WO2013056659A1 - 直放站 - Google Patents

直放站 Download PDF

Info

Publication number
WO2013056659A1
WO2013056659A1 PCT/CN2012/083147 CN2012083147W WO2013056659A1 WO 2013056659 A1 WO2013056659 A1 WO 2013056659A1 CN 2012083147 W CN2012083147 W CN 2012083147W WO 2013056659 A1 WO2013056659 A1 WO 2013056659A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
downlink
remote
uplink
Prior art date
Application number
PCT/CN2012/083147
Other languages
English (en)
French (fr)
Inventor
龚兰平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US13/870,093 priority Critical patent/US8787763B2/en
Publication of WO2013056659A1 publication Critical patent/WO2013056659A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and in particular, to a repeater.
  • BACKGROUND OF THE INVENTION In a conventional repeater, the retransmission antenna is separated from the repeater remote unit, and a reasonable position is required to install the retransmission antenna and the repeater remote unit.
  • the embodiment of the present invention provides a repeater for improving the efficiency and accuracy of adjusting the downtilt and/or azimuth.
  • the embodiment of the present invention provides a repeater, including a near end machine and a remote end machine;
  • the near-end machine includes: a base station interface unit, a plurality of near-end base units connected to the base station interface unit, and a controller connected to the plurality of near-end base units;
  • the remote device includes: a plurality of remote basic units, wherein the plurality of remote basic units are arranged in an array, and the plurality of remote basic units are in one-to-one correspondence with the plurality of proximal basic units;
  • the base station interface unit is configured to receive a downlink signal sent by the base station, and send the downlink signal to the multiple near-end basic units;
  • the controller is configured to generate a downlink signal phase of each remote base unit according to a downtilt angle and/or an azimuth angle of the downlink signal indicated by the control instruction;
  • the plurality of near-end basic units are respectively configured to perform phase adjustment on the uplink signal according to an uplink signal phase of a corresponding remote base unit generated by the controller, or according to a downlink signal of the corresponding remote base unit Phase Bit, performing phase adjustment on the downlink signal sent by the base station interface unit, and transmitting the phase adjusted downlink signal to the corresponding remote base unit;
  • the plurality of remote base units are respectively configured to receive downlink signals sent by the corresponding near-end basic unit, and send the downlink signals;
  • the plurality of remote base units are respectively configured to receive downlink signals sent by the corresponding near-end basic unit, and send the downlink signals;
  • the plurality of remote base units are further configured to receive an uplink signal and send the uplink signal to a corresponding near-end base unit, where the controller is configured to generate, according to a downtilt angle and/or an azimuth angle of the uplink signal indicated by the control instruction.
  • the plurality of near-end basic units are further configured to perform phase adjustment on an uplink signal sent by the corresponding remote base unit according to an uplink signal phase of a corresponding remote base unit generated by the controller, and The phase adjusted uplink signal is sent to the base station interface unit;
  • the base station interface unit is further configured to send an uplink signal sent by the multiple proximal base units to a base station.
  • each of the plurality of near-end basic units includes: a baseband processing module, a downlink parameter setting module, a frequency conversion module, and a first medium conversion module that are sequentially connected;
  • the baseband processing module is connected to the base station interface unit, and configured to perform baseband processing on the downlink signal sent by the base station interface unit;
  • the downlink parameter setting module is connected to the controller, and is configured to perform phase adjustment on the downlink signal after the baseband processing according to the downlink signal phase of the remote basic unit corresponding to the near-end basic unit that is generated by the controller;
  • the frequency conversion module is configured to convert the phase adjusted downlink signal into a radio frequency format;
  • the first medium conversion module is configured to perform media conversion on a downlink signal in a radio frequency format, and send the signal to a remote basic unit corresponding to the near-end basic unit.
  • each of the near-end basic units further includes: an uplink parameter setting module, and is connected to the baseband processing module and the frequency conversion module;
  • the first medium conversion module is further configured to: receive an uplink signal sent by a remote basic unit corresponding to the near-end basic unit, and perform media conversion on the uplink signal;
  • the frequency conversion module is further configured to convert the converted uplink signal into a baseband format
  • the uplink parameter setting module is connected to the controller, and is configured to perform phase adjustment on an uplink signal in a baseband format according to an uplink signal phase of a remote basic unit corresponding to the near-end basic unit that is generated by the controller;
  • Baseband processing module for performing baseband processing on the phase-adjusted uplink signal, and processing the baseband
  • the uplink signal is sent to the base station interface unit.
  • each of the plurality of near-end basic units includes multiple baseband processing modules, multiple downlink parameter setting modules, and multiple baseband processing modules and multiple downlink parameters.
  • the setting module is in one-to-one correspondence with the plurality of carriers, each of the plurality of proximal base units further comprising a first multi-carrier module and a second multi-carrier module, the plurality of baseband processing units and the base station interface
  • the unit is connected by the first multi-carrier module, and the plurality of downlink parameter setting modules and the frequency conversion module are connected by the second multi-carrier module;
  • the controller is specifically configured to generate, according to a downtilt angle and/or an azimuth angle of a downlink signal of each carrier indicated by the control instruction, a downlink signal phase of each carrier of each remote base unit;
  • the first multi-carrier module is configured to receive a downlink signal sent by the base station interface unit, perform carrier separation on the downlink signal, and obtain a downlink component signal of each carrier;
  • the plurality of baseband processing modules are configured to perform baseband processing on the downlink sub-signals of the corresponding carriers, and send the downlink sub-signals of the corresponding carriers after the baseband processing to the corresponding downlink parameter setting module;
  • the plurality of downlink parameter setting modules are respectively configured to perform, according to the downlink signal phase of each carrier of the remote base unit corresponding to the near-end basic unit that is generated by the controller, perform downlink downlink signal of the corresponding carrier after the baseband processing Phase adjustment
  • the second multi-carrier module is configured to perform carrier combining on the downlink sub-signals of the phase-adjusted carriers;
  • the frequency conversion module is specifically configured to convert the signals after the carrier combining into a radio frequency format;
  • the first medium conversion module is specifically configured to perform media conversion on a signal in a radio frequency format and send the signal to a remote basic unit corresponding to the near-end basic unit.
  • each of the plurality of near-end basic units further includes a plurality of uplink parameter setting modules, and the plurality of uplink parameter setting modules are in one-to-one correspondence with the plurality of carriers, and the plurality of uplink parameter setting modules and The frequency conversion module is connected by the second multi-carrier module;
  • the controller is further configured to generate, according to a downtilt angle and/or an azimuth angle of an uplink signal of each carrier indicated by the control instruction, an uplink signal phase of each carrier of each remote base unit;
  • the first medium conversion module is further configured to: receive an uplink signal sent by a remote basic unit corresponding to the near-end basic unit, and perform media conversion;
  • the frequency conversion module is further configured to convert the converted uplink signal into a baseband format
  • the second multi-carrier module is further configured to: perform carrier separation in an uplink signal in a baseband manner to obtain an uplink component signal of each carrier;
  • the plurality of uplink parameter setting modules are respectively configured to belong to the near-end basic unit pair generated by the controller
  • the uplink signal phase of each carrier of the remote base unit is subjected to phase adjustment of the uplink component signal of the corresponding carrier, and the uplink component signal of the phase-adjusted corresponding carrier is sent to the corresponding baseband processing module;
  • the plurality of baseband processing modules are further configured to perform baseband processing on the uplink component signals of the phase-adjusted corresponding carriers, respectively;
  • the first multi-carrier module is configured to perform carrier combining on the uplink sub-signals of each carrier after the baseband processing, and send the signals to the base station interface unit.
  • the near-end machine further includes: a first downlink calibration unit connected to the plurality of proximal base units; the remote machine further includes: and the plurality of remote base units and the a second downlink calibration unit connected to a downlink calibration unit;
  • the first downlink calibration unit is configured to generate a first calibration signal, and send the first calibration signal to the plurality of remote base units;
  • the plurality of remote base units are further configured to process the first calibration signal
  • the second downlink calibration unit is configured to send the first calibration signal processed by each remote base unit to the first downlink calibration unit;
  • the first downlink calibration unit is further configured to generate downlink calibration of each remote base unit according to the generated first calibration signal and the first calibration signal processed by each remote base unit returned by the second calibration unit.
  • the plurality of the local base units are respectively configured to: according to the downlink signal phase of the corresponding remote base unit generated by the controller, and the corresponding remote base unit generated by the first downlink calibration unit Downlink calibration parameters, phase adjustment of the downlink signal.
  • the near-end machine further includes: a first uplink calibration unit connected to the plurality of proximal base units; the remote machine further includes: and the plurality of remote base units and the first a second upstream calibration unit connected to the upstream calibration unit;
  • the first uplink calibration unit is configured to generate a second calibration signal, and send the second calibration signal to the second uplink calibration unit;
  • the second uplink calibration unit is configured to send the second calibration signal to the plurality of remote base units; the plurality of remote base units are further configured to process the second calibration signal And sending the processed second calibration signal to the first uplink calibration unit;
  • the first uplink calibration unit is further configured to generate an uplink calibration parameter of each remote base unit according to the generated second calibration signal and the processed second calibration signal returned by each remote base unit;
  • the plurality of near-end basic units are specifically used for corresponding remote basic units generated by the controller.
  • the uplink signal phase and the uplink calibration parameter of the corresponding remote base unit generated by the first uplink calibration unit perform phase adjustment on the uplink signal.
  • each of the plurality of remote base units includes: a second medium conversion module, an amplifier, a filter bank, a coupler and an antenna connected in sequence, and the coupler and the second downlink calibration unit respectively Connected to the second upstream calibration unit.
  • the near-end machine further includes a remote interface unit
  • the remote machine further includes a near-end interface unit
  • the plurality of proximal basic units and the plurality of remote basic units pass the far The terminal interface unit and the near-end interface unit are connected.
  • the repeater is a fiber optic repeater
  • the remote interface unit is a first wavelength division multiplexing WDM unit
  • the near-end interface unit is a second WDM unit
  • the first medium is converted.
  • the module and the second medium conversion module are both photoelectric conversion modules.
  • the embodiment of the present invention adopts a plurality of remote basic units arranged in an array in the remote machine, and generates an uplink signal of each remote basic unit according to the downtilt angle and/or the azimuth angle of the uplink signal indicated by the control instruction in the near-end machine.
  • Phase in a plurality of near-end basic units corresponding to the plurality of remote base units, respectively performing phase adjustment on the uplink signal according to an uplink signal phase of the corresponding remote base unit, or a downlink signal indicated according to the control instruction
  • the downtilt angle and/or the azimuth angle generate a downlink signal phase of each remote base unit, and respectively according to the downlink signal phase of the corresponding remote base unit in the plurality of proximal base units corresponding to the plurality of remote base units
  • the technical means for performing phase adjustment on the downlink signal can improve the downtilt angle and/or the azimuth angle of the desired uplink signal or the downlink signal by adjusting the phase of the uplink signal or the downlink signal corresponding to the plurality of remote base units, thereby improving Adjust the efficiency and accuracy of the downtilt and / or azimuth.
  • FIG. 1 is a schematic structural diagram of an embodiment of a repeater according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a near-end machine in a repeater embodiment according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a remote machine in a repeater embodiment according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an application of the remote base unit 121 in the embodiment shown in FIG.
  • FIG. 5 is a schematic diagram of an application of the repeater in the embodiment shown in FIGS. 2 and 3.
  • Figure 6 is a schematic diagram of a beam of two carriers in the application shown in Figure 5.
  • Figure 7 is a schematic diagram of still another beam of two carriers in the application shown in Figure 5.
  • Figure 8 is a schematic diagram of still another beam of two carriers in the application shown in Figure 5.
  • the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. It is apparent that the described embodiments are part of the embodiments of the invention, and not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a repeater according to an embodiment of the present invention. As shown in Figure 1, the repeater includes: a proximal machine 11 and a remote unit 12;
  • the near-end machine 11 includes: a base station interface unit 111, a plurality of near-end base units 112 connected to the base station interface unit 111, and a controller 113 connected to the plurality of near-end base units 112;
  • the remote unit 12 includes: a plurality of remote base units 121, a plurality of lower base units 121 arranged in an array, and a plurality of remote base units 121 corresponding to the plurality of proximal base units 112;
  • the base station interface unit 111 is configured to receive a downlink signal sent by the base station, and send the downlink signal to the multiple proximal base units 112;
  • the controller 113 is configured to generate a downlink signal phase of each remote base unit 121 according to a downtilt angle and/or an azimuth angle of the downlink signal indicated by the control instruction;
  • the plurality of near-end basic units 112 are respectively configured to perform phase adjustment on the downlink signal sent by the base station interface unit 111 according to the downlink signal phase of the corresponding remote base unit 121 generated by the controller 113, and adjust the phase-adjusted downlink signal. Send to the corresponding remote base unit 121;
  • the plurality of remote base units 121 are respectively configured to receive the downlink signals sent by the corresponding near-end base unit 112, and send the downlink signals;
  • the plurality of remote base units 121 are respectively configured to receive the uplink signal and send the corresponding uplink basic unit
  • the controller 113 is configured to generate an uplink signal phase of each remote base unit 121 according to a downtilt angle and/or an azimuth angle of the uplink signal indicated by the control instruction;
  • the plurality of the local base units 112 are respectively configured to perform phase adjustment on the uplink signal sent by the corresponding remote base unit 121 according to the uplink signal phase of the corresponding remote base unit 121 generated by the controller 113, and adjust the phase.
  • the subsequent uplink signal is sent to the base station interface unit 111;
  • the base station interface unit 111 is further configured to send the uplink signals sent by the multiple proximal base units 112 to the base station.
  • the downlink signal phase of each remote base unit 121 generated by the controller 113 refers to the phase of the downlink signal corresponding to each remote base unit 121
  • the uplink signal phase of each remote base unit 121 generated by the controller 113 refers to The phase of the uplink signal corresponding to each remote base unit 121.
  • the 6 remote basic units can be set vertically in 6 columns, and can be set horizontally in 6 rows, and can be set in 2 rows and 3 columns. 3 lines, 2 columns, etc.
  • the phase difference between the columns can be controlled to obtain the azimuth of the desired up/down signal; by setting the uplink/downlink signal phase of each line of the remote base unit The phase difference between the lines can be controlled to obtain the downtilt angle of the desired up/down signal.
  • each remote basic unit 121 is preset in the control 113, that is, the arrangement shape of the plurality of remote basic units and the position of each remote basic unit 121 therein, and the controller 113 can be instructed according to the control instruction.
  • the downtilt and/or azimuth angle determines how to adjust the phase of the downstream signal to be transmitted by each remote base unit 121 or the phase of the received uplink signal to achieve the downtilt and/or azimuth indicated in the control command.
  • the administrator can issue corresponding control commands when it is necessary to set and adjust the downtilt and/or azimuth of the up/down signals.
  • the control command may further include a wave width, such as a horizontal wave width and a vertical wave width.
  • the controller 113 may further generate a signal phase and a signal amplitude of each remote base unit according to a horizontal wave width or a vertical wave width indicated by the control instruction.
  • the plurality of proximal base units 112 are respectively used according to the corresponding The uplink signal phase and the uplink signal amplitude of the remote base unit 121 perform phase and amplitude adjustment on the uplink signal, or phase and downlink signals according to the downlink signal phase and the downlink signal amplitude of the corresponding remote base unit 121. Amplitude adjustment.
  • the phase difference and the amplitude difference between the columns can be controlled, thereby obtaining the horizontal wave width of the desired up/down signal; by setting each row
  • the signal phase and signal amplitude of the remote base unit can control the phase difference and amplitude difference between the lines to obtain the vertical wave width of the desired up/down signal.
  • the embodiment of the present invention adopts a plurality of remote basic units arranged in an array in the remote machine, and generates an uplink signal of each remote basic unit according to the downtilt angle and/or the azimuth angle of the uplink signal indicated by the control instruction in the near-end machine.
  • the uplink signal phase performs phase adjustment on the uplink signal, or generates a downlink signal phase of each remote base unit according to a downtilt angle and/or an azimuth angle of the downlink signal indicated by the control command, and the plurality of remote base units
  • the technical means for performing phase adjustment on the downlink signal according to the downlink signal phase of the corresponding remote base unit in the corresponding plurality of near-end basic units may be performed by adjusting uplink signals or downlink signals corresponding to the plurality of remote base units Phase, obtaining the downtilt and/or azimuth of the desired up or down signal, improving the efficiency and accuracy of adjusting the downtilt and/or azimuth, overcoming the azimuth of the prior art tower-adjusting retransmission antenna
  • FIG. 2 is a schematic structural diagram of a near-end machine in a repeater embodiment according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a remote machine in a repeater embodiment according to an embodiment of the present invention.
  • the proximal basic unit and the remote basic unit are respectively extended to obtain the second embodiment.
  • each of the near-end basic units 112 includes: a baseband processing module 1121, a downlink parameter setting module 1122, a frequency conversion module 1123, and a first medium conversion module 1124;
  • the baseband processing module 1121 is connected to the base station interface unit 111, and configured to perform baseband processing on the downlink signal sent by the base station interface unit 111;
  • the downlink parameter setting module 1122 is connected to the controller 113, and is configured to perform phase adjustment on the downlink signal processed by the baseband according to the downlink signal phase of the remote base unit 121 corresponding to the associated proximal base unit 112 generated by the controller 113;
  • the frequency conversion module 1123 is further configured to convert the phase adjusted uplink signal into a radio frequency format
  • the first medium conversion module 1124 is configured to perform media conversion on the downlink signal in the form of radio frequency, and send the signal to the remote base unit 121 corresponding to the near-end base unit 112.
  • each of the near-end basic units 112 further includes: an uplink parameter setting module 1125, which is connected to the baseband processing module 1121 and the frequency conversion module 1123;
  • the first medium conversion module 1124 is further configured to: receive an uplink signal sent by the remote base unit 121 corresponding to the near-end base unit 112, and perform media conversion on the uplink signal;
  • the frequency conversion module 1123 is further configured to convert the converted uplink signal into a baseband format
  • the uplink parameter setting module 1125 is connected to the controller 113, and is configured to perform phase adjustment on the uplink signal in the radio frequency form according to the uplink signal phase of the remote base unit 121 corresponding to the associated proximal base unit 112 generated by the controller 113;
  • the baseband processing module 1121 is configured to perform baseband processing on the phase-adjusted uplink signal, and perform baseband processing.
  • the uplink signal is sent to the base station interface unit 111.
  • the repeater supports multiple carriers, in order to control the downtilt angle of the downlink signal of each carrier and
  • each near-end base unit 112 includes a plurality of baseband processing modules 1121 and a plurality of downlink parameter setting modules 1122, and a plurality of baseband processing modules 1121 and a plurality of downlink parameter setting modules 1122 and the plurality of carriers
  • each of the near-end base units 112 further includes a first multi-carrier module and a second multi-carrier module, and the plurality of baseband processing units 1121 and the base station interface unit 111 are connected by the first multi-carrier module, and multiple downlink parameter settings are performed.
  • Module 1122 and frequency conversion module 1123 are connected by the second multi-carrier module;
  • the controller 113 is specifically configured to generate a downlink signal phase of each carrier of each remote base unit 121 according to a downtilt angle and/or an azimuth angle of a downlink signal of each carrier indicated by the control instruction;
  • the first multi-carrier module is configured to receive a downlink signal sent by the base station interface unit 111, perform carrier separation on the downlink signal, and obtain a downlink component signal of each carrier;
  • the plurality of baseband processing modules 1121 are respectively configured to perform baseband processing on the downlink sub-signals of the corresponding carriers, and send the downlink sub-signals of the corresponding carriers after the baseband processing to the corresponding downlink parameter setting module 1122;
  • the plurality of downlink parameter setting modules 1122 are configured to perform downlink signal splitting of the corresponding carrier after the baseband processing according to the downlink signal phase of each carrier of the remote base unit 121 corresponding to the near-end base unit 112 generated by the controller 113. Phase adjustment
  • the second multi-carrier module is configured to perform carrier combining on the downlink sub-signals of the phase-adjusted carriers;
  • the frequency conversion module 1123 is specifically configured to convert the signals after the carrier-synthesis into a radio frequency format;
  • the first medium conversion module 1124 is specifically configured to perform media conversion on the signal in the form of radio frequency and send the signal to the remote basic unit 121 corresponding to the local base unit 112.
  • each of the near-end base units 112 further includes a plurality of uplink parameter setting modules 1125, and more The uplink parameter setting module 1125 is in one-to-one correspondence with the plurality of carriers, and the plurality of uplink parameter setting modules 1125 and the frequency conversion module 1123 are connected by the second multi-carrier module;
  • the controller 113 is further configured to generate an uplink signal phase of each carrier of each remote base unit 121 according to a downtilt angle and/or an azimuth angle of an uplink signal of each carrier indicated by the control instruction;
  • the first medium conversion module 1124 is further configured to: receive an uplink signal sent by the remote base unit 121 corresponding to the near-end base unit 112, and perform media conversion;
  • the frequency conversion module 1123 is further configured to convert the converted uplink signal into a baseband format
  • the second multi-carrier module is further configured to perform carrier separation on an uplink signal in a baseband manner to obtain each carrier.
  • Uplink signal
  • the plurality of uplink parameter setting modules 1124 are configured to perform phase adjustment on the uplink signal of the corresponding carrier according to the uplink signal phase of each carrier of the remote base unit 121 corresponding to the near-end base unit 112 generated by the controller 113, and The phase-adjusted uplink component of the corresponding carrier is sent to the corresponding baseband processing module 1121;
  • the plurality of baseband processing modules 1121 are further configured to perform baseband processing on the uplink component signals of the phase-adjusted corresponding carriers, respectively;
  • the first multi-carrier module is configured to perform carrier combining on the uplink sub-signals of each carrier after the baseband processing, and send the signals to the base station interface unit 111.
  • the proximal end machine 11 further includes: a first connection to the plurality of proximal base units 112. a downlink calibration unit 114;
  • the remote unit 12 further includes: a second downlink calibration unit 122 with a plurality of remote base units 121; a first downlink calibration unit 114, configured to generate a first calibration signal, and A calibration signal is sent to the plurality of remote base units 121;
  • the plurality of remote base units 121 are further configured to process the first calibration signal
  • the second downlink calibration unit 122 is configured to send the first calibration signal processed by each remote base unit 121 to the first downlink calibration unit 124;
  • the first downlink calibration unit 114 is further configured to generate, according to the generated first calibration signal and the first calibration signal processed by each remote base unit 121 returned by the second calibration unit, with each remote base unit 121. Downstream calibration parameters;
  • the plurality of near-end basic units 112 are respectively configured to use the downlink signal phase of the corresponding remote base unit 121 generated by the controller 113 and the downlink calibration parameter of the corresponding remote base unit 121 generated by the first downlink calibration unit 114. And performing phase adjustment on the downlink signal.
  • the proximal end machine 11 further includes: An upstream calibration unit 115;
  • the remote unit 12 further includes: a second uplink calibration unit 123 connected to the plurality of remote base units 121 and the first upstream calibration unit 122;
  • the first uplink calibration unit 115 is configured to generate a second calibration signal, and send the second calibration signal to the second uplink calibration unit 123; a second uplink calibration unit 123, configured to send the second calibration signal to the plurality of remote base units 122; the plurality of remote base units 122 are further configured to process the second calibration signal, and The processed second calibration signal is sent to the first upstream calibration unit 115;
  • the first uplink calibration unit 115 is further configured to generate an uplink calibration parameter of each remote base unit 122 according to the generated second calibration signal and the processed second calibration signal returned by each remote base unit 122;
  • the plurality of near-end basic units 121 are specifically configured to: according to the uplink signal phase of the corresponding remote base unit 122 generated by the controller 113 and the uplink calibration parameter of the corresponding remote base unit 122 generated by the first uplink calibration unit 115, Phase adjustment is performed on the uplink signal.
  • each remote base unit 121 may include: a second medium conversion module, an amplifier, a filter bank, a coupler, and an antenna that are sequentially connected; the coupler is connected to the second downlink calibration unit 122, and is used to The first calibration signal processed by the wave group is sent to the second downlink calibration unit 122.
  • the coupler may also be connected to the second uplink calibration unit 123 for transmitting the second calibration signal sent by the second uplink calibration unit 123. Give the filter bank.
  • the corresponding near-end base unit 112 and the remote base unit 121 can be directly connected, for example, directly connected through one optical fiber, or a plurality of near-end base units 112 and multiple remote base units 121 can be respectively aggregated into one. Interface, and connected through these two aggregated interfaces.
  • the proximal machine 11 further includes a remote interface unit
  • the remote unit 12 further includes a near-end interface unit
  • the plurality of proximal base units 112 and the plurality of remote base units 121 pass through the remote interface unit, The proximal machine interface unit is connected.
  • the repeater in this embodiment may be a fiber optic repeater.
  • the remote interface unit is a first wavelength division multiplexing (WDM) unit
  • the near-end interface unit is a second WDM unit, a first medium conversion module, and a second medium conversion module. All are Electric-to-Optic (E/C) conversion modules.
  • the first WDM unit and the second WDM unit may adopt a Coarse Wavelength Division Multiplexing (CWDM) or Dense Wavelength Division Multiplexing (DWDM) technology.
  • CWDM Coarse Wavelength Division Multiplexing
  • DWDM Dense Wavelength Division Multiplexing
  • the first downlink calibration unit 114 and the first uplink calibration unit 115 may be combined into a near-end calibration unit; the second downlink calibration unit 122 and the second uplink calibration unit 123 may be combined into a remote calibration unit;
  • the module and the second multi-carrier module can each be implemented by a Field-Programmable Gate Array (FPGA).
  • FPGA Field-Programmable Gate Array
  • the embodiment of the present invention adopts a plurality of remote basic units arranged in an array in the remote machine, and generates an uplink signal of each remote basic unit according to the downtilt angle and/or the azimuth angle of the uplink signal indicated by the control instruction in the near-end machine.
  • Phase in a plurality of near-end basic units corresponding to the plurality of remote base units, respectively performing phase adjustment on the uplink signal according to an uplink signal phase of the corresponding remote base unit, or a downlink signal indicated according to the control instruction
  • the downtilt angle and/or the azimuth angle generate a downlink signal phase of each remote base unit, and respectively according to the downlink signal phase of the corresponding remote base unit in the plurality of proximal base units corresponding to the plurality of remote base units
  • the technical means for performing phase adjustment on the downlink signal can obtain the downtilt or azimuth angle of the desired uplink signal or the downlink signal by adjusting the phase of the uplink signal or the downlink signal corresponding to the plurality of remote base units, thereby improving the adjustment
  • the efficiency and accuracy of the tilt and/or azimuth overcome the orientation of the upper tower to adjust the retransmitted antenna in the prior art.
  • the corners result in high construction costs, low efficiency, and low efficiency and low accuracy caused by mechanically adjusting the downtilt and azimuth angles of the retransmitted antenna, and can also dynamically adjust the horizontal/vertical beamwidth.
  • a low-power downlink signal By transmitting a low-power downlink signal simultaneously by multiple remote base units, the high-power requirement of the remote unit can be achieved, and the power consumption of the remote unit can be reduced, thereby reducing the size of the remote unit and reducing the weight of the remote unit. It is also possible to lower CAPEX.
  • the radio frequency signal is converted to the remote unit by medium conversion instead of the baseband signal, and the required power of the remote unit can be reduced.
  • the signal phase of each carrier of each remote base unit can be separately set for multiple carriers, and the carrier capacity can be effectively utilized.
  • FIG. 4 is a schematic diagram of an application of the remote base unit 121 in the embodiment shown in FIG.
  • 0/E represents a photoelectric converter
  • LNA represents an upstream low-noise wideband amplifier
  • PA represents a downstream wideband amplifier
  • Filters represents a filter bank
  • COUP represents a coupler
  • ANT represents an antenna.
  • both the LNA and the PA may be cascaded for multiple amplifiers, and at least one antenna element may be included in the antenna.
  • the output power of a single remote base unit can be low power, and multiple low-power units can be combined into high power by a plurality of remote base units arranged in an array.
  • FIG. 5 is a schematic diagram of an application of the repeater in the embodiment shown in FIGS. 2 and 3.
  • the repeater includes a near-end and a remote unit connected by fiber optics.
  • the proximal machine includes a base station interface unit, a proximal calibration unit, a plurality of proximal base units, and a WDM (remote machine interface unit);
  • the remote unit includes a WDM (near-end interface unit), a remote calibration unit, and a plurality of The remote base unit shown in Figure 4.
  • RX indicates the receiving channel
  • TX indicates the transmitting channel
  • RX calibration indicates receiving calibration
  • TX calibration indicates transmission calibration
  • RX DBF indicates receiving signal digital beamforming (DBF)
  • TX DBF indicates transmitting signal DBF.
  • ADC represents analog-to-digital conversion
  • DAC represents digital-to-analog conversion
  • IFRX represents intermediate frequency processing of received signals
  • IFTX represents intermediate frequency processing of transmitted signals
  • FPGA representation FIRX/IFTX passes through Field-Programmable Gate Array (FPGA)
  • FPGA Field-Programmable Gate Array
  • the near-end machine further includes a digital signal processing (DSP) unit, a CPU, a source, a clock, and the like, which are not shown in the figure, wherein the DSP unit and the CPU cooperate to implement the functions of the controller.
  • DSP digital signal processing
  • the working principle of the repeater shown in Figure 5 is as follows.
  • Downstream direction the downlink signal of the base station coupled base station, down-converting the downlink signal of the base station, digitizing the intermediate frequency, digital down-conversion, separating X carriers in the FPGA, and dividing each carrier into N* by speed reduction and filtering M path (ie, the far-end basic unit of N rows and M columns), DBF coefficient setting (shared N*M*X DBF coefficients), then speed up and filtering, digital up-conversion, combining X carriers, digital mode After the conversion, after analog up-conversion, amplification, and then electro-optical conversion, output from the near-end machine, photoelectric conversion on the remote machine, amplification, output from the antenna vibrator.
  • M path ie, the far-end basic unit of N rows and M columns
  • DBF coefficient setting shared N*M*X DBF coefficients
  • each remote base unit is coupled to the N*M channel uplink signal, after amplification, electro-optical conversion is performed, output from the remote machine to the near-end machine, and then photoelectric conversion is performed, after amplification, after simulation
  • the DBF coefficients here include the signal phase and may also include the signal amplitude.
  • FIG. 6 is a schematic diagram of a beam of two carriers in the application shown in FIG. 5.
  • FIG. 6 when different carriers of the M columns are set for the two carriers F1 and F2, the phase between the columns is controlled. The difference between the difference and the amplitude can obtain different horizontal wave widths and azimuth angles, wherein the carrier F1 can be covered by the hot spot.
  • FIG. 7 is still another beam diagram of two carriers in the application shown in FIG. 5. As shown in FIG. 7, when different carriers M1 are set to DBF coefficients for two carriers F1 and F2, that is, the amplitude between the columns is controlled. Poor, different horizontal wave widths can be obtained, which facilitates collaborative optimization with the macro network.
  • FIG. 8 is a schematic diagram of still another beam of two carriers in the application shown in FIG. 5. As shown in FIG. 8, when different N rows of DBF systems are set for two carriers F1 and F2, the phase difference between the rows is controlled. , you can get different downtilt angles.
  • time-varying error includes errors caused by array arrangement such as geometrical position difference of array elements, mutual coupling effect between array elements, difference of antenna pattern, and difference of feeder lines between array elements; time-varying error means The difference in phase and gain of the amplifier's RF channels as a function of temperature, aging of the mixer, etc., filter delay, amplitude-frequency phase-frequency characteristic distortion, quadrature modem imbalance, etc. Error.
  • the essence of channel error correction is to track and compensate the channel amplitude and phase characteristics, reduce the relative error between channels, and meet the control accuracy requirements of the upper and lower beamforming algorithms.
  • the calibration signals of the transceiver channel use a pseudo-random signal that is 20 dB lower than the channel signal, that is, the Signal-to-Noise Ratio (SNR) is less than _20 dB, so as not to affect the service signal.
  • SNR Signal-to-Noise Ratio
  • the service receiving channel (ie, the uplink remote base unit) and the service transmission channel (ie, the downlink remote base unit) can be calibrated simultaneously.
  • the received signal strength indication (RSSI) of each service receiving channel is used to calculate how much the transmission calibration signal is needed, and then according to the arrival service receiving channel.
  • the calibration signal is 20dB lower than the service signal.
  • the power transmitted by the pseudo-random sequence signal is calculated and transmitted through the service receiving channel for demodulation.
  • the long-term correlation accumulation is used to complete the service receiving channel characteristic extraction and complete the calibration. jobs.
  • a pseudo-random signal with a uniform amplitude that is 20 dB smaller than the minimum output power value in the service transmission channel is transmitted by each service transmission channel, transmitted along with the service signal, and then received and calibrated.
  • the channel performs reception, demodulation, and uses long-term correlation accumulation to complete the feature extraction of the service transmission channel and complete the calibration work.
  • a TRX can be used to drive an antenna element, which eliminates the need for transceiving diversity techniques, ie, a single-polarized antenna.
  • N*M remote base units can Set by N columns and M rows, N can take an integer greater than or equal to 4, and M can take an integer greater than or equal to 1.
  • N*M/2 remote base units can be set in N/2 columns and M lines, N can take an even number greater than or equal to 4, and M can take an integer greater than or equal to 1.
  • the remote unit when a remote base unit includes two antenna elements of the same polarization, the remote unit can include fewer remote base units, and the cost is even more low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本实用新型实施例提供一种直放站。包括近端机和远端机;近端机包括:基站接口单元,与基站接口单元连接的多个近端基本单元,与多个近端基本单元连接的控制器;远端机包括:多个远端基本单元,多个远端基本单元阵列状设置,与多个近端基本单元一一对应;所述控制器,用于根据控制指令指示的下行信号的下倾角和/或方位角,生成各远端基本单元的下行信号相位;所述多个近端基本单元,分别用于根据所述控制器生成的对应的远端基本单元的下行信号相位,对所述基站接口单元发送的下行信号进行相位调整,并将相位调整后的下行信号发送给对应的远端基本单元;所述多个远端基本单元,分别用于接收对应的近端基本单元发送的下行信号,并发送。

Description

直放站 本申请要求于 2011年 10月 18日提交中国专利局、 申请号为 201120396606. 3、 发 明名称为 "直放站" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本实用新型实施例涉及通信技术领域, 尤其是一种直放站。 发明背景 传统直放站中重发天线和直放站远端机分离, 需要选取合理的位置来安装重发天线 和直放站远端机。 一般在安装时, 需要调整重发天线的下倾角和方位角, 在调整方位角 时, 需要采用定位工具进行精确定位, 效率较低。 安装后, 传统直放站的维护和网络优 化也比较复杂, 需要协调运营商二次进站, 再次上塔采用定位工具进行方位角的调整, 建站费用 (Capital Expenditure, 简称 CAPEX) 高。
另外, 现有技术中对重发天线的下倾角和方位角进行机械调节, 效率低且准确度不 高。 发明内容
本实用新型实施例提供一种直放站, 用以提高调节下倾角和 /或方位角的效率和准 确度。
本实用新型实施例提供了一种直放站, 包括近端机和远端机;
所述近端机包括: 基站接口单元, 与所述基站接口单元连接的多个近端基本单元, 与所述多个近端基本单元连接的控制器;
所述远端机包括: 多个远端基本单元, 所述多个远端基本单元阵列状设置, 所述多 个远端基本单元与所述多个近端基本单元一一对应;
所述基站接口单元, 用于接收基站发送的下行信号, 将所述下行信号发送给所述多 个近端基本单元;
所述控制器, 用于根据控制指令指示的下行信号的下倾角和 /或方位角生成各远端 基本单元的下行信号相位;
所述多个近端基本单元, 分别用于根据所述控制器生成的对应的远端基本单元的上 行信号相位, 对所述上行信号进行相位调整, 或根据对应的远端基本单元的下行信号相 位, 对所述基站接口单元发送的下行信号进行相位调整, 并将相位调整后的下行信号发 送给对应的远端基本单元;
所述多个远端基本单元, 分别用于接收对应的近端基本单元发送的下行信号, 并发 送;
所述多个远端基本单元, 分别用于接收对应的近端基本单元发送的下行信号, 并发 送;
所述多个远端基本单元, 还分别用于接收上行信号并发送给对应的近端基本单元; 所述控制器, 用于根据控制指令指示的上行信号的下倾角和 /或方位角生成各远端 基本单元的上行信号相位;
所述多个近端基本单元,还分别用于根据所述控制器生成的对应的远端基本单元的 上行信号相位, 对所述对应的远端基本单元发送的上行信号进行相位调整, 并将相位调 整后的上行信号发送给所述基站接口单元;
所述基站接口单元, 还用于将所述多个近端基本单元发送的上行信号发送给基站。 进一步地, 所述多个近端基本单元中的每个包括: 依次连接的基带处理模块、 下行 参数设置模块、 变频模块和第一介质转换模块;
所述基带处理模块, 与所述基站接口单元连接, 用于对所述基站接口单元发送的下 行信号进行基带处理;
所述下行参数设置模块, 与所述控制器连接, 用于根据所述控制器生成的所属近端 基本单元对应的远端基本单元的下行信号相位对基带处理后的下行信号进行相位调整; 所述变频模块, 用于将相位调整后的下行信号转换成射频形式;
所述第一介质转换模块, 用于对射频形式的下行信号进行介质转换, 并发送给所属 近端基本单元对应的远端基本单元。
进一步地, 所述近端基本单元中的每个还包括: 上行参数设置模块, 与所述基带处 理模块和变频模块连接;
所述第一介质转换模块还用于,接收所属近端基本单元对应的远端基本单元发送的 上行信号, 对所述上行信号进行介质转换;
所述变频模块还用于, 将介质转换后的上行信号转换成基带形式;
所述上行参数设置模块, 与所述控制器连接, 用于根据所述控制器生成的所属近端 基本单元对应的远端基本单元的上行信号相位对基带形式的上行信号进行相位调整; 所述基带处理模块, 用于对相位调整后的上行信号进行基带处理, 将基带处理后的 上行信号发送给所述基站接口单元。
进一步地, 所述直放站支持多个载波, 所述多个近端基本单元中的每个包括多个基 带处理模块、 多个下行参数设置模块, 且多个基带处理模块、 多个下行参数设置模块与 所述多个载波一一对应,所述多个近端基本单元中的每个还包括第一多载波模块和第二 多载波模块, 所述多个基带处理单元和所述基站接口单元通过所述第一多载波模块连 接, 所述多个下行参数设置模块和所述变频模块通过所述第二多载波模块连接;
所述控制器具体用于, 根据控制指令指示的各载波的下行信号的下倾角和 /或方位 角生成各远端基本单元的各载波的下行信号相位;
所述第一多载波模块, 用于接收所述基站接口单元发送的下行信号, 对所述下行信 号进行载波分离, 得到各载波的下行分信号;
所述多个基带处理模块, 分别用于对对应载波的下行分信号进行基带处理, 将基带 处理后的对应载波的下行分信号发送给对应的下行参数设置模块;
所述多个下行参数设置模块, 分别用于根据所述控制器生成的所属近端基本单元对 应的远端基本单元的各载波的下行信号相位,对基带处理后的对应载波的下行分信号进 行相位调整;
所述第二多载波模块, 用于将相位调整后的各载波的下行分信号进行载波合路; 所述变频模块具体用于, 将载波合路后的信号转换成射频形式;
所述第一介质转换模块具体用于, 将射频形式的信号进行介质转换, 并发送给所述 近端基本单元对应的远端基本单元。
进一步地, 所述多个近端基本单元中的每个还包括多个上行参数设置模块, 且多个 上行参数设置模块与所述多个载波一一对应,所述多个上行参数设置模块和所述变频模 块通过所述第二多载波模块连接;
所述控制器还用于, 根据控制指令指示的各载波的上行信号的下倾角和 /或方位角 生成各远端基本单元的各载波的上行信号相位;
所述第一介质转换模块还用于,接收所属近端基本单元对应的远端基本单元发送的 上行信号, 进行介质转换;
所述变频模块还用于, 将介质转换后的上行信号转换成基带形式;
所述第二多载波模块还用于, 将基带形式的上行信号进行载波分离, 得到各载波的 上行分信号;
所述多个上行参数设置模块, 分别用于根据所述控制器生成的所属近端基本单元对 应的远端基本单元的各载波的上行信号相位, 对对应载波的上行分信号进行相位调整, 将相位调整后的对应载波的上行分信号发送给对应的基带处理模块;
所述多个基带处理模块还分别用于,对相位调整后的对应载波的上行分信号进行基 带处理;
所述第一多载波模块, 用于将基带处理后的各载波的上行分信号进行载波合路, 并 发送给所述基站接口单元。
进一步地,所述近端机还包括:与所述多个近端基本单元连接的第一下行校准单元; 所述远端机还包括: 与所述多个远端基本单元和所述第一下行校准单元连接的第二 下行校准单元;
所述第一下行校准单元, 用于生成第一校准信号, 并将所述第一校准信号发送给所 述多个远端基本单元;
所述多个远端基本单元还分别用于, 对所述第一校准信号进行处理;
所述第二下行校准单元,用于将各远端基本单元处理后的第一校准信号发送给所述 第一下行校准单元;
所述第一下行校准单元还用于,根据生成的第一校准信号和所述第二校准单元返回 的各远端基本单元处理后的第一校准信号, 生成各远端基本单元的下行校准参数; 所述多个近端基本单元分别具体用于,根据所述控制器生成的对应的远端基本单元 的下行信号相位和所述第一下行校准单元生成的对应的远端基本单元的下行校准参数, 对所述下行信号进行相位调整。
进一步地,所述近端机还包括:与所述多个近端基本单元连接的第一上行校准单元; 所述远端机还包括: 与所述多个远端基本单元和所述第一上行校准单元连接的第二 上行校准单元;
所述第一上行校准单元, 用于生成第二校准信号, 并将所述第二校准信号发送给所 述第二上行校准单元;
所述第二上行校准单元, 用于将所述第二校准信号发送给所述多个远端基本单元; 所述多个远端基本单元还分别用于, 对所述第二校准信号进行处理, 并将处理后的 第二校准信号发送给所述第一上行校准单元;
所述第一上行校准单元还用于,根据生成的第二校准信号和各远端基本单元返回的 处理后的第二校准信号, 生成各远端基本单元的上行校准参数;
所述多个近端基本单元分别具体用于,根据所述控制器生成的对应的远端基本单元 的上行信号相位和所述第一上行校准单元生成的对应的远端基本单元的上行校准参数, 对所述上行信号进行相位调整。
进一步地, 所述多个远端基本单元中的每个包括: 依次连接的第二介质转换模块、 放大器、 滤波器组、 耦合器和天线, 所述耦合器分别与所述第二下行校准单元和第二上 行校准单元连接。
进一步地,所述近端机还包括远端机接口单元,所述远端机还包括近端机接口单元, 所述多个近端基本单元和所述多个远端基本单元通过所述远端机接口单元、近端机接口 单元连接。
进一步地, 所述直放站为光纤直放站, 所述远端机接口单元为第一波分复用 WDM单 元, 所述近端机接口单元为第二 WDM单元, 所述第一介质转换模块和第二介质转换模块 均为光电转换模块。
本实用新型实施例采用在远端机中阵列状设置多个远端基本单元,在近端机中根据 控制指令指示的上行信号的下倾角和 /或方位角生成各远端基本单元的上行信号相位, 在与所述多个远端基本单元对应的多个近端基本单元中分别根据对应的远端基本单元 的上行信号相位对所述上行信号进行相位调整, 或根据控制指令指示的下行信号的下倾 角和 /或方位角生成各远端基本单元的下行信号相位, 在与所述多个远端基本单元对应 的多个近端基本单元中分别根据对应的远端基本单元的下行信号相位对所述下行信号 进行相位调整的技术手段,可以通过调整多个远端基本单元对应的上行信号或下行信号 的相位, 获得期望的上行信号或下行信号的下倾角和 /或方位角, 提高了调节下倾角和 / 或方位角的效率和准确度。 附图简要说明 为了更清楚地说明本实用新型实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是 本实用新型的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本实用新型实施例提供的一种直放站实施例的结构示意图。
图 2为本实用新型实施例提供的一种直放站实施例中近端机的结构示意图。
图 3为本实用新型实施例提供的一种直放站实施例中远端机的结构示意图。
图 4为图 3所示实施例中远端基本单元 121的一种应用示意图。 图 5为图 2和图 3所示实施例中直放站的一种应用示意图。
图 6为图 5所示应用中的两个载波的一种波束示意图。
图 7为图 5所示应用中的两个载波的又一种波束示意图。
图 8为图 5所示应用中的两个载波的又一种波束示意图。 实施本发明的方式 为使本实用新型实施例的目的、 技术方案和优点更加清楚, 下面将结合本实用新型 实施例中的附图, 对本实用新型实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例是本实用新型一部分实施例, 而不是全部的实施例。 基于本实用新型中的 实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本实用新型保护的范围。
图 1为本实用新型实施例提供的一种直放站实施例的结构示意图。 如图 1所示, 该 直放站包括: 近端机 11和远端机 12;
近端机 11包括:基站接口单元 111, 与基站接口单元连接 111的多个近端基本单元 112, 与多个近端基本单元连接 112的控制器 113;
远端机 12包括: 多个远端基本单元 121, 多个下端基本单元 121阵列状设置, 多个 远端基本单元 121与多个近端基本单元 112—一对应;
基站接口单元 111, 用于接收基站发送的下行信号, 将所述下行信号发送给所述多 个近端基本单元 112;
控制器 113,用于根据控制指令指示的下行信号的下倾角和 /或方位角生成各远端基 本单元 121的下行信号相位;
多个近端基本单元 112, 分别用于根据控制器 113生成的对应的远端基本单元 121 的下行信号相位, 对基站接口单元 111发送的下行信号进行相位调整, 并将相位调整后 的下行信号发送给对应的远端基本单元 121 ;
多个远端基本单元 121, 分别用于接收对应的近端基本单元 112发送的下行信号, 并发送;
多个远端基本单元 121, 分别还用于接收上行信号并发送给对应的近端基本单元
112;
控制器 113,用于根据控制指令指示的上行信号的下倾角和 /或方位角生成各远端基 本单元 121的上行信号相位; 多个近端基本单元 112,分别还用于根据控制器 113生成的对应的远端基本单元 121 的上行信号相位, 对对应的远端基本单元 121发送的上行信号进行相位调整, 并将相位 调整后的上行信号发送给基站接口单元 111 ;
基站接口单元 111, 还用于将多个近端基本单元 112发送的上行信号发送给基站。 这里,控制器 113生成的各远端基本单元 121的下行信号相位是指与各远端基本单 元 121对应的下行信号的相位,控制器 113生成的各远端基本单元 121的上行信号相位 是指与各远端基本单元 121对应的上行信号的相位。
阵列状设置的形式有多种。 举例来说, 若远端基本单元的个数为 6, 则这 6个远端 基本单元可以 6个一列垂直设置, 可以 6个一行水平设置, 可以 2个一行、 3个一列的 设置,还可以 3个一行、 2个一列的等。通过设置各列远端基本单元的上 /下行信号相位, 可以控制各列之间的相位差, 从而获得期望的上 /下行信号的方位角; 通过设置各行远 端基本单元的上 /下行信号相位, 可以控制各行之间的相位差, 从而获得期望的上 /下行 信号的下倾角。
具体地, 控制 113中预设了各远端基本单元 121的位置关系, 即多个远端基本单元 的排列形状和各远端基本单元 121在其中的位置,控制器 113可以根据控制指令中指示 的下倾角和 /或方位角, 确定如何调整各远端基本单元 121将要发送的下行信号的相位 或已经接收的上行信号的相位, 以达到控制指令中指示的下倾角和 /或方位角。 管理员 可以在需要设置、 调整上 /下行信号的下倾角和 /或方位角时, 发出相应的控制指令。
进一步地, 当需要设置、 调整上 /下行信号的波宽时, 控制指令中相应地还可以包 含波宽, 比如水平波宽、 垂直波宽。 对应地, 控制器 113还可以根据控制指令指示的水 平波宽或垂直波宽生成各远端基本单元的信号相位和信号幅值, 对应地, 多个近端基本 单元 112分别用于根据对应的远端基本单元 121的上行信号相位和上行信号幅值,对上 行信号进行相位和幅值调整, 或根据对应的远端基本单元 121的下行信号相位和下行信 号幅值, 对下行信号进行相位和幅值调整。 通过设置各列远端基本单元的上 /下行信号 相位和上 /下行信号幅度, 可以控制各列之间的相位差和幅度差, 从而获得期望的上 /下 行信号的水平波宽; 通过设置各行远端基本单元的信号相位和信号幅度, 可以控制各行 之间的相位差和幅度差, 从而获得期望的上 /下行信号的垂直波宽。
本实用新型实施例采用在远端机中阵列状设置多个远端基本单元,在近端机中根据 控制指令指示的上行信号的下倾角和 /或方位角生成各远端基本单元的上行信号相位, 在与所述多个远端基本单元对应的多个近端基本单元中分别根据对应的远端基本单元 的上行信号相位对所述上行信号进行相位调整, 或根据控制指令指示的下行信号的下倾 角和 /或方位角生成各远端基本单元的下行信号相位, 在与所述多个远端基本单元对应 的多个近端基本单元中分别根据对应的远端基本单元的下行信号相位对所述下行信号 进行相位调整的技术手段,可以通过调整多个远端基本单元对应的上行信号或下行信号 的相位, 获得期望的上行信号或下行信号的下倾角和 /或方位角, 提高了调节下倾角和 / 或方位角的效率和准确度, 克服了现有技术中上塔调整重发天线的方位角导致的建站费 用高、 效率低, 以及机械调节重发天线的下倾角和方位角导致的效率低且准确度不高的 问题。
图 2为本实用新型实施例提供的一种直放站实施例中近端机的结构示意图。 图 3为 本实用新型实施例提供的一种直放站实施例中远端机的结构示意图。在图 1所示实施例 的基础上,分别对近端基本单元和远端基本单元进行扩展,得到实施例二。如图 2所示, 每个近端基本单元 112包括: 依次连接的基带处理模块 1121、 下行参数设置模块 1122、 变频模块 1123和第一介质转换模块 1124;
基带处理模块 1121, 与基站接口单元 111连接,用于对基站接口单元 111发送的下 行信号进行基带处理;
下行参数设置模块 1122, 与控制器 113连接,用于根据控制器 113生成的所属近端 基本单元 112对应的远端基本单元 121的下行信号相位对基带处理后的下行信号进行相 位调整;
变频模块 1123还用于, 将相位调整后的上行信号转换成射频形式;
第一介质转换模块 1124,用于对射频形式的下行信号进行介质转换, 并发送给所属 近端基本单元 112对应的远端基本单元 121。
在本实用新型的一个可选的实施例中, 每个近端基本单元 112还包括: 上行参数设 置模块 1125, 与基带处理模块 1121和变频模块 1123连接;
第一介质转换模块 1124还用于, 接收所属近端基本单元 112对应的远端基本单元 121发送的上行信号, 对所述上行信号进行介质转换;
变频模块 1123还用于, 将介质转换后的上行信号转换成基带形式;
上行参数设置模块 1125, 与控制器 113连接,用于根据控制器 113生成的所属近端 基本单元 112对应的远端基本单元 121的上行信号相位对射频形式的上行信号进行相位 调整;
基带处理模块 1121,用于对相位调整后的上行信号进行基带处理,将基带处理后的 上行信号发送给基站接口单元 111。
进一步地, 若所述直放站支持多个载波, 为了控制每个载波的下行信号的下倾角和
/或方位角, 每个近端基本单元 112包括多个基带处理模块 1121和多个下行参数设置模 块 1122,且多个基带处理模块 1121和多个下行参数设置模块 1122与所述多个载波一一 对应, 每个近端基本单元 112还包括第一多载波模块和第二多载波模块, 多个基带处理 单元 1121和基站接口单元 111通过所述第一多载波模块连接, 多个下行参数设置模块 1122和变频模块 1123通过所述第二多载波模块连接;
控制器 113具体用于, 根据控制指令指示的各载波的下行信号的下倾角和 /或方位 角生成各远端基本单元 121的各载波的下行信号相位;
所述第一多载波模块, 用于接收基站接口单元 111发送的下行信号, 对所述下行信 号进行载波分离, 得到各载波的下行分信号;
多个基带处理模块 1121,分别用于对对应载波的下行分信号进行基带处理,将基带 处理后的对应载波的下行分信号发送给对应的下行参数设置模块 1122;
多个下行参数设置模块 1122, 分别用于根据控制器 113 生成的所属近端基本单元 112对应的远端基本单元 121的各载波的下行信号相位, 对基带处理后的对应载波的下 行分信号进行相位调整;
所述第二多载波模块, 用于将相位调整后的各载波的下行分信号进行载波合路; 变频模块 1123具体用于, 将载波合路后的信号转换成射频形式;
第一介质转换模块 1124具体用于, 将射频形式的信号进行介质转换, 并发送给所 属近端基本单元 112对应的远端基本单元 121。
在本实用新型的又一可选的实施例中, 为了控制每个载波的下行信号的下倾角和 / 或方位角,每个近端基本单元 112还包括多个上行参数设置模块 1125,且多个上行参数 设置模块 1125与所述多个载波一一对应,多个上行参数设置模块 1125和变频模块 1123 通过所述第二多载波模块连接;
控制器 113还用于, 根据控制指令指示的各载波的上行信号的下倾角和 /或方位角 生成各远端基本单元 121的各载波的上行信号相位;
第一介质转换模块 1124还用于, 接收所属近端基本单元 112对应的远端基本单元 121发送的上行信号, 进行介质转换;
变频模块 1123还用于, 将介质转换后的上行信号转换成基带形式;
所述第二多载波模块还用于, 将基带形式的上行信号进行载波分离, 得到各载波的 上行分信号;
多个上行参数设置模块 1124, 分别用于根据控制器 113 生成的所属近端基本单元 112对应的远端基本单元 121的各载波的上行信号相位, 对对应载波的上行分信号进行 相位调整, 将相位调整后的对应载波的上行分信号发送给对应的基带处理模块 1121 ;
多个基带处理模块 1121还分别用于, 对相位调整后的对应载波的上行分信号进行 基带处理;
所述第一多载波模块, 用于将基带处理后的各载波的上行分信号进行载波合路, 并 发送给基站接口单元 111。
为了对各远端基本单元进行下行校准, 即对发射通道进行校准, 在本实用新型的又 一可选的实施例中, 近端机 11还包括: 与多个近端基本单元 112连接的第一下行校准 单元 114;
如图 3所示,远端机 12还包括:与多个远端基本单元 121的第二下行校准单元 122; 第一下行校准单元 114, 用于生成第一校准信号, 并将所述第一校准信号发送给多 个远端基本单元 121 ;
多个远端基本单元 121还分别用于, 对所述第一校准信号进行处理;
第二下行校准单元 122, 用于将各远端基本 121单元处理后的第一校准信号发送给 第一下行校准单元 124;
第一下行校准单元 114还用于,根据生成的第一校准信号和所述第二校准单元返回 的各远端基本单元 121处理后的第一校准信号, 生成与各远端基本单元 121的下行校准 参数;
多个近端基本单元 112分别具体用于,根据控制器 113生成的对应的远端基本单元 121的下行信号相位和第一下行校准单元 114生成的对应的远端基本单元 121的下行校 准参数, 对所述下行信号进行相位调整。
为了对各远端基本单元进行上行校准, 即对接收通道进行校准, 在本实用新型的又 —可选的实施例中, 近端机 11还包括: 与多个近端基本单元 112连接的第一上行校准 单元 115;
如图 3所示,远端机 12还包括: 与多个远端基本单元 121和第一上行校准单元 122 连接的第二上行校准单元 123;
第一上行校准单元 115, 用于生成第二校准信号, 并将所述第二校准信号发送给第 二上行校准单元 123; 第二上行校准单元 123, 用于将所述第二校准信号发送给多个远端基本单元 122; 多个远端基本单元 122还分别用于, 对所述第二校准信号进行处理, 并将处理后的 第二校准信号发送给第一上行校准单元 115;
第一上行校准单元 115还用于,根据生成的第二校准信号和各远端基本单元 122返 回的处理后的第二校准信号, 生成各远端基本单元 122的上行校准参数;
多个近端基本单元 121分别具体用于,根据控制器 113生成的对应的远端基本单元 122的上行信号相位和第一上行校准单元 115生成的对应的远端基本单元 122的上行校 准参数, 对所述上行信号进行相位调整。
具体地,每个远端基本单元 121可以包括:依次连接的第二介质转换模块、放大器、 滤波器组、 耦合器和天线; 所述耦合器与第二下行校准单元 122连接, 用于将下波器组 处理后的第一校准信号发送给第二下行校准单元 122; 所述耦合器还可以与第二上行校 准单元 123连接,用于将第二上行校准单元 123发送的第二校准信号发送给所述滤波器 组。
应用中, 对应的近端基本单元 112和远端基本单元 121可以直接连接, 比如通过一 根光纤直连, 也可以将多个近端基本单元 112和多个远端基本单元 121分别汇聚到一个 接口, 并通过这两个汇聚的接口连接。 可选地, 近端机 11还包括远端机接口单元, 远 端机 12还包括近端机接口单元, 多个近端基本单元 112和多个远端基本单元 121通过 远端机接口单元、 近端机接口单元连接。
本实施例中的直放站可以为光纤直放站。 在这种场景下, 远端机接口单元为第一波 分复用 (Wavelength Division Multiplexing, 简称 WDM) 单元, 近端机接口单元为第 二 WDM单元, 第一介质转换模块和第二介质转换模块均为电光 (Electric-to-Optic, 简称 E/C) 转换模块。 具体地, 第一 WDM单元和第二 WDM单元可以采用稀疏波分复用 ( Coarse Wavelength Division Multiplexing, 简称 CWDM) 或密集波分复用 ( Dense Wavelength Division Multiplexing, 简称 DWDM) 技术。
应用中,第一下行校准单元 114和第一上行校准单元 115可以合并为近端校准单元; 第二下行校准单元 122和第二上行校准单元 123可以合并为远端校准单元; 第一多载波 模块和第二多载波模块可以分别由一个现场可编程门阵列 (Field— Programmable Gate Array, 简称 FPGA) 实现。
需要说明的是, 当对上行信号和下行信号的下倾角、 方位角和波宽的要求一致时, 可以只生成一个控制指令, 近端基本单元和近端基本单元均根据该控制指令对上 /下行 信号进行处理。 对于一些特殊的应用, 比如上下行信号不平衡时, 也可以生成不同的控 制指令, 从而近端机可以根据不同的控制指令针对上行信号和下行信号设置不同的下倾 角、 方位角和波宽, 以平衡上下行信号。
本实用新型实施例采用在远端机中阵列状设置多个远端基本单元,在近端机中根据 控制指令指示的上行信号的下倾角和 /或方位角生成各远端基本单元的上行信号相位, 在与所述多个远端基本单元对应的多个近端基本单元中分别根据对应的远端基本单元 的上行信号相位对所述上行信号进行相位调整, 或根据控制指令指示的下行信号的下倾 角和 /或方位角生成各远端基本单元的下行信号相位, 在与所述多个远端基本单元对应 的多个近端基本单元中分别根据对应的远端基本单元的下行信号相位对所述下行信号 进行相位调整的技术手段,可以通过调整多个远端基本单元对应的上行信号或下行信号 的相位, 获得期望的上行信号或下行信号的下倾角或方位角, 提高了调节下倾角和 /或 方位角的效率和准确度, 克服了现有技术中上塔调整重发天线的方位角导致的建站费用 高、 效率低, 以及机械调节重发天线的下倾角和方位角导致的效率低且准确度不高的问 题, 并且还可以实现动态调整水平 /垂直波束宽度。 通过多个远端基本单元同时发送小 功率的下行信号, 可以实现远端机大功率的要求, 可降低远端机的功耗, 从而减小远端 机的体积和降低远端机的重量, 也可以降低 CAPEX。 进一步地, 本实施例通过在近端机 中进行变频, 将射频信号而不是基带信号进行介质转换后发给远端机, 可以减小远端机 的所需功率。 另外, 还可以针对多载波分别设置各远端基本单元的各载波的信号相位, 可以有效发挥载波容量。
图 4为图 3所示实施例中远端基本单元 121的一种应用示意图。 如图 4所示, 0/E 表示光电转换器, LNA表示上行低噪声宽带放大器, PA表示下行宽带放大器, Filters 表示滤波器组, COUP表示耦合器, ANT表示天线。其中, LNA和 PA均可以为多个放大器 级连, 天线中可包含至少一个天线振子。
举例来说, 每个远端基本单元中滤波器组的输出功率为 P1分贝豪瓦 (dBm) , 天线 的增益为 Pant点圆天线增益( dBi ), 若有 N个远端基本单元按一列垂直设置, N为大 于 0 的正整数, 则这 N个远端基本单元的天线输出的有效全向辐射功率 (Effective Isotropic Radiated Power, 简称 EIRP) 的值 P满足: P=Pl+Pant+20*logN, P的单位 为 dBm。 一般地, 假定: Pl=25dBm, Pant=9dBi , 则 P和 N的关系如表 1所示。 表 1 N 4 5 6 7 8 9 10
P 46 48 50 51 52 53 54 若有 N*M个远端基本单元在垂直面、 水平面进行组合, 即按 M个一行、 N个一列设 置, 其中 N、 M均为大于零的正整数, 则这 N*M个远端基本单元的天线输出的 EIRP的值 P满足: P=Pl+Pant+2(WogN+2(WogM。
可以看出, 单个远端基本单元的输出功率可以为小功率, 通过阵列状设置的多个远 端基本单元可以将多个小功率合成为大功率。
图 5为图 2和图 3所示实施例中直放站的一种应用示意图。 如图 5所示, 直放站包 括通过光纤连接的近端机和远端机。 近端机包括基站接口单元、 近端校准单元、 多个近 端基本单元和 WDM (远端机接口单元) ; 远端机包括 WDM (近端机接口单元) 、 远端校 准单元和多个如图 4所示的远端基本单元。 图中, RX表示接收通道, TX表示发送通道, RX 校准表示接收校准, TX 校准表示发送校准, RX DBF 表示接收信号数字波束赋形 ( Digital Beam Forming, 简称 DBF) , TX DBF表示发送信号 DBF, ADC表示模数转换, DAC表示数模转换, IFRX表示接收信号的中频处理, IFTX表示发送信号的中频处理, FPGA 表示 (FIRX/IFTX) 通过现场可编程门阵列 (Field— Programmable Gate Array , 简称 FPGA) 实现, 其中 DAC+TX完成对下行信号从基带形式到射频形式的转换, RX+ADC完成 对上行信号从射频形式到基带形式的转换。 通常, 近端机还包括图中未示出的数字信号 处理 ( Digital Signal Processing, 简称 DSP ) 单元、 CPU、 源、 时钟等, 其中 DSP单 元和 CPU配合实现控制器的功能。 图 5所示直放站的工作原理如下所述。
下行方向:近端机耦合基站的下行信号,将基站的下行信号下变频, 中频数字化后, 数字下变频, 在 FPGA中分离 X个载波, 通过降速和滤波, 将每个载波分为 N*M路(即 N 行 M列的远端基本单元) , 进行 DBF系数设置 (共有 N*M*X个 DBF系数) , 再进行升速 和滤波, 数字上变频, 合路 X个载波, 数模转换后, 经过模拟上变频, 放大后, 再进行 电光转换, 从近端机输出, 在远端机上完成光电转换, 放大, 从天线振子输出。
上行方向: 从每个远端基本单元的天线振子耦合到 N*M路上行信号, 放大后, 进行 电光转换, 从远端机输出到近端机, 再进行光电转换, 放大后, 经模拟下变频, 模数转 换后, 数字下变频, 形成 X路载波通道, 降速和滤波, 进行 DBF系数设置, 再进行 N*M 路的每个载波合路, 再升速和滤波, 数字上变频, 合路 X路载波, 进行数模转换, 再模 拟上变频, 放大, 滤波, 从近端机输出上行信号。 这里的 DBF系数包括信号相位, 还可以包括信号幅度。 图 6为图 5所示应用中的两 个载波的一种波束示意图, 如图 6所示, 当为两个载波 Fl、 F2设置不同的 M列的 DBF 系数, 即控制各列之间的相位差和幅度差, 可以获得不同的水平波宽和方位角, 其中载 波 F1可做热点覆盖。 图 7 为图 5所示应用中的两个载波的又一波束示意图, 如图 7所 示, 当为两个载波 Fl、 F2设置不同的 M列的 DBF系数, 即控制各列之间的幅度差, 可 以获得不同的水平波宽, 从而方便与宏网的协同优化。 图 8为图 5所示应用中的两个载 波的再一波束示意图, 如图 8所示, 当为两个载波 Fl、 F2设置不同的 N行的 DBF***, 即控制各行之间的相位差, 可以获得不同的下倾角。
由于在各远端基本单元的天线形成的天线阵列间会存在有两种误差:非时变误差和 时变误差, 因此需要进行通道误差校正。 其中, 非时变误差包括由阵列排布引起的如阵 元几何位置差异、 阵元间的互耦效应、 天线方向图差异、 各阵元间馈线差异等带来的误 差; 时变误差是指阵列各射频通道随温度而变化的放大器相位和增益差异、 混频器等器 件的老化、 滤波器时延、 幅频相频特性失真、 正交调制解调器的不平衡等引起的频率响 应不一致所带来的误差。 通道误差校正的实质是跟踪和补偿通道幅相特性, 减少通道间 相对误差, 满足上、 下行波束形成算法控制精度要求。
收发通道的校准信号都采用比通道信号低 20dB 以上的伪随机信号, 即信噪比 ( Signal-to-Noise Ratio, 简称 SNR) 小于 _20dB, 以不影响业务信号。 业务接收通道 (即上行远端基本单元) 与业务发射通道 (即下行远端基本单元) 可同时进行校准。
对于发射校准通道(即第二下行校准单元) , 首先由各业务接收通道的接收的信号 强度指示 (Received Signal Strength Indication, 简称 RSSI ) , 计算出需要多大的 发射校准信号, 则根据到达业务接收通道的校准信号要比业务信号低 20dB的原则, 计 算出采用伪随机序列信号发送的功率大小并进行发送通过业务接收通道进行解调,采用 长时间的相关积累来完成业务接收通道特性提取并完成校准工作。
对于接收校准通道 (即第二上行校准单元) , 由各业务发射通道发出幅度一致的、 比业务发射通道中最小的输出功率值小 20dB的伪随机信号, 随业务信号一起发射, 然 后通过接收校准通道进行接收, 解调, 采用长时间的相关积累来完成业务发射通道特性 提取并完成校准工作。
本实用新型实施例中的远端机可采用包括但不限于以下的方式实现:
若一个远端基本单元包括一个极化的天线振子, 在这种场景下, 可采用一个 TRX驱 动一个天线振子, 可不用收发分集技术, 即采用单极化天线。 N*M个远端基本单元可以 按 N列、 M行设置, N可取大于等于 4的整数, M可取大于等于 1的整数。
若一个远端基本单元包括两个同一极化的天线振子,在这种场景下,可采用一个 TRX 驱动两个天线振子, 可不用收发分集技术, 即采用单极化天线。 N*M/2个远端基本单元 可以按 N/2列、 M行设置, N可取大于等于 4的偶数, M可取大于等于 1的整数。
也就是说, 在不影响下倾角和方位角调整效果的基础上, 当一个远端基本单元包括 两个同一极化的天线振子时, 远端机可以包括更少的远端基本单元, 成本更低。
最后应说明的是: 以上实施例仅用以说明本实用新型的技术方案,而非对其限制; 尽管参照前述实施例对本实用新型进行了详细的说明, 本领域的普通技术人员应当理 解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特 征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本实用新型 各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种直放站, 其特征在于, 包括近端机和远端机;
所述近端机包括: 基站接口单元, 与所述基站接口单元连接的多个近端基本单元, 与所述多个近端基本单元连接的控制器;
所述远端机包括: 多个远端基本单元, 所述多个远端基本单元阵列状设置, 所述多 个远端基本单元与所述多个近端基本单元一一对应;
所述基站接口单元, 用于接收基站发送的下行信号, 将所述下行信号发送给所述多 个近端基本单元;
所述控制器, 用于根据控制指令指示的下行信号的下倾角和 /或方位角, 生成各远 端基本单元的下行信号相位;
所述多个近端基本单元, 分别用于根据所述控制器生成的对应的远端基本单元的下 行信号相位, 对所述基站接口单元发送的下行信号进行相位调整, 并将相位调整后的下 行信号发送给对应的远端基本单元;
所述多个远端基本单元, 分别用于接收对应的近端基本单元发送的下行信号, 并发 送;
所述多个远端基本单元, 分别还用于接收上行信号并发送给对应的近端基本单元; 所述控制器, 用于根据控制指令指示的上行信号的下倾角和 /或方位角生成各远端 基本单元的上行信号相位;
所述多个近端基本单元, 分别还用于根据所述控制器生成的对应的远端基本单元的 上行信号相位, 对所述对应的远端基本单元发送的上行信号进行相位调整, 并将相位调 整后的上行信号发送给所述基站接口单元;
所述基站接口单元, 还用于将所述多个近端基本单元发送的上行信号发送给基站。
2、 根据权利要求 1所述的直放站, 其特征在于, 所述多个近端基本单元中的每个 包括: 依次连接的基带处理模块、 下行参数设置模块、 变频模块和第一介质转换模块; 所述基带处理模块, 与所述基站接口单元连接, 用于对所述基站接口单元发送的下 行信号进行基带处理;
所述下行参数设置模块, 与所述控制器连接, 用于根据所述控制器生成的所属近端 基本单元对应的远端基本单元的下行信号相位对基带处理后的下行信号进行相位调整; 所述变频模块, 用于将相位调整后的下行信号转换成射频形式;
所述第一介质转换模块, 用于对射频形式的下行信号进行介质转换, 并发送给所属 近端基本单元对应的远端基本单元。
3、 根据权利要求 2所述的直放站, 其特征在于, 所述近端基本单元中的每个还包 括: 上行参数设置模块, 与所述基带处理模块和变频模块连接;
所述第一介质转换模块还用于,接收所属近端基本单元对应的远端基本单元发送的 上行信号, 对所述上行信号进行介质转换;
所述变频模块还用于, 将介质转换后的上行信号转换成基带形式;
所述上行参数设置模块, 与所述控制器连接, 用于根据所述控制器生成的所属近端 基本单元对应的远端基本单元的上行信号相位对基带形式的上行信号进行相位调整; 所述基带处理模块, 用于对相位调整后的上行信号进行基带处理, 将基带处理后的 上行信号发送给所述基站接口单元。
4、 根据权利要求 3所述的直放站, 其特征在于, 所述直放站支持多个载波, 所述 多个近端基本单元中的每个包括多个基带处理模块、 多个下行参数设置模块, 且多个基 带处理模块、 多个下行参数设置模块与所述多个载波一一对应, 所述多个近端基本单元 中的每个还包括第一多载波模块和第二多载波模块,所述多个基带处理单元和所述基站 接口单元通过所述第一多载波模块连接,所述多个下行参数设置模块和所述变频模块通 过所述第二多载波模块连接;
所述控制器具体用于, 根据控制指令指示的各载波的下行信号的下倾角和 /或方位 角生成各远端基本单元的各载波的下行信号相位;
所述第一多载波模块, 用于接收所述基站接口单元发送的下行信号, 对所述下行信 号进行载波分离, 得到各载波的下行分信号;
所述多个基带处理模块, 分别用于对对应载波的下行分信号进行基带处理, 将基带 处理后的对应载波的下行分信号发送给对应的下行参数设置模块;
所述多个下行参数设置模块, 分别用于根据所述控制器生成的所属近端基本单元对 应的远端基本单元的各载波的下行信号相位,对基带处理后的对应载波的下行分信号进 行相位调整;
所述第二多载波模块, 用于将相位调整后的各载波的下行分信号进行载波合路; 所述变频模块具体用于, 将载波合路后的信号转换成射频形式;
所述第一介质转换模块具体用于, 将射频形式的信号进行介质转换, 并发送给所述 近端基本单元对应的远端基本单元。
5、 根据权利要求 4所述的直放站, 其特征在于, 所述多个近端基本单元中的每个 还包括多个上行参数设置模块, 且多个上行参数设置模块与所述多个载波一一对应, 所 述多个上行参数设置模块和所述变频模块通过所述第二多载波模块连接;
所述控制器还用于, 根据控制指令指示的各载波的上行信号的下倾角和 /或方位角 生成各远端基本单元的各载波的上行信号相位;
所述第一介质转换模块还用于,接收所属近端基本单元对应的远端基本单元发送的 上行信号, 进行介质转换;
所述变频模块还用于, 将介质转换后的上行信号转换成基带形式;
所述第二多载波模块还用于, 将基带形式的上行信号进行载波分离, 得到各载波的 上行分信号;
所述多个上行参数设置模块, 分别用于根据所述控制器生成的所属近端基本单元对 应的远端基本单元的各载波的上行信号相位, 对对应载波的上行分信号进行相位调整, 将相位调整后的对应载波的上行分信号发送给对应的基带处理模块;
所述多个基带处理模块还分别用于,对相位调整后的对应载波的上行分信号进行基 带处理;
所述第一多载波模块, 用于将基带处理后的各载波的上行分信号进行载波合路, 并 发送给所述基站接口单元。
6、 根据权利要求广 5任一所述的直放站, 其特征在于, 所述近端机还包括: 与所 述多个近端基本单元连接的第一下行校准单元;
所述远端机还包括: 与所述多个远端基本单元和所述第一下行校准单元连接的第二 下行校准单元;
所述第一下行校准单元, 用于生成第一校准信号, 并将所述第一校准信号发送给所 述多个远端基本单元;
所述多个远端基本单元还分别用于, 对所述第一校准信号进行处理;
所述第二下行校准单元,用于将各远端基本单元处理后的第一校准信号发送给所述 第一下行校准单元;
所述第一下行校准单元还用于,根据生成的第一校准信号和所述第二校准单元返回 的各远端基本单元处理后的第一校准信号, 生成各远端基本单元的下行校准参数; 所述多个近端基本单元分别具体用于,根据所述控制器生成的对应的远端基本单元 的下行信号相位和所述第一下行校准单元生成的对应的远端基本单元的下行校准参数, 对所述下行信号进行相位调整。
7、 根据权利要求 6所述的直放站, 其特征在于, 所述近端机还包括: 与所述多个 近端基本单元连接的第一上行校准单元;
所述远端机还包括: 与所述多个远端基本单元和所述第一上行校准单元连接的第二 上行校准单元;
所述第一上行校准单元, 用于生成第二校准信号, 并将所述第二校准信号发送给所 述第二上行校准单元;
所述第二上行校准单元, 用于将所述第二校准信号发送给所述多个远端基本单元; 所述多个远端基本单元还分别用于, 对所述第二校准信号进行处理, 并将处理后的 第二校准信号发送给所述第一上行校准单元;
所述第一上行校准单元还用于,根据生成的第二校准信号和各远端基本单元返回的 处理后的第二校准信号, 生成各远端基本单元的上行校准参数;
所述多个近端基本单元分别具体用于,根据所述控制器生成的对应的远端基本单元 的上行信号相位和所述第一上行校准单元生成的对应的远端基本单元的上行校准参数, 对所述上行信号进行相位调整。
8、 根据权利要求 7所述的直放站, 其特征在于, 所述多个远端基本单元中的每个 包括: 依次连接的第二介质转换模块、 放大器、 滤波器组、 耦合器和天线, 所述耦合器 分别与所述第二下行校准单元和第二上行校准单元连接。
9、 根据权利要求 8所述的直放站, 其特征在于, 所述近端机还包括远端机接口单 元, 所述远端机还包括近端机接口单元, 所述多个近端基本单元和所述多个远端基本单 元通过所述远端机接口单元、 近端机接口单元连接。
10、 根据权利要求 9所述的直放站, 其特征在于, 所述直放站为光纤直放站, 所述 远端机接口单元为第一波分复用 WDM单元, 所述近端机接口单元为第二 WDM单元, 所述第 一介质转换模块和第二介质转换模块均为光电转换模块。
PCT/CN2012/083147 2011-10-18 2012-10-18 直放站 WO2013056659A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/870,093 US8787763B2 (en) 2011-10-18 2013-04-25 Repeater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120396606.3 2011-10-18
CN 201120396606 CN202231722U (zh) 2011-10-18 2011-10-18 直放站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/870,093 Continuation US8787763B2 (en) 2011-10-18 2013-04-25 Repeater

Publications (1)

Publication Number Publication Date
WO2013056659A1 true WO2013056659A1 (zh) 2013-04-25

Family

ID=46082294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083147 WO2013056659A1 (zh) 2011-10-18 2012-10-18 直放站

Country Status (3)

Country Link
US (1) US8787763B2 (zh)
CN (1) CN202231722U (zh)
WO (1) WO2013056659A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202231722U (zh) * 2011-10-18 2012-05-23 华为技术有限公司 直放站
CN202713297U (zh) * 2012-07-10 2013-01-30 华为技术有限公司 远端机和直放站***
CN103916176B (zh) * 2013-01-04 2018-08-10 ***通信集团公司 一种无线直放站及其天线校准方法
WO2016023207A1 (zh) * 2014-08-14 2016-02-18 华为技术有限公司 一种信号处理方法以及相关设备和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298847Y (zh) * 2008-10-21 2009-08-26 福建先创电子有限公司 一种选频加变频的直放站设备
US20100093282A1 (en) * 2008-10-15 2010-04-15 Nokia Siemens Networks Oy MULTI-TRANSCEIVER ARCHITECTURE FOR ADVANCED Tx ANTENNA MONITORING AND CALIBRATION IN MIMO AND SMART ANTENNA COMMUNICATION SYSTEMS
CN202231722U (zh) * 2011-10-18 2012-05-23 华为技术有限公司 直放站

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710653A (en) * 1995-03-06 1998-01-20 Fiber Optic Network Solutions Corp. Linear multi-output optical transmitter system
US6615024B1 (en) * 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
KR100338623B1 (ko) * 2000-07-10 2002-05-30 윤종용 디지털 광 링크를 이용한 이동통신망 시스템
US6895185B1 (en) * 2000-08-24 2005-05-17 Korea Advanced Institute Of Science And Technology Multi-purpose optical fiber access network
US6826164B2 (en) * 2001-06-08 2004-11-30 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US7639196B2 (en) * 2001-07-10 2009-12-29 Andrew Llc Cellular antenna and systems and methods therefor
US7197282B2 (en) * 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US6983127B1 (en) * 2001-07-31 2006-01-03 Arraycomm, Inc. Statistical calibration of wireless base stations
US20050085267A1 (en) * 2001-12-26 2005-04-21 Paul Lemson Modular base station antenna control system
US20040057543A1 (en) * 2002-09-24 2004-03-25 Arie Huijgen Synchronizing radio units in a main-remote radio base station and in a hybrid radio base station
US6785558B1 (en) * 2002-12-06 2004-08-31 Lgc Wireless, Inc. System and method for distributing wireless communication signals over metropolitan telecommunication networks
EP1576779B1 (en) * 2002-12-24 2015-12-09 Telecom Italia S.p.A. Radio base station receiver having digital filtering and reduced sampling frequency
CN100452898C (zh) * 2004-03-04 2009-01-14 Ut斯达康通讯有限公司 无线基站中的负荷分担方法与***
WO2006046088A1 (en) * 2004-10-25 2006-05-04 Telecom Italia S.P.A. Communications method, particularly for a mobile radio network
WO2006099209A2 (en) * 2005-03-11 2006-09-21 Ems Technologies, Inc. Remotely controllable and reconfigurable wireless repeater
WO2007015296A1 (ja) * 2005-08-03 2007-02-08 National Institute Of Information And Communications Technology Incorporated Administrative Agency 無線通信システム
KR100762637B1 (ko) * 2006-05-03 2007-10-01 삼성전자주식회사 Tdd 방식의 무선 시스템 신호 전송을 위한 단일 파장양방향 rof 링크 장치
KR100819257B1 (ko) * 2006-08-31 2008-04-02 삼성전자주식회사 전송시간을 제어하기 위한 radio over fiber시스템 및 방법
US7848654B2 (en) * 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US7747225B2 (en) * 2006-10-03 2010-06-29 Motorola, Inc. Mobile assisted downlink beamforming with antenna weight feedback
KR100866217B1 (ko) * 2007-03-28 2008-10-30 삼성전자주식회사 시분할 듀플렉싱 시스템에서 시스템 지연 시간과 프레임길이를 구성하는 방법 및 장치
US8280259B2 (en) * 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
EP2702780A4 (en) * 2011-04-29 2014-11-12 Corning Cable Sys Llc SYSTEMS, METHODS AND DEVICES FOR INCREASING HIGH-FREQUENCY (HF) PERFORMANCE IN DISTRIBUTED ANTENNA SYSTEMS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093282A1 (en) * 2008-10-15 2010-04-15 Nokia Siemens Networks Oy MULTI-TRANSCEIVER ARCHITECTURE FOR ADVANCED Tx ANTENNA MONITORING AND CALIBRATION IN MIMO AND SMART ANTENNA COMMUNICATION SYSTEMS
CN201298847Y (zh) * 2008-10-21 2009-08-26 福建先创电子有限公司 一种选频加变频的直放站设备
CN202231722U (zh) * 2011-10-18 2012-05-23 华为技术有限公司 直放站

Also Published As

Publication number Publication date
US8787763B2 (en) 2014-07-22
US20130236182A1 (en) 2013-09-12
CN202231722U (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
US9030363B2 (en) Method and apparatus for tilting beams in a mobile communications network
KR101691246B1 (ko) 무선 네트워크를 위한 적응형 전치왜곡을 갖는 다중―요소 진폭 및 위상 보상 안테나 어레이
US9444534B2 (en) Apparatus and method for low complexity spatial division multiple access in a millimeter wave mobile communication system
US7433713B2 (en) Mobile radio base station
US20080293451A1 (en) Sectorisation of Cellular Radio
CN107078399B (zh) 多扇区mimo有源天线***和通信设备
US10798715B2 (en) Point-to-point radio system having a phased array antenna system
CN105322987A (zh) 无线网络装置与无线网络控制方法
WO2016090909A1 (zh) 一种天线及有源天线***
WO2018103677A1 (zh) 一种微波天线阵列通信***及通信方法
CN101051860A (zh) 一种馈电网络装置、天馈子***和基站***
WO2013097395A1 (zh) 有源天线装置及其收发信号的方法
US10461820B2 (en) Wireless communication using wireless active antennas
WO2013056659A1 (zh) 直放站
WO2015067152A1 (zh) 天线***、天线和基站
CN102571175B (zh) 一种有源天线及有源天线的信号处理方法
CN107211484A (zh) 无线***中的对称和全双工中继器
US8559888B2 (en) Signal polarization method, apparatus, and system
CN110544835B (zh) 一种用于超视距无线通信的有源平面角分集天线
CN202713297U (zh) 远端机和直放站***
JP4681540B2 (ja) アンテナ装置および基地局
KR100748337B1 (ko) 이중편파 다이버시티 능동형 마이크로스트립 배열 안테나
WO2019217906A1 (en) Multi-band cellular antenna system
WO2021213407A1 (zh) 一种天线阵列及基站
WO2024036622A1 (zh) 信号处理装置及时分双工***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841774

Country of ref document: EP

Kind code of ref document: A1