WO2013047801A1 - 固体電解コンデンサの製造方法及び固体電解コンデンサ - Google Patents

固体電解コンデンサの製造方法及び固体電解コンデンサ Download PDF

Info

Publication number
WO2013047801A1
WO2013047801A1 PCT/JP2012/075184 JP2012075184W WO2013047801A1 WO 2013047801 A1 WO2013047801 A1 WO 2013047801A1 JP 2012075184 W JP2012075184 W JP 2012075184W WO 2013047801 A1 WO2013047801 A1 WO 2013047801A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal plate
plate
electrode
solid electrolytic
capacitor element
Prior art date
Application number
PCT/JP2012/075184
Other languages
English (en)
French (fr)
Inventor
茂樹 白勢
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2013047801A1 publication Critical patent/WO2013047801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09909Special local insulating pattern, e.g. as dam around component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • the present invention relates to a solid electrolytic capacitor that supports surface mounting by overlapping a terminal plate and a capacitor element.
  • the capacitor has a capacitance and is a passive element that stores and discharges charges according to the capacitance.
  • a solid electrolytic capacitor is a capacitor using a valve metal such as aluminum as an electrode, chemically processing this electrode to form a dielectric layer, and further using a conductive polymer as a solid electrolyte layer.
  • capacitors are required to have products with excellent transient response and high impedance characteristics in the high frequency range so that charge can be supplied at a faster speed than before. Yes. This is to cope with stabilization of the power supply voltage of a digital circuit that operates at a high frequency and requires a large current.
  • solid electrolytic capacitors are strongly reduced in ESR (equivalent series resistance) to cope with higher frequencies, and reduced in ESL (equivalent series inductance) excellent in noise removal and transient response.
  • ESR equivalent series resistance
  • ESL equivalent series inductance
  • a method of shortening the length of the current path as much as possible and a method of canceling the magnetic field formed by the current path by the magnetic field formed by another current path have been proposed. Yes.
  • the applicant has proposed Japanese Patent Application Laid-Open No. 2010-239091 and International Publication No. WO / 2011/02155 as a novel solid electrolytic capacitor combining a capacitor element and a substrate.
  • the capacitor element includes a dielectric oxide film layer formed on the inner surface of a recess provided in the center of the anode body, and the capacitor is interposed via the solid electrolyte layer and the cathode portion.
  • a power outlet is formed outside the device.
  • the capacitor element draws out the cathode electrode to the outside of the solid electrolytic capacitor through the mounting substrate, and the anode around the central portion of the capacitor element is drawn out through the anode portion and the conductor of the mounting substrate. .
  • both the anode and the cathode can shorten the current path inside the solid electrolytic capacitor.
  • the solid electrolytic capacitor disclosed in International Publication No. WO / 2011/02155 includes the following terminal plate as a substrate to be combined with the capacitor element. That is, on the terminal plate, an anode electrode plate and a cathode electrode plate made of a thin metal plate are arranged on the same plane with a gap therebetween. An insulating resin is interposed between the gap between the anode electrode plate and the cathode electrode plate, and the anode electrode plate and the cathode electrode plate are electrically insulated by the insulating resin, and both electrode portions are integrated into a sheet shape. .
  • Such a terminal plate is superimposed on the connection surface of the capacitor element, and the anode electrode plate of the terminal plate is electrically connected to the anode lead portion of the capacitor element, and the cathode electrode of the terminal plate is electrically connected to the cathode lead portion of the capacitor element.
  • the distance from the anode lead portion and the cathode lead portion of the capacitor element to the anode electrode plate and the cathode electrode plate of the terminal plate, which is the current outlet is achieved only by the distance of the thickness of the terminal plate. This is possible, and the current path can be shortened.
  • the distance from the capacitance forming portion of the solid electrolytic capacitor to the electrode as the power outlet is extremely high. This shortens the thickness and makes it possible to reduce the thickness of the solid electrolytic capacitor. Therefore, the current path can be shortened to reduce the ESL, and a solid electrolytic capacitor with excellent overresponse characteristics can be realized.
  • the gap between the capacitor element and the terminal plate is small, and high-level care is required even under advanced technology to fill the sealing resin so as to reliably cover all the portions that require insulation. For this reason, the addition of the step of filling the sealing resin has led to a decrease in production efficiency of the solid electrolytic capacitor.
  • the present invention has been proposed to solve the above-described problems, and the manufacture of a solid electrolytic capacitor capable of more reliably and simply insulating the capacitor element and the terminal plate by the sealing resin.
  • the object is to provide a method and a solid electrolytic capacitor.
  • an aspect of the present invention is a method of manufacturing a solid electrolytic capacitor in which a capacitor element is superimposed on a terminal plate, and a dielectric oxide film layer, a solid
  • the capacitor element having an electrolyte layer, a cathode portion having an electrode lead portion, and an anode portion having an electrode lead portion formed on a part of the valve action metal is formed, and the anode electrode plate and the cathode electrode plate are on the same plane.
  • the conductive resin is disposed on the cathode electrode plate of the terminal plate, and the capacitor element and the terminal plate are overlapped while being pressed, and the electrode lead portion is In front of terminal board Contacting the anode electrode plate, curing the said conductive adhesive and the sealing resin, and wherein.
  • the capacitor element and the terminal plate may be superposed while being pressed and heated to cure the sealing resin and the conductive adhesive.
  • the conductive adhesive may be solvent-free.
  • the electrode lead-out portion is a sharpened bump electrode, and during the superposition, the bump electrode penetrates the sealing resin, and the anode portion and the anode electrode plate are electrically connected via the bump electrode. May be connected to each other.
  • the bump electrode may be brought into pressure contact with the anode electrode plate by pressurization when the sealing resin is cured.
  • another aspect of the present invention is a solid electrolytic capacitor in which a capacitor element is superposed on a terminal plate, wherein the capacitor element is erected on an anode portion of the capacitor element, and the anode of the terminal plate A plurality of bump electrodes whose ends are crushed in contact with the electrode plate; a sealing resin interposed between the capacitor element and the terminal plate; and penetrating through the bump electrode; a cathode portion of the capacitor element; A conductive adhesive interposed between the cathode electrode plate of the terminal plate and the bump electrode and the anode electrode plate of the terminal plate are connected to each other by pressure welding.
  • the present invention it is not necessary to fill the sealing resin from the gap between the capacitor element and the terminal plate, and the process of sealing the solid electrolytic capacitor with the sealing resin becomes extremely simple. Moreover, it can insulate by covering the location which requires insulation reliably with sealing resin more reliably.
  • FIG. 1A and 1B are schematic views showing a capacitor element, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view.
  • a capacitor element 10 shown in FIG. 1 is a substantially square plate having a thickness of about 100 to 500 ⁇ m, and has an anode lead portion 13 of an anode portion along each side of the square plate, and a cathode of a cathode portion at the center portion. It has a drawer 14.
  • the anode lead portion 13 and the cathode lead portion 14 are separated by a separation layer 15.
  • a large number of bump electrodes 16 are erected on the surface of the anode lead portion 13.
  • the capacitor element 10 is formed of a valve metal plate or a valve metal foil that functions as the anode body 11.
  • aluminum will be described as an example of the valve metal.
  • An etching layer 12 is formed at the center of one surface of the anode body 11, a dielectric oxide film serving as a dielectric layer is formed on the etching layer 12, and a cathode lead portion 14 is formed on the surface thereof.
  • the cathode lead portion 14 includes a solid electrolyte layer, a graphite layer, and a silver paste layer.
  • the etching layer 12 is a porous layer that has been enlarged by an etching process.
  • the etching layer 12 is formed with a depth of about 40 ⁇ m. Therefore, the thickness of the unetched layer of the anode body is about 60 ⁇ m. Both end portions of the anode body 11 are unetched portions, and the unetched portions serve as the anode lead portion 13.
  • the dielectric oxide film is formed by anodization, and a dielectric oxide film made of aluminum oxide is formed on the surface of aluminum that has been etched to form a porous layer (the inner surface of the etching layer 12).
  • a predetermined voltage is applied while the etching layer 12 is immersed in an aqueous solution such as boric acid or adipic acid.
  • the solid electrolyte layer is obtained by sequentially immersing the anode body 11 in a polymerizable monomer solution and an oxidizer solution, and pulling up from each solution to advance the polymerization reaction so that each solution penetrates into the etching layer 12 and the dielectric oxide film. Form on top.
  • the solid electrolyte layer may be formed by a method of applying or discharging a polymerizable monomer solution and an oxidant solution from the etching layer 12. Moreover, the method of immersing the anode body 11 in the mixed solution which mixed the polymerizable monomer solution and the oxidizing agent, or apply
  • the solid electrolyte layer can also be formed by electrolytic polymerization used in the field of solid electrolytic capacitors, or by applying and drying a conductive polymer dispersion or a soluble conductive polymer solution.
  • Thiophene, pyrrole, or derivatives thereof can be suitably used as the polymerizable monomer solution used in these solid electrolyte formation methods.
  • thiophene derivatives 3,4-ethylenedioxythiophene is preferably used.
  • ferric paratoluenesulfonate dissolved in ethanol, periodic acid, or an aqueous solution of iodic acid can be used.
  • the separation layer 15 is located at the boundary between the inner periphery of the anode lead portion 13 and the outer periphery of the cathode lead portion 14 to insulate the anode lead portion 13 and the cathode lead portion 14 of the cathode lead portion 14 from each other.
  • the separation layer 15 is formed by applying an insulating resin between the anode lead portion 13 and the cathode lead portion 14. An insulating resin may also be applied on the outer periphery of the anode lead portion 13.
  • the bump electrode 16 is an example of an electrode lead portion that allows the anode lead portion 13 and an anode electrode plate 22 of the terminal plate 20 to be described later to conduct.
  • the bump electrode 16 has a sharpened quadrangular pyramid or conical shape, and the tip is crushed by an external force. Such a flexible protruding electrode.
  • Terminal board 2A and 2B are schematic views showing a terminal plate, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional view.
  • a terminal board 20 shown in FIG. 2 is a terminal portion connected to a printed circuit board, and has a mounting land that substantially matches the capacitor element 10. That is, the terminal plate 20 is provided with a cathode electrode plate 21 at the center, and an anode electrode plate 22 is provided so as to surround four sides of the cathode electrode plate 21. The four sides of the anode electrode plate 22 and the cathode electrode plate 21 are insulated by an insulating resin 23.
  • the anode electrode plate 22 and the cathode electrode plate 21 are each made of a thin metal plate.
  • An example of the metal plate is a thin copper plate having a thickness of about 5 to 100 ⁇ m, and examples thereof include a rolled copper foil and a copper alloy foil.
  • the metal plate to be the cathode electrode plate 21 has a square shape, and the metal plate to be the anode electrode plate 22 has a square hole.
  • the hole of the metal plate used as the anode electrode plate 22 is larger than the square shape of the cathode electrode plate 21.
  • the anode electrode plate 22 and the cathode electrode plate 21 are arranged on the same plane with a gap of about 0.1 mm so that the anode electrode plate 22 surrounds the cathode electrode plate 21.
  • an insulating resin 23 is interposed so as to fill a gap existing between the anode electrode plate 22 and the cathode electrode plate 21, and the two metal plates are integrated while being kept on the same plane. That is, the insulating resin 23 is an insulating member that electrically insulates the cathode electrode plate 21 and the anode electrode plate 22, and at the same time, is a binder that integrates the cathode electrode plate 21 and the anode electrode plate 22.
  • the insulating resin 23 has insulating properties, adhesion to both electrode plates 21 and 22, strength, and the like suitable for a solid electrolytic capacitor, and examples thereof include a polyester resin, a polyimide resin, and a liquid crystal polymer.
  • the terminal plate 20 is formed by disposing the cathode electrode plate 21 and the anode electrode plate 22 on the same plane, filling the gap with an insulating resin 23, and thermosetting.
  • the insulating resin 23 may be applied to the peripheral edges of the cathode electrode plate 21 and the anode electrode plate 22 continuous from the gap portion in addition to the gap portion to enhance the strength of integration.
  • FIG. 3 is a diagram showing a mounting relationship between the capacitor element 10 and the terminal board 20.
  • the solid electrolytic capacitor is configured by superposing the capacitor element 10 on the terminal plate 20 so that the surface on which the anode lead portion 13 and the cathode lead portion 14 are formed is directed.
  • the anode lead portion 13 is mounted by an electrode lead portion such as the bump electrode 16, and the cathode lead portion 14 is mounted via a conductive adhesive.
  • FIG. 4 is a diagram showing a first step relating to the manufacture of a solid electrolytic capacitor, wherein (a) is a side sectional view and (b) is a top view.
  • the sealing resin 30 is disposed on the entire periphery on the mounting surface on which the capacitor elements 10 of the terminal board 20 are superimposed.
  • the sealing resin 30 is disposed by coating so as to cover other than the cathode electrode plate 21 including the entire surface of the anode electrode plate 22.
  • the sealing resin 30 may be disposed so as to cover the periphery of the cathode electrode plate 21.
  • the sealing resin 30 is a thermosetting insulating resin that fills the gap between the terminal plate 20 and the capacitor element 10.
  • the sealing resin 30 is an epoxy resin, a polyester resin, or a polyimide resin whose insulating properties, adhesion between the capacitor element 10 and the terminal plate 20, strength, and the like are suitable for a solid electrolytic capacitor.
  • the sealing resin 30 is applied and arranged with its thickness adjusted so as to be approximately the same as the height of the bump electrode 16 whose tip is crushed when pressed.
  • the paste-like sealing resin 30 may be discharged or printed, or the film-like sealing resin 30 may be attached.
  • FIG. 5 is a diagram showing a second step relating to the manufacture of the solid electrolytic capacitor, in which (a) is a side sectional view and (b) is a top view.
  • the conductive adhesive 40 is applied to the exposed surface of the cathode electrode plate 21.
  • a conductive filler is dispersed in a binder such as a liquid resin that is quickly cured by heat.
  • conductive filler gold powder, silver powder, copper powder, nickel powder, aluminum powder, plating powder, carbon powder, graphite powder and the like having various particle sizes and shapes are used.
  • Typical shapes of the conductive filler include, but are not limited to, a spherical shape, a needle shape, and a scale shape. Moreover, you may mix
  • the binder is mainly an organic binder, and generally an epoxy resin can be used. Further, urethane, silicone, acrylic, polyimide, other thermosetting resins or thermoplastic resins may be used according to the required characteristics of the solid electrolytic capacitor and the use location.
  • a low-melting glass can be used as a secondary binder.
  • the step of applying the sealing resin 30 and the step of applying the conductive adhesive 40 may be performed in the reverse order.
  • FIG. 6 is a side sectional view showing a third step relating to the manufacture of the solid electrolytic capacitor. After the conductive adhesive 40 is formed on the cathode electrode plate 21, the capacitor element 10 is placed on the terminal plate 20, held under pressure, and then pressurized for about 10 seconds or less while heating.
  • the capacitor element 10 is placed on the terminal plate 20 with the anode lead portion 13 and the anode electrode plate 22 facing each other and the cathode lead portion 14 and the conductive adhesive 40 facing each other. Since the bump electrode 16 is sharpened, it penetrates the sealing resin 30 and reaches the anode electrode plate 22. As shown in FIG. 7, the bump electrode 16 that has reached the anode electrode plate 22 is pressed against the anode electrode plate 22 while its tip is crushed by the flexibility of the bump electrode 16 and the shrinkage stress of the sealing resin 30. Connection can be achieved.
  • the bump electrode 16 may be connected to the anode electrode plate 22 as shown in FIG.
  • a conductive adhesive 41 is applied in advance to the surface of the anode electrode plate 22 or the surface of the bump electrode 16, and the bump electrode 16 is attached to the anode electrode plate 22 with the adhesive. You may join to.
  • the surface of the anode electrode plate 22 is preliminarily plated with gold or the like, and the bump electrode 16 and the plating are melted by heat to perform metal bonding. Good.
  • the sealing resin 30 is applied to the entire periphery on the mounting surface of the terminal board 20. Then, after the sealing resin 30 is applied, the capacitor element 10 and the terminal plate 20 are overlapped. Therefore, it is not necessary to fill the sealing resin from the gap between the capacitor element 10 and the terminal plate 20, and the process of sealing the solid electrolytic capacitor with the sealing resin 30 is extremely simple. In addition, it is possible to reliably cover and insulate the portion requiring insulation with the sealing resin 30.
  • the sealing resin 30 is applied before superposition, the gap between the capacitor element 10 and the terminal plate 20 is filled with the sealing resin 30 before the conductive adhesive 40 is thermally cured. There are cases where this would happen. In that case, a large amount of gas is generated from the conductive adhesive 40 when pressurizing the capacitor element 10 and the terminal plate 20 while applying heat by making the conductive adhesive 40 solvent-free so that gas is not easily generated. There is no risk of doing so. Therefore, even if the sealing resin 30 is applied before the capacitor element 10 and the terminal plate 20 are overlaid, a solid electrolytic capacitor with good sealing performance can be manufactured.
  • the sharpened bump electrode 16 is erected on the anode lead-out portion 13, even if the anode electrode plate 22 is covered with the sealing resin 30, the bump electrode 16 penetrates the sealing resin 30 and is connected to the terminal. It reaches the anode electrode plate 22 of the plate 20. Therefore, even if the anode electrode plate 22 is covered with the sealing resin 30, there is no problem in conduction. Therefore, the process of applying the sealing resin 30 can be further simplified. Further, it is possible to more reliably insulate a portion that requires insulation between the capacitor element 10 and the terminal plate 20.
  • the bump electrode 16 is previously brought into pressure contact with the anode electrode plate 22 in a state in which the tip is crushed, and thereafter, heating and pressurization for curing the sealing resin 30 and the conductive adhesive 40 are performed. Since the shrinkage stress due to the sealing resin 30 or the conductive adhesive 40 is applied to the bump electrode 16, the bump electrode 16 and the anode electrode plate 22 are merely brought into pressure contact and the electrically conductive state is maintained. Therefore, the bump electrode 16 only needs to be brought into pressure contact with the anode electrode plate 22, and the work process can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

封止樹脂によるコンデンサ素子と端子板との絶縁をより確実且つ簡便に図ることのできる固体電解コンデンサの製造方法、及び固体電解コンデンサを提供する。弁作用金属の一部を拡面化して誘電体酸化皮膜層、固体電解質層、及び電極引出部を形成した陰極部、及び弁作用金属の一部に電極引出部を形成した陽極部を有するコンデンサ素子を形成する。陽極電極板及び陰極電極板を同一平面上に間隙を保って配置して、その間隙に絶縁樹脂を介在させた端子板を形成する。コンデンサ素子を端子板に重ね合わせる前に、端子板の陽極電極板上に未硬化の封止樹脂を配置するとともに、端子板の陰極電極板に導電性接着剤を配置しておく。そして、コンデンサ素子と端子板とを加圧しながら重ね合わせて、電極引出部を端子板の陽極電極板に接触させ、封止樹脂と導電性接着剤とを硬化させる。

Description

固体電解コンデンサの製造方法及び固体電解コンデンサ
 本発明は、端子板とコンデンサ素子とを重ね合わせることで面実装に対応した固体電解コンデンサに関する。
 コンデンサは、静電容量を有し、この静電容量に応じた電荷の蓄電及び放電を行う受動素子である。固体電解コンデンサは、一方のアルミニウムなどの弁作用金属を電極とし、この電極を化学処理して誘電体層を形成し、さらに導電性高分子を固体電解質層として用いたコンデンサである。
 近年の電子機器の高周波化に伴い、コンデンサは、従来よりも十分な速さで電荷供給ができるように過渡応答性に優れ、従来よりも高周波領域でのインピーダンス特性に優れた製品が求められている。これは、大高周波数で動作し、かつ大電流が求められるデジタル回路の電源電圧安定化に対応するためである。
 そこで、この要求に応えるべく、固体電解コンデンサにおいては、高周波化に対応するための低ESR(等価直列抵抗)化、及びノイズ除去や過渡応答性に優れた低ESL(等価直列インダクタンス)化が強く要求される。固体電解コンデンサにおいて低ESL化を図るためには、電流経路の長さを極力短くする方法、また電流経路によって形成される磁場を別の電流経路によって形成される磁場により相殺する方法が提案されている。
 例えば、出願人は、コンデンサ素子と基板を組み合わせた新規な固体電解コンデンサとして、特開2010-239091号公報や国際公開公報WO/2011/02155号を提案している。このうち、特開2010-239091号公報の固体電解コンデンサにおいて、コンデンサ素子は、陽極体の中央に設けた凹部の内面に誘電体酸化皮膜層を形成し、固体電解質層および陰極部を介してコンデンサ素子の外部に電力の引き出し口を形成する。
 さらに、コンデンサ素子は、搭載基板を介して固体電解コンデンサの外部に陰極電極を引き出すと共に、コンデンサ素子の中央部分の周囲を陽極部とし、この陽極部および搭載基板の導体を介して陽極電極を引き出す。このような固体電解コンデンサによれば、陽極、陰極とも固体電解コンデンサ内部での電流経路を短くすることができる。
 また、国際公開公報WO/2011/02155号の固体電解コンデンサでは、コンデンサ素子と組み合わせる基板として、次のような端子板を備えている。すなわち、端子板には、薄い金属板からなる陽極電極板および陰極電極板を同一平面上に間隙を保って配置する。これら陽極電極板と陰極電極板の間隙部には絶縁性樹脂を介在させ、絶縁性樹脂により陽極電極板と陰極電極板とを電気的に絶縁すると共に両電極部をシート状に一体化している。
 このような端子板をコンデンサ素子の接続面に重ね合わせ、コンデンサ素子の陽極引出部に端子板の陽極電極板を、コンデンサ素子の陰極引出部に端子板の陰極電極を、それぞれ電気的に接続する。このような技術によれば、コンデンサ素子の陽極引出部および陰極引出部から、電流の出口である端子板の陽極電極板および陰極電極板までの距離が、端子板の厚さの距離だけで達成可能であり、電流経路の短縮化を図ることができる。
 上述した特開2010-239091号公報や国際公開公報WO/2011/02155号に開示された技術では、いずれも、固体電解コンデンサの容量形成部から、電力の引き出し口としての電極までの距離が極めて短くなり、また、固体電解コンデンサの薄型化を進めることができる。したがって、電流経路の短縮化を図って低ESL化を進めることができ、過応答特性の良好な固体電解コンデンサが実現可能となる。
特開2010-239091号公報 WO/2011/02155号公報
 特許文献1及び2に示された固体電解コンデンサは、まず、陽極引出部又は陽極電極板に導電性接着剤を塗布し、陰極引出部又は陰極電極板に導電性接着剤を塗布し、コンデンサ素子と端子板とを重ね合わせ、隙間から絶縁性の封止樹脂を充填して熱硬化させることによって製造されていた。
 しかしながら、コンデンサ素子と端子板との隙間は小さく、絶縁を要する箇所の全てを確実に覆うように封止樹脂を充填するには高度な技術の下でも高度な注意を要していた。また、そのために、この封止樹脂を充填する工程が追加されることは、固体電解コンデンサの生産効率の低下に繋がっていた。
 そこで、本発明は、上記のような問題点を解決するために提案されたもので、封止樹脂によるコンデンサ素子と端子板との絶縁をより確実且つ簡便に図ることのできる固体電解コンデンサの製造方法、及び固体電解コンデンサを提供することを目的とする。
 上記目的を達成すべく、本発明の態様は、コンデンサ素子を端子板に重ね合わせた固体電解コンデンサの製造方法であって、弁作用金属の一部を拡面化して誘電体酸化皮膜層、固体電解質層、及び電極引出部を形成した陰極部、及び前記弁作用金属の一部に電極引出部を形成した陽極部を有する前記コンデンサ素子を形成し、陽極電極板及び陰極電極板を同一平面上に間隙を保って配置して、その間隙に絶縁樹脂を介在させた前記端子板を形成し、前記コンデンサ素子を前記端子板に重ね合わせる前に、前記端子板の前記陽極電極板上に未硬化の封止樹脂を配置するとともに、前記端子板の前記陰極電極板に導電性接着剤を配置しておき、前記コンデンサ素子と前記端子板とを加圧しながら重ね合わせて、前記電極引出部を前記端子板の前記陽極電極板に接触させ、前記封止樹脂と前記導電性接着剤とを硬化させること、を特徴とする。
 前記コンデンサ素子と前記端子板とを加圧しながら重ね合わせるとともに加熱し、前記封止樹脂と前記導電性接着剤とを硬化させるようにしてもよい。
 前記導電性接着剤は、無溶剤としてもよい。
 前記電極引出部は、先鋭化されたバンプ電極であり、重ね合わせの際に、前記バンプ電極が前記封止樹脂を貫通して、前記バンプ電極を介して前記陽極部と前記陽極電極板を電気的に接続するようにしてもよい。
 前記バンプ電極は、前記封止樹脂を硬化させる際の加圧によって前記陽極電極板と圧接するようにしてもよい。
 また、上記目的を達成すべく、本発明の他の態様は、コンデンサ素子を端子板に重ね合わせてなる固体電解コンデンサであって、前記コンデンサ素子の陽極部に立設し、前記端子板の陽極電極板に当接して先端が潰れた複数のバンプ電極と、前記コンデンサ素子と前記端子板との間に介在し、前記バンプ電極に貫通された封止樹脂と、前記コンデンサ素子の陰極部と前記端子板の陰極電極板との間に介在する導電性接着剤と、を備え、前記バンプ電極と前記端子板の陽極電極板とは、圧接加圧により接続されていること、を特徴とする。
 本発明によれば、コンデンサ素子と端子板との隙間から封止樹脂を充填する必要はなく、固体電解コンデンサを封止樹脂によって封止する工程は極めて簡便なものとなる。また、確実に絶縁を要する箇所を封止樹脂でより確実に覆うことで絶縁することができる。
コンデンサ素子を示す模式図であり、(a)は平面図、(b)は断面図である。 端子板を示す模式図であり、(a)は平面図、(b)は断面図である。 コンデンサ素子と端子板との実装関係を示す図である。 固体電解コンデンサの製造に係る第1のステップを示す図であり、(a)は側断面図、(b)は上面図である。 固体電解コンデンサの製造に係る第2のステップを示す図であり、(a)は側断面図、(b)は上面図である。 固体電解コンデンサの製造に係る第3のステップを示す側断面図である。 陽極引出部の接続の一例を示す図である。 陽極引出部の接続の他の例を示す図である。
 以下、本発明に係る固体電解コンデンサ、及びその製造方法の実施形態について図面を参照しつつ詳細に説明する。
 (コンデンサ素子)
 図1は、コンデンサ素子を示す模式図であり、(a)は平面図、(b)は断面図である。図1に示すコンデンサ素子10は、100~500μm程度の厚みを有する略正方形の板であり、正方形板の各辺に沿って陽極部の陽極引出部13を有し、中心部に陰極部の陰極引出部14を有する。陽極引出部13と陰極引出部14とは、分離層15で区分されている。陽極引出部13の表面には、多数のバンプ電極16が立設されている。
 このコンデンサ素子10は、陽極体11として機能する弁金属板または弁金属箔から形成される。この実施形態では、弁金属として、アルミニウムを例として説明する。陽極体11の片面中央部にはエッチング層12が形成され、エッチング層12には誘電体層となる誘電体酸化皮膜が形成され、その表面に陰極引出部14が形成される。陰極引出部14は、固体電解質層、グラファイト層、及び銀ペースト層からなる。
 エッチング層12は、エッチング処理により拡面化された多孔質の層である。例えば、厚さ100μm程度の陽極体11であれば、エッチング層12は、40μm程度の深さで形成する。従って、陽極体のエッチングされなかった層の厚さは60μm程度となる。陽極体11の両端部は、未エッチング部であるが、この未エッチング部が陽極引出部13となる。
 誘電体酸化皮膜は、陽極酸化処理にて形成し、エッチングされ多孔質層となったアルミニウムの表面(エッチング層12の内部の表面)に酸化アルミニウムからなる誘電体酸化皮膜を形成する。陽極酸化は、エッチング層12をホウ酸やアジピン酸等の水溶液に浸漬した状態で所定の電圧を印加する。
 固体電解質層は、陽極体11を重合性モノマー溶液と酸化剤溶液に順次浸漬し、各液より引き上げて重合反応を進めることにより、エッチング層12の内部に各液が浸透し、誘電体酸化皮膜の上に形成する。この固体電解質層の形成は、重合性モノマー溶液と酸化剤溶液をエッチング層12の上から塗布または吐出する方法によって形成してもよい。また、重合性モノマー溶液と酸化剤を混合した混合溶液に陽極体11を浸漬したり、塗布したりする方法であってもよい。また、固体電解コンデンサの分野で用いられる電解重合による方法や、導電性高分子の分散液や可溶性導電性高分子溶液を塗布・乾燥によっても固体電解質層を形成することもできる。
 これらの固体電解質の形成方法に用いられる重合性モノマー溶液としては、チオフェン、ピロール、またはそれらの誘導体を好適に使用することができる。チオフェン誘導体の中でも、3,4-エチレンジオキシチオフェンを用いると好適である。酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸、もしくはヨウ素酸の水溶液を用いることができる。
 分離層15は、陽極引出部13の内周囲と陰極引出部14の外周囲との境界に位置し、陰極引出部14の陽極引出部13と陰極引出部14との絶縁を図っている。この分離層15は、陽極引出部13と陰極引出部14との間に絶縁性の樹脂を塗布することで形成されている。陽極引出部13の外周囲においても絶縁性の樹脂を塗布してもよい。
 バンプ電極16は、陽極引出部13と後述する端子板20の陽極電極板22とを導通させる電極引出部の一例であり、先鋭化された四角錐や円錐形状を有し、外力によって先端が潰れるような可撓性の突起電極である。
 (端子板)
 図2は、端子板を示す模式図であり、(a)は平面図、(b)は断面図である。図2に示す端子板20は、プリント基板に接続される端子部分であり、コンデンサ素子10とほぼ合致する搭載ランドを有する。すなわち、端子板20には、中心に陰極電極板21が設けられ、その陰極電極板21の四方を囲むように陽極電極板22が設けられている。四方の陽極電極板22と陰極電極板21との間は、絶縁性樹脂23によって絶縁されている。
 陽極電極板22及び陰極電極板21は、それぞれ薄い金属板からなる。金属板としては、例えば、厚さが5~100μm程度の薄い銅板であり、圧延銅箔や銅合金箔を挙げることができる。陰極電極板21となる金属板は、正方形状を有し、陽極電極板22となる金属板は、正方形形状の穴を有する。陽極電極板22となる金属板の穴は、陰極電極板21の正方形状によりも大きい。この陽極電極板22と陰極電極板21とは、陽極電極板22が陰極電極板21を囲むように同一平面上に0.1mm程度の間隙を保って配置される。
 そして、陽極電極板22と陰極電極板21との間に存在する隙間を埋めるように絶縁性樹脂23が介在し、両金属板を同一平面上に保ちながら一体化させている。すなわち、絶縁性樹脂23は、陰極電極板21と陽極電極板22とを電気的に絶縁する絶縁部材であると同時に、陰極電極板21と陽極電極板22とを一体化するバインダーである。絶縁性樹脂23は、絶縁性、両電極板21,22との密着性、強度等が固体電解コンデンサに適合するものであり、例えばポリエステル樹脂、ポリイミド樹脂、液晶ポリマー等が挙げられる。
 この端子板20は、陰極電極板21と陽極電極板22とを同一平面上に配置し、隙間部を絶縁性樹脂23で埋めて、熱硬化させることで形成される。尚、絶縁性樹脂23は、隙間部の他、隙間部から連続する陰極電極板21と陽極電極板22の表面周縁に塗布し、一体化の強度を増強するようにしてもよい。
 (固体電解コンデンサの製造方法)
 図3は、コンデンサ素子10と端子板20との実装関係を示す図である。図3に示すように、固体電解コンデンサは、陽極引出部13及び陰極引出部14が形成されている面を向けて、コンデンサ素子10を端子板20に重ね合わせることにより構成される。この固体電解コンデンサにおいて、陽極引出部13は、バンプ電極16などの電極引出部による実装であり、陰極引出部14に関しては導電性接着剤を介した実装である。
 図4は、固体電解コンデンサの製造に係る第1のステップを示す図であり、(a)は側断面図、(b)は上面図である。まず、図4の(a)に示すように、端子板20のコンデンサ素子10を重ね合わせる搭載面上の周縁全体に封止樹脂30を塗布により配置する。例えば、封止樹脂30は、図4の(b)に示すように、陽極電極板22の表面全体も含めて、陰極電極板21以外を覆うように封止樹脂30が塗布により配置される。封止樹脂30で陰極電極板21の周縁も含めて覆うように配置してもよい。
 この封止樹脂30は、端子板20とコンデンサ素子10との隙間を埋める熱硬化性の絶縁樹脂である。例えば、封止樹脂30は、絶縁性、コンデンサ素子10と端子板20との密着性、強度等が固体電解コンデンサに適合するエポキシ樹脂、ポリエステル樹脂、又はポリイミド樹脂である。
 この封止樹脂30は、加圧された際に先端の潰れたバンプ電極16の高さと同程度となるように、その厚みが調節されて塗布して配置される。封止樹脂30の配置態様としては、ペースト状の封止樹脂30を吐出したり、印刷したりすればよく、また、フィルム状の封止樹脂30を貼り付けるようにして配置してもよい。
 図5は、固体電解コンデンサの製造に係る第2のステップを示す図であり、(a)は側断面図、(b)は上面図である。封止樹脂30で陰極電極板21以外をマスクした後は、陰極電極板21の露出面に導電性接着剤40を塗布する。
 導電性接着剤40としては、ガスの発生が少ない無溶剤が用いられることが望ましい。この導電性接着剤40は、熱により速硬化する液状樹脂等のバインダーに導電フィラーが分散されている。
 導電フィラーとしては、各種粒径や形状の金粉、銀粉、銅粉、ニッケル粉、アルミ粉、メッキ粉、カーボン粉、グラファイト粉などが使用される。導電フィラーの代表的な形状は、球状や針状、鱗片状等があるがこれらに限定されない。また、粒径や形状が異なる導電フィラーを組み合わせて配合されていてもよい。
 バインダーとしては、主に有機バインダーであり、一般的にはエポキシ樹脂を用いることができる。また、固体電解コンデンサの要求特性や使用箇所に応じてウレタン、シリコーン、アクリル、ポリイミド、その他の熱硬化性樹脂や熱可塑性樹脂を使用してもよい。無機材料としては、高温焼成型の導電性接着剤40の場合、2次バインダーとして低融点ガラスを使用することができる。
 なお、この第1ステップから第3ステップにおいて、封止樹脂30を塗布する工程と、導電性接着剤40を塗布する工程を、反対の順番で行ってもよい。
 図6は、固体電解コンデンサの製造に係る第3のステップを示す側断面図である。陰極電極板21に導電性接着剤40を形成した後は、コンデンサ素子10を端子板20に載置し、加圧保持し、それから熱を加えながら10秒以下程度加圧を維持する。
 このとき、陽極引出部13と陽極電極板22とを対向させ、陰極引出部14と導電性接着剤40とを対向させて、コンデンサ素子10を端子板20に載置する。バンプ電極16は、先鋭化しているので封止樹脂30を貫通して陽極電極板22に至る。図7に示すように、陽極電極板22に到達したバンプ電極16は、バンプ電極16の可撓性と封止樹脂30の収縮応力とによって、先端が潰れながら陽極電極板22と圧接し、電気的な接続が図れる。
 尚、陽極引出部13の接続においては、図8で示されるようにしてバンプ電極16を陽極電極板22に接続してもよい。例えば、図8の(a)に示すように、予め、陽極電極板22の表面又はバンプ電極16の表面に導電性接着剤41を塗布しておき、接着剤によってバンプ電極16を陽極電極板22に接合してもよい。また、図8の(b)に示すように、予め陽極電極板22の表面に金等によるメッキ42を施しておき、バンプ電極16とメッキとを熱によって溶融させて金属接合するようにしてもよい。
 (作用効果)
 このように、固体電解コンデンサは、まず、端子板20の搭載面上の周縁全体に封止樹脂30を塗布しておく。そして、封止樹脂30の塗布の後、コンデンサ素子10と端子板20とを重ね合わせる。そのため、コンデンサ素子10と端子板20との隙間から封止樹脂を充填する必要はなく、固体電解コンデンサを封止樹脂30によって封止する工程は極めて簡便なものとなる。また、確実に絶縁を要する箇所を封止樹脂30で確実に覆って絶縁することができる。
 このとき、重ね合わせの前に封止樹脂30を塗布してしまうと、導電性接着剤40を熱硬化させる前に、コンデンサ素子10と端子板20との隙間が封止樹脂30で埋められてしまうケースも考えられる。その場合は導電性接着剤40をガスが発生しにくい無溶剤とすることで、コンデンサ素子10と端子板20とを熱を与えながら加圧する際に、大量のガスが導電性接着剤40から発生するおそれはなくなる。従って、コンデンサ素子10と端子板20とを重ね合わせる前に封止樹脂30を塗布したとしても、封口性能が良好な固体電解コンデンサを製造することができる。
 また、陽極引出部13に先鋭化されたバンプ電極16を立設させておけば、封止樹脂30で陽極電極板22を覆ってしまっても、バンプ電極16が封止樹脂30を貫いて端子板20の陽極電極板22に至る。従って、封止樹脂30で陽極電極板22を覆ってしまっても導電に問題は生じない。そのため、封止樹脂30を塗布する工程を更に簡便化することができる。また、コンデンサ素子10と端子板20との間の絶縁を要する箇所を更に確実に絶縁することができる。
 このバンプ電極16は予め陽極電極板22に先端が潰れた状態で圧接させておき、その後に封止樹脂30と導電性接着剤40とを硬化させるための加熱及び加圧を実施する。バンプ電極16には封止樹脂30や導電性接着剤40による収縮応力がかかるため、バンプ電極16と陽極電極板22とは圧接させるのみで、電気的に導通した状態が維持される。そのため、バンプ電極16は陽極電極板22に圧接させるのみでよく、作業工程の簡便化を図ることができる。
 以上のように、本明細書においては、本発明に係る実施形態を例として提示したが、発明の範囲を限定することを意図したものではなく、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。そして、本実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10 コンデンサ素子
11 陽極体
12 エッチング層
13 陽極引出部
14 陰極引出部
15 分離部
16 バンプ電極
20 端子板
21 陰極電極板
22 陽極電極板
23 絶縁性樹脂
30 封止樹脂
40 導電性接着剤

Claims (6)

  1.  コンデンサ素子を端子板に重ね合わせた固体電解コンデンサの製造方法であって、
     弁作用金属の一部を拡面化して誘電体酸化皮膜層、固体電解質層、及び電極引出部を形成した陰極部、及び前記弁作用金属の一部に電極引出部を形成した陽極部を有する前記コンデンサ素子を形成し、
     陽極電極板及び陰極電極板を同一平面上に間隙を保って配置して、その間隙に絶縁樹脂を介在させた前記端子板を形成し、
     前記コンデンサ素子を前記端子板に重ね合わせる前に、前記端子板の前記陽極電極板上に未硬化の封止樹脂を配置するとともに、前記端子板の前記陰極電極板に導電性接着剤を配置しておき、
     前記コンデンサ素子と前記端子板とを加圧しながら重ね合わせて、前記電極引出部を前記端子板の前記陽極電極板に接触させ、前記封止樹脂と前記導電性接着剤とを硬化させること、
     を特徴とする固体電解コンデンサの製造方法。
  2.  前記コンデンサ素子と前記端子板とを加圧しながら重ね合わせるとともに加熱し、前記封止樹脂と前記導電性接着剤とを硬化させること、
     を特徴とする請求項1記載の固体電解コンデンサの製造方法。
  3.  前記導電性接着剤は、無溶剤であること、
     を特徴とする請求項1又は2記載の固体電解コンデンサの製造方法。
  4.  前記電極引出部は、先鋭化されたバンプ電極であり、
     重ね合わせの際に、前記バンプ電極が前記封止樹脂を貫通して、前記バンプ電極を介して前記陽極部と前記陽極電極板を電気的に接続すること、
     を特徴とする請求項1乃至3の何れかに記載の固体電解コンデンサの製造方法。
  5.  前記バンプ電極は、前記封止樹脂を硬化させる際の加圧によって前記陽極電極板と圧接すること、
     を特徴とする請求項4記載の固体電解コンデンサの製造方法。
  6.  コンデンサ素子を端子板に重ね合わせてなる固体電解コンデンサであって、
     前記コンデンサ素子の陽極部に立設し、前記端子板の陽極電極板に当接して先端が潰れた複数のバンプ電極と、
     前記コンデンサ素子と前記端子板との間に介在し、前記バンプ電極に貫通された封止樹脂と、
     前記コンデンサ素子の陰極部と前記端子板の陰極電極板との間に介在する導電性接着剤と、
     を備え、
     前記バンプ電極と前記端子板の陽極電極板とは、圧接加圧により接続されていること、
     を特徴とする固体電解コンデンサ。
PCT/JP2012/075184 2011-09-30 2012-09-28 固体電解コンデンサの製造方法及び固体電解コンデンサ WO2013047801A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218370 2011-09-30
JP2011218370A JP5874280B2 (ja) 2011-09-30 2011-09-30 固体電解コンデンサの製造方法

Publications (1)

Publication Number Publication Date
WO2013047801A1 true WO2013047801A1 (ja) 2013-04-04

Family

ID=47995824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075184 WO2013047801A1 (ja) 2011-09-30 2012-09-28 固体電解コンデンサの製造方法及び固体電解コンデンサ

Country Status (3)

Country Link
JP (1) JP5874280B2 (ja)
TW (1) TWI559347B (ja)
WO (1) WO2013047801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233046A (ja) * 2014-06-09 2015-12-24 日本ケミコン株式会社 固体電解コンデンサの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492423B2 (ja) * 2014-06-09 2019-04-03 日本ケミコン株式会社 固体電解コンデンサの製造方法
JP6193950B2 (ja) * 2015-03-30 2017-09-06 Jx金属株式会社 二次電池用圧延銅箔及びその製造方法、並びにそれを用いたリチウムイオン二次電池及びリチウムイオンキャパシタ
JP2017130827A (ja) * 2016-01-21 2017-07-27 京セラ株式会社 圧電デバイス及びその製造方法
WO2023241187A1 (zh) * 2022-06-16 2023-12-21 湖南艾华集团股份有限公司 叠层铝电解电容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286297A (ja) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd 電子部品の実装方法及びその装置
JP2008004608A (ja) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd 電子部品の実装方法
JP2009182273A (ja) * 2008-01-31 2009-08-13 Nippon Chemicon Corp 固体電解コンデンサ及びその製造方法
JP2010212600A (ja) * 2009-03-12 2010-09-24 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP2010239091A (ja) * 2009-03-31 2010-10-21 Nippon Chemicon Corp 固体電解コンデンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286297A (ja) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd 電子部品の実装方法及びその装置
JP2008004608A (ja) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd 電子部品の実装方法
JP2009182273A (ja) * 2008-01-31 2009-08-13 Nippon Chemicon Corp 固体電解コンデンサ及びその製造方法
JP2010212600A (ja) * 2009-03-12 2010-09-24 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP2010239091A (ja) * 2009-03-31 2010-10-21 Nippon Chemicon Corp 固体電解コンデンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233046A (ja) * 2014-06-09 2015-12-24 日本ケミコン株式会社 固体電解コンデンサの製造方法

Also Published As

Publication number Publication date
TW201334001A (zh) 2013-08-16
JP5874280B2 (ja) 2016-03-02
JP2013077787A (ja) 2013-04-25
TWI559347B (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
KR100984535B1 (ko) 고체 전해 콘덴서 및 그 제조 방법
KR101119053B1 (ko) 고체 전해 콘덴서 및 그 제조 방법
JP4662368B2 (ja) 固体電解コンデンサの製造方法
JP5874280B2 (ja) 固体電解コンデンサの製造方法
JP4508193B2 (ja) 実装基板、実装体とそれを用いた電子機器
JP5120026B2 (ja) 固体電解コンデンサ及びその製造方法
JP2001185460A (ja) 固体電解コンデンサおよびその製造方法並びに回路基板
JP2014203850A (ja) 固体電解コンデンサ及びその製造方法
JP2002198264A (ja) 電解コンデンサおよび電解コンデンサ内蔵回路基板、並びにそれらの製造方法
JP4149891B2 (ja) コンデンサとコンデンサ内蔵回路基板、ならびにそれらの製造方法
CN107785172B (zh) 固体电解电容器
JP4735110B2 (ja) 固体電解コンデンサ
JP4915856B2 (ja) 固体電解コンデンサ
TWI478187B (zh) Solid electrolytic capacitors
JP2011091444A (ja) 固体電解コンデンサ
JP6492423B2 (ja) 固体電解コンデンサの製造方法
JP4838214B2 (ja) チップ状固体電解コンデンサおよびその製造方法
JP4737773B2 (ja) 表面実装薄型コンデンサ
TW201419336A (zh) 固態電解電容器之改良製法
JP2004281515A (ja) 積層型固体電解コンデンサ
JP6492424B2 (ja) 固体電解コンデンサの製造方法
JP5411047B2 (ja) 積層固体電解コンデンサ及びその製造方法
WO2007010705A1 (ja) コンデンサ、コンデンサの製造方法、コンデンサ内蔵基板、およびコンデンサ内蔵基板の製造方法
WO2011021255A1 (ja) 固体電解コンデンサ
JP2006216786A (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835673

Country of ref document: EP

Kind code of ref document: A1