belt (40) is wound,
  • the driven flyweight (34) is driven (PL2) is movable in the radial direction and is in contact with the auxiliary machine side plate (the flange portion 31f of the shaft member 31) and the driven side movable pulley piece (32), and the auxiliary machine side plate (of the shaft member 31).
  • the surface (31t) that is in contact with the drive-side flyweight (34) of the flange portion 31f) has a taper (or conical surface) that is radially outward and close to the driven-side movable pulley piece (32).
  • the surface (32q) in contact with the drive-side flyweight (34) of the drive-side movable pulley piece (32) has a taper (or the outer side in the radial direction close to the accessory-side plate (the flange portion 31f of the shaft member 31) (or A driven-side elastic body (driven-side spring 36) that biases the driven-side movable pulley piece (23) toward the auxiliary machine-side plate (the flange portion 31f of the shaft member 31).
  • a taper or the outer side in the radial direction close to the accessory-side plate (the flange portion 31f of the shaft member 31) (or A driven-side elastic body (driven-side spring 36) that biases the driven-side movable pulley piece (23) toward the auxiliary machine-side plate (the flange portion 31f of the shaft member 31).
  • the opposite side of the drive pulley (PL1) of the output shaft (11) of the engine (1) is connected to the transmission (4) via the clutch (2) and the regenerative motor (motor and generator 3).
  • the rotation of the regenerative motor (3) is preferably transmitted to the drive pulley (PL1) via the clutch (2) and the crankshaft (11) of the engine (1).
  • the auxiliary machine (9) includes, for example, a power steering hydraulic pump, an air compressor that produces compressed air that is a brake or other working fluid, an air conditioner compressor that compresses a refrigerant used in a vehicle air conditioner, There is an alternator that charges a service power source (battery) used for lights and the like.
  • both the driving flyweight (24) and the driven flyweight (34) have a radius.
  • the V-belt groove width (W1) of the driving pulley (PL1) is widened, and the V-belt groove width (W2) of the driven pulley (PL2) is narrowed.
  • the V-belt (40) is wound around the inner side in the radial direction in the driving pulley (PL1), and the outer side in the radial direction in the driven pulley (PL2).
  • V-belt (40) is wound radially outward in the driving pulley (PL1) and radially inward in the driven pulley (PL2). Therefore, when the rotation speed of the engine output shaft (11) decreases, the rotation speed of the drive shaft (91) of the auxiliary machine provided with the driven pulley (PL2) increases.
  • the rotational speed of the drive shaft (91) of the auxiliary machine tends to be opposite to the variation of the rotational speed of the engine output shaft.
  • the rotation speed of the drive shaft (91) of the auxiliary machine is kept constant. Therefore, even if the rotational speed of the engine output shaft (crankshaft 11) increases, the rotational speed on the auxiliary machine side does not increase, the power loss on the auxiliary machine side does not increase, and the fuel efficiency is adversely affected. There is nothing. Further, even if the rotational speed of the engine output shaft (crankshaft 11) is reduced, the rotational speed of the accessory side drive shaft (91) necessary for driving the accessory can be maintained.
  • the drive pulley (PL1) is attached to the crankshaft (11) of the engine, and is fixed to the crankshaft (11).
  • the drive-side fixed pulley piece (22) is rotated with respect to the crankshaft (11).
  • the drive side movable pulley piece (23) which is restrained but movable in the axial direction, and the drive side flyweight disposed between the drive side fixed pulley piece (22) and the drive side movable pulley piece (23) (24), the drive-side flyweight (24) is movable in the radial direction of the drive-side pulley (PL1) and is in contact with the drive-side fixed pulley piece (22) and the drive-side movable pulley piece (23).
  • the surface (22t) in contact with the drive-side flyweight (24) of the drive-side fixed pulley piece (22) has a taper (or conical surface) whose radially outer side is close to the drive-side movable pulley piece (23).
  • the surface (23q) of the drive-side movable pulley piece (23) that is in contact with the drive-side flyweight (24) has a taper (or conical surface) that is radially outwardly close to the drive-side fixed pulley piece (22). If the rotation speed of the crankshaft (11), which is the output shaft of the engine, increases, the rotation is driven by the driving side fixed pulley piece (22), the driving side movable pulley piece (23), and the driving side flyweight.
  • the drive-side flyweight (24) becomes the drive-side pulley (PL1) (more specifically, the drive-side fixed pulley piece 22). And the drive-side movable pulley piece 23) move outward in the radial direction (side away from the crankshaft 11). At that time, the surface (22t) in contact with the drive-side flyweight (24) of the drive-side fixed pulley piece (22) has a taper (or conical shape) whose radially outer side is close to the drive-side movable pulley piece (23).
  • the surface (23q) in contact with the drive-side flyweight (24) of the drive-side movable pulley piece (23) has a taper (the outer side in the radial direction is close to the drive-side fixed pulley piece (22)). If the driving flyweight (24) moves radially outward, the driving movable pulley piece (23) is repulsive by the driving elastic body (driving spring 26). Against this, the V-belt groove width (W1) of the drive pulley (PL1) is increased by moving in a direction away from the drive side fixed pulley piece (22) (in the axial direction of the crankshaft 11 of the engine).
  • the driven pulley (PL2) includes a driven side fixed pulley piece (33) fixed to the driving shaft (91) of the auxiliary machine and an auxiliary machine side plate (flange portion 31f of the shaft member 31). And the driven-side fixed pulley piece (33) and the auxiliary machine-side plate (the flange portion 31f of the shaft member 31) in the axial direction of the auxiliary machine drive shaft (91) and the drive shaft (91) of the auxiliary machine.
  • the driven-side movable pulley piece (32) that is restricted in rotation but movable in the axial direction, the accessory-side plate (the flange portion 31f of the shaft member 31), and the driven-side movable pulley piece (32) ), And the driven flyweight (34) is movable in the radial direction of the driven pulley (PL2) and is connected to the auxiliary plate (shaft member).
  • the surface (31t) in contact with the driving flyweight (34) of the auxiliary machine side plate (31) has a taper (or conical shape) whose radially outer side is close to the driven movable pulley piece (32).
  • the surface (32q) that is in contact with the drive-side flyweight (34) of the driven-side movable pulley piece (32) has a surface on the auxiliary side (the flange portion 31f of the shaft member 31).
  • both the driving pulley (PL1) and the driven pulley (PL2) are configured such that the V-belt groove width (W1, W2) varies due to the variation in the rotational speed.
  • the rotation of the (crankshaft 11) increases, the radial position of the drive pulley (PL1) where the V-belt (40) is wound fluctuates radially inward, and the driven pulley
  • the drive shaft of the auxiliary machine provided with the driven pulley (PL2) is simultaneously performed in which the radial position of the portion around which the V-belt (40) is wound in (PL2) varies radially outward.
  • the rotational speed of (91) decreases in a short time.
  • the rotation of the engine output shaft (crankshaft 11) decreases, the radial position of the drive pulley (PL1) where the V-belt (40) is wound fluctuates outward in the radial direction.
  • the driven pulley (PL2) is provided at the same time as the radial position of the portion where the V-belt (40) is wound on the driven pulley (PL2) is varied inward in the radial direction.
  • the rotational speed of the drive shaft (91) of the auxiliary machine increases in a short time. That is, according to the present invention, when the rotation of the engine output shaft (crankshaft 11) varies, the responsiveness that the rotation of the accessory drive shaft (91) varies is good. Even if the engine output shaft (crankshaft 11) has a large number of rotations (variations), the variation in the power transmitted to the accessory side can be very small.
  • both the driving pulley (PL1) and the driven pulley (PL2) are configured such that the V-belt groove widths (W1, W2) vary due to the variation in the rotational speed, the driving-side elasticity
  • the pulley groove width (W1, W2) is not changed only by the body (drive side spring 24) and the driven side elastic body (driven side spring 34), but the centrifugal force acting on the flyweights (24, 34).
  • the groove widths (W1, W2) of the pulley are determined based on the elastic coefficients of the driving side elastic body (driving side spring 24) and the driven side elastic body (driven side spring 34).
  • the tension acting on the V-belt (40) is always constant, regardless of the rotational speed of the engine output shaft (crankshaft 11).
  • the power transmission efficiency by the V belt (40) can be kept constant.
  • the flange 31f) of the member 31 and the flyweight (34) can be formed into a common design, that is, can be formed in the same size and size, and the flyweight (24 in the drive pulley (PL1) can be formed by the common design. ) And the surface of the driven pulley (PL2) on which the flyweight (34) moves can be processed by the same processing machine. Furthermore, the flyweight (24) in the driving pulley (PL1) and the flyweight (34) in the driven pulley (PL2) can be shared.
  • flyweights (24, 34) The common use of the flyweights (24, 34) is that the radial dimension of the shaft member (21) in the extension direction of the crankshaft (11) of the engine and the shaft member (31 in the extension direction of the drive shaft (91) of the auxiliary machine). ) In the radial direction is promoted, and the drive side spring 26 and the driven side spring 36 interposed between the shaft members (21, 31) are also made common.
  • FIG. 1 is a block diagram illustrating an entire drive system of a vehicle to which an embodiment of the present invention is applied. It is a longitudinal cross-sectional view which shows embodiment of this invention.
  • FIG. 3 is a view indicated by an arrow Y in FIG. 2. It is XX arrow sectional drawing in FIG.
  • FIG. 1 showing the configuration of the entire drive system of the vehicle 100 to which the accessory drive mechanism 230 according to the embodiment of the present invention is applied.
  • a vehicle for example, a truck equipped with a hybrid engine
  • a vehicle 100 includes an engine 1, a clutch 2, a motor / generator 3, and a transmission 4.
  • the motor / generator has a single unit having two functions of a motor and a generator, and is used in a hybrid vehicle as shown in FIG.
  • the auxiliary drive mechanism 230 shown in FIGS. 2 to 4 can be used for vehicles other than vehicles equipped with a hybrid engine.
  • the rotation of the output shaft 12 of the engine 1 is transmitted to the motor / generator 3 via the clutch 2 and then to the transmission 4.
  • the rotation of the output shaft (not shown) of the transmission 4 is transmitted to the differential gear 6 via the propeller shaft 5 and further transmitted to the rear wheel (rear wheel) 8 via the drive shaft (not shown) arranged in the rear axle 7.
  • Is done. 1 indicates an intake line (intake system) that supplies combustion air to the engine 1
  • EX indicates an exhaust line (exhaust system) that exhausts exhaust gas after combustion of the engine to the atmosphere. Yes.
  • illustration of a front wheel (front wheel) is omitted.
  • an auxiliary machine for example, a power steering hydraulic pump
  • An accessory drive mechanism 230 is provided at the end of the crankshaft 11 of the engine 1 (left end in FIG. 1), and the rotational force of the engine 1 is input to the input shaft 91 of the accessory 9 via the accessory drive mechanism 230. Is transmitted to.
  • the accessory drive mechanism 230 will be described with reference to FIGS.
  • the accessory drive mechanism 230 includes a rotating portion on the driving side (region indicated by symbol A in FIG. 2), a rotating portion on the driven side (region indicated by symbol B in FIG. 2), the V belt 40, It consists of Note that other types of belts may be used instead of the V belt.
  • the rotating portion on the driving side A includes a shaft member 21, a driving side fixed pulley piece 22, a driving side movable pulley piece 23, a fly weight 24, and a coil spring (return spring) 26.
  • the shaft member 21 is attached to the front end surface of the crankshaft 11 (left end surface in FIG. 2).
  • the shaft member 21 includes a shaft portion 21a, a male screw portion 21b, a shaft base portion 21d, and a flange portion 21f.
  • the shaft portion 21a is formed integrally with the shaft base portion 21d and the flange portion 21f.
  • the shaft portion 21a and the shaft base portion 21d are configured concentrically.
  • the shaft portion 21a and the shaft base portion 21d are formed in a stepped columnar shape, and the diameter of the shaft portion 21a is smaller than the diameter of the shaft base portion 21d.
  • the male screw portion 21b is located at the end portion (left end portion in FIG. 2) of the shaft portion 21a.
  • the male screw portion 21 b is formed at the end portion of the shaft member 21 on the side (left side in FIG. 2) that is separated from the front end face side of the crankshaft 11.
  • a male spline 21s is formed from the middle in the longitudinal direction of the shaft portion 21a to the male screw portion 21b.
  • the male spline 21 s is configured to engage with a female spline 23 s formed in the center hole of the drive side movable pulley piece 23.
  • the diameter of the valley of the male spline 21s is formed larger than the diameter of the thread of the male screw formed in the male screw portion 21b.
  • Plural (for example, six locations) bolt holes 21h are formed in the vicinity of the outer edge (radially outer edge) of the flange portion 21f.
  • the plurality of bolt holes 21h are formed at a uniform pitch on a common pitch circle in the flange 21f.
  • the flange 21f and the end surface of the crankshaft 11 are engaged with each other by a spigot, and the longitudinal axis (the axis extending in the horizontal direction in FIG. 2) is configured to coincide with the center. Yes.
  • a convex portion male spigot formed on a surface of the flange portion 21f facing the end surface of the crankshaft 11 and a concave portion formed on a surface of the end surface of the crankshaft 11 facing the flange portion 21f (
  • the female inlay is engaged by the inlay.
  • the shaft member 21 is attached to the end surface (left end surface in FIG. 2) of the crankshaft 11 by a plurality of (for example, six) studs B1 in the flange portion 21f.
  • the drive side fixed pulley piece 22 is configured in a shape like a cymbal of a percussion instrument.
  • the drive side fixed pulley piece 22 has a conical surface 22f with a gentle taper, and the outer edge of the conical surface 22f is continuous with the V-belt contact surface 22v.
  • the V-belt contact surface 22v is configured in a partial conical shape that is warped opposite to the conical surface 22f.
  • a through hole 22a is formed at the center (radial center) of the conical surface 22f, and the shaft portion 21a passes through the through hole 22a.
  • the end face 22e in the radial direction of the driving side fixed pulley piece 22 is fixed to the shaft member 21 by a known means (for example, welding) in a state of being in contact with the stepped portion (end face) 21e.
  • the step portion (end surface) 21e is a step portion (end surface) of the shaft portion 21a and the shaft base portion 21d in the shaft member 21.
  • illustration is abbreviate
  • the inner side (the side in contact with the flyweight 24) of the conical surface 22f in the driving side fixed pulley piece 22 will be described later.
  • the drive side movable pulley piece 23 has a shape similar to the drive side fixed pulley piece 22.
  • the drive-side movable pulley piece 23 also has a cymbal shape that is a percussion instrument as a whole, and has a conical surface 23f with a gentle taper.
  • the outer edge of the conical surface 23f is continuous with the V-belt contact surface 23v.
  • the V-belt contact surface 23v is warped on the opposite side to the conical surface 23f and has a partial conical shape.
  • the drive side fixed pulley piece 22 and the drive side movable pulley piece 23 constitute a drive side pulley PL1.
  • a plurality of (for example, three) flyweights 24 are connected to the conical surface 22t of the driving side fixed pulley piece 22 and the driving side movable pulley.
  • a plurality of flyweights 24 are connected to the conical surface 22t of the driving side fixed pulley piece 22 and the driving side movable pulley.
  • the conical surfaces 23q of the piece 23 it arrange
  • a through hole 23a is formed in the central region in the radial direction.
  • a female spline 23s is formed in the through hole 23a, and is engaged with the male spline 21s of the shaft member 21 as described above.
  • the drive-side movable pulley piece 23 cannot be relatively rotated with respect to the shaft member 21, but is configured to be relatively movable in the axial direction (relative to the shaft member 21).
  • the drive-side movable pulley piece 23 is formed with a disk-shaped seating surface (spring seat) 23e on the surface (left side in FIG. 2) that is separated from the drive-side fixed pulley piece 22 at the center in the radial direction of the conical surface 23f.
  • a flat and annular spring seat 27 and a washer 28 are inserted into the male screw portion 21 b of the shaft member 21.
  • the spring seat 27 is in contact with the step portion 21j, and the step portion 21j is formed at the boundary between the shaft portion 21a and the male screw portion 21b.
  • a lock nut 29 is screwed into the male screw portion 21b of the shaft member 21, and the lock nut 29 is tightened with a specified torque.
  • the lock nut 29 has a locking mechanism (not shown).
  • a coil spring 26 as an urging means is disposed in a region where the splines (21s, 23s) are formed.
  • the coil spring 26 is disposed between the spring seat 27 and the spring seat surface 23 e of the drive side movable pulley piece 23.
  • the rotating part on the driven side B includes a shaft member 31, a driven side movable pulley piece 32, a driven side fixed pulley piece 33, a fly weight 34, and a return spring 36.
  • the shaft member 31 is attached to the front end surface (left end surface in FIG. 2) of the input shaft 91 of the auxiliary machine 9 (see FIG. 1).
  • the shaft member 31 includes a shaft portion 31a, a male screw portion 31b, and a flange portion 31f.
  • the flange portion 31f is disposed at the end of the shaft portion 31a on the input shaft 91 side (right side in FIG. 2) of the auxiliary machine.
  • the male screw portion 31b is disposed at the end portion of the shaft portion 31a on the side (left side in FIG. 2) that is separated from the input shaft 91 side of the auxiliary machine.
  • a male spline 31s is formed from the middle of the longitudinal direction of the shaft portion 31a (left and right direction in FIG. 2) to the male screw portion 31b.
  • the male spline 31 s is configured to engage with a female spline 32 s formed at the center in the radial direction of the driven movable pulley piece 32.
  • the diameter of the valley of the male spline 31s is formed larger than the diameter of the thread of the male screw formed in the male screw portion 31b.
  • a flat and annular spring seat 37 and a washer 38 are inserted through the male screw portion 31 b of the shaft member 31.
  • the spring seat 37 is in contact with the step portion 31j, and the step portion 31j is formed at the boundary between the shaft portion 31a and the male screw portion 31b in the shaft member 31.
  • a lock nut 39 is screwed into the male thread portion 31b of the shaft member 31, and the lock nut 39 is tightened with a specified torque.
  • the lock nut 39 has a locking mechanism (not shown).
  • Bolt holes 31h are formed at a plurality of locations (for example, 6 locations) in the vicinity of the radially outer edge of the flange portion 31f.
  • the plurality of bolt holes 31h are arranged on a common pitch circle and arranged at an equal pitch.
  • a male spigot is formed on the surface (the right side in FIG. 2) facing the end surface of the input shaft 91 of the auxiliary machine.
  • the female inlay is formed in the surface (left side of FIG. 2) facing the flange part 31f. Then, the male inlay and the female inlay are engaged, so that the longitudinal axis (left-right direction in FIG.
  • the shaft member 31 is attached to the end surface 91a of the input shaft 91 of the auxiliary machine by a plurality of (for example, six) studs B2 in the flange portion 31f.
  • the surface on the driven side movable pulley piece 32 side is a tapered surface (conical surface) 31q.
  • the tapered surface 31q is tapered so as to approach the driven-side movable pulley piece 32 side (left side in FIG. 2) from the radially inner side to the radially outer side.
  • a flange 31c is formed on the radially outer edge of the tapered surface 31q, and the flange 31c extends in parallel to the shaft portion 31a (in the left-right direction in FIG. 2).
  • the tapered surface 31q of the flange portion 31f is formed with tapered surfaces 31t at three locations that are symmetric with respect to the central axis Lc (axis extending in a direction perpendicular to the paper surface of FIG. 3). ing. On the tapered surface 31t, the flyweight 34 rolls.
  • the tapered surface 31t has a central guide groove 311 and a pair of flyweight rolling surfaces 312 disposed so as to sandwich the central guide groove 311. .
  • the central guide groove 311 forms a curved surface that is the same conical surface as the tapered surface 31q.
  • the pair of flyweight rolling surfaces 312 constitutes a flat surface, not a tapered surface (conical surface: curved surface).
  • the central guide groove 311 and the pair of flyweight rolling surfaces 312 are both on the driven side movable pulley piece 32 side from the radially inner side to the radially outer side (left side in FIG. 2). Inclined to approach
  • FIG. 4 shows a cross section of the tapered surface 31t.
  • the flyweight 34 includes a shaft member 341, a pair of outer rings 342, and a single inner ring 343 sandwiched between the pair of outer rings 342 and 342.
  • the pair of outer rings 342 has a cylindrical shape and is fixed to the shaft member 341.
  • the inner ring 343 is formed such that the outer peripheral surface of the cross section including the center line is a curved surface.
  • the outer periphery of the inner ring 343 the radius of curvature R 34 of the plane is set to the radius of curvature of tapered surface 32q of the driven side movable pulley piece 32 smaller than R 32.
  • the radius of curvature R 34 of the outer peripheral surface of the inner ring 343 is larger than the radius of curvature R 32 of the tapered surface 32q, both end faces of the inner ring 343 (right and left end in FIG. 4) is because may interfere with the tapered surface 32q.
  • the pair of outer rings 342 are formed on the pair of flyweight rolling surfaces 312 of the tapered surface 31t. If they are in contact with each other, a gap ⁇ (a gap formed above the inner ring 343 in FIG. 4) is formed at the bottom of the inner ring 343 and the central guide groove 311. Then, as shown in FIG. 4, the pair of outer rings 342 of the flyweight 34 rolls on the pair of flyweight rolling surfaces 312 on the tapered surface 31t, and in the radial direction in FIGS.
  • the inner ring 343 of the flyweight 34 When moving in the direction perpendicular to the paper surface, the inner ring 343 of the flyweight 34 contacts the tapered surface 32q of the driven movable pulley piece 32 and rolls on the tapered surface 32q.
  • the inner ring 343 and the pair of outer rings 342 and 342 In order to move the flyweight 34 in the radial direction in FIG. 2 and FIG. 3 (direction perpendicular to the paper surface in FIG. 4) while rolling, the inner ring 343 and the pair of outer rings 342 and 342 have a tapered surface 31q, This is because contact with the tapered surface 32q is impossible. Therefore, as shown in FIG. 4, the inner ring 343 and the pair of outer rings 342 and 342 are configured to contact only one of the tapered surface 31q and the tapered surface 32q.
  • the flyweight 34 on the driven side B has been described with reference to FIGS. 3 and 4, the configuration related to the flyweight 24 on the drive side A is the same.
  • the driven-side movable pulley piece 32 has a central thick portion 32a (radially inner region) and a radially outer edge portion 32b continuous with the central thick portion 32a. is doing.
  • a central through hole 32c is formed in the central portion in the radial direction of the thick portion 32a.
  • a female spline 32s is formed in the central through hole 32c. As described above, the female spline 32 s engages with the male spline 31 s formed on the shaft portion 31 a of the shaft member 31.
  • the side (right side in FIG. 2) facing the flange portion 31f of the shaft member 31 forms a gentle conical surface 32q.
  • the conical surface 32q forms a taper such that the thickness decreases toward the inside in the radial direction.
  • a flange 32d is formed at the radial edge of the conical surface 32q, and the flange 32d extends in parallel to the shaft 31a (in the left-right direction in FIG. 2). When the engine is stopped or when the engine speed is low, the flange 32d abuts on the flange 31c formed on the radially outer edge of the flange portion 31f of the shaft member 31.
  • the surface 32f on the side separated from the flange portion 31f is a flat surface except for the radially outer edge portion 32b.
  • the radially outer edge portion 32b forms a partial conical surface that approaches the flange portion 31f as it goes outward in the radial direction.
  • the left side surface of the radially outer edge portion 32b forms a V-belt contact surface 32v.
  • the driven side fixed pulley piece 33 has a disk portion 33a and a radially outer edge portion 33b.
  • a cylindrical portion 33 c is formed at the center of the disk portion 33 a, and the cylindrical portion 33 c protrudes to the side away from the driven movable pulley piece 32.
  • a through hole 33d is formed in the center of the cylindrical portion 33c in the radial direction, and a female spline 33s is formed in the through hole 33d.
  • the female spline 33 s is configured to engage with the male spline 31 s formed on the shaft member 31.
  • An inner hollow portion 33g is formed radially inward of the cylindrical portion 33c, and a coil spring 36 is built in the inner hollow portion 33g.
  • the coil spring 36 is an urging means and is arranged in such a manner as to be wound around the shaft portion 31 a of the shaft member 31.
  • One end portion (left end in FIG. 2) of the coil spring 36 is in contact with the bottom portion of the inner hollow portion 33g of the cylindrical portion 33c (left end portion of the inner wall surface of the inner hollow portion 33g in FIG. 2).
  • the other end portion (the right end in FIG. 2) of the coil spring 36 is in contact with a region near the central portion in the radial direction of the surface 32f of the driven movable pulley piece 32.
  • the radially outward edge portion 33b of the driven side fixed pulley piece 33 forms a partial conical surface, and the partial conical surface (radially outward edge portion 33b) is covered in the radially outward direction.
  • a taper is provided so as to be separated from the driving side movable pulley piece 32.
  • the right side surface of the radially outer edge portion 33b is a V-belt contact surface 33v.
  • a V-groove G2 is configured by the V-belt contact surface 32v of the driven-side movable pulley piece 32 and the V-belt contact surface 33v of the driven-side fixed pulley piece 33, and the V-belt 40 is fitted into the V-groove G2.
  • the driven-side movable pulley piece 32 and the driven-side fixed pulley piece 33 constitute a driven-side pulley PL2.
  • the symbol W1 indicates the width dimension of the V belt groove of the driving pulley PL1.
  • symbol W2 indicates the width dimension of the V belt groove of the driven pulley PL2.
  • the flyweight 34 moves radially outward, the distance between the flange 31f of the shaft member 31 and the driven movable pulley piece 32 increases, and the driven movable pulley piece 32 resists the repulsive force of the coil spring 36. Then, it moves to the driven side fixed pulley piece 33 side (left side in FIG. 2). As a result, the V belt groove width W2 becomes narrow. In the drive pulley PL1, since the V belt groove width W1 is wide, the position where the V belt 40 is wound is inward in the radial direction. On the other hand, in the driven pulley PL2, the V-belt groove width W2 becomes narrow, so the position where the V-belt 40 is wound is outward in the radial direction. That is, when the rotational speed of the crankshaft 11 increases, the V-belt 40 moves in a direction in which the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 decreases.
  • the flyweight 24 moves inward in the radial direction in the driving pulley PL1, as described above, and the driving side Since the fixed pulley piece 22 and the drive-side movable pulley piece 23 are close to each other, the V-belt groove width W1 is reduced.
  • the rotational speed of the driven pulley PL2 decreases, the centrifugal force acting on the flyweight 34 also decreases, so the flyweight 34 also moves inward in the radial direction.
  • the flyweight 34 moves inward in the radial direction, the distance between the flange portion 31f of the shaft member 31 and the driven-side movable pulley piece 32 decreases, and the driven-side movable pulley piece 32 is driven by the repulsive force of the coil spring 36. It moves to the side (right side in FIG. 2) that is separated from the driving side fixed pulley piece 33. As a result, the V belt groove width W2 becomes wide. In the driving pulley PL1, since the V belt groove width W1 is narrowed, the position where the V belt 40 is wound is outward in the radial direction.
  • the V-belt groove width W2 is wide, so that the position where the V-belt 40 is wound is radially inward. That is, when the rotation speed of the crankshaft 11 decreases, the V-belt 40 moves in a direction in which the rotation speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 increases.
  • the V-belt 40 moves in a direction in which the rotation speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 decreases.
  • the rotational speed of the shaft 11 decreases, the V-belt 40 moves in a direction in which the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 increases. Therefore, even if the engine speed or the rotation speed of the crankshaft 11 fluctuates, the rotation speed of the drive shaft 91 of the accessory shows a fluctuation in a tendency opposite to that of the crankshaft rotation speed (crankshaft 11 increases, the rotational speed of the auxiliary drive shaft 91 decreases.
  • the drive-side flyweight 24 is movable in the radial direction of the drive-side pulley PL1 and is in contact with the drive-side fixed pulley piece 22 and the drive-side movable pulley piece 23. Further, the surface 22t of the driving side fixed pulley piece 22 that is in contact with the driving side flyweight 24 has a taper that the outer side in the radial direction is close to the driving side movable pulley piece 23.
  • the surface 23q that is in contact with the flyweight 24 has a taper whose outer side in the radial direction is close to the drive side fixed pulley piece 22.
  • the centrifugal force acting on the drive-side flyweight 24 increases, and the drive-side flyweight 24 moves outward in the radial direction of the drive-side pulley PL1.
  • the surface 22t of the driving side fixed pulley piece 22 that is in contact with the driving side flyweight 24 has a taper whose outer side in the radial direction is close to the driving side movable pulley piece 23, so that the driving side movable pulley piece 23 is driven.
  • the surface 23q that is in contact with the side flyweight 24 has a taper whose outer side in the radial direction is close to the driving side fixed pulley piece 22. Therefore, when the drive-side flyweight 24 moves radially outward, the drive-side movable pulley piece 23 moves in a direction away from the drive-side fixed pulley piece 22 against the repulsive force of the coil spring 26. As a result, the V belt groove width W1 of the drive pulley PL1 is increased.
  • the driven flyweight 34 is movable in the radial direction of the driven pulley PL2 and is in contact with the flange 31f of the shaft member 31 and the driven movable pulley piece 32.
  • the surface 31 t of the flange 31 f of the shaft member 31 that is in contact with the drive-side flyweight 34 has a taper such that the outer side in the radial direction is close to the driven-side movable pulley piece 32.
  • the surface 32q of the driven movable pulley piece 32 that is in contact with the driving flyweight 34 has a taper such that the outer side in the radial direction is close to the flange 31f of the shaft member 31.
  • the centrifugal force acting on the driven flyweight 34 increases.
  • the driven fly weight 34 moves outward in the radial direction of the driven pulley (the flange 31f of the shaft member 31 and the driven movable pulley piece 32).
  • the surface 31 t of the flange 31 f of the shaft member 31 that is in contact with the drive-side flyweight 34 has a taper such that the outer side in the radial direction is close to the driven-side movable pulley piece 32.
  • the surface 32q of the driven side movable pulley piece 32 that is in contact with the driving side flyweight 34 has a taper whose outer side in the radial direction is close to the flange 31f of the shaft member 31. Therefore, when the driven flyweight 34 moves radially outward, the driving-side movable pulley piece 32 is separated from the flange 31 f of the shaft member 31 against the repulsive force of the coil spring 36, thereby It moves in the direction approaching the fixed pulley piece 32. As a result, the V belt groove width W2 of the driven pulley PL2 is reduced.
  • the centrifugal force acting on the driven flyweight 34 is also reduced, and the driven flyweight 34 is driven. It moves inward in the radial direction of the side pulley PL2.
  • the taper is provided on the surface 32q of the shaft member 31 that is in contact with the flange 31f of the shaft member 31 and the driven flyweight 34 of the driven movable pulley piece 32.
  • the driven-side movable pulley piece 32 comes close to the flange 31 f of the shaft member 31 and is separated from the driven-side fixed pulley piece 32. Therefore, the V belt groove width W2 of the driven pulley is increased.
  • both the driving pulley PL1 and the driven pulley PL2 are configured such that the V-belt groove widths W1 and W2 vary due to fluctuations in the rotational speed. Therefore, when the rotation of the crankshaft 11 increases, the radial position of the portion around which the V belt 40 is wound in the driving pulley PL1 varies inward in the radial direction, and at the same time, the V position in the driven pulley PL2 changes. The radial position of the portion around which the belt 40 is wound varies outward in the radial direction. Therefore, the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 is instantaneously reduced.
  • the pulley groove widths W1 and W2 are not changed only by the coil spring 36 as in the prior art, but the centrifugal force acting on the flyweights 24 and 34, the elastic coefficient of the coil springs 26 and 36, and the pulley piece 22 and 23, the shaft member 31, the taper of the pulley piece 32, and the like, the pulley groove widths W1 and W2 are determined. Therefore, even if the groove width W1, W2 or the position of the movable pulley changes, the tension acting on the V-belt 40 is always constant, and the power transmission efficiency by the V-belt 40 is improved regardless of the rotational speed of the engine output shaft. It can be held constant.
  • the driving side fixed pulley piece 22, the driving side movable pulley piece 23 and the fly weight 24 in the driving pulley PL1, the driven side fixed pulley piece 33 in the driven pulley PL2, the flange 31f and the fly weight 34 of the shaft member 31 are as follows.
  • a common design that is, the same size and size can be formed, and a common design can be obtained.
  • the surface of the drive pulley PL1 on which the flyweight 24 moves and the surface of the driven pulley PL2 on which the flyweight 34 moves can be processed with the same processing machine.
  • the flyweight 24 in the driving pulley PL1 and the flyweight 34 in the driven pulley PL2 can be shared.
  • flyweights 24 and 34 promotes the common use of the radial dimension of the shaft member 21 in the extending direction of the crankshaft 11 and the radial dimension of the shaft member 31 in the extending direction of the auxiliary drive shaft 91.
  • the common use of the coil springs 26 and 36 interposed in the shaft members 21 and 31 is also achieved. As a result, a reduction in manufacturing cost can be realized.
  • the accessory drive mechanism 230 is used in a vehicle equipped with a hybrid engine, but the accessory drive mechanism 230 can be used in vehicles other than those equipped with a hybrid engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

The objective of the present invention is to provide an auxiliary machine driving mechanism that can improve the responsiveness with which the power transmitted to the auxiliary-machine side is varied with respect to the rotational variation of the output shaft (crankshaft) of an engine. Thus, in the present invention a drive pulley (PL1) is provided on an output shaft (for example, the crankshaft (11)) of the engine, a driven pulley (PL2) is provided on an auxiliary machine drive shaft (91), and a V-belt (40) is wrapped around the drive pulley (PL1) and the driven pulley (PL2), with the drive pulley (PL1) having a function whereby a V-belt groove width (W1) is increased when the rotational frequency increases, and the driven pulley (PL2) having a function whereby a V-belt groove width (W2) is reduced when the rotational frequency increases.

Description

補機駆動機構Auxiliary drive mechanism
 本発明は、車両(例えば商用車)の補機(補機装置)を駆動する技術に関する。 The present invention relates to a technology for driving an auxiliary device (auxiliary device) of a vehicle (for example, a commercial vehicle).
 パワーステアリング用油圧ポンプ、ブレーキ作動用のエアコンプレッサ、空調機(エアコン)作動流体用コンプレッサ、バッテリーに充電するためのオルタネータ(発電機)等の補助機器類(所謂「補機」)を装備している車両が、従来から存在する。これらの補機の多くは、エンジンによって駆動されている。
 ここで、補機は必要に応じて運転されればよい。そして、例えば、エアコンプレッサのアンロード機構(エアリザーバの空気圧が一定以下であれば、その一定圧力を利用して圧縮空気の吐出弁を開放する機構)等、補機を機械的にON、OFFする機構が組み込まれている。ただし、当該機械的な機構においては、高精度な運転制御が行われるものではない。
Equipped with auxiliary equipment (so-called "auxiliary machine") such as hydraulic pump for power steering, air compressor for brake operation, compressor for air conditioner (air conditioner) working fluid, alternator (generator) for charging battery There is a conventional vehicle. Many of these auxiliary machines are driven by an engine.
Here, the auxiliary machine may be operated as necessary. And, for example, an auxiliary machine such as an unload mechanism of an air compressor (a mechanism that opens a discharge valve for compressed air using the constant pressure if the air pressure of the air reservoir is below a certain level) is mechanically turned on and off. The mechanism is incorporated. However, the mechanical mechanism does not perform highly accurate operation control.
 また、例えば、上記アンロード機構においては、補機はエンジンによって駆動されているために、エンジン回転数に比例した回転数で運転される。したがって、補機の作動が要求されない場合(補機の空運転時)でも、エンジンには損失出力が生じてしまう。この損失出力はエンジン回転数に比例するために、特にエンジンが高回転域では、燃費への影響は大きい。
 さらに、補機が作動している場合は、エンジンの負荷トルクが一定であっても、エンジン回転数が高くなるほど、エンジンの損失出力は増加するので、燃費への影響が大きくなってしまう。
Further, for example, in the unload mechanism, since the auxiliary machine is driven by the engine, the auxiliary machine is operated at a rotational speed proportional to the engine rotational speed. Therefore, even when the operation of the auxiliary machine is not required (when the auxiliary machine is idling), a loss output is generated in the engine. Since this loss output is proportional to the engine speed, the influence on the fuel consumption is large especially when the engine is in a high speed range.
Further, when the auxiliary machine is operating, even if the load torque of the engine is constant, the engine loss output increases as the engine speed increases, so the effect on fuel consumption increases.
 上述した様な燃費への影響を抑制するためには、補機を電動化して、必要に応じたオンデマンド運転を行うことが理想的である。
 しかし、補機を電動化して、必要に応じたオンデマンド運転を行う場合には、付帯装置が増加し、そのためのコストや質量の増加してしまう。そして、付帯装置や質量が増加するため、搭載スペースの点でデメリットが生じる。
In order to suppress the influence on fuel consumption as described above, it is ideal to drive the auxiliary machine and perform on-demand operation as required.
However, when an auxiliary machine is electrified and on-demand operation is performed as necessary, the number of auxiliary devices increases, and the cost and mass for that increase. And since an incidental apparatus and mass increase, the disadvantage arises in the point of mounting space.
 その他の従来技術としては、ベルト式無断変速機により、補機側回転数の変動幅を小さくした技術が提案されている(特許文献1参照)。
 しかし、係る従来技術では、回転数の変動によって遠心力が変動してベルト溝の幅が変化するのは被駆動側のプーリのみであり、駆動側のプーリはばねの反撥力により溝幅を変化させている。そのため、エンジン出力軸(クランク軸)の回転変動に対応して、補機側に伝達される動力を変動する応答性能が低い(鈍い)という問題を有している。
 また、駆動側のプーリはばねの反撥力により溝幅を変化させており、エンジン出力軸(クランク軸)の回転数が低くなると、溝幅が小さくなり、Vベルトを駆動側のプーリで押える力(ばねの反撥力)が小さくなる。そのため、Vベルトによる動力伝達効率が低下するという問題がある。
As another conventional technique, a technique has been proposed in which the fluctuation range of the auxiliary side rotation speed is reduced by a belt-type continuously variable transmission (see Patent Document 1).
However, in the related art, only the driven pulley changes the centrifugal groove due to the rotation speed and the belt groove width changes, and the driving pulley changes the groove width due to the repulsive force of the spring. I am letting. Therefore, there is a problem that the response performance for changing the power transmitted to the auxiliary machine side is low (dull) in response to the rotation fluctuation of the engine output shaft (crankshaft).
Further, the driving pulley has a groove width changed by the repulsive force of the spring, and when the engine output shaft (crankshaft) speed decreases, the groove width decreases, and the force that holds the V belt with the driving pulley is reduced. (Repulsive force of the spring) becomes small. Therefore, there exists a problem that the power transmission efficiency by a V belt falls.
実開平4-121566号公報Japanese Utility Model Publication No. 4-121656
 本発明は上述した従来技術の問題点に鑑みて提案されたものであり、エンジン出力軸(クランク軸)の回転変動に対して、補機側に伝達される動力を変動する応答性能を向上することが出来る補機駆動機構の提供を目的としている。 The present invention has been proposed in view of the above-described problems of the prior art, and improves the response performance of changing the power transmitted to the auxiliary machine with respect to the fluctuation of the rotation of the engine output shaft (crankshaft). The purpose is to provide an auxiliary machine drive mechanism that can be used.
 本発明の補機駆動機構(230)は、エンジンの出力軸(例えば、エンジンのクランク軸11)に駆動プーリ(LP1)を設け、補機(9)の駆動軸(91)に被駆動プーリ(PL2)を設け、駆動プーリ(PL1)と被駆動プーリ(PL2)にVベルト(40)を介して巻き掛けており、駆動プーリ(PL1)は回転数が増大するとVベルト溝幅(W1)が広くなる機能を有しており、被駆動プーリ(PL2)は回転数が増大するとVベルト溝幅(W2)が狭くなる機能を有している。 The auxiliary machine drive mechanism (230) of the present invention is provided with a drive pulley (LP1) on the output shaft of the engine (for example, the crankshaft 11 of the engine) and a driven pulley (91) on the drive shaft (91) of the auxiliary machine (9). PL2) is provided and is wound around the driving pulley (PL1) and the driven pulley (PL2) via the V belt (40). When the rotational speed of the driving pulley (PL1) increases, the V belt groove width (W1) is increased. The driven pulley (PL2) has a function of widening, and has a function of narrowing the V-belt groove width (W2) as the rotational speed increases.
 本発明において、前記駆動プーリ(PL1)はエンジンのクランク軸(11)に取り付けられており、クランク軸(11)に固定された駆動側固定プーリ片(22)と、クランク軸(11)に対して回転は拘束されているが軸方向には移動可能な駆動側可動プーリ片(23)と、駆動側固定プーリ片(22)と駆動側可動プーリ片(23)の間に配置された駆動側フライウェイト(24)を備え、駆動側固定プーリ片(22)と駆動側可動プーリ片(23)によりVベルト(40)を掛け回すVベルト溝(G1)を形成し、駆動側フライウェイト(24)は駆動プーリ(PL1)の半径方向に移動可能であり且つ駆動側固定プーリ片(22)及び駆動側可動プーリ片(23)に接触しており、駆動側固定プーリ片(22)の駆動側フライウェイト(24)と接触している面(22t)は半径方向外方が駆動側可動プーリ片(23)に近接するテーパー(あるいは円錐面)を有し、駆動側可動プーリ片(23)の駆動側フライウェイト(24)と接触している面(23q)は半径方向外方が駆動側固定プーリ片(22)に近接するテーパー(あるいは円錐面)を有しており、駆動側可動プーリ片(23)を駆動側固定プーリ片(22)に付勢する駆動側弾性体(駆動側ばね26)を備えており、
 前記被駆動プーリ(PL2)は、補機の駆動軸(91)に固定された被駆動側固定プーリ片(33)及び補機側プレート(軸部材31のフランジ部31f)と、補機駆動軸(91)の軸方向について被駆動側固定プーリ片(33)と補機側プレート(軸部材31のフランジ部31f)の間に配置され且つ補機の駆動軸(91)に対して回転は拘束されているが軸方向には移動可能な被駆動側可動プーリ片(32)と、補機側プレート(軸部材31のフランジ部31f)と被駆動側可動プーリ片(32)の間に配置された被駆動側フライウェイト(34)を備え、被駆動側固定プーリ片(33)と被駆動側可動プーリ片(32)によりVベルト(40)を掛け回すVベルト溝(G2)を形成し、被駆動側フライウェイト(34)は被駆動側プーリ(PL2)の半径方向に移動可能であり且つ補機側プレート(軸部材31のフランジ部31f)及び被駆動側可動プーリ片(32)に接触しており、補機側プレート(軸部材31のフランジ部31f)の駆動側フライウェイト(34)と接触している面(31t)は半径方向外方が被駆動側可動プーリ片(32)に近接するテーパー(あるいは円錐面)を有し、被駆動側可動プーリ片(32)の駆動側フライウェイト(34)と接触している面(32q)は半径方向外方が補機側プレート(軸部材31のフランジ部31f)に近接するテーパー(あるいは円錐面)を有しており、被駆動側可動プーリ片(23)を補機側プレート(軸部材31のフランジ部31f)に付勢する被駆動側弾性体(被駆動側ばね36)を備えているのが好ましい。
In the present invention, the drive pulley (PL1) is attached to the crankshaft (11) of the engine, and the drive-side fixed pulley piece (22) fixed to the crankshaft (11) and the crankshaft (11). The drive side movable pulley piece (23) that is restricted in rotation but movable in the axial direction, and the drive side disposed between the drive side fixed pulley piece (22) and the drive side movable pulley piece (23) A flyweight (24) is provided, and a V-belt groove (G1) around which the V-belt (40) is wound is formed by the drive-side fixed pulley piece (22) and the drive-side movable pulley piece (23). ) Is movable in the radial direction of the drive pulley (PL1) and is in contact with the drive side fixed pulley piece (22) and the drive side movable pulley piece (23), and the drive side of the drive side fixed pulley piece (22). Flywe The surface (22t) in contact with the groove (24) has a taper (or a conical surface) in the radially outward direction that is close to the drive side movable pulley piece (23), and the drive side movable pulley piece (23) is driven. The surface (23q) that is in contact with the side flyweight (24) has a taper (or conical surface) that is close to the drive side fixed pulley piece (22) in the radially outward direction, and the drive side movable pulley piece ( 23) is provided with a drive side elastic body (drive side spring 26) that urges the drive side fixed pulley piece (22).
The driven pulley (PL2) includes a driven-side fixed pulley piece (33) fixed to a drive shaft (91) of an auxiliary machine, an auxiliary machine-side plate (a flange portion 31f of the shaft member 31), and an auxiliary machine drive shaft. (91) The axial direction of (91) is arranged between the driven side fixed pulley piece (33) and the auxiliary machine side plate (flange 31f of the shaft member 31), and the rotation is restrained with respect to the auxiliary machine drive shaft (91). However, the driven-side movable pulley piece (32) that is movable in the axial direction is disposed between the auxiliary machine-side plate (the flange portion 31f of the shaft member 31) and the driven-side movable pulley piece (32). The driven side flyweight (34), the driven side fixed pulley piece (33) and the driven side movable pulley piece (32) form a V belt groove (G2) around which the V belt (40) is wound, The driven flyweight (34) is driven (PL2) is movable in the radial direction and is in contact with the auxiliary machine side plate (the flange portion 31f of the shaft member 31) and the driven side movable pulley piece (32), and the auxiliary machine side plate (of the shaft member 31). The surface (31t) that is in contact with the drive-side flyweight (34) of the flange portion 31f) has a taper (or conical surface) that is radially outward and close to the driven-side movable pulley piece (32). The surface (32q) in contact with the drive-side flyweight (34) of the drive-side movable pulley piece (32) has a taper (or the outer side in the radial direction close to the accessory-side plate (the flange portion 31f of the shaft member 31) (or A driven-side elastic body (driven-side spring 36) that biases the driven-side movable pulley piece (23) toward the auxiliary machine-side plate (the flange portion 31f of the shaft member 31). Preferably
 ここで、エンジン(1)の出力軸(11)の前記駆動プーリ(PL1)の反対側はクラッチ(2)及び回生用モータ(モータ及び発電機3)を介して変速機(4)に接続しており、回生モータ(3)の回転がクラッチ(2)及びエンジン(1)のクランク軸(11)を介して前記駆動プーリ(PL1)に伝達されるのが好ましい。 Here, the opposite side of the drive pulley (PL1) of the output shaft (11) of the engine (1) is connected to the transmission (4) via the clutch (2) and the regenerative motor (motor and generator 3). The rotation of the regenerative motor (3) is preferably transmitted to the drive pulley (PL1) via the clutch (2) and the crankshaft (11) of the engine (1).
 また、上記の補機(9)としては、例えば、パワーステアリング用油圧ポンプ、ブレーキその他の作動流体である圧縮空気を作るエアコンプレッサ、車両用の空調機で用いられる冷媒を圧縮するエアコン用コンプレッサ、ライト等に用いられるサービス電源(バッテリー)を充電するオルタネータがある。 The auxiliary machine (9) includes, for example, a power steering hydraulic pump, an air compressor that produces compressed air that is a brake or other working fluid, an air conditioner compressor that compresses a refrigerant used in a vehicle air conditioner, There is an alternator that charges a service power source (battery) used for lights and the like.
 上述する構成を具備する本発明によれば、駆動プーリ(PL1)及び被駆動プーリ(PL2)の回転数が増加すると、駆動側フライウェイト(24)及び被駆動側フライウェイト(34)は共に半径方向外方に移動して、駆動プーリ(PL1)のVベルト溝幅(W1)が広くなり、被駆動プーリ(PL2)のVベルト溝幅(W2)が狭くなる。したがって、駆動プーリ(PL1)においてはVベルト(40)が巻き掛けられるのが半径方向内方となり、被駆動プーリ(PL2)においては半径方向外方となる。そのため、エンジン出力軸(クランク軸11)の回転数が上昇すると、被駆動プーリ(PL2)が設けられた補機の駆動軸(91)の回転数は減少する。
 一方、駆動プーリ(PL1)及び被駆動プーリ(PL2)の回転数が減少すると、駆動側弾性体(駆動側ばね26)及び被駆動側弾性体(被駆動側ばね36)の付勢によって、駆動側フライウェイト(24)及び被駆動側フライウェイト(34)は共に半径方向外方に移動して、駆動プーリ(PL1)のVベルト溝幅(W1)が狭くなり、被駆動プーリ(PL2)のVベルト溝幅(W2)は広くなる。そのため、駆動プーリ(PL1)においてはVベルト(40)が巻き掛けられるのが半径方向外方となり、被駆動プーリ(PL2)においては半径方向内方となる。そのため、エンジン出力軸(11)の回転数が減少すると、被駆動プーリ(PL2)が設けられた補機の駆動軸(91)の回転数は増加する。
According to the present invention having the above-described configuration, when the rotational speeds of the driving pulley (PL1) and the driven pulley (PL2) are increased, both the driving flyweight (24) and the driven flyweight (34) have a radius. Moving outward in the direction, the V-belt groove width (W1) of the driving pulley (PL1) is widened, and the V-belt groove width (W2) of the driven pulley (PL2) is narrowed. Accordingly, the V-belt (40) is wound around the inner side in the radial direction in the driving pulley (PL1), and the outer side in the radial direction in the driven pulley (PL2). For this reason, when the rotational speed of the engine output shaft (crankshaft 11) increases, the rotational speed of the drive shaft (91) of the auxiliary machine provided with the driven pulley (PL2) decreases.
On the other hand, when the rotational speeds of the driving pulley (PL1) and the driven pulley (PL2) are decreased, the driving side elastic body (driving side spring 26) and the driven side elastic body (driven side spring 36) are driven by the bias. Both the side flyweight (24) and the driven side flyweight (34) move radially outward, the V belt groove width (W1) of the driving pulley (PL1) becomes narrow, and the driven pulley (PL2) The V belt groove width (W2) becomes wider. For this reason, the V-belt (40) is wound radially outward in the driving pulley (PL1) and radially inward in the driven pulley (PL2). Therefore, when the rotation speed of the engine output shaft (11) decreases, the rotation speed of the drive shaft (91) of the auxiliary machine provided with the driven pulley (PL2) increases.
 従って、本発明によれば、エンジン出力軸(クランク軸11)の回転数が変動しても、補機の駆動軸(91)の回転数はエンジン出力軸の回転数が変動とは逆の傾向の変動を示すことになり、補機の駆動軸(91)の回転数が一定に保たれる。
 そのため、エンジン出力軸(クランク軸11)の回転数が増加しても、補機側の回転数は増加することもなく、補機側の損失動力は増加せず、燃費に悪影響を及ぼしてしまうことがない。
 また、エンジン出力軸(クランク軸11)の回転数が減少しても、補機の駆動に必要な補機側駆動軸(91)の回転数を維持することが出来る。
Therefore, according to the present invention, even if the rotational speed of the engine output shaft (crankshaft 11) varies, the rotational speed of the drive shaft (91) of the auxiliary machine tends to be opposite to the variation of the rotational speed of the engine output shaft. The rotation speed of the drive shaft (91) of the auxiliary machine is kept constant.
Therefore, even if the rotational speed of the engine output shaft (crankshaft 11) increases, the rotational speed on the auxiliary machine side does not increase, the power loss on the auxiliary machine side does not increase, and the fuel efficiency is adversely affected. There is nothing.
Further, even if the rotational speed of the engine output shaft (crankshaft 11) is reduced, the rotational speed of the accessory side drive shaft (91) necessary for driving the accessory can be maintained.
 本発明において、前記駆動プーリ(PL1)がエンジンのクランク軸(11)に取り付けられ、クランク軸(11)に固定された駆動側固定プーリ片(22)と、クランク軸(11)に対して回転は拘束されているが軸方向には移動可能な駆動側可動プーリ片(23)と、駆動側固定プーリ片(22)と駆動側可動プーリ片(23)の間に配置された駆動側フライウェイト(24)を備え、駆動側フライウェイト(24)は駆動側プーリ(PL1)の半径方向に移動可能であり且つ駆動側固定プーリ片(22)及び駆動側可動プーリ片(23)に接触しており、駆動側固定プーリ片(22)の駆動側フライウェイト(24)と接触している面(22t)は半径方向外方が駆動側可動プーリ片(23)に近接するテーパー(あるいは円錐面)を有し、駆動側可動プーリ片(23)の駆動側フライウェイト(24)と接触している面(23q)は半径方向外方が駆動側固定プーリ片(22)に近接するテーパー(あるいは円錐面)を有していれば、エンジンの出力軸であるクランク軸(11)の回転数が増加すると、その回転が駆動側固定プーリ片(22)と駆動側可動プーリ片(23)と駆動側フライウェイト(24)に伝達され、駆動側フライウェイト(24)に作用する遠心力が増大するため、駆動側フライウェイト(24)は駆動側プーリ(PL1)(より詳細には、駆動側固定プーリ片22と駆動側可動プーリ片23)の半径方向外方(クランク軸11から離隔する側)に移動する。
 その際に、駆動側固定プーリ片(22)の駆動側フライウェイト(24)と接触している面(22t)は半径方向外方が駆動側可動プーリ片(23)に近接するテーパー(あるいは円錐面)を有し、駆動側可動プーリ片(23)の駆動側フライウェイト(24)と接触している面(23q)は半径方向外方が駆動側固定プーリ片(22)に近接するテーパー(あるいは円錐面)を有しているので、駆動側フライウェイト(24)が半径方向外方に移動すると、駆動側可動プーリ片(23)は、駆動側弾性体(駆動側ばね26)の反撥力に抗して、(エンジンのクランク軸11の軸方向について)駆動側固定プーリ片(22)から離隔する方向に移動して、駆動プーリ(PL1)のVベルト溝幅(W1)が広くなる。
 一方、エンジンの出力軸であるクランク軸(11)の回転数が減少すると、駆動側フライウェイト(24)に作用する遠心力は減少し、駆動側フライウェイト(25)は駆動側プーリ(駆動側固定プーリ片22と駆動側可動プーリ片23)の半径方向内方(クランク軸に近接する側)に移動する。そして、駆動側固定プーリ片(22)及び駆動側可動プーリ片(23)の駆動側フライウェイト(24)と接触している面(22t、23q)に設けられているテーパー(あるいは円錐面)により、駆動側フライウェイト(24)が半径方向内方に移動すると、駆動側弾性体(駆動側ばね26)の反撥力により、駆動側可動プーリ片(23)は(エンジンのクランク軸11の軸方向について)駆動側固定プーリ片(22)に近接する方向に移動して、駆動プーリ(PL1)のVベルト溝幅(W1)が狭くなる。
In the present invention, the drive pulley (PL1) is attached to the crankshaft (11) of the engine, and is fixed to the crankshaft (11). The drive-side fixed pulley piece (22) is rotated with respect to the crankshaft (11). The drive side movable pulley piece (23) which is restrained but movable in the axial direction, and the drive side flyweight disposed between the drive side fixed pulley piece (22) and the drive side movable pulley piece (23) (24), the drive-side flyweight (24) is movable in the radial direction of the drive-side pulley (PL1) and is in contact with the drive-side fixed pulley piece (22) and the drive-side movable pulley piece (23). The surface (22t) in contact with the drive-side flyweight (24) of the drive-side fixed pulley piece (22) has a taper (or conical surface) whose radially outer side is close to the drive-side movable pulley piece (23). The The surface (23q) of the drive-side movable pulley piece (23) that is in contact with the drive-side flyweight (24) has a taper (or conical surface) that is radially outwardly close to the drive-side fixed pulley piece (22). If the rotation speed of the crankshaft (11), which is the output shaft of the engine, increases, the rotation is driven by the driving side fixed pulley piece (22), the driving side movable pulley piece (23), and the driving side flyweight. Since the centrifugal force transmitted to (24) and acting on the drive-side flyweight (24) increases, the drive-side flyweight (24) becomes the drive-side pulley (PL1) (more specifically, the drive-side fixed pulley piece 22). And the drive-side movable pulley piece 23) move outward in the radial direction (side away from the crankshaft 11).
At that time, the surface (22t) in contact with the drive-side flyweight (24) of the drive-side fixed pulley piece (22) has a taper (or conical shape) whose radially outer side is close to the drive-side movable pulley piece (23). The surface (23q) in contact with the drive-side flyweight (24) of the drive-side movable pulley piece (23) has a taper (the outer side in the radial direction is close to the drive-side fixed pulley piece (22)). If the driving flyweight (24) moves radially outward, the driving movable pulley piece (23) is repulsive by the driving elastic body (driving spring 26). Against this, the V-belt groove width (W1) of the drive pulley (PL1) is increased by moving in a direction away from the drive side fixed pulley piece (22) (in the axial direction of the crankshaft 11 of the engine).
On the other hand, when the rotational speed of the crankshaft (11), which is the output shaft of the engine, decreases, the centrifugal force acting on the drive-side flyweight (24) decreases, and the drive-side flyweight (25) becomes a drive-side pulley (drive-side). The fixed pulley piece 22 and the drive-side movable pulley piece 23) move inward in the radial direction (side closer to the crankshaft). And by the taper (or conical surface) provided in the surface (22t, 23q) which is in contact with the drive side flyweight (24) of the drive side fixed pulley piece (22) and the drive side movable pulley piece (23). When the drive-side flyweight (24) moves inward in the radial direction, the drive-side movable pulley piece (23) (in the axial direction of the crankshaft 11 of the engine) is caused by the repulsive force of the drive-side elastic body (drive-side spring 26). About) It moves to the direction close | similar to a drive side fixed pulley piece (22), and the V belt groove width (W1) of a drive pulley (PL1) becomes narrow.
 一方、本発明において、前記被駆動プーリ(PL2)が、補機の駆動軸(91)に固定された被駆動側固定プーリ片(33)及び補機側プレート(軸部材31のフランジ部31f)と、補機駆動軸(91)の軸方向について被駆動側固定プーリ片(33)と補機側プレート(軸部材31のフランジ部31f)の間に配置され且つ補機の駆動軸(91)に対して回転は拘束されているが軸方向には移動可能な被駆動側可動プーリ片(32)と、補機側プレート(軸部材31のフランジ部31f)と被駆動側可動プーリ片(32)の間に配置された被駆動側フライウェイト(34)を備え、被駆動側フライウェイト(34)は被駆動側プーリ(PL2)の半径方向に移動可能であり且つ補機側プレート(軸部材31のフランジ部31f)及び被駆動側可動プーリ片(32)に接触しており、補機側プレート(軸部材31のフランジ部31f)の駆動側フライウェイト(34)と接触している面(31t)は半径方向外方が被駆動側可動プーリ片(32)に近接するテーパー(あるいは円錐面)を有し、被駆動側可動プーリ片(32)の駆動側フライウェイト(34)と接触している面(32q)は半径方向外方が補機側プレート(31)に近接するテーパー(あるいは円錐面)を有していれば、エンジンの出力軸であるクランク軸(11)の回転数が増加して、駆動側のプーリ(PL1)の回転数が増加すると、その回転が補機側プレート(軸部材31のフランジ部31f)と被駆動側可動プーリ片(32)と被駆動側フライウェイト(34)に伝達され、被駆動側フライウェイト(34)に作用する遠心力が増大するため、被駆動側フライウェイト(34)は被駆動側プーリ(補機側プレート31と被駆動側可動プーリ片32)の半径方向外方(補機の駆動軸91から離隔する側)に移動する。
 その際に、補機側プレート(31)の駆動側フライウェイト(34)と接触している面(31t)は半径方向外方が被駆動側可動プーリ片(32)に近接するテーパー(あるいは円錐面)を有し、被駆動側可動プーリ片(32)の駆動側フライウェイト(34)と接触している面(32q)は半径方向外方が補機側プレート(軸部材31のフランジ部31f)に近接するテーパー(あるいは円錐面)を有しているので、被駆動側フライウェイト(34)が半径方向外方に移動すると、駆動側可動プーリ片(32)は、被駆動側弾性体(被駆動側ばね36)の反撥力に抗して、(補機の駆動軸91の軸方向について)補機側プレート(31)から離隔して、被駆動側固定プーリ片(32)に近接する方向に移動する。その結果、被駆動プーリ(PL2)のVベルト溝幅(W2)が狭くなる。
 一方、駆動プーリ(PL1)の回転数が減少すると、被駆動側フライウェイト(34)に作用する遠心力は減少し、被駆動側フライウェイト(34)は被駆動側プーリ(補機側プレート31と被駆動側可動プーリ片32)の半径方向内方(補機の駆動軸に近接する側)に移動する。そして、補機側プレート(軸部材31のフランジ部31f)及び被駆動側可動プーリ片(32)の被駆動側フライウェイト(34)と接触している面(32t)に設けられているテーパー(あるいは円錐面)により、被駆動側フライウェイト(34)が半径方向内方に移動すると、被駆動側弾性体(被駆動側ばね36)の反撥力により、被駆動側可動プーリ片(32)は(補機駆動軸91の軸方向について)補機側プレート(軸部材31のフランジ部31f)に近接して、被駆動側固定プーリ片(32)から離隔するので、被駆動プーリのVベルト溝幅(W2)が広くなる。
On the other hand, in the present invention, the driven pulley (PL2) includes a driven side fixed pulley piece (33) fixed to the driving shaft (91) of the auxiliary machine and an auxiliary machine side plate (flange portion 31f of the shaft member 31). And the driven-side fixed pulley piece (33) and the auxiliary machine-side plate (the flange portion 31f of the shaft member 31) in the axial direction of the auxiliary machine drive shaft (91) and the drive shaft (91) of the auxiliary machine The driven-side movable pulley piece (32) that is restricted in rotation but movable in the axial direction, the accessory-side plate (the flange portion 31f of the shaft member 31), and the driven-side movable pulley piece (32) ), And the driven flyweight (34) is movable in the radial direction of the driven pulley (PL2) and is connected to the auxiliary plate (shaft member). 31 flange 31f) and driven The surface (31t) in contact with the drive side flyweight (34) of the auxiliary machine side plate (the flange portion 31f of the shaft member 31) is in contact with the side movable pulley piece (32), and the outer side in the radial direction is covered. A surface (32q) having a taper (or conical surface) close to the driving side movable pulley piece (32) and in contact with the driving side flyweight (34) of the driven side movable pulley piece (32) is in the radial direction. If the outer side has a taper (or conical surface) close to the auxiliary machine side plate (31), the rotational speed of the crankshaft (11), which is the output shaft of the engine, increases, and the drive side pulley ( When the rotational speed of PL1) increases, the rotation is transmitted to the auxiliary machine side plate (flange portion 31f of the shaft member 31), the driven side movable pulley piece (32), and the driven side flyweight (34). Side fly weight (3 ) Increases in the centrifugal force acting on the driven-side flyweight (34) radially outward of the driven-side pulley (auxiliary device-side plate 31 and driven-side movable pulley piece 32). 91).
At this time, the surface (31t) in contact with the driving flyweight (34) of the auxiliary machine side plate (31) has a taper (or conical shape) whose radially outer side is close to the driven movable pulley piece (32). The surface (32q) that is in contact with the drive-side flyweight (34) of the driven-side movable pulley piece (32) has a surface on the auxiliary side (the flange portion 31f of the shaft member 31). When the driven flyweight (34) moves radially outward, the driving movable pulley piece (32) is moved to the driven elastic body (32). Against the repulsive force of the driven side spring 36) (with respect to the axial direction of the drive shaft 91 of the auxiliary machine) and away from the auxiliary machine side plate (31) and close to the driven side fixed pulley piece (32) Move in the direction. As a result, the V belt groove width (W2) of the driven pulley (PL2) is narrowed.
On the other hand, when the rotational speed of the driving pulley (PL1) is reduced, the centrifugal force acting on the driven flyweight (34) is reduced, and the driven flyweight (34) is driven by the driven pulley (auxiliary side plate 31). And the driven-side movable pulley piece 32) move inward in the radial direction (side closer to the drive shaft of the auxiliary machine). And the taper (provided on the surface (32t) in contact with the driven flyweight (34) of the auxiliary machine side plate (flange 31f of the shaft member 31) and the driven movable pulley piece (32) ( Alternatively, when the driven flyweight (34) moves radially inward by the conical surface, the driven movable pulley piece (32) is moved by the repulsive force of the driven elastic body (driven spring 36). (Regarding the axial direction of the auxiliary machine drive shaft 91) The V belt groove of the driven pulley is located close to the auxiliary machine side plate (the flange portion 31f of the shaft member 31) and away from the driven side fixed pulley piece (32). The width (W2) becomes wider.
 本発明によれば、駆動プーリ(PL1)及び被駆動プーリ(PL2)の双方が、回転数の変動によりVベルト溝幅(W1、W2)が変動する様に構成されているので、エンジン出力軸(クランク軸11)の回転が増加した際には、駆動プーリ(PL1)におけるVベルト(40)が巻き掛けられている箇所の半径方向位置が半径方向内方に変動するのと、被駆動プーリ(PL2)におけるVベルト(40)が巻き掛けられている箇所の半径方向位置が半径方向外方に変動するのが同時に行なわれて、被駆動プーリ(PL2)が設けられた補機の駆動軸(91)の回転数が短時間で減少する。
 一方、エンジン出力軸(クランク軸11)の回転が減少した際には、駆動プーリ(PL1)におけるVベルト(40)が巻き掛けられている箇所の半径方向位置が半径方向外方に変動するのと、被駆動プーリ(PL2)におけるVベルト(40)が巻き掛けられている箇所の半径方向位置が半径方向内方に変動するのが同時に行なわれて、被駆動プーリ(PL2)が設けられた補機の駆動軸(91)の回転数が短時間で増加する。
 すなわち、本発明によれば、エンジン出力軸(クランク軸11)の回転が変動した際に、補機駆動軸(91)の回転が変動する応答性が良好である。
 また、エンジン出力軸(クランク軸11)の回転数の多寡(変動)が生じたとしても、補機側に伝達される動力の変動を、非常に小さくすることが出来る。
According to the present invention, both the driving pulley (PL1) and the driven pulley (PL2) are configured such that the V-belt groove width (W1, W2) varies due to the variation in the rotational speed. When the rotation of the (crankshaft 11) increases, the radial position of the drive pulley (PL1) where the V-belt (40) is wound fluctuates radially inward, and the driven pulley The drive shaft of the auxiliary machine provided with the driven pulley (PL2) is simultaneously performed in which the radial position of the portion around which the V-belt (40) is wound in (PL2) varies radially outward. The rotational speed of (91) decreases in a short time.
On the other hand, when the rotation of the engine output shaft (crankshaft 11) decreases, the radial position of the drive pulley (PL1) where the V-belt (40) is wound fluctuates outward in the radial direction. The driven pulley (PL2) is provided at the same time as the radial position of the portion where the V-belt (40) is wound on the driven pulley (PL2) is varied inward in the radial direction. The rotational speed of the drive shaft (91) of the auxiliary machine increases in a short time.
That is, according to the present invention, when the rotation of the engine output shaft (crankshaft 11) varies, the responsiveness that the rotation of the accessory drive shaft (91) varies is good.
Even if the engine output shaft (crankshaft 11) has a large number of rotations (variations), the variation in the power transmitted to the accessory side can be very small.
 また、駆動プーリ(PL1)及び被駆動プーリ(PL2)の双方が、回転数の変動によりVベルト溝幅(W1、W2)が変動する様に構成されている本発明によれば、駆動側弾性体(駆動側ばね24)及び被駆動側弾性体(被駆動側ばね34)のみによりプーリの溝幅(W1、W2)が変化するのではなく、フライウェイト(24、34)に作用する遠心力と、駆動側弾性体(駆動側ばね24)及び被駆動側弾性体(被駆動側ばね34)の弾性係数に基づいてプーリの溝幅(W1、W2)が決定される。そのため、溝幅(W1、W2)あるいは可動プーリの位置が変化しても、Vベルト(40)に作用する張力は、常時、一定であり、エンジン出力軸(クランク軸11)の回転数にかかわらず、Vベルト(40)による動力伝達効率を一定に保持することが可能である。 Further, according to the present invention, in which both the driving pulley (PL1) and the driven pulley (PL2) are configured such that the V-belt groove widths (W1, W2) vary due to the variation in the rotational speed, the driving-side elasticity The pulley groove width (W1, W2) is not changed only by the body (drive side spring 24) and the driven side elastic body (driven side spring 34), but the centrifugal force acting on the flyweights (24, 34). Then, the groove widths (W1, W2) of the pulley are determined based on the elastic coefficients of the driving side elastic body (driving side spring 24) and the driven side elastic body (driven side spring 34). Therefore, even if the groove width (W1, W2) or the position of the movable pulley changes, the tension acting on the V-belt (40) is always constant, regardless of the rotational speed of the engine output shaft (crankshaft 11). The power transmission efficiency by the V belt (40) can be kept constant.
 駆動プーリ(PL1)における駆動側固定プーリ片22、駆動側可動プーリ片23及びフライウェイト(24)と、被駆動プーリ(PL2)における被駆動側固定プーリ片(33)、補機側プレート(軸部材31のフランジ部31f)及びフライウェイト(34)とは共通のデザイン、即ち、同一の寸法、サイズに成形可能であり、共通のデザインとすることによって、駆動プーリ(PL1)におけるフライウェイト(24)の移動する面と、被駆動プーリ(PL2)におけるフライウェイト(34)の移動する面とは、同一の加工機械で加工することができる。
 さらに、駆動プーリ(PL1)におけるフライウェイト(24)と、被駆動プーリ(PL2)におけるフライウェイト(34)とを共通化できる。
Driving side fixed pulley piece 22, driving side movable pulley piece 23 and flyweight (24) in driving pulley (PL1), driven side fixed pulley piece (33) in driven pulley (PL2), accessory side plate (shaft The flange 31f) of the member 31 and the flyweight (34) can be formed into a common design, that is, can be formed in the same size and size, and the flyweight (24 in the drive pulley (PL1) can be formed by the common design. ) And the surface of the driven pulley (PL2) on which the flyweight (34) moves can be processed by the same processing machine.
Furthermore, the flyweight (24) in the driving pulley (PL1) and the flyweight (34) in the driven pulley (PL2) can be shared.
 フライウェイト(24、34)の共通化は、エンジンのクランク軸(11)の延長方向の軸部材(21)における径方向寸法と、補機の駆動軸(91)の延長方向の軸部材(31)における径方向寸法との共通化を促し、これら軸部材(21、31)に介装される駆動側ばね26と、被駆動側ばね36との共通化も図られる。 The common use of the flyweights (24, 34) is that the radial dimension of the shaft member (21) in the extension direction of the crankshaft (11) of the engine and the shaft member (31 in the extension direction of the drive shaft (91) of the auxiliary machine). ) In the radial direction is promoted, and the drive side spring 26 and the driven side spring 36 interposed between the shaft members (21, 31) are also made common.
本発明の実施形態を適用した車両の駆動系全体を示すブロック図である。1 is a block diagram illustrating an entire drive system of a vehicle to which an embodiment of the present invention is applied. 本発明の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows embodiment of this invention. 図2におけるY矢示図である。FIG. 3 is a view indicated by an arrow Y in FIG. 2. 図2におけるX-X矢視断面図である。It is XX arrow sectional drawing in FIG.
 以下、添付図面を参照して、本発明の実施形態について説明する。
 最初に、本発明の実施形態に係る補機駆動機構230を適用した車両100の駆動系全体の構成を示している図1を参照して、当該駆動系を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the drive system will be described with reference to FIG. 1 showing the configuration of the entire drive system of the vehicle 100 to which the accessory drive mechanism 230 according to the embodiment of the present invention is applied.
 図1において、車両(例えば、ハイブリッドエンジンを搭載した貨物自動車)100は、エンジン1と、クラッチ2と、モータ・ジェネレータ3と、トランスミッション4を搭載している。
 ここで、モータ・ジェネレータは、単一のユニットがモータと発電機の二つの機能を持つものであり、図1に示すようなハイブリッド車等で用いられる。
 但し、図2~図4で示す補機駆動機構230は、ハイブリッドエンジンを搭載した車両以外にも使用可能である。
In FIG. 1, a vehicle (for example, a truck equipped with a hybrid engine) 100 includes an engine 1, a clutch 2, a motor / generator 3, and a transmission 4.
Here, the motor / generator has a single unit having two functions of a motor and a generator, and is used in a hybrid vehicle as shown in FIG.
However, the auxiliary drive mechanism 230 shown in FIGS. 2 to 4 can be used for vehicles other than vehicles equipped with a hybrid engine.
 図1において、エンジン1の出力軸12の回転は、クラッチ2を介して、モータ・ジェネレータ3に伝達され、トランスミッション4に伝達される。
 トランスミッション4の図示しない出力軸の回転は、プロペラシャフト5を介して差動ギヤ6に伝達され、さらにリアアクスル7内に配置された図示しないドライブシャフトを介して後輪(後車輪)8に伝達される。
 図1における符号AITは、エンジン1に燃焼用空気を供給する吸気ライン(吸気系統)を示し、符号EXは、エンジンの燃焼後の排気ガスを大気に排出する排気ライン(排気系統)を示している。
 なお、図1において、前輪(前車輪)の図示は省略されている。
In FIG. 1, the rotation of the output shaft 12 of the engine 1 is transmitted to the motor / generator 3 via the clutch 2 and then to the transmission 4.
The rotation of the output shaft (not shown) of the transmission 4 is transmitted to the differential gear 6 via the propeller shaft 5 and further transmitted to the rear wheel (rear wheel) 8 via the drive shaft (not shown) arranged in the rear axle 7. Is done.
1 indicates an intake line (intake system) that supplies combustion air to the engine 1, and EX indicates an exhaust line (exhaust system) that exhausts exhaust gas after combustion of the engine to the atmosphere. Yes.
In addition, in FIG. 1, illustration of a front wheel (front wheel) is omitted.
 図1において、エンジン1近傍に、補機(例えば、パワーステアリングの油圧ポンプ)9が取り付けられている。
 補機駆動機構230が、エンジン1のクランク軸11の端部(図1では、左端)に設けられており、エンジン1の回転力は補機駆動機構230を介して補機9の入力軸91に伝達される。
 次に図2~図4を参照して、補機駆動機構230を説明する。
In FIG. 1, an auxiliary machine (for example, a power steering hydraulic pump) 9 is attached in the vicinity of the engine 1.
An accessory drive mechanism 230 is provided at the end of the crankshaft 11 of the engine 1 (left end in FIG. 1), and the rotational force of the engine 1 is input to the input shaft 91 of the accessory 9 via the accessory drive mechanism 230. Is transmitted to.
Next, the accessory drive mechanism 230 will be described with reference to FIGS.
 図2において、補機駆動機構230は、駆動側(図2の符号Aで示す領域)の回転部分と、被駆動側(図2の符号Bで示す領域)の回転部分と、Vベルト40とで構成されている。なお、Vベルトに代えて、その他のタイプのベルトを適用することも可能である。
 駆動側Aの回転部分は、軸部材21と、駆動側固定プーリ片22と、駆動側可動プーリ片23と、フライウェイト24と、コイルスプリング(リターンスプリング)26とを有している。
 軸部材21は、クランク軸11前端面(図2では左端面)に取り付けられている。
In FIG. 2, the accessory drive mechanism 230 includes a rotating portion on the driving side (region indicated by symbol A in FIG. 2), a rotating portion on the driven side (region indicated by symbol B in FIG. 2), the V belt 40, It consists of Note that other types of belts may be used instead of the V belt.
The rotating portion on the driving side A includes a shaft member 21, a driving side fixed pulley piece 22, a driving side movable pulley piece 23, a fly weight 24, and a coil spring (return spring) 26.
The shaft member 21 is attached to the front end surface of the crankshaft 11 (left end surface in FIG. 2).
 軸部材21は、軸部21aと、雄ねじ部21bと、軸基部21dと、フランジ部21fとを有している。
 軸部21aは、軸基部21dおよびフランジ部21fと一体に形成されている。そして、軸部21aと軸基部21dは同心状に構成されている。そして、軸部21aと軸基部21dは、段の付いた円柱状に形成されており、軸部21aの径は軸基部21dの径よりも細い。
 雄ねじ部21bは、軸部21aの端部(図2では左端部)に位置している。そして、雄ねじ部21bは、軸部材21において、クランク軸11の前端面側から離隔する側(図2では左側)の端部に形成されている。
The shaft member 21 includes a shaft portion 21a, a male screw portion 21b, a shaft base portion 21d, and a flange portion 21f.
The shaft portion 21a is formed integrally with the shaft base portion 21d and the flange portion 21f. The shaft portion 21a and the shaft base portion 21d are configured concentrically. The shaft portion 21a and the shaft base portion 21d are formed in a stepped columnar shape, and the diameter of the shaft portion 21a is smaller than the diameter of the shaft base portion 21d.
The male screw portion 21b is located at the end portion (left end portion in FIG. 2) of the shaft portion 21a. The male screw portion 21 b is formed at the end portion of the shaft member 21 on the side (left side in FIG. 2) that is separated from the front end face side of the crankshaft 11.
 軸部21aの長手方向の中ほどから雄ねじ部21bにかけて、雄スプライン21sが形成されている。雄スプライン21sは、駆動側可動プーリ片23の中心孔に形成された雌のスプライン23sと係合するように構成されている。
 雄スプライン21sの谷の径は、雄ねじ部21bに形成された雄ねじの山の径よりも大きく形成されている。
A male spline 21s is formed from the middle in the longitudinal direction of the shaft portion 21a to the male screw portion 21b. The male spline 21 s is configured to engage with a female spline 23 s formed in the center hole of the drive side movable pulley piece 23.
The diameter of the valley of the male spline 21s is formed larger than the diameter of the thread of the male screw formed in the male screw portion 21b.
 フランジ部21fの外縁(半径方向外方縁部)近傍には、複数(例えば6箇所)のボルト孔21hが形成されている。ここで、複数のボルト孔21hは、フランジ21fにおいて、共通のピッチ円上で、均等ピッチで形成されている。
 フランジ21fとクランク軸11の端面(図2では左端面)は、インローにより係合されており、長手方向軸(図2の左右方向に延在する軸)の中心が一致するように構成されている。より詳細には、フランジ部21fにおけるクランク軸11の端面と対向する面に形成された凸部(雄のインロー)と、クランク軸11の端面におけるフランジ部21fと対向する面に形成された凹部(雌のインロー)により、インローによる係合が為されている。
 軸部材21は、フランジ部21fにおいて、複数本(例えば6本)の植え込みボルトB1によってクランク軸11の端面(図2の左端面)に取り付けられている。
Plural (for example, six locations) bolt holes 21h are formed in the vicinity of the outer edge (radially outer edge) of the flange portion 21f. Here, the plurality of bolt holes 21h are formed at a uniform pitch on a common pitch circle in the flange 21f.
The flange 21f and the end surface of the crankshaft 11 (the left end surface in FIG. 2) are engaged with each other by a spigot, and the longitudinal axis (the axis extending in the horizontal direction in FIG. 2) is configured to coincide with the center. Yes. More specifically, a convex portion (male spigot) formed on a surface of the flange portion 21f facing the end surface of the crankshaft 11 and a concave portion formed on a surface of the end surface of the crankshaft 11 facing the flange portion 21f ( The female inlay is engaged by the inlay.
The shaft member 21 is attached to the end surface (left end surface in FIG. 2) of the crankshaft 11 by a plurality of (for example, six) studs B1 in the flange portion 21f.
 駆動側固定プーリ片22は、全体が打楽器のシンバルの様な形状に構成されている。駆動側固定プーリ片22は、テーパーが緩やかな円錐面22fを有し、当該円錐面22fの外縁はVベルト接触面22vに連なっている。Vベルト接触面22vは、円錐面22fとは逆に反った部分円錐形状に構成されている。
 円錐面22fの中央(半径方向中央)には貫通孔22aが形成されており、貫通孔22aには軸部21aが貫通している。
 駆動側固定プーリ片22の半径方向内方の端面22eは、段部(端面)21eに当接した状態で、公知の手段(例えば溶接)で軸部材21に固着されている。ここで、段部(端面)21eは、軸部材21における軸部21aと軸基部21dの段部(端面)である。
 なお、図示は省略するが、駆動側固定プーリ片22と軸部材21を一体に形成することも可能である。
 駆動側固定プーリ片22における円錐面22fの内側(フライウェイト24と接触する側)については、後述する。
The drive side fixed pulley piece 22 is configured in a shape like a cymbal of a percussion instrument. The drive side fixed pulley piece 22 has a conical surface 22f with a gentle taper, and the outer edge of the conical surface 22f is continuous with the V-belt contact surface 22v. The V-belt contact surface 22v is configured in a partial conical shape that is warped opposite to the conical surface 22f.
A through hole 22a is formed at the center (radial center) of the conical surface 22f, and the shaft portion 21a passes through the through hole 22a.
The end face 22e in the radial direction of the driving side fixed pulley piece 22 is fixed to the shaft member 21 by a known means (for example, welding) in a state of being in contact with the stepped portion (end face) 21e. Here, the step portion (end surface) 21e is a step portion (end surface) of the shaft portion 21a and the shaft base portion 21d in the shaft member 21.
In addition, although illustration is abbreviate | omitted, it is also possible to form the drive side fixed pulley piece 22 and the shaft member 21 integrally.
The inner side (the side in contact with the flyweight 24) of the conical surface 22f in the driving side fixed pulley piece 22 will be described later.
 図2において、駆動側可動プーリ片23は、駆動側固定プーリ片22と類似した形状である。
 駆動側可動プーリ片23も、全体が打楽器であるシンバルの様な形状をしており、テーパーが緩やかな円錐面23fを有している。そして、当該円錐面23fの外縁がVベルト接触面23vに連なっており、Vベルト接触面23vは円錐面23fとは逆側に反っており、部分円錐形状をしている。
 駆動側固定プーリ片22と駆動側可動プーリ片23により、駆動側プーリPL1が構成されている。
 駆動側固定プーリ片22と駆動側可動プーリ片23とで挟まれた領域には、複数(例えば3個)のフライウェイト24が、駆動側固定プーリ片22の円錐面22tと、駆動側可動プーリ片23の円錐面23qの間を、半径方向に転動可能に配置されている。ここで、円錐面22t、23qは、相互に向かい合っている。
In FIG. 2, the drive side movable pulley piece 23 has a shape similar to the drive side fixed pulley piece 22.
The drive-side movable pulley piece 23 also has a cymbal shape that is a percussion instrument as a whole, and has a conical surface 23f with a gentle taper. The outer edge of the conical surface 23f is continuous with the V-belt contact surface 23v. The V-belt contact surface 23v is warped on the opposite side to the conical surface 23f and has a partial conical shape.
The drive side fixed pulley piece 22 and the drive side movable pulley piece 23 constitute a drive side pulley PL1.
In a region sandwiched between the driving side fixed pulley piece 22 and the driving side movable pulley piece 23, a plurality of (for example, three) flyweights 24 are connected to the conical surface 22t of the driving side fixed pulley piece 22 and the driving side movable pulley. Between the conical surfaces 23q of the piece 23, it arrange | positions so that rolling in a radial direction is possible. Here, the conical surfaces 22t and 23q face each other.
 円錐面23fについても、半径方向中央の領域には貫通孔23aが形成されている。そして、貫通孔23aには雌のスプライン23sが形成され、上述したように、軸部材21の雄スプライン21sと係合している。
 これにより、駆動側可動プーリ片23は、軸部材21に対して相対回転運動はできないが、軸方向へは(軸部材21に対して)相対移動が可能に構成されている。
As for the conical surface 23f, a through hole 23a is formed in the central region in the radial direction. A female spline 23s is formed in the through hole 23a, and is engaged with the male spline 21s of the shaft member 21 as described above.
As a result, the drive-side movable pulley piece 23 cannot be relatively rotated with respect to the shaft member 21, but is configured to be relatively movable in the axial direction (relative to the shaft member 21).
 駆動側可動プーリ片23は、円錐面23fの半径方向中央で、駆動側固定プーリ片22と離隔する側(図2では左側)の面には、円盤状の座面(スプリングシート)23eが形成されている。
 軸部材21における雄ねじ部21bには、平板で円環状のスプリングシート27と、座金28が挿通されている。そしてスプリングシート27は段部21jに当接しており、段部21jは軸部21aと雄ねじ部21bの境界に形成されている。
 さらに、軸部材21における雄ねじ部21bにはロックナット29が螺合しており、ロックナット29は規定のトルクで締め付けられている。なお、ロックナット29は、緩み止め機構(図示せず)を有している。
The drive-side movable pulley piece 23 is formed with a disk-shaped seating surface (spring seat) 23e on the surface (left side in FIG. 2) that is separated from the drive-side fixed pulley piece 22 at the center in the radial direction of the conical surface 23f. Has been.
A flat and annular spring seat 27 and a washer 28 are inserted into the male screw portion 21 b of the shaft member 21. The spring seat 27 is in contact with the step portion 21j, and the step portion 21j is formed at the boundary between the shaft portion 21a and the male screw portion 21b.
Further, a lock nut 29 is screwed into the male screw portion 21b of the shaft member 21, and the lock nut 29 is tightened with a specified torque. The lock nut 29 has a locking mechanism (not shown).
 軸部材21の軸部21aにおいて、スプライン(21s、23s)が形成された領域には、付勢手段であるコイルスプリング26が配置されている。そして、コイルスプリング26は、スプリングシート27と駆動側可動プーリ片23におけるスプリングシート面23eの間に配置されている。
 エンジンが停止している時、或いは、エンジン回転が低速の時には、コイルスプリング26の付勢(反発力)によって、駆動側可動プーリ片23は駆動側固定プーリ片22側(図2では右側)に付勢されて、駆動側固定プーリ片22に当接する。
In the shaft portion 21a of the shaft member 21, a coil spring 26 as an urging means is disposed in a region where the splines (21s, 23s) are formed. The coil spring 26 is disposed between the spring seat 27 and the spring seat surface 23 e of the drive side movable pulley piece 23.
When the engine is stopped or when the engine speed is low, the drive side movable pulley piece 23 is moved to the drive side fixed pulley piece 22 side (right side in FIG. 2) by the biasing (repulsive force) of the coil spring 26. It is urged and comes into contact with the driving side fixed pulley piece 22.
 エンジン回転が所定以上になると、フライウェイト24に遠心力が作用して、フライウェイト24が駆動側固定プーリ片22と駆動側可動プーリ片23の間の領域を半径方向外方に移動する。その結果、駆動側可動プーリ片23は、コイルスプリング26の付勢(反発力)に抗して、駆動側固定プーリ片22から離隔する方向(図2では左側)に移動して、Vベルト接触面22v、23v間の間隔が広がる。
 Vベルト接触面22v、23v間の間隔が広がると、Vベルト40がVベルト接触面22v、23vに当接する位置(図2で点線で示す位置)が、エンジンが停止している場合やエンジン回転が低速の場合の位置(図2では実線で示す位置)に比較して、被駆動プーリPL2側(図2では上側)になる。
 これにより、被駆動プーリPL2の回転数に対する駆動側プーリPL1の回転数の比は低下して、エンジン回転数の上昇に対して、被駆動側プーリPL2の回転数の上昇が緩やかになる。
When the engine rotation exceeds a predetermined value, centrifugal force acts on the flyweight 24 and the flyweight 24 moves radially outward in the region between the drive side fixed pulley piece 22 and the drive side movable pulley piece 23. As a result, the drive-side movable pulley piece 23 moves in a direction away from the drive-side fixed pulley piece 22 (on the left side in FIG. 2) against the biasing (repulsive force) of the coil spring 26 and contacts the V belt. The space between the surfaces 22v and 23v is increased.
When the interval between the V belt contact surfaces 22v and 23v increases, the position where the V belt 40 abuts against the V belt contact surfaces 22v and 23v (the position indicated by the dotted line in FIG. 2) is when the engine is stopped or the engine is rotating. Is on the driven pulley PL2 side (upper side in FIG. 2) compared to the position when the speed is low (the position indicated by the solid line in FIG. 2).
As a result, the ratio of the rotational speed of the driving pulley PL1 to the rotational speed of the driven pulley PL2 decreases, and the increase in the rotational speed of the driven pulley PL2 becomes moderate as the engine rotational speed increases.
 次に、図2において符号Bで示す被駆動側について説明する。
 被駆動側Bにおける回転部分は、軸部材31と、被駆動側可動プーリ片32と、被駆動側固定プーリ片33と、フライウェイト34と、リターンスプリング36とを有している。そして、軸部材31は、補機9(図1参照)の入力軸91前端面(図2では左端面)に取り付けられている。
 軸部材31は、軸部31aと、雄ねじ部31bと、フランジ部31fを有している。
 フランジ部31fは、軸部31aにおける補機の入力軸91側(図2では右側)の端部に配置されている。雄ねじ部31bは、軸部31aにおける補機の入力軸91側とは離隔する側(図2では左側)の端部に配置されている。
Next, the driven side indicated by the symbol B in FIG. 2 will be described.
The rotating part on the driven side B includes a shaft member 31, a driven side movable pulley piece 32, a driven side fixed pulley piece 33, a fly weight 34, and a return spring 36. The shaft member 31 is attached to the front end surface (left end surface in FIG. 2) of the input shaft 91 of the auxiliary machine 9 (see FIG. 1).
The shaft member 31 includes a shaft portion 31a, a male screw portion 31b, and a flange portion 31f.
The flange portion 31f is disposed at the end of the shaft portion 31a on the input shaft 91 side (right side in FIG. 2) of the auxiliary machine. The male screw portion 31b is disposed at the end portion of the shaft portion 31a on the side (left side in FIG. 2) that is separated from the input shaft 91 side of the auxiliary machine.
 軸部31aの長手方向(図2の左右方向)の中ほどから雄ねじ部31bにかけて、雄スプライン31sが形成されている。雄スプライン31sは、被駆動側可動プーリ片32の半径方向中心部に形成された雌のスプライン32sと係合するように構成されている。ここで、雄スプライン31sの谷の径は、雄ねじ部31bに形成された雄ねじの山の径よりも大きく形成されている。
 軸部材31における雄ねじ部31bには、平板で円環状のスプリングシート37と座金38が挿通されている。スプリングシート37は段部31jに当接しており、段部31jは、軸部材31における軸部31aと雄ねじ部31bの境界に形成されている。
 軸部材31における雄ねじ部31bにはロックナット39が螺合され、ロックナット39は規定のトルクで締め付けられている。なお、ロックナット39は、緩み止め機構(図示せず)を有している。
A male spline 31s is formed from the middle of the longitudinal direction of the shaft portion 31a (left and right direction in FIG. 2) to the male screw portion 31b. The male spline 31 s is configured to engage with a female spline 32 s formed at the center in the radial direction of the driven movable pulley piece 32. Here, the diameter of the valley of the male spline 31s is formed larger than the diameter of the thread of the male screw formed in the male screw portion 31b.
A flat and annular spring seat 37 and a washer 38 are inserted through the male screw portion 31 b of the shaft member 31. The spring seat 37 is in contact with the step portion 31j, and the step portion 31j is formed at the boundary between the shaft portion 31a and the male screw portion 31b in the shaft member 31.
A lock nut 39 is screwed into the male thread portion 31b of the shaft member 31, and the lock nut 39 is tightened with a specified torque. The lock nut 39 has a locking mechanism (not shown).
 フランジ部31fの半径方向外方縁部近傍には、複数箇所(例えば6箇所)にボルト孔31hが形成されている。当該複数箇所のボルト孔31hは、共通のピッチ円上に配置されて、均等ピッチで配置されている。
 フランジ部31fにおいて、補機の入力軸91の端面と対向する側(図2の右側)の面には、雄のインローが形成されている。そして、補機の入力軸91の端面(図2では左端面)において、フランジ部31fと対向する側(図2の左側)の面には、雌のインローが形成されている。そして、雄のインローと雌のインローとが契合しており、以って、フランジ部31fの長手方向(図2では左右方向)の軸と、補機の入力軸91の中心軸とが一致するように構成されている。
 ここで軸部材31は、フランジ部31fにおいて、複数(例えば6本)の植え込みボルトB2によって、補機の入力軸91の端面91aに取り付けられている。
Bolt holes 31h are formed at a plurality of locations (for example, 6 locations) in the vicinity of the radially outer edge of the flange portion 31f. The plurality of bolt holes 31h are arranged on a common pitch circle and arranged at an equal pitch.
In the flange portion 31f, a male spigot is formed on the surface (the right side in FIG. 2) facing the end surface of the input shaft 91 of the auxiliary machine. And in the end surface (left end surface in FIG. 2) of the input shaft 91 of an auxiliary machine, the female inlay is formed in the surface (left side of FIG. 2) facing the flange part 31f. Then, the male inlay and the female inlay are engaged, so that the longitudinal axis (left-right direction in FIG. 2) of the flange portion 31f coincides with the central axis of the input shaft 91 of the auxiliary machine. It is configured as follows.
Here, the shaft member 31 is attached to the end surface 91a of the input shaft 91 of the auxiliary machine by a plurality of (for example, six) studs B2 in the flange portion 31f.
 軸部材31のフランジ部31fにおいて、被駆動側可動プーリ片32側(図2では左側)の面は、テーパー面(円錐面)31qとなっている。テーパー面31qは、半径方向内方から半径方向外方に向かって、被駆動側可動プーリ片32側(図2では左側)に近づくようなテーパーが形成されている。
 テーパー面31qの半径方向外方縁部には庇31cが形成されており、庇31cは軸部31aと平行に(図2の左右方向に)延在している。
In the flange portion 31f of the shaft member 31, the surface on the driven side movable pulley piece 32 side (left side in FIG. 2) is a tapered surface (conical surface) 31q. The tapered surface 31q is tapered so as to approach the driven-side movable pulley piece 32 side (left side in FIG. 2) from the radially inner side to the radially outer side.
A flange 31c is formed on the radially outer edge of the tapered surface 31q, and the flange 31c extends in parallel to the shaft portion 31a (in the left-right direction in FIG. 2).
 図2において、フランジ部31fを矢印Y方向から見た状態が図3で示されている。
 図3において、フランジ部31fにおけるテーパー面31qには、中心軸Lc(図3の紙面に垂直な方向に延在する軸)について相互に点対称となった3箇所に、テーパー面31tが形成されている。このテーパー面31tにおいて、フライウェイト34が転動する
 テーパー面31tは、中央ガイド溝311と、中央ガイド溝311を挟むように配置された1対のフライウェイト転動面312とを有している。
 中央ガイド溝311は、テーパー面31qと同一の円錐面となる曲面を構成している。一方、1対のフライウェイト転動面312は、テーパー面(円錐面:曲面)ではなく、平面を構成している。
 なお、図2においては、中央ガイド溝311も1対のフライウェイト転動面312も、半径方向内方から半径方向外方に向かって、被駆動側可動プーリ片32側(図2では左側)に近づくように傾斜して表現されている。
In FIG. 2, the state which looked at the flange part 31f from the arrow Y direction is shown by FIG.
In FIG. 3, the tapered surface 31q of the flange portion 31f is formed with tapered surfaces 31t at three locations that are symmetric with respect to the central axis Lc (axis extending in a direction perpendicular to the paper surface of FIG. 3). ing. On the tapered surface 31t, the flyweight 34 rolls. The tapered surface 31t has a central guide groove 311 and a pair of flyweight rolling surfaces 312 disposed so as to sandwich the central guide groove 311. .
The central guide groove 311 forms a curved surface that is the same conical surface as the tapered surface 31q. On the other hand, the pair of flyweight rolling surfaces 312 constitutes a flat surface, not a tapered surface (conical surface: curved surface).
In FIG. 2, the central guide groove 311 and the pair of flyweight rolling surfaces 312 are both on the driven side movable pulley piece 32 side from the radially inner side to the radially outer side (left side in FIG. 2). Inclined to approach
 図4にはテーパー面31tの断面が示されている。
 図4において、フライウェイト34は、軸部材341と、1対の外輪342と、その1対の外輪342、342に挟まれた1個の内輪343とを備えている。1対の外輪342は円柱状に構成されており、軸部材341に固着している。
 内輪343は、中心線を含む断面の外周面が湾曲面として成形されている。そして、内輪343の外周面における曲率半径を「R34」として、被駆動側可動プーリ片32の後述するテーパー面(円錐面)32qの曲率半径を「R32」とすれば、内輪343の外周面の曲率半径R34は、被駆動側可動プーリ片32のテーパー面32qの曲率半径をR32よりも小さく設定されている。
 内輪343の外周面の曲率半径R34がテーパー面32qの曲率半径R32よりも大きいと、内輪343の両端面(図4の左右方向両端)がテーパー面32qと干渉してしまうからである。
FIG. 4 shows a cross section of the tapered surface 31t.
In FIG. 4, the flyweight 34 includes a shaft member 341, a pair of outer rings 342, and a single inner ring 343 sandwiched between the pair of outer rings 342 and 342. The pair of outer rings 342 has a cylindrical shape and is fixed to the shaft member 341.
The inner ring 343 is formed such that the outer peripheral surface of the cross section including the center line is a curved surface. If the radius of curvature of the outer peripheral surface of the inner ring 343 is “R 34 ” and the radius of curvature of a later-described tapered surface (conical surface) 32 q of the driven pulley piece 32 is “R 32 ”, the outer periphery of the inner ring 343 the radius of curvature R 34 of the plane is set to the radius of curvature of tapered surface 32q of the driven side movable pulley piece 32 smaller than R 32.
The radius of curvature R 34 of the outer peripheral surface of the inner ring 343 is larger than the radius of curvature R 32 of the tapered surface 32q, both end faces of the inner ring 343 (right and left end in FIG. 4) is because may interfere with the tapered surface 32q.
 また、フライウェイト34が図2、図3における半径方向(図4では紙面に垂直な方向)に移動する際に、1対の外輪342がテーパー面31tの1対のフライウェイト転動面312に接していれば、内輪343と中央ガイド溝311の底部には、隙間δ(図4では、内輪343の上方に形成されている隙間)が形成される。
 そして、図4で示す様に、フライウェイト34の1対の外輪342がテーパー面31tにおける1対のフライウェイト転動面312を転動して、図2、図3における半径方向(図4では紙面に垂直な方向)に移動する際には、フライウェイト34の内輪343が被駆動側可動プーリ片32のテーパー面32qに接触して、テーパー面32q上を転動する。
 フライウェイト34が転動しつつ、図2、図3における半径方向(図4では紙面に垂直な方向)に移動するためには、内輪343と1対の外輪342、342が、テーパー面31q、テーパー面32qと同時に接触することは出来ないからである。そのため、図4で示す様に、内輪343と1対の外輪342、342は、テーパー面31q、テーパー面32qの何れか一方のみと接触する様に構成されている。
 なお、図3、図4を参照して、被駆動側Bのフライウェイト34について説明したが、駆動側Aのフライウェイト24に関連する構成も、同様である。
Further, when the flyweight 34 moves in the radial direction in FIGS. 2 and 3 (direction perpendicular to the paper surface in FIG. 4), the pair of outer rings 342 are formed on the pair of flyweight rolling surfaces 312 of the tapered surface 31t. If they are in contact with each other, a gap δ (a gap formed above the inner ring 343 in FIG. 4) is formed at the bottom of the inner ring 343 and the central guide groove 311.
Then, as shown in FIG. 4, the pair of outer rings 342 of the flyweight 34 rolls on the pair of flyweight rolling surfaces 312 on the tapered surface 31t, and in the radial direction in FIGS. When moving in the direction perpendicular to the paper surface, the inner ring 343 of the flyweight 34 contacts the tapered surface 32q of the driven movable pulley piece 32 and rolls on the tapered surface 32q.
In order to move the flyweight 34 in the radial direction in FIG. 2 and FIG. 3 (direction perpendicular to the paper surface in FIG. 4) while rolling, the inner ring 343 and the pair of outer rings 342 and 342 have a tapered surface 31q, This is because contact with the tapered surface 32q is impossible. Therefore, as shown in FIG. 4, the inner ring 343 and the pair of outer rings 342 and 342 are configured to contact only one of the tapered surface 31q and the tapered surface 32q.
Although the flyweight 34 on the driven side B has been described with reference to FIGS. 3 and 4, the configuration related to the flyweight 24 on the drive side A is the same.
 図2の被駆動側Bにおいて、被駆動側可動プーリ片32は、中央肉厚部32a(半径方向内方の領域)と、中央肉厚部32aに連続する半径方向外方縁部32bを有している。
 肉厚部32aにおける半径方向中央部には、中央貫通孔32cが形成されている。中央貫通孔32cには、雌スプライン32sが形成されている。前述したように、雌スプライン32sは、軸部材31の軸部31aに形成された雄スプライン31sと係合する。
In the driven side B of FIG. 2, the driven-side movable pulley piece 32 has a central thick portion 32a (radially inner region) and a radially outer edge portion 32b continuous with the central thick portion 32a. is doing.
A central through hole 32c is formed in the central portion in the radial direction of the thick portion 32a. A female spline 32s is formed in the central through hole 32c. As described above, the female spline 32 s engages with the male spline 31 s formed on the shaft portion 31 a of the shaft member 31.
 被駆動側可動プーリ片32の中央肉厚部32aにおいて、軸部材31のフランジ部31fに対向する側(図2では右側)は、緩やかな円錐面32qを形成している。そして、円錐面32qは、半径方向内方に向かうほど肉厚が減少するようなテーパーを形成している。
 円錐面32qの半径方向縁部には庇32dが形成されており、庇32dは、軸部31aと平行に(図2では左右方向に)延在している。
 庇32dは、エンジンが停止している場合や、エンジン回転数が低い場合は、軸部材31のフランジ部31fの半径方向外方縁部に形成された庇31cに当接する。
In the central thick portion 32a of the driven-side movable pulley piece 32, the side (right side in FIG. 2) facing the flange portion 31f of the shaft member 31 forms a gentle conical surface 32q. The conical surface 32q forms a taper such that the thickness decreases toward the inside in the radial direction.
A flange 32d is formed at the radial edge of the conical surface 32q, and the flange 32d extends in parallel to the shaft 31a (in the left-right direction in FIG. 2).
When the engine is stopped or when the engine speed is low, the flange 32d abuts on the flange 31c formed on the radially outer edge of the flange portion 31f of the shaft member 31.
 被駆動側可動プーリ片32において、フランジ部31fとは離隔する側(図2では左側)の面32fは、半径方向外方縁部32bを除き、平坦面に構成されている。
 半径方向外方縁部32bは、半径方向外方に向かうに連れてフランジ部31fに近接する様な部分円錐面を構成している。図2において、半径方向外方縁部32bの左側の面が、Vベルト接触面32vを構成している。
In the driven-side movable pulley piece 32, the surface 32f on the side separated from the flange portion 31f (left side in FIG. 2) is a flat surface except for the radially outer edge portion 32b.
The radially outer edge portion 32b forms a partial conical surface that approaches the flange portion 31f as it goes outward in the radial direction. In FIG. 2, the left side surface of the radially outer edge portion 32b forms a V-belt contact surface 32v.
 被駆動側固定プーリ片33は、円盤部33aと、半径方向外方縁部33bを有している。
 円盤部33aの中央には円筒部33cが形成されて、円筒部33cは、被駆動側可動プーリ片32と離隔する側に突出している。円筒部33cの半径方向中央には貫通孔33dが形成され、その貫通孔33dには雌スプライン33sが形成されている。
 雌スプライン33sは、軸部材31に形成された雄スプライン31sと係合するように構成されている。
The driven side fixed pulley piece 33 has a disk portion 33a and a radially outer edge portion 33b.
A cylindrical portion 33 c is formed at the center of the disk portion 33 a, and the cylindrical portion 33 c protrudes to the side away from the driven movable pulley piece 32. A through hole 33d is formed in the center of the cylindrical portion 33c in the radial direction, and a female spline 33s is formed in the through hole 33d.
The female spline 33 s is configured to engage with the male spline 31 s formed on the shaft member 31.
 円筒部33cの半径方向内方に内側中空部33gが形成されており、内側中空部33gにはコイルスプリング36が内蔵されている。ここで、コイルスプリング36は付勢手段であり、軸部材31の軸部31aに巻き付く様な態様で配置されている。
 コイルスプリング36の一方の端部(図2では左端)は、円筒部33cの内側中空部33gの底部(図2では、内側中空部33gの内壁面の左端部)に当接している。一方、コイルスプリング36の他端部(図2では右端)は、被駆動側可動プーリ片32における面32fの半径方向中央部近傍の領域に当接している。
An inner hollow portion 33g is formed radially inward of the cylindrical portion 33c, and a coil spring 36 is built in the inner hollow portion 33g. Here, the coil spring 36 is an urging means and is arranged in such a manner as to be wound around the shaft portion 31 a of the shaft member 31.
One end portion (left end in FIG. 2) of the coil spring 36 is in contact with the bottom portion of the inner hollow portion 33g of the cylindrical portion 33c (left end portion of the inner wall surface of the inner hollow portion 33g in FIG. 2). On the other hand, the other end portion (the right end in FIG. 2) of the coil spring 36 is in contact with a region near the central portion in the radial direction of the surface 32f of the driven movable pulley piece 32.
 被駆動側固定プーリ片33の半径方向外方縁部33bは部分円錐面を形成しており、当該部分円錐面(半径方向外方縁部33b)は、半径方向外方に向かうに連れて被駆動側可動プーリ片32から離隔するようなテーパーを有している。そして、図2において、半径方向外方縁部33bの右側の面がVベルト接触面33vとなっている。
 被駆動側可動プーリ片32のVベルト接触面32vと、被駆動側固定プーリ片33のVベルト接触面33vによりV溝G2が構成され、V溝G2にVベルト40が嵌合する。そして、被駆動側可動プーリ片32と、被駆動側固定プーリ片33により、被駆動側プーリPL2が構成される。
 図2において、符号W1は駆動側プーリPL1のVベルト溝の幅寸法を示している。そして、図2において、符号W2は被駆動側プーリPL2のVベルト溝の幅寸法を示している。
The radially outward edge portion 33b of the driven side fixed pulley piece 33 forms a partial conical surface, and the partial conical surface (radially outward edge portion 33b) is covered in the radially outward direction. A taper is provided so as to be separated from the driving side movable pulley piece 32. In FIG. 2, the right side surface of the radially outer edge portion 33b is a V-belt contact surface 33v.
A V-groove G2 is configured by the V-belt contact surface 32v of the driven-side movable pulley piece 32 and the V-belt contact surface 33v of the driven-side fixed pulley piece 33, and the V-belt 40 is fitted into the V-groove G2. The driven-side movable pulley piece 32 and the driven-side fixed pulley piece 33 constitute a driven-side pulley PL2.
In FIG. 2, the symbol W1 indicates the width dimension of the V belt groove of the driving pulley PL1. In FIG. 2, symbol W2 indicates the width dimension of the V belt groove of the driven pulley PL2.
 次に、図示の実施形態の作用効果を説明する。
 図示の実施形態において、エンジン回転数が増加して、駆動プーリPL1及び被駆動プーリPL2の回転数が増加すると、駆動プーリPL1では、上述した様に、フライウェイト24が半径方向外方に移動して、駆動側固定プーリ片22と駆動側可動プーリ片23が離隔するので、Vベルト溝幅W1が広くなる。
 それに対して、被駆動プーリPL2では、その回転数が増加すると、フライウェイト34に作用する遠心力が増加して半径方向外方に移動する。フライウェイト34が半径方向外方に移動すると、軸部材31のフランジ部31fと被駆動側可動プーリ片32の間隔が増加し、被駆動側可動プーリ片32がコイルスプリング36の反撥力に抗して、被駆動側固定プーリ片33側(図2では左側)へ移動する。その結果、Vベルト溝幅W2が狭くなる。
 駆動プーリPL1においては、Vベルト溝幅W1が広くなるため、Vベルト40が巻き掛けられる位置が半径方向内方となる。一方、被駆動プーリPL2においては、Vベルト溝幅W2が狭くなるので、Vベルト40が巻き掛けられる位置が半径方向外方となる。すなわち、クランク軸11の回転数が上昇すると、被駆動プーリPL2が設けられた補機の駆動軸91の回転数が減少する方向にVベルト40は移動する。
Next, functions and effects of the illustrated embodiment will be described.
In the illustrated embodiment, when the engine speed increases and the rotation speeds of the driving pulley PL1 and the driven pulley PL2 increase, the flyweight 24 moves outward in the radial direction in the driving pulley PL1 as described above. As a result, the driving side fixed pulley piece 22 and the driving side movable pulley piece 23 are separated from each other, so that the V-belt groove width W1 is increased.
On the other hand, in the driven pulley PL2, when its rotational speed increases, the centrifugal force acting on the flyweight 34 increases and moves outward in the radial direction. When the flyweight 34 moves radially outward, the distance between the flange 31f of the shaft member 31 and the driven movable pulley piece 32 increases, and the driven movable pulley piece 32 resists the repulsive force of the coil spring 36. Then, it moves to the driven side fixed pulley piece 33 side (left side in FIG. 2). As a result, the V belt groove width W2 becomes narrow.
In the drive pulley PL1, since the V belt groove width W1 is wide, the position where the V belt 40 is wound is inward in the radial direction. On the other hand, in the driven pulley PL2, the V-belt groove width W2 becomes narrow, so the position where the V-belt 40 is wound is outward in the radial direction. That is, when the rotational speed of the crankshaft 11 increases, the V-belt 40 moves in a direction in which the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 decreases.
 一方、エンジン回転数が減少して、駆動プーリPL1及び被駆動プーリPL2の回転数が減少すると、駆動プーリPL1では、上述した様に、フライウェイト24が半径方向内方に移動して、駆動側固定プーリ片22と駆動側可動プーリ片23が近接するので、Vベルト溝幅W1が狭くなる。
 被駆動プーリPL2では、その回転数が減少すると、フライウェイト34に作用する遠心力も減少するので、フライウェイト34も半径方向内方に移動する。フライウェイト34が半径方向内方に移動すると、軸部材31のフランジ部31fと被駆動側可動プーリ片32の間隔が減少し、被駆動側可動プーリ片32はコイルスプリング36の反撥力により、被駆動側固定プーリ片33から離隔する側(図2では右側)へ移動する。その結果、Vベルト溝幅W2が広くなる。
 駆動プーリPL1においては、Vベルト溝幅W1が狭くなるため、Vベルト40が巻き掛けられる位置が半径方向外方となる。そして、被駆動プーリPL2においては、Vベルト溝幅W2が広くなるので、Vベルト40が巻き掛けられる位置が半径方向内方となる。すなわち、クランク軸11の回転数が減少すると、被駆動プーリPL2が設けられた補機の駆動軸91の回転数が増加する方向に、Vベルト40は移動する。
On the other hand, when the engine speed is decreased and the rotational speeds of the driving pulley PL1 and the driven pulley PL2 are decreased, the flyweight 24 moves inward in the radial direction in the driving pulley PL1, as described above, and the driving side Since the fixed pulley piece 22 and the drive-side movable pulley piece 23 are close to each other, the V-belt groove width W1 is reduced.
When the rotational speed of the driven pulley PL2 decreases, the centrifugal force acting on the flyweight 34 also decreases, so the flyweight 34 also moves inward in the radial direction. When the flyweight 34 moves inward in the radial direction, the distance between the flange portion 31f of the shaft member 31 and the driven-side movable pulley piece 32 decreases, and the driven-side movable pulley piece 32 is driven by the repulsive force of the coil spring 36. It moves to the side (right side in FIG. 2) that is separated from the driving side fixed pulley piece 33. As a result, the V belt groove width W2 becomes wide.
In the driving pulley PL1, since the V belt groove width W1 is narrowed, the position where the V belt 40 is wound is outward in the radial direction. In the driven pulley PL2, the V-belt groove width W2 is wide, so that the position where the V-belt 40 is wound is radially inward. That is, when the rotation speed of the crankshaft 11 decreases, the V-belt 40 moves in a direction in which the rotation speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 increases.
 そして、図示の実施形態によれば、クランク軸11の回転数が上昇すると、被駆動プーリPL2が設けられた補機の駆動軸91の回転数が減少する方向にVベルト40が移動し、クランク軸11の回転数が減少すると、被駆動プーリPL2が設けられた補機の駆動軸91の回転数が増加する方向に、Vベルト40は移動する。
 そのため、エンジン回転数あるいはクランク軸11の回転数が変動しても、補機の駆動軸91の回転数は、クランク軸の回転数が変動するのとは逆の傾向の変動を示す(クランク軸11の回転数が上昇すると補機の駆動軸91の回転数が減少し、クランク軸11の回転数が減少すると補機の駆動軸91の回転数が増加する)。これにより、補機の駆動軸91の回転数が一定に保たれる。
 そして、エンジン回転数あるいはクランク軸11の回転数が変動しても補機の駆動軸91の回転数が一定に保たれるため、クランク軸11の回転数が増加しても、補機側の損失動力は増加せず、燃費に悪影響を及ぼしてしまうことがない。あるいは、クランク軸11の回転数が減少しても、補機側駆動軸91の回転数を補機の駆動に必要な回転数に維持することが出来る。
According to the illustrated embodiment, when the rotation speed of the crankshaft 11 increases, the V-belt 40 moves in a direction in which the rotation speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 decreases, When the rotational speed of the shaft 11 decreases, the V-belt 40 moves in a direction in which the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 increases.
Therefore, even if the engine speed or the rotation speed of the crankshaft 11 fluctuates, the rotation speed of the drive shaft 91 of the accessory shows a fluctuation in a tendency opposite to that of the crankshaft rotation speed (crankshaft 11 increases, the rotational speed of the auxiliary drive shaft 91 decreases. When the rotational speed of the crankshaft 11 decreases, the rotational speed of the auxiliary drive shaft 91 increases. Thereby, the rotation speed of the drive shaft 91 of the auxiliary machine is kept constant.
Since the rotational speed of the drive shaft 91 of the auxiliary machine is kept constant even if the engine rotational speed or the rotational speed of the crankshaft 11 fluctuates, even if the rotational speed of the crankshaft 11 increases, Loss power does not increase, and fuel efficiency is not adversely affected. Or even if the rotation speed of the crankshaft 11 decreases, the rotation speed of the auxiliary machine side drive shaft 91 can be maintained at the rotation speed necessary for driving the auxiliary machine.
 以下において、エンジン回転数あるいはクランク軸11の回転数の変動と、Vベルト溝幅W1、W2の変動について、より詳細に説明する。
 図示の実施形態において、駆動側フライウェイト24は駆動側プーリPL1の半径方向に移動可能であり、且つ、駆動側固定プーリ片22及び駆動側可動プーリ片23に接触している。また、駆動側固定プーリ片22の駆動側フライウェイト24と接触している面22tは半径方向外方が駆動側可動プーリ片23に近接するテーパーを有し、駆動側可動プーリ片23の駆動側フライウェイト24と接触している面23qは半径方向外方が駆動側固定プーリ片22に近接するテーパーを有している。
 クランク軸11の回転数が増加すると、駆動側フライウェイト24に作用する遠心力が増大して、駆動側フライウェイト24は駆動側プーリPL1の半径方向外方に移動する。
 ここで、駆動側固定プーリ片22の駆動側フライウェイト24と接触している面22tは半径方向外方が駆動側可動プーリ片23に近接するテーパーを有し、駆動側可動プーリ片23の駆動側フライウェイト24と接触している面23qは半径方向外方が駆動側固定プーリ片22に近接するテーパーを有している。そのため、駆動側フライウェイト24が半径方向外方に移動すると、駆動側可動プーリ片23は、コイルスプリング26の反撥力に抗して、駆動側固定プーリ片22から離隔する方向に移動する。その結果、駆動プーリPL1のVベルト溝幅W1が広くなる。
Hereinafter, fluctuations in the engine speed or the crankshaft 11 and fluctuations in the V belt groove widths W1 and W2 will be described in more detail.
In the illustrated embodiment, the drive-side flyweight 24 is movable in the radial direction of the drive-side pulley PL1 and is in contact with the drive-side fixed pulley piece 22 and the drive-side movable pulley piece 23. Further, the surface 22t of the driving side fixed pulley piece 22 that is in contact with the driving side flyweight 24 has a taper that the outer side in the radial direction is close to the driving side movable pulley piece 23. The surface 23q that is in contact with the flyweight 24 has a taper whose outer side in the radial direction is close to the drive side fixed pulley piece 22.
When the rotation speed of the crankshaft 11 increases, the centrifugal force acting on the drive-side flyweight 24 increases, and the drive-side flyweight 24 moves outward in the radial direction of the drive-side pulley PL1.
Here, the surface 22t of the driving side fixed pulley piece 22 that is in contact with the driving side flyweight 24 has a taper whose outer side in the radial direction is close to the driving side movable pulley piece 23, so that the driving side movable pulley piece 23 is driven. The surface 23q that is in contact with the side flyweight 24 has a taper whose outer side in the radial direction is close to the driving side fixed pulley piece 22. Therefore, when the drive-side flyweight 24 moves radially outward, the drive-side movable pulley piece 23 moves in a direction away from the drive-side fixed pulley piece 22 against the repulsive force of the coil spring 26. As a result, the V belt groove width W1 of the drive pulley PL1 is increased.
 一方、クランク軸11の回転数が減少すると、駆動側フライウェイト24に作用する遠心力は減少し、駆動側フライウェイト25は駆動側プーリPL1の半径方向内方(中心軸側)に移動する。
 駆動側フライウェイト24が半径方向内方に移動すると、駆動側固定プーリ片22及び駆動側可動プーリ片23の駆動側フライウェイト24と接触している面22t、23qに設けられているテーパーにより、そしてコイルスプリング26の反撥力により、駆動側可動プーリ片23は(エンジンのクランク軸11の軸方向について)駆動側固定プーリ片22に近接する方向に移動する。
 その結果、駆動プーリPL1のVベルト溝幅W1が狭くなる。
On the other hand, when the rotation speed of the crankshaft 11 is reduced, the centrifugal force acting on the drive-side flyweight 24 is reduced, and the drive-side flyweight 25 is moved radially inward (center axis side) of the drive-side pulley PL1.
When the drive-side flyweight 24 moves radially inward, the taper provided on the surfaces 22t and 23q of the drive-side fixed pulley piece 22 and the drive-side movable pulley piece 23 that are in contact with the drive-side flyweight 24, Then, due to the repulsive force of the coil spring 26, the drive side movable pulley piece 23 (in the axial direction of the engine crankshaft 11) moves in a direction close to the drive side fixed pulley piece 22.
As a result, the V belt groove width W1 of the drive pulley PL1 is reduced.
 また、被駆動側フライウェイト34は被駆動側プーリPL2の半径方向に移動可能であり、軸部材31のフランジ31f及び被駆動側可動プーリ片32に接触している。ここで、軸部材31のフランジ31fの駆動側フライウェイト34と接触している面31tは、半径方向外方が被駆動側可動プーリ片32に近接する様なテーパーを有している。そして、被駆動側可動プーリ片32の駆動側フライウェイト34と接触している面32qは、半径方向外方が軸部材31のフランジ31fに近接する様なテーパーを有している。
 したがって、クランク軸11の回転数及び駆動側プーリPL1の回転数が増加して、その回転が被駆動側プーリPL2に伝達されると、被駆動側フライウェイト34に作用する遠心力が増大し、被駆動側フライウェイト34は被駆動側プーリ(軸部材31のフランジ31fと被駆動側可動プーリ片32)の半径方向外方に移動する。
 ここで、軸部材31のフランジ31fの駆動側フライウェイト34と接触している面31tは、半径方向外方が被駆動側可動プーリ片32に近接する様なテーパーを有している。そして、被駆動側可動プーリ片32の駆動側フライウェイト34と接触している面32qは、半径方向外方が軸部材31のフランジ31fに近接するテーパーを有している。そのため、被駆動側フライウェイト34が半径方向外方に移動すると、駆動側可動プーリ片32は、コイルスプリング36の反撥力に抗して、軸部材31のフランジ31fから離隔して、被駆動側固定プーリ片32に近接する方向に移動する。その結果、被駆動プーリPL2のVベルト溝幅W2が狭くなる。
The driven flyweight 34 is movable in the radial direction of the driven pulley PL2 and is in contact with the flange 31f of the shaft member 31 and the driven movable pulley piece 32. Here, the surface 31 t of the flange 31 f of the shaft member 31 that is in contact with the drive-side flyweight 34 has a taper such that the outer side in the radial direction is close to the driven-side movable pulley piece 32. The surface 32q of the driven movable pulley piece 32 that is in contact with the driving flyweight 34 has a taper such that the outer side in the radial direction is close to the flange 31f of the shaft member 31.
Therefore, when the rotation speed of the crankshaft 11 and the rotation speed of the driving pulley PL1 are increased and the rotation is transmitted to the driven pulley PL2, the centrifugal force acting on the driven flyweight 34 increases. The driven fly weight 34 moves outward in the radial direction of the driven pulley (the flange 31f of the shaft member 31 and the driven movable pulley piece 32).
Here, the surface 31 t of the flange 31 f of the shaft member 31 that is in contact with the drive-side flyweight 34 has a taper such that the outer side in the radial direction is close to the driven-side movable pulley piece 32. The surface 32q of the driven side movable pulley piece 32 that is in contact with the driving side flyweight 34 has a taper whose outer side in the radial direction is close to the flange 31f of the shaft member 31. Therefore, when the driven flyweight 34 moves radially outward, the driving-side movable pulley piece 32 is separated from the flange 31 f of the shaft member 31 against the repulsive force of the coil spring 36, thereby It moves in the direction approaching the fixed pulley piece 32. As a result, the V belt groove width W2 of the driven pulley PL2 is reduced.
 一方、駆動プーリPL1の回転数が減少して、その回転が被駆動側プーリPL2に伝達されると、被駆動側フライウェイト34に作用する遠心力も減少し、被駆動側フライウェイト34は被駆動側プーリPL2の半径方向内方に移動する。
 被駆動側フライウェイト34が半径方向内方に移動すると、軸部材31のフランジ31f及び被駆動側可動プーリ片32の被駆動側フライウェイト34と接触している面32qに設けられているテーパーにより、そしてコイルスプリング36の反撥力により、被駆動側可動プーリ片32は軸部材31のフランジ31fに近接し、被駆動側固定プーリ片32から離隔する。そのため、被駆動プーリのVベルト溝幅W2が広くなる。
On the other hand, when the rotational speed of the driving pulley PL1 is reduced and the rotation is transmitted to the driven pulley PL2, the centrifugal force acting on the driven flyweight 34 is also reduced, and the driven flyweight 34 is driven. It moves inward in the radial direction of the side pulley PL2.
When the driven flyweight 34 moves inward in the radial direction, the taper is provided on the surface 32q of the shaft member 31 that is in contact with the flange 31f of the shaft member 31 and the driven flyweight 34 of the driven movable pulley piece 32. Then, due to the repulsive force of the coil spring 36, the driven-side movable pulley piece 32 comes close to the flange 31 f of the shaft member 31 and is separated from the driven-side fixed pulley piece 32. Therefore, the V belt groove width W2 of the driven pulley is increased.
 図示の実施形態によれば、駆動プーリPL1及び被駆動プーリPL2の双方が、回転数の変動によりVベルト溝幅W1、W2が変動する様に構成されている。
 そのため、クランク軸11の回転が増加した際には、駆動プーリPL1におけるVベルト40が巻き掛けられている箇所の半径方向位置が半径方向内方に変動し、それと同時に、被駆動プーリPL2におけるVベルト40が巻き掛けられている箇所の半径方向位置が半径方向外方に変動する。そのため、被駆動プーリPL2が設けられた補機の駆動軸91の回転数が、瞬時に減少する。
 一方、クランク軸11の回転が減少した際には、駆動プーリPL1におけるVベルト40が巻き掛けられている箇所の半径方向位置が半径方向外方に変動し、それと同時に、被駆動プーリPL2におけるVベルト40が巻き掛けられている箇所の半径方向位置が半径方向内方に変動する。そのため、被駆動プーリPL2が設けられた補機の駆動軸91の回転数が、瞬時に増加する。
 すなわち、図示の実施形態によれば、クランク軸11の回転が変動した際に、補機駆動軸91の回転が変動する応答性が良好である。
 また、クランク軸11の回転数に変動が生じたとしても、駆動プーリPL1におけるVベルト40が巻き掛けられている箇所の半径方向位置と、被駆動プーリPL2におけるVベルト40が巻き掛けられている箇所の半径方向位置が同時に変動して、補機側に伝達される動力の変動を非常に小さくすることが出来る。
According to the illustrated embodiment, both the driving pulley PL1 and the driven pulley PL2 are configured such that the V-belt groove widths W1 and W2 vary due to fluctuations in the rotational speed.
Therefore, when the rotation of the crankshaft 11 increases, the radial position of the portion around which the V belt 40 is wound in the driving pulley PL1 varies inward in the radial direction, and at the same time, the V position in the driven pulley PL2 changes. The radial position of the portion around which the belt 40 is wound varies outward in the radial direction. Therefore, the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 is instantaneously reduced.
On the other hand, when the rotation of the crankshaft 11 decreases, the radial position of the portion around which the V belt 40 is wound in the driving pulley PL1 varies outward in the radial direction, and at the same time, the V pulley in the driven pulley PL2 changes. The radial position of the portion around which the belt 40 is wound varies inward in the radial direction. Therefore, the rotational speed of the drive shaft 91 of the auxiliary machine provided with the driven pulley PL2 increases instantaneously.
That is, according to the illustrated embodiment, when the rotation of the crankshaft 11 varies, the responsiveness that the rotation of the accessory drive shaft 91 varies is good.
Even if the rotation speed of the crankshaft 11 varies, the radial position of the portion where the V belt 40 is wound around the driving pulley PL1 and the V belt 40 around the driven pulley PL2 are wound. The position in the radial direction of the location varies at the same time, and the variation in power transmitted to the auxiliary machine can be made very small.
 さらに、従来技術の様にコイルスプリング36のみによりプーリの溝幅W1、W2が変化するのではなく、フライウェイト24、34に作用する遠心力と、コイルスプリング26、36の弾性係数と、プーリー片22、23、軸部材31、プーリ片32のテーパー等に関連して、プーリの溝幅W1、W2が決定される。
 そのため、溝幅W1、W2あるいは可動プーリの位置が変化しても、Vベルト40に作用する張力は、常時、一定となり、エンジン出力軸の回転数にかかわらず、Vベルト40による動力伝達効率を一定に保持することが可能となる。
Further, the pulley groove widths W1 and W2 are not changed only by the coil spring 36 as in the prior art, but the centrifugal force acting on the flyweights 24 and 34, the elastic coefficient of the coil springs 26 and 36, and the pulley piece 22 and 23, the shaft member 31, the taper of the pulley piece 32, and the like, the pulley groove widths W1 and W2 are determined.
Therefore, even if the groove width W1, W2 or the position of the movable pulley changes, the tension acting on the V-belt 40 is always constant, and the power transmission efficiency by the V-belt 40 is improved regardless of the rotational speed of the engine output shaft. It can be held constant.
 さらに、駆動プーリPL1における駆動側固定プーリ片22、駆動側可動プーリ片23及びフライウェイト24と、被駆動プーリPL2における被駆動側固定プーリ片33、軸部材31のフランジ31f及びフライウェイト34とは共通のデザイン、即ち、同一の寸法、サイズに成形可能であり、共通のデザインとすることが出来る。そのようにすることにより、駆動プーリPL1におけるフライウェイト24の移動する面と、被駆動プーリPL2におけるフライウェイト34の移動する面とを、同一の加工機械で加工することができる。
 さらに、駆動プーリPL1におけるフライウェイト24と、被駆動プーリPL2におけるフライウェイト34とを共通化できる。
Further, the driving side fixed pulley piece 22, the driving side movable pulley piece 23 and the fly weight 24 in the driving pulley PL1, the driven side fixed pulley piece 33 in the driven pulley PL2, the flange 31f and the fly weight 34 of the shaft member 31 are as follows. A common design, that is, the same size and size can be formed, and a common design can be obtained. By doing so, the surface of the drive pulley PL1 on which the flyweight 24 moves and the surface of the driven pulley PL2 on which the flyweight 34 moves can be processed with the same processing machine.
Furthermore, the flyweight 24 in the driving pulley PL1 and the flyweight 34 in the driven pulley PL2 can be shared.
 フライウェイト24、34の共通化は、クランク軸11の延長方向の軸部材21における径方向寸法と、補機駆動軸91の延長方向の軸部材31における径方向寸法との共通化を促し、これら軸部材21、31に介装されるコイルスプリング26、36の共通化も図られる。
 その結果、製造原価の低減を実現することが出来る。
The common use of the flyweights 24 and 34 promotes the common use of the radial dimension of the shaft member 21 in the extending direction of the crankshaft 11 and the radial dimension of the shaft member 31 in the extending direction of the auxiliary drive shaft 91. The common use of the coil springs 26 and 36 interposed in the shaft members 21 and 31 is also achieved.
As a result, a reduction in manufacturing cost can be realized.
 図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
 例えば、図示の実施形態では、補機駆動機構230はハイブリッドエンジンを搭載した車両に用いられているが、当該補機駆動機構230はハイブリッドエンジンを搭載した車両以外についても使用可能である。
The illustrated embodiment is merely an example, and is not intended to limit the technical scope of the present invention.
For example, in the illustrated embodiment, the accessory drive mechanism 230 is used in a vehicle equipped with a hybrid engine, but the accessory drive mechanism 230 can be used in vehicles other than those equipped with a hybrid engine.
 1・・・エンジン
 2・・・クラッチ
 3・・・モータ及び発電機/モータ・ジェネレータ
 4・・・変速機
11・・・エンジンの出力軸/クランク軸
21・・・軸部材
22・・・駆動側固定プーリ片
23・・・駆動側可動プーリ片
24・・・駆動側フライウェイト
26・・・駆動側弾性体/リターンスプリング
27・・・スプリングシート
28・・・座金
29・・・ナット
31・・・軸部材
32・・・被駆動側可動プーリ片
33・・・被駆動側固定プーリ片
34・・・被駆動側フライウェイト
36・・・駆動側弾性体/リターンスプリング
37・・・スプリングシート
38・・・座金
39・・・座金
40・・・Vベルト
230・・・補機駆動機構
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Clutch 3 ... Motor and generator / motor generator 4 ... Transmission 11 ... Engine output shaft / crankshaft 21 ... Shaft member 22 ... Drive Side fixed pulley piece 23 ... Driving side movable pulley piece 24 ... Driving side flyweight 26 ... Driving side elastic body / return spring 27 ... Spring seat 28 ... Washer 29 ... Nut 31 ..Shaft member 32... Driven side movable pulley piece 33... Driven side fixed pulley piece 34... Driven side fly weight 36... Driving side elastic body / return spring 37. 38 ... Washer 39 ... Washer 40 ... V-belt 230 ... Auxiliary machine drive mechanism

Claims (3)

  1.  エンジンの出力軸に駆動プーリを設け、補機の駆動軸に被駆動プーリを設け、駆動プーリと被駆動プーリにVベルトを介して巻き掛けており、駆動プーリは回転数が増大するとVベルト溝幅が広くなる機能を有しており、被駆動プーリは回転数が増大するとVベルト溝幅が狭くなる機能を有していることを特徴とする補機駆動機構。 A drive pulley is provided on the output shaft of the engine, a driven pulley is provided on the drive shaft of the auxiliary machine, and is wound around the drive pulley and the driven pulley via a V-belt. An auxiliary machine drive mechanism having a function of widening the width, and a driven pulley having a function of narrowing the V-belt groove width when the rotational speed increases.
  2.  前記駆動プーリはエンジンのクランク軸に取り付けられており、クランク軸に固定された駆動側固定プーリ片と、クランク軸に対して回転は拘束されているが軸方向には移動可能な駆動側可動プーリ片と、駆動側固定プーリ片と駆動側可動プーリ片の間に配置された駆動側フライウェイトを備え、駆動側固定プーリ片と駆動側可動プーリ片によりVベルトを掛け回すVベルト溝を形成し、駆動側フライウェイトは駆動側プーリの半径方向に移動可能であり且つ駆動側固定プーリ片及び駆動側可動プーリ片に接触しており、駆動側固定プーリ片の駆動側フライウェイトと接触している面は半径方向外方が駆動側可動プーリ片に近接するテーパーを有し、駆動側可動プーリ片の駆動側フライウェイトと接触している面は半径方向外方が駆動側固定プーリ片に近接するテーパーを有しており、駆動側可動プーリ片を駆動側固定プーリ片に付勢する駆動側弾性体を備えており、
     前記被駆動プーリは、補機の駆動軸に固定された被駆動側固定プーリ片及び補機側プレートと、補機駆動軸の軸方向について被駆動側固定プーリ片と補機側プレートの間に配置され且つ補機の駆動軸に対して回転は拘束されているが軸方向には移動可能な被駆動側可動プーリ片と、補機側プレートと被駆動側可動プーリ片の間に配置された被駆動側フライウェイトを備え、被駆動側固定プーリ片と被駆動側可動プーリ片によりVベルトを掛け回すVベルト溝を形成し、被駆動側フライウェイトは被駆動側プーリの半径方向に移動可能であり且つ補機側プレート及び被駆動側可動プーリ片に接触しており、補機側プレートの駆動側フライウェイトと接触している面は半径方向外方が被駆動側可動プーリ片に近接するテーパーを有し、被駆動側可動プーリ片の駆動側フライウェイトと接触している面は半径方向外方が補機側プレートに近接するテーパーを有しており、被駆動側可動プーリ片を補機側プレートに付勢する被駆動側弾性体を備えている請求項1の補機駆動機構。
    The drive pulley is attached to an engine crankshaft, a drive-side fixed pulley piece fixed to the crankshaft, and a drive-side movable pulley that is restricted in rotation with respect to the crankshaft but is movable in the axial direction. And a drive-side flyweight disposed between the drive-side fixed pulley piece and the drive-side movable pulley piece, and a V-belt groove is formed around the V-belt by the drive-side fixed pulley piece and the drive-side movable pulley piece. The drive-side flyweight is movable in the radial direction of the drive-side pulley and is in contact with the drive-side fixed pulley piece and the drive-side movable pulley piece, and is in contact with the drive-side flyweight of the drive-side fixed pulley piece. The surface has a taper whose outer side in the radial direction is close to the drive side movable pulley piece, and the outer side in the radial direction of the drive side movable pulley piece is fixed on the drive side. Has a taper proximate the over Li piece, provided with a drive-side elastic member for urging the drive side movable pulley piece on the driven side fixed pulley piece,
    The driven pulley includes a driven-side fixed pulley piece and an auxiliary machine-side plate fixed to the drive shaft of the auxiliary machine, and between the driven-side fixed pulley piece and the auxiliary machine-side plate in the axial direction of the auxiliary machine drive shaft. Arranged and driven-side movable pulley piece that is restricted in rotation with respect to the drive shaft of the auxiliary machine but is movable in the axial direction, and arranged between the auxiliary-side plate and the driven-side movable pulley piece A driven flyweight is provided, and a V-belt groove is formed around the V-belt by the driven-side fixed pulley piece and the driven-side movable pulley piece so that the driven flyweight can move in the radial direction of the driven pulley. And is in contact with the accessory side plate and the driven movable pulley piece, and the surface of the accessory side plate that is in contact with the drive side flyweight is close to the driven side movable pulley piece in the radial direction. Has a taper and can be driven The surface of the pulley piece that is in contact with the drive-side flyweight has a taper that the outer side in the radial direction is close to the accessory-side plate, and drives the driven-side movable pulley piece toward the accessory-side plate. The accessory drive mechanism according to claim 1, further comprising a side elastic body.
  3.  エンジンの出力軸の前記駆動プーリの反対側はクラッチ及び回生用モータを介して変速機に接続しており、回生モータの回転がクラッチ及びエンジンのクランク軸を介して前記駆動プーリに伝達される請求項2の補機駆動機構。 The opposite side of the drive pulley of the engine output shaft is connected to the transmission via a clutch and a regenerative motor, and the rotation of the regenerative motor is transmitted to the drive pulley via the clutch and the crankshaft of the engine. Item 2. Auxiliary machinery drive mechanism.
PCT/JP2011/074101 2011-10-20 2011-10-20 Auxiliary machine driving mechanism WO2013057810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074101 WO2013057810A1 (en) 2011-10-20 2011-10-20 Auxiliary machine driving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074101 WO2013057810A1 (en) 2011-10-20 2011-10-20 Auxiliary machine driving mechanism

Publications (1)

Publication Number Publication Date
WO2013057810A1 true WO2013057810A1 (en) 2013-04-25

Family

ID=48140487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074101 WO2013057810A1 (en) 2011-10-20 2011-10-20 Auxiliary machine driving mechanism

Country Status (1)

Country Link
WO (1) WO2013057810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119621A (en) * 2016-11-29 2018-06-05 长城汽车股份有限公司 Water pump and vehicle
CN111878553A (en) * 2020-08-03 2020-11-03 珠海格力智能装备有限公司 Speed change mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797949A (en) * 1980-12-11 1982-06-17 Nippon Denso Co Ltd Power transmission gear
JPS58157052U (en) * 1982-04-16 1983-10-20 日産自動車株式会社 Centrifugal continuously variable transmission
JPS58196459U (en) * 1982-06-25 1983-12-27 日産自動車株式会社 Engine auxiliary drive system
JPH05187493A (en) * 1992-01-13 1993-07-27 Tochigi Fuji Ind Co Ltd Speed change pulley
JPH10288063A (en) * 1997-04-17 1998-10-27 Nissan Motor Co Ltd Idling control device for hybrid engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797949A (en) * 1980-12-11 1982-06-17 Nippon Denso Co Ltd Power transmission gear
JPS58157052U (en) * 1982-04-16 1983-10-20 日産自動車株式会社 Centrifugal continuously variable transmission
JPS58196459U (en) * 1982-06-25 1983-12-27 日産自動車株式会社 Engine auxiliary drive system
JPH05187493A (en) * 1992-01-13 1993-07-27 Tochigi Fuji Ind Co Ltd Speed change pulley
JPH10288063A (en) * 1997-04-17 1998-10-27 Nissan Motor Co Ltd Idling control device for hybrid engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119621A (en) * 2016-11-29 2018-06-05 长城汽车股份有限公司 Water pump and vehicle
CN111878553A (en) * 2020-08-03 2020-11-03 珠海格力智能装备有限公司 Speed change mechanism

Similar Documents

Publication Publication Date Title
JP6469250B2 (en) Isolating decoupler
KR19980033105A (en) Functionally improved fluid motion device with clutch device capable of operating at low engine speeds
US8272981B2 (en) Pulley assembly for a continuously variable transmission
KR20160127125A (en) Isolating decoupler
US20130337953A1 (en) Pulley device for an air conditioning compressor
JP2004514092A (en) Method for manufacturing overrunning clutch pulley with holding member
CN113431880A (en) Driven pulley device
CN110337552B (en) Method for designing single body of transmission belt and transmission belt
US20070056821A1 (en) Lock-up clutch mechanism for torque converter
WO2013057810A1 (en) Auxiliary machine driving mechanism
KR20150132141A (en) Accessory drive decoupler
US20210262556A1 (en) Powertrain with a continuously variable transmission for an electric vehicle and method for operating such powertrain
US8852040B2 (en) Switchable friction clutch having a drive wheel driven by a drive motor via a drive belt, and drive unit
US20080296076A1 (en) Centrifugal Clutch and Straddle Type Vehicle Including the Centrifugal Clutch
EP1348893B1 (en) Belt type continuously variable transmission
CN100591912C (en) Engine starting device
US20010044349A1 (en) Wound-and-hung transmission device and belt-type continuously variable transmission
US4147068A (en) Drive system
US4100818A (en) Drive system
US7896764B2 (en) Transmission bearing noise attenuation device
US6068564A (en) Continuously variable transmission with belt-driven pulley system
AU2004271052B2 (en) Fluid coupling
JPH04121566U (en) variable speed pulley
JP2002174309A (en) Belt type continuously variable transmission
JP2014040873A (en) Torque limiter for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP