WO2013051070A1 - Light-emitting element and light-emitting element manufacturing method - Google Patents

Light-emitting element and light-emitting element manufacturing method Download PDF

Info

Publication number
WO2013051070A1
WO2013051070A1 PCT/JP2011/005655 JP2011005655W WO2013051070A1 WO 2013051070 A1 WO2013051070 A1 WO 2013051070A1 JP 2011005655 W JP2011005655 W JP 2011005655W WO 2013051070 A1 WO2013051070 A1 WO 2013051070A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
functional layer
sealing
cathode
Prior art date
Application number
PCT/JP2011/005655
Other languages
French (fr)
Japanese (ja)
Inventor
全健 金
湯淺 寛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/005655 priority Critical patent/WO2013051070A1/en
Publication of WO2013051070A1 publication Critical patent/WO2013051070A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present invention relates to a light emitting element including a light emitting part and a sealing part, and a method for manufacturing the light emitting element.
  • Some light emitting elements include a light emitting portion in which a light emitting layer is sandwiched between an anode and a cathode.
  • the light emitting layer and the cathode are affected by a gas such as moisture and oxygen (hereinafter also simply referred to as “gas such as moisture” or “gas”). Specifically, the light emitting layer has light emitting characteristics that are degraded by, for example, moisture, and the lifetime of the device is shortened.
  • the electrical characteristics of the cathode change due to, for example, oxygen. When the change in the electrical characteristics is large, electrons cannot be supplied to the light emitting layer, and light emission does not occur (so-called display defect).
  • a sealing portion is formed on the upper surface of the cathode in order to protect the light emitting layer and the cathode from gas such as moisture, that is, in order to prevent the gas from entering.
  • the sealing portion is required to have not only high gas barrier properties but also excellent light transmittance, and for example, a silicon nitride film (SiN film) or the like is used.
  • Patent Documents 1 and 2 a technique for forming a sealing portion by an atomic layer epitaxy method has been proposed (for example, Patent Documents 1 and 2).
  • the gas barrier property may be insufficient.
  • a defect for example, foreign matter is mixed in during the manufacturing process of the light emitting element, and the foreign matter is exposed without being completely covered by the sealing portion, a gap (groove) formed between the foreign matter and the sealing portion. ) Gas enters and causes display defects.
  • the above technique improves the gas barrier property of the sealing part when manufactured normally, and in the case where trouble such as contamination of foreign matter occurs, it may not be possible to suppress gas intrusion or the like. is there.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting element and a method for manufacturing the light-emitting element that can ensure gas barrier properties even when a problem occurs.
  • a light-emitting element includes a light-emitting portion in which a plurality of functional layers are stacked, and an insulating sealing portion formed over the light-emitting portion.
  • the plurality of functional layers are formed on the lower functional layer in a state in which an opening is formed in a portion corresponding to a partial region of the lower functional layer, and a lower functional layer having an upper layer made of a conductive material.
  • An upper functional layer formed on the upper functional layer, and the sealing portion includes a first sealing layer formed on the upper functional layer excluding a peripheral surface constituting the opening in the upper functional layer, and the first functional layer.
  • a second sealing layer formed in units of atomic layers on the sealing layer, and the upper functional layer has one or more layers made of a conductive material, the layer made of the conductive material, and the opening The exposed portion is oxidized, and the oxidized portion is covered with the second sealing layer.
  • a method for manufacturing a light-emitting element includes: a lower functional layer having a layer made of a conductive material as an upper layer; an upper functional layer having one or more layers made of a conductive material; In the method for manufacturing a light-emitting element, comprising: a light-emitting part formed by laminating at least; and an insulating sealing part having a first sealing layer and a second sealing layer formed on the light-emitting part.
  • a fourth step of oxidizing the portion exposed kick in the opening a layer of conductive material, after said fourth step and a fifth step of forming a second sealing layer on an atomic layer unit performs.
  • the second sealing layer is formed in units of atomic layers. However, since it is formed along the upper surface shape, gas barrier properties can be secured.
  • the layer made of the conductive material constituting the upper functional layer is insulated. Furthermore, since the oxidized portion is covered with the second sealing layer, the intrusion of gas can be prevented and the insulation can be further improved.
  • the light-emitting element which is one embodiment of the present invention is a light-emitting element including a light-emitting portion in which a plurality of functional layers are stacked and an insulating sealing portion formed over the light-emitting portion.
  • a lower functional layer having an upper layer made of a conductive material, and an upper functional layer formed on the lower functional layer in a state having an opening in a portion corresponding to a partial region of the lower functional layer;
  • the sealing portion includes a first sealing layer formed on the upper functional layer excluding a peripheral surface constituting the opening in the upper functional layer, and an atomic layer unit on the first sealing layer
  • the upper functional layer has at least one layer made of a conductive material, and the portion exposed to the opening is oxidized by the layer made of the conductive material, The oxidation part is covered with the second sealing layer.
  • foreign matter is attached to the partial region of the lower functional layer, and the foreign matter has a layer of the same material as the upper functional layer and a layer of the same material as the first sealing layer formed on the foreign matter. In the state, it is covered with the second sealing layer. Thereby, even if a foreign material has electroconductivity, since it is coat
  • the partial region of the lower functional layer is covered with the second sealing layer except for a portion where the foreign matter is adhered.
  • all the upper surfaces of the light emitting part are covered with at least the second sealing layer, and the gas barrier property can be secured.
  • the layer made of the conductive material in the lower functional layer is an anode
  • the upper functional layer includes a light emitting functional layer and a cathode formed on the light emitting functional layer, and the conductive in the upper functional layer.
  • the layer made of the material includes a cathode
  • the light emitting functional layer further includes a light emitting layer including a light emitting material and an electron transporting layer that transports electrons to the light emitting layer.
  • the lower functional layer includes an anode, a light emitting layer formed on the anode, and an electron transport layer formed on the light emitting layer, and the electron transport layer is a layer made of the conductive material
  • the upper functional layer includes a cathode, and the layer made of a conductive material in the upper functional layer is a cathode.
  • a manufacturing method of a light-emitting element which is one embodiment of the present invention includes a light-emitting portion in which a lower functional layer having an upper layer made of a conductive material and an upper functional layer having one or more layers made of a conductive material are stacked. And a method of manufacturing a light emitting device including an insulating sealing portion having a first sealing layer and a second sealing layer formed on the light emitting portion.
  • a layer made of a conductive material in the upper functional layer formed in the second step by exposure A fourth step of oxidizing the portion exposed in the opening there, after the fourth step, a fifth step of forming a second sealing layer on an atomic layer unit performs.
  • the second sealing layer is formed by an atomic layer growth method or an atomic layer deposition method, and in the fourth step, oxygen is passed through for 100 to 20 seconds. Thereby, an oxide film can be easily formed.
  • the light-emitting element which is one embodiment of the present invention includes at least a layer made of a conductive material as the lower functional layer, and attention is paid to the layer made of the conductive material as follows.
  • the light emitting element has a first functional part and a second functional part different from the first functional part, and has a first functional layer having conductivity, and the first functional layer in the first functional layer.
  • a first functional region corresponding to one functional portion and having conductivity as a whole, and an opening region corresponding to the second functional portion in the first functional layer, the first functional region A second functional layer including one or a plurality of layers formed with an oxidized portion, a part of which is oxidized, and the first functional layer in the second functional layer.
  • the first sealing layer has a first sealing portion that covers a part or all of the surface of the functional region, includes a first sealing layer having insulating properties, and an insulating material, and the first sealing layer includes the first sealing layer.
  • a second sealing layer wherein not covered by the first sealing portion of the sealing layer is the oxide portion of the opening region side to cover the end portion.
  • the first functional layer corresponds to the upper layer of the lower functional layer.
  • the second functional portion of the first functional layer corresponds to a partial region of the lower functional layer.
  • the second functional layer corresponds to the upper functional layer, and the opening region corresponds to the opening.
  • a part of the end of the second functional layer on the opening region side corresponds to a portion exposed to the opening.
  • the first sealing layer corresponds to the first sealing layer, and the second sealing layer corresponds to the second sealing layer.
  • the first sealing layer has a second sealing portion corresponding to the opening region in the second functional layer, and is between the first sealing portion and the second sealing portion.
  • blocking the path can also be said to restrict the crack from extending until it comes into contact with the second functional part, and prevents the crack from contacting the second functional part directly. Used in concept.
  • the first functional layer is an anode
  • the second functional layer includes at least a layer containing a light emitting material, a layer containing an alkali metal or an alkaline earth metal, and a cathode.
  • the manufacturing method according to one embodiment of the present invention includes at least a layer made of a conductive material as the lower functional layer, but attention is paid to the layer made of the conductive material as follows.
  • a method for manufacturing a light emitting element includes a first step of forming a first functional layer having conductivity on a base layer (directly or indirectly), and a layer having conductivity on the first functional layer. Or a second step of forming a plurality of second functional layers, a third step of forming a first sealing layer having insulating properties on the second functional layer, and the first sealing layer. And a fourth step of forming a second sealing layer having an insulating property, wherein the second step is a region in the first functional layer where foreign matter is attached to the surface thereof. , Forming the second functional layer on a peripheral portion of the surface that is spaced apart from the foreign matter by a space, and the third step includes the first sealing layer as the foreign matter.
  • the second functional layer without covering a space formed between the second functional layer and the second functional layer formed in the periphery thereof.
  • oxygen in the atmosphere is not formed in the first functional layer through the space when forming the second sealing layer. It is a step of acting on the exposed surface to oxidize the portion.
  • the second sealing layer is formed using an atomic layer growth method in which the constituent material is deposited in an atomic state in an oxygen atmosphere.
  • the fourth step includes an oxygen aeration step in which an intermediate of the organic light emitting device in which the first sealing layer is formed in the third step is exposed to an oxygen atmosphere, and after the oxygen aeration step, A film forming step of forming the second sealing film by using an atomic layer growth method, and the oxygen aeration step allows oxygen to flow through the intermediate for 100 msec to 20 sec.
  • FIG. 1 is a block diagram schematically showing the overall configuration of a display device.
  • the display device 1 includes a display panel 10 and a drive control unit 20 connected to the display panel 10.
  • the display panel 10 is, for example, a top emission type organic EL display panel using an electroluminescence phenomenon of an organic material.
  • the drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25 that controls the drive circuits 21 to 24.
  • the display panel is not limited to the organic EL type using an organic material, but may be an inorganic EL type using an inorganic material, a bottom emission type organic EL type, or a bottom emission type inorganic.
  • An EL type may be used.
  • FIG. 2 is a partial cross-sectional view schematically showing a main part of the display panel 10.
  • the display panel 10 has a plurality of pixels (pixels) formed in a matrix on a substrate 101 as shown in the figure.
  • one pixel is composed of a plurality of (specifically, three) subpixels, and is composed of three subpixels arranged in the X direction.
  • the sub-pixel corresponds to the light-emitting element of the present invention.
  • the three sub-pixels are, for example, sub-pixels whose emission colors are red (R), green (G), and blue (B).
  • the substrate 101 has an interlayer insulating film 105 formed on a TFT substrate 103.
  • An anode 107 is formed on the substrate 101 in units of subpixels. Note that in this specification, the direction in which various functional layers are stacked on the substrate 101 is referred to as the upward direction, with the substrate 101 as a reference. This upward direction is the Z direction in FIG. 2, and the upper side is also referred to as the front side.
  • a hole injection layer 109 is formed on a region of the substrate 101 where the anode 107 is not formed and on the anode 107. Note that the hole injection layer 109 is formed on substantially the entire surface of the substrate 101 in the state where the anode 107 corresponding to the subpixel exists, and therefore, the adjacent anode 107 107 with reference to the hole injection layer 109 on the upper surface of the anode 107. Recess between.
  • Banks (partitions) 111 are formed in each of the regions corresponding to between the adjacent anodes 107 on the hole injection layer 109.
  • the bank 111 fills the gap between the adjacent anodes 107 and is above the hole injection layer 109 existing on the upper surface of the end portion of the anode 107 (in the thickness direction and away from the substrate 101). (It is the Z direction in the middle.)
  • the protruding shape has a trapezoidal shape, for example. Note that the banks 111 are formed in a cross-beam shape in plan view.
  • a predetermined light color (here, the above-described red, green, etc.) is formed on the hole injection layer 109 in each region defined by the bank 111 (in FIG. 2, the region corresponding to between the adjacent banks 111). , Blue).).
  • An electron transport layer 115, a cathode 117, and a sealing portion 119 are formed in this order on the surface region of the bank 111 above the light emitting layer 113 and on the light emitting layer 113.
  • the electron transport layer 115, the cathode 117, and the sealing portion 119 are formed so as to be continuous with those of other adjacent subpixels beyond the region defined by the bank 111.
  • the sealing part 119 has a two-layer structure of a first sealing layer 121 and a second sealing layer 123 formed on the surface of the first sealing layer.
  • the light emitting portion of the light emitting element includes a plurality of functional layers from the anode 107 to the cathode 119.
  • the functional layer refers to a layer having some function for light emission.
  • the TFT substrate 103 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene series TFT, wiring member, and passivation film for covering the TFT on the substrate body of an insulating material such as resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin, or alumina (not shown) It is the structure which formed.
  • the substrate body may be an organic resin film.
  • (1-2) Interlayer Insulating Film The interlayer insulating film 105 is provided to adjust the surface step of the TFT substrate 103 to be flat, and is made of an insulating material such as polyimide resin or acrylic resin.
  • (2) Anode The anode 107 is made of aluminum (Al) or an aluminum alloy.
  • the anode 107 may be formed of, for example, silver (Ag), an alloy of silver, palladium (Pd), and copper (Cu), an alloy of silver, rubidium (Rb), and gold (Au), molybdenum (Mo), and chromium ( It may be formed of an alloy of Cr), an alloy of nickel (Ni) and chromium, or the like.
  • the hole injection layer 109 has a function of injecting holes into the light emitting layer 113.
  • the hole injection layer 109 is formed of a metal oxide including a transition metal oxide such as tungsten oxide (WOx), molybdenum oxide (MoOx), molybdenum tungsten oxide (MoxWyOz), or the like.
  • WOx tungsten oxide
  • MoOx molybdenum oxide
  • MoxWyOz molybdenum tungsten oxide
  • the bank 111 has a function of partitioning adjacent subpixels.
  • the bank 111 is made of, for example, an organic material such as resin and has an insulating property. Examples of the organic material include an acrylic resin, a polyimide resin, and a novolac type phenol resin.
  • the bank 111 preferably has organic solvent resistance.
  • the bank 111 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 111 be formed of a highly resistant material that does not excessively deform or alter the process.
  • the light emitting layer 113 is an organic light emitting layer, for example, polymers such as polyfluorene, polyphenylene vinylene, polyacetylene, polyphenylene, polyparaphenylene ethylene, poly 3-hexylthiophene, and derivatives thereof are used.
  • Electron transport layer The electron transport layer 115 is, for example, a nitro-substituted fluorenone derivative, a thiopyrandioxide derivative, a diphequinone derivative, a perylenetetracarboxyl derivative, an anthraquinodimethane derivative, fluorenylidene described in JP-A-5-163488. It is formed of a methane derivative, anthrone derivative, oxadiazole derivative, perinone derivative, or quinoline complex derivative.
  • the material constituting the electron transport layer 115 is doped with an alkali metal or alkaline earth metal such as sodium (Na), barium (Ba), or potassium (K). In this embodiment, barium is doped.
  • Cathode The cathode 117 is an electrode for injecting electrons into the light emitting layer 113. In this embodiment, since it is a top emission type, the cathode 117 needs to transmit light emitted from the light emitting layer 113 and is formed of a transparent electrode such as ITO or IZO.
  • Sealing portion The sealing portion 119 has a function of suppressing the light emitting layer 113 and the like from being exposed to moisture or being exposed to air.
  • the first sealing layer 121 includes, for example, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide (SiC), carbon-containing silicon oxide (SiOC), aluminum nitride (AlN), oxide It is made of a material such as aluminum (Al 2 O 3 ).
  • the second sealing layer 123 is formed of a material such as aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), aluminum nitride (AlN), or aluminum oxynitride (Al X O Y N Z ). . 4). Manufacturing Method The manufacturing process of the display panel 10 is illustrated.
  • 3 to 5 are diagrams showing an example of the manufacturing process of the display panel 10. 3 to 5, a part of the display panel 10 is extracted and schematically shown.
  • the display panel 10 includes (1) a step of forming an anode (anode formation step), (2) a step of forming a hole injection layer (hole injection layer formation step), and (3) a step of forming a bank (bank formation). Step), (4) Step of forming the light emitting layer (light emitting layer forming step), (5) Step of forming the electron transport layer (electron transport layer forming step), (6) Step of forming the cathode (cathode forming step) (7) Step of forming the first sealing layer (first sealing layer forming step), (8) Oxygen exposure step, (9) Step of forming the second sealing layer (second sealing layer forming step) ) And manufactured.
  • anode formation step anode formation step
  • second forming a hole injection layer hole injection layer formation step
  • bank bank formation
  • Step (4) Step of forming the light emitting layer (light emitting layer forming step), (5) Step of forming the electron transport layer (electron transport layer forming step), (6) Step of forming the cathode
  • a vacuum film forming method such as a sputtering method or a vacuum vapor deposition method can be used.
  • tungsten oxide film which is a metal oxide film, is formed on the upper surface of the TFT substrate 101 on which the anodes 107 are formed in a matrix using a composition containing, for example, tungsten oxide (WOx). A film is formed (see FIG. 3B).
  • the thickness of the hole injection layer 109 is, for example, 1 [nm] to 10 [nm].
  • a vacuum film formation method such as a sputtering method or a vacuum evaporation method is used. it can.
  • the bank material layer can be formed, for example, by coating.
  • a mask having an opening having a predetermined shape is overlaid on the bank material layer, and after exposing the mask from above, the excess bank material layer is washed out with a developer. Thereby, the patterning of the bank material layer is completed, and the bank 111 is completed (see FIG. 3C).
  • the height of the bank 111 from the upper surface of the hole injection layer 109 is, for example, 1 [ ⁇ m] to 2 [ ⁇ m].
  • a composition ink containing a light-emitting material is dropped into each region partitioned by the bank 111 by, for example, an inkjet method, and the composition ink is dried to form the light-emitting layer 113 (FIG. 4 (a)).
  • the thickness of the light emitting layer 113 is, for example, 10 [nm] to 100 [nm].
  • Electron Transport Layer Formation Step After the formation of the light emitting layer 113, a derivative layer made of, for example, a nitro-substituted fluorenone derivative is formed on the substrate 101 on which the light emitting layer 113 is formed.
  • a vacuum film formation method such as a sputtering method or a vacuum evaporation method can be used (see FIG. 4B).
  • barium (Ba) is doped by about 2 [wt%] to 30 [wt%].
  • the film thickness of the electron transport layer is, for example, 0.5 [nm] to 50 [nm].
  • a transparent metal film for example, an ITO film is formed to form the cathode 117.
  • a vacuum film forming method such as a sputtering method or a vacuum vapor deposition method can be used (see FIG. 4C).
  • the film thickness of the cathode 117 is, for example, 10 [nm] to 200 [nm].
  • a metal oxide film for example, a silicon oxide (SiO) film is formed to form the first sealing layer 121.
  • a vacuum film formation method such as a sputtering method or a vacuum vapor deposition film method can be used (see FIG. 5A).
  • the film thickness of the first sealing layer 121 is, for example, 5 [nm] to 200 [nm].
  • Oxygen exposure step The TFT substrate 103 on which the first sealing layer 121 is formed is exposed in an oxygen atmosphere.
  • Second sealing layer formation step After the oxygen exposure step, an aluminum oxide (Al 2 O 3 ) film is formed to form the second sealing layer 123.
  • the aluminum oxide film uses an atomic layer deposition (ALD) method in which constituent materials constituting the film are deposited in an atomic state.
  • TMA trimethylaluminum
  • O 2 plasma is used as an oxidizing agent. Used.
  • the film formation is performed by introducing TMA and removing excess molecules by purging (hereinafter, simply referred to as “purge”), O 2 plasma irradiation, and purging processing as one cycle and repeating several hundred times.
  • purging hereinafter, simply referred to as “purge”
  • the introduction of TMA, the O 2 plasma irradiation and the purge are performed for 100 [msec] to 20 [sec].
  • the film thickness of the second sealing layer 123 is, for example, 5 [nm] to 200 [nm]. 5.
  • FIG. 6 is a diagram showing a state in which foreign matter has adhered after forming the anode.
  • the portion immediately below the foreign material 130 in the anode 107 becomes a shadow of the foreign material 130, and the hole injection layer 109, the light emitting layer 113, and the electron transport layer 115.
  • the cathode 117 and the first sealing layer 121 are not deposited immediately below the foreign material 130 (see FIG. 7A).
  • a region on the upper surface of the anode 107 and immediately below the foreign material 130 corresponds to a “partial region of the lower functional layer” of the present invention.
  • the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 are not formed in a portion corresponding to the foreign matter 130 on the anode 107, and an opening is formed in this portion. It will be.
  • the foreign material 130 and the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing formed around the foreign material 130 (a region located outside the portion immediately below the foreign material 130).
  • a groove 132 is formed between the layer 121.
  • a gas intrusion path such as moisture is formed along the groove 132.
  • the groove A gas such as moisture enters the functional layer such as the hole injection layer 109 from 132.
  • the foreign matter 130 has conductivity
  • the cathode 117 is not completely covered with a film having an insulating function (for example, the first sealing layer 121) or the like
  • the foreign matter 130 falls after the cathode 117 is formed.
  • the cathode 117 and the foreign material 130 come into contact with each other, the anode 107 and the cathode 117 are electrically connected to cause a short circuit.
  • the steps after the hole injection layer forming step are sequentially performed.
  • the anode 107 corresponds to the “layer from the conductive material in the lower functional layer” of the present invention, and the layer including the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, and the cathode 117 is the present invention.
  • the electron transport layer 115 and the cathode 117 correspond to the “upper functional layer”, and correspond to the “layer made of a conductive material” of the upper functional layer of the present invention.
  • the anode forming step corresponds to the “first step” of the present invention, and the step comprising the hole injection layer forming step, the light emitting layer forming step, the electron transport layer forming step, and the cathode forming step is the “second step of the present invention.
  • the first sealing layer forming step corresponds to the “third step” of the present invention
  • the oxygen exposure step corresponds to the “fourth step” of the present invention
  • the second sealing layer forming step is the main step. This corresponds to the “fifth step” of the invention.
  • FIG. 7 is a diagram for explaining a state of a foreign matter adhesion portion during the manufacturing process.
  • (A) of the figure has shown the state which the 1st sealing layer formation process was complete
  • a hole injection layer 109 As shown in FIG. 5A, when a foreign substance 130 adheres to the anode 107, a hole injection layer 109, a light emitting layer 113, an electron transport layer 115, a cathode 117, and a first electrode that should be originally formed on the anode 107 are formed.
  • the sealing layer 121 is not formed on the anode 107 but is formed on the upper surface of the foreign material 130.
  • the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 have a function related to light emission and a function of protecting a light emitting part.
  • each layer formed of the same material as the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 (the “upper functional layer” in the present invention).
  • the layer of the same material and the same layer as the first sealing layer ”) do not have a function related to light emission or a function of protecting the light emitting part, so these layers are films for hole injection layers.
  • the foreign matter 130 (the hole injection layer film 109a, the light emitting layer film 113a, the electron transport layer film 115a, the cathode film 117a, and the first sealing layer formed on the foreign substance 130) And a hole injection layer 109, a light emitting layer 113, an electron transport layer 115, a cathode 117, and a first sealing layer 121 formed in the vicinity of the foreign matter.
  • an oxygen exposure process is performed.
  • the oxide film 134 is formed on the electron transport layer 115 and the cathode 117 exposed in the oxygen atmosphere, and the electron transport layer film 115a and the cathode film 117a.
  • the oxide film 134 is formed in the “portion exposed to the opening” in the present invention. This state is shown in FIG.
  • the exposure time in an oxidizing atmosphere is also the time required for an oxide film to be formed in a portion exposed to oxygen in the electron transport layer 115 and the cathode 117.
  • an oxide film is formed on a portion of the electron transport layer 115 and the cathode 117 that is not covered with the first sealing layer 12, and the insulation of the portion is ensured.
  • an oxide film such as ITO is used as the material of the cathode 117
  • an oxide film is not formed, but when a metal material or the like is used as the material of the cathode, it is oxidized.
  • Second sealing layer forming step In the second sealing layer forming step, as described above, the aluminum oxide film (123) is formed by the ALD method after the oxygen exposure step. This state is shown in FIG.
  • deposition can be performed for each atomic layer. For this reason, as shown in FIG. 7A, even if the groove 132 exists around the foreign material 130, the atoms enter and deposit inside the groove 132 (bottom).
  • the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 are not formed on the anode 107 and immediately below the foreign material 130, and a part of the anode 107 is formed.
  • the second sealing layer 123 is also formed on the exposed portion, and the exposed portion is sealed (covered) with the second sealing layer 123.
  • the second sealing layer 123 is formed thinner than the first sealing layer 121, but is deposited in units of atoms, so that a dense film can be obtained (so-called pinhole free). As a result, high sealing performance can be obtained.
  • the second sealing layer 123 is deposited up to the inside (bottom) of the groove 132 generated by the attachment.
  • the anode 107, the hole injection layer 109, the electron transport layer 115, the cathode 117, and the first sealing layer 121 are not exposed to a gas such as moisture, and the gas enters these layers. Can be prevented.
  • the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, and the cathode 117 are exposed to the surface and oxidized into a layer made of a conductive material. Since the film 134 is formed, as a result, the insulating properties of the electron transport layer 115 and the cathode 117 are ensured.
  • the second sealing layer 123 is formed on the oxide film 134, intrusion of gas such as moisture into the oxide film 134 can be prevented.
  • the oxide film 134 is formed so that the anode 107 and the cathode 117 are short-circuited. There is nothing wrong. 6).
  • foreign matter adheres on the electron transport layer As described above, it is difficult to make foreign matter into the display panel zero during manufacturing.
  • FIG. 8 is a diagram showing a case where foreign matter adheres to the upper surface of the electron transport layer.
  • the sealing layer is only a layer formed by the CVD method, it becomes a shadow of the foreign matter 140, and the cathode 117 and the sealing layer (first sealing layer 121) are foreign matter. It is not deposited directly under 140.
  • a region on the upper surface of the electron transport layer 115 and immediately below the foreign material 140 corresponds to a “partial region of the lower functional layer” of the present invention.
  • the cathode 117 and the first sealing layer 121 are not formed, and this portion has an opening.
  • a groove 142 is formed between the foreign material 140 and the cathode 117 and the first sealing layer 121 formed around the foreign material 140 (a region located outside the portion immediately below the foreign material 140).
  • an intrusion path for a gas such as moisture is formed along the groove 142 as described above.
  • a resin material for bonding to a glass substrate is applied.
  • the gas may enter the functional layer such as the cathode 109 from the groove 142 and cause a display defect of the panel.
  • the steps after the cathode forming step are sequentially performed.
  • the layer composed of the anode 107, the hole injection layer 109, the light emitting layer 113, and the electron transport layer 115 corresponds to the “lower functional layer” of the present invention, and the electron transport layer 115 corresponds to the lower function of the present invention.
  • the cathode 117 corresponds to the “upper functional layer” of the present invention and the “functional layer” of the upper functional layer of the present invention.
  • the step comprising the anode forming step, hole injection layer forming step, light emitting layer forming step, and electron transport layer forming step corresponds to the “first step” of the present invention
  • the cathode forming step is the “second step of the present invention.
  • the first sealing layer forming step corresponds to the “third step” of the present invention
  • the oxygen exposure step corresponds to the “fourth step” of the present invention
  • the second sealing layer forming step is the main step. This corresponds to the “fifth step” of the invention.
  • FIG. 9 is a diagram for explaining a state of a foreign matter adhesion portion during the manufacturing process.
  • (1) Up to the first sealing layer forming step Each forming step is performed on the display panel 10 with the foreign matter 140 attached.
  • (A) of the figure has shown the state which the 1st sealing layer formation process was complete
  • the cathode 117 and the first sealing layer 121 that should be originally formed on the electron transport layer 115 are formed on the electron transport layer 115. It is formed on the upper surface of the foreign material 140 without being formed.
  • each layer formed on the foreign material 140 that is, each layer formed of the same material as the cathode 117 and the first sealing layer 121 (the layer of the same material as the upper functional layer and the first sealing of the present invention).
  • the same layer as the layer corresponds to “the same layer as the layer”
  • these layers are referred to as a cathode film 117b and a first sealing layer film 121b.
  • the foreign matter 140 (including the cathode film 117b and the first sealing layer film 121b formed on the foreign matter 140), the cathode 117 formed around the foreign matter, and the first A groove 142 exists between the sealing layer 121 and the sealing layer 121.
  • Oxygen exposure process An oxygen exposure process is performed after a 1st sealing layer formation process. As a result, the oxidized portion 144 is formed in the electron transport layer 115 and the cathode 117 (which are made of an oxidizable material) exposed in the oxygen atmosphere.
  • the electron transport layer 115 contains doped barium (Ba)
  • the electron transport layer 115 is easily oxidized, and the adhesion surface with the foreign material 140 is also oxidized. Note that the foreign matter 142 is fixed to the electron transport layer 115 when the attached surface is also oxidized.
  • the oxide film 144 is also formed on the cathode 117 in a portion facing the groove 142 (a portion serving as a peripheral surface constituting the groove 142 (opening)).
  • Second sealing layer forming step In the second sealing layer forming step, an aluminum oxide film (123) is formed by the ALD method after the oxygen exposure step. This state is shown in FIG.
  • deposition can be performed for each atomic layer. For this reason, as shown in FIG. 9A, even if the groove 142 exists around the foreign material 140, atoms enter and deposit inside the groove 142 (inside).
  • the cathode 117 and the first sealing layer 121 are not formed on the electron transport layer 115 and immediately below the foreign material 140, and a part of the electron transport layer 115 is exposed.
  • the second sealing layer 123 is also formed on the portion, and the exposed portion is sealed with the second sealing layer 123.
  • the second sealing layer 123 is deposited up to the groove 142 generated by the adhesion, In the subsequent steps, it is possible to prevent gas such as moisture from entering the cathode 117 and the first sealing layer 121.
  • the oxide film 144 is formed on the exposed portions of the electron transport layer 115 and the cathode 117 on the surface. Will be secured.
  • the second sealing layer 123 is formed on the oxide film 144, the first sealing layer 121, the foreign material 140, the cathode film 117b deposited on the foreign material 140, and the first sealing layer film 121b. Therefore, the second sealing layer 123 can be filled into the groove 142 and the foreign matter 140 can be completely insulated. By this. Intrusion of gas such as moisture into the oxide film 144 can be prevented.
  • the foreign matter 140 when the foreign matter 140 has conductivity, the foreign matter 140 is fixed to the electron transport layer 115 due to oxidation of the electron transport layer 115, and the foreign matter 140 is scattered and attached to other parts in another process. It is possible to prevent the occurrence of defects and the like. 7).
  • the foreign matter 130 comes off after the foreign matter 130 adheres on the anode 107
  • the case where the foreign matter 130 adheres on the anode 107 has been described. However, after the foreign matter adheres, the foreign matter 130 comes off from the anode 107 for some reason. Sometimes.
  • the timing at which the foreign matter 130 is removed is during the formation of the second sealing layer 123.
  • FIG. 10 is a diagram for explaining a state of a foreign matter adhering portion during the manufacturing process.
  • an aluminum oxide film (metal oxide film) is formed by the ALD method. During this film formation, the foreign matter 130 is detached from the anode 107. This state is shown in FIG.
  • an aluminum oxide film (123) is deposited on the anode 107 by the ALD method, and the second sealing layer 123 is formed by performing a predetermined number of cycles.
  • the second sealing layer 123 is formed in the region on the anode 107 where the foreign matter 130 has adhered, as the foreign matter 130 disappears. This state is shown in FIG.
  • the portion of the second sealing layer 123 where the foreign matter 130 was present is different from the portion where the foreign matter 130 was not present in the layer structure (specifically, the film thickness). The portion is completely exposed without being exposed, and the insulation of the anode 107 is ensured.
  • One pixel may be composed of one color (monochrome) subpixel, or one pixel may be composed of, for example, four or more subpixels having different emission colors.
  • the material etc. which comprise a light emitting layer differ if light emission colors differ, the basic composition that a light emitting layer is pinched
  • the hole injection layer 109 is formed on the surface of the anode 107.
  • a conductive layer is formed on the surface of the anode 107, and the upper surface of the conductive layer and the conductive layer are formed.
  • the hole injection layer 109 may be formed on the upper surface of the substrate 101 that is not formed.
  • the conductive layer functions as a protective layer that prevents the anode 107 from being naturally oxidized during the manufacturing process.
  • (3) Light-Emitting Layer Although the light-emitting layer 113 is formed on the upper surface of the hole injection layer 109, for example, a hole transport layer may be provided between the light-emitting layer 113 and the hole injection layer 109. The hole transport layer has a function of transporting holes injected from the hole injection layer 109 to the light emitting layer 113.
  • the hole transporting layer includes, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcones described in JP-A-5-163488.
  • the cathode 117 is formed on the upper surface of the electron transport layer 115.
  • an electron injection layer may be formed between the electron transport layer 115 and the cathode 117. Examples of the electron injection layer include alkali metals, alkaline earth metals, oxides thereof, and fluorides.
  • the second sealing layer 123 is formed on the top surface of the first sealing layer 121.
  • a third sealing layer is formed on the top surface of the second sealing layer 123. It may be formed.
  • the third sealing layer may be formed by the same material and molding method as the first sealing layer 121, or may be formed by another method, for example, a chemical vapor deposition (CVD) method. You may do it.
  • CVD chemical vapor deposition
  • the second sealing layer using the ALD method is formed on the first sealing layer.
  • the oxidation exposure step is performed after the light emitting portion forming step.
  • Second Sealing Layer is formed by an electronic layer deposition method (ADL method).
  • ADL method electronic layer deposition method
  • TMA trimethylaluminum
  • TMA trimethylaluminum
  • alkyl-based metals such as TEA (triethylaluminum) and DMAH (dimethylaluminum hydride) can be used.
  • TEA triethylaluminum
  • DMAH dimethylaluminum hydride
  • Other materials include silicon oxide (SiO 2 ), aluminum nitride (AlN), oxynitrogen compound (Al X O Y N Z ), and the like.
  • SiO 2 silicon oxide
  • AlN aluminum nitride
  • Al X O Y N Z oxynitrogen compound
  • an acid nitrogen compound (Al X O Y N Z) it is carried out by reacting TMA, TEA, a DMAH and nitrogen compounds.
  • ALE method atomic layer growth method
  • Oxygen exposure step In the oxygen exposure step, the substrate 101 on which the first sealing layer 121 is formed is exposed to an oxygen atmosphere, but the electrons exposed on the surface after the first sealing layer 121 is formed. Other methods may be used as long as the transport layer 115 and the cathode 117 can be oxidized.
  • the oxygen atmosphere only needs to be oxidized and may contain other gases (nitrogen, argon, etc.).
  • the oxidation exposure step may be performed after the light emitting portion forming step, for example, as long as the layer made of the conductive material exposed on the surface after forming the light emitting portion can be oxidized. Specifically, it may be performed before the first sealing portion 121 is formed. 3. Others (1) Functional Layer In the embodiment, the first function and the upper functional layer are described with reference to a layer to which foreign matter adheres. This is because the generation of a partial region of the lower functional layer occurs without the functional layer being deposited due to adhesion of foreign matter.
  • the lowermost layer of the functional layer that has not been deposited becomes the lowermost layer of the upper functional layer, and the layer immediately below the lowermost layer of the functional layer that has not been deposited. Is the uppermost layer of the lower functional layer.
  • the layer having the surface exposed to the opening of the functional layer that is not deposited is the uppermost layer of the lower functional layer.
  • the uppermost layer of the lower functional layer is the anode 107 and the electron transport layer 117, but it is sufficient that the upper functional layer has at least one layer made of a conductive material.
  • the uppermost layer of the functional layer may be, for example, the hole injection layer 109. Although not described in the embodiment, for example, when a hole transport layer or an electron injection layer is provided, these may be the uppermost layer of the lower functional layer.
  • the present invention can be used for a display device.

Abstract

This light-emitting element is provided with a light-emitting unit formed by laminating multiple functional layers, and an insulating sealing unit formed on the light-emitting unit. The functional layers include a lower functional layer comprising a conducting material layer as the top layer, and an upper functional layer formed on the lower functional layer in a state in which there is an opening in the portion corresponding to a partial region of the lower functional layer. The sealing unit includes a first sealing layer formed on the upper functional layer but not on the peripheral surface that constitutes the opening in the upper functional layer, and a second sealing layer formed on the first sealing layer in atomic layer units. The upper functional layer has one or more conducting material layers. The portion of the conductive material layer that is exposed by the opening is oxidized, and the oxidized portion is covered by the upper functional layer.

Description

発光素子及び発光素子の製造方法Light emitting device and method for manufacturing light emitting device
 本発明は、発光部と封止部とを備える発光素子及び当該発光素子の製造方法に関する。 The present invention relates to a light emitting element including a light emitting part and a sealing part, and a method for manufacturing the light emitting element.
 発光素子として、発光層が陽極と陰極とにより挟まれてなる発光部を備えるものがある。 Some light emitting elements include a light emitting portion in which a light emitting layer is sandwiched between an anode and a cathode.
 発光層や陰極は、水分、酸素等のガス(以下、単に、「水分等のガス」や「ガス」ともいう。)の影響を受ける。具体的には、発光層は、例えば水分等により発光特性が低下し、素子としての寿命が短くなる。陰極は、例えば酸素等により電気特性が変化する。電気特性の変化が大きい場合には発光層に電子を供給することができなくなり、発光しなくなる(所謂、表示欠陥である。)。 The light emitting layer and the cathode are affected by a gas such as moisture and oxygen (hereinafter also simply referred to as “gas such as moisture” or “gas”). Specifically, the light emitting layer has light emitting characteristics that are degraded by, for example, moisture, and the lifetime of the device is shortened. The electrical characteristics of the cathode change due to, for example, oxygen. When the change in the electrical characteristics is large, electrons cannot be supplied to the light emitting layer, and light emission does not occur (so-called display defect).
 このため、水分等のガスから発光層や陰極を保護するため、つまり、ガスの侵入をバリアするために、例えば陰極の上面に封止部が形成されている。 For this reason, for example, a sealing portion is formed on the upper surface of the cathode in order to protect the light emitting layer and the cathode from gas such as moisture, that is, in order to prevent the gas from entering.
 一方、発光層からは光が発せられ、この光は、例えば、陰極、封止部を透過して外部へと取り出される。このため、封止部には、高いガスバリア性だけでなく、優れた光透過性が要求され、例えばシリコン窒化膜(SiN膜)等が利用されている。 On the other hand, light is emitted from the light emitting layer, and this light is extracted outside through, for example, the cathode and the sealing portion. For this reason, the sealing portion is required to have not only high gas barrier properties but also excellent light transmittance, and for example, a silicon nitride film (SiN film) or the like is used.
 また、発光素子のガスバリア性をさらに高めるために、封止部を原子層成長法(Atomic Layer Epitaxy)法により形成する技術も提案されている(例えば、特許文献1、2)。 In addition, in order to further improve the gas barrier property of the light emitting element, a technique for forming a sealing portion by an atomic layer epitaxy method has been proposed (for example, Patent Documents 1 and 2).
特開2001-284042号公報JP 2001-284042 A 特開2003-332042号公報JP 2003-332042 A
 しかしながら、上記封止部を採用しても、ガスバリア性が不十分な場合がある。 However, even if the sealing part is adopted, the gas barrier property may be insufficient.
 例えば、発光素子の製造過程中に何らかの不具合、例えば異物が混入し、この異物が封止部により完全に覆われずに露出した場合、異物と封止部との間に形成される隙間(溝)からガスが侵入して表示欠陥等を招く。 For example, if a defect, for example, foreign matter is mixed in during the manufacturing process of the light emitting element, and the foreign matter is exposed without being completely covered by the sealing portion, a gap (groove) formed between the foreign matter and the sealing portion. ) Gas enters and causes display defects.
 つまり、上記技術は、正常に製造された場合の封止部のガスバリア性を向上させるものであり、異物混入等の不具合が生じた場合には、ガスの侵入等を抑制することができない場合もある。 In other words, the above technique improves the gas barrier property of the sealing part when manufactured normally, and in the case where trouble such as contamination of foreign matter occurs, it may not be possible to suppress gas intrusion or the like. is there.
 本発明は、上記問題に鑑みてなされたものであって、不具合が発生したとしてもガスバリア性を確保することができる発光素子及び発光素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting element and a method for manufacturing the light-emitting element that can ensure gas barrier properties even when a problem occurs.
 上記課題を解決するために、本発明の一態様に係る発光素子は、複数の機能層が積層されてなる発光部と、前記発光部上に形成された絶縁性の封止部とを備える発光素子において、前記複数の機能層は、導電材料からなる層を上層に有する下側機能層と、前記下側機能層の一部領域に対応する部分に開口を有する状態で前記下側機能層上に形成された上側機能層とを含み、前記封止部は、前記上側機能層における前記開口を構成する周面を除いた上側機能層上に形成された第1封止層と、前記第1封止層上に原子層単位で形成された第2封止層とを含み、前記上側機能層は導電材料からなる層を1層以上有し、当該導電性材料からなる層であって前記開口に露出する部分が酸化され、当該酸化部が前記第2封止層により被覆されている。 In order to solve the above problems, a light-emitting element according to one embodiment of the present invention includes a light-emitting portion in which a plurality of functional layers are stacked, and an insulating sealing portion formed over the light-emitting portion. In the element, the plurality of functional layers are formed on the lower functional layer in a state in which an opening is formed in a portion corresponding to a partial region of the lower functional layer, and a lower functional layer having an upper layer made of a conductive material. An upper functional layer formed on the upper functional layer, and the sealing portion includes a first sealing layer formed on the upper functional layer excluding a peripheral surface constituting the opening in the upper functional layer, and the first functional layer. A second sealing layer formed in units of atomic layers on the sealing layer, and the upper functional layer has one or more layers made of a conductive material, the layer made of the conductive material, and the opening The exposed portion is oxidized, and the oxidized portion is covered with the second sealing layer.
 上記課題を解決するために、本発明の一態様に係る発光素子の製造方法は、導電材料からなる層を上層に有する下側機能層と導電材料からなる層を1層以上有する上側機能層とが少なくとも積層されてなる発光部と、前記発光部上に形成された第1封止層と第2封止層とを有する絶縁性の封止部とを含む発光素子の製造方法において、前記下側機能層を形成する第1工程と、前記下側機能層の一部領域に対応する部分に開口を有する状態で、前記第1工程で形成された下側機能層上に前記上側機能層を形成する第2工程と、前記第2工程で形成された上側機能層における開口を構成する周面を除いて当該上側機能層上に前記第1封止層を形成する第3工程と、前記第3工程後に、酸素雰囲気下に晒して、第2工程で形成された上側機能層における導電性材料からなる層であって前記開口に露出する部分を酸化する第4工程と、前記第4工程後に、第2封止層を原子層単位で形成する第5工程とを行う。 In order to solve the above problems, a method for manufacturing a light-emitting element according to one embodiment of the present invention includes: a lower functional layer having a layer made of a conductive material as an upper layer; an upper functional layer having one or more layers made of a conductive material; In the method for manufacturing a light-emitting element, comprising: a light-emitting part formed by laminating at least; and an insulating sealing part having a first sealing layer and a second sealing layer formed on the light-emitting part. A first step of forming a side functional layer; and an upper functional layer formed on the lower functional layer formed in the first step in a state having an opening in a portion corresponding to a partial region of the lower functional layer. A second step of forming, a third step of forming the first sealing layer on the upper functional layer excluding a peripheral surface constituting an opening in the upper functional layer formed in the second step, After the third step, the upper functional layer formed in the second step is exposed to an oxygen atmosphere. A fourth step of oxidizing the portion exposed kick in the opening a layer of conductive material, after said fourth step and a fifth step of forming a second sealing layer on an atomic layer unit performs.
 本発明の一態様に係る発光素子及び本発明の一態様に係る発光素子の製造方法では、第2封止層は原子層単位で形成されているので、発光部の上面に凹凸や溝があっても上面形状に沿って形成されるため、ガスバリア性を確保できる。 In the light-emitting element according to one embodiment of the present invention and the method for manufacturing the light-emitting element according to one embodiment of the present invention, the second sealing layer is formed in units of atomic layers. However, since it is formed along the upper surface shape, gas barrier properties can be secured.
 また、不具合が生じ、上側機能層において開口に露出している部分があっても、当該部分が酸化されているので、上側機能層を構成する導電材料からなる層が絶縁される。さらに、酸化部分が第2封止層で被覆されているので、ガスの侵入を防止することができ、また絶縁性をさらに向上させることができる。 Also, even if a defect occurs and there is a portion exposed in the opening in the upper functional layer, since the portion is oxidized, the layer made of the conductive material constituting the upper functional layer is insulated. Furthermore, since the oxidized portion is covered with the second sealing layer, the intrusion of gas can be prevented and the insulation can be further improved.
表示装置の全体構成を模式的に示すブロック図である。It is a block diagram which shows typically the whole structure of a display apparatus. 表示パネルの要部を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the principal part of a display panel. 表示パネルの製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of a display panel. 表示パネルの製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of a display panel. 表示パネルの製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of a display panel. 陽極形成後に異物が付着した状態を示す図である。It is a figure which shows the state in which the foreign material adhered after anode formation. 製造工程中の異物付着部分の状態を説明する図である。It is a figure explaining the state of the foreign material adhesion part in a manufacturing process. 異物が電子輸送層の上面に付着した場合を示す図である。It is a figure which shows the case where a foreign material adheres to the upper surface of an electron carrying layer. 製造工程中の異物付着部分の状態を説明する図である。It is a figure explaining the state of the foreign material adhesion part in a manufacturing process. 製造工程中の異物付着部分の状態を説明する図である。It is a figure explaining the state of the foreign material adhesion part in a manufacturing process.
<実施の態様>
 本発明の一態様である発光素子は、複数の機能層が積層されてなる発光部と、前記発光部上に形成された絶縁性の封止部とを備える発光素子において、前記複数の機能層は、導電材料からなる層を上層に有する下側機能層と、前記下側機能層の一部領域に対応する部分に開口を有する状態で前記下側機能層上に形成された上側機能層とを含み、前記封止部は、前記上側機能層における前記開口を構成する周面を除いた上側機能層上に形成された第1封止層と、前記第1封止層上に原子層単位で形成された第2封止層とを含み、前記上側機能層は導電材料からなる層を1層以上有し、当該導電性材料からなる層であって前記開口に露出する部分が酸化され、当該酸化部が前記第2封止層により被覆されている。
<Aspect of implementation>
The light-emitting element which is one embodiment of the present invention is a light-emitting element including a light-emitting portion in which a plurality of functional layers are stacked and an insulating sealing portion formed over the light-emitting portion. A lower functional layer having an upper layer made of a conductive material, and an upper functional layer formed on the lower functional layer in a state having an opening in a portion corresponding to a partial region of the lower functional layer; The sealing portion includes a first sealing layer formed on the upper functional layer excluding a peripheral surface constituting the opening in the upper functional layer, and an atomic layer unit on the first sealing layer The upper functional layer has at least one layer made of a conductive material, and the portion exposed to the opening is oxidized by the layer made of the conductive material, The oxidation part is covered with the second sealing layer.
 また、前記下側機能層の前記一部領域に異物が付着され、前記異物は、当該異物上に上側機能層と同じ材料の層と第1封止層と同じ材料の層とが形成された状態で、前記第2封止層により被覆されている。これにより、異物が導電性を有していても第2封止層により被覆されるので、異物に対する絶縁化を行うことができる。 In addition, foreign matter is attached to the partial region of the lower functional layer, and the foreign matter has a layer of the same material as the upper functional layer and a layer of the same material as the first sealing layer formed on the foreign matter. In the state, it is covered with the second sealing layer. Thereby, even if a foreign material has electroconductivity, since it is coat | covered with a 2nd sealing layer, insulation with respect to a foreign material can be performed.
 あるいは、前記下側機能層の前記一部領域は、前記異物付着している部分を除いて、前記第2封止層により被覆されている。これにより、発光部の上面のすべてが少なくとも第2封止層に被覆されることとなり、ガスバリア性を確保できる。 Alternatively, the partial region of the lower functional layer is covered with the second sealing layer except for a portion where the foreign matter is adhered. Thereby, all the upper surfaces of the light emitting part are covered with at least the second sealing layer, and the gas barrier property can be secured.
 また、前記下側機能層における前記導電材料からなる層は陽極であり、前記上側機能層は、発光機能層と、当該発光機能層上に形成された陰極とを含み、前記上側機能層における導電材料からなる層は陰極を含み、さらには、前記発光機能層は、発光材料を含む発光層と、前記発光層に電子を輸送する電子輸送層とを含む。あるいは、前記下側機能層は、陽極と、陽極上に形成された発光層と、発光層上に形成された電子輸送層とを含み、当該電子輸送層が前記導電材料からなる層であり、前記上側機能層は陰極を含み、前記上側機能層における導電材料からなる層は陰極である。 The layer made of the conductive material in the lower functional layer is an anode, and the upper functional layer includes a light emitting functional layer and a cathode formed on the light emitting functional layer, and the conductive in the upper functional layer. The layer made of the material includes a cathode, and the light emitting functional layer further includes a light emitting layer including a light emitting material and an electron transporting layer that transports electrons to the light emitting layer. Alternatively, the lower functional layer includes an anode, a light emitting layer formed on the anode, and an electron transport layer formed on the light emitting layer, and the electron transport layer is a layer made of the conductive material, The upper functional layer includes a cathode, and the layer made of a conductive material in the upper functional layer is a cathode.
 本発明の一態様である発光素子の製造方法は、導電材料からなる層を上層に有する下側機能層と導電材料からなる層を1層以上有する上側機能層とが少なくとも積層されてなる発光部と、前記発光部上に形成された第1封止層と第2封止層とを有する絶縁性の封止部とを含む発光素子の製造方法において、前記下側機能層を形成する第1工程と、前記下側機能層の一部領域に対応する部分に開口を有する状態で、前記第1工程で形成された下側機能層上に前記上側機能層を形成する第2工程と、前記第2工程で形成された上側機能層における開口を構成する周面を除いて当該上側機能層上に前記第1封止層を形成する第3工程と、前記第3工程後に、酸素雰囲気下に晒して、第2工程で形成された上側機能層における導電性材料からなる層であって前記開口に露出する部分を酸化する第4工程と、前記第4工程後に、第2封止層を原子層単位で形成する第5工程とを行う。 A manufacturing method of a light-emitting element which is one embodiment of the present invention includes a light-emitting portion in which a lower functional layer having an upper layer made of a conductive material and an upper functional layer having one or more layers made of a conductive material are stacked. And a method of manufacturing a light emitting device including an insulating sealing portion having a first sealing layer and a second sealing layer formed on the light emitting portion. A second step of forming the upper functional layer on the lower functional layer formed in the first step in a state having an opening in a part corresponding to a partial region of the lower functional layer, A third step of forming the first sealing layer on the upper functional layer excluding the peripheral surface constituting the opening in the upper functional layer formed in the second step, and after the third step, in an oxygen atmosphere A layer made of a conductive material in the upper functional layer formed in the second step by exposure A fourth step of oxidizing the portion exposed in the opening there, after the fourth step, a fifth step of forming a second sealing layer on an atomic layer unit performs.
 特に、前記第5工程は、原子層成長法又は原子層堆積法により第2封止層を形成し、前記第4工程は、100msecから20secの間酸素を通気させる。これにより酸化膜を容易に形成することができる。 In particular, in the fifth step, the second sealing layer is formed by an atomic layer growth method or an atomic layer deposition method, and in the fourth step, oxygen is passed through for 100 to 20 seconds. Thereby, an oxide film can be easily formed.
 上記本発明の一態様である発光素子は、下側機能層として、導電材料からなる層を少なくとも含んでいたが、当該導電材料からなる層に着目すると以下のようになる。 The light-emitting element which is one embodiment of the present invention includes at least a layer made of a conductive material as the lower functional layer, and attention is paid to the layer made of the conductive material as follows.
 発光素子は、第1の機能部分と、前記第1の機能部分とは異なる第2の機能部分とを有し、導電性を備える第1の機能層と、前記第1の機能層における前記第1の機能部分に対応し且つ全体として導電性を備える第1の機能領域と、前記第1の機能層における前記第2の機能部分に対応する開口領域とを有し、前記第1の機能領域における前記開口領域側の端部には、その一部が酸化された酸化部が形成されている層を1つまたは複数含む第2の機能層と、前記第2の機能層における前記第1の機能領域の表面の一部または全部を覆う第1の封止部分を有し、絶縁性を備える第1の封止層と、絶縁性材料を含み、前記第1の封止層の前記第1の封止部分の表面を覆い、前記第2の機能層における前記第1の機能領域の表面のうち、前記第1の封止層の前記第1封止部分によって覆われていない前記開口領域側の前記酸化部である前記端部を覆う第2の封止層とを有する。 The light emitting element has a first functional part and a second functional part different from the first functional part, and has a first functional layer having conductivity, and the first functional layer in the first functional layer. A first functional region corresponding to one functional portion and having conductivity as a whole, and an opening region corresponding to the second functional portion in the first functional layer, the first functional region A second functional layer including one or a plurality of layers formed with an oxidized portion, a part of which is oxidized, and the first functional layer in the second functional layer. The first sealing layer has a first sealing portion that covers a part or all of the surface of the functional region, includes a first sealing layer having insulating properties, and an insulating material, and the first sealing layer includes the first sealing layer. Of the first functional region of the second functional layer in the second functional layer. And a second sealing layer wherein not covered by the first sealing portion of the sealing layer is the oxide portion of the opening region side to cover the end portion.
 ここで、第1の機能層は上記下側機能層の上層に相当する。第1の機能層の第2機能部分は上記下側機能層の一部領域に相当する。第2の機能層は上記上側機能層に相当し、開口領域が上記開口に相当する。第2機能層の開口領域側の端部の一部は、上記開口に露出する部分に相当する。第1の封止層が上記第1封止層に相当し、第2の封止層は上記第2封止層に相当する。 Here, the first functional layer corresponds to the upper layer of the lower functional layer. The second functional portion of the first functional layer corresponds to a partial region of the lower functional layer. The second functional layer corresponds to the upper functional layer, and the opening region corresponds to the opening. A part of the end of the second functional layer on the opening region side corresponds to a portion exposed to the opening. The first sealing layer corresponds to the first sealing layer, and the second sealing layer corresponds to the second sealing layer.
 また、前記第1の封止層は、前記第2の機能層における前記開口領域に対応する第2の封止部を有し、前記第1封止部と前記第2封止部との間に、一端側が前記第1の機能層の前記第2の機能部分へと延びる亀裂部が存在し、前記第2の封止層は、前記第1の封止層の前記第2の封止部の表面を覆い、その一部が、前記第1の機能層の前記第2の機能部分であって前記亀裂部と対向する部分にまで達し、前記亀裂部における前記第1の機能層の第2の機能部分へ延びる経路を閉塞している。 In addition, the first sealing layer has a second sealing portion corresponding to the opening region in the second functional layer, and is between the first sealing portion and the second sealing portion. In addition, there is a crack portion having one end side extending to the second functional portion of the first functional layer, and the second sealing layer is the second sealing portion of the first sealing layer. A part of which reaches the second functional part of the first functional layer that faces the cracked part, and the second functional part of the first functional layer in the cracked part The path extending to the functional part of is blocked.
 ここでいう「経路を閉塞している」は、亀裂部が第2の機能部分と接触するまで延びるのを規制するとも換言でき、亀裂部と第2の機能部分とが直接接触することを防ぐ概念で使用している。 Here, “blocking the path” can also be said to restrict the crack from extending until it comes into contact with the second functional part, and prevents the crack from contacting the second functional part directly. Used in concept.
 また、前記第1の機能層の前記第2の領域部分の表面には異物が付着しており、前記第2の機能層の前記開口領域は前記異物に対応して形成されており、前記第1の封止層の第2の封止部は、前記異物を覆う。 In addition, foreign matter adheres to the surface of the second region portion of the first functional layer, and the opening region of the second functional layer is formed corresponding to the foreign matter, The second sealing portion of the one sealing layer covers the foreign matter.
 また、前記第1の機能層は陽極であり、前記第2の機能層は、少なくとも、発光材料を含む層、アルカリ金属またはアルカリ土類金属を含む層、および、陰極を有する。 The first functional layer is an anode, and the second functional layer includes at least a layer containing a light emitting material, a layer containing an alkali metal or an alkaline earth metal, and a cathode.
 一方、上記本発明の一態様である製造方法は、下側機能層として、導電材料からなる層を少なくとも含んでいたが、当該導電材料からなる層に着目すると以下のようになる。 On the other hand, the manufacturing method according to one embodiment of the present invention includes at least a layer made of a conductive material as the lower functional layer, but attention is paid to the layer made of the conductive material as follows.
 発光素子の製造方法は、下地層上に直接または間接的に)導電性を備える第1の機能層を形成する第1工程と、前記第1の機能層上に、導電性を備える層を1または複数有する第2の機能層を形成する第2工程と、前記第2の機能層上に、絶縁性を備える第1の封止層を形成する第3工程と、前記第1の封止層上に、絶縁性を備える第2の封止層を形成する第4工程と、を有し、前記第2工程は、前記第1の機能層における,その表面に異物が付着している領域では、前記表面であって前記異物から空間を隔てて離間した周辺部に対し、前記第2の機能層を形成する工程であり、前記第3工程は、前記第1の封止層を、前記異物と,その周辺部に形成されている前記第2の機能層との間に形成される空間を覆うことなく、前記第2の機能層の表面の一部を覆うと共に、前記異物の表面を覆って形成する工程であり、前記第4工程は、前記第2の封止膜を、酸素雰囲気下において成膜させ、前記第1の封止膜の表面を覆うと共に、前記空間に面する前記第2の層の表面の前記一部を除く他の部分であって,前記第1の封止膜によって覆われていない部分の露出表面を覆って形成させる工程であり、且つ、前記第2の封止層を成膜するとき、前記雰囲気中の酸素を前記空間を通じて、前記第1の機能層における第1の封止層が形成されていない前記露出表面に作用させ、当該部分を酸化させる工程である。 A method for manufacturing a light emitting element includes a first step of forming a first functional layer having conductivity on a base layer (directly or indirectly), and a layer having conductivity on the first functional layer. Or a second step of forming a plurality of second functional layers, a third step of forming a first sealing layer having insulating properties on the second functional layer, and the first sealing layer. And a fourth step of forming a second sealing layer having an insulating property, wherein the second step is a region in the first functional layer where foreign matter is attached to the surface thereof. , Forming the second functional layer on a peripheral portion of the surface that is spaced apart from the foreign matter by a space, and the third step includes the first sealing layer as the foreign matter. And the second functional layer without covering a space formed between the second functional layer and the second functional layer formed in the periphery thereof. A step of covering a part of the surface and covering the surface of the foreign matter, wherein the fourth step forms the second sealing film in an oxygen atmosphere to form the first sealing Covering the surface of the film, and covering the exposed surface of the part other than the part of the surface of the second layer facing the space, which is not covered by the first sealing film. When the second sealing layer is formed, oxygen in the atmosphere is not formed in the first functional layer through the space when forming the second sealing layer. It is a step of acting on the exposed surface to oxidize the portion.
 また、前記第4工程は、前記第2の封止層を、酸素雰囲気下において、その構成材料を原子の状態で蒸着させる原子層成長法を用いて成膜する。 In the fourth step, the second sealing layer is formed using an atomic layer growth method in which the constituent material is deposited in an atomic state in an oxygen atmosphere.
 また、前記第4工程は、前記第3工程によって前記第1の封止層を形成した有機発光素子の中間体を酸素雰囲気に晒す酸素通気工程と、前記酸素通気工程後、前記中間体に対して、前記第2の封止膜を原子層成長方法を用いて成膜する成膜工程とを有し、前記酸素通気工程は、前記中間体に対して酸素を100msecから20sec、通気させる。 In addition, the fourth step includes an oxygen aeration step in which an intermediate of the organic light emitting device in which the first sealing layer is formed in the third step is exposed to an oxygen atmosphere, and after the oxygen aeration step, A film forming step of forming the second sealing film by using an atomic layer growth method, and the oxygen aeration step allows oxygen to flow through the intermediate for 100 msec to 20 sec.
 また、前記第2工程は、前記第1の機能層の表面に異物が付着していない領域では、前記異物が付着していない表面全域に対し前記第2の機能層を形成する。
<実施の形態>
 ここでは、発光パネルとして表示パネルを例に挙げて説明する。
1.表示装置
 図1は、表示装置の全体構成を模式的に示すブロック図である。
In the second step, the second functional layer is formed over the entire surface where the foreign matter is not attached in a region where the foreign matter is not attached to the surface of the first functional layer.
<Embodiment>
Here, a display panel will be described as an example of the light emitting panel.
1. Display Device FIG. 1 is a block diagram schematically showing the overall configuration of a display device.
 表示装置1は、同図に示すように、表示パネル10と、これに接続された駆動制御部20とを有し構成されている。 As shown in the figure, the display device 1 includes a display panel 10 and a drive control unit 20 connected to the display panel 10.
 表示パネル10は、例えば、有機材料の電界発光現象を利用したトップエミッション型の有機EL表示パネルである。駆動制御部20は、4つの駆動回路21~24と各駆動回路21~24を制御する制御回路25とから構成されている。 The display panel 10 is, for example, a top emission type organic EL display panel using an electroluminescence phenomenon of an organic material. The drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25 that controls the drive circuits 21 to 24.
 なお、表示パネルは、有機材料を利用した有機ELタイプに限定されず、無機材料を利用した無機ELタイプであっても良いし、ボトムエミッション型の有機ELタイプでも良いし、ボトムエミッション型の無機ELタイプでも良い。 The display panel is not limited to the organic EL type using an organic material, but may be an inorganic EL type using an inorganic material, a bottom emission type organic EL type, or a bottom emission type inorganic. An EL type may be used.
 駆動制御部20の配置については、これに限られないし、駆動回路の個数も4つに限定するものでないし、例えば、制御回路と駆動回路とが一体になった回路でも良い。
2.表示パネル
 図2は、表示パネル10の要部を模式的に示す部分断面図である。
The arrangement of the drive control unit 20 is not limited to this, and the number of drive circuits is not limited to four. For example, a circuit in which a control circuit and a drive circuit are integrated may be used.
2. Display Panel FIG. 2 is a partial cross-sectional view schematically showing a main part of the display panel 10.
 表示パネル10は、同図に示されるように、基板101に複数のピクセル(画素)が行列状に形成されている。 The display panel 10 has a plurality of pixels (pixels) formed in a matrix on a substrate 101 as shown in the figure.
 1ピクセルは、ここでは、複数個(具体的には3個)のサブピクセルから構成され、X方向に配された3個のサブピクセルにより構成されている。サブピクセルは、本発明の発光素子に相当し、ここでは、3個のサブピクセルは、例えば、発光色が、赤(R)、緑(G)、青(B)のサブピクセルである。 Here, one pixel is composed of a plurality of (specifically, three) subpixels, and is composed of three subpixels arranged in the X direction. The sub-pixel corresponds to the light-emitting element of the present invention. Here, the three sub-pixels are, for example, sub-pixels whose emission colors are red (R), green (G), and blue (B).
 基板101は、TFT基板103上に層間絶縁膜105が形成されている。基板101上には、サブピクセル単位で陽極107が形成されている。なお、本明細書では、基板101を基準にして、基板101に各種の機能層が積層されていく方向を上方向とする。この上方向は、図2におけるZ方向であり、上側を表側とも言う。 The substrate 101 has an interlayer insulating film 105 formed on a TFT substrate 103. An anode 107 is formed on the substrate 101 in units of subpixels. Note that in this specification, the direction in which various functional layers are stacked on the substrate 101 is referred to as the upward direction, with the substrate 101 as a reference. This upward direction is the Z direction in FIG. 2, and the upper side is also referred to as the front side.
 基板101における陽極107が形成されていない領域上及び陽極107上には、正孔注入層109が形成されている。なお、正孔注入層109は、サブピクセルに対応した陽極107が存する状態で基板101上の略全面に形成されるため、陽極107の上面の正孔注入層109を基準にすると隣接する陽極107間で凹入する。 A hole injection layer 109 is formed on a region of the substrate 101 where the anode 107 is not formed and on the anode 107. Note that the hole injection layer 109 is formed on substantially the entire surface of the substrate 101 in the state where the anode 107 corresponding to the subpixel exists, and therefore, the adjacent anode 107 107 with reference to the hole injection layer 109 on the upper surface of the anode 107. Recess between.
 正孔注入層109上であって、隣り合う陽極107の間に相当する領域のそれぞれには、バンク(隔壁)111が形成されている。 Banks (partitions) 111 are formed in each of the regions corresponding to between the adjacent anodes 107 on the hole injection layer 109.
 バンク111は、図2に示すように、隣接する陽極107間を埋め、陽極107の端部の上面に存する正孔注入層109から上方(厚み方向であって基板101から離れる方向であり、図中のZ方向である。)に突出する形状をしている。ここでは、突出形状は例えば台形状をしている。なお、バンク111は、平面視において井桁状に形成されている。 As shown in FIG. 2, the bank 111 fills the gap between the adjacent anodes 107 and is above the hole injection layer 109 existing on the upper surface of the end portion of the anode 107 (in the thickness direction and away from the substrate 101). (It is the Z direction in the middle.) Here, the protruding shape has a trapezoidal shape, for example. Note that the banks 111 are formed in a cross-beam shape in plan view.
 バンク111で規定された各領域内(図2では、隣接するバンク111間に相当する領域である。)における正孔注入層109上には所定の光色(ここでは、上述の、赤、緑、青である。)用の発光層113が配されている。 A predetermined light color (here, the above-described red, green, etc.) is formed on the hole injection layer 109 in each region defined by the bank 111 (in FIG. 2, the region corresponding to between the adjacent banks 111). , Blue).).
 バンク111における発光層113よりも上方の表面領域及び発光層113上には、電子輸送層115、陰極117及び封止部119が、この順で形成されている。電子輸送層115、陰極117及び封止部119は、バンク111で規定された領域を超えて隣接する他のサブピクセルのものと連続するように形成されている。 An electron transport layer 115, a cathode 117, and a sealing portion 119 are formed in this order on the surface region of the bank 111 above the light emitting layer 113 and on the light emitting layer 113. The electron transport layer 115, the cathode 117, and the sealing portion 119 are formed so as to be continuous with those of other adjacent subpixels beyond the region defined by the bank 111.
 封止部119は、第1封止層121と、第1封止層の表面に形成された第2封止層123との2層構造を有している。 The sealing part 119 has a two-layer structure of a first sealing layer 121 and a second sealing layer 123 formed on the surface of the first sealing layer.
 上述の構成においては、発光素子の発光部は、陽極107から陰極119までの複数の機能層からなる。なお、機能層は、発光に対して何らかの機能を有する層を指している。
3.表示パネルの実施例
(1)基板
(1―1)TFT基板
 TFT基板103は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料の基板本体上に、TFT、配線部材、および当該TFTを被覆するパッシベーション膜など(図示せず)を形成した構成である。基板本体は有機樹脂フィルムであってもかまわない。
(1-2)層間絶縁膜
 層間絶縁膜105は、TFT基板103の表面段差を平坦に調整するために設けられ、ポリイミド系樹脂またはアクリル系樹脂等の絶縁材料で構成されている。
(2)陽極
 陽極107は、アルミニウム(Al)、あるいはアルミニウム合金で形成されている。なお、陽極107は、例えば、銀(Ag)、銀とパラジウム(Pd)と銅(Cu)との合金、銀とルビジウム(Rb)と金(Au)との合金、モリブデン(Mo)とクロム(Cr)の合金、ニッケル(Ni)とクロムの合金等で形成されていても良い。
(3)正孔注入層
 正孔注入層109は、正孔を発光層113に注入する機能を有する。正孔注入層109は、例えば、酸化タングステン(WOx)、酸化モリブデン(MoOx)、酸化モリブデンタングステン(MoxWyOz)などの遷移金属の酸化物を含む金属酸化物から形成される。
(4)バンク
 バンク111は、隣接するサブピクセルを区画する機能を有する。バンク111は、例えば樹脂等の有機材料で形成されており、絶縁性を有する。有機材料の例として、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等がある。バンク111は、有機溶剤耐性を有することが好ましい。さらに、バンク111はエッチング処理、ベーク処理等がされることがあるので、それらの処理に対して過度に変形、変質などをしないような耐性の高い材料で形成されることが好ましい。
(5)発光層
 発光層113は、例えば有機発光層である場合には、例えば、ポリフルオレン、ポリフェニレンビニレン、ポリアセチレン、ポリフェニレン、ポリパラフェニレンエチレン、ポリ3-ヘキシルチオフェンやこれらの誘導体などの高分子材料や、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質で形成されることが好ましい。
(6)電子輸送層
 電子輸送層115は、例えば、特開平5-163488号公報のニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体で形成される。
In the above-described configuration, the light emitting portion of the light emitting element includes a plurality of functional layers from the anode 107 to the cathode 119. Note that the functional layer refers to a layer having some function for light emission.
3. Example of display panel (1) Substrate (1-1) TFT substrate The TFT substrate 103 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene series TFT, wiring member, and passivation film for covering the TFT on the substrate body of an insulating material such as resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin, or alumina (not shown) It is the structure which formed. The substrate body may be an organic resin film.
(1-2) Interlayer Insulating Film The interlayer insulating film 105 is provided to adjust the surface step of the TFT substrate 103 to be flat, and is made of an insulating material such as polyimide resin or acrylic resin.
(2) Anode The anode 107 is made of aluminum (Al) or an aluminum alloy. The anode 107 may be formed of, for example, silver (Ag), an alloy of silver, palladium (Pd), and copper (Cu), an alloy of silver, rubidium (Rb), and gold (Au), molybdenum (Mo), and chromium ( It may be formed of an alloy of Cr), an alloy of nickel (Ni) and chromium, or the like.
(3) Hole Injection Layer The hole injection layer 109 has a function of injecting holes into the light emitting layer 113. The hole injection layer 109 is formed of a metal oxide including a transition metal oxide such as tungsten oxide (WOx), molybdenum oxide (MoOx), molybdenum tungsten oxide (MoxWyOz), or the like.
(4) Bank The bank 111 has a function of partitioning adjacent subpixels. The bank 111 is made of, for example, an organic material such as resin and has an insulating property. Examples of the organic material include an acrylic resin, a polyimide resin, and a novolac type phenol resin. The bank 111 preferably has organic solvent resistance. Furthermore, since the bank 111 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 111 be formed of a highly resistant material that does not excessively deform or alter the process.
(5) Light emitting layer When the light emitting layer 113 is an organic light emitting layer, for example, polymers such as polyfluorene, polyphenylene vinylene, polyacetylene, polyphenylene, polyparaphenylene ethylene, poly 3-hexylthiophene, and derivatives thereof are used. Oxinoid compounds, perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds, naphthalene compounds, anthracene compounds, fluorene compounds, fluoranthenes described in JP-A-5-163488 Compound, tetracene compound, pyrene compound, coronene compound, quinolone compound and azaquinolone compound, pyrazoline derivative and pyrazolone derivative, rhodamine compound, chrysene compound, phenant Len compound, cyclopentadiene compound, stilbene compound, diphenylquinone compound, styryl compound, butadiene compound, dicyanomethylenepyran compound, dicyanomethylenethiopyran compound, fluorescein compound, pyrylium compound, thiapyrylium compound, serenapyrylium compound, telluropyrylium compound, aromatic Ardadiene compound, oligophenylene compound, thioxanthene compound, cyanine compound, acridine compound, metal complex of 8-hydroxyquinoline compound, metal complex of 2-bipyridine compound, complex of Schiff salt and group III metal, oxine metal complex, rare earth complex It is preferable to form with fluorescent materials, such as.
(6) Electron transport layer The electron transport layer 115 is, for example, a nitro-substituted fluorenone derivative, a thiopyrandioxide derivative, a diphequinone derivative, a perylenetetracarboxyl derivative, an anthraquinodimethane derivative, fluorenylidene described in JP-A-5-163488. It is formed of a methane derivative, anthrone derivative, oxadiazole derivative, perinone derivative, or quinoline complex derivative.
 なお、電子注入性を更に向上させる点から、上記電子輸送層115を構成する材料に、ナトリウム(Na)、バリウム(Ba)、カリウム(K)などのアルカリ金属またはアルカリ土類金属をドーピングしてもよく、本実施の形態では、バリウムをドーピングしている。
(7)陰極
 陰極117は、発光層113への電子を注入するための電極である。本実施の形態ではトップエミッション型であるため、陰極117は、発光層113から発せられた光を透過させる必要があり、例えば、ITOやIZO等の透明電極で形成される。
(8)封止部
 封止部119は、発光層113等が水分に晒されたり、空気に晒されたりすることを抑制する機能を有する。
In order to further improve the electron injection property, the material constituting the electron transport layer 115 is doped with an alkali metal or alkaline earth metal such as sodium (Na), barium (Ba), or potassium (K). In this embodiment, barium is doped.
(7) Cathode The cathode 117 is an electrode for injecting electrons into the light emitting layer 113. In this embodiment, since it is a top emission type, the cathode 117 needs to transmit light emitted from the light emitting layer 113 and is formed of a transparent electrode such as ITO or IZO.
(8) Sealing portion The sealing portion 119 has a function of suppressing the light emitting layer 113 and the like from being exposed to moisture or being exposed to air.
 第1封止層121は、例えば、酸化シリコン(SiO),窒化シリコン(SiN)、酸窒化シリコン(SiON)、炭化ケイ素(SiC),炭素含有酸化シリコン(SiOC),窒化アルミニウム(AlN),酸化アルミニウム(Al)等の材料で形成される。 The first sealing layer 121 includes, for example, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide (SiC), carbon-containing silicon oxide (SiOC), aluminum nitride (AlN), oxide It is made of a material such as aluminum (Al 2 O 3 ).
 第2封止層123は、例えば、酸化アルミニウム(Al)、酸化シリコン(SiO)、窒化アルミニウム(AlN)、酸窒素アルミニウム(Al)等の材料で形成される。
4.製造方法
 表示パネル10の製造工程を例示する。
The second sealing layer 123 is formed of a material such as aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), aluminum nitride (AlN), or aluminum oxynitride (Al X O Y N Z ). .
4). Manufacturing Method The manufacturing process of the display panel 10 is illustrated.
 図3から図5は、表示パネル10の製造工程の一例を示す図である。なお、図3から図5では、表示パネル10の一部を抜き出して模式的に示している。 3 to 5 are diagrams showing an example of the manufacturing process of the display panel 10. 3 to 5, a part of the display panel 10 is extracted and schematically shown.
 表示パネル10は、(1)陽極を形成する工程(陽極形成工程)、(2)正孔注入層を形成する工程(正孔注入層形成工程)、(3)バンクを形成する工程(バンク形成工程)、(4)発光層を形成する工程(発光層形成工程)、(5)電子輸送層を形成する工程(電子輸送層形成工程)、(6)陰極を形成する工程(陰極形成工程)、(7)第1封止層を形成する工程(第1封止層形成工程)、(8)酸素曝露工程、(9)第2封止層を形成する工程(第2封止層形成工程)とを経て製造される。なお、上記の(1)陽極形成工程の前に、陽極を形成するべき基板101を準備する工程がある。 The display panel 10 includes (1) a step of forming an anode (anode formation step), (2) a step of forming a hole injection layer (hole injection layer formation step), and (3) a step of forming a bank (bank formation). Step), (4) Step of forming the light emitting layer (light emitting layer forming step), (5) Step of forming the electron transport layer (electron transport layer forming step), (6) Step of forming the cathode (cathode forming step) (7) Step of forming the first sealing layer (first sealing layer forming step), (8) Oxygen exposure step, (9) Step of forming the second sealing layer (second sealing layer forming step) ) And manufactured. In addition, there exists a process of preparing the board | substrate 101 which should form an anode before said (1) anode formation process.
 各工程について説明する。
(1)陽極形成工程
 TFT基板103に層間絶縁膜105が形成されている基板101上に、陽極107の材料である金属膜、例えばアルミニウム(Al)膜を成膜する。アルミニウム膜の成膜には、例えばスパッタリング法や真空蒸着法などの真空成膜法を用いることができる。
Each step will be described.
(1) Anode formation step A metal film, for example, an aluminum (Al) film, which is a material of the anode 107, is formed on the substrate 101 on which the interlayer insulating film 105 is formed on the TFT substrate 103. For forming the aluminum film, for example, a vacuum film forming method such as a sputtering method or a vacuum vapor deposition method can be used.
 アルミニウム膜の成膜後、例えばフォトリソグラフィでパターニングすることにより、行列状に形成された陽極107を得る(図3の(a)参照)。陽極107の膜厚は、例えば100[nm]~200[nm]である。
(2)正孔注入層形成工程
 行列状に陽極107が形成されたTFT基板101の上面に、例えば酸化タングステン(WOx)を含む組成物を用いて、金属酸化物膜である酸化タングステン膜を成膜する(図3の(b)参照)。
After the aluminum film is formed, patterning is performed by, for example, photolithography to obtain the anodes 107 formed in a matrix (see FIG. 3A). The film thickness of the anode 107 is, for example, 100 [nm] to 200 [nm].
(2) Hole injection layer forming step A tungsten oxide film, which is a metal oxide film, is formed on the upper surface of the TFT substrate 101 on which the anodes 107 are formed in a matrix using a composition containing, for example, tungsten oxide (WOx). A film is formed (see FIG. 3B).
 正孔注入層109の膜厚は、例えば1[nm]~10[nm]であり、正孔注入層109の成膜には、スパッタリング法や真空蒸着法などの真空成膜法を用いることができる。
(3)バンク形成工程
 まず、基板101に形成されている正孔注入層109上に絶縁性有機材料からなるバンク材料層を形成する。バンク材料層の形成は、例えば塗布等により行うことができる。その後、バンク材料層上に所定形状の開口部を持つマスクを重ね、マスクの上から感光させた後、余分なバンク材料層を現像液で洗い出す。これによりバンク材料層のパターニングが完了し、バンク111が完成する(図3の(c)参照)。
The thickness of the hole injection layer 109 is, for example, 1 [nm] to 10 [nm]. For the film formation of the hole injection layer 109, a vacuum film formation method such as a sputtering method or a vacuum evaporation method is used. it can.
(3) Bank Formation Step First, a bank material layer made of an insulating organic material is formed on the hole injection layer 109 formed on the substrate 101. The bank material layer can be formed, for example, by coating. Thereafter, a mask having an opening having a predetermined shape is overlaid on the bank material layer, and after exposing the mask from above, the excess bank material layer is washed out with a developer. Thereby, the patterning of the bank material layer is completed, and the bank 111 is completed (see FIG. 3C).
 バンク111の正孔注入層109の上面からの高さは、例えば1[μm]~2[μm]である。
(4)発光層形成工程
 バンク111で区画された各領域内に、例えばインクジェット法により、発光材料を含む組成物インクを滴下し、その組成物インクを乾燥させて発光層113を形成する(図4の(a)参照)。発光層113の膜厚は、例えば10[nm]~100[nm]である。
(5)電子輸送層形成工程
 発光層113の形成後、例えばニトロ置換フルオレノン誘導体からなる誘導体層を発光層113が形成された基板101上に成膜する。成膜には、スパッタリング法や真空蒸着法などの真空成膜法を用いることができる(図4の(b)参照)。
The height of the bank 111 from the upper surface of the hole injection layer 109 is, for example, 1 [μm] to 2 [μm].
(4) Light-Emitting Layer Formation Step A composition ink containing a light-emitting material is dropped into each region partitioned by the bank 111 by, for example, an inkjet method, and the composition ink is dried to form the light-emitting layer 113 (FIG. 4 (a)). The thickness of the light emitting layer 113 is, for example, 10 [nm] to 100 [nm].
(5) Electron Transport Layer Formation Step After the formation of the light emitting layer 113, a derivative layer made of, for example, a nitro-substituted fluorenone derivative is formed on the substrate 101 on which the light emitting layer 113 is formed. For film formation, a vacuum film formation method such as a sputtering method or a vacuum evaporation method can be used (see FIG. 4B).
 その後、電子注入性を向上させるために、バリウム(Ba)を2[wt%]~30[wt%]程度ドープする。電子輸送層の膜厚は、例えば0.5[nm]~50[nm]である。
(6)陰極形成工程
 電子輸送層115の形成後、透明な金属膜、例えばITO膜を成膜して陰極117を形成する。ITO膜の成膜には、スパッタリング法や真空蒸着法などの真空成膜法を用いることができる(図4の(c)参照)。陰極117の膜厚は、例えば10[nm]~200[nm]である。
(7)第1封止層形成工程
 陰極117の成形後、金属酸化膜、例えば酸化シリコン(SiO)膜を成膜して第1封止層121を形成する。酸化シリコン膜の成膜には、スパッタリング法、真空蒸着膜法などの真空成膜法を用いることができる(図5の(a)参照)。第1封止層121の膜厚は、例えば5[nm]~200[nm]である。
(8)酸素曝露工程
 第1封止層121が形成されたTFT基板103を酸素雰囲気下に曝露させる。このとき、後述するが、正孔注入層109等が酸素雰囲気中に曝露している場合、曝露された部分(本発明の「導電性材料からなる層であって開口に露出する部分」に相当する。)に酸化膜が形成される。曝露時間は、数[sec]から数十[sec]である。
(9)第2封止層形成工程
 酸素曝露工程後、酸化アルミニウム(Al)膜を成膜して第2封止層123を形成する。酸化アルミニウム膜は、膜を構成する構成材料を原子の状態で堆積させる原子層堆積法(ALD:Atomic Layer Deposition)を利用している。
Thereafter, in order to improve the electron injection property, barium (Ba) is doped by about 2 [wt%] to 30 [wt%]. The film thickness of the electron transport layer is, for example, 0.5 [nm] to 50 [nm].
(6) Cathode formation step After the formation of the electron transport layer 115, a transparent metal film, for example, an ITO film is formed to form the cathode 117. For forming the ITO film, a vacuum film forming method such as a sputtering method or a vacuum vapor deposition method can be used (see FIG. 4C). The film thickness of the cathode 117 is, for example, 10 [nm] to 200 [nm].
(7) First Sealing Layer Formation Step After forming the cathode 117, a metal oxide film, for example, a silicon oxide (SiO) film is formed to form the first sealing layer 121. For the formation of the silicon oxide film, a vacuum film formation method such as a sputtering method or a vacuum vapor deposition film method can be used (see FIG. 5A). The film thickness of the first sealing layer 121 is, for example, 5 [nm] to 200 [nm].
(8) Oxygen exposure step The TFT substrate 103 on which the first sealing layer 121 is formed is exposed in an oxygen atmosphere. At this time, as will be described later, when the hole injection layer 109 or the like is exposed in an oxygen atmosphere, the exposed portion (corresponding to “a portion made of a conductive material and exposed to the opening” of the present invention). In this case, an oxide film is formed. The exposure time is several [sec] to several tens [sec].
(9) Second sealing layer formation step After the oxygen exposure step, an aluminum oxide (Al 2 O 3 ) film is formed to form the second sealing layer 123. The aluminum oxide film uses an atomic layer deposition (ALD) method in which constituent materials constituting the film are deposited in an atomic state.
 本例では、第2封止層123として、酸化アルミニウム膜を用いており、構成材料としてトリメチルアルミニウム(TMAであり、以下、単に「TMA」とする。)を用い、酸化剤としてOプラズマを用いている。 In this example, an aluminum oxide film is used as the second sealing layer 123, trimethylaluminum (TMA, hereinafter simply referred to as “TMA”) is used as a constituent material, and O 2 plasma is used as an oxidizing agent. Used.
 成膜は、TMAの導入、パージにより余剰分子の取り除き(以下、単に「パージ」という。)、Oプラズマ照射、パージの処理を1サイクルとし、数百回繰り返すことで行われる。TMAの導入、Oプラズマ照射およびパージは、100[msec]~20[sec]行われる
 第2封止層123の膜厚は、例えば5[nm]~200[nm]である。
5.陽極107上に異物が付着した場合
 表示パネル10は、クリーンな雰囲気中で製造される。しかしながら、製造工程中に表示パネル10への異物混入をゼロにすることは困難である。
The film formation is performed by introducing TMA and removing excess molecules by purging (hereinafter, simply referred to as “purge”), O 2 plasma irradiation, and purging processing as one cycle and repeating several hundred times. The introduction of TMA, the O 2 plasma irradiation and the purge are performed for 100 [msec] to 20 [sec]. The film thickness of the second sealing layer 123 is, for example, 5 [nm] to 200 [nm].
5. When foreign matter adheres to the anode 107 The display panel 10 is manufactured in a clean atmosphere. However, it is difficult to make foreign matter into the display panel 10 zero during the manufacturing process.
 図6は、陽極形成後に異物が付着した状態を示す図である。 FIG. 6 is a diagram showing a state in which foreign matter has adhered after forming the anode.
 異物130が、同図に示すように、例えば陽極107の上面に付着した場合、陽極107における異物130の直下部分が異物130の影となり、正孔注入層109、発光層113、電子輸送層115、陰極117、第1封止層121が異物130の直下部分に堆積されない(図7の(a)参照)。 As shown in the figure, for example, when the foreign material 130 adheres to the upper surface of the anode 107, the portion immediately below the foreign material 130 in the anode 107 becomes a shadow of the foreign material 130, and the hole injection layer 109, the light emitting layer 113, and the electron transport layer 115. The cathode 117 and the first sealing layer 121 are not deposited immediately below the foreign material 130 (see FIG. 7A).
 なお、陽極107の上面であって異物130の直下の領域が本発明の「下側機能層の一部領域」に相当する。陽極107上の異物130に対応する部分には、正孔注入層109、発光層113、電子輸送層115、陰極117、第1封止層121が形成されておらず、この部分に開口を有することとなる。 Note that a region on the upper surface of the anode 107 and immediately below the foreign material 130 corresponds to a “partial region of the lower functional layer” of the present invention. The hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 are not formed in a portion corresponding to the foreign matter 130 on the anode 107, and an opening is formed in this portion. It will be.
 このため、異物130と、異物130の周辺(異物130の直下部分の外側に位置する領域)に形成された正孔注入層109、発光層113、電子輸送層115、陰極117、第1封止層121との間に溝132が形成されてしまう。 For this reason, the foreign material 130 and the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing formed around the foreign material 130 (a region located outside the portion immediately below the foreign material 130). A groove 132 is formed between the layer 121.
 第1封止層121よりも下層が露出すると、水分等のガスの侵入経路が溝132に沿って形成されることとなり、例えば、ガラス基板と接合するための樹脂材料を塗布した際に、溝132から水分等のガスが正孔注入層109等の機能層の内部に侵入する。 When a lower layer is exposed than the first sealing layer 121, a gas intrusion path such as moisture is formed along the groove 132. For example, when a resin material for bonding to a glass substrate is applied, the groove A gas such as moisture enters the functional layer such as the hole injection layer 109 from 132.
 機能層の内部にガス等が侵入すると、背景技術でも説明したように、サブピクセルの寿命が短くなったり、表示欠陥を招いたりする。 If gas or the like enters the functional layer, as described in the background art, the life of the sub-pixel is shortened or a display defect is caused.
 さらに、異物130が導電性を有する場合、例えば陰極117が絶縁機能のある膜(例えば、第1封止層121)等により完全に被覆されなかった場合に、陰極117形成後に異物130が倒れて、陰極117と異物130とが接触した場合、陽極107と陰極117とが電気的に接続されることとなりショートを招く。 Further, when the foreign matter 130 has conductivity, for example, when the cathode 117 is not completely covered with a film having an insulating function (for example, the first sealing layer 121) or the like, the foreign matter 130 falls after the cathode 117 is formed. When the cathode 117 and the foreign material 130 come into contact with each other, the anode 107 and the cathode 117 are electrically connected to cause a short circuit.
 しかしながら、本実施の形態で説明した製造方法では、上記不具合が生じるのを抑制することができる。以下、その理由を、上記の製造工程で表示パネル10を製造した場合の異物付着部分の状態を示しながら説明する。 However, in the manufacturing method described in the present embodiment, it is possible to suppress the occurrence of the above problems. Hereinafter, the reason for this will be described with reference to the state of the foreign matter adhering portion when the display panel 10 is manufactured in the above manufacturing process.
 表示パネル10は、図6に示す異物130が陽極107に付着した状態であっても、正孔注入層形成工程以降の工程が順次行われる。 In the display panel 10, even after the foreign material 130 shown in FIG. 6 is attached to the anode 107, the steps after the hole injection layer forming step are sequentially performed.
 なお、ここでは、陽極107が本発明の「下側機能層における導電材料から層」に相当し、正孔注入層109、発光層113、電子輸送層115、陰極117からなる層が本発明の「上側機能層」に相当し、電子輸送層115、陰極117が本発明の上側機能層の「導電材料からなる層」に相当する。 Here, the anode 107 corresponds to the “layer from the conductive material in the lower functional layer” of the present invention, and the layer including the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, and the cathode 117 is the present invention. The electron transport layer 115 and the cathode 117 correspond to the “upper functional layer”, and correspond to the “layer made of a conductive material” of the upper functional layer of the present invention.
 また、陽極形成工程が本発明の「第1工程」に相当し、正孔注入層形成工程、発光層形成工程、電子輸送層形成工程、陰極形成工程からなる工程が本発明の「第2工程」に相当し、第1封止層形成工程が本発明の「第3工程」に相当し、酸素曝露工程が本発明の「第4工程」に相当し、第2封止層形成工程が本発明の「第5工程」に相当する。 The anode forming step corresponds to the “first step” of the present invention, and the step comprising the hole injection layer forming step, the light emitting layer forming step, the electron transport layer forming step, and the cathode forming step is the “second step of the present invention. The first sealing layer forming step corresponds to the “third step” of the present invention, the oxygen exposure step corresponds to the “fourth step” of the present invention, and the second sealing layer forming step is the main step. This corresponds to the “fifth step” of the invention.
 図7は、製造工程中の異物付着部分の状態を説明する図である。
(1)第1封止層形成工程まで
 表示パネル10は、異物130が付着した状態で、各形成工程が行われる。同図の(a)は、第1封止層形成工程が終了した状態を示している。
FIG. 7 is a diagram for explaining a state of a foreign matter adhesion portion during the manufacturing process.
(1) Up to the first sealing layer forming step Each forming step is performed on the display panel 10 with the foreign matter 130 attached. (A) of the figure has shown the state which the 1st sealing layer formation process was complete | finished.
 同図の(a)に示すように、陽極107に異物130が付着すると、本来、陽極107上に形成されるべき正孔注入層109、発光層113、電子輸送層115、陰極117及び第1封止層121が陽極107上に形成されずに、異物130の上面に形成される。 As shown in FIG. 5A, when a foreign substance 130 adheres to the anode 107, a hole injection layer 109, a light emitting layer 113, an electron transport layer 115, a cathode 117, and a first electrode that should be originally formed on the anode 107 are formed. The sealing layer 121 is not formed on the anode 107 but is formed on the upper surface of the foreign material 130.
 なお、正孔注入層109、発光層113、電子輸送層115、陰極117及び第1封止層121は、発光に関する機能や、発光する部分を保護する機能を有しているが、異物130上に形成されている各層、つまり、正孔注入層109、発光層113、電子輸送層115、陰極117及び第1封止層121と同じ材料で形成された各層(本発明の「上側機能層と同じ材料の層と第1封止層と同じ層」に相当する。)は、発光に関する機能や発光する部分を保護する機能を有していないため、これらの層は、正孔注入層用膜109a、発光層用膜113a、電子輸送層用膜115a、陰極用膜117a及び第1封止層用膜121aとする。 Note that the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 have a function related to light emission and a function of protecting a light emitting part. In other words, each layer formed of the same material as the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 (the “upper functional layer” in the present invention). The layer of the same material and the same layer as the first sealing layer ”) do not have a function related to light emission or a function of protecting the light emitting part, so these layers are films for hole injection layers. 109a, a light emitting layer film 113a, an electron transport layer film 115a, a cathode film 117a, and a first sealing layer film 121a.
 このように、異物周辺には、異物130(異物130に形成された、正孔注入層用膜109a、発光層用膜113a、電子輸送層用膜115a、陰極用膜117a及び第1封止層用膜121aを含む。)と、異物周辺に形成された正孔注入層109、発光層113、電子輸送層115、陰極117、第1封止層121との間に溝132が存在することになる。
(2)酸素曝露工程
 第1封止層形成工程後、上述したように、酸素曝露工程を行う。これにより、酸素雰囲気下に露出している電子輸送層115及び陰極117並びに電子輸送層用膜115a及び陰極用膜117aに酸化膜134が形成される。
Thus, around the foreign matter, the foreign matter 130 (the hole injection layer film 109a, the light emitting layer film 113a, the electron transport layer film 115a, the cathode film 117a, and the first sealing layer formed on the foreign substance 130) And a hole injection layer 109, a light emitting layer 113, an electron transport layer 115, a cathode 117, and a first sealing layer 121 formed in the vicinity of the foreign matter. Become.
(2) Oxygen exposure process After a 1st sealing layer formation process, as above-mentioned, an oxygen exposure process is performed. As a result, the oxide film 134 is formed on the electron transport layer 115 and the cathode 117 exposed in the oxygen atmosphere, and the electron transport layer film 115a and the cathode film 117a.
 つまり、陽極107上の電子輸送層115及び陰極117並びに異物130上の電子輸送層用膜115a及び陰極用膜117aのうち、溝132に対面する部分(溝132を構成する壁となっている部分でもあり、本発明の「開口に露出する部分」に相当する。)に酸化膜134が形成される。この状態が図7の(b)である。 That is, of the electron transport layer 115 and the cathode 117 on the anode 107 and the electron transport layer film 115a and the cathode film 117a on the foreign matter 130, the part facing the groove 132 (the part constituting the wall constituting the groove 132) However, the oxide film 134 is formed in the “portion exposed to the opening” in the present invention. This state is shown in FIG.
 なお、酸化雰囲気下の曝露時間は、電子輸送層115及び陰極117において、酸素に晒されている部分に酸化膜が形成されるのに要する時間でもある。 Note that the exposure time in an oxidizing atmosphere is also the time required for an oxide film to be formed in a portion exposed to oxygen in the electron transport layer 115 and the cathode 117.
 上記工程により、電子輸送層115、陰極117のうち、第1封止層12に被覆されていない部分に酸化膜が形成され、当該部分の絶縁性が確保される。なお、陰極117の材料にITO等の酸化膜を利用している場合は酸化膜は形成されないが、陰極の材料に金属材料等を用いた場合は酸化される。
(3)第2封止層形成工程
 第2封止層形成工程は、上述したように、酸素曝露工程の後、ALD法により酸化アルミニウム膜(123)を成膜する。この状態が図7の(c)である。
By the above process, an oxide film is formed on a portion of the electron transport layer 115 and the cathode 117 that is not covered with the first sealing layer 12, and the insulation of the portion is ensured. When an oxide film such as ITO is used as the material of the cathode 117, an oxide film is not formed, but when a metal material or the like is used as the material of the cathode, it is oxidized.
(3) Second sealing layer forming step In the second sealing layer forming step, as described above, the aluminum oxide film (123) is formed by the ALD method after the oxygen exposure step. This state is shown in FIG.
 ALD法では、原子一層毎に堆積することができる。このため、図7の(a)に示すように、異物130の周辺に溝132が存在しても、その溝132の内部(底部)にまで原子が入り込み堆積される。 In the ALD method, deposition can be performed for each atomic layer. For this reason, as shown in FIG. 7A, even if the groove 132 exists around the foreign material 130, the atoms enter and deposit inside the groove 132 (bottom).
 これにより、陽極107上であって異物130の直下部分で、正孔注入層109、発光層113、電子輸送層115、陰極117及び第1封止層121が形成されず、陽極107の一部領域が露出することとなるが、当該露出部分も第2封止層123が形成され、露出部分が第2封止層123で封止(被覆)される。 Accordingly, the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, the cathode 117, and the first sealing layer 121 are not formed on the anode 107 and immediately below the foreign material 130, and a part of the anode 107 is formed. Although the region is exposed, the second sealing layer 123 is also formed on the exposed portion, and the exposed portion is sealed (covered) with the second sealing layer 123.
 第2封止層123は、第1封止層121よりも膜厚が薄く形成されるが、原子単位で堆積されるため、緻密な膜が得られ(所謂、ピンホールフリーである。)、結果的に高い封止性能を得ることができる。 The second sealing layer 123 is formed thinner than the first sealing layer 121, but is deposited in units of atoms, so that a dense film can be obtained (so-called pinhole free). As a result, high sealing performance can be obtained.
 このように、本実施の形態に係る製造方法では、陽極107の上面に異物130が付着しても、その付着により発生する溝132の内部(底部)にまでに第2封止層123が堆積し、その後の工程で、陽極107、正孔注入層109、電子輸送層115、陰極117及び第1封止層121が水分等のガスに晒されることはなく、これらの層へのガスの侵入を防止することができる。 Thus, in the manufacturing method according to the present embodiment, even if the foreign matter 130 adheres to the upper surface of the anode 107, the second sealing layer 123 is deposited up to the inside (bottom) of the groove 132 generated by the attachment. In the subsequent steps, the anode 107, the hole injection layer 109, the electron transport layer 115, the cathode 117, and the first sealing layer 121 are not exposed to a gas such as moisture, and the gas enters these layers. Can be prevented.
 さらに、異物130が導電性を有する場合であっても、正孔注入層109、発光層113、電子輸送層115、陰極117において表面に露出している部分であって導電材料からなる層に酸化膜134が形成されるため、結果的に、電子輸送層115及び陰極117の絶縁性が確保されることとなる。 Further, even when the foreign matter 130 has conductivity, the hole injection layer 109, the light emitting layer 113, the electron transport layer 115, and the cathode 117 are exposed to the surface and oxidized into a layer made of a conductive material. Since the film 134 is formed, as a result, the insulating properties of the electron transport layer 115 and the cathode 117 are ensured.
 しかも、酸化膜134上に第2封止層123が形成されるため、酸化膜134への水分等のガスの侵入を防ぐことができる。 In addition, since the second sealing layer 123 is formed on the oxide film 134, intrusion of gas such as moisture into the oxide film 134 can be prevented.
 また、異物130が陽極107上で傾斜して陰極117に近づいたとしても、対応する陰極117の部分に絶縁性を有する酸化膜が形成されているため、異物132と陰極117との間でスパークするような電気的不具合の発生を抑えることができる。 Even if the foreign material 130 is inclined on the anode 107 and approaches the cathode 117, an insulating oxide film is formed on the corresponding cathode 117, so that a spark is generated between the foreign material 132 and the cathode 117. The occurrence of such an electrical failure can be suppressed.
 さらに、異物130が倒れて陰極117(性格には陰極117の酸化された部分である。)と接触したとしても、酸化膜134が形成されているため、陽極107と陰極117とがショートするようなこともない。
6.電子輸送層上に異物が付着した場合
 上述したように、製造中に表示パネルへの異物混入をゼロにすることは困難である。
Further, even if the foreign material 130 falls down and contacts the cathode 117 (characteristically, an oxidized portion of the cathode 117), the oxide film 134 is formed so that the anode 107 and the cathode 117 are short-circuited. There is nothing wrong.
6). When foreign matter adheres on the electron transport layer As described above, it is difficult to make foreign matter into the display panel zero during manufacturing.
 図8は、異物が電子輸送層の上面に付着した場合を示す図である。 FIG. 8 is a diagram showing a case where foreign matter adheres to the upper surface of the electron transport layer.
 異物140が同図に示すように付着し、封止層がCVD法により形成された層だけであると、異物140の影となり、陰極117、封止層(第1封止層121)が異物140の直下部分に堆積されない。 If the foreign matter 140 adheres as shown in the figure and the sealing layer is only a layer formed by the CVD method, it becomes a shadow of the foreign matter 140, and the cathode 117 and the sealing layer (first sealing layer 121) are foreign matter. It is not deposited directly under 140.
 なお、電子輸送層115の上面であって異物140の直下の領域が本発明の「下側機能層の一部領域」に相当する。電子輸送層115上の異物140に対応する部分には、陰極117及び第1封止層121が形成されておらず、この部分に開口を有することとなる。 Note that a region on the upper surface of the electron transport layer 115 and immediately below the foreign material 140 corresponds to a “partial region of the lower functional layer” of the present invention. In the portion corresponding to the foreign matter 140 on the electron transport layer 115, the cathode 117 and the first sealing layer 121 are not formed, and this portion has an opening.
 このため、異物140と、異物140の周辺(異物140の直下部分の外側に位置する領域)に形成された陰極117、第1封止層121との間に溝142が形成されてしまう。 Therefore, a groove 142 is formed between the foreign material 140 and the cathode 117 and the first sealing layer 121 formed around the foreign material 140 (a region located outside the portion immediately below the foreign material 140).
 第1封止層121よりも下層が露出すると、上述したように、水分等のガスの侵入経路が溝142に沿って形成されることとなり、例えば、ガラス基板と接合するための樹脂材料を塗布した際に、溝142からガスが陰極109等の機能層の内部に侵入して、パネルの表示欠陥を招くおそれがある。 When the lower layer than the first sealing layer 121 is exposed, an intrusion path for a gas such as moisture is formed along the groove 142 as described above. For example, a resin material for bonding to a glass substrate is applied. In this case, the gas may enter the functional layer such as the cathode 109 from the groove 142 and cause a display defect of the panel.
 しかしながら、本実施の形態で説明した製造方法では、上記不具合が生じるのを抑制することができる。以下、その理由を、上記の製造工程で表示パネルを製造した場合の異物付着部分の状態を示しながら説明する。 However, in the manufacturing method described in the present embodiment, it is possible to suppress the occurrence of the above problems. Hereinafter, the reason will be described with reference to the state of the foreign matter adhering portion when the display panel is manufactured in the above manufacturing process.
 表示パネル10は、図8に示す異物140が電子輸送層115に付着した状態であっても、陰極形成工程以降の工程が順次行われる。 In the display panel 10, even after the foreign material 140 shown in FIG. 8 is attached to the electron transport layer 115, the steps after the cathode forming step are sequentially performed.
 なお、ここでは、陽極107、正孔注入層109、発光層113、電子輸送層115からなる層が本発明の「下側機能層」に相当し、電子輸送層115が本発明の下側機能層の「導電材料からなる層」に相当し、陰極117が本発明の「上側機能層」に相当すると共に本発明の上側機能層の「導電材料からなる層」に相当する。 Here, the layer composed of the anode 107, the hole injection layer 109, the light emitting layer 113, and the electron transport layer 115 corresponds to the “lower functional layer” of the present invention, and the electron transport layer 115 corresponds to the lower function of the present invention. The cathode 117 corresponds to the “upper functional layer” of the present invention and the “functional layer” of the upper functional layer of the present invention.
 また、陽極形成工程、正孔注入層形成工程、発光層形成工程、電子輸送層形成工程からなる工程が本発明の「第1工程」に相当し、陰極形成工程が本発明の「第2工程」に相当し、第1封止層形成工程が本発明の「第3工程」に相当し、酸素曝露工程が本発明の「第4工程」に相当し、第2封止層形成工程が本発明の「第5工程」に相当する。 Further, the step comprising the anode forming step, hole injection layer forming step, light emitting layer forming step, and electron transport layer forming step corresponds to the “first step” of the present invention, and the cathode forming step is the “second step of the present invention. The first sealing layer forming step corresponds to the “third step” of the present invention, the oxygen exposure step corresponds to the “fourth step” of the present invention, and the second sealing layer forming step is the main step. This corresponds to the “fifth step” of the invention.
 図9は、製造工程中の異物付着部分の状態を説明する図である。
(1)第1封止層形成工程まで
 表示パネル10は、異物140が付着した状態で、各形成工程が行われる。同図の(a)は、第1封止層形成工程が終了した状態を示している。同図の(a)に示すように、電子輸送層115に異物140が付着すると、本来、電子輸送層115上に形成されるべき陰極117、第1封止層121が電子輸送層115上に形成されずに、異物140の上面に形成される。
FIG. 9 is a diagram for explaining a state of a foreign matter adhesion portion during the manufacturing process.
(1) Up to the first sealing layer forming step Each forming step is performed on the display panel 10 with the foreign matter 140 attached. (A) of the figure has shown the state which the 1st sealing layer formation process was complete | finished. As shown in FIG. 5A, when the foreign matter 140 adheres to the electron transport layer 115, the cathode 117 and the first sealing layer 121 that should be originally formed on the electron transport layer 115 are formed on the electron transport layer 115. It is formed on the upper surface of the foreign material 140 without being formed.
 ここでも、異物140上に形成されている各層、つまり、陰極117及び第1封止層121と同じ材料で形成された各層(本発明の「上側機能層と同じ材料の層と第1封止層と同じ層」に相当する。)は、発光に関する機能や発光する部分を保護する機能を有していないため、これらの層は、陰極用膜117b及び第1封止層用膜121bとする。 Also here, each layer formed on the foreign material 140, that is, each layer formed of the same material as the cathode 117 and the first sealing layer 121 (the layer of the same material as the upper functional layer and the first sealing of the present invention). Corresponds to “the same layer as the layer”), and does not have a function related to light emission or a function of protecting a light emitting portion, and these layers are referred to as a cathode film 117b and a first sealing layer film 121b. .
 このように、異物140の周辺には、異物140(異物140に形成された陰極用膜117b及び第1封止層用膜121bを含む。)と、異物周辺に形成された陰極117、第1封止層121との間に溝142が存在することになる。
(2)酸素曝露工程
 第1封止層形成工程後、酸素曝露工程を行う。これにより、酸素雰囲気下に露出している電子輸送層115及び陰極117(酸化し得る材料で構成した場合である。)に酸化部144が形成される。
Thus, around the foreign matter 140, the foreign matter 140 (including the cathode film 117b and the first sealing layer film 121b formed on the foreign matter 140), the cathode 117 formed around the foreign matter, and the first A groove 142 exists between the sealing layer 121 and the sealing layer 121.
(2) Oxygen exposure process An oxygen exposure process is performed after a 1st sealing layer formation process. As a result, the oxidized portion 144 is formed in the electron transport layer 115 and the cathode 117 (which are made of an oxidizable material) exposed in the oxygen atmosphere.
 つまり、電子輸送層115上の陰極117及び異物140上の陰極用膜117bのうち、溝142に対面する部分(溝142を構成する壁となっている部分でもあり、本発明の「開口に露出する部分」に相当する。)に酸化膜144が形成される。この状態が図9の(b)である。 That is, of the cathode 117 on the electron transport layer 115 and the cathode film 117b on the foreign material 140, the portion facing the groove 142 (which is also the wall constituting the groove 142 and is exposed to the opening of the present invention The oxide film 144 is formed. This state is shown in FIG.
 特に、電子輸送層115がドーピングされたバリウム(Ba)を含有している場合は、電子輸送層115は酸化されやすく、異物140との付着面も酸化される。なお、付着面も酸化されると異物142が電子輸送層115に固着される。 In particular, when the electron transport layer 115 contains doped barium (Ba), the electron transport layer 115 is easily oxidized, and the adhesion surface with the foreign material 140 is also oxidized. Note that the foreign matter 142 is fixed to the electron transport layer 115 when the attached surface is also oxidized.
 また、陰極117も、溝142に対面する部分(溝142(開口)を構成する周面となっている部分である。)に酸化膜144が形成される。 Further, the oxide film 144 is also formed on the cathode 117 in a portion facing the groove 142 (a portion serving as a peripheral surface constituting the groove 142 (opening)).
 このとき、異物140が導電性を有する場合であっても、電子輸送層115や陰極117における異物140の周辺部分が酸化されるので、導電性の異物140に対して絶縁性が確保される。
(3)第2封止層形成工程
 第2封止層形成工程では、酸素曝露工程の後、ALD法により酸化アルミニウム膜(123)を成膜する。この状態が図9の(c)である。
At this time, even if the foreign matter 140 has conductivity, the peripheral portions of the foreign matter 140 in the electron transport layer 115 and the cathode 117 are oxidized, so that insulation against the conductive foreign matter 140 is ensured.
(3) Second sealing layer forming step In the second sealing layer forming step, an aluminum oxide film (123) is formed by the ALD method after the oxygen exposure step. This state is shown in FIG.
 ALD法では、原子一層毎に堆積することができる。このため、図9の(a)に示すように、異物140の周辺に溝142が存在しても、その溝142の内部(内部)にまで原子が入り込み堆積される。 In the ALD method, deposition can be performed for each atomic layer. For this reason, as shown in FIG. 9A, even if the groove 142 exists around the foreign material 140, atoms enter and deposit inside the groove 142 (inside).
 これにより、電子輸送層115上であって異物140の直下部分で、陰極117及び第1封止層121が形成されず、電子輸送層115の一部領域が露出することとなるが、当該露出部分にも第2封止層123が形成され、露出部分が第2封止層123で封止される。 Thereby, the cathode 117 and the first sealing layer 121 are not formed on the electron transport layer 115 and immediately below the foreign material 140, and a part of the electron transport layer 115 is exposed. The second sealing layer 123 is also formed on the portion, and the exposed portion is sealed with the second sealing layer 123.
 このように、本実施の形態に係る製造方法では、電子輸送層115の上面に異物140が付着しても、その付着により発生した溝142内にまでに第2封止層123が堆積し、その後の工程で、陰極117、第1封止層121に水分等のガスが侵入するのを防止することができる。 Thus, in the manufacturing method according to the present embodiment, even if the foreign matter 140 adheres to the upper surface of the electron transport layer 115, the second sealing layer 123 is deposited up to the groove 142 generated by the adhesion, In the subsequent steps, it is possible to prevent gas such as moisture from entering the cathode 117 and the first sealing layer 121.
 さらに、異物140が導電性を有する場合であっても、電子輸送層115、陰極117において表面に露出している部分に酸化膜144が形成されるため、結果的にこれらに対して絶縁性が確保されることとなる。 Furthermore, even when the foreign matter 140 has conductivity, the oxide film 144 is formed on the exposed portions of the electron transport layer 115 and the cathode 117 on the surface. Will be secured.
 さらに、酸化膜144上や第1封止層121上、さらには異物140や異物140に堆積した陰極用膜117b、第1封止層用膜121b上に第2封止層123が形成されるため、溝部142への第2封止層123の充填と異物140の完全な絶縁化を行うことができる。これにより。酸化膜144への水分等のガスの侵入を防ぐことができる。 Further, the second sealing layer 123 is formed on the oxide film 144, the first sealing layer 121, the foreign material 140, the cathode film 117b deposited on the foreign material 140, and the first sealing layer film 121b. Therefore, the second sealing layer 123 can be filled into the groove 142 and the foreign matter 140 can be completely insulated. By this. Intrusion of gas such as moisture into the oxide film 144 can be prevented.
 また、異物140が導電性を有する場合、電子輸送層115の酸化により、異物140が電子輸送層115に固着され、別の工程で、異物140が飛散して他の部位に付着して、表示欠陥等を招くのを未然に防ぐことができる。
7.陽極107上に異物130が付着した後に異物130が外れた場合
 上記5では、陽極上107上に異物130が付着した場合について説明したが、異物付着後にその異物130が何らかの原因により陽極107から外れることがある。
In addition, when the foreign matter 140 has conductivity, the foreign matter 140 is fixed to the electron transport layer 115 due to oxidation of the electron transport layer 115, and the foreign matter 140 is scattered and attached to other parts in another process. It is possible to prevent the occurrence of defects and the like.
7). In the case where the foreign matter 130 comes off after the foreign matter 130 adheres on the anode 107 In the above 5, the case where the foreign matter 130 adheres on the anode 107 has been described. However, after the foreign matter adheres, the foreign matter 130 comes off from the anode 107 for some reason. Sometimes.
 以下、陽極107上に異物130が付着した後に異物130が外れた場合について説明する。なお、異物130が外れるタイミングは、第2封止層123の形成中である。 Hereinafter, a case where the foreign matter 130 comes off after the foreign matter 130 adheres to the anode 107 will be described. The timing at which the foreign matter 130 is removed is during the formation of the second sealing layer 123.
 図10は、製造工程中の異物付着部分の状態を説明する図である。 FIG. 10 is a diagram for explaining a state of a foreign matter adhering portion during the manufacturing process.
 酸素曝露工程までは、図7での説明と同じであるため、その説明を省略する。 Since the process up to the oxygen exposure step is the same as that described with reference to FIG. 7, the description thereof is omitted.
 第2封止層形成工程は、上述したように、酸化アルミニウム膜(金属酸化膜)をALD法にて成膜する。この成膜中に、異物130が陽極107から外れる。この状態が図10の(b)である。 In the second sealing layer forming step, as described above, an aluminum oxide film (metal oxide film) is formed by the ALD method. During this film formation, the foreign matter 130 is detached from the anode 107. This state is shown in FIG.
 一方、陽極107上ではALD法により酸化アルミニウム膜(123)が堆積され、所定のサイクル数を行えば、第2封止層123が成膜される。 On the other hand, an aluminum oxide film (123) is deposited on the anode 107 by the ALD method, and the second sealing layer 123 is formed by performing a predetermined number of cycles.
 このとき、陽極107上であって異物130が付着していた領域には、異物130の消失に伴い、第2封止層123が形成される。この状態が、図10の(c)である。 At this time, the second sealing layer 123 is formed in the region on the anode 107 where the foreign matter 130 has adhered, as the foreign matter 130 disappears. This state is shown in FIG.
 異物130が存在していた部分の第2封止層123は、異物130が存在していなかった部分と比べて層構造(具体的には膜厚である。)が異なるが、陽極107の一部が露出することがなく完全に被覆されることとなり、陽極107の絶縁性が確保される。 The portion of the second sealing layer 123 where the foreign matter 130 was present is different from the portion where the foreign matter 130 was not present in the layer structure (specifically, the film thickness). The portion is completely exposed without being exposed, and the insulation of the anode 107 is ensured.
 このように、本実施の形態に係る製造方法では、陽極107の上面に異物130が付着していても、その付着による溝132内にまでに第2封止層123が堆積し、また、異物132が消失した場合でもあっても、陽極107上が第2封止層123により覆われることになる。
<変形例>
 以上、本発明に係る発光素子及びその製造方法について説明したが、本発明は上記実施の形態に限られないことは勿論である。例えば、以下のような変形例が考えられる。
1.表示パネル
(1)ピクセル
 実施の形態では、1ピクセルが、発光色の異なる3つ(3種類)のサブピクセルにより構成されていたが、3つ(3種類)に限定する必要はなく、例えば、1色(モノクロ)のサブピクセルで1ピクセルを構成しても良いし、例えば、発光色の異なる4つ以上のサブピクセルにより1ピクセルを構成しても良い。なお、発光色が異なると、発光層を構成する材料等が異なるが、発光層が陽極と陰極とに挟まれるという基本的構成は同じである。
(2)陽極
 実施の形態では、陽極107の表面に正孔注入層109が形成されていたが、例えば、陽極107の表面に導電層を形成し、当該導電層の上面及び導電層が形成されていない基板101の上面とに正孔注入層109を形成するようにしても良い。
As described above, in the manufacturing method according to the present embodiment, even if the foreign matter 130 adheres to the upper surface of the anode 107, the second sealing layer 123 is deposited in the groove 132 due to the attachment, and the foreign matter Even when 132 disappears, the anode 107 is covered with the second sealing layer 123.
<Modification>
Although the light emitting device and the manufacturing method thereof according to the present invention have been described above, the present invention is not limited to the above embodiment. For example, the following modifications can be considered.
1. Display Panel (1) Pixel In the embodiment, one pixel is composed of three (three types) sub-pixels having different emission colors, but it is not necessary to limit the number to three (three types). One pixel may be composed of one color (monochrome) subpixel, or one pixel may be composed of, for example, four or more subpixels having different emission colors. In addition, although the material etc. which comprise a light emitting layer differ if light emission colors differ, the basic composition that a light emitting layer is pinched | interposed into an anode and a cathode is the same.
(2) Anode In the embodiment, the hole injection layer 109 is formed on the surface of the anode 107. For example, a conductive layer is formed on the surface of the anode 107, and the upper surface of the conductive layer and the conductive layer are formed. The hole injection layer 109 may be formed on the upper surface of the substrate 101 that is not formed.
 導電層は、製造過程において陽極107が自然酸化するのを防止する保護層として機能する。
(3)発光層
 正孔注入層109の上面に発光層113が形成されていたが、例えば、発光層113と正孔注入層109との間に正孔輸送層を設けても良い。正孔輸送層は、正孔注入層109から注入された正孔を発光層113へと輸送する機能を有する。
The conductive layer functions as a protective layer that prevents the anode 107 from being naturally oxidized during the manufacturing process.
(3) Light-Emitting Layer Although the light-emitting layer 113 is formed on the upper surface of the hole injection layer 109, for example, a hole transport layer may be provided between the light-emitting layer 113 and the hole injection layer 109. The hole transport layer has a function of transporting holes injected from the hole injection layer 109 to the light emitting layer 113.
 正孔輸送層は、例えば、特開平5-163488号に記載のトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体等である。特に好ましくは、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物で形成される。
(4)陰極
 実施の形態では、電子輸送層115の上面に陰極117が形成されていたが、例えば、電子輸送層115と陰極117との間に、電子注入層を形成しても良い。電子注入層としては、アルカリ金属、アルカリ土類金属、それらの酸化物、フッ化物等がある。
The hole transporting layer includes, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcones described in JP-A-5-163488. Derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, butadiene compounds, polystyrene derivatives, hydrazone derivatives, triphenylmethane derivatives, tetraphenylbenzines Derivatives and the like. Particularly preferably, it is formed of a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound.
(4) Cathode In the embodiment, the cathode 117 is formed on the upper surface of the electron transport layer 115. However, for example, an electron injection layer may be formed between the electron transport layer 115 and the cathode 117. Examples of the electron injection layer include alkali metals, alkaline earth metals, oxides thereof, and fluorides.
 実施の形態では、陰極として透明導電膜であるITOを利用しているため、酸素曝露工程で陰極に酸化膜が形成されにくいが、金属等の酸化し得る材料で陰極を構成した場合、酸化曝露工程で酸化膜が形成される。
(5)封止部
 実施の形態では、第1封止層121の上面に第2封止層123が形成されていたが、例えば、第2封止層123の上面に第3封止層を形成しても良い。この場合、第3の封止層は、第1封止層121と同じ材料・成形方法で成膜しても良いし、他の方法、例えば、化学気相成長法(CVD)法により成膜しても良い。
In the embodiment, since ITO, which is a transparent conductive film, is used as the cathode, it is difficult to form an oxide film on the cathode in the oxygen exposure step. However, when the cathode is made of an oxidizable material such as metal, oxidation exposure An oxide film is formed in the process.
(5) Sealing portion In the embodiment, the second sealing layer 123 is formed on the top surface of the first sealing layer 121. For example, a third sealing layer is formed on the top surface of the second sealing layer 123. It may be formed. In this case, the third sealing layer may be formed by the same material and molding method as the first sealing layer 121, or may be formed by another method, for example, a chemical vapor deposition (CVD) method. You may do it.
 また、実施の形態では、ALD法を利用した第2封止層を第1封止層上に形成していたが、この場合、酸化曝露工程は発光部形成工程後に行われる。
2.製造方法
 (1)第2封止層
 実施の形態では、第2封止層123は電子層堆積法(ADL法)により形成されている。第2封止層123が酸化アルミニウムで構成する場合、構成材料としてトリメチルアルミニウム(TMAであり、以下、単に「TMA」とする。)を用いていたが、他の構成材料も利用することができる。
In the embodiment, the second sealing layer using the ALD method is formed on the first sealing layer. In this case, the oxidation exposure step is performed after the light emitting portion forming step.
2. Manufacturing Method (1) Second Sealing Layer In the embodiment, the second sealing layer 123 is formed by an electronic layer deposition method (ADL method). When the second sealing layer 123 is made of aluminum oxide, trimethylaluminum (TMA, hereinafter simply referred to as “TMA”) is used as a constituent material, but other constituent materials can also be used. .
 他の材料としては、例えば、TEA(トリエチルアルミニウム)、DMAH(ジメチルアルミニウム水素化物)等のアルキル系金属を用いることができる。 As other materials, for example, alkyl-based metals such as TEA (triethylaluminum) and DMAH (dimethylaluminum hydride) can be used.
 また、他の材料で第2封止層を構成しても良い。他の材料としては、酸化シリコン(SiO)、窒化アルミニウム(AlN)、酸窒素化合物(Al)等がある。例えば、酸窒素化合物(Al)で構成する場合、構成材料として、例えば、TMA,TEA、DMAHと窒素化合物とを反応させることで実施できる。 Moreover, you may comprise a 2nd sealing layer with another material. Other materials include silicon oxide (SiO 2 ), aluminum nitride (AlN), oxynitrogen compound (Al X O Y N Z ), and the like. For example, when configuring an acid nitrogen compound (Al X O Y N Z) , as a material, for example, it is carried out by reacting TMA, TEA, a DMAH and nitrogen compounds.
 さらに、他の方法により電子層単位で形成しても良い。他の方法としては、原子層成長法(ALE法)がある。
(2)酸素曝露工程
 酸素曝露工程では、第1封止層121が形成されている基板101を酸素雰囲気中に晒していたが、第1封止層121の形成後に表面に露出している電子輸送層115や陰極117等を酸化させることができれば、他の方法であっても良い。
Furthermore, you may form per electronic layer by another method. As another method, there is an atomic layer growth method (ALE method).
(2) Oxygen exposure step In the oxygen exposure step, the substrate 101 on which the first sealing layer 121 is formed is exposed to an oxygen atmosphere, but the electrons exposed on the surface after the first sealing layer 121 is formed. Other methods may be used as long as the transport layer 115 and the cathode 117 can be oxidized.
 また、酸素雰囲気は、酸化させることができれば良く、他の気体(窒素、アルゴン等)が含まれていても良い。 The oxygen atmosphere only needs to be oxidized and may contain other gases (nitrogen, argon, etc.).
 また、酸化曝露工程は、発光部を形成した後に表面に露出している導電材料からなる層を酸化できれば良く、例えば、発光部形成工程後に行われば良い。具体的には、第1封止部121を形成する前に実施しても良い。
3.その他
(1)機能層
 実施の形態では、第1機能と上側機能層とを異物の付着する層を基準して説明している。これは、下側機能層の一部領域の発生が異物の付着により機能層が堆積されずに発生したためである。従って、異物以外の他の要因で機能層が堆積されないような場合は、堆積していない機能層の最下層が上側機能層の最下層となり、堆積されていない機能層の最下層の直下の層が下側機能層の最上層となる。
Further, the oxidation exposure step may be performed after the light emitting portion forming step, for example, as long as the layer made of the conductive material exposed on the surface after forming the light emitting portion can be oxidized. Specifically, it may be performed before the first sealing portion 121 is formed.
3. Others (1) Functional Layer In the embodiment, the first function and the upper functional layer are described with reference to a layer to which foreign matter adheres. This is because the generation of a partial region of the lower functional layer occurs without the functional layer being deposited due to adhesion of foreign matter. Therefore, when the functional layer is not deposited due to factors other than foreign matter, the lowermost layer of the functional layer that has not been deposited becomes the lowermost layer of the upper functional layer, and the layer immediately below the lowermost layer of the functional layer that has not been deposited. Is the uppermost layer of the lower functional layer.
 つまり、堆積されない機能層の開口に露出している面を有する層が、下側機能層の最上層となる。なお、異物以外で機能層が堆積されないような要因としては、歪なバンクの形状等がある。
(2)実施の形態では、下側機能層の最上層が陽極107の場合と電子輸送層117であったが、上側機能層中に導電材料からなる層が少なくとも1層あれば良く、下側機能層の最上層は、例えば、正孔注入層109でも良い。また、実施の形態では説明しなかったが、例えば、正孔輸送層や電子注入層を設けた場合は、これらを下側機能層の最上層としても良い。
That is, the layer having the surface exposed to the opening of the functional layer that is not deposited is the uppermost layer of the lower functional layer. As a factor that prevents the functional layer from being deposited except for foreign substances, there is a distorted bank shape or the like.
(2) In the embodiment, the uppermost layer of the lower functional layer is the anode 107 and the electron transport layer 117, but it is sufficient that the upper functional layer has at least one layer made of a conductive material. The uppermost layer of the functional layer may be, for example, the hole injection layer 109. Although not described in the embodiment, for example, when a hole transport layer or an electron injection layer is provided, these may be the uppermost layer of the lower functional layer.
 本発明は、表示装置に利用可能である。 The present invention can be used for a display device.
  10  表示パネル
 101  基板
 107  陽極
 113  発光層
 117  陰極
 121  第1封止層
 123  第2封止層
DESCRIPTION OF SYMBOLS 10 Display panel 101 Substrate 107 Anode 113 Light emitting layer 117 Cathode 121 1st sealing layer 123 2nd sealing layer

Claims (9)

  1.  複数の機能層が積層されてなる発光部と、前記発光部上に形成された絶縁性の封止部とを備える発光素子において、
     前記複数の機能層は、導電材料からなる層を上層に有する下側機能層と、前記下側機能層の一部領域に対応する部分に開口を有する状態で前記下側機能層上に形成された上側機能層とを含み、
     前記封止部は、前記上側機能層における前記開口を構成する周面を除いた上側機能層上に形成された第1封止層と、前記第1封止層上に原子層単位で形成された第2封止層とを含み、
     前記上側機能層は導電材料からなる層を1層以上有し、当該導電性材料からなる層であって前記開口に露出する部分が酸化され、
     当該酸化部が前記第2封止層により被覆されている
     発光素子。
    In a light emitting device comprising a light emitting part formed by laminating a plurality of functional layers, and an insulating sealing part formed on the light emitting part,
    The plurality of functional layers are formed on the lower functional layer in a state having an opening in a portion corresponding to a partial region of the lower functional layer and a lower functional layer having an upper layer made of a conductive material. An upper functional layer,
    The sealing portion is formed in units of atomic layers on a first sealing layer formed on the upper functional layer excluding a peripheral surface constituting the opening in the upper functional layer, and on the first sealing layer. A second sealing layer,
    The upper functional layer has one or more layers made of a conductive material, and a portion of the conductive material that is exposed to the opening is oxidized,
    The light emitting element in which the oxidation part is covered with the second sealing layer.
  2.  前記下側機能層の前記一部領域に異物が付着され、
     前記異物は、当該異物上に上側機能層と同じ材料の層と第1封止層と同じ材料の層とが形成された状態で、前記第2封止層により被覆されている
     請求項1に記載の発光素子。
    Foreign matter is attached to the partial area of the lower functional layer,
    The foreign matter is covered with the second sealing layer in a state where a layer of the same material as the upper functional layer and a layer of the same material as the first sealing layer are formed on the foreign matter. The light emitting element of description.
  3.  前記下側機能層の前記一部領域は、前記異物付着している部分を除いて、前記第2封止層により被覆されている
     請求項2に記載の発光素子。
    The light emitting device according to claim 2, wherein the partial region of the lower functional layer is covered with the second sealing layer except for a portion where the foreign matter is attached.
  4.  前記下側機能層における前記導電材料からなる層は陽極であり、
     前記上側機能層は、発光機能層と、当該発光機能層上に形成された陰極とを含み、
     前記上側機能層における導電材料からなる層は陰極を含む
     請求項1から3の何れか1項に記載の発光素子。
    The layer made of the conductive material in the lower functional layer is an anode,
    The upper functional layer includes a light emitting functional layer and a cathode formed on the light emitting functional layer,
    The light emitting device according to any one of claims 1 to 3, wherein the layer made of a conductive material in the upper functional layer includes a cathode.
  5.  前記発光機能層は、発光材料を含む発光層と、前記発光層に電子を輸送する電子輸送層とを含む
     請求項4に記載の発光素子。
    The light emitting device according to claim 4, wherein the light emitting functional layer includes a light emitting layer containing a light emitting material, and an electron transport layer that transports electrons to the light emitting layer.
  6.  前記下側機能層は、陽極と、陽極上に形成された発光層と、発光層上に形成された電子輸送層とを含み、当該電子輸送層が前記導電材料からなる層であり、
     前記上側機能層は陰極を含み、前記上側機能層における導電材料からなる層は陰極である
     請求項1から3の何れか1項に記載の発光素子。
    The lower functional layer includes an anode, a light emitting layer formed on the anode, and an electron transport layer formed on the light emitting layer, and the electron transport layer is a layer made of the conductive material,
    The light emitting device according to any one of claims 1 to 3, wherein the upper functional layer includes a cathode, and the layer made of a conductive material in the upper functional layer is a cathode.
  7.  導電材料からなる層を上層に有する下側機能層と導電材料からなる層を1層以上有する上側機能層とが少なくとも積層されてなる発光部と、前記発光部上に形成された第1封止層と第2封止層とを有する絶縁性の封止部とを含む発光素子の製造方法において、
     前記下側機能層を形成する第1工程と、
     前記下側機能層の一部領域に対応する部分に開口を有する状態で、前記第1工程で形成された下側機能層上に前記上側機能層を形成する第2工程と、
     前記第2工程で形成された上側機能層における開口を構成する周面を除いて当該上側機能層上に前記第1封止層を形成する第3工程と、
     前記第3工程後に、酸素雰囲気下に晒して、第2工程で形成された上側機能層における導電性材料からなる層であって前記開口に露出する部分を酸化する第4工程と、
     前記第4工程後に、第2封止層を原子層単位で形成する第5工程と
     を行う
     発光素子の製造方法。
    A light emitting part formed by laminating at least a lower functional layer having an upper layer made of a conductive material and an upper functional layer having one or more layers made of a conductive material; and a first sealing formed on the light emitting part In a method for manufacturing a light emitting element including an insulating sealing portion having a layer and a second sealing layer,
    A first step of forming the lower functional layer;
    A second step of forming the upper functional layer on the lower functional layer formed in the first step in a state having an opening in a portion corresponding to a partial region of the lower functional layer;
    A third step of forming the first sealing layer on the upper functional layer excluding a peripheral surface constituting an opening in the upper functional layer formed in the second step;
    A fourth step of oxidizing the portion exposed to the opening in the upper functional layer formed in the second step and exposed to the oxygen atmosphere after the third step;
    A method for manufacturing a light-emitting element, comprising: performing a fifth step of forming the second sealing layer in units of atomic layers after the fourth step.
  8.  前記第5工程は、原子層成長法又は原子層堆積法により第2封止層を形成する
     請求項7に記載の発光素子の製造方法。
    The light emitting element manufacturing method according to claim 7, wherein in the fifth step, the second sealing layer is formed by an atomic layer growth method or an atomic layer deposition method.
  9.  前記第4工程は、100msecから20secの間酸素を通気させる
     請求項7又は8に記載の発光素子の製造方法。
    The method of manufacturing a light emitting element according to claim 7, wherein in the fourth step, oxygen is ventilated for 100 to 20 seconds.
PCT/JP2011/005655 2011-10-07 2011-10-07 Light-emitting element and light-emitting element manufacturing method WO2013051070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005655 WO2013051070A1 (en) 2011-10-07 2011-10-07 Light-emitting element and light-emitting element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005655 WO2013051070A1 (en) 2011-10-07 2011-10-07 Light-emitting element and light-emitting element manufacturing method

Publications (1)

Publication Number Publication Date
WO2013051070A1 true WO2013051070A1 (en) 2013-04-11

Family

ID=48043263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005655 WO2013051070A1 (en) 2011-10-07 2011-10-07 Light-emitting element and light-emitting element manufacturing method

Country Status (1)

Country Link
WO (1) WO2013051070A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768542A (en) * 2017-03-21 2018-03-06 机光科技股份有限公司 Organic light emitting device
JP2018116924A (en) * 2016-08-10 2018-07-26 株式会社半導体エネルギー研究所 Display device and manufacture method of the same
CN112614959A (en) * 2020-12-16 2021-04-06 武汉华星光电半导体显示技术有限公司 Display panel, preparation method thereof and display device
CN113809263A (en) * 2021-08-25 2021-12-17 惠州华星光电显示有限公司 Display panel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284042A (en) * 2000-03-31 2001-10-12 Denso Corp Organic el element
JP2003173873A (en) * 2001-12-06 2003-06-20 Denso Corp Manufacturing method of organic el element
JP2009081093A (en) * 2007-09-27 2009-04-16 Sony Corp Method for manufacturing light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284042A (en) * 2000-03-31 2001-10-12 Denso Corp Organic el element
JP2003173873A (en) * 2001-12-06 2003-06-20 Denso Corp Manufacturing method of organic el element
JP2009081093A (en) * 2007-09-27 2009-04-16 Sony Corp Method for manufacturing light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116924A (en) * 2016-08-10 2018-07-26 株式会社半導体エネルギー研究所 Display device and manufacture method of the same
CN107768542A (en) * 2017-03-21 2018-03-06 机光科技股份有限公司 Organic light emitting device
CN107768542B (en) * 2017-03-21 2019-10-22 机光科技股份有限公司 Organic light emitting device
CN112614959A (en) * 2020-12-16 2021-04-06 武汉华星光电半导体显示技术有限公司 Display panel, preparation method thereof and display device
CN113809263A (en) * 2021-08-25 2021-12-17 惠州华星光电显示有限公司 Display panel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10854839B2 (en) Organic el display panel and method of manufacturing organic el display panel
US8866160B2 (en) Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8519425B2 (en) Light-emitting device and manufacturing method thereof
KR101699093B1 (en) Organic el display panel and method of manufacturing same
JP6019376B2 (en) Organic EL display panel
JP6232655B2 (en) Organic EL display panel and manufacturing method thereof
WO2013031162A1 (en) El display device and method for manufacturing same
JPWO2012001727A1 (en) ORGANIC LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD, ORGANIC DISPLAY PANEL, ORGANIC DISPLAY DEVICE
JPWO2012017487A1 (en) LIGHT EMITTING ELEMENT, DISPLAY DEVICE, AND METHOD FOR MANUFACTURING LIGHT EMITTING ELEMENT
JP2018129265A (en) Organic el display panel, and method of manufacturing organic el display panel
US9246138B2 (en) Light-emitting panel, manufacturing method of light-emitting panel, and film forming system
WO2013051070A1 (en) Light-emitting element and light-emitting element manufacturing method
JP5620495B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE HAVING LIGHT EMITTING ELEMENT, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
JP6040443B2 (en) Display panel manufacturing method and display panel
KR101717333B1 (en) Light-emitting element and light-emitting element manufacturing method
US20160126489A1 (en) Light-emitting element, display device, and method for manufacturing light-emitting element
JP2019016496A (en) Organic el display panel and manufacturing method of organic el display panel
WO2013035136A1 (en) Light-emitting device and manufacturing method thereof
JP2014022221A (en) Manufacturing method of display panel
JP2013134847A (en) Display panel manufacturing method and display panel
WO2015178003A1 (en) Manufacturing method for light emitting device and light emitting device
JPWO2013051071A1 (en) Light emitting device and method for manufacturing light emitting device
JP2013110014A (en) Organic el element manufacturing method and organic el display panel
JP2016100280A (en) Organic EL panel
JP2018129264A (en) Organic el display panel, and method of manufacturing organic el display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP