WO2013057792A1 - 電気加熱式触媒 - Google Patents

電気加熱式触媒 Download PDF

Info

Publication number
WO2013057792A1
WO2013057792A1 PCT/JP2011/073936 JP2011073936W WO2013057792A1 WO 2013057792 A1 WO2013057792 A1 WO 2013057792A1 JP 2011073936 W JP2011073936 W JP 2011073936W WO 2013057792 A1 WO2013057792 A1 WO 2013057792A1
Authority
WO
WIPO (PCT)
Prior art keywords
upstream
case
downstream
pipe
inner tube
Prior art date
Application number
PCT/JP2011/073936
Other languages
English (en)
French (fr)
Inventor
▲吉▼岡 衛
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/345,502 priority Critical patent/US9181833B2/en
Priority to CN201180073486.6A priority patent/CN103874834A/zh
Priority to PCT/JP2011/073936 priority patent/WO2013057792A1/ja
Priority to JP2013539438A priority patent/JP5761362B2/ja
Priority to EP11874411.9A priority patent/EP2770177B1/en
Publication of WO2013057792A1 publication Critical patent/WO2013057792A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/148Multiple layers of insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2864Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets comprising two or more insulation layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2871Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets having an additional, e.g. non-insulating or non-cushioning layer, a metal foil or an adhesive layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electrically heated catalyst.
  • the present invention has been made in view of the above problems, and an object thereof is to suppress the flow of electricity to the case of the electrically heated catalyst.
  • an electrically heated catalyst provides: A heating element that generates heat when energized; A case for housing the heating element; An inner pipe provided between the heating element and the case for insulating electricity; An inner mat provided between the heating element and the inner pipe to insulate electricity and support the heating element, shorter in the exhaust flow direction than the inner pipe; An outer mat provided between the inner tube and the case to insulate electricity and support the inner tube, and shorter in the exhaust flow direction than the inner tube;
  • the inner tube includes a tubular portion provided around the heating element and formed in parallel with the central axis of the heating element, and a downstream inclined portion provided downstream of the tubular portion and having a smaller inner diameter toward the downstream side. And comprising A downstream bent portion that is a boundary between the tubular portion and the downstream inclined portion is provided in the vicinity of the downstream end portion of the outer mat.
  • the heating element may be a catalyst carrier or may be provided upstream of the catalyst. Since the heating element generates heat by energizing the heating element, the temperature of the catalyst can be increased.
  • the inner mat and the outer mat are shorter in the exhaust flow direction than the inner pipe. For this reason, the inner pipe protrudes from the inner mat and the outer mat toward the upstream side and the downstream side in the exhaust flow direction.
  • the case may be a double tube outer tube.
  • the inner mat, the outer mat, and the inner pipe can themselves insulate electricity, but if PM in the exhaust adheres to the surface, electricity can flow through the PM.
  • a downstream bent portion that is a boundary between the tubular portion of the inner tube and the downstream inclined portion is provided in the vicinity of the downstream end portion of the outer mat. That is, the inner pipe is bent toward the central axis side of the inner pipe in the vicinity of the downstream end portion of the outer mat. For this reason, the cross-sectional area of the exhaust passage is smaller on the downstream side than the portion where the heating element is provided.
  • the outer mat serves as a heat insulating material, and can prevent heat from being taken away from the inner tube. Further, since the temperature tends to rise on the downstream side of the downstream bent portion because it receives heat from the exhaust, PM can be oxidized even without the outer mat.
  • the temperature of the inner tube can be increased while suppressing the invasion of PM into the space between the case and the inner tube, the oxidation of PM can be promoted. Thereby, it can suppress that electricity flows between a heat generating body and a case.
  • the inner tube includes an upstream inclined portion that is provided on the upstream side of the tubular portion and has an inner diameter that decreases toward the upstream side.
  • An upstream bent portion that is a boundary between the tubular portion and the upstream inclined portion and an upstream end portion of the outer mat can be provided apart from each other.
  • the inner tube may be bent toward the central axis side of the inner tube even on the upstream side of the heating element.
  • the exhaust is difficult to hit the inner pipe on the upstream side of the heating element.
  • the upstream bent portion and the upstream end portion of the outer mat are separated from each other.
  • the exhaust gas flowing along the outer peripheral surface of the upstream inclined portion in the space between the inner pipe and the case tries to go straight in the extending direction of the upstream inclined portion on the downstream side of the upstream bent portion. To do.
  • the upstream bent portion and the upstream end portion of the outer mat may be separated by a predetermined distance at which creeping discharge does not occur.
  • the upstream end of the inner mat and the upstream end of the heating element can be positioned in the vicinity of the upstream bent portion.
  • a heat transfer section that moves heat by connecting the inner tube and the heating element can be provided.
  • the presence of the inner mat makes it difficult for the heat of the heating element to be transmitted to the inner tube.
  • a heat transfer part is provided, more heat from the heating element can be supplied to the inner tube. Thereby, since the temperature of the inner pipe can be further increased, the oxidation of PM attached to the inner pipe can be promoted.
  • the inner pipe includes an insulator for insulating electricity on the outer peripheral surface of the tubular portion, and the surface of the upstream inclined portion and the inner peripheral surface of the tubular portion are provided on the surface. It does not have to be provided.
  • the insulator is coated on the surface of the inner tube, for example.
  • This insulator insulates electricity, but generally has a high thermal insulation effect. For this reason, when an insulator is provided, it is difficult to receive heat from the exhaust.
  • the upstream inclined portion is not provided with an insulator, the upstream inclined portion easily receives heat from the exhaust. For this reason, since the temperature of an inner pipe can be made higher, oxidation of PM adhering to an inner pipe can be promoted. In addition, since the tubular portion can receive heat from the heating element, the temperature tends to rise. Furthermore, since it is difficult for exhaust to directly hit the outer peripheral surface of the tubular portion, PM hardly adheres. If an insulator is provided only on the outer peripheral surface of the tubular portion, electricity can be cut off on the outer peripheral surface.
  • the inner diameter of the upstream end of the case is smaller than the inner diameter of the upstream end of the inner pipe, and the inner diameter of the downstream end of the case is equal to the downstream end of the inner pipe. It may be larger than the inner diameter of the part.
  • the case has an introduction pipe extending from the upstream end toward the downstream side, and the inner diameter of the introduction pipe is smaller than the inner diameter of the upstream end of the inner pipe,
  • the downstream end of the introduction pipe is located upstream of the upstream end of the inner pipe,
  • the outer diameter of the downstream end of the introduction pipe may be larger than the inner diameter of the upstream end of the inner pipe.
  • the exhaust gas that has passed through the introduction pipe easily flows into the central axis side of the inner pipe. Even if the exhaust gas rebounds and flows backward by the heating element, it can be suppressed that the exhaust gas flows between the case and the inner tube by hitting the introduction tube. Thereby, it can suppress that PM adheres between a case and an inner pipe.
  • the case has an introduction pipe extending from the upstream end toward the downstream side, and the inner diameter of the introduction pipe is smaller than the inner diameter of the upstream end of the inner pipe,
  • the upstream inclined portion assumed to be extended may not intersect the introduction pipe.
  • electricity can be prevented from flowing through the case of the electrically heated catalyst.
  • FIG. 1 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 1.
  • FIG. FIG. 3 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 2.
  • FIG. 4 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 3.
  • 6 is a diagram illustrating a schematic configuration of an electrically heated catalyst according to Example 4.
  • FIG. 6 is a diagram illustrating a schematic configuration of an electrically heated catalyst according to Example 5.
  • FIG. 10 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 6.
  • FIG. 6 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 7. It is a figure which shows schematic structure of the electrically heated catalyst in case an inner pipe extension surface K cross
  • FIG. 1 is a diagram showing a schematic configuration of an electrically heated catalyst 1 according to the present embodiment.
  • the electrically heated catalyst 1 according to this embodiment is provided in the exhaust pipe 2 of the internal combustion engine mounted on the vehicle.
  • the internal combustion engine may be a diesel engine or a gasoline engine. It can also be used in a vehicle that employs a hybrid system equipped with an electric motor.
  • FIG. 1 is a cross-sectional view of the electric heating catalyst 1 cut in the longitudinal direction along the central axis A of the electric heating catalyst 1.
  • the electric heating catalyst 1 shown in FIG. Since the shape of the electrically heated catalyst 1 is symmetrical with respect to the central axis A, only the upper part is shown in FIG. Further, the arrow B in FIG. 1 indicates the flow direction of the exhaust gas.
  • the electrically heated catalyst 1 includes a cylindrical catalyst carrier 3 centering on a central axis A.
  • a catalyst carrier 3, an inner tube 4, and a case 5 are provided in this order from the central axis A side.
  • a mat 6 is provided between the catalyst carrier 3 and the inner tube 4 and between the inner tube 4 and the case 5.
  • the catalyst carrier 3 is made of a material that generates electrical resistance and generates heat when energized.
  • SiC is used as the material of the catalyst carrier 3.
  • the catalyst carrier 3 has a plurality of passages extending in the exhaust gas flow direction B (which may be the direction of the central axis A) and having a cross section perpendicular to the exhaust gas flow direction forming a honeycomb shape. Exhaust gas flows through this passage.
  • the outer shape of the catalyst carrier 3 is, for example, a cylindrical shape centered on the central axis A of the exhaust pipe 2.
  • the cross-sectional shape of the catalyst carrier 3 having a cross section orthogonal to the central axis A may be, for example, an ellipse.
  • the central axis A is a central axis common to the exhaust pipe 2, the catalyst carrier 3, the inner pipe 4, and the case 5.
  • the catalyst carrier 3 corresponds to the heating element in the present invention.
  • the present embodiment can be similarly applied to a heating element provided with a heating element upstream of the catalyst.
  • the catalyst is supported on the catalyst carrier 3.
  • the catalyst include an oxidation catalyst, a three-way catalyst, an occlusion reduction type NOx catalyst, and a selective reduction type NOx catalyst.
  • Two electrodes 7 are connected to the catalyst carrier 3, and the catalyst carrier 3 is energized by applying a voltage between the electrodes 7.
  • the catalyst carrier 3 generates heat due to the electrical resistance of the catalyst carrier 3.
  • the inner tube 4 includes an upstream inclined portion 41, a tubular portion 42, and a downstream inclined portion 43 in order from the upstream side.
  • the upstream inclined portion 41 is inclined with respect to the central axis A so that the inner diameter increases toward the downstream side.
  • the upstream end portion of the upstream inclined portion 41 is open, and the exhaust gas flows into the inner pipe 4 through the upstream end portion. Further, the downstream end of the upstream inclined portion 41 is connected to the upstream end of the tubular portion 42.
  • the tubular portion 42 is formed in a tubular shape centered on the central axis A.
  • the tubular portion 42 has a surface parallel to the central axis A.
  • the downstream end of the tubular portion 42 is connected to the upstream end of the downstream inclined portion 43.
  • the downstream inclined portion 43 is inclined with respect to the central axis A so that the inner diameter becomes smaller toward the downstream side.
  • the downstream end of the downstream inclined portion 43 is open, and the exhaust gas flows out from the inner side of the inner pipe 4 through the downstream end.
  • the tubular portion 42 may be divided on the upstream side and the downstream side from the electrode 7.
  • the electrode 7 and the tubular portion 42 are provided with a certain distance so that no discharge occurs.
  • the boundary between the upstream inclined portion 41 and the tubular portion 42 is a portion where the inner tube 4 is bent, and is hereinafter referred to as an upstream bent portion 44. Further, the boundary between the tubular portion 42 and the downstream inclined portion 43 is also a portion where the inner tube 4 is bent, and is hereinafter referred to as a downstream bent portion 45.
  • the material of the case 5 is a metal, and for example, a stainless steel material can be used.
  • the case 5 may be a double pipe outer pipe. And in order to let the electrode 7 pass, the case 5 is perforated, and the case 5 and the electrode 7 are provided with a certain distance so as not to cause discharge.
  • An insulating part 8 that supports the electrode 7 is provided in the hole opened in the case 5.
  • An electrical insulator is used as the material of the insulating portion 8.
  • the insulating portion 8 is provided without a gap between the case 5 and the electrode 7.
  • the case 5 includes an upstream inclined portion 51, a tubular portion 52, and a downstream inclined portion 53 in order from the upstream side.
  • the upstream inclined portion 51 is inclined with respect to the central axis A so that the inner diameter increases toward the downstream side.
  • the upstream end portion of the upstream inclined portion 51 is open, and the exhaust gas flows into the case 5 through the upstream end portion. Further, the downstream end portion of the upstream inclined portion 51 is connected to the upstream end portion of the tubular portion 52.
  • the tubular portion 52 is formed in a tubular shape centered on the central axis A.
  • the tubular portion 52 has a plane parallel to the central axis A.
  • the downstream end of the tubular portion 52 is connected to the upstream end of the downstream inclined portion 53.
  • the downstream inclined portion 53 is inclined with respect to the central axis A so that the inner diameter becomes smaller toward the downstream side.
  • the downstream end portion of the downstream inclined portion 53 is open, and the exhaust gas flows out from the inside of the case 5 to the exhaust pipe 2 via the downstream end portion.
  • a flange is formed at the upstream end and the downstream end of the case 5 and is connected to the exhaust pipe 2.
  • An introduction pipe 54 is formed from the upstream end of the case 5 toward the downstream side.
  • the introduction pipe 54 is formed in a tubular shape centered on the central axis A, and extends parallel to the central axis A in a range upstream from the upstream end of the inner pipe 4.
  • the inner diameter of the introduction pipe 54 is equal to the inner diameter of the upstream end portion of the upstream inclined portion 51 of the case 5.
  • an electrical insulator for example, a ceramic fiber mainly composed of alumina.
  • the mat 6 is wound around the outer peripheral surface of the catalyst carrier 3 and the outer peripheral surface of the tubular portion 42 of the inner tube 4. Since the mat 6 covers the outer peripheral surface of the catalyst carrier 3 (a surface parallel to the central axis A), electricity is prevented from flowing to the inner tube 4 and the case 5 when the catalyst carrier 3 is energized. .
  • the mat 6 includes inner mats 61 and 62 provided between the tubular portion 42 of the inner tube 4 and the catalyst carrier 3, and an outer mat provided between the tubular portion 52 of the case 5 and the tubular portion 42 of the inner tube 4. 63, 64.
  • the inner mats 61 and 62 include an inner mat 61 on the upstream side of the electrode 7 and an inner mat 62 on the downstream side of the electrode 7.
  • the outer mats 63 and 64 include an outer mat 63 on the upstream side of the electrode 7 and an outer mat 64 on the downstream side of the electrode 7.
  • the outer diameter of the inner mats 61 and 62 when the inner mats 61 and 62 are wound around the catalyst carrier 3 is larger than the inner diameter of the inner tube 4. For this reason, when the inner mats 61 and 62 are accommodated in the inner tube 4, the inner mats 61 and 62 are compressed, so that the catalyst carrier 3 is fixed in the inner tube 4 by the repulsive force of the inner mats 61 and 62. Is done.
  • the outer diameter of the outer mats 63 and 64 when the outer mats 63 and 64 are wound around the inner tube 4 is larger than the inner diameter of the case 5. Therefore, when the outer mats 63 and 64 are accommodated in the case 5, the outer mats 63 and 64 are compressed, so that the inner tube 4 is fixed in the case 5 by the repulsive force of the outer mats 63 and 64. .
  • the inner pipe 4 projects from the mat 6 to the upstream side and the downstream side.
  • the inner mats 61 and 62 and the outer mats 63 and 64 are described as being separated on the upstream side and the downstream side of the electrode 7.
  • the side and the downstream side may be integrated.
  • the inner pipe 4 since the inner pipe 4 includes the upstream inclined portion 41, the exhaust of the internal combustion engine is difficult to enter between the inner pipe 4 and the case 5. However, if no exhaust gas from the internal combustion engine enters between the inner pipe 4 and the case 5, the temperature rise of the inner pipe 4 becomes slow, and it becomes difficult to oxidize PM adhering to the inner pipe 4. On the other hand, when the inner tube 4 is formed so that a large amount of exhaust gas flows between the inner tube 4 and the case 5 in order to increase the temperature of the inner tube 4, PM is interposed between the inner tube 4 and the case 5. There is a risk of adhesion. And if the amount of PM adhering to the mat 6 and the inner tube 4 increases, electricity can flow through the PM.
  • the upstream end 63A of the outer mat 63 is separated from the upstream bent portion 44 by a predetermined distance C. That is, the outer peripheral surface of the tubular portion 42 of the inner tube 4 is exposed on the upstream side of the upstream end 63 ⁇ / b> A of the outer mat 63.
  • the predetermined distance C is, for example, a distance that can suppress the creeping discharge between the upstream bent portion 44 and the upstream end portion 63A of the outer mat 63, and the optimum value may be obtained by experiments or the like.
  • PM does not adhere to the outer peripheral surface of the tubular portion 42 of the inner tube 4 even if PM adheres to the upstream side inclined portion 41 of the inner tube 4, PM is added between the catalyst carrier 3 and the case 5. It can suppress that electricity flows through. That is, since at least the surface of the inner tube 4 is an electrical insulator, electricity does not flow unless PM is attached. Further, in this embodiment, even when the exhaust gas flows between the inner tube 4 and the case 5, it is possible to suppress PM from adhering to the tubular portion 42 of the inner tube 4. For this reason, exhaust gas can be caused to flow between the inner tube 4 and the case 5 to raise the temperature of the inner tube 4. Thereby, oxidation of PM can be promoted.
  • the downstream end portion 64A of the outer mat 64 extends to the downstream bent portion 45. That is, the downstream end portion 64 ⁇ / b> A of the outer mat 64 is located in the vicinity of the downstream bent portion 45. For this reason, the outer mat 64 is longer than the inner mat 62 by a predetermined distance D on the downstream side.
  • the inner pipe 4 is exposed.
  • the mat 6 made of ceramic fibers containing alumina as a main component has high heat insulating properties because the ceramic fibers themselves hardly transmit heat and the mat 6 contains a lot of gas. That is, by extending the downstream end 64A of the outer mat 64 to the downstream bent portion 45, the outer mat 64 becomes a heat insulating material. Thereby, it can suppress that a heat
  • the upstream end surface of the inner mat 61 and the upstream end surface of the catalyst carrier 3 are set on the same plane or at a relatively close distance. Further, the downstream end surface of the inner mat 62 and the downstream end surface of the catalyst carrier 3 are set on the same plane or at a relatively close distance.
  • the upstream end 63A of the outer mat 63 and the upstream bent portion 44 are separated by a predetermined distance C, so that the upstream end 63A of the outer mat 63 is located upstream of the upstream end 63A.
  • exhaust gas can flow between the upstream inclined portion 41 of the inner pipe 4 and the upstream inclined portion 51 of the case 5, the temperature of the inner pipe 4 can be increased, so that oxidation of PM can be performed. Can be promoted.
  • FIG. 2 is a diagram illustrating a schematic configuration of the electrically heated catalyst 10 according to the present embodiment.
  • the electrically heated catalyst 10 shown in FIG. 2 is a cross-sectional view of the electrically heated catalyst 10 cut in the longitudinal direction along the central axis A of the electrically heated catalyst 10. Since the shape of the electrically heated catalyst 10 is axisymmetric with respect to the central axis A, only the upper part is shown in FIG.
  • the upstream end 610A of the inner mat 610 and the upstream end 30A of the catalyst carrier 30 extend further upstream than in the first embodiment.
  • the upstream end 610 ⁇ / b> A of the inner mat 610 and the upstream end 30 ⁇ / b> A of the catalyst carrier 30 are positioned on or near a plane that is orthogonal to the central axis A and includes the upstream bent portion 44. As a result, the inner mat 610 and the catalyst carrier 30 are brought closer to the upstream inclined portion 41 of the inner tube 4.
  • heat can be supplied from the inside of the inner tube 4 to the exposed portion on the outer peripheral surface of the tubular portion 42 of the inner tube 4 by the catalyst carrier 30.
  • the exposed area of the inner pipe 4 can be reduced, the heat transferred from the exhaust to the inner pipe 4 is reduced. For this reason, the temperature of the exhaust gas flowing into the catalyst carrier 30 can be increased. Thereby, the temperature of the catalyst carrier 30 can be quickly increased.
  • FIG. 3 is a diagram showing a schematic configuration of the electrically heated catalyst 11 according to the present embodiment.
  • the electrically heated catalyst 11 shown in FIG. 3 is a cross-sectional view of the electrically heated catalyst 11 cut in the longitudinal direction along the central axis A of the electrically heated catalyst 11. Since the shape of the electrically heated catalyst 11 is axisymmetric with respect to the central axis A, only the upper part is shown in FIG. Further, the downstream side of the location shown in FIG. 3 is omitted because it has the same structure as the electrically heated catalyst 1 shown in FIG.
  • the heat transfer section 90 is provided to connect the inner peripheral surface of the inner pipe 4 upstream of the inner mat 61 and the outer peripheral surface of the catalyst carrier 3.
  • the heat transfer unit 90 is made of, for example, a metal having a relatively high thermal conductivity.
  • the catalyst support 3 can be supported while being prevented from being damaged. Further, the temperature decrease of the catalyst carrier 3 can be suppressed by the heat insulating effect of the inner mat 61. However, the presence of the inner mat 61 makes it difficult to transfer the heat of the catalyst carrier 3 to the inner tube 4.
  • the electrically heated catalyst 11 heat can be supplied from the catalyst carrier 3 to the inner tube 4 via the heat transfer section 90. With this heat, the temperature of the inner tube 4 can be increased. Therefore, since oxidation of PM adhering to the inner tube 4 can be promoted, it is possible to suppress electricity from flowing through the PM.
  • the heat transfer unit 90 may be connected to the central axis A side with respect to the outer peripheral surface of the catalyst carrier 3. Further, the heat transfer unit 90 may be connected to the upstream inclined portion 41 of the inner tube 4.
  • FIG. 4 is a diagram showing a schematic configuration of the electrically heated catalyst 12 according to the present embodiment.
  • the electrically heated catalyst 12 shown in FIG. 4 is a cross-sectional view of the electrically heated catalyst 12 cut in the longitudinal direction along the central axis A of the electrically heated catalyst 12. Since the shape of the electrically heated catalyst 12 is axisymmetric with respect to the central axis A, only the upper part is shown in FIG. Further, the downstream side of the portion shown in FIG. 4 is omitted because it has the same structure as the electrically heated catalyst 1 shown in FIG.
  • a metal inner tube 4 is employed.
  • the insulating layer 91 is provided only on the outer peripheral surface of the tubular portion 42 of the inner tube 4.
  • the insulating layer 91 is made of an electrical insulator. That is, the insulating layer 91 is not provided on the surface of the upstream inclined portion 41 of the inner tube 4 or the inner peripheral surface of the tubular portion 42 of the inner tube 4.
  • electricity can be suppressed from flowing on the surface.
  • PM adheres to the surface of the insulating layer 91 electricity can flow through the PM.
  • electricity can flow even if PM does not adhere to the surface.
  • the insulating layer 91 insulates electricity, but such a material generally has a high heat insulating effect. Accordingly, in the portion where the insulating layer 91 is provided, it is difficult to receive heat from the outside, so that the temperature is hardly increased.
  • the insulating layer 91 is provided only on the outer peripheral surface of the tubular portion 42 of the inner tube 4. As a result, heat is easily received from the exhaust or the catalyst carrier 3 at other portions of the inner pipe 4, and the temperature is likely to rise. Thus, since the temperature of the inner tube 4 is likely to rise, the oxidation of PM adhering to the inner tube 4 can be promoted. In addition, the manufacturing cost can be reduced by reducing the area of the insulating layer 91.
  • FIG. 5 is a diagram showing a schematic configuration of the electrically heated catalyst 1 according to the present embodiment.
  • the electrically heated catalyst 1 shown in FIG. 5 is a cross-sectional view of the electrically heated catalyst 12 cut in the longitudinal direction along the central axis A of the electrically heated catalyst 1.
  • the inner diameter E of the introduction pipe 54 is formed to be smaller than the inner diameter F of the upstream end portion of the upstream inclined portion 41 of the inner pipe 4. . Further, the downstream end portion of the introduction pipe 54 is positioned upstream of the upstream end portion of the upstream inclined portion 41 of the inner pipe 4.
  • the inner diameter G of the downstream end portion of the downstream inclined portion 43 of the inner tube 4 is larger than the inner diameter H of the downstream end portion of the downstream inclined portion 53 of the case 5. Is formed to be smaller. Further, the downstream end portion of the downstream inclined portion 43 of the inner pipe 4 is positioned upstream of the downstream end portion of the downstream inclined portion 53 of the case 5.
  • the exhaust gas flowing out from the inner side of the inner tube 4 is easily discharged from the downstream end portion of the downstream inclined portion 53 of the case 5.
  • the distance between the inner tube 4 and the case 5 is set as a distance that can suppress the occurrence of discharge when the catalyst carrier 3 is energized. This distance can be obtained by experiments or the like.
  • FIG. 6 is a diagram showing a schematic configuration of the electrically heated catalyst 13 according to the present embodiment.
  • the electrically heated catalyst 13 shown in FIG. 6 is a cross-sectional view of the electrically heated catalyst 13 cut in the longitudinal direction along the central axis A of the electrically heated catalyst 13. Since the shape of the electrically heated catalyst 13 is axisymmetric with respect to the central axis A, only the upper part is shown in FIG. Moreover, since it is the same structure as the electrically heated catalyst 1 shown in FIG. 1, it is abbreviate
  • a flange 541 that bends at right angles to the outside of the introduction pipe 540 is provided at the downstream end of the introduction pipe 540.
  • the inner diameter of the flange 541 is equal to the inner diameter E of the introduction pipe 540.
  • the inner diameter E of the introduction pipe 540 is formed to be smaller than the inner diameter F of the upstream end portion of the upstream inclined portion 41 of the inner pipe 4.
  • the downstream end portion of the introduction pipe 540 is located on the upstream side of the upstream end portion of the upstream inclined portion 41 of the inner pipe 4.
  • the outer diameter J of the flange 541 is formed to be larger than the inner diameter F of the upstream end portion of the upstream inclined portion 41 of the inner tube 4.
  • the exhaust gas passing through the introduction pipe 540 is likely to flow into the inner pipe 4. Further, even if the exhaust that flows backward after hitting the catalyst carrier 3 flows out of the inner pipe 4 to the upstream side, the exhaust hits the flange 541. If the flange 541 does not exist, the backflowing exhaust gas rebounds at the upstream inclined portion 51 of the case 50 after flowing along the outer peripheral surface of the introduction pipe 540 and flows between the inner pipe 4 and the case 50. There is a fear. On the other hand, when the exhaust hits the flange 541, it becomes difficult for the exhaust to flow between the inner pipe 4 and the case 50. Thereby, it can suppress that PM adheres between the inner tube 4 and the case 50.
  • the flange 541 is formed, but the plate thickness of the introduction pipe 540 may be increased instead. That is, the outer diameter of the introduction tube 540 may be larger than the inner diameter F of the upstream end portion of the upstream inclined portion 41 of the inner tube 4.
  • FIG. 7 is a diagram showing a schematic configuration of the electrically heated catalyst 1 according to the present embodiment.
  • the electrically heated catalyst 1 shown in FIG. 7 is a cross-sectional view of the electrically heated catalyst 1 cut in the longitudinal direction along the central axis A of the electrically heated catalyst 1. Since the shape of the electrically heated catalyst 1 is symmetrical with respect to the central axis A, only the upper part is shown in FIG. Moreover, since it is the same structure as the electric heating type catalyst 1 shown in FIG. 1, it is abbreviate
  • the surface K (hereinafter referred to as the inner tube extension surface K) when the upstream inclined portion 41 of the inner tube 4 is extended to the central axis A does not contact the introduction tube 54.
  • the upstream inclined portion 41 and the introduction pipe 54 of the inner pipe 4 are formed.
  • the upstream inclined portion 41 and the introduction pipe 54 of the inner pipe 4 may be formed so that the inner pipe extension surface K intersects the surface K obtained by extending the introduction pipe 54 downstream.
  • FIG. 8 is a diagram showing a schematic configuration of the electrically heated catalyst 1 when the inner pipe extension surface K intersects the introduction pipe 54 before reaching the central axis A.
  • the exhaust gas that has flowed into the inner tube 4 and bounced off by the catalyst carrier 3 proceeds along the inner peripheral surface of the upstream inclined portion 41 of the inner tube 4.
  • the exhaust strikes the outer peripheral surface of the introduction pipe 54 and proceeds upstream along the outer peripheral surface of the introduction pipe 54.
  • the exhaust gas rebounds at the upstream inclined portion 51 of the case 5, it easily flows between the inner tube 4 and the case 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

 電気加熱式触媒(1)のケース(5)に電気が流れることを抑制する。通電により発熱する発熱体(3)と、発熱体(3)を収容するケース(5)と、発熱体(3)とケース(5)との間に設けられ電気を絶縁する内管(4)と、発熱体(3)と内管(4)との間に設けられる内側マット(62)と、内管(4)とケース(5)との間に設けられる外側マット(64)と、を備えた電気加熱式触媒(1)において、内管(4)は、発熱体(3)の周りに設けられ該発熱体(3)の中心軸(A)と平行に形成される管状部(42)と、該管状部(42)よりも下流側に設けられ下流側ほど内径が小さくなる下流側傾斜部(43)と、を備え、管状部(42)と下流側傾斜部(43)との境である下流側屈曲部(45)を、外側マット(64)の下流側端部(64A)近傍に設ける。

Description

電気加熱式触媒
 本発明は、電気加熱式触媒に関する。
 二重管の内管よりも内側に電気加熱式触媒を配置する技術が知られている(例えば、特許文献1参照。)。
 また、二重管の内管と外管との間に触媒を設け、該触媒よりも上流側の内管の内径を、上流側ほど小さくする技術が知られている(例えば、特許文献2参照。)。
 また、二重管の内管と外管との間、または内管よりも内側に触媒を設け、該触媒よりも上流側の内管の内径を、上流側ほど小さくする技術が知られている(例えば、特許文献3参照。)。
 また、二重管の内管と外管との間、及び内管よりも内側に触媒を設け、該触媒よりも上流側の内管の内径を、上流側ほど小さくする技術が知られている(例えば、特許文献4参照。)。
 ところで、二重管の内管に排気中の粒子状物質(PM)が付着すると、電気加熱式触媒に通電したときに、該PMを介してケースへ電流が通る虞がある。これを抑制するために、例えば内管とケースとの間にPMが入り難くなるような構造(ラビリンス構造)を採用することが考えられる。しかし、PMの流入を完全に防ぐことは困難である。ここで、内管とケースとの間に付着したPMは、内管の温度を高くすることで酸化させて除去することができる。しかし、上記構造にすると、内管とケースとの間に排気が流れ難くなるため、排気の熱による温度上昇の度合いが小さくなる。このため、内管とケースとの間に付着したPMを除去するのが困難となる。そうすると、PMを介してケースへ電気が流れる虞がある。
特開平08-232647号公報 特開2004-239107号公報 特開2005-127257号公報 特開平11-002117号公報
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、電気加熱式触媒のケースに電気が流れることを抑制することにある。
 上記課題を達成するために本発明による電気加熱式触媒は、
 通電により発熱する発熱体と、
 前記発熱体を収容するケースと、
 前記発熱体と前記ケースとの間に設けられ電気を絶縁する内管と、
 前記発熱体と前記内管との間に設けられ電気を絶縁すると共に前記発熱体を支持し、前記内管よりも排気の流れ方向に短い内側マットと、
 前記内管と前記ケースとの間に設けられ電気を絶縁すると共に前記内管を支持し、前記内管よりも排気の流れ方向に短い外側マットと、
 を備えた電気加熱式触媒において、
 前記内管は、前記発熱体の周りに設けられ該発熱体の中心軸と平行に形成される管状部と、該管状部よりも下流側に設けられ下流側ほど内径が小さくなる下流側傾斜部と、を備え、
 前記管状部と前記下流側傾斜部との境である下流側屈曲部を、前記外側マットの下流側端部近傍に設ける。
 発熱体は、触媒の担体としてもよく、触媒よりも上流側に設けてもよい。発熱体に通電することにより該発熱体が発熱するため、触媒の温度を上昇させることができる。また、内側マット及び外側マットは内管よりも排気の流れ方向に短い。このため、内管は、内側マット及び外側マットから、排気の流れ方向の上流側及び下流側へ向かって突出している。なお、ケースは、二重管の外管としてもよい。
 ここで、内側マット及び外側マット、内管は、それ自体は電気を絶縁することができるが、排気中のPMがそれらの表面に付着すると、該PMを介して電気が流れ得る。これを抑制するために、内管の管状部と下流側傾斜部との境である下流側屈曲部を、外側マットの下流側端部近傍に設ける。すなわち、内管は、外側マットの下流側端部近傍において、内管の中心軸側に向かって屈曲している。このため、発熱体が設けられている箇所よりも下流側において、排気通路の断面積が小さくなる。
 そして、下流側屈曲部よりも下流側の下流側傾斜部には、発熱体を通過した後の温度の高い排気が直接当たるため、該下流側屈曲部よりも下流側の内管の温度は上昇しやすい。この熱は内管を伝わるため、内管全体の温度が上昇する。また、下流側屈曲部よりも下流側の内管に付着したPMは酸化されやすい。ところで、内管の温度が高くなっても、ケース側の温度は低いため、内管の熱がケース側に移動する。このため、内管の温度上昇が緩慢となる虞がある。これに対して、内管の管状部の外周面側に、外側マットを備えている。この外側マットが断熱材となって、内管から熱が奪われることを抑制できる。また、下流側屈曲部よりも下流側では、排気から熱を受けるため温度が上昇しやすいので、外側マットが無くてもPMを酸化させることができる。
 また、排気が発熱体を通過することにより、該排気の乱れや脈動が低減される。これにより、発熱体よりも下流側では、ケースと内管との間にPMが入り難い。
 このように、ケースと内管との間の空間にPMが侵入することを抑制しつつ、内管の温度を高くすることができるため、PMの酸化を促進させることができる。これにより、発熱体とケースとの間に電気が流れることを抑制できる。
 また、本発明においては、前記内管は、前記管状部よりも上流側に設けられ上流側ほど内径が小さくなる上流側傾斜部を備え、
 前記管状部と前記上流側傾斜部との境である上流側屈曲部と、前記外側マットの上流側端部と、を離して設けることができる。
 すなわち、内管は、発熱体よりも上流側においても、内管の中心軸側に向かって屈曲してもよい。ここで、発熱体よりも下流側と異なり、発熱体よりも上流側においては、内管に排気が当たり難い。このため、上流側傾斜部の温度は上昇しにくいので、内管とケースとの間にPMが入ってしまうと、除去するのが困難となる虞がある。これに対し、上流側屈曲部と、外側マットの上流側端部と、を離している。ここで、内管とケースとの間の空間を上流側傾斜部の外周面に沿って流れてきた排気が、上流側屈曲部よりも下流側においても上流側傾斜部の延長方向に直進しようとする。このため、上流側屈曲部と外側マットの上流側端部とを離していると、上流側屈曲部よりも下流側では、上流側傾斜部の延長線上の空間へ向かって排気が進む。すなわち、排気は、管状部から離れて進む。このため、上流側屈曲部よりも下流側の管状部の外周面には排気が直接当たり難くなるため、PMが付着し難くなる。これにより、PMを介して電気が流れることを抑制できる。
 また、ケースと内管との間に排気が流入しても、管状部の外周面にPMが付着することが抑制されるので、該ケースと内管との間に排気を比較的多く流入させることができる。これにより、内管の温度を高くすることができるため、PMの酸化を促進させることができる。なお、上流側屈曲部と、外側マットの上流側端部とは、沿面放電が起こらない所定距離だけ離してもよい。
 また、本発明においては、前記内側マットの上流側端部及び前記発熱体の上流側端部は、前記上流側屈曲部近傍に位置することができる。
 ここで、上流側屈曲部と外側マットの上流側端部との間の管状部の外周面に、PMを全く付着させないことは困難である。これに対し、発熱体の上流側端部が、上流側屈曲部近傍に位置すれば、発熱体から管状部へ熱を供給することができる。このため、上流側屈曲部よりも下流側の管状部の外周面の温度をより高くすることができるため、PMの酸化をより促進させることができる。さらに、内管の温度がより高くなることで、内管とケースとの温度差がより大きくなるので、熱泳動効果によりPMを内管側からケース側に移動させることができる。これにより、管状部の外周面にPMが付着することを抑制できる。
 また、本発明においては、前記内管と、前記発熱体と、を接続して熱を移動させる伝熱部を備えることができる。
 ここで、内側マットが存在することにより、発熱体の熱が内管に伝わり難くなる。これに対して伝熱部を備えると、発熱体の熱を内管により多く供給することができる。これにより、内管の温度をより高くすることができるため、該内管に付着したPMの酸化を促進させることができる。
 また、本発明においては、前記内管は、電気を絶縁する絶縁体を、前記管状部の外周面の表面に備え、前記上流側傾斜部の表面及び前記管状部の内周面の表面には備えなくてもよい。
 絶縁体は、例えば内管の表面にコーティングされる。この絶縁体は電気を絶縁するが、一般に、断熱材効果も高い。このため、絶縁体が備わると、排気から熱を受け難くなる。これに対し、上流側傾斜部には絶縁体を備えていないので、該上流側傾斜部では排気から熱を受けやすい。このため、内管の温度をより高くすることができるので、内管に付着したPMの酸化を促進させることができる。また、管状部では、発熱体から熱を受けることができるため、温度が上昇しやすい。さらに、管状部の外周面には排気が直接当たり難いので、PMが付着し難い。そして、管状部の外周面にのみ絶縁体を備えておけば、該外周面において電気を遮断することができる。
 また、本発明においては、前記ケースの上流側端部の内径は、前記内管の上流側端部の内径よりも小さく、前記ケースの下流側端部の内径は、前記内管の下流側端部の内径よりも大きくてもよい。
 そうすると、発熱体よりも上流側及び下流側において、ケースと内管との間に排気が流入し難くなるので、PMが付着することを抑制できる。
 また、本発明においては、前記ケースは、上流側端部から下流側に向かって延びる導入管を有し、該導入管の内径が前記内管の上流側端部の内径よりも小さく、
 前記導入管の下流側端部は、前記内管の上流側端部よりも上流側に位置し、
 前記導入管の下流側端部の外径が、前記内管の上流側端部の内径よりも大きくてもよい。
 そうすると、導入管を通過した排気が、内管の中心軸側に流入しやすくなる。また、排気が発熱体で跳ね返って逆流したとしても、該排気が導入管に当たることにより、ケースと内管との間に排気が流入することを抑制できる。これにより、ケースと内管との間にPMが付着することを抑制できる。
 また、本発明においては、前記ケースは、上流側端部から下流側に向かって延びる導入管を有し、該導入管の内径が前記内管の上流側端部の内径よりも小さく、
 前記内管の上流側傾斜部を該内管の中心軸まで延長したと仮定したときに、該延長したと仮定した上流側傾斜部が、前記導入管と交差しなくてもよい。
 そうすると、発熱体に当たって跳ね返った排気が、内管の上流側傾斜部に沿って上流側に進んだ後、該上流側傾斜部の延長線上の空間を流れても、導入管の外周面に排気が当たることが抑制される。このため、逆流した排気は、導入管の内側を下流側へ向かって流れる排気によって押し戻されるので、内管とケースとの間に排気が流入することが抑制される。すなわち、内管とケースとの間にPMが付着することを抑制できる。
 本発明によれば、電気加熱式触媒のケースに電気が流れることを抑制することができる。
実施例1に係る電気加熱式触媒の概略構成を示す図である。 実施例2に係る電気加熱式触媒の概略構成を示す図である。 実施例3に係る電気加熱式触媒の概略構成を示す図である。 実施例4に係る電気加熱式触媒の概略構成を示す図である。 実施例5に係る電気加熱式触媒の概略構成を示す図である。 実施例6に係る電気加熱式触媒の概略構成を示す図である。 実施例7に係る電気加熱式触媒の概略構成を示す図である。 内管延長面Kが中心軸Aに到達するまでに導入管と交差する場合の電気加熱式触媒の概略構成を示す図である。
 以下、本発明に係る電気加熱式触媒の具体的な実施態様について図面に基づいて説明する。なお、以下の実施例は、適宜組み合わせることができる。
<実施例1>
 図1は、本実施例に係る電気加熱式触媒1の概略構成を示す図である。なお、本実施例に係る電気加熱式触媒1は、車両に搭載される内燃機関の排気管2に設けられる。内燃機関は、ディーゼル機関であっても、また、ガソリン機関であってもよい。また、電気モータを備えたハイブリッドシステムを採用した車両においても用いることができる。
 図1に示す電気加熱式触媒1は、該電気加熱式触媒1の中心軸Aに沿って該電気加熱式触媒1を縦方向に切断した断面図である。なお、電気加熱式触媒1の形状は、中心軸Aに対して線対称のため、図1では、上側の部分のみを示している。また、図1においてBの矢印は、排気の流れ方向を示している。
 本実施例に係る電気加熱式触媒1は、中心軸Aを中心にした円柱形の触媒担体3を備えている。そして、中心軸A側から順に、触媒担体3、内管4、ケース5が備わる。また、触媒担体3と内管4との間、及び内管4とケース5との間には、マット6が設けられている。
 触媒担体3には、電気抵抗となって、通電により発熱する材質のものが用いられる。触媒担体3の材料には、たとえばSiCが用いられる。触媒担体3は、排気の流れ方向B(中心軸Aの方向としてもよい。)に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路を有している。この通路を排気が流通する。触媒担体3の外形は、たとえば排気管2の中心軸Aを中心とした円柱形である。なお、中心軸Aと直交する断面による触媒担体3の断面形状は、たとえば楕円形であっても良い。中心軸Aは、排気管2、触媒担体3、内管4、及びケース5で共通の中心軸である。なお、本実施例においては触媒担体3が、本発明における発熱体に相当する。なお、発熱体を触媒よりも上流側に備える場合の発熱体においても、本実施例を同様に適用することができる。
 触媒担体3には、触媒が担持される。触媒には、たとえば酸化触媒、三元触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒などを挙げることができる。触媒担体3には、電極7が2本接続されており、該電極7間に電圧をかけることにより触媒担体3に通電される。この触媒担体3の電気抵抗により該触媒担体3が発熱する。
 内管4の材料には、たとえばアルミナのような電気絶縁体を用いることができる。また、内管4は、金属等の電気導電体の表面に電気絶縁体をコーティングしたものであってもよい。内管4は、上流側から順に、上流側傾斜部41、管状部42、下流側傾斜部43を備えて構成されている。上流側傾斜部41は、下流側ほど内径が大きくなるように、中心軸Aに対して傾斜している。上流側傾斜部41の上流側端部は開口しており、該上流側端部を介して内管4の内側へ排気が流入する。また、上流側傾斜部41の下流側端部は、管状部42の上流側端部に接続されている。
 管状部42は、中心軸Aを中心とした管状に形成されている。管状部42は、中心軸Aと平行な面からなる。管状部42の下流側端部は、下流側傾斜部43の上流側端部に接続されている。下流側傾斜部43は、下流側ほど内径が小さくなるように、中心軸Aに対して傾斜している。下流側傾斜部43の下流側端部は開口しており、内管4の内側から下流側端部を介して排気が流出する。なお、管状部42は、電極7よりも上流側と下流側とで分割されていてもよい。また、電極7と管状部42とには、放電が起こらないように、ある程度の間隔が設けられる。
 なお、上流側傾斜部41と管状部42との境は、内管4が折れ曲がる箇所であり、以下、上流側屈曲部44と称する。また、管状部42と下流側傾斜部43との境も、内管4が折れ曲がる箇所であり、以下、下流側屈曲部45と称する。
 ケース5の材料には、金属が用いられ、たとえばステンレス鋼材を用いることができる。このケース5は、二重管の外管としてもよい。そして、電極7を通すために、ケース5には孔が開けられており、ケース5と電極7とは、放電が起こらないように、ある程度の間隔が設けられる。そして、ケース5に開けられている孔には、電極7を支持する絶縁部8が設けられている。この絶縁部8の材料には、電気絶縁体が用いられる。そして、絶縁部8は、ケース5と電極7との間に隙間なく設けられる。
 ケース5は、上流側から順に、上流側傾斜部51、管状部52、下流側傾斜部53を備えて構成されている。上流側傾斜部51は、下流側ほど内径が大きくなるように、中心軸Aに対して傾斜している。上流側傾斜部51の上流側端部は開口しており、該上流側端部を介してケース5の内側へ排気が流入する。また、上流側傾斜部51の下流側端部は、管状部52の上流側端部に接続されている。
 管状部52は、中心軸Aを中心とした管状に形成されている。管状部52は、中心軸Aと平行な面からなる。管状部52の下流側端部は、下流側傾斜部53の上流側端部に接続されている。下流側傾斜部53は、下流側ほど内径が小さくなるように、中心軸Aに対して傾斜している。下流側傾斜部53の下流側端部は開口しており、ケース5の内側から下流側端部を介して排気管2へ排気が流出する。
 ケース5の上流側端部及び下流側端部には、フランジが形成されており、排気管2と接続される。また、ケース5の上流側端部から下流側へ向かって、導入管54が形成されている。導入管54は、中心軸Aを中心とした管状に形成され、内管4の上流側端部よりも上流側の範囲で中心軸Aと平行に延びている。導入管54の内径は、ケース5の上流側傾斜部51の上流側端部の内径と等しい。
 マット6には、電気絶縁体が用いられ、たとえばアルミナを主成分とするセラミックファイバーが用いられる。マット6は、触媒担体3の外周面及び内管4の管状部42の外周面に巻きつけられる。マット6は、触媒担体3の外周面(中心軸Aと平行な面)を覆っているため、触媒担体3に通電したときに、内管4及びケース5へ電気が流れることを抑制している。
 マット6は、内管4の管状部42と触媒担体3との間に設けられる内側マット61,62と、ケース5の管状部52と内管4の管状部42との間に設けられる外側マット63,64と、からなる。また、内側マット61,62は、電極7よりも上流側の内側マット61と、電極7よりも下流側の内側マット62と、からなる。さらに、外側マット63,64は、電極7よりも上流側の外側マット63と、電極7よりも下流側の外側マット64と、からなる。
 触媒担体3に内側マット61,62を巻きつけたときの該内側マット61,62の外径は、内管4の内径よりも大きい。このため、内管4内に内側マット61,62を収容するときには、該内側マット61,62が圧縮されるため、該内側マット61,62の反発力により内管4内に触媒担体3が固定される。
 また、内管4に外側マット63,64を巻きつけたときの該外側マット63,64の外径は、ケース5の内径よりも大きい。このため、ケース5内に外側マット63,64を収容するときには、該外側マット63,64が圧縮されるため、該外側マット63,64の反発力によりケース5内に内管4が固定される。そして、内管4は、マット6から上流側及び下流側に突出している。
 なお、本実施例では、内側マット61,62及び外側マット63,64が、電極7よりも上流側と下流側とで分かれているものとして説明するが、これらは、電極7の周り以外において上流側と下流側とで一体となっていてもよい。
 ここで、内管4が上流側傾斜部41を備えることにより、内管4とケース5との間に内燃機関の排気が入り難くなっている。しかし、内管4とケース5との間に内燃機関の排気が全く入らないと、内管4の温度上昇が緩慢となり、内管4に付着したPMを酸化することが困難となる。一方、内管4の温度を高くするために、内管4とケース5との間に多くの排気が流入するように内管4を形成すると、内管4とケース5との間にPMが付着する虞がある。そして、マット6及び内管4に付着しているPMの量が多くなると、該PMを介して電気が流れ得る。
 これに対して本実施例では、外側マット63の上流側端部63Aと、上流側屈曲部44とを、所定距離Cだけ離している。すなわち、外側マット63の上流側端部63Aよりも上流側では、内管4の管状部42の外周面が露出している。
 ここで、内管4とケース5との間に流入した排気は、上流側傾斜部41に沿って流れる。この排気は、上流側屈曲部44においても、上流側傾斜部41の延長線の方向へ進もうとする。このため、排気の流れは、内管4の管状部42の外周面から離れる。そうすると、上流側屈曲部44よりも下流側で且つ外側マット63の上流側端部63Aよりも上流側の内管4の管状部42の外周面には、排気が直接当たらない。このように、排気が直接当たらないことにより、この箇所にはPMが付着し難くなる。すなわち、外側マット63の上流側端部63Aと、上流側屈曲部44と、を所定距離Cだけ離すことにより、この間の内管4の外周面にPMが付着することを抑制できる。なお、所定距離Cは、例えば、上流側屈曲部44と外側マット63の上流側端部63Aとの間の沿面放電を抑制し得る距離であり、最適値を実験等により求めてもよい。
 そして、内管4の上流側傾斜部41にPMが付着しても、内管4の管状部42の外周面にPMが付着していなければ、触媒担体3とケース5との間にPMを介して電気が流れることを抑制できる。すなわち、内管4の少なくとも表面は電気絶縁体であるため、PMが付着していなければ、電気は流れない。また、本実施例では、内管4とケース5との間に排気が流入するような構成としても、内管4の管状部42にPMが付着することを抑制できる。このため、内管4とケース5との間に排気を流入させて、内管4の温度を上昇させることもできる。これにより、PMの酸化を促進させることができる。
 一方、本実施例では、外側マット64の下流側端部64Aが、下流側屈曲部45まで延びている。すなわち、外側マット64の下流側端部64Aは、下流側屈曲部45の近傍に位置する。このため、外側マット64は、内側マット62よりも、所定距離Dだけ下流側に長くなっている。
 ここで、仮に、外側マット63の上流側端部63Aの場合と同様に、外側マット64の下流側端部64Aと、下流側屈曲部45との間に間隔を設けると、内管4の露出している箇所の面積が大きくなる。そうすると、内管4の温度が低下する虞がある。すなわち、触媒担体3よりも下流側では、触媒担体3において加熱された比較的温度の高い排気が流通し、しかも、下流側傾斜部43に排気が直接当たるため、内管4の温度が比較的高くなる。
 一方、ケース5は外気と接しているため、比較的温度が低い。このため、内管4からケース5へ熱が移動して、内管4の温度が低下する虞がある。ここで、アルミナを主成分とするセラミックファイバーからなるマット6は、セラミックファイバー自体が熱を伝え難く、且つ、マット6内に多くの気体を含んでいるため、断熱性が高い。すなわち、外側マット64の下流側端部64Aを下流側屈曲部45まで延ばすことにより、外側マット64が断熱材となる。これにより、内管4の管状部42の外周面からケース5へ熱が移動することを抑制できる。
 なお、内燃機関の排気が触媒担体3を通過することにより、排気の乱れや脈動が大幅に低減する。このため、触媒担体3よりも下流側では、内管4とケース5との間に排気が流入し難ので、内管4とケース5との間にPMが付着し難い。したがって、下流側屈曲部45の周辺では、内管4の管状部42の外周面を露出させる必要がない。
 なお、内側マット61の上流側端面と、触媒担体3の上流側端面とは、同一平面上にあるか、比較的近い距離に設定される。また、内側マット62の下流側端面と、触媒担体3の下流側端面とは、同一平面上にあるか、比較的近い距離に設定される。
 以上説明したように本実施例においては、外側マット63の上流側端部63Aと、上流側屈曲部44とを所定距離Cだけ離しているので、外側マット63の上流側端部63Aよりも上流側において、内管4の管状部42の外周面にPMが付着することを抑制できる。これにより、PMを介して電気が流れることを抑制できる。また、内管4の上流側傾斜部41と、ケース5の上流側傾斜部51との間に、排気を流すことができるため、内管4の温度を高めることができるので、PMの酸化を促進させることができる。
 また、外側マット64の下流側端部64Aと、下流側屈曲部45とを近付けることにより、内管4の管状部42からケース5へ熱が移動することを抑制できる。これにより、内管4の温度を高く保つことができるので、該内管4に付着したPMの酸化を促進させることができる。これにより、PMを介して電気が流れることを抑制できる。
<実施例2>
 図2は、本実施例に係る電気加熱式触媒10の概略構成を示す図である。図2に示す電気加熱式触媒10は、該電気加熱式触媒10の中心軸Aに沿って該電気加熱式触媒10を縦方向に切断した断面図である。なお、電気加熱式触媒10の形状は、中心軸Aに対して線対称のため、図2では、上側の部分のみを示している。
 本実施例では、触媒担体30及び内側マット610の形状が、実施例1と異なるため、この点について説明する。本実施例では、内側マット610の上流側端部610A及び触媒担体30の上流側端部30Aが、実施例1の場合よりも上流側に延びている。そして、内側マット610の上流側端部610A及び触媒担体30の上流側端部30Aが、中心軸Aと直交し且つ上流側屈曲部44を含む平面上またはその近傍に位置する。これにより、内側マット610及び触媒担体30を、内管4の上流側傾斜部41に近付けている。
 このように構成された電気加熱式触媒10では、触媒担体30よりも上流側から流れてきた排気の一部が、該触媒担体30で跳ね返ったときに、排気が内管4の上流側傾斜部41に当たりやすくなる。これにより、内燃機関の低温始動時において、内管4の上流側傾斜部41の温度を速やかに上昇させることができる。そうすると、熱泳動効果により、内管4の外周面にPMが付着することを抑制できる。
 また、内管4の管状部42の外周面であって露出している箇所に、内管4の内側から触媒担体30により熱を供給することができる。これにより、内管4の管状部42の外周面であって露出している箇所にPMが付着したとしても、速やかに酸化させることができる。これにより、PMを介して電気が流れることを抑制できる。
 また、内管4において露出している面積を小さくすることができるので、排気から内管4に移動する熱が少なくなる。このため、触媒担体30に流入する排気の温度を高めることができる。これにより、触媒担体30の温度を速やかに高めることができる。
<実施例3>
 図3は、本実施例に係る電気加熱式触媒11の概略構成を示す図である。図3に示す電気加熱式触媒11は、該電気加熱式触媒11の中心軸Aに沿って該電気加熱式触媒11を縦方向に切断した断面図である。なお、電気加熱式触媒11の形状は、中心軸Aに対して線対称のため、図3では、上側の部分のみを示している。また、図3に示した箇所よりも下流側は、図1に示した電気加熱式触媒1と同じ構造のため省略している。
 本実施例では、内側マット61よりも上流側の内管4の内周面と、触媒担体3との外周面と、を接続する伝熱部90を備えている。この伝熱部90は、熱伝導率が比較的高い例えば金属からなる。
 ここで、内側マット61に例えばセラミックファイバーを採用することで、触媒担体3の破損を抑制しつつ支持することができる。また、内側マット61の断熱効果により触媒担体3の温度低下を抑制できる。しかし、内側マット61が存在することにより、触媒担体3の熱を内管4に伝え難くなる。
 これに対し、本実施例に係る電気加熱式触媒11では、触媒担体3から内管4へ伝熱部90を介して熱を供給することができる。この熱により、内管4の温度を高くすることができる。したがって、内管4に付着したPMの酸化を促進させることができるので、PMを介して電気が流れることを抑制できる。なお、伝熱部90は、触媒担体3の外周面よりも中心軸A側に接続されていてもよい。また、伝熱部90は、内管4の上流側傾斜部41に接続されていてもよい。
<実施例4>
 図4は、本実施例に係る電気加熱式触媒12の概略構成を示す図である。図4に示す電気加熱式触媒12は、該電気加熱式触媒12の中心軸Aに沿って該電気加熱式触媒12を縦方向に切断した断面図である。なお、電気加熱式触媒12の形状は、中心軸Aに対して線対称のため、図4では、上側の部分のみを示している。また、図4に示した箇所よりも下流側は、図1に示した電気加熱式触媒1と同じ構造のため省略している。
 ここで、本実施例では、金属製の内管4を採用している。そして、内管4の管状部42の外周面にのみ絶縁層91を設けている。この絶縁層91は、電気絶縁体からなる。すなわち、内管4の上流側傾斜部41の表面や、内管4の管状部42の内周面には、絶縁層91を設けていない。この絶縁層91を設けた箇所では、表面に電気が流れることを抑制し得る。しかし、絶縁層91の表面にPMが付着すると、該PMを介して電気が流れ得る。一方、絶縁層91を設けていない箇所では、表面にPMが付着しなくても電気が流れ得る。
 絶縁層91は、電気を絶縁するが、このような材料は一般に、断熱効果も高い。したがって、絶縁層91を設けた箇所においては、外部から熱を受け難くなるため、温度が上昇し難くなる。これに対し本実施例では、内管4の管状部42の外周面にのみ絶縁層91を設けている。そうすると、内管4の他の箇所においては、排気または触媒担体3から熱を受けやすくなるため、温度が上昇し易くなる。このように、内管4の温度が上昇し易くなるので、内管4に付着するPMの酸化を促進させることができる。また、絶縁層91の面積を小さくすることで、製造コストを低下させることができる。
 また、内管4の管状部42の外周面には排気が直接当たらないため、例え絶縁層91を設けなくても排気から熱を受け難い。したがって、内管4の管状部42の外周面に絶縁層91を設けても、内管4の温度には、ほとんど影響がない。そして、この箇所において絶縁層91を設けておけば、ケース5へ電気が流れることを抑制できる。
<実施例5>
 図5は、本実施例に係る電気加熱式触媒1の概略構成を示す図である。図5に示す電気加熱式触媒1は、該電気加熱式触媒1の中心軸Aに沿って該電気加熱式触媒12を縦方向に切断した断面図である。
 ここで、本実施例に係る電気加熱式触媒1では、導入管54の内径Eが、内管4の上流側傾斜部41の上流側端部の内径Fよりも小さくなるように形成されている。また、導入管54の下流側端部は、内管4の上流側傾斜部41の上流側端部よりも上流側に位置する。
 このように構成された電気加熱式触媒1では、導入管54を通過する排気が、内管4の内側に流入しやすくなる。これにより、触媒担体3よりも上流側において、内管4とケース5との間に排気が流入することを抑制できるため、該内管4とケース5との間にPMが付着することを抑制できる。これにより、ケース5へ電気が流れることを抑制できる。
 また、本実施例に係る電気加熱式触媒1では、内管4の下流側傾斜部43の下流側端部の内径Gが、ケース5の下流側傾斜部53の下流側端部の内径Hよりも小さくなるように形成されている。また、内管4の下流側傾斜部43の下流側端部は、ケース5の下流側傾斜部53の下流側端部よりも上流側に位置する。
 このように構成された電気加熱式触媒1では、内管4の内側から流出する排気が、ケース5の下流側傾斜部53の下流側端部から排出され易くなる。これにより、触媒担体3よりも下流側において、内管4とケース5との間に排気が流入することを抑制できるため、該内管4とケース5との間にPMが付着することを抑制できる。これにより、ケース5へ電気が流れることを抑制できる。
 なお、内管4とケース5との距離は、触媒担体3に通電したときに放電が起こることを抑制できる距離として設定される。この距離は、実験等により得ることができる。
<実施例6>
 図6は、本実施例に係る電気加熱式触媒13の概略構成を示す図である。図6に示す電気加熱式触媒13は、該電気加熱式触媒13の中心軸Aに沿って該電気加熱式触媒13を縦方向に切断した断面図である。なお、電気加熱式触媒13の形状は、中心軸Aに対して線対称のため、図6では、上側の部分のみを示している。また、図6に示した箇所よりも下流側では、図1に示した電気加熱式触媒1と同じ構造のため省略している。
 本実施例では、導入管540の下流側端部において、該導入管540の外側へ直角に折れ曲がるフランジ541が設けられている。このフランジ541の内径は導入管540の内径Eと等しい。そして、本実施例では、この導入管540の内径Eが、内管4の上流側傾斜部41の上流側端部の内径Fよりも小さくなるように形成されている。また、導入管540の下流側端部は、内管4の上流側傾斜部41の上流側端部よりも上流側に位置する。さらに、フランジ541の外径Jが、内管4の上流側傾斜部41の上流側端部の内径Fよりも大きくなるように形成されている。
 このように構成された電気加熱式触媒13では、導入管540を通過する排気が、内管4の内側に流入しやすくなる。さらに、触媒担体3に当たった後に逆流する排気が内管4から上流側に流出しても、該排気はフランジ541に当たる。仮にフランジ541が存在しない場合には、逆流する排気が導入管540の外周面に沿って進んだ後にケース50の上流側傾斜部51で跳ね返って、内管4とケース50との間に流入する虞がある。これに対し、フランジ541に排気が当たることにより、内管4とケース50との間に排気が流入し難くなる。これにより、内管4とケース50との間にPMが付着することを抑制できる。
 なお、本実施例では、フランジ541を形成しているが、これに代えて、導入管540の板厚を大きくしてもよい。すなわち、導入管540の外径が、内管4の上流側傾斜部41の上流側端部の内径Fよりも大きくなるようにしてもよい。
<実施例7>
 図7は、本実施例に係る電気加熱式触媒1の概略構成を示す図である。図7に示す電気加熱式触媒1は、該電気加熱式触媒1の中心軸Aに沿って該電気加熱式触媒1を縦方向に切断した断面図である。なお、電気加熱式触媒1の形状は、中心軸Aに対して線対称のため、図7では、上側の部分のみを示している。また、図7に示した箇所よりも下流側では、図1に示した電気加熱式触媒1と同じ構造のため省略している。
 ここで本実施例では、内管4の上流側傾斜部41を中心軸Aまで延長したと仮定したときの面K(以下、内管延長面Kという。)が、導入管54と接しないように内管4の上流側傾斜部41及び導入管54を形成している。これは、内管延長面Kが、導入管54を下流側に延長した面Kと交差するように、内管4の上流側傾斜部41及び導入管54を形成しているとしてもよい。
 ここで、図8は、内管延長面Kが中心軸Aに到達するまでに導入管54と交差する場合の電気加熱式触媒1の概略構成を示す図である。このように構成された電気加熱式触媒1では、内管4に流入して触媒担体3で跳ね返った排気が、内管4の上流側傾斜部41の内周面に沿って進行する。この排気は、導入管54の外周面に当たって、該導入管54の外周面に沿って上流側に進む。この排気が、ケース5の上流側傾斜部51で跳ね返ると、内管4とケース5との間に流入しやすくなる。
 一方、図7に示したように、本実施例に係る電気加熱式触媒1では、内管4の上流側傾斜部41の内周面に沿って進む排気は、導入管54の外周面には当たらずに、該導入管54の内側へ向かって進む。この排気は、新たにケース5内に流入する排気に押されて下流側へ戻される。このため、内管4とケース5との間に排気が流入することを抑制できるので、該内管4とケース5との間にPMが付着することを抑制できる。
1     電気加熱式触媒
2     排気管
3     触媒担体
4     内管
5     ケース
6     マット
7     電極
8     絶縁部
41   上流側傾斜部
42   管状部
43   下流側傾斜部
44   上流側屈曲部
45   下流側屈曲部
51   上流側傾斜部
52   管状部
53   下流側傾斜部
54   導入管
61   内側マット
62   内側マット
63   外側マット
63A 上流側端部
64   外側マット
64A 下流側端部

Claims (8)

  1.  通電により発熱する発熱体と、
     前記発熱体を収容するケースと、
     前記発熱体と前記ケースとの間に設けられ電気を絶縁する内管と、
     前記発熱体と前記内管との間に設けられ電気を絶縁すると共に前記発熱体を支持し、前記内管よりも排気の流れ方向に短い内側マットと、
     前記内管と前記ケースとの間に設けられ電気を絶縁すると共に前記内管を支持し、前記内管よりも排気の流れ方向に短い外側マットと、
     を備えた電気加熱式触媒において、
     前記内管は、前記発熱体の周りに設けられ該発熱体の中心軸と平行に形成される管状部と、該管状部よりも下流側に設けられ下流側ほど内径が小さくなる下流側傾斜部と、を備え、
     前記管状部と前記下流側傾斜部との境である下流側屈曲部を、前記外側マットの下流側端部近傍に設ける電気加熱式触媒。
  2.  前記内管は、前記管状部よりも上流側に設けられ上流側ほど内径が小さくなる上流側傾斜部を備え、
     前記管状部と前記上流側傾斜部との境である上流側屈曲部と、前記外側マットの上流側端部と、を離して設ける請求項1に記載の電気加熱式触媒。
  3.  前記内側マットの上流側端部及び前記発熱体の上流側端部は、前記上流側屈曲部近傍に位置する請求項2に記載の電気加熱式触媒。
  4.  前記内管と、前記発熱体と、を接続して熱を移動させる伝熱部を備える請求項2に記載の電気加熱式触媒。
  5.  前記内管は、電気を絶縁する絶縁体を、前記管状部の外周面の表面に備え、前記上流側傾斜部の表面及び前記管状部の内周面の表面には備えない請求項2から4の何れか1項に記載の電気加熱式触媒。
  6.  前記ケースの上流側端部の内径は、前記内管の上流側端部の内径よりも小さく、前記ケースの下流側端部の内径は、前記内管の下流側端部の内径よりも大きい請求項1から5の何れか1項に記載の電気加熱式触媒。
  7.  前記ケースは、上流側端部から下流側に向かって延びる導入管を有し、該導入管の内径が前記内管の上流側端部の内径よりも小さく、
     前記導入管の下流側端部は、前記内管の上流側端部よりも上流側に位置し、
     前記導入管の下流側端部の外径が、前記内管の上流側端部の内径よりも大きい請求項1から6の何れか1項に記載の電気加熱式触媒。
  8.  前記ケースは、上流側端部から下流側に向かって延びる導入管を有し、該導入管の内径が前記内管の上流側端部の内径よりも小さく、
     前記内管の上流側傾斜部を該内管の中心軸まで延長したと仮定したときに、該延長したと仮定した上流側傾斜部が、前記導入管と交差しない請求項1から7の何れか1項に記載の電気加熱式触媒。
PCT/JP2011/073936 2011-10-18 2011-10-18 電気加熱式触媒 WO2013057792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/345,502 US9181833B2 (en) 2011-10-18 2011-10-18 Electrically heated catalyst
CN201180073486.6A CN103874834A (zh) 2011-10-18 2011-10-18 电加热式催化剂
PCT/JP2011/073936 WO2013057792A1 (ja) 2011-10-18 2011-10-18 電気加熱式触媒
JP2013539438A JP5761362B2 (ja) 2011-10-18 2011-10-18 電気加熱式触媒
EP11874411.9A EP2770177B1 (en) 2011-10-18 2011-10-18 Electrically heated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073936 WO2013057792A1 (ja) 2011-10-18 2011-10-18 電気加熱式触媒

Publications (1)

Publication Number Publication Date
WO2013057792A1 true WO2013057792A1 (ja) 2013-04-25

Family

ID=48140469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073936 WO2013057792A1 (ja) 2011-10-18 2011-10-18 電気加熱式触媒

Country Status (5)

Country Link
US (1) US9181833B2 (ja)
EP (1) EP2770177B1 (ja)
JP (1) JP5761362B2 (ja)
CN (1) CN103874834A (ja)
WO (1) WO2013057792A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086783A (ja) * 2013-10-30 2015-05-07 トヨタ自動車株式会社 触媒コンバータ装置
JP2016084777A (ja) * 2014-10-28 2016-05-19 イビデン株式会社 電気加熱式触媒コンバータ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408865B2 (ja) * 2014-10-28 2018-10-17 イビデン株式会社 電気加熱式触媒コンバータ
JP6747466B2 (ja) * 2018-03-15 2020-08-26 株式会社デンソー 電気加熱式触媒
JP7159465B2 (ja) * 2019-05-22 2022-10-24 日産自動車株式会社 触媒コンバータ
JP7363725B2 (ja) * 2020-09-18 2023-10-18 トヨタ自動車株式会社 触媒装置
JP2023153607A (ja) * 2022-04-05 2023-10-18 トヨタ自動車株式会社 触媒装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296034A (ja) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd 排気浄化用触媒コンバータ
JPH0596424U (ja) * 1992-05-27 1993-12-27 カルソニック株式会社 電熱触媒担体の電極取付構造
JPH062533A (ja) * 1992-06-19 1994-01-11 Mazda Motor Corp 排気ガス浄化装置
JPH08232647A (ja) 1995-02-23 1996-09-10 Mitsubishi Motors Corp 電気加熱触媒装置
JPH112117A (ja) 1997-06-12 1999-01-06 Suzuki Motor Corp 排気ガス浄化装置
JP2004239107A (ja) 2003-02-04 2004-08-26 Toyota Motor Corp 気流制御装置
JP2005127257A (ja) 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011125767A (ja) * 2009-12-15 2011-06-30 Toyota Motor Corp 触媒コンバータ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999168A (en) * 1989-05-01 1991-03-12 The Carborundum Company Crack resistant intumescent sheet material
US5070694A (en) * 1990-10-31 1991-12-10 W. R. Grace & Co. -Conn. Structure for electrically heatable catalytic core
US20050036923A1 (en) * 2003-07-31 2005-02-17 Brisbin Ronald S. End cone construction for catalytic converters and method for making same
GB0507326D0 (en) * 2005-04-12 2005-05-18 Delphi Tech Inc Catalytic converter apparatus and method
KR101200893B1 (ko) * 2010-03-29 2012-11-13 도요타 지도샤(주) 촉매 컨버터 장치
US8911674B2 (en) 2010-09-10 2014-12-16 Toyota Jidosha Kabushiki Kaisha Electrically heated catalyst
WO2012120680A1 (ja) 2011-03-10 2012-09-13 トヨタ自動車株式会社 内燃機関の排気浄化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296034A (ja) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd 排気浄化用触媒コンバータ
JPH0596424U (ja) * 1992-05-27 1993-12-27 カルソニック株式会社 電熱触媒担体の電極取付構造
JPH062533A (ja) * 1992-06-19 1994-01-11 Mazda Motor Corp 排気ガス浄化装置
JPH08232647A (ja) 1995-02-23 1996-09-10 Mitsubishi Motors Corp 電気加熱触媒装置
JPH112117A (ja) 1997-06-12 1999-01-06 Suzuki Motor Corp 排気ガス浄化装置
JP2004239107A (ja) 2003-02-04 2004-08-26 Toyota Motor Corp 気流制御装置
JP2005127257A (ja) 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011125767A (ja) * 2009-12-15 2011-06-30 Toyota Motor Corp 触媒コンバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770177A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086783A (ja) * 2013-10-30 2015-05-07 トヨタ自動車株式会社 触媒コンバータ装置
JP2016084777A (ja) * 2014-10-28 2016-05-19 イビデン株式会社 電気加熱式触媒コンバータ

Also Published As

Publication number Publication date
EP2770177A4 (en) 2015-03-18
EP2770177A1 (en) 2014-08-27
US9181833B2 (en) 2015-11-10
JPWO2013057792A1 (ja) 2015-04-02
US20140216019A1 (en) 2014-08-07
JP5761362B2 (ja) 2015-08-12
CN103874834A (zh) 2014-06-18
EP2770177B1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5761362B2 (ja) 電気加熱式触媒
JP5418680B2 (ja) 電気加熱式触媒
JP5093367B2 (ja) 電気加熱式触媒及びその製造方法
US9039981B2 (en) Exhaust gas purification apparatus of an internal combustion engine
JP2013185573A (ja) 電気加熱式触媒
JP5263456B2 (ja) 電気加熱式触媒
JP5626371B2 (ja) 電気加熱式触媒
JP5664670B2 (ja) 電気加熱式触媒
JP5673683B2 (ja) 電気加熱式触媒
CN103442788A (zh) 电加热催化剂
JP5655857B2 (ja) 電気加熱式触媒
JP2011220323A (ja) 電気加熱式触媒
CN116892438A (zh) 催化剂装置
WO2012111107A1 (ja) 電気加熱式触媒
JP5397550B2 (ja) 電気加熱式触媒
JP5472468B2 (ja) 電気加熱式触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539438

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011874411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14345502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE