WO2013054828A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2013054828A1
WO2013054828A1 PCT/JP2012/076277 JP2012076277W WO2013054828A1 WO 2013054828 A1 WO2013054828 A1 WO 2013054828A1 JP 2012076277 W JP2012076277 W JP 2012076277W WO 2013054828 A1 WO2013054828 A1 WO 2013054828A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
slit
electrode
display device
crystal display
Prior art date
Application number
PCT/JP2012/076277
Other languages
English (en)
French (fr)
Inventor
吉田 秀史
豪 鎌田
前田 強
村田 充弘
洋二 吉村
祐一郎 山田
謙次 岡元
洋典 岩田
安宏 那須
坂井 彰
雅浩 長谷川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/350,943 priority Critical patent/US9575364B2/en
Publication of WO2013054828A1 publication Critical patent/WO2013054828A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a vertical alignment type liquid crystal layer and having a wide viewing angle characteristic.
  • a liquid crystal display device including a vertical alignment type liquid crystal layer is called a VA (Vertical Alignment) mode liquid crystal display device.
  • VA mode liquid crystal display devices currently used in large display devices such as televisions employ an alignment division structure in which a plurality of liquid crystal domains are formed in one pixel in order to improve viewing angle characteristics.
  • an MVA (Multi-domain / Vertical / Alignment) mode is mainly used as a method of forming the alignment division structure.
  • the MVA mode is disclosed in Patent Document 1, for example.
  • a plurality of liquid crystal domains having different alignment directions (tilt directions) in each pixel are provided by providing an alignment regulating structure on each liquid crystal layer side of a pair of substrates facing each other with a vertical alignment type liquid crystal layer interposed therebetween. Specifically, four types of orientation directions are formed.
  • the alignment regulating structure slits (openings) and ribs (projection structure) formed in the electrode are used, and the alignment regulating force is exhibited from both sides of the liquid crystal layer.
  • the slits and ribs are linear, unlike the case where the pretilt direction is defined by the alignment film used in the conventional TN (Twisted ⁇ Nematic) mode. Since the force becomes non-uniform in the pixel, there is a problem that the response speed is distributed. In addition, since the light transmittance of the region where the slits and ribs are provided is lowered, there is also a problem that display luminance is lowered.
  • a quadrant alignment structure is formed by defining a pretilt direction with an alignment film. That is, when a voltage is applied to the liquid crystal layer, four liquid crystal domains are formed in one pixel.
  • Such a quadrant alignment structure is sometimes simply referred to as a 4D structure.
  • a pretilt direction defined by one alignment film of a pair of alignment films opposed via a liquid crystal layer and a pretilt defined by the other alignment film are provided.
  • the directions differ from each other by approximately 90 °. Therefore, when a voltage is applied, the liquid crystal molecules are twisted.
  • the VA mode in which the liquid crystal molecules are twisted by using a pair of vertical alignment films provided so that the pretilt directions (alignment processing directions) are orthogonal to each other is a VATN (Vertical Alignment Twisted Nematic) mode or an RTN mode. Also called (Reverse Twisted Nematic) mode.
  • the display mode of the liquid crystal display device of Patent Document 2 is sometimes called a 4D-RTN mode.
  • a method of performing photo-alignment treatment is considered promising. Since the photo-alignment treatment can be performed in a non-contact manner, there is no generation of static electricity due to friction unlike the rubbing treatment, and the yield can be improved.
  • the alignment film subjected to the photo-alignment treatment is also called a photo-alignment film.
  • PSA technology Polymer Sustained Alignment Technology
  • the PSA technique is disclosed in Patent Documents 3 and 4, for example.
  • a polymer layer called an alignment maintaining layer is used to give a pretilt to liquid crystal molecules.
  • the alignment maintaining layer is formed by polymerizing a photopolymerizable monomer previously mixed with a liquid crystal material in a state where a voltage is applied to the liquid crystal layer after producing a liquid crystal cell.
  • the pretilt azimuth azimuth angle in the substrate surface
  • pretilt angle rise angle from the substrate surface
  • Patent Document 4 discloses a configuration using a pixel electrode having a fine stripe pattern together with the PSA technique (sometimes referred to as “fishbone pixel electrode”).
  • the liquid crystal molecules are aligned parallel to the longitudinal direction of the stripe pattern.
  • the line and space of the fine stripe pattern may be smaller than the width of the conventional MVA mode alignment regulating structure. Therefore, the fishbone type pixel electrode has an advantage that it is easier to apply to a small pixel than the conventional MVA mode alignment regulating structure.
  • VA mode technology (4D-RTN mode, PSA technology, fishbone type pixel electrode) as described above, high viewing angle characteristics can be realized.
  • pixel division driving technology has been put into practical use (for example, Patent Documents 5 and 6).
  • the pixel division driving technique improves the problem that the ⁇ (gamma) characteristic when observed from the front direction is different from the ⁇ characteristic when observed from the oblique direction, that is, the viewing angle dependency of the ⁇ characteristic.
  • the ⁇ characteristic is the gradation dependency of display luminance.
  • one pixel can be configured by a plurality of subpixels that can apply different voltages to the liquid crystal layer, that is, can exhibit different luminances, and has a predetermined value corresponding to a display signal voltage input to the pixel. Is realized by one whole pixel.
  • the pixel division driving technique is a technique for improving the viewing angle dependency of the ⁇ characteristics of the pixels by combining different ⁇ characteristics of a plurality of sub-pixels.
  • the pixel electrode provided in each pixel has a plurality of subpixel electrodes corresponding to the plurality of subpixels.
  • a switching element for example, TFT is provided corresponding to each subpixel electrode.
  • Patent Document 5 discloses a configuration in which a plurality of sub-pixel electrodes constituting one pixel are connected to different signal lines. In this configuration, the number of signal lines increases as compared with a conventional general liquid crystal display device. Also, the configuration of the signal line driver circuit is different from the conventional one.
  • Patent Document 5 discloses a configuration in which the voltage applied to the liquid crystal layer is made different for each sub-pixel using capacitive division.
  • each of the plurality of subpixels is formed by an auxiliary capacitance electrode electrically connected to the subpixel electrode, an insulating layer, and an auxiliary capacitance counter electrode facing the auxiliary capacitance electrode via the insulating layer.
  • the storage capacitor counter electrode is electrically independent for each subpixel. Therefore, the magnitude of the effective voltage applied to the liquid crystal layer is adjusted by adjusting the magnitude of the capacitance value of the auxiliary capacity and the voltage supplied to the auxiliary capacity counter electrode (referred to as the auxiliary capacity counter voltage). Control can be performed for each pixel.
  • the area ratio of the plurality of subpixels is more equal than the area ratio (specifically In this case, the area ratio of the sub-pixel having a relatively high voltage applied to the liquid crystal layer is smaller), and the effect of improving the viewing angle dependency of the ⁇ characteristic is high.
  • the light transmittance during white display takes a maximum value when the area ratio of the plurality of sub-pixels is uniform, and decreases as the area ratio becomes uneven. This is because as the area ratio becomes uneven, the area of any of the plurality of sub-pixels becomes smaller, so that a good divided alignment state cannot be obtained.
  • the present invention has been made in view of the above problems, and an object thereof is to sufficiently improve the viewing angle dependency of the ⁇ characteristic in a VA mode liquid crystal display device with a relatively simple circuit configuration.
  • a liquid crystal display device is provided on a liquid crystal layer side of a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other through the liquid crystal layer, and the first substrate.
  • a first electrode and a second electrode provided on the liquid crystal layer side of the second substrate; a pair of electrodes provided between the first electrode and the liquid crystal layer and between the second electrode and the liquid crystal layer;
  • the liquid crystal on the slit is set to be less than 45 °.
  • the width of the slit is such that an effective applied voltage drop amount in the liquid crystal layer on the slit when the highest gradation voltage is supplied to the first electrode is 1.0 V or more. Is set to
  • the width of the slit is such that a deviation of the alignment direction of liquid crystal molecules in the liquid crystal layer on the slit with respect to the reference alignment direction when the highest gradation voltage is supplied to the first electrode is 30 ° or less. Is set to be.
  • the slit has a width of 2.5 ⁇ m or more.
  • the slit has a width of 4.0 ⁇ m or more.
  • the slit has a width of less than 8.0 ⁇ m.
  • the slit has a width of 6.0 ⁇ m or less.
  • the first substrate further includes a third electrode provided below the first electrode with a dielectric layer therebetween.
  • the third electrode is supplied with substantially the same voltage as that supplied to the second electrode.
  • the slit has a width of 1.0 ⁇ m or more.
  • the slit has a width of 2.0 ⁇ m or more.
  • the slit has a width of less than 6.0 ⁇ m.
  • the slit has a width of 4.5 ⁇ m or less.
  • a ratio of the slit forming region in the region corresponding to each of the first liquid crystal domain and the second liquid crystal domain of the first electrode is 1/3 or more.
  • a ratio of the slit forming region in the region corresponding to each of the first liquid crystal domain and the second liquid crystal domain of the first electrode is 2/3 or more.
  • a plurality of the slits are formed in the slit forming region, and the plurality of slits have substantially the same width.
  • a plurality of the slits are formed in the slit forming region, and the plurality of slits have a slit having a first width and a second width different from the first width. And a slit.
  • the slit is completely surrounded by the conductive film of the first electrode when viewed from the normal direction of the display surface.
  • the slit when viewed from the normal direction of the display surface, is not completely surrounded by the conductive film of the first electrode.
  • the first electrode has a slit non-formation region where no slit is formed in another part of the region corresponding to each of the first liquid crystal domain and the second liquid crystal domain.
  • the first electrode has a width different from a width of the slit in the slit forming region in another part of the region corresponding to each of the first liquid crystal domain and the second liquid crystal domain. It has the further slit formation area
  • the first substrate is an active matrix substrate
  • the first electrode is a pixel electrode
  • the pixel electrode includes a plurality of subpixel electrodes, and each of the plurality of pixel regions includes a plurality of subpixel regions corresponding to the plurality of subpixel electrodes, and the plurality of subpixel regions. Each have the first liquid crystal domain and the second liquid crystal domain.
  • each of the plurality of pixel regions further includes a third liquid crystal domain in which the reference alignment direction is a third direction, and a fourth liquid crystal domain in which the reference alignment direction is a fourth direction.
  • the first direction, the second direction, the third direction, and the fourth direction are four directions in which the difference between any two directions is substantially equal to an integral multiple of 90 °, and the first electrode is
  • the slit forming region is also provided in part of a region corresponding to each of the third liquid crystal domain and the fourth liquid crystal domain.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are adjacent to other liquid crystal domains and arranged in a matrix of 2 rows and 2 columns. Has been.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are arranged such that the reference alignment direction differs by approximately 90 ° between adjacent liquid crystal domains. Yes.
  • a portion of the edge of the first electrode adjacent to the first liquid crystal domain has an azimuth direction perpendicular to the first electrode and directed toward the inside of the first electrode at an angle greater than 90 ° with the first direction.
  • the portion of the edge of the first electrode that is close to the second liquid crystal domain does not include an edge portion that forms an angle of 90 ° with respect to the second direction.
  • the portion of the edge of the first electrode that does not include an edge portion that forms a super corner and is close to the third liquid crystal domain is perpendicular to the third liquid crystal domain, and the azimuth direction toward the inside of the first electrode is the third direction.
  • the edge of the first electrode adjacent to the fourth liquid crystal domain is perpendicular to it and the azimuth direction toward the inside of the first electrode is the edge direction of the first electrode. Make an angle greater than 90 ° with the fourth direction It does not include the edge.
  • the first direction has an angle of about 45 ° with an azimuth angle direction that is perpendicular to a portion of the edge of the first electrode that is close to the first liquid crystal domain and that goes inward of the first electrode.
  • the second direction forms an angle of approximately 45 ° with an azimuth angle direction that is orthogonal to a portion of the edge of the first electrode adjacent to the second liquid crystal domain and goes inward of the first electrode
  • the third direction forms an angle of approximately 45 ° with an azimuth angle direction that is orthogonal to a portion of the edge of the first electrode that is close to the third liquid crystal domain and that goes inward of the first electrode
  • the fourth direction Forms an angle of approximately 45 ° with the azimuth angle direction that is perpendicular to the portion of the edge of the first electrode that is close to the fourth liquid crystal domain and that goes inward of the first electrode.
  • a portion of the edge of the first electrode adjacent to the first liquid crystal domain has an azimuth direction perpendicular to the first electrode and directed toward the inside of the first electrode at an angle greater than 90 ° with the first direction.
  • the portion of the edge of the first electrode that is close to the second liquid crystal domain is 90 ° perpendicular to the second liquid crystal domain, and the azimuth direction toward the inside of the first electrode is 90 ° with respect to the second direction.
  • a portion including a second edge portion having an angle of more than °, and a portion of the edge of the first electrode adjacent to the third liquid crystal domain is perpendicular to the third liquid crystal domain, and an azimuth angle direction toward the inside of the first electrode is the first edge portion.
  • the first direction forms an angle of approximately 135 ° with an azimuth angle direction that is orthogonal to the first edge portion and goes inward of the first electrode
  • the second direction is the second edge portion.
  • the third direction is substantially the same as the azimuth angle direction orthogonal to the third edge portion and toward the inner side of the first electrode.
  • An angle of 135 ° is formed
  • the fourth direction forms an angle of approximately 135 ° with an azimuth angle direction that is orthogonal to the fourth edge portion and goes inward of the first electrode.
  • the first direction is approximately 45 °, approximately 135 °, approximately 225 °, or approximately 315 °.
  • the liquid crystal display device further includes a pair of polarizing plates that are opposed to each other with the liquid crystal layer interposed therebetween and that have respective transmission axes that are substantially orthogonal to each other.
  • the second direction forms an angle of approximately 45 ° with the transmission axis of the pair of polarizing plates.
  • the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, and a pretilt direction defined by one of the pair of photo-alignment films and a pretilt direction defined by the other are It is approximately 90 ° different from each other.
  • a pretilt angle defined by one of the pair of photo-alignment films and a pretilt angle defined by the other are substantially equal to each other.
  • the viewing angle dependency of the ⁇ characteristic in the VA mode liquid crystal display device can be sufficiently improved with a relatively simple circuit configuration.
  • FIG. 1A illustrates a pretilt direction on the back substrate side
  • FIG. 2B illustrates a pretilt direction on the front substrate side
  • FIG. The tilt direction when a voltage is applied to the layer is shown.
  • FIG. 1A shows the pretilt direction by the side of a back substrate
  • FIG. 2B illustrates a pretilt direction on the front substrate side
  • FIG. The tilt direction when a voltage is applied to the layer is shown.
  • FIG. 3 is a plan view schematically showing one pixel region of the liquid crystal display device 100 in the embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing a liquid crystal display device 100 according to an embodiment of the present invention, and is a cross-sectional view taken along line 7A-7A ′ in FIG. 6.
  • (A) And (b) is the top view and sectional drawing which show the orientation state of the liquid crystal molecule at the time of the voltage application when the width
  • A) And (b) is the top view and sectional drawing which show typically the orientation state of the liquid crystal molecule at the time of the voltage application when the width
  • FIG. 12 is a diagram schematically showing a liquid crystal display device 200 according to an embodiment of the present invention, and is a cross-sectional view taken along line 12A-12A ′ in FIG. 11.
  • FIG. 27 is a diagram for explaining a method of dividing the pixel region shown in FIG. 26, where (a) shows the pretilt direction on the back substrate side, (b) shows the pretilt direction on the front substrate side, and (c) shows the liquid crystal. The tilt direction when a voltage is applied to the layer is shown.
  • FIG. 2 is a diagram for explaining the reason why a dark line is formed near the edge of a pixel electrode in the pixel region shown in FIG. 1.
  • A is a figure which shows the dark area
  • (b) is a pixel area
  • FIG. 6C is a diagram illustrating a dark region formed when displaying a certain halftone
  • FIG. 5C illustrates a dark region formed when displaying a certain halftone in the pixel region illustrated in FIG. FIG. FIG.
  • FIG. 27 is a diagram showing a dark region formed when displaying a certain halftone in the pixel region shown in FIG. 26.
  • FIG. 27 is a diagram for explaining a reason why a dark line is not formed in the vicinity of an edge of a pixel electrode in the pixel region illustrated in FIG. (A), (b), and (c) are the figures for demonstrating the method of performing the orientation process as shown to FIG. 27 (a) and (b) with respect to a back substrate and a front substrate.
  • (A), (b), and (c) are relative arrangement relationships between the active matrix substrate and the optical mask when the alignment process as shown in FIG. 27A is performed on the active matrix substrate (back substrate). It is a figure for demonstrating the specific example.
  • FIG. 27 (A) and (b) are specific examples of the relative arrangement relationship between the active matrix substrate and the optical mask when the alignment process as shown in FIG. 27 (a) is applied to the active matrix substrate (back substrate). It is a figure for demonstrating.
  • (A), (b), and (c) are specific examples of the relative positional relationship between the counter substrate and the optical mask when the alignment process as shown in FIG. 27B is performed on the counter substrate (front substrate). It is a figure for demonstrating an example.
  • (A) And (b) demonstrates the specific example of the relative arrangement
  • the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which liquid crystal molecules are aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film.
  • the liquid crystal material constituting the vertical alignment type liquid crystal layer has negative dielectric anisotropy.
  • pixel refers to a minimum unit that expresses a specific gradation in display, and in color display, for example, a unit that expresses each gradation of R, G, and B. Correspondingly, also called “dot”. A combination of the R pixel, the G pixel, and the B pixel constitutes one color display pixel.
  • the “pixel region” refers to a region of the liquid crystal display device corresponding to the “pixel” of display.
  • the “pretilt direction” is the alignment direction of the liquid crystal molecules defined by the alignment film, and indicates the azimuth angle direction in the display surface.
  • an angle formed by the liquid crystal molecules with the surface of the alignment film at this time is referred to as a “pretilt angle”.
  • a photo-alignment treatment described later is preferable.
  • a quadrant alignment structure can be formed by making the combination of the pretilt direction defined by one of the pair of alignment films facing each other through the liquid crystal layer different from the pretilt direction defined by the other in the pixel region. .
  • the pixel area divided into four has four liquid crystal domains.
  • a two-part alignment structure can be formed.
  • the pixel region divided into two has two liquid crystal domains.
  • Each liquid crystal domain is characterized by a tilt direction (also referred to as “reference alignment direction”) of liquid crystal molecules in the layer plane of the liquid crystal layer and in the vicinity of the center in the thickness direction when a voltage is applied to the liquid crystal layer.
  • the tilt direction (reference orientation direction) has a dominant influence on the viewing angle dependency of each domain.
  • This tilt direction is also the azimuth direction.
  • the reference of the azimuth angle direction is the horizontal direction of the display surface, and the counterclockwise direction is positive (when the display surface is compared to a clock face, the 3 o'clock direction is azimuth angle 0 ° and the counterclockwise direction is positive).
  • the tilt directions of the four liquid crystal domains are divided into four directions (for example, 12 o'clock direction, 9 o'clock direction, 6 o'clock direction, the difference between any two directions is substantially equal to an integral multiple of 90 °, 3 o'clock direction), the viewing angle characteristics are averaged, and a good display can be obtained.
  • the areas occupied by the four liquid crystal domains in the pixel region are substantially equal to each other.
  • the difference between the area of the largest liquid crystal domain and the area of the smallest liquid crystal domain among the four liquid crystal domains is preferably 25% or less of the largest area.
  • the tilt angle directions of the two liquid crystal domains differ by approximately 180 °, so that the viewing angle characteristics are averaged and a good display can be obtained.
  • a vertical alignment type liquid crystal layer exemplified in the following embodiment includes liquid crystal molecules having negative dielectric anisotropy (nematic liquid crystal material having negative dielectric anisotropy), and a pretilt direction defined by one alignment film.
  • the pretilt direction defined by the other alignment film is substantially 90 ° different from each other, and the tilt direction (reference alignment direction) is defined in the middle of these two pretilt directions.
  • the VA mode in which the liquid crystal molecules are twisted by using a pair of vertical alignment films provided so that the pretilt directions (alignment processing directions) are orthogonal to each other is called a VATN mode as described above.
  • the pretilt angles defined by each of the pair of alignment films are preferably substantially equal to each other. Since the pretilt angles are substantially equal, an advantage that display luminance characteristics can be improved is obtained. In particular, by setting the difference in pretilt angle to 1 ° or less, the tilt direction (reference alignment direction) of the liquid crystal molecules near the center of the liquid crystal layer can be stably controlled, and the display luminance characteristics can be improved. . This is presumably because when the difference in pretilt angle exceeds 1 °, a region having a transmittance higher than the desired transmittance is formed and the contrast ratio is lowered.
  • a method for defining the pretilt direction by the alignment film As a method for defining the pretilt direction by the alignment film, a method of performing a rubbing process, a method of performing a photo-alignment process, a fine structure is formed in advance on the base of the alignment film, and the fine structure is reflected on the surface of the alignment film.
  • a method or a method of forming an alignment film having a fine structure on the surface by obliquely depositing an inorganic substance such as SiO is known. From the viewpoint of mass productivity, rubbing treatment or photo-alignment treatment is performed. preferable. In particular, since the photo-alignment process can be performed in a non-contact manner, there is no generation of static electricity due to friction unlike the rubbing process, and the yield can be improved.
  • the photosensitive group preferably includes at least one photosensitive group selected from the group consisting of a 4-chalcone group, a 4'-chalcone group, a coumarin group, and a cinnamoyl group.
  • FIG. 1 shows a substantially square pixel region P1 corresponding to a substantially square pixel electrode, but the present invention is not limited to the shape of the pixel region.
  • the pixel region P1 may be substantially rectangular.
  • the pixel region P1 has four liquid crystal domains A, B, C, and D.
  • the respective tilt directions (reference alignment directions) of the liquid crystal domains A, B, C, and D are t1, t2, t3, and t4, they are approximately equal to an integral multiple of 90 ° in the difference between any two directions. There are two directions.
  • the areas of the liquid crystal domains A, B, C, and D are equal to each other, and the example shown in FIG. 1 is an example of the most preferable quadrant structure in view angle characteristics.
  • the four liquid crystal domains A, B, C and D are arranged in a matrix of 2 rows and 2 columns.
  • the pair of polarizing plates facing each other through the liquid crystal layer are arranged so that the transmission axes (polarization axes) are substantially orthogonal to each other. More specifically, one transmission axis is the display surface. Are arranged so that the other transmission axis is substantially parallel to the vertical direction of the display surface.
  • the arrangement of the transmission axes of the polarizing plates is the same.
  • the tilt direction t1 of the liquid crystal domain A is approximately 225 °
  • the tilt direction t2 of the liquid crystal domain B is approximately 315 °
  • the tilt direction t3 of the liquid crystal domain C is approximately 45 °
  • the tilt direction t4 of the liquid crystal domain D is approximately 135 °. That is, the liquid crystal domains A, B, C, and D are arranged such that their tilt directions differ by approximately 90 ° between adjacent liquid crystal domains.
  • FIG. 2A, 2B, and 2C are diagrams for explaining a method of dividing the pixel region P1 shown in FIG.
  • FIG. 2A shows the pretilt directions PA1 and PA2 defined by the photo-alignment film provided on the back substrate (lower substrate), and FIG. 2B is provided on the front substrate (upper substrate).
  • the pretilt directions PB1 and PB2 defined by the photo-alignment film are shown.
  • FIG. 2C shows the tilt direction when a voltage is applied to the liquid crystal layer.
  • the orientation direction of the liquid crystal molecules as seen from the observer side is schematically shown, and the viewer is better drawn with the end portions (elliptical portions) of the liquid crystal molecules shown in a cylindrical shape. As shown in the graph, the liquid crystal molecules are tilted.
  • the area on the back substrate side (area corresponding to one pixel area P1) is divided into left and right parts, and the vertical alignment film in each area (left area and right area).
  • the alignment treatment is performed so that the pretilt directions PA1 and PA2 that are antiparallel to each other are provided.
  • the photo-alignment process is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrow.
  • the area on the front substrate side (area corresponding to one pixel area P1) is vertically divided into two, and the vertical alignment of each area (upper area and lower area).
  • Orientation treatment is performed so that pretilt directions PB1 and PB2 antiparallel to the film are given.
  • the photo-alignment process is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrow.
  • the rear substrate and the front substrate that have been subjected to the alignment treatment are bonded together to form the pixel region P1 that is divided in alignment as shown in FIG. 2C. Can do.
  • the pretilt direction defined by the photo-alignment film on the back substrate and the pretilt direction defined by the photo-alignment film on the front substrate are approximately 90 to each other.
  • the tilt direction (reference orientation direction) is defined in the middle direction between these two pretilt directions.
  • the method of aligning and dividing one pixel region into four liquid crystal domains A to D is not limited to the example of FIG.
  • the pixel region P2 that is orientation-divided as shown in FIG. 3C is formed. can do.
  • the pixel region P2 has four liquid crystal domains A to D as in the pixel region P1.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domains A to D of the pixel region P1.
  • the liquid crystal domains A to D are arranged in the order of upper left, lower left, lower right, and upper right (that is, counterclockwise from the upper left), whereas in the pixel region P2, the liquid crystal domains A to D are arranged.
  • the liquid crystal domains A to D are arranged.
  • the pretilt directions are opposite for the left and right regions of the rear substrate and the upper and lower regions of the front substrate.
  • the pixel region P3 has four liquid crystal domains A to D as in the pixel region P1.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domains A to D of the pixel region P1.
  • the liquid crystal domains A to D are arranged in the order of upper right, lower right, lower left, and upper left (that is, clockwise from the upper right). This is because the pretilt direction is opposite between the left region and the right region of the rear substrate in the pixel region P1 and the pixel region P3.
  • the pixel region P4 that is divided in alignment as shown in FIG. 5C is formed. can do.
  • the pixel region P4 has four liquid crystal domains A to D as in the pixel region P1.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domains A to D of the pixel region P1.
  • the liquid crystal domains A to D are arranged in the order of lower left, upper left, upper right, and lower right (that is, clockwise from the lower left). This is because the pretilt direction is opposite between the upper region and the lower region of the front substrate in the pixel region P1 and the pixel region P4.
  • FIG. 1 shows a liquid crystal display device 100 according to this embodiment.
  • the liquid crystal display device 100 has a plurality of pixel regions arranged in a matrix.
  • 6 is a plan view schematically showing one of a plurality of pixel regions of the liquid crystal display device 100
  • FIG. 7 is a cross-sectional view taken along the line 7A-7A ′ in FIG.
  • the liquid crystal display device 100 includes a liquid crystal layer 30 and an active matrix substrate 10 and a counter substrate 20 that face each other with the liquid crystal layer 30 interposed therebetween.
  • the liquid crystal display device 100 includes a pixel electrode 11 and a counter electrode 21 and a pair of photo-alignment films 12 and 22.
  • the liquid crystal layer 30 is a vertical alignment type liquid crystal layer.
  • the liquid crystal layer 30 includes liquid crystal molecules (not shown here) having negative dielectric anisotropy.
  • the active matrix substrate 10 includes a transparent insulating substrate (for example, a glass substrate) 10a and switching elements (not shown here) provided in each pixel region.
  • a transparent insulating substrate for example, a glass substrate
  • switching elements not shown here
  • a thin film transistor TFT
  • the active matrix substrate 10 further includes a scanning line that supplies a scanning signal to the TFT and a signal line that supplies a video signal (gradation voltage) to the TFT.
  • the active matrix substrate 10 supplies an auxiliary voltage for supplying a predetermined voltage (a CS voltage described later) to one of the pair of electrodes constituting the auxiliary capacitor. It also has a capacitor line.
  • the counter substrate 20 has a transparent insulating substrate (for example, a glass substrate) 20a.
  • the counter substrate 20 further includes a color filter layer (not shown). Therefore, the counter substrate 20 is sometimes called a color filter substrate.
  • the pixel electrode 11 is provided on the liquid crystal layer 30 side of the active matrix substrate 10.
  • the pixel electrode 11 is disposed in each pixel region and is electrically connected to the switching element described above.
  • the pixel electrode 11 is made of a transparent conductive material (for example, ITO).
  • the counter electrode 21 is provided on the liquid crystal layer 30 side of the counter substrate 20.
  • the counter electrode 21 is a single electrode common to the plurality of pixel electrodes 11 (and thus may be referred to as a common electrode).
  • the counter electrode 21 is made of a transparent conductive material (for example, ITO).
  • first photo-alignment film 12 One of the pair of photo-alignment films 12 and 22 (hereinafter referred to as “first photo-alignment film”) 12 is provided between the pixel electrode 11 and the liquid crystal layer 30 and the other (hereinafter referred to as “first photo-alignment film”). 22 ”(referred to as“ two-photo alignment film ”) is provided between the counter electrode 21 and the liquid crystal layer 30.
  • the liquid crystal display device 100 further includes a pair of polarizing plates 13 and 23 provided to face each other with the liquid crystal layer 3 interposed therebetween.
  • the pair of polarizing plates 13 and 23 are arranged so that their transmission axes (polarization axes) are substantially orthogonal to each other.
  • each pixel region of the liquid crystal display device 100 is orientation-divided similarly to the pixel region P1 shown in FIGS. 1 and 2 (c). That is, in each pixel region of the liquid crystal display device 100, the tilt directions t1, t2, t3, and t4 when a voltage is applied between the pixel electrode 11 and the counter electrode 21 are approximately 225 ° direction and approximately 315 ° direction, respectively. , And four liquid crystal domains A, B, C and D which are approximately 45 ° and approximately 135 °.
  • the respective tilt directions (reference alignment directions) of the liquid crystal domains A, B, C, and D are defined by the pair of photo alignment films 12 and 22.
  • One transmission axis of the pair of polarizing plates 13 and 23 arranged so that their transmission axes are orthogonal to each other is substantially parallel to the horizontal direction of the display surface, and the other transmission axis is substantially parallel to the vertical direction of the display surface. Therefore, the reference alignment direction of each of the liquid crystal domains A to D forms an angle of about 45 ° with the transmission axis of the polarizing plates 13 and 23.
  • the pretilt direction defined by the first photoalignment film 12 and the pretilt direction defined by the second photoalignment film 22 are substantially the same. 90 ° different. As described above, the pretilt angle defined by the first photo-alignment film 12 and the pretilt angle defined by the second photo-alignment film 22 are preferably substantially equal to each other.
  • the pixel electrode 11 includes a slit forming region 11R1 (a right angle surrounded by an alternate long and short dash line in FIG. 6) in a part of a region corresponding to each of the liquid crystal domains A, B, C, and D. A trapezoidal region).
  • a plurality of slits 11s are formed in the slit forming region 11R1. That is, the slit forming region 11R1 has a portion where the conductive film is removed.
  • the plurality of slits 11s extend substantially parallel to the reference alignment direction (defined by the pair of photo-alignment films 12 and 22 as described above). That is, the slit 11s of the slit forming region 11R1 corresponding to the liquid crystal domain A is substantially parallel to the reference alignment direction t1 (approximately 225 ° direction), and the slit 11s of the slit forming region 11R1 corresponding to the liquid crystal domain B is the reference alignment. It is substantially parallel to the direction t2 (approximately 315 ° direction).
  • the slit 11s of the slit forming region 11R1 corresponding to the liquid crystal domain C is substantially parallel to the reference alignment direction t3 (approximately 45 ° direction), and the slit 11s of the slit forming region 11R1 corresponding to the liquid crystal domain D is the reference alignment. It is substantially parallel to the direction t4 (approximately 135 ° direction).
  • the plurality of slits 11s in the slit forming region 11R1 have substantially the same width W.
  • the pixel electrode 11 has a slit non-formation region (solid region) 11R2 (a right-angled base surrounded by a long broken line in FIG. 6) in another part of the region corresponding to each of the liquid crystal domains A, B, C, and D. A region of shape). No slit is formed in the slit non-formation region 11R2. That is, in the non-slit region 11R2, there is substantially no portion from which the conductive film has been removed.
  • the pair of photo-alignment films 12 and 22 define the reference alignment direction (tilt direction) of the liquid crystal domains A, B, C, and D. That is, the alignment division of the pixel region is performed exclusively by the first photo-alignment film 12 and the second photo-alignment film 22.
  • the slit 11s formed in the pixel electrode 11 reduces the effective applied voltage in the liquid crystal layer 30 on the slit 11s. Since the slit forming region 11R1 exists in a part of the region corresponding to each of the liquid crystal domains A, B, C, and D, two regions having different applied voltages to the liquid crystal layer 30 are included in each liquid crystal domain. That is, the slit forming region 11R1 having a relatively low applied voltage and the slit non-forming region 11R2 having a relatively high applied voltage exist. Therefore, the viewing angle dependency of the ⁇ characteristic can be improved.
  • a region corresponding to a combination of the four slit formation regions 11R1 out of one pixel region functions as a relatively dark subpixel (dark subpixel), and a combination of the four slit non-formation regions 11R2.
  • the corresponding area functions as a relatively bright subpixel (bright subpixel).
  • the slit formation region 11R1 is positioned relatively on the upper side, and the slit non-formation region 11R2 is positioned on the lower side.
  • the slit forming region 11R1 is positioned relatively lower and the slit non-forming region 11R2 is positioned relatively upper. Therefore, in the present embodiment, the bright subpixel is located at the center of the pixel, half of the dark subpixel is located above the pixel, and the other half of the dark subpixel is located below the pixel.
  • the amount of effective voltage drop in the liquid crystal layer 30 on the slit 11s depends on the width W of the slit 11s. Specifically, the amount of decrease in applied voltage increases as the width W of the slit 11s increases. Conversely, the smaller the width W of the slit 11s, the smaller the decrease in applied voltage.
  • the width W of the slit 11 s is such that the effective applied voltage drop amount in the liquid crystal layer 30 on the slit 11 s when the highest gradation voltage is supplied to the pixel electrode 11 is 0. It is set to be 5V or higher.
  • the alignment direction of the liquid crystal molecules in the liquid crystal layer 30 on the slit 11s also depends on the width W of the slit 11s.
  • 8A and 8B are a top view and a cross-sectional view schematically showing the alignment state of the liquid crystal molecules 30a when a voltage is applied when the width W of the slit 11s is extremely increased.
  • 9A and 9B are a top view and a cross-sectional view schematically showing the alignment state of the liquid crystal molecules 30a when a voltage is applied when the width W of the slit 11s is extremely reduced.
  • the liquid crystal molecules 30a are tilted in a direction perpendicular to the extending direction of the slit 11s. This is because an oblique electric field (the electric lines of force are indicated by arrows in FIG. 8B) formed on the slit 11s when a voltage is applied acts to tilt the liquid crystal molecules 30a in such a direction. Because. Even when a slit is formed as an alignment regulating structure in the electrode of the MVA mode liquid crystal display device, the liquid crystal molecules are tilted in a direction orthogonal to the extending direction of the slit when a voltage is applied.
  • the liquid crystal molecules 30a collide with each other when the liquid crystal molecules 30a are tilted in that direction (the state is schematically shown on the left side of FIG. 9B). ) As a result, the liquid crystal molecules 30a fall in a direction parallel to the direction in which the slit 11s extends. Even when a fishbone pixel electrode is provided, the liquid crystal molecules fall in a direction parallel to the direction in which the slits extend when a voltage is applied.
  • the amount of decrease in the applied voltage due to the formation of the slit 11s depends on the width W of the slit 11s. Therefore, when the width W of the slit 11s is extremely small, the effective applied voltage hardly decreases. Therefore, in order to improve the viewing angle dependency of the ⁇ characteristic, it is necessary to increase the width W of the slit 11s to some extent.
  • the alignment direction of the liquid crystal molecules 30a when a voltage is applied is 8 deviates from the most preferable direction, that is, the reference alignment direction defined by the first photo-alignment film 12 and the second photo-alignment film 22 (the direction substantially parallel to the extending direction of the slit 11s) (the most extreme case is shown in FIG. a) and (b). If the alignment direction of the liquid crystal molecules 30a is deviated, the transmittance is lowered and the display luminance is lowered.
  • the width W of the slit 11s is relative to the reference alignment direction of the alignment direction of the liquid crystal molecules 30a in the liquid crystal layer 30 on the slit 11s when the highest gradation voltage is supplied to the pixel electrode 11.
  • the deviation is set to be less than 45 °.
  • the width W of the slit 11s As the width W of the slit 11s is increased, ⁇ decreases from 45 °, and when ⁇ becomes 0 °, the transmittance becomes minimum. In the liquid crystal display device 100 according to the present embodiment, since the width W of the slit 11s is set as described above, a decrease in display luminance can be suppressed.
  • the pixel electrode 11 has the slit formation region 11R1 in a part of the region corresponding to each of the liquid crystal domains A, B, C, and D.
  • two types of regions having different effective applied voltages that is, different display luminances
  • the liquid crystal display device 100 does not require a complicated circuit configuration as in the pixel division drive technique, and can improve the viewing angle dependency of the ⁇ characteristic with a relatively simple circuit configuration.
  • the reference alignment directions of the liquid crystal domains A, B, C, and D are defined by the pair of photo alignment films 12 and 22.
  • the alignment division of the pixel region is performed by the first photo-alignment film 12 and the second photo-alignment film 22 that exert an alignment regulating force in a plane on the liquid crystal molecules 30 a of the liquid crystal layer 30. Therefore, as a result of making the area ratio of a plurality of (two in this case) subpixels uneven, even if the area of a certain subpixel is reduced, a good divided alignment state can be obtained. Therefore, there is no strict restriction on the determination of the area ratio of the plurality of subpixels, and the effect of improving the viewing angle dependency of the ⁇ characteristic can be sufficiently increased.
  • the width W of the slit 11 s is such that the effective applied voltage drop when the highest gradation voltage is supplied to the pixel electrode 11 is 0.5 V or more, and The deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is set to be less than 45 °. Therefore, it is possible to sufficiently obtain the effect of improving the viewing angle dependency of the ⁇ characteristic and to suppress a decrease in display luminance.
  • the width W of the slit 11s formed in the pixel electrode 11 of the liquid crystal display device 100 in the present embodiment is the same as that of the MVA mode liquid crystal display device. It can be said that this is an intermediate width between the width of the slit formed in the above and the width of the slit formed in the fishbone pixel electrode.
  • the liquid crystal display device 100 includes the photo-alignment films 12 and 22 so that the above-described effect can be suitably obtained by appropriately setting the width W of the slit 11s. This is because the reference orientation direction defined by 12 and 22 and the slit 11s are substantially parallel. As can be seen from what has already been described with reference to FIGS. 8 and 9, the effective applied voltage to the liquid crystal layer 30 is changed (reduced) while the alignment direction of the liquid crystal molecules itself is substantially parallel to the slit 11s. It is ideal.
  • the width W of the slit 11 s is made sufficiently large and effective for the liquid crystal layer 30. If an attempt is made to sufficiently reduce the applied voltage (for example, if the effective applied voltage to the liquid crystal layer 30 is reduced by about 1 V by setting the width W of the slit 11 s to about 4 ⁇ m), the orientation direction of the liquid crystal molecules is changed. It will deviate greatly from the desired direction, and sufficient luminance cannot be maintained.
  • the alignment direction of the liquid crystal molecules is regulated in a direction substantially parallel to the slit 11s by the pair of photo-alignment films 12 and 22, so that the width W of the slit 11s is sufficiently increased.
  • the effective applied voltage to the liquid crystal layer 30 is sufficiently reduced (for example, when the width W of the slit 11 s is about 4 ⁇ m and the effective applied voltage to the liquid crystal layer 30 is reduced by about 1 V), Since the alignment direction of the liquid crystal molecules is not greatly shifted, a sufficiently bright display can be realized.
  • the effective applied voltage to the liquid crystal layer 30 is significantly maintained while maintaining the alignment direction of the liquid crystal molecules sufficiently close to the original direction. Can be changed to
  • the width W of the slit 11 s is effective in the liquid crystal layer 30 on the slit 11 s when the highest gradation voltage is supplied to the pixel electrode 11. It is more preferable that the applied voltage drop is set to 1.0 V or more.
  • the width W of the slit 11s is a reference for the alignment direction of the liquid crystal molecules 30a in the liquid crystal layer 30 on the slit 11s when the highest gradation voltage is supplied to the pixel electrode 11. It is more preferable that the deviation with respect to the orientation direction is set to be 30 ° or less. If the deviation is 30 ° or less, it is possible to secure a display luminance of 1 ⁇ 4 or more of the original luminance, so that a sufficiently high-quality display is possible.
  • FIG. 10 is a graph for explaining the result of verifying the influence by changing the width W of the slit 11s.
  • the horizontal axis of FIG. 10 is the width W of the slit 11s.
  • the vertical axis on the right side of FIG. 10 is the amount of effective voltage drop in the liquid crystal layer 30 on the slit 11s
  • the vertical axis on the left side of FIG. 10 is the orientation of the transmission axis of the polarizing plate 13 on the back side. Is the orientation direction (azimuth) of the liquid crystal molecules 30a when the angle is 0 °.
  • the alignment direction of the liquid crystal molecules 30a is the + 45 ° direction.
  • the width W of the slit 11s and the pitch p of the slit 11s are the same size.
  • the effective decrease in applied voltage is preferably 0.5 V or more, and more preferably 1.0 V or more. Therefore, as can be seen from FIG. 10, the width W of the slit 11s is preferably 2.5 ⁇ m or more, and more preferably 4.0 ⁇ m or more.
  • the deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is less than 45 °. Preferably, it is 30 degrees or less.
  • the deviations of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction are 45 ° and 30 ° when the alignment directions of the liquid crystal molecules 30a are the 0 ° direction and the + 15 ° direction, respectively. Therefore, as can be seen from FIG. 10, the width W of the slit 11s is preferably less than 8.0 ⁇ m, and more preferably 6.0 ⁇ m or less.
  • the effective decrease in applied voltage and the displacement in the alignment direction of the liquid crystal molecules 30a mainly depend on the width W of the slit 11s and almost depend on the pitch p of the slit 11s. do not do.
  • the pitch p of the slits 11s is preferably 5 ⁇ m or more and 30 ⁇ m or less from the viewpoint of forming the pixel electrode 11 with high yield without disconnection.
  • the shape of the slit forming region 11R1 and the non-slit forming region 11R2 is not limited to the right trapezoid illustrated in FIG.
  • the slit forming region 11R1 and the non-slit forming region 11R2 may have any shape.
  • the area ratio between the slit forming region 11R1 and the slit forming region 11R2 is not limited to the area ratio in the pixel electrode 11 illustrated in FIG. 6, and may be arbitrarily set.
  • the ratio of the slit forming region 11R1 to the region corresponding to each liquid crystal domain of the pixel electrode 11 is preferably 1/3 or more, and 2/3. More preferably.
  • FIG. 11 and 12 show a liquid crystal display device 200 according to this embodiment.
  • FIG. 11 is a plan view schematically showing one pixel region of the liquid crystal display device 200
  • FIG. 12 is a cross-sectional view taken along the line 12A-12A ′ in FIG.
  • the liquid crystal display device 200 will be described focusing on differences from the liquid crystal display device 100 according to the first embodiment.
  • components having substantially the same functions as those of the liquid crystal display device 100 are denoted by the same reference numerals, and the description thereof is omitted (the same applies to the following embodiments).
  • the active matrix substrate 10 of the liquid crystal display device 200 further includes an electrode (hereinafter referred to as “lower layer electrode”) 15 provided below the pixel electrode 11 with a dielectric layer 14 therebetween.
  • the lower layer electrode 15 is made of a transparent conductive material (for example, ITO). In the configuration illustrated in FIG. 11, the lower layer electrode 15 is disposed so as to overlap the entire pixel electrode 11.
  • a voltage different from that of the pixel electrode 11 is supplied to the lower layer electrode 15.
  • the lower electrode 15 is supplied with substantially the same voltage as the voltage supplied to the counter electrode 21.
  • the effective applied voltage in the liquid crystal layer 30 on the slit 11 s is higher than that of the liquid crystal display device 100 according to the first embodiment. It is possible to increase the amount of decrease. Therefore, even if the width W of the slit 11s is not increased so much, an effective amount of decrease in the applied voltage can be secured sufficiently, so that the display luminance is sufficiently lowered due to the displacement of the alignment direction of the liquid crystal molecules 30a. It is possible to sufficiently improve the viewing angle dependence of the ⁇ characteristic while suppressing the above.
  • FIG. 13 is a graph for explaining the result of verifying the influence by changing the width W of the slit 11s.
  • the horizontal axis in FIG. 13 is the width W of the slit 11s.
  • the vertical axis on the right side of FIG. 13 is an effective amount of decrease in applied voltage in the liquid crystal layer 30 on the slit 11s, and the vertical axis on the left side of FIG. 13 is the orientation of the transmission axis of the polarizing plate 13 on the back side.
  • the alignment direction of the liquid crystal molecules 30a is the + 45 ° direction.
  • the width W of the slit 11s and the pitch p of the slit 11s are the same size.
  • the effective decrease in applied voltage is preferably 0.5 V or more, and more preferably 1.0 V or more. Therefore, as can be seen from FIG. 13, the width W of the slit 11s is preferably 1.0 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
  • the deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is less than 45 °. Preferably, it is 30 degrees or less.
  • the deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is 45 ° and 30 ° when the alignment directions of the liquid crystal molecules 30a are the 0 ° direction and the + 15 ° direction, respectively. Therefore, as can be seen from FIG. 13, the width W of the slit 11s is preferably less than 6.0 ⁇ m, and more preferably 4.5 ⁇ m or less.
  • the effective decrease in applied voltage and the displacement in the alignment direction of the liquid crystal molecules 30a mainly depend on the width W of the slit 11s and almost depend on the pitch p of the slit 11s. do not do.
  • the pitch p of the slits 11s is preferably 5 ⁇ m or more and 30 ⁇ m or less from the viewpoint of forming the pixel electrode 11 with high yield without disconnection.
  • FIG. 14 shows an example of electrical connection of the pixel electrode 11 to the TFT 16.
  • FIG. 14 shows a scanning line 17, a signal line 18, and a common signal line (auxiliary capacitance line) 19 in addition to the TFT 16.
  • the slit 11s in the slit forming region 11R1 is omitted in the vicinity of the TFT 16, and the pixel electrode 11 is connected to the drain electrode of the TFT 16 in the contact hole CH1 formed in the region where the slit 11s is omitted.
  • the conductive layer extends from the drain electrode of the TFT 16 to the slit non-formation region 11R2 where no slit is originally formed (that is, to the center of the pixel region).
  • the pixel electrode 11 may be connected to the connection electrode.
  • FIG. 14 also shows the connection electrode 16dc and the contact hole CH2 when such a configuration is adopted.
  • the source electrode, the drain electrode, and the connection electrode 16dc of the TFT 16 are formed of the same conductive film (source metal layer) as that of the signal line 18, for example.
  • the conductive film of the lower layer electrode 15 is removed in the region where the contact holes CH1 and CH2 are formed.
  • the lower layer electrode 15 is electrically connected to the common signal line 19 and is supplied with substantially the same voltage as the voltage supplied to the counter electrode 21 from the common signal line 19.
  • the common signal line 19 is formed of, for example, the same conductive film (gate metal layer) as the scanning line 17 and the gate electrode of the TFT 16.
  • a storage capacitor can be configured by the pixel electrode 11, the lower layer electrode 15 facing the pixel electrode 11, and the dielectric layer 14 positioned therebetween.
  • the auxiliary capacitor is an electrode provided below the pixel electrode 11 and electrically connected to the pixel electrode 11 (for example, a metal electrode formed by patterning the same conductive film as the signal line 18, that is, the source metal layer).
  • a further electrode for example, the same conductive film as the scanning line 17, that is, the gate metal layer, which is provided below the electrode and is supplied with substantially the same voltage as the voltage supplied to the counter electrode 21.
  • a dielectric layer for example, a gate insulating film
  • the width W LE of the lower layer electrode 15 at the intersection is small, specifically about 10 ⁇ m. This is for reducing the electrostatic capacitance formed between the signal line 18 and the lower layer electrode 15.
  • FIG. 15 shows a liquid crystal display device 300 according to this embodiment.
  • FIG. 15 is a plan view schematically showing one pixel region of the liquid crystal display device 300.
  • the positional relationship between the slit forming region 11R1 and the non-slit forming region 11R2 of the pixel electrode 11 is different between the liquid crystal display device 300 in the present embodiment and the liquid crystal display device 100 in the first embodiment.
  • the slit formation region 11R1 is positioned relatively lower and the slit non-formation region 11R2 is relative. It is located on the upper side. Further, in the region corresponding to the liquid crystal domains B and C of the pixel electrode 11, the slit forming region 11R1 is positioned relatively on the upper side, and the slit non-forming region 11R2 is positioned on the lower side.
  • the slits 11s are arranged above and below the pixel region, whereas in the liquid crystal display device 300 of the present embodiment, the slit 11s is arranged in the center of the pixel region.
  • the dark subpixel is located at the center of the pixel, half of the bright subpixel is located above the pixel, and the other half of the bright subpixel is located below the pixel.
  • the viewing angle dependency of the ⁇ characteristic can be improved.
  • the stability of the alignment at the center of the pixel region can be improved by the alignment regulating force of the slit 11s disposed at the center of the pixel region. Note that, when the configuration in which the slits 11s are arranged on the upper side and the lower side (that is, relatively outside in the pixel region) instead of the center of the pixel region as in the liquid crystal display device 100 in the first embodiment, scanning is performed. An advantage is obtained in that an adverse influence on the alignment by an oblique electric field due to the potential of the bus line such as the line 17 or the signal line 18 can be suppressed.
  • FIG. 16 shows a liquid crystal display device 400 according to this embodiment.
  • FIG. 16 is a plan view schematically showing one pixel region of the liquid crystal display device 400.
  • the arrangement relationship between the slits 11s and the conductive film in the slit formation region 11R1 of the pixel electrode 11 is different.
  • the slit 11 s is completely surrounded by the conductive film of the pixel electrode 11 when viewed from the normal direction of the display surface.
  • the slit 11 s is not completely surrounded by the conductive film of the pixel electrode 11 when viewed from the normal direction of the display surface.
  • one end of the slit 11s is open. More specifically, the right end of the slit 11s is open in the region corresponding to the liquid crystal domains A and D, and the left end of the slit 11s is open in the region corresponding to the liquid crystal domains B and C.
  • FIG. 17 shows a liquid crystal display device 500 according to this embodiment.
  • FIG. 17 is a plan view schematically showing one pixel region of the liquid crystal display device 500.
  • the pixel electrode 11 including the slit formation region 11R1 and the pixel division driving technique are used in combination.
  • the pixel electrode 11 of the liquid crystal display device 500 includes a plurality of (here, two) sub-pixel electrodes 11a and 11b.
  • a first TFT 16a and a first auxiliary capacitor CS1 are connected to one of the two subpixel electrodes 11a and 11b (hereinafter referred to as “first subpixel electrode”) 11a.
  • the other TFT 11b (hereinafter referred to as “second subpixel electrode”) 11b is connected to the second TFT 16b and the second auxiliary capacitor CS2.
  • Each pixel region of the liquid crystal display device 500 includes a plurality of (here, two) subpixel regions corresponding to the plurality of subpixel electrodes 11a and 11b.
  • the gate electrodes of the first TFT 16a and the second TFT 16b are connected to a common scanning line 17.
  • the source electrodes of the first TFT 16 a and the second TFT 16 b are connected to a common (that is, the same) signal line 18.
  • the first auxiliary capacitor CS1 is connected to the first auxiliary capacitor line 19a
  • the second auxiliary capacitor CS2 is connected to the second auxiliary capacitor line 19b.
  • One of the pair of electrodes constituting the first auxiliary capacitor CS1 (auxiliary capacitor counter electrode; here, part of the first auxiliary capacitor line 19a) is supplied with the auxiliary capacitor counter voltage from the first auxiliary capacitor line 19a.
  • One of the pair of electrodes constituting the second auxiliary capacitor CS2 (auxiliary capacitor counter electrode; here, part of the second auxiliary capacitor line 19b) supplies the auxiliary capacitor counter voltage from the second auxiliary capacitor line 19b. Is done.
  • auxiliary capacitance counter electrodes of the first auxiliary capacitance CS1 and the second auxiliary capacitance CS2 are independent from each other, different auxiliary capacitances are respectively provided from the corresponding auxiliary capacitance lines (first auxiliary capacitance line 19a or second auxiliary capacitance line 19b).
  • a capacitor counter voltage also referred to as “CS voltage” can be supplied.
  • the first auxiliary capacitor CS1 and the second auxiliary capacitor CS1 are supplied.
  • the amount of change (defined by the direction and magnitude of the change) of the voltage of the auxiliary capacitor counter electrode of the capacitor CS2 (that is, the voltage supplied from the first auxiliary capacitor line 19a or the second auxiliary capacitor line 19b) is varied.
  • the voltage applied to the first subpixel electrode 11a and the second subpixel electrode 11b can be made different from each other by using capacitive division.
  • each of the two sub-pixel regions has four liquid crystal domains A, B, C, and D.
  • Each of the first subpixel electrode 11a and the second subpixel electrode 11b has a slit forming region 11R1 and a non-slit forming region 11R2 in regions corresponding to the liquid crystal domains A, B, C, and D, respectively. Accordingly, there are two regions having different effective applied voltages to the liquid crystal layer 30 in each of the two sub-pixel regions. Therefore, in the liquid crystal display device 500 according to the present embodiment, four regions having different effective applied voltages to the liquid crystal layer 30 can be formed in one pixel region. Therefore, the effect of improving the viewing angle dependency of the ⁇ characteristic can be further enhanced.
  • the circuit configuration is somewhat complicated as compared with the liquid crystal display devices 100 to 400 according to the first to fourth embodiments.
  • a circuit configuration comparable to that when using only the pixel division driving technique is used.
  • the number of divided pixels can be increased (that is, the effect of improving the viewing angle dependency of the ⁇ characteristic can be increased).
  • the pixel electrode 11 including the slit formation region 11R1 and the pixel division driving technique are used in combination, so that only the pixel division driving technique is used. Compared to the case, the circuit configuration can be simplified.
  • the width Wa of the slit 11s formed in the first subpixel electrode 11a is different from the width Wb of the slit 11s formed in the second subpixel electrode 11b.
  • the former width Wa is 5 ⁇ m
  • the latter width Wb is 7 ⁇ m.
  • the width Wa of the slit 11s of the first subpixel electrode 11a may be the same as the width Wb of the slit 11s of the second subpixel electrode 11b.
  • both the former width Wa and the latter width Wb may be 5 ⁇ m.
  • the slit 11s1 having the first width W1 in the slit forming region 11R1 is different from the first width W1 (here, smaller than the first width W1).
  • a slit 11s2 having a width W2 may be formed.
  • the amount of effective voltage drop applied to the liquid crystal layer 30 is different. More specifically, the amount of decrease in applied voltage is relatively large in the portion where the wider slit 11s1 is formed, and the amount of decrease in applied voltage is relatively large in the portion where the narrower slit 11s2 is formed. Small.
  • the width (first width) W1 and the pitch p1 of the wider slit 11s1 are, for example, 5 ⁇ m, respectively.
  • the width (second width) W2 and the pitch p2 of the narrower slit 11s2 are each 3 ⁇ m, for example.
  • FIG. 18 shows a configuration in which a relatively wide slit 11s1 and a relatively narrow slit 11s2 are formed independently.
  • the wider slit 11s1 is arranged on the left side of the slit forming area 11R1
  • the narrower slit 11s2 is arranged on the right side of the slit forming area 11R1
  • the wide slit 11s1 A narrower slit 11s2 is formed so as to extend.
  • the width (first width) W1 and pitch p1 of the wider slit 11s1 are, for example, 6 ⁇ m and 4 ⁇ m, respectively.
  • the width (second width) W2 and the pitch p2 of the narrower slit 11s2 are, for example, 2 ⁇ m and 8 ⁇ m, respectively.
  • a formation pattern as shown in FIG. 20 may be adopted.
  • wide slits 11s1 and narrow slits 11s2 are alternately arranged on the left side of the slit forming region 11R1, and only the narrower slit 11s2 is placed on the right side of the slit forming region 11R1. Has been placed.
  • the width (first width) W1 of the wider slit 11s1 and the width (second width) W2 of the narrower slit 11s2 are, for example, 6 ⁇ m and 2 ⁇ m, respectively.
  • the pitch p1 is, for example, 6 ⁇ m.
  • the pitch p2 of the slits 11s2 is, for example, 18 ⁇ m.
  • the width of the plurality of slits may be gradually changed (for example, the slit may be formed so that the width of the slit becomes smaller toward the center of the pixel region).
  • FIG. 21 shows a liquid crystal display device 600A that does not have the slit non-formation region 11R2.
  • the pixel electrode 11 of the liquid crystal display device 600A has a slit forming region 11R1 in a part of the region corresponding to each of the liquid crystal domains A, B, C, and D. Further, the pixel electrode 11 of the liquid crystal display device 600A has a width W ′ different from the width W of the slit 11s in the slit forming region 11R1 in another part of the region corresponding to each of the liquid crystal domains A, B, C, and D.
  • the width W of the slit 11s in the first slit formation region 11R1 and the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′ are effective when the highest gradation voltage is supplied to the pixel electrode 11, respectively.
  • the amount of decrease in applied voltage is set to 0.5 V or more, and the deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is set to be less than 45 °.
  • the width W of the slit 11s in the first slit formation region 11R1 is larger than the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′.
  • the first slit formation region The amount of decrease in applied voltage in the liquid crystal layer 30 on 11R1 is different from the amount of decrease in applied voltage in the liquid crystal layer 30 on the second slit forming region 11R1 ′. Therefore, in each liquid crystal domain, two regions having different applied voltages to the liquid crystal layer 30, that is, the first slit forming region 11R1 having a relatively low applied voltage and the second region having a relatively high applied voltage.
  • the slit forming region 11R1 ′ is present. Therefore, the viewing angle dependency of the ⁇ characteristic can be improved.
  • the liquid crystal layer 30 on the first slit formation region 11R1 and the liquid crystal layer 30 on the second slit formation region 11R1 ′ are effective.
  • the difference in the amount of decrease in applied voltage is preferably 0.5 V or more, and more preferably 1.0 V or more.
  • the configuration in which the pixel electrode 11 has a further slit forming region (second slit forming region) 11R1 'instead of the non-slit forming region 11R2 has an advantage that the alignment of liquid crystal molecules can be further stabilized.
  • the configuration in which the pixel electrode 11 has the slit non-formation region (solid region) 11R2 has a difference in voltage applied to the liquid crystal layer 30 effectively. It has the advantage that it can be maximized.
  • FIG. 22 shows another liquid crystal display device 600B that does not have the slit non-formation region 11R2.
  • the pixel electrode 11 of the liquid crystal display device 600B includes a first slit forming region 11R1 and a second slit forming region 11R1 in regions corresponding to the liquid crystal domains A, B, C, and D, respectively. 'And have.
  • the slit 11s of the first slit forming region 11R1 and the slit 11s 'of the second slit forming region 11R1' are continuous. Even if it is such a structure, the effect similar to liquid crystal display device 600A is acquired.
  • FIG. 23 shows still another liquid crystal display device 600C that does not have the slit non-formation region 11R2.
  • the pixel electrode 11 of the liquid crystal display device 600C includes a first slit formation region 11R1 and a second slit formation region 11R1 in regions corresponding to the liquid crystal domains A, B, C, and D, respectively. 'And have.
  • the narrower slit 11s ′ formed in the second slit forming region 11R1 ′ extends into the first slit forming region 11R1, and the first slit forming region 11R1 has a width mutually. Slits 11s and 11s ′ having different sizes are alternately arranged. Even with such a configuration, the same effects as those of the liquid crystal display device 600A and the liquid crystal display device 600B can be obtained.
  • each pixel region has four liquid crystal domains A, B, C, and D has been described.
  • the pixel is not necessarily divided into four.
  • the present invention is also suitably used in a configuration in which a pixel is divided into two.
  • FIG. 24 shows a liquid crystal display device 700 according to this embodiment.
  • FIG. 24 is a plan view schematically showing one pixel region of the liquid crystal display device 700.
  • Each pixel region of the liquid crystal display device 700 has two liquid crystal domains E and F as shown in FIG.
  • the liquid crystal domain E is located on the left side of the pixel area, and the liquid crystal domain F is located on the right side of the pixel area. That is, each pixel is divided into left and right parts.
  • the tilt directions (reference alignment directions) t5 and t6 of the liquid crystal domains E and F are approximately 0 ° direction and approximately 180 ° direction, respectively.
  • the pair of polarizing plates 13 and 23 are arranged so that the transmission axis forms an angle of about 45 ° with respect to the horizontal direction and the vertical direction of the display surface.
  • the pixel electrode 11 of the liquid crystal display device 700 has a first slit forming region 11R1 and a second slit forming region 11R1 'in regions corresponding to the liquid crystal domains E and F, respectively.
  • the slit 11s formed in the first slit forming region 11R1 and the slit 11s 'formed in the second slit forming region 11R1' extend substantially parallel to the reference alignment direction. That is, the slits 11s and 11s ′ of the first slit forming region 11R1 and the second slit forming region 11R1 ′ corresponding to the liquid crystal domain E are substantially parallel to the reference alignment direction t5 (substantially 0 ° direction). The slits 11s and 11s ′ of the first slit forming region 11R1 and the second slit forming region 11R1 ′ corresponding to F are substantially parallel to the reference orientation direction t6 (approximately 180 ° direction).
  • the width W of the slit 11s in the first slit formation region 11R1 and the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′ are different from each other.
  • the width W of the slit 11s in one slit formation region 11R1 is larger than the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′.
  • the width W of the slit 11s in the first slit formation region 11R1 and the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′ are effective when the highest gradation voltage is supplied to the pixel electrode 11, respectively.
  • the amount of decrease in applied voltage is set to 0.5 V or more, and the deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is set to be less than 45 °.
  • liquid crystal display device 700 Also in the liquid crystal display device 700, a plurality of regions having different effective applied voltages to the liquid crystal layer 30 exist in each of the two liquid crystal domains E and F. Therefore, the viewing angle dependency of the ⁇ characteristic can be improved.
  • the pixel electrode 11 has the first slit forming region 11R1 and the second slit forming region 11R1 ′ is illustrated, but the pixel electrode 11 is replaced with the second slit forming region 11R1 ′.
  • the reference alignment direction of each liquid crystal domain is defined by the pair of photo-alignment films, and the reference alignment direction and the slit formed in the pixel electrode are substantially parallel. According to the configuration, it is possible to significantly change the effective applied voltage to the liquid crystal layer while maintaining the alignment direction of the liquid crystal molecules sufficiently close to the original direction. Therefore, by setting the slit width to a value within an appropriate range, it is possible to realize bright display while sufficiently obtaining the effect of improving the viewing angle dependency of the ⁇ characteristic.
  • FIG. 25 shows a liquid crystal display device 800 according to this embodiment.
  • FIG. 25 is a plan view schematically showing one pixel region of the liquid crystal display device 800.
  • the pixel electrode 11 has the slit formation region 11R1 in a part of the region corresponding to each of the liquid crystal domains A, B, C, and D. Further, the pixel electrode 11 has a slit non-formation region (solid region) 11R2 in another part of the region corresponding to each of the liquid crystal domains A, B, C, and D.
  • the liquid crystal display device 800 is different from the liquid crystal display device 100 according to the first embodiment in the orientation division mode (arrangement of the liquid crystal domains A to D in the pixel region) of each pixel region.
  • each pixel region of the liquid crystal display device 800 is divided in the same manner as the pixel region P5 shown in FIG.
  • the pixel region P5 has four liquid crystal domains A to D as in the pixel region P1.
  • the tilt directions (reference alignment directions) of the liquid crystal domains A to D in the pixel region P5 are the same as the tilt directions of the liquid crystal domains A to D in the pixel region P1.
  • the liquid crystal domains A to D are arranged in the order of upper left, lower left, lower right, and upper right (that is, counterclockwise from the upper left), whereas in the pixel region P5, the liquid crystal domains A to D are arranged. Are arranged in the order of upper right, upper left, lower left, and lower right (that is, counterclockwise from the upper right).
  • the tilt directions t1 to t4 of the four liquid crystal domains A to D in the pixel region P5 face the center of the pixel region P5.
  • a pixel region P5 that is divided in alignment as shown in FIG. 27C can be formed. it can.
  • a specific method for performing the alignment treatment as shown in FIGS. 27A and 27B on the rear substrate and the front substrate will be described later.
  • the arrangement of the liquid crystal domains A to D in the pixel region is different from that of the liquid crystal display device 100 of the first embodiment. Therefore, in the liquid crystal display device 800, as shown in FIG. 25, the extending direction of the slit 11s in each of the upper left, lower left, lower right, and upper right of the pixel electrode 11 differs from the liquid crystal display device 100 of Embodiment 1 by about 90 °. ing.
  • each pixel region is aligned and divided as described above, a brighter display than that of the liquid crystal display device 100 of the first embodiment can be realized. This is because, in the pixel area P1 shown in FIG. 1, a darker area is formed near the edge of the pixel electrode 11, whereas in the pixel area P5 shown in FIG. It is because it is not formed. Hereinafter, the reason will be described in detail.
  • This dark region DR includes a cross-shaped dark line (cross-shaped portion) CL positioned at the boundary between the liquid crystal domains A, B, C, and D, and a linear dark line (in the vicinity of the edge of the pixel electrode) extending substantially parallel to the edge.
  • a straight portion) SL and is generally bowl-shaped as a whole.
  • the cross-shaped dark line CL is formed by aligning the liquid crystal molecules so that the alignment is continuous between the liquid crystal domains so as to be parallel or orthogonal to the transmission axis of the polarizing plate at the boundary between the liquid crystal domains.
  • the linear dark line SL near the edge indicates that the azimuth angle direction perpendicular to the edge of the pixel electrode to which the liquid crystal domain is adjacent and inward of the pixel electrode is more than 90 ° with respect to the tilt direction (reference alignment direction) of the liquid crystal domain. If there is an edge portion that forms a corner of the shape, it is formed.
  • the tilt direction of the liquid crystal domain and the direction of the alignment regulating force due to the oblique electric field generated at the edge of the pixel electrode have components opposite to each other. This is considered to be oriented in parallel or orthogonal.
  • the reason why the dark line SL occurs in the vicinity of the edge will be described more specifically with reference to FIG. In FIG. 29, the cross-shaped dark line CL is omitted.
  • the pixel electrode has four edges (sides) SD1, SD2, SD3, and SD4.
  • An oblique electric field generated when a voltage is applied is orthogonal to each side, and the pixel electrode Demonstrate alignment regulating force having a component in the direction toward the inside (azimuth angle direction).
  • arrows e1, e2, e3, and e4 indicate azimuth directions that are orthogonal to the four edges SD1, SD2, SD3, and SD4 and that go inward of the pixel electrode.
  • Each of the four liquid crystal domains A, B, C, and D is close to two of the four edges SD1, SD2, SD3, and SD4 of the pixel electrode, and is obliquely generated at each edge when a voltage is applied. Subjected to alignment restriction by electric field.
  • the azimuth angle direction e1 orthogonal to the edge portion EG1 and toward the inside of the pixel electrode forms an angle of more than 90 ° with the tilt direction t1 of the liquid crystal domain A. ing.
  • a dark line SL1 is generated substantially parallel to the edge portion EG1 when a voltage is applied.
  • the azimuth direction e2 that is orthogonal to the edge portion EG2 and goes inward of the pixel electrode is greater than the tilt direction t2 of the liquid crystal domain B by more than 90 °. It has a corner.
  • a dark line SL2 is generated substantially parallel to the edge portion EG2 when a voltage is applied.
  • the azimuth angle direction e3 that is orthogonal to the edge portion EG3 and goes inward of the pixel electrode is more than 90 ° with respect to the tilt direction t3 of the liquid crystal domain C. It has a corner.
  • a dark line SL3 is generated substantially parallel to the edge portion EG3 when a voltage is applied.
  • the azimuth direction e4 orthogonal to the edge portion EG4 and toward the inside of the pixel electrode is greater than the tilt direction t4 of the liquid crystal domain D by more than 90 °. It has a corner.
  • a dark line SL4 is generated substantially parallel to the edge portion EG4 when a voltage is applied.
  • Each of the tilt directions t1, t2, t3, and t4 of the liquid crystal domains A, B, C, and D corresponds to the azimuth component e1 of the alignment regulating force due to the oblique electric field generated in the adjacent edge portions EG1, EG2, EG3, and EG4,
  • the angles formed by e2, e3 and e4 are all about 135 °.
  • the dark line SL is formed near the edge of the pixel electrode. Also in the pixel region P2 shown in FIG. 3C, the pixel region P3 shown in FIG. 4C, and the pixel region P4 shown in FIG. 5C, FIGS. As shown in (c), dark lines SL1 to SL4 are formed in the vicinity of the edge of the pixel electrode.
  • This dark region has cross-shaped dark lines CL formed at the boundaries between the liquid crystal domains A, B, C, and D, and linear dark lines SL1 to SL4 formed near the edges of the pixel electrodes. It is almost bowl-shaped.
  • This dark region has a cross-shaped dark line CL formed at the boundary between the liquid crystal domains A, B, C, and D, and linear dark lines SL2 and SL4 formed near the edge of the pixel electrode.
  • the shape is approximately 8 (eight shape inclined from the vertical direction).
  • no dark line is generated in the liquid crystal domains A and C. This is because the edge of the pixel electrode adjacent to each of the liquid crystal domains A and C does not have an edge portion in which the azimuth angle direction perpendicular to the inner side of the pixel electrode forms an angle of more than 90 ° with the tilt direction. .
  • dark lines SL2 and SL4 are generated. This is because the edge of the pixel electrode adjacent to each of the liquid crystal domains B and D has an edge portion that is perpendicular to the inner side of the pixel electrode and the azimuth direction forms an angle of more than 90 ° with the tilt direction. It is.
  • Each of dark lines SL2 and SL4 includes portions SL2 (H) and SL4 (H) parallel to the horizontal direction and portions SL2 (V) and SL4 (V) parallel to the vertical direction.
  • This dark region has a cross-shaped dark line CL formed at the boundary between the liquid crystal domains A, B, C and D, and linear dark lines SL1 and SL3 formed near the edge of the pixel electrode.
  • no dark line is generated in the liquid crystal domains B and D. This is because the edge of the pixel electrode adjacent to each of the liquid crystal domains B and D does not have an edge portion in which the azimuth angle direction perpendicular to the inner side of the pixel electrode makes an angle of more than 90 ° with the tilt direction. .
  • dark lines SL1 and SL3 are generated. This is because the edge of the pixel electrode adjacent to each of the liquid crystal domains A and C has an edge portion in which the azimuth direction perpendicular to the inside of the pixel electrode and the inside of the pixel electrode forms an angle of more than 90 ° with the tilt direction. It is.
  • Each of the dark lines SL1 and SL3 includes portions SL1 (H) and SL3 (H) parallel to the horizontal direction and portions SL1 (V) and SL3 (V) parallel to the vertical direction.
  • the tilt directions of the liquid crystal domains A and C are more than 90 ° with respect to the azimuth angle direction that is perpendicular to the edge portion and toward the inside of the pixel electrode for both the horizontal edge portion and the vertical edge portion. This is because it forms the corners.
  • the dark line SL is formed in the vicinity of the edge of the pixel electrode.
  • the dark line SL is near the edge of the pixel electrode. Not formed.
  • the reason why the dark line SL does not occur near the edge will be described with reference to FIG. In FIG. 32, the cross-shaped dark line CL is omitted.
  • the portion of the edge of the pixel electrode close to the liquid crystal domain A (the upper half of the edge SD3 and the right half of the edge SD4) is perpendicular to the azimuth direction e3 and e4 toward the inner side of the pixel electrode. It does not include an edge portion that forms an angle greater than 90 ° with the direction t1. Specifically, the tilt direction t1 of the liquid crystal domain A forms an angle of approximately 45 ° with the azimuth angle directions e3 and e4. Therefore, in the liquid crystal domain A, no linear dark line SL is generated near the edge of the pixel electrode when a voltage is applied.
  • portions of the edge of the pixel electrode that are close to the liquid crystal domain B are perpendicular to the azimuth angle directions e1 and e4 toward the inside of the pixel electrode. It does not include an edge portion that forms an angle greater than 90 ° with the tilt direction t2 of B. Specifically, the tilt direction t2 of the liquid crystal domain B forms an angle of approximately 45 ° with the azimuth angle directions e1 and e4. Therefore, in the liquid crystal domain B, no linear dark line SL is generated near the edge of the pixel electrode when a voltage is applied.
  • the portion of the edge of the pixel electrode that is close to the liquid crystal domain C (the lower half of the edge SD1 and the left half of the edge SD2) is perpendicular to the azimuth directions e1 and e2 toward the inside of the pixel electrode. It does not include an edge portion that forms an angle greater than 90 ° with the tilt direction t3 of C. Specifically, the tilt direction t3 of the liquid crystal domain C forms an angle of approximately 45 ° with the azimuth angle directions e1 and e2. Therefore, in the liquid crystal domain C, no linear dark line SL is generated near the edge of the pixel electrode when a voltage is applied.
  • the portion of the edge of the pixel electrode close to the liquid crystal domain D (the right half of the edge SD2 and the lower half of the edge SD3) is perpendicular to the azimuth direction e2 and e3 toward the inside of the pixel electrode. It does not include an edge portion that forms an angle greater than 90 ° with the tilt direction t4 of D. Specifically, the tilt direction t4 of the liquid crystal domain D forms an angle of approximately 45 ° with the azimuth angle directions e2 and e3. Therefore, in the liquid crystal domain D, no linear dark line SL is generated near the edge of the pixel electrode when a voltage is applied.
  • the dark line SL is not formed near the edge of the pixel electrode. Therefore, in the liquid crystal display device 800 of the present embodiment in which the pixel region is aligned and divided like the pixel region P5, a brighter display can be realized as compared with the liquid crystal display device 100 of the first embodiment.
  • the pretilt direction PA2 applied to the vertical alignment film is substantially orthogonal to the boundary between the upper region and the lower region (extending in the left-right direction).
  • the pretilt direction PB1 applied to the right alignment region and the left region is substantially orthogonal to the boundary between the right region and the left region (extending in the vertical direction).
  • the vertical alignment film of each substrate is opposed to each other by the method described below.
  • Two parallel pretilt directions can be given by one exposure (ultraviolet irradiation).
  • an optical mask 40 in which slits 40 s are formed is prepared, and the optical mask 40 is arranged at a predetermined distance from the substrate 1 on which the photo-alignment film 2 is formed. To do.
  • a light source for example, an ultraviolet lamp
  • the ultraviolet light emitted from the light source 50 is irradiated to the photo-alignment film 2 as diffused light through the slit 40s.
  • pre-tilt directions P1 and P2 that are antiparallel to each other are applied to the two regions of the photo-alignment film 2 with the boundary immediately below the slit 40s as a boundary.
  • FIG. 34 to FIG. 37 a specific example of the relative arrangement relationship between the active matrix substrate (back substrate) 10 and the optical mask 40 and the counter substrate (front substrate) 20 and the optical mask 40 are shown. A specific example of the relative arrangement relationship will be described.
  • an active matrix substrate 10 having a plurality of scanning lines 17 and a plurality of signal lines 18 as shown in FIG.
  • each pixel region P ⁇ b> 5 is surrounded by the scanning line 17 and the signal line 18.
  • a photo-alignment film 12 (not shown) is formed on the outermost surface of the active matrix substrate 10.
  • an optical mask 40 having a plurality of slits 40s as shown in FIG. 34 (b) is prepared.
  • the plurality of slits 40s extend in the left-right direction (horizontal direction).
  • the active matrix substrate 10 and the optical mask 40 are arranged so that the slit 40s of the optical mask 40 crosses the center of the pixel region P5, as shown in FIG.
  • pre-tilt directions PA1 and PA2 that are antiparallel to each other are applied to the two regions of the photo-alignment film 12 with the boundary immediately below the slit 40s as a boundary.
  • the counter substrate 10 having a black matrix (light shielding layer) BM as shown in FIG.
  • the black matrix BM is made of, for example, resin, and is formed between the pixel regions P5.
  • a photo-alignment film 22 (not shown) is formed on the outermost surface of the counter substrate 20.
  • an optical mask 40 having a plurality of slits 40s as shown in FIG. 36B is prepared.
  • the plurality of slits 40s extend in the vertical direction (vertical direction).
  • the counter substrate 20 and the optical mask 40 are arranged so that the slits 40s of the optical mask 40 are located between the pixel regions P5, as shown in FIG.
  • pre-tilt directions PB1 and PB2 that are antiparallel to each other are applied to the two regions of the photo-alignment film 22 with the boundary immediately below the slit 40s as a boundary.
  • FIG. 38 shows a liquid crystal display device 900 according to this embodiment.
  • FIG. 38 is a plan view schematically showing one pixel region of the liquid crystal display device 900.
  • the positional relationship between the slit forming region 11R1 and the non-slit forming region 11R2 of the pixel electrode 11 is different.
  • the slit forming region 11R1 in the region corresponding to the liquid crystal domains A and B of the pixel electrode 11, the slit forming region 11R1 is positioned relatively lower, and the slit non-forming region 11R2 is relative. It is located on the upper side. In the region corresponding to the liquid crystal domains C and D of the pixel electrode 11, the slit forming region 11R1 is positioned relatively on the upper side, and the slit non-forming region 11R2 is positioned on the lower side.
  • the slits 11s are arranged above and below the pixel region, whereas in the liquid crystal display device 900 of the present embodiment, the slit 11s is arranged in the center of the pixel region.
  • the dark subpixel is located at the center of the pixel, half of the bright subpixel is located above the pixel, and the other half of the bright subpixel is located below the pixel.
  • the viewing angle dependency of the ⁇ characteristic can be improved.
  • the stability of alignment at the center of the pixel region can be improved by the alignment regulating force of the slit 11s arranged at the center of the pixel region. If a configuration in which the slits 11s are arranged on the upper side and the lower side (that is, relatively outside in the pixel region) instead of the center of the pixel region as in the liquid crystal display device 800 in the eighth embodiment, scanning is performed. An advantage is obtained in that an adverse influence on the alignment by an oblique electric field due to the potential of the bus line such as the line 17 or the signal line 18 can be suppressed.
  • FIG. 39 shows a liquid crystal display device 1000 according to this embodiment.
  • FIG. 39 is a plan view schematically showing one pixel region of the liquid crystal display device 1000.
  • the liquid crystal display device 1000 according to the present embodiment is different from the liquid crystal display device 800 according to the eighth embodiment in that a pixel division driving technique is used.
  • the pixel electrode 11 of the liquid crystal display device 1000 includes a plurality of (here, two) sub-pixel electrodes 11a and 11b.
  • the first TFT 16a and the first auxiliary capacitor CS1 are connected to one (first subpixel electrode) 11a of the two subpixel electrodes 11a and 11b.
  • the other (second subpixel electrode) 11b is connected to the second TFT 16b and the second auxiliary capacitor CS2.
  • Each pixel region of the liquid crystal display device 1000 includes a plurality (two in this case) of subpixel regions corresponding to the plurality of subpixel electrodes 11a and 11b.
  • the gate electrodes of the first TFT 16a and the second TFT 16b are connected to a common scanning line 17.
  • the source electrodes of the first TFT 16 a and the second TFT 16 b are connected to a common (that is, the same) signal line 18.
  • the first auxiliary capacitor CS1 is connected to the first auxiliary capacitor line 19a
  • the second auxiliary capacitor CS2 is connected to the second auxiliary capacitor line 19b.
  • One of the pair of electrodes constituting the first auxiliary capacitor CS1 (auxiliary capacitor counter electrode; here, part of the first auxiliary capacitor line 19a) is supplied with the auxiliary capacitor counter voltage from the first auxiliary capacitor line 19a.
  • One of the pair of electrodes constituting the second auxiliary capacitor CS2 (auxiliary capacitor counter electrode; here, part of the second auxiliary capacitor line 19b) supplies the auxiliary capacitor counter voltage from the second auxiliary capacitor line 19b. Is done.
  • auxiliary capacitance counter electrodes of the first auxiliary capacitance CS1 and the second auxiliary capacitance CS2 are independent from each other, different auxiliary capacitances are respectively provided from the corresponding auxiliary capacitance lines (first auxiliary capacitance line 19a or second auxiliary capacitance line 19b).
  • a capacitive counter voltage (CS voltage) may be supplied.
  • the first auxiliary capacitor CS1 and the second auxiliary capacitor CS1 are supplied.
  • the amount of change (defined by the direction and magnitude of the change) of the voltage of the auxiliary capacitor counter electrode of the capacitor CS2 (that is, the voltage supplied from the first auxiliary capacitor line 19a or the second auxiliary capacitor line 19b) is varied.
  • the voltage applied to the first subpixel electrode 11a and the second subpixel electrode 11b can be made different from each other by using capacitive division.
  • each of the two subpixel regions has four liquid crystal domains A, B, C, and D.
  • Each of the first subpixel electrode 11a and the second subpixel electrode 11b has a slit forming region 11R1 and a non-slit forming region 11R2 in regions corresponding to the liquid crystal domains A, B, C, and D, respectively. Accordingly, there are two regions having different effective applied voltages to the liquid crystal layer 30 in each of the two sub-pixel regions. Therefore, in the liquid crystal display device 1000 according to the present embodiment, four regions having different effective applied voltages to the liquid crystal layer 30 can be formed in one pixel region. Therefore, the effect of improving the viewing angle dependency of the ⁇ characteristic can be further enhanced.
  • the circuit configuration is somewhat complicated as compared with the liquid crystal display device 800 according to the eighth embodiment.
  • a circuit configuration comparable to that when using only the pixel division driving technique is used.
  • the number of divided pixels can be increased (that is, the effect of improving the viewing angle dependency of the ⁇ characteristic can be increased).
  • the pixel electrode 11 including the slit formation region 11R1 and the pixel division driving technique are used in combination, so that only the pixel division driving technique is used. Compared to the case, the circuit configuration can be simplified.
  • the width Wa of the slit 11s formed in the first subpixel electrode 11a is different from the width Wb of the slit 11s formed in the second subpixel electrode 11b.
  • the width Wa of the slit 11s of the first subpixel electrode 11a may be the same as the width Wb of the slit 11s of the second subpixel electrode 11b.
  • Embodiment 11 show liquid crystal display devices 1100A and 1100B in the present embodiment.
  • 40 and 41 are plan views schematically showing one pixel region of the liquid crystal display devices 1100A and 1100B.
  • the liquid crystal display devices 1100A and 1100B in the present embodiment are different from the liquid crystal display device 800 in the eighth embodiment in that the pixel electrode 11 does not have the slit non-formation region 11R2.
  • the pixel electrodes 11 of the liquid crystal display devices 1100A and 1100B have slit formation regions 11R1 (first regions) in a part of regions corresponding to the liquid crystal domains A, B, C, and D, respectively. Slit forming region). Further, the pixel electrodes 11 of the liquid crystal display devices 1100A and 1100B have a width different from the width W of the slit 11s of the slit formation region 11R1 in another part of the region corresponding to each of the liquid crystal domains A, B, C, and D. It has a further slit forming region 11R1 ′ (second slit forming region) in which a further slit 11s ′ having W ′ is formed.
  • the width W of the slit 11s in the first slit formation region 11R1 and the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′ are effective when the highest gradation voltage is supplied to the pixel electrode 11, respectively.
  • the amount of decrease in applied voltage is set to 0.5 V or more, and the deviation of the alignment direction of the liquid crystal molecules 30a from the reference alignment direction is set to be less than 45 °.
  • the width W of the slit 11s in the first slit formation region 11R1 is larger than the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′.
  • the width W of the slit 11s in the first slit formation region 11R1 and the width W ′ of the slit 11s ′ in the second slit formation region 11R1 ′ are different.
  • the amount of decrease in applied voltage in the liquid crystal layer 30 on the formation region 11R1 is different from the amount of decrease in applied voltage in the liquid crystal layer 30 on the second slit formation region 11R1 ′. Therefore, in each liquid crystal domain, two regions having different applied voltages to the liquid crystal layer 30, that is, the first slit forming region 11R1 having a relatively low applied voltage and the second region having a relatively high applied voltage.
  • the slit forming region 11R1 ′ is present. Therefore, the viewing angle dependency of the ⁇ characteristic can be improved.
  • the liquid crystal layer 30 on the first slit formation region 11R1 and the liquid crystal layer 30 on the second slit formation region 11R1 ′ are effective.
  • the difference in the amount of decrease in applied voltage is preferably 0.5 V or more, and more preferably 1.0 V or more.
  • the configuration in which the pixel electrode 11 has a further slit forming region (second slit forming region) 11R1 'instead of the non-slit forming region 11R2 has an advantage that the alignment of liquid crystal molecules can be further stabilized.
  • the configuration in which the pixel electrode 11 has the slit non-formation region (solid region) 11R2 like the liquid crystal display device 800 in the eighth embodiment can maximize the difference in the voltage that is effectively applied to the liquid crystal layer 30. Have advantages.
  • the viewing angle dependency of the ⁇ characteristic in the VA mode liquid crystal display device can be sufficiently improved with a relatively simple circuit configuration.
  • the liquid crystal display device according to the present invention is suitably used for applications that require high quality display such as television receivers.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

 液晶表示装置(100)は、垂直配向型の液晶層(30)と、第1および第2基板(10、20)と、第1および第2基板の液晶層側に設けられた第1および第2電極(11、21)と、一対の光配向膜(12、22)とを備える。各画素領域は、一対の光配向膜によって規定される基準配向方向が第1方向である第1液晶ドメインと、基準配向方向が第1方向とは異なる第2方向である第2液晶ドメインとを有する。第1電極は、第1および第2液晶ドメインのそれぞれに対応する領域の一部に、基準配向方向に略平行に延びるスリット(11s)が形成されたスリット形成領域(11R1)を有する。スリットの幅(W)は、第1電極に最高階調電圧が供給されたときの実効的な印加電圧の低下量が0.5V以上であり、且つ、液晶分子(30a)の配向方向の基準配向方向に対するずれが45°未満であるように設定されている。

Description

液晶表示装置
 本発明は、液晶表示装置に関し、特に、垂直配向型の液晶層を備え、広視野角特性を有する液晶表示装置に関する。
 液晶表示装置の表示特性が改善され、テレビジョン受像機などへの利用が進んでいる。液晶表示装置の視野角特性は向上したものの、さらなる改善が望まれている。特に、垂直配向型の液晶層を用いた液晶表示装置の視野角特性を改善する要求は強い。垂直配向型液晶層を備えた液晶表示装置は、VA(Vertical Alignment)モードの液晶表示装置と呼ばれる。
 現在、テレビ等の大型表示装置に用いられているVAモードの液晶表示装置には、視野角特性を改善するために、1つの画素に複数の液晶ドメインを形成する配向分割構造が採用されている。配向分割構造を形成する方法としては、MVA(Multi-domain Vertical Alignment)モードが主流である。MVAモードは、例えば特許文献1に開示されている。
 MVAモードでは、垂直配向型液晶層を挟んで対向する一対の基板のそれぞれの液晶層側に配向規制構造を設けることによって、各画素内に配向方向(チルト方向)が異なる複数の液晶ドメイン(典型的には配向方向は4種類)が形成される。配向規制構造としては、電極に形成されたスリット(開口部)や、リブ(突起構造)が用いられ、液晶層の両側から配向規制力が発揮される。
 しかしながら、スリットやリブを用いると、従来のTN(Twisted Nematic)モードで用いられていた配向膜によってプレチルト方向を規定した場合と異なり、スリットやリブが線状であることから、液晶分子に対する配向規制力が画素内で不均一となるため、応答速度に分布が生じるという問題がある。また、スリットやリブを設けた領域の光透過率が低下するので、表示輝度が低下するという問題もある。
 上述の問題を回避するためには、VAモードの液晶表示装置についても、配向膜でプレチルト方向を規定することによって配向分割構造を形成することが好ましい。そのようにして配向分割構造が形成されたVAモードの液晶表示装置が、特許文献2に提案されている。
 特許文献2に開示されている液晶表示装置では、配向膜でプレチルト方向を規定することによって、4分割配向構造が形成される。つまり、液晶層に電圧が印加されたときに、1つの画素内に4つの液晶ドメインが形成される。このような4分割配向構造を、単に4D構造と呼ぶこともある。
 また、特許文献2に開示されている液晶表示装置では、液晶層を介して対向する一対の配向膜のうちの一方の配向膜によって規定されるプレチルト方向と、他方の配向膜によって規定されるプレチルト方向とは互いに略90°異なっている。そのため、電圧印加時には、液晶分子はツイスト配向をとる。このように、プレチルト方向(配向処理方向)が互いに直交するように設けられた一対の垂直配向膜を用いることによって液晶分子がツイスト配向をとるVAモードは、VATN(Vertical Alignment Twisted Nematic)モードあるいはRTN(Reverse Twisted Nematic)モードと呼ばれることもある。既に説明したように、特許文献2の液晶表示装置では4D構造が形成されることから、特許文献2の液晶表示装置の表示モードは、4D-RTNモードと呼ばれることもある。
 液晶分子のプレチルト方向を配向膜に規定させる具体的な方法としては、特許文献2にも記載されているように、光配向処理を行う方法が有望視されている。光配向処理は、非接触で処理できるので、ラビング処理のように摩擦による静電気の発生がなく、歩留まりを向上させることができる。光配向処理が施された配向膜は、光配向膜とも呼ばれる。
 また、MVAモードの応答特性を改善する目的で、PSA技術(Polymer Sustained Alignment Technology)が開発されている。PSA技術は、例えば特許文献3および4に開示されている。PSA技術では、液晶分子にプレチルトを付与するために、配向維持層と呼ばれるポリマー層が用いられる。配向維持層は、液晶材料に予め混合しておいた光重合性モノマーを、液晶セルを作製した後、液晶層に電圧が印加された状態で重合することによって形成される。モノマーを重合するときに印加される電界の分布および強度を調整することによって、液晶分子のプレチルト方位(基板面内の方位角)およびプレチルト角(基板面からの立ち上がり角)を制御することができる。
 また、特許文献4には、PSA技術とともに微細なストライプ状パターンを有する画素電極(「フィッシュボーン型画素電極」と呼ばれることもある)を用いた構成が開示されている。この構成では、液晶層に電圧を印加すると、液晶分子はストライプ状パターンの長手方向に平行に配向する。これは、特許文献1に記載されている従来のMVAモードではスリットやリブなどの直線状の配向規制構造に対して直交する方向に液晶分子が配向するのとは対照的である。微細なストライプ状パターンのライン&スペースは、従来のMVAモードの配向規制構造の幅よりも小さくてよい。従って、フィッシュボーン型画素電極は、従来のMVAモードの配向規制構造よりも小型の画素に適用しやすいという利点を有する。
 上述したようなVAモードの改良技術(4D-RTNモードやPSA技術、フィッシュボーン型画素電極)によれば、高い視野角特性を実現することができる。しかしながら、近年、VAモードの液晶表示装置の視野角特性のさらなる改善が望まれており、そのために「画素分割駆動技術」が実用化されている(例えば特許文献5および6)。
 画素分割駆動技術によれば、正面方向から観測したときのγ(ガンマ)特性と斜め方向から観測したときのγ特性とが異なるという問題点、すなわち、γ特性の視角依存性が改善される。ここで、γ特性とは、表示輝度の階調依存性である。
 画素分割駆動技術では、1つの画素を、互いに異なる電圧を液晶層に印加し得る、つまり、互いに異なる輝度を呈し得る複数の副画素で構成し、画素に入力される表示信号電圧に対応する所定の輝度を、1つの画素全体で実現する。つまり、画素分割駆動技術とは、複数の副画素の互いに異なるγ特性を合成することによって、画素のγ特性の視角依存性を改善する技術である。
特開平11-242225号公報 国際公開第2006/132369号 特開2002-357830号公報 特開2003-149647号公報 特開2004-62146号公報 特開2004-78157号公報
 しかしながら、画素分割駆動技術を用いる場合、液晶層への実効的な印加電圧を副画素ごとに異ならせる必要があるので、以下に説明するように、回路構成が複雑になるという問題がある。
 画素分割駆動技術が用いられた液晶表示装置では、各画素に設けられる画素電極は、複数の副画素に対応した複数の副画素電極を有している。そして、それぞれの副画素電極に対応してスイッチング素子(例えばTFT)が設けられている。
 特許文献5には、1つの画素を構成する複数の副画素電極が、互いに異なる信号線に接続される構成が開示されている。この構成では、従来の一般的な液晶表示装置に比べ、信号線の本数が増加してしまう。また、信号線駆動回路の構成も従来とは異なってしまう。
 また、特許文献5には、容量分割を利用して、液晶層への印加電圧を副画素ごとに異ならせる構成も開示されている。この構成では、複数の副画素のそれぞれが、副画素電極に電気的に接続された補助容量電極と、絶縁層と、絶縁層を介して補助容量電極に対向する補助容量対向電極とによって形成された補助容量を有する。さらに、この構成では、補助容量対向電極が副画素ごとに電気的に独立である。そのため、補助容量の容量値の大きさと、補助容量対向電極に供給する電圧(補助容量対向電圧という。)の大きさとを調節することによって、液晶層への実効的な印加電圧の大きさを副画素ごとに制御することができる。
 この構成を採用すると、複数の副画素電極のそれぞれに対して異なる信号電圧を印加する必要がないので、各副画素のスイッチング素子を共通の信号線に接続し、同じ信号電圧を供給すればよい。従って、信号線の本数は、従来の液晶表示装置と同じであり、信号線駆動回路の構成も従来の液晶表示装置で用いられるものと同じ構成を採用できる。ただし、この構成では、典型的には振動電圧である補助容量対向電圧を発生させるために、外付け回路が必要となることがある。
 また、副画素ごとに信号線を設ける前者の構成および容量分割を利用する後者の構成のいずれにおいても、複数の副画素の面積比が均等であるよりも、不均等である方が(具体的には液晶層への印加電圧が相対的に高い副画素の面積比がより小さい方が)、γ特性の視角依存性を改善する効果が高い。ただし、白表示時の光透過率は、複数の副画素の面積比が均等なときに最大値をとり、面積比が不均等になるにつれて低下する。この理由は、面積比が不均等になるにつれて、複数の副画素のうちのどれかの面積が小さくなるので、良好な分割配向状態が得られなくなるからである。また、この現象は、画素面積の小さな、つまり、高精細の液晶表示装置において顕著である。そのため、画素分割駆動技術においては、白表示時の光透過率を考慮すると、γ特性の視角依存性を改善する効果が限定的になってしまう。さらに、高精細の液晶表示装置では、透過率が特に重視されるので、上述した理由によって透過率が低下したり、付加的な構造(2つ目のTFTなど)によって開口率が低下したりする画素分割駆動技術そのものを適用しにくい。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、VAモードの液晶表示装置におけるγ特性の視角依存性を、比較的簡単な回路構成で十分に改善することにある。
 本発明の実施形態における液晶表示装置は、垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板と、前記第1基板の前記液晶層側に設けられた第1電極および前記第2基板の前記液晶層側に設けられた第2電極と、前記第1電極および前記液晶層の間と前記第2電極および前記液晶層の間とに設けられた一対の光配向膜と、を備え、マトリクス状に配列された複数の画素領域を有し、前記複数の画素領域のそれぞれは、前記一対の光配向膜によって規定される基準配向方向が第1方向である第1液晶ドメインと、前記基準配向方向が前記第1方向とは異なる第2方向である第2液晶ドメインと、を有し、前記第1電極は、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域の一部に、前記一対の光配向膜によって規定される前記基準配向方向に略平行に延びるスリットが形成されたスリット形成領域を有し、前記スリットの幅は、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における実効的な印加電圧の低下量が0.5V以上であり、且つ、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における液晶分子の配向方向の前記基準配向方向に対するずれが45°未満であるように設定されている。
 ある実施形態において、前記スリットの幅は、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における実効的な印加電圧の低下量が1.0V以上であるように設定されている。
 ある実施形態において、前記スリットの幅は、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における液晶分子の配向方向の前記基準配向方向に対するずれが30°以下であるように設定されている。
 ある実施形態において、前記スリットの幅は、2.5μm以上である。
 ある実施形態において、前記スリットの幅は、4.0μm以上である。
 ある実施形態において、前記スリットの幅は、8.0μm未満である。
 ある実施形態において、前記スリットの幅は、6.0μm以下である。
 ある実施形態において、前記第1基板は、前記第1電極の下方に誘電体層を隔てて設けられた第3電極をさらに有する。
 ある実施形態において、前記第3電極には、前記第2電極に供給される電圧と実質的に同じ電圧が供給される。
 ある実施形態において、前記スリットの幅は、1.0μm以上である。
 ある実施形態において、前記スリットの幅は、2.0μm以上である。
 ある実施形態において、前記スリットの幅は、6.0μm未満である。
 ある実施形態において、前記スリットの幅は、4.5μm以下である。
 ある実施形態において、前記第1電極の、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域内において、前記スリット形成領域が占める割合は1/3以上である。
 ある実施形態において、前記第1電極の、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域内において、前記スリット形成領域が占める割合は2/3以上である。
 ある実施形態において、前記スリット形成領域内に、前記スリットが複数形成されており、前記複数のスリットは、実質的に同じ幅を有する。
 ある実施形態において、前記スリット形成領域内に、前記スリットが複数形成されており、前記複数のスリットは、第1の幅を有するスリットと、前記第1の幅とは異なる第2の幅を有するスリットと、を含む。
 ある実施形態において、表示面法線方向から見たとき、前記スリットは、前記第1電極の導電膜によって完全に包囲されている。
 ある実施形態において、表示面法線方向から見たとき、前記スリットは、前記第1電極の導電膜によって完全には包囲されていない。
 ある実施形態において、前記第1電極は、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域の他の一部に、スリットが形成されていないスリット非形成領域を有する。
 ある実施形態において、前記第1電極は、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域の他の一部に、前記スリット形成領域の前記スリットの幅とは異なる幅を有するさらなるスリットが形成されたさらなるスリット形成領域を有する。
 ある実施形態において、前記第1基板は、アクティブマトリクス基板であり、前記第1電極は、画素電極である。
 ある実施形態において、前記画素電極は、複数の副画素電極を含み、前記複数の画素領域のそれぞれは、前記複数の副画素電極に対応する複数の副画素領域を含み、前記複数の副画素領域のそれぞれが、前記第1液晶ドメインおよび前記第2液晶ドメインを有する。
 ある実施形態において、前記複数の画素領域のそれぞれは、前記基準配向方向が第3方向である第3液晶ドメインと、前記基準配向方向が第4方向である第4液晶ドメインと、をさらに有し、前記第1方向、前記第2方向、前記第3方向および前記第4方向は、任意の2つの方向の差が90°の整数倍に略等しい4つの方向であり、前記第1電極は、前記第3液晶ドメインおよび前記第4液晶ドメインのそれぞれに対応する領域の一部にも、前記スリット形成領域を有する。
 ある実施形態において、前記第1液晶ドメイン、前記第2液晶ドメイン、前記第3液晶ドメインおよび前記第4液晶ドメインは、それぞれ他の液晶ドメインと隣接し、かつ、2行2列のマトリクス状に配置されている。
 ある実施形態において、前記第1液晶ドメイン、前記第2液晶ドメイン、前記第3液晶ドメインおよび前記第4液晶ドメインは、隣接する液晶ドメイン間で前記基準配向方向が略90°異なるように配置されている。
 ある実施形態において、前記第1電極のエッジのうちの前記第1液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第1方向と90°超の角をなすエッジ部を含まず、前記第1電極のエッジのうちの前記第2液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第2方向と90°超の角をなすエッジ部を含まず、前記第1電極のエッジのうちの前記第3液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第3方向と90°超の角をなすエッジ部を含まず、前記第1電極のエッジのうちの前記第4液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第4方向と90°超の角をなすエッジ部を含まない。
 ある実施形態において、前記第1方向は、前記第1電極のエッジのうちの前記第1液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなし、前記第2方向は、前記第1電極のエッジのうちの前記第2液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなし、前記第3方向は、前記第1電極のエッジのうちの前記第3液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなし、前記第4方向は、前記第1電極のエッジのうちの前記第4液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなす。
 ある実施形態において、前記第1電極のエッジのうちの前記第1液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第1方向と90°超の角をなす第1エッジ部を含み、前記第1電極のエッジのうちの前記第2液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第2方向と90°超の角をなす第2エッジ部を含み、前記第1電極のエッジのうちの前記第3液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第3方向と90°超の角をなす第3エッジ部を含み、前記第1電極のエッジのうちの前記第4液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第4方向と90°超の角をなす第4エッジ部を含む。
 ある実施形態において、前記第1方向は、前記第1エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなし、前記第2方向は、前記第2エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなし、前記第3方向は、前記第3エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなし、前記第4方向は、前記第4エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなす。
 ある実施形態において、表示面における水平方向の方位角を0°とするとき、前記第1方向は略45°、略135°、略225°または略315°である。
 ある実施形態において、本発明による液晶表示装置は、前記液晶層を介して互いに対向し、それぞれの透過軸が互いに略直交するように配置された一対の偏光板をさらに備え、前記第1方向および前記第2方向は、前記一対の偏光板の前記透過軸と略45°の角をなす。
 ある実施形態において、前記液晶層は、負の誘電異方性を有する液晶分子を含み、前記一対の光配向膜のうちの一方によって規定されるプレチルト方向と、他方によって規定されるプレチルト方向とは互いに略90°異なる。
 ある実施形態において、前記一対の光配向膜のうちの一方によって規定されるプレチルト角と、他方によって規定されるプレチルト角とは互いに略等しい。
 本発明の実施形態によると、VAモードの液晶表示装置におけるγ特性の視角依存性を、比較的簡単な回路構成で十分に改善することができる。
VAモードの液晶表示装置における配向分割構造を有する画素領域の例を示す図である。 図1に示した画素領域の分割方法を説明するための図であり、(a)は背面基板側のプレチルト方向を示し、(b)は前面基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向を示している。 画素領域の他の分割方法を説明するための図であり、(a)は背面基板側のプレチルト方向を示し、(b)は前面基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向を示している。 画素領域のさらに他の分割方法を説明するための図であり、(a)は背面基板側のプレチルト方向を示し、(b)は前面基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向を示している。 画素領域のさらに他の分割方法を説明するための図であり、(a)は背面基板側のプレチルト方向を示し、(b)は前面基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向を示している。 本発明の実施形態における液晶表示装置100の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置100を模式的に示す図であり、図6中の7A-7A’線に沿った断面図である。 (a)および(b)は、スリットの幅を仮に極端に大きくしたときの電圧印加時の液晶分子の配向状態を示す上面図および断面図である。 (a)および(b)は、スリットの幅を仮に極端に小さくしたときの電圧印加時の液晶分子の配向状態を模式的に示す上面図および断面図である。 スリットの幅を変化させてその影響を検証した結果を説明するためのグラフである。横軸は、スリットの幅であり、右側の縦軸は、スリット上の液晶層における実効的な印加電圧の低下量であり、左側の縦軸は、背面側の偏光板の透過軸の方位を0°としたときの液晶分子の配向方向(方位)である。 本発明の実施形態における液晶表示装置200の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置200を模式的に示す図であり、図11中の12A-12A’線に沿った断面図である。 スリットの幅を変化させてその影響を検証した結果を説明するためのグラフである。横軸は、スリットの幅であり、右側の縦軸は、スリット上の液晶層における実効的な印加電圧の低下量であり、左側の縦軸は、背面側の偏光板の透過軸の方位を0°としたときの液晶分子の配向方向(方位)である。 本発明の実施形態における液晶表示装置200の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置300の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置400の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置500の1つの画素領域を模式的に示す平面図である。 画素電極におけるスリットの形成パターンの例を示す平面図である。 画素電極におけるスリットの形成パターンの他の例を示す平面図である。 画素電極におけるスリットの形成パターンのさらに他の例を示す平面図である。 本発明の実施形態における液晶表示装置600Aの1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置600Bの1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置600Cの1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置700の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置800の1つの画素領域を模式的に示す平面図である。 画素領域の他の例を示す図である。 図26に示した画素領域の分割方法を説明するための図であり、(a)は背面基板側のプレチルト方向を示し、(b)は前面基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向を示している。 図1に示した画素領域においてある中間調を表示するときに形成される暗い領域を示す図である。 図1に示した画素領域において画素電極のエッジ近傍に暗線が形成される理由を説明するための図である。 (a)は、図3(c)に示した画素領域においてある中間調を表示するときに形成される暗い領域を示す図であり、(b)は、図4(c)に示した画素領域においてある中間調を表示するときに形成される暗い領域を示す図であり、(c)は、図5(c)に示した画素領域においてある中間調を表示するときに形成される暗い領域を示す図である。 図26に示した画素領域においてある中間調を表示するときに形成される暗い領域を示す図である。 図26に示した画素領域において画素電極のエッジ近傍に暗線が形成されない理由を説明するための図である。 (a)、(b)および(c)は、背面基板および前面基板に対して図27(a)および(b)に示したような配向処理を施す方法を説明するための図である。 (a)、(b)および(c)は、図27(a)に示したような配向処理をアクティブマトリクス基板(背面基板)に施す場合のアクティブマトリクス基板と光学マスクとの相対的な配置関係の具体例を説明するための図である。 (a)および(b)は、図27(a)に示したような配向処理をアクティブマトリクス基板(背面基板)に施す場合のアクティブマトリクス基板と光学マスクとの相対的な配置関係の具体例を説明するための図である。 (a)、(b)および(c)は、図27(b)に示したような配向処理を対向基板(前面基板)に施す場合の対向基板と光学マスクとの相対的な配置関係の具体例を説明するための図である。 (a)および(b)は、図27(a)に示したような配向処理を対向基板(前面基板)に施す場合の対向基板と光学マスクとの相対的な配置関係の具体例を説明するための図である。 本発明の実施形態における液晶表示装置900の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置1000の1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置1100Aの1つの画素領域を模式的に示す平面図である。 本発明の実施形態における液晶表示装置1100Bの1つの画素領域を模式的に示す平面図である。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 (用語の説明)
 まず、本願明細書において用いられる主な用語を説明する。
 本願明細書において、「垂直配向型の液晶層」とは、液晶分子が垂直配向膜の表面に対して約85°以上の角度で配向した液晶層をいう。垂直配向型の液晶層を構成する液晶材料は、負の誘電異方性を有する。垂直配向型の液晶層と、液晶層を介して互いに対向するようにクロスニコルに配置された(つまりそれぞれの透過軸が互いに略直交するように配置された)一対の偏光板とを組み合わせることにより、ノーマリブラックモードの表示が行われる。
 また、本願明細書において、「画素」とは、表示において特定の階調を表現する最小の単位を指し、カラー表示においては、例えば、R、GおよびBのそれぞれの階調を表現する単位に対応し、「ドット」とも呼ばれる。R画素、G画素およびB画素の組み合わせが、1つのカラー表示画素を構成する。「画素領域」は、表示の「画素」に対応する液晶表示装置の領域を指す。
 「プレチルト方向」は、配向膜によって規定される液晶分子の配向方向であって、表示面内の方位角方向を指す。また、このとき液晶分子が配向膜の表面となす角を「プレチルト角」と呼ぶ。液晶分子のプレチルト方向を配向膜に規定させる方法としては、後述する光配向処理が好ましい。
 液晶層を介して対向する一対の配向膜の一方によって規定されるプレチルト方向と他方によって規定されるプレチルト方向との組み合わせを画素領域内で異ならせることによって、4分割配向構造を形成することができる。4分割された画素領域は、4つの液晶ドメインを有する。あるいは、2分割配向構造を形成することもできる。2分割された画素領域は、2つの液晶ドメインを有する。
 それぞれの液晶ドメインは、液晶層に電圧が印加されたときの液晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向(「基準配向方向」ということもある。)によって特徴付けられ、このチルト方向(基準配向方向)が各ドメインの視角依存性に支配的な影響を与える。このチルト方向も方位角方向である。方位角方向の基準は、表示面の水平方向とし、左回りを正とする(表示面を時計の文字盤に例えると3時方向を方位角0°として、反時計回りを正とする)。4分割配向構造においては、4つの液晶ドメインのチルト方向を、任意の2つの方向の差が90°の整数倍に略等しい4つの方向(例えば、12時方向、9時方向、6時方向、3時方向)となるように設定することによって、視野角特性が平均化され、良好な表示を得ることができる。また、視野角特性の均一さの観点からは、4つの液晶ドメインの画素領域内に占める面積は互いに略等しくすることが好ましい。具体的には、4つの液晶ドメインのうちの最大の液晶ドメインの面積と最小の液晶ドメインの面積との差が、最大の面積の25%以下であることが好ましい。また、2分割配向構造においては、2つの液晶ドメインのチルト方向が略180°異なっていることにより、視野角特性が平均化され、良好な表示を得ることができる。
 以下の実施形態で例示する垂直配向型の液晶層は、誘電異方性が負の液晶分子(誘電異方性が負のネマチック液晶材料)を含み、一方の配向膜によって規定されるプレチルト方向と、他方の配向膜によって規定されるプレチルト方向とは互いに略90°異なっており、これら2つのプレチルト方向の中間の方向にチルト方向(基準配向方向)が規定されている。液晶層に電圧を印加したときには、配向膜の近傍の液晶分子は配向膜の配向規制力に従ってツイスト配向をとる。このように、プレチルト方向(配向処理方向)が互いに直交するように設けられた一対の垂直配向膜を用いることにより、液晶分子がツイスト配向となるVAモードは、既に説明したようにVATNモードと呼ばれることもある。
 VATNモードにおいては、一対の配向膜のそれぞれによって規定されるプレチルト角は互いに略等しいことが好ましい。プレチルト角が略等しいことにより、表示輝度特性を向上させることができるという利点が得られる。特に、プレチルト角の差を1°以下にすることによって、液晶層の中央付近の液晶分子のチルト方向(基準配向方向)を安定に制御することが可能となり、表示輝度特性を向上させることができる。これは、上記プレチルト角の差が1°を超えると、所望の透過率よりも高い透過率となる領域が形成されコントラスト比が低下するためと考えられる。
 配向膜によってプレチルト方向を規定する方法としては、ラビング処理を行う方法、光配向処理を行う方法、配向膜の下地に微細な構造を予め形成しておきその微細構造を配向膜の表面に反映させる方法、あるいは、SiOなどの無機物質を斜め蒸着することによって表面に微細な構造を有する配向膜を形成する方法などが知られているが、量産性の観点からは、ラビング処理または光配向処理が好ましい。特に、光配向処理は、非接触で処理できるので、ラビング処理のように摩擦による静電気の発生がなく、歩留まりを向上させることができる。さらに、感光性基を含む光配向膜を用いることによって、プレチルト角のばらつきを1°以下に制御することができる。感光性基としては、4-カルコン基、4’-カルコン基、クマリン基およびシンナモイル基からなる群より選ばれる少なくとも一つの感光性基を含むことが好ましい。
 (光配向膜による配向分割)
 次に、光配向膜による配向分割方法を説明する。
 まず、図1に例示する4分割配向構造の画素領域P1について説明を行う。なお、図1には、説明の簡単さのために、略正方形の画素電極に対応する略正方形の画素領域P1を示しているが、本発明は画素領域の形状に制限されるものではない。画素領域P1は略長方形であってもよい。
 画素領域P1は、4つの液晶ドメインA、B、CおよびDを有する。液晶ドメインA、B、CおよびDのそれぞれのチルト方向(基準配向方向)をt1、t2、t3およびt4とすると、これらは、任意の2つの方向の差が90°の整数倍に略等しい4つの方向である。図1では、液晶ドメインA、B、CおよびDの面積は互いに等しく、図1に示す例は、視野角特性上最も好ましい4分割構造の例である。また、4つの液晶ドメインA、B、CおよびDは、2行2列のマトリクス状に配置されている。
 なお、ここで、液晶層を介して互いに対向する一対の偏光板は、透過軸(偏光軸)が互いに略直交するように配置されており、より具体的には、一方の透過軸が表示面の水平方向に略平行で、他方の透過軸が表示面の垂直方向に略平行となるように配置されている。以下、特に示さない限り、偏光板の透過軸の配置はこれと同じである。
 表示面における水平方向の方位角(3時方向)を0°とすると、液晶ドメインAのチルト方向t1は略225°方向であり、液晶ドメインBのチルト方向t2は略315°方向である。また、液晶ドメインCのチルト方向t3は略45°方向であり、液晶ドメインDのチルト方向t4は略135°方向である。つまり、液晶ドメインA、B、CおよびDは、それぞれのチルト方向が、隣接する液晶ドメイン間で略90°異なるように配置されている。
 図2(a)、(b)および(c)は、図1に示した画素領域P1の分割方法を説明するための図である。図2(a)は、背面基板(下側基板)に設けられている光配向膜によって規定されるプレチルト方向PA1およびPA2を示し、図2(b)は、前面基板(上側基板)に設けられている光配向膜によって規定されるプレチルト方向PB1およびPB2を示している。また、図2(c)は、液晶層に電圧を印加したときのチルト方向を示している。これらの図では、観察者側から見たときの液晶分子の配向方向を模式的に示しており、円柱状に示した液晶分子の端部(楕円形部分)が描かれている方が観察者に近いように、液晶分子がチルトしていることを示している。
 背面基板側の領域(1つの画素領域P1に対応する領域)は、図2(a)に示すように、左右に2分割されており、それぞれの領域(左側領域と右側領域)の垂直配向膜に反平行なプレチルト方向PA1およびPA2が付与されるように配向処理されている。ここでは、矢印で示した方向から紫外線を斜め照射することによって光配向処理が行われている。
 前面基板側の領域(1つの画素領域P1に対応する領域)は、図2(b)に示すように、上下に2分割されており、それぞれの領域(上側領域と下側領域)の垂直配向膜に反平行なプレチルト方向PB1およびPB2が付与されるように配向処理されている。ここでは、矢印で示した方向から紫外線を斜め照射することによって光配向処理が行われている。
 図2(a)および(b)に示したように配向処理がなされた背面基板および前面基板を貼り合わせることによって、図2(c)に示すように配向分割された画素領域P1を形成することができる。図2(c)からわかるように、液晶ドメインA~Dのそれぞれについて、背面基板の光配向膜によって規定されるプレチルト方向と、前面基板の光配向膜によって規定されるプレチルト方向とは互いに略90°異なっており、これら2つのプレチルト方向の中間の方向にチルト方向(基準配向方向)が規定されている。
 なお、1つの画素領域を4つの液晶ドメインA~Dに配向分割する方法(画素領域内での液晶ドメインA~Dの配置)は、図2の例に限定されない。
 例えば、図3(a)および(b)に示したように配向処理がなされた背面基板および前面基板を貼り合わせることによって、図3(c)に示すように配向分割された画素領域P2を形成することができる。画素領域P2は、画素領域P1と同様、4つの液晶ドメインA~Dを有する。液晶ドメインA~Dのそれぞれのチルト方向は、画素領域P1の液晶ドメインA~Dと同じである。
 ただし、画素領域P1では、液晶ドメインA~Dが左上、左下、右下、右上の順に(つまり左上から反時計回りに)配置されているのに対し、画素領域P2では、液晶ドメインA~Dは、右下、右上、左上、左下の順に(つまり右下から反時計回りに)配置されている。これは、画素領域P1と画素領域P2とでは、背面基板の左側領域および右側領域と前面基板の上側領域および下側領域のそれぞれについて、プレチルト方向が反対だからである。
 また、図4(a)および(b)に示したように配向処理がなされた背面基板および前面基板を貼り合わせることによって、図4(c)に示すように配向分割された画素領域P3を形成することができる。画素領域P3は、画素領域P1と同様、4つの液晶ドメインA~Dを有する。液晶ドメインA~Dのそれぞれのチルト方向は、画素領域P1の液晶ドメインA~Dと同じである。
 ただし、画素領域P3では、液晶ドメインA~Dは、右上、右下、左下、左上の順に(つまり右上から時計回りに)配置されている。これは、画素領域P1と画素領域P3とでは、背面基板の左側領域および右側領域について、プレチルト方向が反対だからである。
 また、図5(a)および(b)に示したように配向処理がなされた背面基板および前面基板を貼り合わせることによって、図5(c)に示すように配向分割された画素領域P4を形成することができる。画素領域P4は、画素領域P1と同様、4つの液晶ドメインA~Dを有する。液晶ドメインA~Dのそれぞれのチルト方向は、画素領域P1の液晶ドメインA~Dと同じである。
 ただし、画素領域P4では、液晶ドメインA~Dは、左下、左上、右上、右下の順に(つまり左下から時計回りに)配置されている。これは、画素領域P1と画素領域P4とでは、前面基板の上側領域および下側領域について、プレチルト方向が反対だからである。
 続いて、本発明の好適な実施形態を具体的に説明する。
 (実施形態1)
 図6および図7に、本実施形態における液晶表示装置100を示す。液晶表示装置100は、マトリクス状に配列された複数の画素領域を有している。図6は、液晶表示装置100の複数の画素領域のうちの1つを模式的に示す平面図であり、図7は、図6中の7A-7A’線に沿った断面図である。
 液晶表示装置100は、図7に示すように、液晶層30と、液晶層30を介して互いに対向するアクティブマトリクス基板10および対向基板20とを備える。また、液晶表示装置100は、画素電極11および対向電極21と、一対の光配向膜12および22とを備える。
 液晶層30は、垂直配向型の液晶層である。液晶層30は、負の誘電異方性を有する液晶分子(ここでは不図示)を含む。
 アクティブマトリクス基板10は、透明な絶縁性基板(例えばガラス基板)10aと、各画素領域に設けられたスイッチング素子(ここでは不図示)とを含む。スイッチング素子としては、典型的には、薄膜トランジスタ(TFT)が用いられる。スイッチング素子がTFTである場合、アクティブマトリクス基板10は、さらに、TFTに走査信号を供給する走査線と、TFTに映像信号(階調電圧)を供給する信号線とを有する。また、補助容量が設けられている場合には、アクティブマトリクス基板10は、補助容量を構成する一対の電極や、それらの電極のうちの一方に所定の電圧(後述するCS電圧)を供給する補助容量線なども有する。
 対向基板20は、透明な絶縁性基板(例えばガラス基板)20aを有する。典型的には、対向基板20は、カラーフィルタ層(不図示)をさらに有する。そのため、対向基板20は、カラーフィルタ基板と呼ばれることもある。
 画素電極11は、アクティブマトリクス基板10の液晶層30側に設けられている。画素電極11は、各画素領域に配置されており、上述したスイッチング素子に電気的に接続されている。画素電極11は、透明な導電材料(例えばITO)から形成されている。
 対向電極21は、対向基板20の液晶層30側に設けられている。典型的には、対向電極21は、複数の画素電極11に共通する単一の電極である(そのため共通電極と呼ばれることもある)。対向電極21は、透明な導電材料(例えばITO)から形成されている。
 一対の光配向膜12および22のうちの一方(以下では「第1光配向膜」と呼ぶ)12は、画素電極11と液晶層30との間に設けられており、他方(以下では「第2光配向膜」と呼ぶ)22は、対向電極21と液晶層30との間に設けられている。
 液晶表示装置100は、さらに、液晶層3を介して互いに対向するように設けられた一対の偏光板13および23を備える。一対の偏光板13および23は、それぞれの透過軸(偏光軸)が互いに略直交するように配置されている。
 液晶表示装置100の各画素領域は、図6に示すように、図1および図2(c)に示した画素領域P1と同様に配向分割されている。つまり、液晶表示装置100の各画素領域は、画素電極11と対向電極21との間に電圧が印加されたときのチルト方向t1、t2、t3、t4がそれぞれ略225°方向、略315°方向、略45°方向、略135°方向である4つの液晶ドメインA、B、CおよびDを有する。液晶ドメインA、B、CおよびDのそれぞれのチルト方向(基準配向方向)は、一対の光配向膜12および22によって規定される。その透過軸が互いに直交するように配置された一対の偏光板13および23の一方の透過軸が表示面の水平方向に略平行であり、他方の透過軸が表示面の垂直方向に略平行であるので、液晶ドメインA~Dのそれぞれの基準配向方向は、偏光板13および23の透過軸と略45°の角をなす。
 液晶ドメインA、B、CおよびDのそれぞれに対応する領域に着目したとき、第1光配向膜12によって規定されるプレチルト方向と、第2光配向膜22によって規定されるプレチルト方向とは互いに略90°異なる。第1光配向膜12によって規定されるプレチルト角と、第2光配向膜22によって規定されるプレチルト角とは、既に述べたように、互いに略等しいことが好ましい。
 本実施形態における液晶表示装置100では、画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の一部に、スリット形成領域11R1(図6において一点鎖線で囲まれた直角台形状の領域である)を有する。スリット形成領域11R1には、複数のスリット11sが形成されている。つまり、スリット形成領域11R1には、導電膜が除去された部分が存在している。
 複数のスリット11sは、基準配向方向(上述したように一対の光配向膜12および22によって規定される)に略平行に延びている。つまり、液晶ドメインAに対応するスリット形成領域11R1のスリット11sは、基準配向方向t1(略225°方向)に略平行であり、液晶ドメインBに対応するスリット形成領域11R1のスリット11sは、基準配向方向t2(略315°方向)に略平行である。また、液晶ドメインCに対応するスリット形成領域11R1のスリット11sは、基準配向方向t3(略45°方向)に略平行であり、液晶ドメインDに対応するスリット形成領域11R1のスリット11sは、基準配向方向t4(略135°方向)に略平行である。本実施形態では、スリット形成領域11R1内の複数のスリット11sは、実質的に同じ幅Wを有する。
 また、画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の他の一部に、スリット非形成領域(べた領域)11R2(図6において長破線で囲まれた直角台形状の領域である)を有する。スリット非形成領域11R2には、スリットが形成されていない。つまり、スリット非形成領域11R2には、導電膜が除去された部分が実質的に存在していない。
 上述したように、本実施形態における液晶表示装置100では、一対の光配向膜12および22が、液晶ドメインA、B、CおよびDの基準配向方向(チルト方向)を規定する。つまり、画素領域の配向分割は、専ら第1光配向膜12および第2光配向膜22によって行われている。
 また、画素電極11に形成されたスリット11sは、スリット11s上の液晶層30における実効的な印加電圧を低下させる。スリット形成領域11R1は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の一部に存在しているので、各液晶ドメイン内に、液晶層30への印加電圧が互いに異なる2つの領域、すなわち、相対的に印加電圧が低いスリット形成領域11R1と、相対的に印加電圧が高いスリット非形成領域11R2とが存在することになる。そのため、γ特性の視角依存性を改善することができる。
 1つの画素領域のうち、4つのスリット形成領域11R1を合わせたものに対応する領域が、相対的に暗い副画素(暗副画素)として機能し、4つのスリット非形成領域11R2を合わせたものに対応する領域が、相対的に明るい副画素(明副画素)として機能する。本実施形態では、画素電極11の、液晶ドメインAおよびDに対応する領域では、スリット形成領域11R1が相対的に上側に位置し、スリット非形成領域11R2が相対的に下側に位置している。また、画素電極11の、液晶ドメインBおよびCに対応する領域では、スリット形成領域11R1が相対的に下側に位置し、スリット非形成領域11R2が相対的に上側に位置している。そのため、本実施形態では、明副画素が画素の中央に位置し、暗副画素の半分が画素の上側に位置し、暗副画素の残り半分が画素の下側に位置する。
 スリット11s上の液晶層30における実効的な印加電圧の低下量は、スリット11sの幅Wに依存する。具体的には、スリット11sの幅Wが大きくなるほど、印加電圧の低下量は大きくなる。逆に、スリット11sの幅Wが小さくなるほど、印加電圧の低下量は小さくなる。
 本実施形態における液晶表示装置100では、スリット11sの幅Wは、画素電極11に最高階調電圧が供給されたときのスリット11s上の液晶層30における実効的な印加電圧の低下量が0.5V以上であるように設定されている。スリット11sの幅Wをこのように設定することにより、スリット形成領域11R1とスリット非形成領域11R2とでの液晶層30への実効的な印加電圧の差を十分に大きくすることができるので、γ特性の視角依存性を改善する効果を十分に得ることができる。
 また、スリット11s上の液晶層30における液晶分子の配向方向も、スリット11sの幅Wに依存する。以下、図8および図9を参照しながら、この点をより具体的に説明する。図8(a)および(b)は、スリット11sの幅Wを仮に極端に大きくしたときの電圧印加時の液晶分子30aの配向状態を模式的に示す上面図および断面図である。図9(a)および(b)は、スリット11sの幅Wを仮に極端に小さくしたときの電圧印加時の液晶分子30aの配向状態を模式的に示す上面図および断面図である。
 スリット11sの幅Wを極端に大きくすると、図8(a)および(b)に示すように、液晶分子30aは、スリット11sの延びる方向に直交する方向に倒れる。これは、電圧印加時にスリット11s上に形成される斜め電界(図8(b)中には電気力線を矢印で示している)が、液晶分子30aをそのような方向に倒すように作用するためである。なお、MVAモードの液晶表示装置の電極に、配向規制構造としてスリットが形成されている場合にも、電圧印加時に液晶分子はスリットの延びる方向に直交する方向に倒れる。
 これに対し、スリット11sの幅Wを極端に小さくすると、図9(a)および(b)に示すように、液晶分子30aは、スリット11sの延びる方向に平行な方向に倒れる。この理由は、以下の通りである。電圧印加時にスリット11s上に形成される斜め電界(図9(b)中には電気力線を矢印で示している)自体は、液晶分子30aをスリット11sの延びる方向に直交する方向に倒すように作用する。しかしながら、スリット11sの幅Wが極端に小さい場合には、液晶分子30aがその方向に倒れると液晶分子30a同士がぶつかることになる(図9(b)の左側にその様子を模式的に示している)。そのため、結果的には、液晶分子30aは、スリット11sの延びる方向に平行な方向に倒れる。なお、フィッシュボーン型画素電極を設けた場合にも、電圧印加時に液晶分子はスリットの延びる方向に平行な方向に倒れる。
 既に説明したように、スリット11sが形成されていることによる印加電圧の低下量は、スリット11sの幅Wに依存する。従って、スリット11sの幅Wが極端に小さいと、実効的な印加電圧がほとんど低下しない。そのため、γ特性の視角依存性を改善するためには、スリット11sの幅Wをある程度大きくする必要があるが、スリット11sの幅Wを大きくするにつれ、電圧印加時の液晶分子30aの配向方向は、最も好ましい方向、つまり、第1光配向膜12および第2光配向膜22によって規定される基準配向方向(スリット11sの延びる方向に略平行な方向)からずれる(最も極端な場合が図8(a)および(b)に示した状態である)。液晶分子30aの配向方向がずれると、透過率が低下し、表示輝度が低下してしまう。
 本実施形態における液晶表示装置100では、スリット11sの幅Wは、画素電極11に最高階調電圧が供給されたときのスリット11s上の液晶層30における液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であるように設定されている。スリット11sの幅Wをこのように設定することにより、表示輝度の低下を抑制することができる。液晶分子30aの配向方向(配向方位)が背面側の偏光板13の透過軸となす角をθとすると、透過率は、sin2(2θ)に比例する。従って、θは45°であることが最も好ましい。スリット11sの幅Wを広げるにつれ、θは45°から小さくなり、θが0°になると透過率が最低になってしまう。本実施形態における液晶表示装置100では、スリット11sの幅Wが上述したように設定されているので、表示輝度の低下を抑制することができる。
 ここまで説明したように、本実施形態における液晶表示装置100では、画素電極11が、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の一部にスリット形成領域11R1を有していることによって、画素領域内に実効的な印加電圧の異なる(つまり表示輝度の異なる)2種類の領域が形成されている。そのため、液晶表示装置100では、画素分割駆動技術のような複雑な回路構成は必要ではなく、比較的簡単な回路構成で、γ特性の視角依存性の改善を実現することができる。また、本実施形態における液晶表示装置100では、一対の光配向膜12および22によって、液晶ドメインA、B、CおよびDの基準配向方向が規定されている。つまり、画素領域の配向分割は、液晶層30の液晶分子30aに対して面状に配向規制力を及ぼす第1光配向膜12および第2光配向膜22によって行われている。従って、複数の(ここでは2つの)副画素の面積比を不均等にした結果、ある副画素の面積が小さくなっても、良好な分割配向状態を得ることができる。そのため、複数の副画素の面積比の決定に厳しい制約がなく、γ特性の視角依存性を改善する効果を十分に高くすることができる。
 さらに、本実施形態における液晶表示装置100では、スリット11sの幅Wが、画素電極11に最高階調電圧が供給されたときの実効的な印加電圧の低下量が0.5V以上であり、且つ、液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であるように設定されている。そのため、γ特性の視角依存性の改善効果を十分に得ることができるとともに、表示輝度の低下を抑制することができる。図8および図9を参照しながら説明したことからもわかるように、本実施形態における液晶表示装置100の画素電極11に形成されているスリット11sの幅Wは、MVAモードの液晶表示装置において電極に形成されているスリットの幅と、フィッシュボーン型画素電極に形成されているスリットの幅との中間的な幅であるといえる。
 なお、スリット11sの幅Wを適切に設定することによって上述の効果を好適に得ることができるのは、本実施形態における液晶表示装置100が光配向膜12および22を備えており、光配向膜12および22によって規定される基準配向方向とスリット11sとが略平行であるからである。図8および図9を参照しながら既に説明したことからもわかるように、液晶分子の配向方向自体はスリット11sに略平行なまま、液晶層30への実効的な印加電圧を変える(低下させる)ことが理想である。光配向膜12および22が設けられていない場合には、当然ながら、光配向膜12および22による配向規制力が存在しないので、スリット11sの幅Wを十分に大きくして液晶層30への実効的な印加電圧を十分に低下させようとすると(例えばスリット11sの幅Wを4μm程度にして液晶層30への実効的な印加電圧を1V程度低下させようとすると)、液晶分子の配向方向が所望の方向から大きくずれてしまい、十分な輝度を保つことができない。これに対して、本実施形態では、一対の光配向膜12および22によって、液晶分子の配向方向がスリット11sに略平行な方向に規制されているので、スリット11sの幅Wを十分に大きくして液晶層30への実効的な印加電圧を十分に低下させた場合(例えばスリット11sの幅Wを4μm程度にして液晶層30への実効的な印加電圧を1V程度低下させた場合)でも、液晶分子の配向方向がそれほど大きくずれないので、十分に明るい表示を実現することができる。
 このように、基準配向方向が光配向膜12および22によって規定されていることにより、液晶分子の配向方向を本来の方向に十分近く維持したまま、液晶層30への実効的な印加電圧を有意に変えることができる。
 なお、γ特性の視角依存性の改善効果をいっそう高くする観点からは、スリット11sの幅Wは、画素電極11に最高階調電圧が供給されたときのスリット11s上の液晶層30における実効的な印加電圧の低下量が1.0V以上であるように設定されていることがより好ましい。
 また、表示輝度の低下を抑制する観点からは、スリット11sの幅Wは、画素電極11に最高階調電圧が供給されたときのスリット11s上の液晶層30における液晶分子30aの配向方向の基準配向方向に対するずれが30°以下であるように設定されていることがより好ましい。ずれが30°以下であれば、表示輝度として本来の輝度の1/4以上の輝度を確保することができるので、十分に高品位の表示が可能である。
 続いて、図10を参照しながら、スリット11sの幅Wの具体的な好ましい範囲を説明する。図10は、スリット11sの幅Wを変化させてその影響を検証した結果を説明するためのグラフである。図10の横軸は、スリット11sの幅Wである。また、図10の右側の縦軸は、スリット11s上の液晶層30における実効的な印加電圧の低下量であり、図10の左側の縦軸は、背面側の偏光板13の透過軸の方位を0°としたときの液晶分子30aの配向方向(方位)である。液晶分子30aが理想的に配向している(つまり基準配向方向に平行に配向している)場合、液晶分子30aの配向方向は+45°方向である。なお、ここでは、スリット11sの幅Wとスリット11sのピッチp(図6参照)とは同じ大きさである。
 既に説明したように、γ特性の視角依存性を改善するためには、実効的な印加電圧の低下量は0.5V以上であることが好ましく、1.0V以上であることがより好ましい。従って、図10からわかるように、スリット11sの幅Wは、2.5μm以上であることが好ましく、4.0μm以上であることがより好ましい。
 また、既に説明したように、液晶分子30aの配向方向のずれに起因する表示輝度の低下を抑制するためには、液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であることが好ましく、30°以下であることがより好ましい。図10において、液晶分子30aの配向方向の基準配向方向に対するずれが45°、30°であるのは、それぞれ液晶分子30aの配向方向が0°方向、+15°方向であるときである。従って、図10からわかるように、スリット11sの幅Wは、8.0μm未満であることが好ましく、6.0μm以下であることがより好ましい。
 なお、ここでは、スリット11sの幅Wとスリット11sのピッチpとが同じ大きさである場合についての検証結果を説明したが、スリット11sの幅Wとスリット11sのピッチpが異なっている場合でもほぼ同様の検証結果が得られた。つまり、スリット11s上の液晶層30における、実効的な印加電圧の低下量や液晶分子30aの配向方向のずれは、主にスリット11sの幅Wに依存し、スリット11sのピッチpにはほとんど依存しない。ただし、画素電極11を断線することなく歩留りよく形成する観点から、スリット11sのピッチpは、5μm以上30μm以下であることが好ましい。
 スリット形成領域11R1およびスリット非形成領域11R2の形状は、図6に例示している直角台形に限定されるものではない。スリット形成領域11R1およびスリット非形成領域11R2は、任意の形状であってよい。
 また、スリット形成領域11R1とスリット形成領域11R2との面積比は、図6に例示されている画素電極11における面積比に限定されるものではなく、任意に設定され得る。ただし、γ特性の視角依存性を改善する観点からは、画素電極11の各液晶ドメインに対応する領域内において、スリット形成領域11R1が占める割合は1/3以上であることが好ましく、2/3以上であることがより好ましい。
 (実施形態2)
 図11および図12に、本実施形態における液晶表示装置200を示す。図11は、液晶表示装置200の1つの画素領域を模式的に示す平面図であり、図12は、図11中の12A-12A’線に沿った断面図である。なお、以下では、液晶表示装置200が実施形態1における液晶表示装置100と異なる点を中心に説明を行う。図中では、液晶表示装置100の構成要素と実質的に同じ機能を有する構成要素を同じ参照符号で示し、その説明を省略する(以降の実施形態についても同様である)。
 液晶表示装置200のアクティブマトリクス基板10は、画素電極11の下方に誘電体層14を隔てて設けられた電極(以下では「下層電極」と呼ぶ)15をさらに有する。この下層電極15は、透明な導電材料(例えばITO)から形成されている。図11に例示している構成では、下層電極15は、画素電極11の全体に重なるように配置されている。
 下層電極15には、画素電極11とは異なる電圧が供給される。具体的には、下層電極15には、対向電極21に供給される電圧と実質的に同じ電圧が供給される。
 本実施形態における液晶表示装置200では、上述したような下層電極15が設けられていることにより、実施形態1の液晶表示装置100に比べ、スリット11s上の液晶層30における実効的な印加電圧の低下量を大きくすることが可能となる。従って、スリット11sの幅Wをそれほど大きくしなくても、実効的な印加電圧の低下量を十分に確保することができるので、液晶分子30aの配向方向のずれに起因した表示輝度の低下を十分に抑制しつつ、γ特性の視角依存性を十分に改善することができる。
 続いて、図13を参照しながら、下層電極15を備える液晶表示装置200におけるスリット11sの幅Wの具体的な好ましい範囲を説明する。図13は、スリット11sの幅Wを変化させてその影響を検証した結果を説明するためのグラフである。図13の横軸は、スリット11sの幅Wである。また、図13の右側の縦軸は、スリット11s上の液晶層30における実効的な印加電圧の低下量であり、図13の左側の縦軸は、背面側の偏光板13の透過軸の方位を0°としたときの液晶分子30aの配向方向(方位)である。液晶分子30aが理想的に配向している(つまり基準配向方向に平行(すなわちスリット11sに平行)に配向している)場合、液晶分子30aの配向方向は+45°方向である。なお、ここでは、スリット11sの幅Wとスリット11sのピッチpとは同じ大きさである。
 既に説明したように、γ特性の視角依存性を改善するためには、実効的な印加電圧の低下量は0.5V以上であることが好ましく、1.0V以上であることがより好ましい。従って、図13からわかるように、スリット11sの幅Wは、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましい。
 また、既に説明したように、液晶分子30aの配向方向のずれに起因する表示輝度の低下を抑制するためには、液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であることが好ましく、30°以下であることがより好ましい。図13において、液晶分子30aの配向方向の基準配向方向に対するずれが45°、30°であるのは、それぞれ液晶分子30aの配向方向が0°方向、+15°方向であるときである。従って、図13からわかるように、スリット11sの幅Wは、6.0μm未満であることが好ましく、4.5μm以下であることがより好ましい。
 なお、ここでは、スリット11sの幅Wとスリット11sのピッチpとが同じ大きさである場合についての検証結果を説明したが、スリット11sの幅Wとスリット11sのピッチpが異なっている場合でもほぼ同様の検証結果が得られた。つまり、スリット11s上の液晶層30における、実効的な印加電圧の低下量や液晶分子30aの配向方向のずれは、主にスリット11sの幅Wに依存し、スリット11sのピッチpにはほとんど依存しない。ただし、画素電極11を断線することなく歩留りよく形成する観点から、スリット11sのピッチpは、5μm以上30μm以下であることが好ましい。
 図14に、画素電極11のTFT16への電気的な接続の例を示す。図14には、TFT16の他に、走査線17、信号線18およびコモン信号線(補助容量線)19が示されている。
 図14に示す例では、TFT16近傍において、スリット形成領域11R1のスリット11sが省略されており、スリット11sが省略された領域に形成されたコンタクトホールCH1において、画素電極11がTFT16のドレイン電極に接続されている。あるいは、もともとスリットが形成されていないスリット非形成領域11R2にまで(つまり画素領域の中央まで)TFT16のドレイン電極から導電層(接続電極)を延ばし、画素領域の中央に形成されたコンタクトホールにおいて、画素電極11が接続電極に接続されていてもよい。図14には、このような構成を採用した場合の、接続電極16dcおよびコンタクトホールCH2も示されている。
 なお、TFT16のソース電極およびドレイン電極や接続電極16dcは、例えば、信号線18と同じ導電膜(ソースメタル層)から形成される。ソースメタル層の上方に下層電極15が位置している場合には、コンタクトホールCH1およびCH2が形成される領域においては、下層電極15の導電膜は除去されている。
 また、下層電極15は、コモン信号線19に電気的に接続されており、コモン信号線19から、対向電極21に供給される電圧と実質的に同じ電圧を供給される。コモン信号線19は、例えば、走査線17やTFT16のゲート電極と同じ導電膜(ゲートメタル層)から形成されている。画素電極11と、画素電極11に対向する下層電極15と、これらの間に位置する誘電体層14とによって、補助容量が構成され得る。あるいは、補助容量は、画素電極11の下方に設けられ画素電極11に電気的に接続された電極(例えば信号線18と同じ導電膜、つまり、ソースメタル層をパターニングすることによって形成された金属電極)と、この電極よりもさらに下方に設けられ対向電極21に供給される電圧と実質的に同じ電圧を供給されるさらなる電極(例えば走査線17と同じ導電膜、つまり、ゲートメタル層をパターニングすることによって形成された金属電極)と、これらの間に位置する誘電体層(例えばゲート絶縁膜)とによって構成されてもよい。
 下層電極15が信号線18と交差する場合には、交差部における下層電極15の幅WLEが小さいことが好ましく、具体的には10μm程度であることが好ましい。信号線18と下層電極15との間に形成される静電容量を小さくするためである。
 (実施形態3)
 図15に、本実施形態における液晶表示装置300を示す。図15は、液晶表示装置300の1つの画素領域を模式的に示す平面図である。
 本実施形態における液晶表示装置300と、実施形態1における液晶表示装置100とでは、画素電極11のスリット形成領域11R1およびスリット非形成領域11R2の位置関係が異なっている。
 本実施形態では、図15に示すように、画素電極11の、液晶ドメインAおよびDに対応する領域では、スリット形成領域11R1が相対的に下側に位置し、スリット非形成領域11R2が相対的に上側に位置している。また、画素電極11の、液晶ドメインBおよびCに対応する領域では、スリット形成領域11R1が相対的に上側に位置し、スリット非形成領域11R2が相対的に下側に位置している。つまり、実施形態1の液晶表示装置100では、画素領域の上側および下側にスリット11sが配置されているのに対し、本実施形態の液晶表示装置300では、画素領域の中央にスリット11sが配置されている。そのため、本実施形態では、暗副画素が画素の中央に位置し、明副画素の半分が画素の上側に位置し、明副画素の残り半分が画素の下側に位置する。
 本実施形態における液晶表示装置300においても、γ特性の視角依存性を改善することができる。また、本実施形態における液晶表示装置300では、画素領域の中央に配置されたスリット11sの配向規制力により、画素領域の中央での配向の安定性を向上させることができる。なお、実施形態1における液晶表示装置100のように、画素領域の中央ではなく上側および下側に(つまり画素領域内で相対的に外側に)スリット11sが配置されている構成を採用すると、走査線17や信号線18などのバスラインの電位による斜め電界が配向に及ぼす悪影響を抑制することができるという利点が得られる。
 (実施形態4)
 図16に、本実施形態における液晶表示装置400を示す。図16は、液晶表示装置400の1つの画素領域を模式的に示す平面図である。
 本実施形態における液晶表示装置400と、実施形態1における液晶表示装置100とでは、画素電極11のスリット形成領域11R1におけるスリット11sと導電膜との配置関係が異なっている。
 実施形態1における液晶表示装置100では、図6に示したように、表示面法線方向から見たとき、スリット11sは、画素電極11の導電膜によって完全に包囲されている。これに対し、本実施形態における液晶表示装置400では、図16に示すように、表示面法線方向から見たとき、スリット11sは、画素電極11の導電膜によって完全には包囲されていない。具体的には、スリット11sは、その一端部が開いている。より具体的には、液晶ドメインAおよびDに対応する領域では、スリット11sの右側端部が開いており、液晶ドメインBおよびCに対応する領域では、スリット11sの左側端部が開いている。このようにスリット11sの一端部が開いていると、斜め電界による配向規制力が有効に働き、液晶分子30aを基準配向方向にいっそう配向させやすくなる。
 一方、スリット11sが画素電極11の導電膜によって完全に包囲されていると、ディスクリネーションが発生しにくいという利点が得られる。
 (実施形態5)
 図17に、本実施形態における液晶表示装置500を示す。図17は、液晶表示装置500の1つの画素領域を模式的に示す平面図である。
 本実施形態における液晶表示装置500では、スリット形成領域11R1を含む画素電極11と、画素分割駆動技術とが組み合わせて用いられている。図17に示すように、液晶表示装置500の画素電極11は、複数の(ここでは2つの)副画素電極11aおよび11bを含む。2つの副画素電極11aおよび11bの一方(以下では「第1副画素電極」と呼ぶ)11aには、第1TFT16aおよび第1補助容量CS1が接続されている。また、他方(以下では「第2副画素電極」と呼ぶ)11bには、第2TFT16bおよび第2補助容量CS2が接続されている。液晶表示装置500の各画素領域は、複数の副画素電極11aおよび11bに対応する複数の(ここでは2つの)副画素領域を含む。
 第1TFT16aおよび第2TFT16bのゲ-ト電極は、共通の走査線17に接続されている。また、第1TFT16aおよび第2TFT16bのソース電極は、共通の(つまり同一の)信号線18に接続されている。
 第1補助容量CS1は、第1補助容量線19aに接続されており、第2補助容量CS2は、第2補助容量線19bに接続されている。第1補助容量CS1を構成する一対の電極のうちの一方(補助容量対向電極;ここでは第1補助容量線19aの一部)は、第1補助容量線19aから補助容量対向電圧を供給される。また、第2補助容量CS2を構成する一対の電極のうちの一方(補助容量対向電極;ここでは第2補助容量線19bの一部)は、第2補助容量線19bから補助容量対向電圧を供給される。第1補助容量CS1および第2補助容量CS2の補助容量対向電極は、互いに独立しているので、それぞれ対応する補助容量線(第1補助容量線19aまたは第2補助容量線19b)から互いに異なる補助容量対向電圧(「CS電圧」ともいう。)を供給され得る。
 第1副画素電極11aおよび第2副画素電極11bに、共通の信号線18から表示信号電圧が供給され、第1TFT16aおよび第2TFT16bがオフ状態とされた後、第1補助容量CS1および第2補助容量CS2の補助容量対向電極の電圧(すなわち、第1補助容量線19aまたは第2補助容量線19bから供給される電圧)の変化量(変化の方向および大きさによって規定される)を異ならせることによって、容量分割を利用して第1副画素電極11aおよび第2副画素電極11bへの印加電圧を互いに異ならせることができる。
 液晶表示装置500では、2つの副画素領域のそれぞれが、4つの液晶ドメインA、B、CおよびDを有する。第1副画素電極11aおよび第2副画素電極11bのそれぞれは、液晶ドメインA、B、CおよびDのそれぞれに対応する領域に、スリット形成領域11R1とスリット非形成領域11R2とを有する。従って、2つの副画素領域のそれぞれ内に、液晶層30への実効的な印加電圧が異なる2つの領域が存在する。そのため、本実施形態における液晶表示装置500では、1つの画素領域内に、液晶層30への実効的な印加電圧が異なる4つの領域を形成することができる。従って、γ特性の視角依存性を改善する効果をいっそう高くすることができる。
 なお、本実施形態における液晶表示装置500では、画素分割駆動技術が用いられるので、実施形態1~4における液晶表示装置100~400と比較すると、回路構成は幾分複雑になる。しかしながら、本実施形態のように、スリット形成領域11R1を含む画素電極11と画素分割駆動技術とを組み合わせて用いることにより、単純に画素分割駆動技術のみを用いる場合と比べると、同程度の回路構成で画素の分割数をより多く(つまりγ特性の視角依存性を改善する効果をより高く)できるという利点が得られる。言い換えると、γ特性の視角依存性を同程度に改善しようとする場合、スリット形成領域11R1を含む画素電極11と画素分割駆動技術とを組み合わせて用いることにより、単純に画素分割駆動技術のみを用いる場合と比べると回路構成を簡単にすることができる。
 図17に例示している構成では、第1副画素電極11aに形成されているスリット11sの幅Waと、第2副画素電極11bに形成されているスリット11sの幅Wbとは異なる。例えば、前者の幅Waは5μmであり、後者の幅Wbは7μmである。もちろん、第1副画素電極11aのスリット11sの幅Waと、第2副画素電極11bのスリット11sの幅Wbとを同じにしてもよい。例えば、前者の幅Waと後者の幅Wbとをともに5μmとしてもよい。
 (実施形態6)
 本実施形態では、画素電極11におけるスリット11sの形成パターンのバリエーションを説明する。
 図6などには、スリット形成領域11R1内の複数のスリット11sの幅Wが実質的に同じである構成を示しているが、スリット形成領域11R1内に、幅Wの異なるスリット11sが混在していてもよい。例えば、図18に示すように、スリット形成領域11R1内に、第1の幅W1を有するスリット11s1と、第1の幅W1とは異なる(ここでは第1の幅W1よりも小さい)第2の幅W2を有するスリット11s2とが形成されていてもよい。
 スリット形成領域11R1内において、広い方のスリット11s1が形成されている部分(スリット形成領域11R1の上側)と、狭い方のスリット11s2が形成されている部分(スリット形成領域11R1の下側)とでは、液晶層30への実効的な印加電圧の低下量が異なる。より具体的には、広い方のスリット11s1が形成されている部分では、印加電圧の低下量が相対的に大きく、狭い方のスリット11s2が形成されている部分では、印加電圧の低下量が相対的に小さい。
 広い方のスリット11s1の幅(第1の幅)W1およびピッチp1は、例えばそれぞれ5μmである。狭い方のスリット11s2の幅(第2の幅)W2およびピッチp2は、例えばそれぞれ3μmである。
 また、図18には、相対的に広いスリット11s1と相対的に狭いスリット11s2とが独立に形成されている構成を示したが、図19に示すように、これらが連続するように形成されていてもよい。図19に示す例では、スリット形成領域11R1の左側に広い方のスリット11s1が配置されているとともに、スリット形成領域11R1の右側に狭い方のスリット11s2が配置されており、広い方のスリット11s1から延びるように狭い方のスリット11s2が形成されている。
 広い方のスリット11s1の幅(第1の幅)W1およびピッチp1は、例えばそれぞれ6μmおよび4μmである。狭い方のスリット11s2の幅(第2の幅)W2およびピッチp2は、例えばそれぞれ2μmおよび8μmである。
 あるいは、図20に示すような形成パターンを採用してもよい。図20に示す例では、スリット形成領域11R1の左側では、広い方のスリット11s1と狭い方のスリット11s2とが交互に配置されており、スリット形成領域11R1の右側では、狭い方のスリット11s2のみが配置されている。
 広い方のスリット11s1の幅(第1の幅)W1および狭い方のスリット11s2の幅(第2の幅)W2は、例えばそれぞれ6μmおよび2μmである。また、広い方のスリット11s1および狭い方のスリット11s2が混在している部分(スリット形成領域11R1の左側)では、これらのピッチp1は、例えば6μmである。狭い方のスリット11s2のみが存在している部分(スリット形成領域11R1の右側)では、スリット11s2のピッチp2は、例えば18μmである。
 なお、図18~図20には、互いに幅の異なる2種類のスリットが混在している場合を示したが、互いに幅の異なる3種類以上のスリットが混在していてもよく、スリット形成領域11R1内で複数のスリットの幅が徐々に変化しても(例えば画素領域の中央に近いスリットほど幅が小さくなるようにスリットが形成されていても)よい。
 また、これまでは、画素電極11がスリット非形成領域11R2を有する場合について説明を行ったが、画素電極11はスリット非形成領域11R2を有していなくてもよい。図21に、スリット非形成領域11R2を有していない液晶表示装置600Aを示す。
 図21に示すように、液晶表示装置600Aの画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の一部に、スリット形成領域11R1を有する。また、液晶表示装置600Aの画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の他の一部に、スリット形成領域11R1のスリット11sの幅Wとは異なる幅W’を有するさらなるスリット11s’が形成されたさらなるスリット形成領域11R1’を有する。以下では、スリット形成領域11R1を「第1のスリット形成領域」と呼び、さらなるスリット形成領域11R1’を「第2のスリット形成領域」と呼ぶ。
 第1のスリット形成領域11R1のスリット11sの幅Wおよび第2のスリット形成領域11R1’のスリット11s’の幅W’は、それぞれ、画素電極11に最高階調電圧が供給されたときの実効的な印加電圧の低下量が0.5V以上であり、且つ、液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であるように設定されている。また、図21に例示している構成では、第1のスリット形成領域11R1のスリット11sの幅Wは、第2のスリット形成領域11R1’のスリット11s’の幅W’よりも大きい。
 液晶表示装置600Aでは、第1のスリット形成領域11R1のスリット11sの幅Wと、第2のスリット形成領域11R1’のスリット11s’の幅W’とが異なっているので、第1のスリット形成領域11R1上の液晶層30における印加電圧の低下量と、第2のスリット形成領域11R1’上の液晶層30における印加電圧の低下量とは異なる。そのため、各液晶ドメイン内に、液晶層30への印加電圧が互いに異なる2つの領域、すなわち、相対的に印加電圧が低い第1のスリット形成領域11R1と、相対的に印加電圧が高い第2のスリット形成領域11R1’とが存在することになる。そのため、γ特性の視角依存性を改善することができる。
 なお、γ特性の視角依存性を十分に改善する観点からは、第1のスリット形成領域11R1上の液晶層30と、第2のスリット形成領域11R1’上の液晶層30とで、実効的な印加電圧の低下量の差が0.5V以上であることが好ましく、1.0V以上であることが好ましい。
 また、画素電極11がスリット非形成領域11R2に代えてさらなるスリット形成領域(第2のスリット形成領域)11R1’を有する構成は、液晶分子の配向をより安定化させることができるという利点を有する。一方、実施形態1~5における液晶表示装置100~500のように、画素電極11がスリット非形成領域(べた領域)11R2を有する構成は、液晶層30に実効的に印加される電圧の差異を最大化できるという利点を有する。
 図22に、スリット非形成領域11R2を有していない他の液晶表示装置600Bを示す。図22に示すように、液晶表示装置600Bの画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域に、第1のスリット形成領域11R1と、第2のスリット形成領域11R1’とを有する。
 液晶表示装置600Bでは、第1のスリット形成領域11R1のスリット11sと、第2のスリット形成領域11R1’のスリット11s’とは、連続している。このような構成であっても、液晶表示装置600Aと同様の効果が得られる。
 図23に、スリット非形成領域11R2を有していないさらに他の液晶表示装置600Cを示す。図23に示すように、液晶表示装置600Cの画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域に、第1のスリット形成領域11R1と、第2のスリット形成領域11R1’とを有する。
 液晶表示装置600Cでは、第2スリット形成領域11R1’に形成されている狭い方のスリット11s’が第1のスリット形成領域11R1内まで延びており、第1のスリット形成領域11R1内では、互いに幅の異なるスリット11sおよび11s’が交互に配置されている。このような構成であっても、液晶表示装置600Aや液晶表示装置600Bと同様の効果が得られる。
 (実施形態7)
 これまでの実施形態では、各画素領域が4つの液晶ドメインA、B、CおよびDを有する場合を説明したが、必ずしも画素が4分割される必要はない。本発明は、画素が2分割される構成においても好適に用いられる。
 図24に、本実施形態における液晶表示装置700を示す。図24は、液晶表示装置700の1つの画素領域を模式的に示す平面図である。
 液晶表示装置700の各画素領域は、図24に示すように、2つの液晶ドメインEおよびFを有する。液晶ドメインEは、画素領域の左側に位置し、液晶ドメインFは、画素領域の右側に位置する。つまり、各画素は、左右に2分割されている。液晶ドメインEおよびFのチルト方向(基準配向方向)t5およびt6は、それぞれ略0°方向、略180°方向である。本実施形態では、一対の偏光板13および23は、透過軸が表示面の水平方向および垂直方向に対して略45°の角をなすように配置されている。
 液晶表示装置700の画素電極11は、液晶ドメインEおよびFのそれぞれに対応する領域に、第1のスリット形成領域11R1と、第2のスリット形成領域11R1’とを有する。
 本実施形態においても、第1のスリット形成領域11R1に形成されているスリット11sおよび第2のスリット形成領域11R1’に形成されているスリット11s’は、基準配向方向に略平行に延びている。つまり、液晶ドメインEに対応する第1のスリット形成領域11R1および第2のスリット形成領域11R1’のスリット11sおよび11s’は、基準配向方向t5(略0°方向)に略平行であり、液晶ドメインFに対応する第1のスリット形成領域11R1および第2のスリット形成領域11R1’のスリット11sおよび11s’は、基準配向方向t6(略180°方向)に略平行である。
 第1のスリット形成領域11R1のスリット11sの幅Wと、第2のスリット形成領域11R1’のスリット11s’の幅W’とは、互いに異なっており、図24に例示している構成では、第1のスリット形成領域11R1のスリット11sの幅Wは、第2のスリット形成領域11R1’のスリット11s’の幅W’よりも大きい。
 第1のスリット形成領域11R1のスリット11sの幅Wおよび第2のスリット形成領域11R1’のスリット11s’の幅W’は、それぞれ、画素電極11に最高階調電圧が供給されたときの実効的な印加電圧の低下量が0.5V以上であり、且つ、液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であるように設定されている。
 液晶表示装置700においても、2つの液晶ドメインEおよびFのそれぞれ内に、液晶層30への実効的な印加電圧が互いに異なる複数の領域が存在することになる。そのため、γ特性の視角依存性を改善することができる。
 なお、ここでは、画素電極11が第1のスリット形成領域11R1と第2のスリット形成領域11R1’とを有する場合を例示したが、画素電極11が第2のスリット形成領域11R1’に代えて、スリットが形成されていないスリット非形成領域を有してもよい。
 上記実施形態1~7で説明したように、一対の光配向膜によって各液晶ドメインの基準配向方向が規定されるとともに、それらの基準配向方向と画素電極に形成されるスリットとが略平行である構成により、液晶分子の配向方向を本来の方向に十分近く維持したまま、液晶層への実効的な印加電圧を有意に変えることができる。そのため、スリットの幅を適切な範囲内の値に設定することにより、γ特性の視角依存性の改善効果を十分に得つつ、明るい表示を実現することができる。
 (実施形態8)
 図25に、本実施形態における液晶表示装置800を示す。図25は、液晶表示装置800の1つの画素領域を模式的に示す平面図である。
 本実施形態の液晶表示装置800においても、画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の一部に、スリット形成領域11R1を有する。また、画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の他の一部に、スリット非形成領域(べた領域)11R2を有する。
 ただし、液晶表示装置800は、各画素領域の配向分割の態様(画素領域内での液晶ドメインA~Dの配置)が、実施形態1における液晶表示装置100とは異なっている。
 具体的には、液晶表示装置800の各画素領域は、図26に示す画素領域P5と同様に配向分割されている。画素領域P5は、画素領域P1と同様、4つの液晶ドメインA~Dを有する。画素領域P5の液晶ドメインA~Dのそれぞれのチルト方向(基準配向方向)は、画素領域P1の液晶ドメインA~Dのそれぞれのチルト方向と同じである。
 ただし、画素領域P1では、液晶ドメインA~Dが左上、左下、右下、右上の順に(つまり左上から反時計回りに)配置されているのに対し、画素領域P5では、液晶ドメインA~Dは、右上、左上、左下、右下の順に(つまり右上から反時計回りに)配置されている。画素領域P5の4つの液晶ドメインA~Dのチルト方向t1~t4は、画素領域P5の中心を向いている。
 図27(a)および(b)に示すように配向処理がなされた背面基板および前面基板を貼り合わせることによって、図27(c)に示すように配向分割された画素領域P5を形成することができる。背面基板および前面基板に対して図27(a)および(b)に示したような配向処理を施す具体的な方法については後述する。
 このように、本実施形態の液晶表示装置800では、画素領域内における液晶ドメインA~Dの配置が、実施形態1の液晶表示装置100と異なっている。そのため、液晶表示装置800では、図25に示すように、画素電極11の左上、左下、右下および右上のそれぞれにおいてスリット11sの延びる方向が、実施形態1の液晶表示装置100と略90°異なっている。
 本実施形態の液晶表示装置800では、各画素領域が上述したように配向分割されていることにより、実施形態1の液晶表示装置100に比べ、いっそう明るい表示を実現することができる。これは、図1に示した画素領域P1では、画素電極11のエッジ近傍に、本来よりも暗い領域が形成されるのに対し、図26に示した画素領域P5では、そのような暗い領域が形成されないからである。以下、この理由を詳しく説明する。
 画素領域P1では、ある中間調を表示するときに、図28に示すように、表示すべき中間調よりも暗い領域DRが形成される。この暗い領域DRは、液晶ドメインA、B、CおよびD間の境界に位置する十字状の暗線(十字状部分)CLと、画素電極のエッジ近傍においてエッジに略平行に延びる直線状の暗線(直線状部分)SLとを有し、全体として略卍状である。
 十字状の暗線CLは、液晶ドメイン間で配向が連続的になるように、液晶分子が液晶ドメイン同士の境界で偏光板の透過軸に平行または直交するように配向することによって形成される。また、エッジ近傍の直線状の暗線SLは、液晶ドメインが近接する画素電極のエッジに、それに直交し画素電極の内側に向かう方位角方向が液晶ドメインのチルト方向(基準配向方向)と90°超の角をなすエッジ部が存在すると、形成される。これは、液晶ドメインのチルト方向と画素電極のエッジに生成される斜め電界による配向規制力の方向が互いに対向する成分を有することになるために、この部分で液晶分子が偏光板の透過軸に平行または直交するように配向するためと考えられる。ここで、図29を参照しながら、エッジ近傍に暗線SLが発生する理由をより具体的に説明する。なお、図29では、十字状の暗線CLは省略している。
 図29に示すように、画素電極は、4つのエッジ(辺)SD1、SD2、SD3およびSD4を有しており、電圧印加時に生成される斜め電界は、それぞれの辺に直交し、画素電極の内側に向かう方向(方位角方向)の成分を有する配向規制力を発揮する。図29では、4つのエッジSD1、SD2、SD3およびSD4に直交し、画素電極の内側に向かう方位角方向を矢印e1、e2、e3およびe4で示している。
 4つの液晶ドメインA、B、CおよびDのそれぞれは、画素電極の4つのエッジSD1、SD2、SD3およびSD4のうちの2つと近接しており、電圧印加時には、それぞれのエッジに生成される斜め電界による配向規制力を受ける。
 液晶ドメインAが近接する画素電極のエッジのうちのエッジ部EG1では、エッジ部EG1に直交し画素電極の内側に向かう方位角方向e1が液晶ドメインAのチルト方向t1と90°超の角をなしている。その結果、液晶ドメインAでは、電圧印加時に、このエッジ部EG1に略平行に暗線SL1が生じる。
 同様に、液晶ドメインBが近接する画素電極のエッジのうちのエッジ部EG2では、エッジ部EG2に直交し画素電極の内側に向かう方位角方向e2が液晶ドメインBのチルト方向t2と90°超の角をなしている。その結果、液晶ドメインBでは、電圧印加時に、このエッジ部EG2に略平行に暗線SL2が生じる。
 同様に、液晶ドメインCが近接する画素電極のエッジのうちのエッジ部EG3では、エッジ部EG3に直交し画素電極の内側に向かう方位角方向e3が液晶ドメインCのチルト方向t3と90°超の角をなしている。その結果、液晶ドメインCでは、電圧印加時に、このエッジ部EG3に略平行に暗線SL3が生じる。
 同様に、液晶ドメインDが近接する画素電極のエッジのうちのエッジ部EG4では、エッジ部EG4に直交し画素電極の内側に向かう方位角方向e4が液晶ドメインDのチルト方向t4と90°超の角をなしている。その結果、液晶ドメインDでは、電圧印加時に、このエッジ部EG4に略平行に暗線SL4が生じる。
 液晶ドメインA、B、CおよびDのチルト方向t1、t2、t3およびt4のそれぞれが、近接するエッジ部EG1、EG2、EG3およびEG4に生成される斜め電界による配向規制力の方位角成分e1、e2、e3およびe4となす角は、いずれも略135°である。
 このように、画素領域P1では、画素電極のエッジ近傍に暗線SLが形成される。また、図3(c)に示した画素領域P2、図4(c)に示した画素領域P3および図5(c)に示した画素領域P4においても、図30(a)、(b)および(c)に示すように、画素電極のエッジ近傍に暗線SL1~SL4が形成される。
 画素領域P2においても、ある中間調を表示するときに、図30(a)に示すように、表示すべき中間調よりも暗い領域が形成される。この暗い領域は、液晶ドメインA、B、CおよびD間の境界に形成される十字状の暗線CLと、画素電極のエッジ近傍に形成される直線状の暗線SL1~SL4とを有し、全体として略卍状である。
 画素領域P3においても、ある中間調を表示するときに、図30(b)に示すように、表示すべき中間調よりも暗い領域が形成される。この暗い領域は、液晶ドメインA、B、CおよびD間の境界に形成される十字状の暗線CLと、画素電極のエッジ近傍に形成される直線状の暗線SL2およびSL4とを有し、全体として略8の字状(垂直方向から傾斜した8の字状)である。画素領域P3では、液晶ドメインAおよびCには暗線が生じない。これは、液晶ドメインAおよびCのそれぞれに近接する画素電極のエッジに、それに直交し画素電極の内側に向かう方位角方向がチルト方向と90°超の角をなすエッジ部が存在しないためである。一方、液晶ドメインBおよびDには、暗線SL2およびSL4が生じる。これは、液晶ドメインBおよびDのそれぞれに近接する画素電極のエッジに、それに直交し画素電極の内側に向かう方位角方向がチルト方向と90°超の角をなすエッジ部が存在しているためである。また、暗線SL2およびSL4のそれぞれは、水平方向に平行な部分SL2(H)、SL4(H)と、垂直方向に平行な部分SL2(V)、SL4(V)とを含む。これは、液晶ドメインBおよびDのそれぞれのチルト方向が、水平なエッジ部についても、垂直なエッジ部についても、エッジ部に直交して画素電極の内側に向かう方位角方向に対して90°超の角を形成するからである。
 画素領域P4においても、ある中間調を表示するときに、図30(c)に示すように、表示すべき中間調よりも暗い領域が形成される。この暗い領域は、液晶ドメインA、B、CおよびD間の境界に形成される十字状の暗線CLと、画素電極のエッジ近傍に形成される直線状の暗線SL1およびSL3とを有し、全体として略8の字状である。画素領域P4では、液晶ドメインBおよびDには暗線が生じない。これは、液晶ドメインBおよびDのそれぞれに近接する画素電極のエッジに、それに直交し画素電極の内側に向かう方位角方向がチルト方向と90°超の角をなすエッジ部が存在しないためである。一方、液晶ドメインAおよびCには、暗線SL1およびSL3が生じる。これは、液晶ドメインAおよびCのそれぞれに近接する画素電極のエッジに、それに直交し画素電極の内側に向かう方位角方向がチルト方向と90°超の角をなすエッジ部が存在しているためである。また、暗線SL1およびSL3のそれぞれは、水平方向に平行な部分SL1(H)、SL3(H)と、垂直方向に平行な部分SL1(V)、SL3(V)とを含む。これは、液晶ドメインAおよびCのそれぞれのチルト方向が、水平なエッジ部についても、垂直なエッジ部についても、エッジ部に直交して画素電極の内側に向かう方位角方向に対して90°超の角を形成するからである。
 上述したように、画素領域P1~P4のような液晶ドメインA~Dの配置を採用すると、画素電極のエッジ近傍に暗線SLが形成される。これに対し、画素領域P5では、図31に示すように、液晶ドメインA、B、CおよびD間の境界に十字状の暗線CLが形成されるものの、画素電極のエッジ近傍には暗線SLは形成されない。
 ここで、図32を参照しながら、エッジ近傍に暗線SLが発生しない理由を説明する。なお、図32では、十字状の暗線CLは省略している。
 画素電極のエッジのうちの液晶ドメインAに近接する部分(エッジSD3の上半分およびエッジSD4の右半分)は、それに直交し画素電極の内側に向かう方位角方向e3、e4が液晶ドメインAのチルト方向t1と90°超の角をなすエッジ部を含んでいない。具体的には、液晶ドメインAのチルト方向t1は、方位角方向e3、e4と略45°の角をなしている。そのため、液晶ドメインAでは、電圧印加時に、画素電極のエッジ近傍に直線状の暗線SLが生じない。
 同様に、画素電極のエッジのうちの液晶ドメインBに近接する部分(エッジSD1の上半分およびエッジSD4の左半分)は、それに直交し画素電極の内側に向かう方位角方向e1、e4が液晶ドメインBのチルト方向t2と90°超の角をなすエッジ部を含んでいない。具体的には、液晶ドメインBのチルト方向t2は、方位角方向e1、e4と略45°の角をなしている。そのため、液晶ドメインBでは、電圧印加時に、画素電極のエッジ近傍に直線状の暗線SLが生じない。
 同様に、画素電極のエッジのうちの液晶ドメインCに近接する部分(エッジSD1の下半分およびエッジSD2の左半分)は、それに直交し画素電極の内側に向かう方位角方向e1、e2が液晶ドメインCのチルト方向t3と90°超の角をなすエッジ部を含んでいない。具体的には、液晶ドメインCのチルト方向t3は、方位角方向e1、e2と略45°の角をなしている。そのため、液晶ドメインCでは、電圧印加時に、画素電極のエッジ近傍に直線状の暗線SLが生じない。
 同様に、画素電極のエッジのうちの液晶ドメインDに近接する部分(エッジSD2の右半分およびエッジSD3の下半分)は、それに直交し画素電極の内側に向かう方位角方向e2、e3が液晶ドメインDのチルト方向t4と90°超の角をなすエッジ部を含んでいない。具体的には、液晶ドメインDのチルト方向t4は、方位角方向e2、e3と略45°の角をなしている。そのため、液晶ドメインDでは、電圧印加時に、画素電極のエッジ近傍に直線状の暗線SLが生じない。
 このように、画素領域P5では、画素電極のエッジ近傍に暗線SLが形成されない。そのため、その画素領域が画素領域P5と同様に配向分割されている本実施形態の液晶表示装置800では、実施形態1の液晶表示装置100に比べ、いっそう明るい表示を実現することができる。
 続いて、画素領域P5のような配向分割を行う方法(背面基板および前面基板に対して図27(a)および(b)に示したような配向処理を施す方法)を説明する。
 背面基板に対して図27(a)に示したような配向処理を施す場合、1つの画素領域P5に対応する領域において、上側領域の垂直配向膜に付与されるプレチルト方向PA1と下側領域の垂直配向膜に付与されるプレチルト方向PA2とは、上側領域と下側領域の境界(左右方向に延びる)に対して略直交する。また、前面基板に対して図27(b)に示したような配向処理を施す場合、1つの画素領域P5に対応する領域において、右側領域の垂直配向膜に付与されるプレチルト方向PB1と左側領域の垂直配向膜に付与されるプレチルト方向PB2とは、右側領域と左側領域の境界(上下方向に延びる)に対して略直交する。それぞれの基板の垂直配向膜に付与される2つのプレチルト方向と領域間の境界とが上述したような関係にある場合、以下に説明する方法により、それぞれの基板の垂直配向膜に対して互いに反平行な2つのプレチルト方向を1回の露光(紫外線照射)で付与することができる。
 まず、図33(a)に示すように、スリット40sが形成された光学マスク40を用意し、この光学マスク40を、光配向膜2が形成された基板1から所定の距離だけ離間させて配置する。
 次に、図33(b)に示すように、紫外線を出射する光源(例えば紫外線ランプ)50を、スリット40sの延びる方向に直交する方向51に移動させながら露光を行う。これにより、光源50から出射した紫外線は、スリット40sを介して拡散光として光配向膜2に照射される。
 そのため、図33(c)に示すように、光配向膜2の、スリット40sの直下を境界とする2つの領域に対し、互いに反平行なプレチルト方向P1、P2が付与される。
 ここで、図34~図37を参照しながら、アクティブマトリクス基板(背面基板)10と光学マスク40との相対的な配置関係の具体例と、対向基板(前面基板)20と光学マスク40との相対的な配置関係の具体例を説明する。
 アクティブマトリクス基板10に配向処理を施す場合、まず、図34(a)に示すような、複数の走査線17および複数の信号線18を有するアクティブマトリクス基板10が用意される。図34(a)に示す例では、走査線17と信号線18とによって、各画素領域P5が囲まれている。アクティブマトリクス基板10の最表面には、不図示の光配向膜12が形成されている。
 アクティブマトリクス基板10を用意するのとは別途に、図34(b)に示すような、複数のスリット40sが形成された光学マスク40が用意される。複数のスリット40sは、左右方向(水平方向)に延びている。
 アクティブマトリクス基板10と光学マスク40とは、図34(c)に示すように、光学マスク40のスリット40sが画素領域P5の中央を横切るように配置される。
 この状態で、図35(a)に示すように、光源50を、スリット40sの延びる方向に直交する方向51に移動させながら露光を行う。これにより、光源50から出射した紫外線は、スリット40sを介して拡散光として光配向膜12に照射される。
 そのため、図35(b)に示すように、光配向膜12の、スリット40sの直下を境界とする2つの領域に対し、互いに反平行なプレチルト方向PA1、PA2が付与される。
 対向基板20に配向処理を施す場合、まず、図36(a)に示すような、ブラックマトリクス(遮光層)BMを有する対向基板10が用意される。ブラックマトリクスBMは、例えば樹脂から形成されており、画素領域P5間に形成されている。対向基板20の最表面には、不図示の光配向膜22が形成されている。
 対向基板20を用意するのとは別途に、図36(b)に示すような、複数のスリット40sが形成された光学マスク40が用意される。複数のスリット40sは、上下方向(垂直方向)に延びている。
 対向基板20と光学マスク40とは、図36(c)に示すように、光学マスク40のスリット40sが画素領域P5間に位置するように配置される。
 この状態で、図37(a)に示すように、光源50を、スリット40sの延びる方向に直交する方向51に移動させながら露光を行う。これにより、光源50から出射した紫外線は、スリット40sを介して拡散光として光配向膜22に照射される。
 そのため、図37(b)に示すように、光配向膜22の、スリット40sの直下を境界とする2つの領域に対し、互いに反平行なプレチルト方向PB1、PB2が付与される。
 (実施形態9)
 図38に、本実施形態における液晶表示装置900を示す。図38は、液晶表示装置900の1つの画素領域を模式的に示す平面図である。
 本実施形態における液晶表示装置900と、実施形態8における液晶表示装置800とでは、画素電極11のスリット形成領域11R1およびスリット非形成領域11R2の位置関係が異なっている。
 本実施形態では、図38に示すように、画素電極11の、液晶ドメインAおよびBに対応する領域では、スリット形成領域11R1が相対的に下側に位置し、スリット非形成領域11R2が相対的に上側に位置している。また、画素電極11の、液晶ドメインCおよびDに対応する領域では、スリット形成領域11R1が相対的に上側に位置し、スリット非形成領域11R2が相対的に下側に位置している。つまり、実施形態8の液晶表示装置800では、画素領域の上側および下側にスリット11sが配置されているのに対し、本実施形態の液晶表示装置900では、画素領域の中央にスリット11sが配置されている。そのため、本実施形態では、暗副画素が画素の中央に位置し、明副画素の半分が画素の上側に位置し、明副画素の残り半分が画素の下側に位置する。
 本実施形態における液晶表示装置900においても、γ特性の視角依存性を改善することができる。また、本実施形態における液晶表示装置900では、画素領域の中央に配置されたスリット11sの配向規制力により、画素領域の中央での配向の安定性を向上させることができる。なお、実施形態8における液晶表示装置800のように、画素領域の中央ではなく上側および下側に(つまり画素領域内で相対的に外側に)スリット11sが配置されている構成を採用すると、走査線17や信号線18などのバスラインの電位による斜め電界が配向に及ぼす悪影響を抑制することができるという利点が得られる。
 (実施形態10)
 図39に、本実施形態における液晶表示装置1000を示す。図39は、液晶表示装置1000の1つの画素領域を模式的に示す平面図である。
 本実施形態における液晶表示装置1000は、画素分割駆動技術が用いられている点において、実施形態8の液晶表示装置800と異なる。図39に示すように、液晶表示装置1000の画素電極11は、複数の(ここでは2つの)副画素電極11aおよび11bを含む。2つの副画素電極11aおよび11bの一方(第1副画素電極)11aには、第1TFT16aおよび第1補助容量CS1が接続されている。また、他方(第2副画素電極)11bには、第2TFT16bおよび第2補助容量CS2が接続されている。液晶表示装置1000の各画素領域は、複数の副画素電極11aおよび11bに対応する複数の(ここでは2つの)副画素領域を含む。
 第1TFT16aおよび第2TFT16bのゲ-ト電極は、共通の走査線17に接続されている。また、第1TFT16aおよび第2TFT16bのソース電極は、共通の(つまり同一の)信号線18に接続されている。
 第1補助容量CS1は、第1補助容量線19aに接続されており、第2補助容量CS2は、第2補助容量線19bに接続されている。第1補助容量CS1を構成する一対の電極のうちの一方(補助容量対向電極;ここでは第1補助容量線19aの一部)は、第1補助容量線19aから補助容量対向電圧を供給される。また、第2補助容量CS2を構成する一対の電極のうちの一方(補助容量対向電極;ここでは第2補助容量線19bの一部)は、第2補助容量線19bから補助容量対向電圧を供給される。第1補助容量CS1および第2補助容量CS2の補助容量対向電極は、互いに独立しているので、それぞれ対応する補助容量線(第1補助容量線19aまたは第2補助容量線19b)から互いに異なる補助容量対向電圧(CS電圧)を供給され得る。
 第1副画素電極11aおよび第2副画素電極11bに、共通の信号線18から表示信号電圧が供給され、第1TFT16aおよび第2TFT16bがオフ状態とされた後、第1補助容量CS1および第2補助容量CS2の補助容量対向電極の電圧(すなわち、第1補助容量線19aまたは第2補助容量線19bから供給される電圧)の変化量(変化の方向および大きさによって規定される)を異ならせることによって、容量分割を利用して第1副画素電極11aおよび第2副画素電極11bへの印加電圧を互いに異ならせることができる。
 液晶表示装置1000では、2つの副画素領域のそれぞれが、4つの液晶ドメインA、B、CおよびDを有する。第1副画素電極11aおよび第2副画素電極11bのそれぞれは、液晶ドメインA、B、CおよびDのそれぞれに対応する領域に、スリット形成領域11R1とスリット非形成領域11R2とを有する。従って、2つの副画素領域のそれぞれ内に、液晶層30への実効的な印加電圧が異なる2つの領域が存在する。そのため、本実施形態における液晶表示装置1000では、1つの画素領域内に、液晶層30への実効的な印加電圧が異なる4つの領域を形成することができる。従って、γ特性の視角依存性を改善する効果をいっそう高くすることができる。
 なお、本実施形態における液晶表示装置1000では、画素分割駆動技術が用いられるので、実施形態8における液晶表示装置800と比較すると、回路構成は幾分複雑になる。しかしながら、本実施形態のように、スリット形成領域11R1を含む画素電極11と画素分割駆動技術とを組み合わせて用いることにより、単純に画素分割駆動技術のみを用いる場合と比べると、同程度の回路構成で画素の分割数をより多く(つまりγ特性の視角依存性を改善する効果をより高く)できるという利点が得られる。言い換えると、γ特性の視角依存性を同程度に改善しようとする場合、スリット形成領域11R1を含む画素電極11と画素分割駆動技術とを組み合わせて用いることにより、単純に画素分割駆動技術のみを用いる場合と比べると回路構成を簡単にすることができる。
 なお、図39に例示している構成では、第1副画素電極11aに形成されているスリット11sの幅Waと、第2副画素電極11bに形成されているスリット11sの幅Wbとが異なっているが、第1副画素電極11aのスリット11sの幅Waと、第2副画素電極11bのスリット11sの幅Wbとを同じにしてもよい。
 (実施形態11)
 図40および図41に、本実施形態における液晶表示装置1100Aおよび1100Bを示す。図40および図41は、液晶表示装置1100Aおよび1100Bの1つの画素領域を模式的に示す平面図である。
 本実施形態における液晶表示装置1100Aおよび1100Bは、画素電極11がスリット非形成領域11R2を有していない点において、実施形態8における液晶表示装置800と異なる。
 図40および図41に示すように、液晶表示装置1100Aおよび1100Bの画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の一部に、スリット形成領域11R1(第1のスリット形成領域)を有する。また、液晶表示装置1100Aおよび1100Bの画素電極11は、液晶ドメインA、B、CおよびDのそれぞれに対応する領域の他の一部に、スリット形成領域11R1のスリット11sの幅Wとは異なる幅W’を有するさらなるスリット11s’が形成されたさらなるスリット形成領域11R1’(第2のスリット形成領域)を有する。
 第1のスリット形成領域11R1のスリット11sの幅Wおよび第2のスリット形成領域11R1’のスリット11s’の幅W’は、それぞれ、画素電極11に最高階調電圧が供給されたときの実効的な印加電圧の低下量が0.5V以上であり、且つ、液晶分子30aの配向方向の基準配向方向に対するずれが45°未満であるように設定されている。また、図40および図41に例示している構成では、第1のスリット形成領域11R1のスリット11sの幅Wは、第2のスリット形成領域11R1’のスリット11s’の幅W’よりも大きい。
 液晶表示装置1100Aおよび1100Bでは、第1のスリット形成領域11R1のスリット11sの幅Wと、第2のスリット形成領域11R1’のスリット11s’の幅W’とが異なっているので、第1のスリット形成領域11R1上の液晶層30における印加電圧の低下量と、第2のスリット形成領域11R1’上の液晶層30における印加電圧の低下量とは異なる。そのため、各液晶ドメイン内に、液晶層30への印加電圧が互いに異なる2つの領域、すなわち、相対的に印加電圧が低い第1のスリット形成領域11R1と、相対的に印加電圧が高い第2のスリット形成領域11R1’とが存在することになる。そのため、γ特性の視角依存性を改善することができる。
 なお、γ特性の視角依存性を十分に改善する観点からは、第1のスリット形成領域11R1上の液晶層30と、第2のスリット形成領域11R1’上の液晶層30とで、実効的な印加電圧の低下量の差が0.5V以上であることが好ましく、1.0V以上であることが好ましい。
 また、画素電極11がスリット非形成領域11R2に代えてさらなるスリット形成領域(第2のスリット形成領域)11R1’を有する構成は、液晶分子の配向をより安定化させることができるという利点を有する。一方、実施形態8における液晶表示装置800のように、画素電極11がスリット非形成領域(べた領域)11R2を有する構成は、液晶層30に実効的に印加される電圧の差異を最大化できるという利点を有する。
 本発明の実施形態によると、VAモードの液晶表示装置におけるγ特性の視角依存性を、比較的簡単な回路構成で十分に改善することができる。本発明による液晶表示装置は、テレビジョン受像機などの高品位の表示が求められる用途に好適に用いられる。
 10  アクティブマトリクス基板
 11  画素電極
 11s、11s’、11s1、11s2  スリット
 11R1  スリット形成領域(第1のスリット形成領域)
 11R1’  さらなるスリット形成領域(第2のスリット形成領域)
 11R2  スリット非形成領域(べた領域)
 12  第1光配向膜
 13、23  偏光板
 14  誘電体層
 15  下層電極
 16  薄膜トランジスタ(TFT)
 17  走査線
 18  信号線
 19  補助容量線
 20  対向基板
 21  対向電極
 22  第2光配向膜
 30  液晶層
 30a  液晶分子
 100、200、300、400、500  液晶表示装置
 600A、600B、600C、700  液晶表示装置
 800、900、1000、1100A、1100B  液晶表示装置
 A、B、C、D、E、F  液晶ドメイン
 t1、t2、t3、t4、t5、t6  チルト方向(基準配向方向)
 P1、P2、P3、P4、P5  画素領域

Claims (34)

  1.  垂直配向型の液晶層と、
     前記液晶層を介して互いに対向する第1基板および第2基板と、
     前記第1基板の前記液晶層側に設けられた第1電極および前記第2基板の前記液晶層側に設けられた第2電極と、
     前記第1電極および前記液晶層の間と前記第2電極および前記液晶層の間とに設けられた一対の光配向膜と、を備え、
     マトリクス状に配列された複数の画素領域を有し、
     前記複数の画素領域のそれぞれは、前記一対の光配向膜によって規定される基準配向方向が第1方向である第1液晶ドメインと、前記基準配向方向が前記第1方向とは異なる第2方向である第2液晶ドメインと、を有し、
     前記第1電極は、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域の一部に、前記一対の光配向膜によって規定される前記基準配向方向に略平行に延びるスリットが形成されたスリット形成領域を有し、
     前記スリットの幅は、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における実効的な印加電圧の低下量が0.5V以上であり、且つ、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における液晶分子の配向方向の前記基準配向方向に対するずれが45°未満であるように設定されている、液晶表示装置。
  2.  前記スリットの幅は、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における実効的な印加電圧の低下量が1.0V以上であるように設定されている請求項1に記載の液晶表示装置。
  3.  前記スリットの幅は、前記第1電極に最高階調電圧が供給されたときの前記スリット上の前記液晶層における液晶分子の配向方向の前記基準配向方向に対するずれが30°以下であるように設定されている請求項1または2に記載の液晶表示装置。
  4.  前記スリットの幅は、2.5μm以上である請求項1から3のいずれかに記載の液晶表示装置。
  5.  前記スリットの幅は、4.0μm以上である請求項1から3のいずれかに記載の液晶表示装置。
  6.  前記スリットの幅は、8.0μm未満である請求項1から5のいずれかに記載の液晶表示装置。
  7.  前記スリットの幅は、6.0μm以下である請求項1から5のいずれかに記載の液晶表示装置。
  8.  前記第1基板は、前記第1電極の下方に誘電体層を隔てて設けられた第3電極をさらに有する請求項1から3のいずれかに記載の液晶表示装置。
  9.  前記第3電極には、前記第2電極に供給される電圧と実質的に同じ電圧が供給される請求項8に記載の液晶表示装置。
  10.  前記スリットの幅は、1.0μm以上である請求項9に記載の液晶表示装置。
  11.  前記スリットの幅は、2.0μm以上である請求項9に記載の液晶表示装置。
  12.  前記スリットの幅は、6.0μm未満である請求項9から11のいずれかに記載の液晶表示装置。
  13.  前記スリットの幅は、4.5μm以下である請求項9から11のいずれかに記載の液晶表示装置。
  14.  前記第1電極の、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域内において、前記スリット形成領域が占める割合は1/3以上である請求項1から13のいずれかに記載の液晶表示装置。
  15.  前記第1電極の、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域内において、前記スリット形成領域が占める割合は2/3以上である請求項1から13のいずれかに記載の液晶表示装置。
  16.  前記スリット形成領域内に、前記スリットが複数形成されており、
     前記複数のスリットは、実質的に同じ幅を有する請求項1から15のいずれかに記載の液晶表示装置。
  17.  前記スリット形成領域内に、前記スリットが複数形成されており、
     前記複数のスリットは、第1の幅を有するスリットと、前記第1の幅とは異なる第2の幅を有するスリットと、を含む請求項1から15のいずれかに記載の液晶表示装置。
  18.  表示面法線方向から見たとき、前記スリットは、前記第1電極の導電膜によって完全に包囲されている請求項1から17のいずれかに記載の液晶表示装置。
  19.  表示面法線方向から見たとき、前記スリットは、前記第1電極の導電膜によって完全には包囲されていない請求項1から17のいずれかに記載の液晶表示装置。
  20.  前記第1電極は、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域の他の一部に、スリットが形成されていないスリット非形成領域を有する請求項1から19のいずれかに記載の液晶表示装置。
  21.  前記第1電極は、前記第1液晶ドメインおよび前記第2液晶ドメインのそれぞれに対応する領域の他の一部に、前記スリット形成領域の前記スリットの幅とは異なる幅を有するさらなるスリットが形成されたさらなるスリット形成領域を有する請求項1から19のいずれかに記載の液晶表示装置。
  22.  前記第1基板は、アクティブマトリクス基板であり、
     前記第1電極は、画素電極である請求項1から21のいずれかに記載の液晶表示装置。
  23.  前記画素電極は、複数の副画素電極を含み、
     前記複数の画素領域のそれぞれは、前記複数の副画素電極に対応する複数の副画素領域を含み、
     前記複数の副画素領域のそれぞれが、前記第1液晶ドメインおよび前記第2液晶ドメインを有する請求項22に記載の液晶表示装置。
  24.  前記複数の画素領域のそれぞれは、前記基準配向方向が第3方向である第3液晶ドメインと、前記基準配向方向が第4方向である第4液晶ドメインと、をさらに有し、
     前記第1方向、前記第2方向、前記第3方向および前記第4方向は、任意の2つの方向の差が90°の整数倍に略等しい4つの方向であり、
     前記第1電極は、前記第3液晶ドメインおよび前記第4液晶ドメインのそれぞれに対応する領域の一部にも、前記スリット形成領域を有する請求項1から23のいずれかに記載の液晶表示装置。
  25.  前記第1液晶ドメイン、前記第2液晶ドメイン、前記第3液晶ドメインおよび前記第4液晶ドメインは、それぞれ他の液晶ドメインと隣接し、かつ、2行2列のマトリクス状に配置されている請求項24に記載の液晶表示装置。
  26.  前記第1液晶ドメイン、前記第2液晶ドメイン、前記第3液晶ドメインおよび前記第4液晶ドメインは、隣接する液晶ドメイン間で前記基準配向方向が略90°異なるように配置されている請求項25に記載の液晶表示装置。
  27.  前記第1電極のエッジのうちの前記第1液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第1方向と90°超の角をなすエッジ部を含まず、
     前記第1電極のエッジのうちの前記第2液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第2方向と90°超の角をなすエッジ部を含まず、
     前記第1電極のエッジのうちの前記第3液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第3方向と90°超の角をなすエッジ部を含まず、
     前記第1電極のエッジのうちの前記第4液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第4方向と90°超の角をなすエッジ部を含まない請求項25または26に記載の液晶表示装置。
  28.  前記第1方向は、前記第1電極のエッジのうちの前記第1液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなし、
     前記第2方向は、前記第1電極のエッジのうちの前記第2液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなし、
     前記第3方向は、前記第1電極のエッジのうちの前記第3液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなし、
     前記第4方向は、前記第1電極のエッジのうちの前記第4液晶ドメインに近接する部分に直交し前記第1電極の内側に向かう方位角方向と略45°の角をなす請求項27に記載の液晶表示装置。
  29.  前記第1電極のエッジのうちの前記第1液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第1方向と90°超の角をなす第1エッジ部を含み、
     前記第1電極のエッジのうちの前記第2液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第2方向と90°超の角をなす第2エッジ部を含み、
     前記第1電極のエッジのうちの前記第3液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第3方向と90°超の角をなす第3エッジ部を含み、
     前記第1電極のエッジのうちの前記第4液晶ドメインに近接する部分は、それに直交し前記第1電極の内側に向かう方位角方向が前記第4方向と90°超の角をなす第4エッジ部を含む請求項25または26に記載の液晶表示装置。
  30.  前記第1方向は、前記第1エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなし、
     前記第2方向は、前記第2エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなし、
     前記第3方向は、前記第3エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなし、
     前記第4方向は、前記第4エッジ部に直交し前記第1電極の内側に向かう方位角方向と略135°の角をなす請求項29に記載の液晶表示装置。
  31.  表示面における水平方向の方位角を0°とするとき、前記第1方向は略45°、略135°、略225°または略315°である、請求項26から30のいずれかに記載の液晶表示装置。
  32.  前記液晶層を介して互いに対向し、それぞれの透過軸が互いに略直交するように配置された一対の偏光板をさらに備え、
     前記第1方向および前記第2方向は、前記一対の偏光板の前記透過軸と略45°の角をなす、請求項1から31のいずれかに記載の液晶表示装置。
  33.  前記液晶層は、負の誘電異方性を有する液晶分子を含み、
     前記一対の光配向膜のうちの一方によって規定されるプレチルト方向と、他方によって規定されるプレチルト方向とは互いに略90°異なる、請求項1から32のいずれかに記載の液晶表示装置。
  34.  前記一対の光配向膜のうちの一方によって規定されるプレチルト角と、他方によって規定されるプレチルト角とは互いに略等しい、請求項1から33のいずれかに記載の液晶表示装置。
PCT/JP2012/076277 2011-10-11 2012-10-11 液晶表示装置 WO2013054828A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/350,943 US9575364B2 (en) 2011-10-11 2012-10-11 Liquid crystal display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-224336 2011-10-11
JP2011224336 2011-10-11
JP2012-122237 2012-05-29
JP2012122237 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013054828A1 true WO2013054828A1 (ja) 2013-04-18

Family

ID=48081881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076277 WO2013054828A1 (ja) 2011-10-11 2012-10-11 液晶表示装置

Country Status (2)

Country Link
US (1) US9575364B2 (ja)
WO (1) WO2013054828A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950531A (zh) * 2014-03-25 2015-09-30 深圳莱宝高科技股份有限公司 一种显示面板
JP5844499B1 (ja) * 2014-08-19 2016-01-20 堺ディスプレイプロダクト株式会社 液晶表示装置
WO2016151861A1 (ja) * 2015-03-26 2016-09-29 堺ディスプレイプロダクト株式会社 液晶表示装置
WO2016166886A1 (ja) * 2015-04-17 2016-10-20 堺ディスプレイプロダクト株式会社 液晶表示装置
US9568773B2 (en) * 2015-05-22 2017-02-14 Au Optronics Corporation Pixel structure and pixel array having the same
CN106950757A (zh) * 2016-01-06 2017-07-14 三星显示有限公司 显示基板以及包括该显示基板的液晶显示装置
US10969630B2 (en) 2017-01-27 2021-04-06 Sakai Display Products Corporation Liquid crystal display device
US11960176B2 (en) 2022-02-09 2024-04-16 Sharp Display Technology Corporation Liquid crystal display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793266B1 (en) 2005-12-05 2017-03-08 Semiconductor Energy Laboratory Co., Ltd. Transflective Liquid Crystal Display with a Horizontal Electric Field Configuration
CN105158995B (zh) * 2015-10-27 2018-03-02 深圳市华星光电技术有限公司 像素电极及阵列基板
CN111781779B (zh) * 2019-04-03 2023-02-03 咸阳彩虹光电科技有限公司 液晶显示面板及显示装置
CN114879414A (zh) * 2022-04-26 2022-08-09 成都中电熊猫显示科技有限公司 一种显示面板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255305A (ja) * 2002-02-27 2003-09-10 Fujitsu Display Technologies Corp 液晶表示装置及びその駆動方法
JP2006189610A (ja) * 2005-01-06 2006-07-20 Sharp Corp 液晶表示装置
JP2006317866A (ja) * 2005-05-16 2006-11-24 Sharp Corp 液晶表示装置及びその製造方法
JP2007140089A (ja) * 2005-11-18 2007-06-07 Hitachi Displays Ltd 液晶表示装置
JP2009080197A (ja) * 2007-09-25 2009-04-16 Sharp Corp 液晶表示装置
JP2010169814A (ja) * 2009-01-21 2010-08-05 Sharp Corp 液晶表示装置
JP2011085738A (ja) * 2009-10-15 2011-04-28 Sharp Corp 液晶表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69840759D1 (de) 1997-06-12 2009-05-28 Sharp Kk Anzeigevorrichtung mit vertikal ausgerichtetem Flüssigkristall
JP4401538B2 (ja) 1999-07-30 2010-01-20 シャープ株式会社 液晶表示装置及びその製造方法
US6977704B2 (en) 2001-03-30 2005-12-20 Fujitsu Display Technologies Corporation Liquid crystal display
US7113241B2 (en) 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4248306B2 (ja) 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
WO2006132369A1 (ja) 2005-06-09 2006-12-14 Sharp Kabushiki Kaisha 液晶表示装置
KR101383717B1 (ko) * 2007-06-27 2014-04-10 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JP4887331B2 (ja) 2008-05-23 2012-02-29 シャープ株式会社 液晶表示装置
KR20100056613A (ko) * 2008-11-20 2010-05-28 삼성전자주식회사 표시 기판 및 이를 포함하는 표시 패널
CN102483550B (zh) * 2009-08-24 2014-10-29 夏普株式会社 液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255305A (ja) * 2002-02-27 2003-09-10 Fujitsu Display Technologies Corp 液晶表示装置及びその駆動方法
JP2006189610A (ja) * 2005-01-06 2006-07-20 Sharp Corp 液晶表示装置
JP2006317866A (ja) * 2005-05-16 2006-11-24 Sharp Corp 液晶表示装置及びその製造方法
JP2007140089A (ja) * 2005-11-18 2007-06-07 Hitachi Displays Ltd 液晶表示装置
JP2009080197A (ja) * 2007-09-25 2009-04-16 Sharp Corp 液晶表示装置
JP2010169814A (ja) * 2009-01-21 2010-08-05 Sharp Corp 液晶表示装置
JP2011085738A (ja) * 2009-10-15 2011-04-28 Sharp Corp 液晶表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950531A (zh) * 2014-03-25 2015-09-30 深圳莱宝高科技股份有限公司 一种显示面板
US10175535B2 (en) 2014-08-19 2019-01-08 Sakai Display Products Corporation Liquid crystal display apparatus having four liquid crystal domains
JP5844499B1 (ja) * 2014-08-19 2016-01-20 堺ディスプレイプロダクト株式会社 液晶表示装置
WO2016027316A1 (ja) * 2014-08-19 2016-02-25 堺ディスプレイプロダクト株式会社 液晶表示装置
CN105874381A (zh) * 2014-08-19 2016-08-17 堺显示器制品株式会社 液晶显示装置
WO2016151861A1 (ja) * 2015-03-26 2016-09-29 堺ディスプレイプロダクト株式会社 液晶表示装置
US10274787B2 (en) 2015-04-17 2019-04-30 Sakai Display Products Corporation Liquid crystal display apparatus comprising a pixel electrode having a second opening part deflected from a central portion between two liquid crystal domains
WO2016166886A1 (ja) * 2015-04-17 2016-10-20 堺ディスプレイプロダクト株式会社 液晶表示装置
US9568773B2 (en) * 2015-05-22 2017-02-14 Au Optronics Corporation Pixel structure and pixel array having the same
CN106950757A (zh) * 2016-01-06 2017-07-14 三星显示有限公司 显示基板以及包括该显示基板的液晶显示装置
CN106950757B (zh) * 2016-01-06 2021-06-22 三星显示有限公司 显示基板以及包括该显示基板的液晶显示装置
US10969630B2 (en) 2017-01-27 2021-04-06 Sakai Display Products Corporation Liquid crystal display device
US11960176B2 (en) 2022-02-09 2024-04-16 Sharp Display Technology Corporation Liquid crystal display device

Also Published As

Publication number Publication date
US20140253853A1 (en) 2014-09-11
US9575364B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
WO2013054828A1 (ja) 液晶表示装置
US8064018B2 (en) Liquid crystal display device
US8334954B2 (en) Liquid crystal display device
WO2010119659A1 (ja) 液晶表示装置
WO2010092658A1 (ja) 液晶表示装置
US20120229739A1 (en) Liquid crystal display device and manufacturing method therefor
WO2009098747A1 (ja) 液晶表示装置
US20090244462A1 (en) Liquid crystal display device
JP5307233B2 (ja) 液晶表示装置
JP2010128211A (ja) 液晶表示装置
US20120120346A1 (en) Liquid crystal display device and method for manufacturing same
WO2018138888A1 (ja) 液晶表示装置
WO2010097879A1 (ja) 液晶表示装置
JP6581714B2 (ja) 液晶表示装置
JP2007192917A (ja) 液晶表示装置
WO2011016552A1 (ja) 液晶表示装置
JP5764659B2 (ja) 液晶表示装置
US8610653B2 (en) Liquid crystal display panel and liquid crystal display device
WO2011016554A1 (ja) 液晶表示装置
JP5378511B2 (ja) 液晶表示装置
WO2014203565A1 (ja) 液晶表示装置およびその製造方法
US8665195B2 (en) Liquid crystal display device
WO2014196495A1 (ja) 液晶表示装置の製造方法
WO2010007761A1 (ja) 液晶表示装置
WO2017169965A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350943

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP