WO2013042706A1 - 有機分子スピンバッテリー - Google Patents

有機分子スピンバッテリー Download PDF

Info

Publication number
WO2013042706A1
WO2013042706A1 PCT/JP2012/074000 JP2012074000W WO2013042706A1 WO 2013042706 A1 WO2013042706 A1 WO 2013042706A1 JP 2012074000 W JP2012074000 W JP 2012074000W WO 2013042706 A1 WO2013042706 A1 WO 2013042706A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
derivative
organic compound
secondary battery
Prior art date
Application number
PCT/JP2012/074000
Other languages
English (en)
French (fr)
Inventor
武治 工位
和信 佐藤
靖 森田
Original Assignee
公立大学法人大阪市立大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学, 国立大学法人大阪大学 filed Critical 公立大学法人大阪市立大学
Publication of WO2013042706A1 publication Critical patent/WO2013042706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an organic molecular spin battery and a material suitable for the battery.
  • Lithium ion secondary batteries usually use lithium-containing transition metal oxides for the positive electrode and carbon materials for the negative electrode as the electrode active material, and use lithium ion insertion and desorption reactions for these active materials. Charging / discharging.
  • LiCoO 2 lithium cobaltate
  • the existing lithium secondary battery requires LiCoO 2 (lithium cobaltate) containing rare metal as a positive electrode active material, it faces a problem of resource prices in the near future.
  • expectations for higher performance of secondary batteries, such as higher current capacity and cycle characteristics are increasing. For this reason, there is a demand for a secondary battery having a high capacity and excellent cycle characteristics using a rare metal-free material as an active material.
  • Patent Document 1 discloses a battery using a conductive polymer as a positive electrode or negative electrode active material. This battery is based on the principle of doping and dedoping of electrolyte ions with respect to a conductive polymer.
  • the dope reaction herein is defined as a reaction that stabilizes excitons (excitons) such as charged solitons and polarons generated by an electrochemical oxidation reaction or reduction reaction of a conductive polymer with a counter ion.
  • the dedoping reaction is defined as a reverse reaction of the doping reaction, that is, a reaction that electrochemically oxidizes or reduces exciton stabilized by a counter ion.
  • a battery using a conductive polymer as an active material has been expected as a high-capacity density battery because an organic compound composed only of an element having a small specific gravity such as carbon or nitrogen is used as an electrode material.
  • excitons generated by electrochemical redox reactions are delocalized over a wide range of ⁇ -electron conjugated systems, and they interact to cause electrostatic repulsion and radical disappearance. Inevitably exist.
  • This process limits the concentration of the generated charged radicals, excitons, etc., and limits the capacity of the battery. For example, it has been reported that the doping rate of a battery using polyaniline as a positive electrode is 50% or less, and 7% in the case of polyacetylene. Therefore, although a battery using a conductive polymer as an electrode material has a certain effect in terms of weight reduction, a battery having a large energy density has not been obtained so far. Therefore, in a battery using such a conductive polymer as an electrode material, a certain effect can be obtained in terms of reducing the weight of the battery, but the technology for increasing the capacity is still insufficient.
  • An object of the present invention is to provide a rare metal-free active material and a secondary battery using the active material based on a design philosophy that provides a secondary battery having a high capacity and excellent cycle characteristics.
  • the present inventors have used a compound having a graphene fragment skeleton as a positive electrode active material (particularly, imparting quantum mechanical orbital degeneracy to frontier molecular orbitals ( Degenerate frontier molecular orbitals), and the result of molecular design that electrons carrying electricity during charge and discharge processes occupy these orbitals partially or entirely and having a specific structure) It has been found that a resolved secondary battery can be obtained.
  • the present invention has been completed as a result of further research based on such knowledge. That is, the present invention includes the inventions according to items 1-1 to 2-12 below.
  • a positive electrode active material for a secondary battery comprising an organic compound having a graphene fragment skeleton or a derivative thereof.
  • Item 1-2 The positive electrode active material for a secondary battery according to Item 1-1, wherein the organic compound having a graphene fragment skeleton or a derivative thereof is an open-shell molecular spin having a degenerate frontier molecular orbital or an intermediate-state closed-shell structure molecule .
  • the organic compound having a graphene fragment skeleton or a derivative thereof is represented by the general formula (1):
  • the organic compound having a graphene fragment skeleton or a derivative thereof is represented by the general formula (2):
  • R 1 to R 3 are the same or different and each is an alkyl group having 1 to 6 carbon atoms or a halogen atom; a double line composed of a solid line and a broken line is a single bond or a double bond.
  • Item 4 The positive electrode active material for a secondary battery according to any one of Items 1-1 to 1-3, comprising the organic compound represented by
  • R 1 to R 3 are the same or different and each is an alkyl group having 1 to 6 carbon atoms or a halogen atom; a double line composed of a solid line and a broken line is a single bond or a double bond.
  • Item 5 The positive electrode active material for a secondary battery according to Item 1-4, which contains a salt composed of an anion derived from the organic compound represented by the above and a metal cation.
  • Item 1-6 The secondary battery positive electrode active material according to Item 1-4 or 1-5, wherein R 1 to R 3 are all halogen atoms.
  • Item 1-7 The secondary battery positive electrode active material according to any one of Items 1-4 to 1-6, wherein R 1 to R 3 are all bromine atoms.
  • Item 1-8 A secondary battery positive electrode comprising the secondary battery positive electrode active material according to any one of Items 1-1 to 1-7.
  • Item 1-9 The secondary battery positive electrode according to Item 1-8, further comprising conductive carbon fiber.
  • Item 1-10 An organic molecular spin battery comprising the positive electrode according to Item 1-8 or 1-9.
  • Item 1-11 The organic molecular spin battery according to Item 1-10, further comprising an electrolytic solution containing a lithium compound.
  • a positive electrode active material for a secondary battery comprising an organic compound having a graphene fragment skeleton or a derivative thereof, wherein the organic compound having a graphene fragment skeleton or a derivative thereof is General formula (2):
  • R 1 to R 3 are the same or different and each represents an alkyl group having 1 to 6 carbon atoms, a halogen atom; a double line composed of a solid line and a broken line is a single bond or a double bond.
  • R 1 to R 3 are the same or different and each is a halogen atom; a double line composed of a solid line and a broken line is a single bond or a double bond.
  • the positive electrode active material for secondary batteries containing at least 1 sort (s) chosen from the group which consists of the organic compound shown by these, or its derivative (s).
  • Item 2-2 The positive electrode active material for a secondary battery according to Item 2-1, wherein the organic compound having a graphene fragment skeleton or a derivative thereof has a degenerate frontier molecular orbital.
  • Item 2-3 Item 2-1 or 2-2, wherein the organic compound having a graphene fragment skeleton or a derivative thereof contains a salt composed of an anion derived from the organic compound represented by the general formula (2) and a metal cation.
  • the positive electrode active material for secondary batteries is
  • Item 2-4 The secondary battery positive electrode active material according to any one of Items 2-1 to 2-3, wherein, in the general formula (2), R 1 to R 3 are the same or different and all are halogen atoms.
  • Item 2-5 The secondary battery positive electrode active material according to Item 2-1, wherein the organic compound having a graphene fragment skeleton or a derivative thereof contains the organic compound represented by the general formula (2 ′) or a derivative thereof.
  • Item 2-6 The positive electrode active material for secondary battery according to any one of Items 2-1 to 2-5, wherein in the general formulas (2) and (2 ′), R 1 to R 3 are all bromine atoms.
  • Item 2-7 A secondary battery positive electrode comprising the secondary battery positive electrode active material according to any one of Items 2-1 to 2-4.
  • Item 2-8 The secondary battery positive electrode according to Item 2-7, further comprising conductive carbon fiber.
  • a positive electrode for a secondary battery comprising a positive electrode active material for a secondary battery containing an organic compound having a graphene fragment skeleton or a derivative thereof, and conductive carbon fiber.
  • Item 2-10 The secondary battery positive electrode according to Item 2-9, wherein the organic compound having a graphene fragment skeleton or a derivative thereof has a degenerate frontier molecular orbital.
  • Item 2-11 Item 10. An organic molecular spin battery comprising the positive electrode according to any one of Items 2-7 to 2-10.
  • Item 2-12 The organic molecular spin battery according to Item 2-10, further comprising an electrolytic solution containing a lithium compound.
  • an organic compound having a graphene fragment skeleton or a derivative thereof is used as a rare metal-free positive electrode active material (particularly, the frontier molecular orbital has quantum mechanical orbital degeneracy (degenerate frontier molecular orbital), Furthermore, the secondary battery with high capacity and excellent cycle characteristics is provided by the molecular design that the electrons that carry electricity during the charge / discharge process occupy these orbits partially or entirely and have a specific structure) can do.
  • FIG. 6 is an energy level diagram showing the results of quantum chemical calculations for 6OPO in Comparative Example 1, (t-Bu) 3 TOT in Example 1, and Br 3 TOT in Example 4.
  • FIG. FIG. 4 is a CV curve diagram showing the redox behavior of the Bu 4 N + salt of (t-Bu) 3 TOT of Reference Example 1 and the Bu 4 N + salt of Br 3 TOT anion of Reference Example 2. It is a graph which shows the result of the charging / discharging characteristic and cycle characteristic of each coin type battery of Comparative Example 2 (a) and Example 5 (b). The red line is the first cycle, the blue line is the second cycle, and the black is the other cycle.
  • the cathode active material of the present invention includes an organic compound having a graphene fragment skeleton or a derivative thereof.
  • an organic compound having a graphene fragment skeleton or a derivative thereof is General formula (2):
  • R 1 to R 3 are the same or different and each represents an alkyl group having 1 to 6 carbon atoms, a halogen atom; a double line composed of a solid line and a broken line is a single bond or a double bond.
  • R 1 to R 3 are the same or different and each is a halogen atom; a double line composed of a solid line and a broken line is a single bond or a double bond.
  • the organic compound having a graphene fragment skeleton or a derivative thereof is particularly preferably an open-shell organic molecular system having a degenerate frontier molecular orbital.
  • degenerate in a degenerate frontier molecular orbital means that there are multiple quantum states with the same energy level, and appears in the microscopic physical reality of molecular / atomic size. Nature.
  • This degeneracy is derived from group-theoretic degeneracy derived from the geometry and three-dimensional structure of the molecule, or from topological symmetry created by controlling the position of atoms constituting the molecule and the position of substituents to be introduced. It may be degenerate.
  • An “open-shell organic molecule” is an organic molecule that has one or more unpaired electrons (electrons that do not participate in chemical bonding) in the molecule and has intrinsic quantum properties derived from electron spin angular momentum. Refers to that.
  • the graphene fragment structure is, for example,
  • a double line composed of a solid line and a broken line is a single bond or a double bond.
  • R 1 to R 3 are the same or different and each is an alkyl group having 1 to 6 carbon atoms or a halogen atom; the double line consisting of a solid line and a broken line is the same as described above.
  • An organic compound represented by or a derivative thereof is preferable.
  • R 1 to R 3 and the double line composed of a solid line and a broken line are the same as described above.
  • 4 electrons can be exchanged with one molecule. That is, in the degenerate orbital oxidation-reduction reaction, the energy gap between degenerate molecular orbitals occupied by intervening electrons can be controlled, and a large number of electrons can be involved (for example, a phenalenyl skeleton that exchanges two electrons). Therefore, the current capacity can be dramatically improved.
  • the bond between the oxygen atom and the graphene fragment skeleton may be a single bond or a double bond. Even in the case of a single bond, neutral radicals, anions, and charged radicals are delocalized and can exist stably.
  • the compound often has a structure in which planar compounds are stacked. For this reason, radicals, anions, and the like, which are reaction sites of the oxidation-reduction reaction, are exposed to the outside, and a stable active material is obtained without reducing the reactivity.
  • R 1 to R 3 are the same or different and each represents an alkyl group having 1 to 6 carbon atoms or a halogen atom.
  • Specific examples include a methyl group, an ethyl group, a propyl group, a t-butyl group, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a halogen atom, particularly a bromine atom is preferable because the current capacity can be further increased and the cycle characteristics can be dramatically improved.
  • the organic compound having a graphene fragment skeleton that can be used in the present invention or a derivative thereof is not limited to a neutral radical. It may be a salt composed of an anion derived from an organic compound having a graphene fragment skeleton or a derivative thereof and a metal cation. This is because these compounds also retain the quantum mechanical properties derived from degenerate orbitals derived from the graphene fragment skeleton.
  • R 1 to R 3 and the double line composed of a solid line and a broken line are the same as described above.
  • a salt composed of an anion derived from an organic compound represented by formula (I) and a metal cation can also be used. The reason is as described above.
  • Examples of the anion derived from the organic compound represented by the general formula (2) include the general formula (2a):
  • R 1 to R 3 and the double line composed of a solid line and a broken line are the same as described above.
  • monovalent anions are preferred.
  • a monovalent cation is preferable, and examples thereof include lithium ions and potassium ions. In consideration of cycle characteristics, lithium ions are preferable.
  • neutral radicals and salts can be used as described above, but neutral radicals are preferred from the viewpoint of capacity and cycle characteristics.
  • a method for synthesizing an organic compound having a graphene fragment skeleton or a derivative thereof is not particularly limited.
  • the compound when synthesizing a compound in which R 1 to R 3 are all alkyl groups having 1 to 6 carbon atoms, the compound is not limited to this, but the general formula (3):
  • X is preferably a bromine atom.
  • R 4 is preferably a tert-butyl group. That is, the preferred starting material is
  • X 1 is a halogen atom
  • R 4 is the same or different and each is an alkyl group having 1 to 6 carbon atoms
  • an organolithium compound is allowed to act on the compound represented by the general formula (3), and then a carbonate compound is allowed to act to obtain a compound represented by the general formula (4).
  • Examples of the organic lithium compound include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, pentyl lithium, hexyl lithium, cyclohexyl lithium, and phenyl lithium. Can be mentioned. Of these, tert-butyllithium and the like are preferable.
  • Examples of the carbonate compound include diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate.
  • reaction atmosphere is not particularly limited, and specific examples include an air atmosphere and an inert gas atmosphere.
  • reaction time The amount of each substance used, reaction time, reaction temperature, etc. are not particularly limited. Conditions that are usually applied to the reaction can be used.
  • the hydroxyl group is reduced and eliminated.
  • the method of reductive elimination is not particularly limited, and for example, a halogen (particularly iodine) and a reducing agent such as phosphinic acid can be used.
  • reaction atmosphere is not particularly limited, and specific examples include an air atmosphere and an inert gas atmosphere.
  • the amount of each substance used, solvent, reaction time, reaction temperature, etc. are not particularly limited. Conditions that are usually applied to the reaction can be used.
  • iodination it is preferable to react iodine with periodic acid, iodic acid or the like in the presence of acetic acid and sulfuric acid. Thereby, even an inert substrate can be iodinated.
  • reaction atmosphere is not particularly limited, and specific examples include an air atmosphere and an inert gas atmosphere.
  • reaction time The amount of each substance used, reaction time, reaction temperature, etc. are not particularly limited. Conditions that are usually applied to the reaction can be used.
  • the halogen atom at the 2-position of the aryl group is substituted with a carboxyl group.
  • the method is not particularly limited. Examples thereof include a method using carbon monoxide and water in the presence of a palladium catalyst. Specifically, it is preferable to blow CO gas in a solvent in the presence of a palladium catalyst and then hydrolyze under alkaline conditions.
  • the palladium catalyst examples include metal palladium and palladium compounds known as synthesis catalysts for organic compounds (including polymer compounds). Specifically, Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (CH 3 COO) 2 , tris (dibenzylideneacetone) dipalladium (0), bis (dibenzylideneacetone) palladium (0) Bis (tri-t-butylphosphino) palladium (0) and the like. In this step, Pd (CH 3 COO) 2 or the like is preferable.
  • a ligand capable of coordinating with a palladium atom which is a central element of the palladium catalyst, can be used together with the catalyst, if necessary.
  • the ligand include triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, 2- (di-t-butylphosphino) biphenyl, 2- ( Dicyclohexylphosphino) biphenyl, 2- (dicyclohexylphosphino-2 ′, 6′-dimethoxy-1,1′-biphenyl (S-Phos), 2- (dicyclohexylphosphino-2 ′, 4 ′, 6′-tri -Isopropyl-1,1'-biphenyl (X-Phos), bis (2-diphenylphosphinophenyl) ether (DPEPhos) and the like.
  • the solvent is not particularly limited.
  • N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, benzene, toluene, xylene, ethanol, methanol, propanol, etc. Can be used.
  • alkali used for the alkaline conditions there are no particular restrictions on the alkali used for the alkaline conditions.
  • reaction time The amount of each substance used, reaction time, reaction temperature, etc. are not particularly limited. Conditions that are usually applied to the reaction can be used.
  • the Lewis acid catalyst is allowed to act. This reaction is known as the Friedel-Crafts reaction.
  • halogenating agent examples include oxalyl chloride, thionyl chloride and the like, but oxalyl chloride is preferable.
  • Lewis acid catalyst examples include metal or metalloid halides such as aluminum chloride, aluminum bromide, iron (III) chloride, iron (III) bromide, and titanium (IV) chloride.
  • metal or metalloid halides such as aluminum chloride, aluminum bromide, iron (III) chloride, iron (III) bromide, and titanium (IV) chloride.
  • aluminum chloride is preferable.
  • reaction atmosphere is not particularly limited, and specific examples include an air atmosphere and an inert gas atmosphere.
  • the amount of each substance used, solvent, reaction time, reaction temperature, etc. are not particularly limited. Conditions that are usually applied to the reaction can be used.
  • R 1 to R 3 are all carbon atoms. Neutral radicals which are 1 to 6 alkyl groups are obtained.
  • a potassium compound (KOH or the like) or a lithium compound (LiOH.H 2 O or the like) is allowed to act, thereby allowing R 1 to R 1 in general formula (2a).
  • a potassium salt, a lithium salt, or the like of an anion in which R 3 is an alkyl group having 1 to 6 carbon atoms can be obtained.
  • R 1 to R 3 are all neutral radicals, and in the general formula (2a), R 1 to R 3 are all Tetrabutylammonium salt, lithium salt, potassium salt and the like of an anion which is a halogen atom can also be obtained.
  • a positive electrode active material (also referred to simply as an active material) is a material that directly contributes to electrode reactions such as a charge reaction and a discharge reaction, and plays a central role in a battery system.
  • the organic compound having a graphene fragment skeleton described above or a derivative thereof is used as the electrode active material.
  • only 1 type may be used for the organic compound which has the graphene fragment skeleton mentioned above, or its derivative (s), and 2 or more types may be used together.
  • the electrode active material only the organic compound having the graphene fragment skeleton described above or a derivative thereof may be used, or a conventionally known active material may be used in combination.
  • the organic compound having a graphene fragment skeleton or a derivative thereof is preferably used as a main component. It is preferable to contain an organic compound having a graphene fragment skeleton or a derivative thereof in an amount of 50% by mass or more, particularly 70% by mass or more, and more preferably 90% by mass or more.
  • a carbon material as the conductive material in addition to the organic compound having a graphene fragment skeleton described above or a derivative thereof.
  • carbon materials are also used in conventional lithium ion batteries and the like as conductivity imparting materials, in the case of the present invention, metal powders, conductive polymers, etc. are not allowed to operate as batteries. It is thought that some kind of action is exerted.
  • Examples of the carbon material that can be used in the present invention include carbonaceous fine particles such as graphite, carbon black, and acetylene black; carbon fibers such as vapor grown carbon fiber (VGCF) and carbon nanotube. In the present invention, these carbon materials can be used alone or in combination of two or more. Of these, carbon fibers such as vapor grown carbon fibers (VGCF) and carbon nanotubes are preferable.
  • the mixing ratio of the carbonaceous material in the electrode is not particularly limited, but may be, for example, 10 to 90% by mass.
  • a binder (binder) can also be used.
  • this binder polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, polypropylene, polyethylene, polyimide And resin binders such as various polyurethanes. These resin binders can be used alone or in admixture of two or more.
  • the ratio of the binder in the electrode is not particularly limited, but may be 5 to 30% by mass, for example.
  • a current collector having a shape such as a foil, a semi-metal, a metal flat plate including a semiconductor, a mesh, or the like made of nickel, aluminum, copper, gold, silver, an aluminum alloy, stainless steel, carbon or the like. Can be used.
  • Organic Molecular Spin Battery of the present invention has the positive electrode of the present invention described above.
  • the counter electrode is provided to face the positive electrode, and corresponds to the negative electrode in the present invention.
  • a conductor capable of depositing cations such as a lithium-laminated copper foil and a platinum plate; an electrode containing a negative electrode active material, and the like can be used.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing cations.
  • a current collector having a shape such as a foil, a semi-metal, a metal flat plate including a semiconductor, a mesh, or the like made of nickel, aluminum, copper, gold, silver, an aluminum alloy, stainless steel, carbon or the like. Can be used.
  • a separator can be used for the purpose of separating the positive electrode and the negative electrode as in the conventional lithium ion secondary battery.
  • An electrolyte solution can be used to transport charge carriers between the positive electrode layer and the counter electrode.
  • the electrolyte in the electrolytic solution one having an ionic conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at room temperature is more preferably used.
  • the electrolyte for example, an electrolytic solution in which an electrolyte salt is dissolved in a solvent, a solid electrolyte made of a polymer compound containing the electrolyte salt, or the like can be used.
  • Examples of the electrolyte salt constituting the electrolytic solution include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li ( A lithium compound such as CF 3 SO 2 ) 3 C or Li (C 2 F 5 SO 2 ) 3 C can be used.
  • Solvents for dissolving the electrolyte salt include, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2.
  • -An organic solvent such as pyrrolidone can be used. These can be used alone or in combination of two or more.
  • Polymer compounds constituting the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and vinylidene fluoride.
  • Vinylidene fluoride polymers such as trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer; acrylonitrile-methyl methacrylate copolymer , Acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-acrylic acid copolymer Coalescence, acrylonitrile - acrylonitrile polymers such as vinyl acetate copolymer; polyethylene oxide, ethylene oxide - propylene oxide copolymers, these acrylate bodies, polymer and the like of the methacrylate products thereof.
  • the solid electrolyte may be a gel obtained by adding an
  • the shape of the battery is not particularly limited, and may be a cylindrical shape, a square shape, a coin shape, a sheet shape, or the like, which is performed in a conventional battery.
  • the exterior method is not particularly limited, and it can be performed by a metal case, a mold resin, an aluminum laminate film, or the like. A conventionally known method can also be used for taking out the lead from the electrode.
  • Non-patent Document 1 Was synthesized according to a method described in a known document (Non-patent Document 1).
  • the tetrabutylammonium salt of an anion represented by (Bu 4 N + salt of (t-Bu) 3 TOT) was synthesized as follows.
  • diethyl carbonate is allowed to act after tert-butyllithium is allowed to act
  • Step (2) Next, the hydroxyl group in the compound obtained in the step (1) was reduced and eliminated using iodine (I 2 ) and phosphinic acid.
  • the aryl group was iodinated with iodine (I 2 ) in the presence of periodic acid and phosphinic acid. as a result,
  • Triphenylmethane derivative (5.40 g, 13.1 mmol), acetic acid (50 mL), distilled water (10 mL), periodic acid dihydrate (23.9 g, 105 mmol), iodine (13. 1 g, 52.3 mmol) and concentrated sulfuric acid (1.50 mL) were placed in an eggplant flask and heated to reflux at 110 ° C. After 15 hours, the mixture was allowed to cool and a saturated aqueous sodium hydrogen sulfite solution was added, followed by extraction with ethyl acetate, drying over anhydrous sodium sulfate, filtration and concentration. The crude product was dissolved in methylene chloride and subjected to column chromatography to obtain a tri (iodophenyl) methane derivative (5.96 g, 56%) as a white solid.
  • a triester derivative (900 mg, 1.53 mmol) is placed in a 50-mL eggplant flask, and ethanol (35 mL) and potassium hydroxide (4.3 g, 76.7 mmol) are dissolved in water (7 mL). The aqueous solution was added and heated to reflux for 3 hours. After allowing to cool, 2 mol / L hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to obtain a tricarboxylic acid derivative (820 mg) as a pale yellow solid.
  • a tricarboxylic acid derivative 400 mg, 0.734 mmol was placed in a 100-L eggplant flask, oxalyl chloride (10.0 mL) was added, and the mixture was heated to reflux. After 2 hours, excess oxalyl chloride was distilled off under reduced pressure. The residue was dissolved in methylene chloride (12 mL), and aluminum chloride (979 mg, 7.34 mmol) was added and stirred at low temperature. After 2 hours, methylene chloride was distilled off under vacuum, potassium carbonate (8 g) was added to the blue residue and mixed, and distilled water was further suspended while cooling with water.
  • this anion potassium salt (563 mg) was placed in a 20-mL eggplant flask, suspended in 2 mol / L hydrochloric acid (20 mL), and heated and stirred for 2 hours. After allowing to cool, the solid was collected by filtration with a Kiriyama funnel and washed with 2 mol / L hydrochloric acid to obtain a hydroxy diketone derivative (294 mg).
  • a hydroxy diketone derivative (497 mg, 1.01 mmol) was placed in a 30-mL eggplant flask and suspended in an aqueous solution obtained by diluting an aqueous tetrabutylammonium hydroxide solution (2 mL) with water (5 mL). After stirring for 30 minutes, the blue solid was filtered with a Kiriyama funnel and then washed with distilled water. By vacuum drying, a Bu 4 N + salt (536 mg, 57%) of t-Bu) 3 TOT anion was obtained as a blue solid.
  • an anion Bu 4 N + salt (43 mg, 0.09 mmol) was placed in a 20-mL eggplant flask and dissolved in ethanol (5 mL). Potassium carbonate (61 mg, 0.44 mmol) was added and stirred. After 1.5 hours, water (1 mL) was added and the resulting precipitate was collected by filtration with a Kiriyama funnel and dried in vacuo to give an anion K + salt as a blue solid.
  • K + salt of (t-Bu) 3 TOTanion blue powder containing water; dp> 300 ° C; Analysis (calcd, found for C 34 H 33 O 3 K (H 2 O) 3 ): C (70.07, 69.90), H (6.75, 6.72), N (0.00, 0.00).
  • Example 3 Li + salt of (t-Bu) 3 TOT anion
  • the target product ((t-Bu) 3 is obtained by reacting with LiOH ⁇ H 2 O. Li + salt of TOT anion).
  • an anion Bu 4 N + salt (58 mg, 0.12 mmol) was placed in a 20-mL eggplant flask and dissolved in ethanol (5 mL). Lithium hydroxide monohydrate (50 mg, 1.2 mmol) was added and stirred. After 2 hours, water (10 mL) was added and the resulting precipitate was collected by filtration with a Kiriyama funnel and dried in vacuo to give an anion Li + salt as a blue solid.
  • Li + salt of (t-Bu) 3 TOTanion blue powder containing water; dp> 300 ° C; Analysis (calcd, found for C 34 H 33 O 3 Li (H 2 O) 2 ): C (76.67, 76.61), H (7.00, 6.85), N (0.00, 0.00).
  • triphenylmethanol derivative (4.32 g, 8.38 mmol), dissolved in trifluoroacetic acid (300 mL), and cooled in an ice bath.
  • Sodium borohydride (3.17 g, 83.8 mmol) was added, and the mixture was warmed to room temperature and stirred for 30 minutes.
  • Trifluoroacetic acid was distilled off, and a saturated aqueous sodium hydrogen carbonate solution was added for neutralization. Extraction with ethyl acetate was performed, and the organic layer was washed with saturated brine, dried over sodium sulfate, filtered, and concentrated to obtain a triphenylmethane derivative (4.10 g, 98%) as a white powder. .
  • a tricarboxylic acid derivative (2.80 g, 4.57 mmol) was added to a 200-mL eggplant flask, dissolved in concentrated sulfuric acid (60 mL), and heated and stirred for 1 hour. After allowing to cool, the deposited precipitate was collected by filtration and washed with water, methylene chloride and acetone to obtain a hydroxy diketone body (1.51 g, 58%) as a purple powder.
  • Bu 4 NClO 4 was used as a supporting electrolyte in 1 ⁇ 10 ⁇ 3 M THF solution of Bu 4 N + salt of (t-Bu) 3 TOT of Reference Example 1. I put it in. Thereafter, measurement was performed using a reference electrode of Ag / 10 mM AgNO 3 at room temperature and under an argon atmosphere using a gold working electrode having a diameter of 1.6 mm and a counter electrode of platinum wire. The results were standardized with ferrocene / ferrocenium.
  • Comparative Example 2 Battery using 6OPO
  • 6OPO, polytetrafluoroethylene, and VGCF of Comparative Example 1 were weighed so as to have a mass ratio of 10:10:80, and kneaded while being uniformly mixed. This mixture was pressure-molded to obtain a thin plate having a thickness of about 150 ⁇ m. This was dried in a vacuum at 80 ° C. for 1 hour, and then punched into a circle having a diameter of 12 mm to obtain a positive electrode layer containing 6OPO.
  • the obtained positive electrode layer was impregnated with an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode.
  • an electrolytic solution an ethylene carbonate / diethyl carbonate mixed solution (mixing volume ratio 3: 7) containing 1.0 M LiPF 6 electrolyte salt was used.
  • This positive electrode was placed on a positive electrode current collector constituting a coin-type battery, and a separator made of a polypropylene porous film that was also impregnated with an electrolytic solution was laminated thereon, and further, a lithium-bonded copper foil serving as a negative electrode was laminated. .
  • an aluminum exterior (made by Hohsen) of a coin-type battery is overlaid with an insulating packing disposed around it, and pressurized by a caulking machine, and a sealed coin type using 6OPO as a positive electrode active material and metallic lithium as a negative electrode active material.
  • 6OPO as a positive electrode active material
  • metallic lithium as a negative electrode active material
  • Example 5 Battery (1) using (t-Bu) 3 TOT
  • As a cathode active material in the same manner as Comparative Example 2 except for using (t-Bu) 3 TOT of 6OPO rather Example 1, as a cathode active material (t-Bu) 3 TOT, metal as an anode active material A sealed coin-type battery using lithium was produced.
  • Example 6 Battery using (t-Bu) 3 TOT (2)
  • the (t-Bu) 3 TOT, polytetrafluoroethylene, and acetylene black of Example 1 were measured so as to have a mass ratio of 10:30:60, and kneaded while being uniformly mixed. This mixture was pressure-molded to obtain a thin plate having a thickness of about 150 ⁇ m. This was dried in a vacuum at 80 ° C. for 1 hour, and then punched into a circle having a diameter of 12 mm to obtain a positive electrode layer containing (t-Bu) 3 TOT.
  • the obtained positive electrode layer was impregnated with an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode.
  • an electrolytic solution a triethylene glycol dimethyl ether solution containing 1.0 M LiN (SO 2 CF 3 ) 2 electrolyte salt was used.
  • This positive electrode was placed on a positive electrode current collector constituting a coin-type battery, and a separator made of a polypropylene porous film that was also impregnated with an electrolytic solution was laminated thereon, and further, a lithium-bonded copper foil serving as a negative electrode was laminated. .
  • the outer casing of the coin-type battery (made by Hohsen) is stacked with insulating packing around it, and it is pressurized by a caulking machine, using (t-Bu) 3 TOT as the positive electrode active material and metallic lithium as the negative electrode active material.
  • (t-Bu) 3 TOT as the positive electrode active material
  • metallic lithium as the negative electrode active material.
  • a sealed coin-type battery was manufactured.
  • Example 7 Battery using K + salt of (t-Bu) 3 TOT anion
  • As a cathode active material similarly except for using (t-Bu) of 3 TOT anionic K + salt 6OPO rather Example 2 and Comparative Example 2, as a positive electrode active material (t-Bu) 3 TOT anion
  • (t-Bu) of 3 TOT anionic K + salt 6OPO rather Example 2 and Comparative Example 2
  • t-Bu positive electrode active material
  • Example 8 Battery using Li + salt of (t-Bu) 3 TOT anion
  • As a cathode active material similarly except for using (t-Bu) of 3 TOT anion Li + salt of the 6OPO rather Example 3 and Comparative Example 2, as a positive electrode active material (t-Bu) 3 TOT anion
  • (t-Bu) of 3 TOT anion Li + salt of the 6OPO rather Example 3 and Comparative Example 2
  • t-Bu positive electrode active material
  • Example 9 Battery using Br 3 TOT
  • the Br 3 TOT, the polyvinylidene fluoride and acetylene black of Example 4 were weighed to a mass ratio of 10:10:80 and kneaded with uniform mixing. This mixture was pressure-molded to obtain a thin plate having a thickness of about 150 ⁇ m. This was dried in a vacuum at 100 ° C. for 12 hours, and then punched into a circle having a diameter of 12 mm to obtain a positive electrode layer containing Br 3 TOT.
  • the obtained positive electrode layer was impregnated with an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode.
  • an electrolytic solution an ethylene carbonate / ethyl methyl carbonate mixed solution (mixing volume ratio 3: 7) containing 1.0 M LiPF 6 electrolyte salt was used.
  • This positive electrode was placed on a positive electrode current collector constituting a coin-type battery, and a separator made of a polypropylene porous film that was also impregnated with an electrolytic solution was laminated thereon, and further, a lithium-bonded copper foil serving as a negative electrode was laminated. .
  • an aluminum exterior (made by Hohsen) of a coin-type battery is stacked with an insulating packing disposed around it, and pressurized by a caulking machine, and a sealed type using Br 3 TOT as a positive electrode active material and metallic lithium as a negative electrode active material.
  • a coin-type battery was produced.
  • Comparative Example 2 The coin-type battery of Comparative Example 2 was charged until the voltage became 4.0 V at 1 C, and then discharged to 2.0 V at 1 C. Thereafter, charging / discharging between 2.0 and 4.0 V was similarly repeated 100 cycles. The results are shown in FIGS. 3a, 4 and 5.
  • the initial discharge capacity was 152 Ah / kg, which was close to the theoretical value of 147 Ah / kg.
  • Example 5 The same as in the case of the coin-type battery of Comparative Example 2, except that the coin-type battery of Example 5 was used and the charge / discharge conditions were set to be 1.4 to 3.8 V at 0.3 C. I made it. The result is shown in FIG.
  • the initial capacity (311 Ah / kg) and the capacity of the second cycle (169 Ah / kg) are remarkably superior to those of the coin-type battery of Comparative Example 2 and the conventional lithium ion battery using LiCoO 2 , and are approximately twice as much. Met.
  • the initial capacity was much larger than the theoretical value (220 Ah / kg).
  • Example 6 The same as in the case of the coin-type battery of Comparative Example 2, except that the coin-type battery of Example 6 was used and the charge / discharge conditions were between 1.4 and 3.6 V at 0.2 C. I made it. As a result, both initial capacity and cycle characteristics were lower than in Example 5, suggesting that VGCF is excellent as a conductive material.
  • Example 7 The same as in the case of the coin-type battery of Comparative Example 2, except that the coin-type battery of Example 7 was used, and the charge / discharge conditions were 0.3 C to charge / discharge between 1.2 and 4.0 V. I made it. As a result, both initial capacity and cycle characteristics were lower than in Example 8 described later, suggesting that lithium ions are superior as cations.
  • Example 8 The same as in the case of the coin-type battery of Comparative Example 2, except that the coin-type battery of Example 8 was used and the charge / discharge conditions were between 1.2 and 4.0 V at 0.1 C. I made it. As a result, both initial capacity and cycle characteristics were lower than in Example 5, suggesting that neutral radicals are superior.
  • Example 9 In the case of the coin-type battery of Comparative Example 2 except that the coin-type battery of Example 9 was used and the charge / discharge conditions were 1 C or 2 C and charge / discharge between 1.4 and 4.0 V was performed. The same was done. The results are shown in FIG.
  • the initial capacity when charging / discharging at 1 C was 225 Ah / kg
  • the initial capacity when charging / discharging at 2C was 208 Ah / kg, a value close to the theoretical value (192 Ah / kg).
  • the discharge capacity after 100 cycles is 159 Ah / kg at 1 C, so the cycle characteristic is 71%, and the cycle characteristic is 177 Ah / kg at 2 C, so the cycle characteristic is 85%.
  • capacity and cycle characteristics were dramatically improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高容量且つサイクル特性に優れる二次電池が得られるレアメタルフリーの活物質、及び該活物質を用いた二次電池を提供する。 グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む、二次電池用正極活物質。

Description

有機分子スピンバッテリー
 本発明は、有機分子スピンバッテリー及び該バッテリーに好適な材料に関する。
 近年、携帯電話、ポータブル電子機器・情報機器端末等の市場拡大に伴い、これらに用いられるエネルギー密度が大きく高出力・高性能の電池に対する要求が高まっている。この要求に応えるために、リチウムイオン等のアルカリ金属イオンを荷電担体としてその電荷授受に伴う電気化学反応を利用した二次電池が開発され、特に、エネルギー密度の大きなリチウムイオン二次電池はユビキタスなエネルギー貯蔵デバイスとして現在広く普及している。
 リチウムイオン二次電池は電極活物質としては、通常正極にリチウム含有遷移金属酸化物、負極に炭素材料が用いられており、これらの活物質に対するリチウムイオンの挿入反応、及び脱離反応を利用して充放電を行っている。しかしながら、既存のリチウム二次電池は正極活性物質としてレアメタルを含むLiCoO(コバルト酸リチウム)等を不可欠としているため、近い将来の資源価格の問題に直面している。一方、技術革新の面からは、二次電池の大電流容量化、サイクル特性等の高性能化への期待はさらに高まっている。このため、レアメタルフリーの材料を活物質として用いて、高容量且つサイクル特性に優れる二次電池が要求されている。
 レアメタルフリー材料として、導電性高分子、有機硫黄化合物等を電極活物質に用いた電池が提案されている。例えば、特許文献1には、導電性高分子を正極又は負極の活物質とする電池が開示されている。この電池は導電性高分子に対する電解質イオンのドープ反応、及び脱ドープ反応を原理としている。ここでのドープ反応とは、導電性高分子の電気化学的な酸化反応又は還元反応によって生じる荷電ソリトン、ポーラロン等の励起子(エキシトン)を対イオンによって安定化させる反応と定義される。一方、脱ドープ反応とは、ドープ反応の逆反応、すなわち、対イオンによって安定化されたエキシトンを電気化学的に酸化又は還元する反応と定義される。導電性高分子を活物質とする電池は、炭素、窒素等の比重の小さな元素のみからなる有機化合物を電極材料に用いているため、高容量密度電池として期待されていた。しかしながら、導電性高分子では電気化学的な酸化還元反応によって生じるエキシトンがπ電子共役系の広い範囲に亘って非局在化し、それらが相互作用して静電反発やラジカルの消失を引き起こす過程が不可避的に存在する。この過程は生成する荷電ラジカル、エキシトン等の濃度に限界をもたらすものであり、電池の容量を制限する。例えば、ポリアニリンを正極に用いた電池のドープ率は50%以下であり、またポリアセチレンの場合は7%であると報告されている。そのため、導電性高分子を電極材料とする電池では軽量化という点では一定の効果を奏しているものの、大きなエネルギー密度をもつ電池はこれまでに得られていない。したがって、このような導電性高分子を電極材料とする電池では、電池の軽量化という点では一定の効果が得られるものの、高容量化という技術においては、依然として不充分であった。
 このように、レアメタルフリーの材料を電極活物質として用いて、高容量且つサイクル特性に優れる二次電池を実現するために、様々な種類の電池が提案されている。しかし、未だ要求を満足するものは得られていない。
米国特許第4442187号
Morita, Y. et al., New persistent radicals: synthesis and electronic spin structure of 2,5-di-tert-butyl-6-oxophenalenoxyl derivatives. J. Am. Chem. Soc. 122, 4825-4826 (2000).
 本発明は、高容量且つサイクル特性に優れる二次電池が得られる設計理念にもとづく、レアメタルフリーの活物質、及び該当活物質を用いた二次電池を提供することを目的とする。
 上記の課題に鑑み鋭意研究を重ねた結果、本発明者らは、グラフェンフラグメント骨格を有する化合物を正極活物質として用いた場合(特にフロンティア分子軌道に量子力学的な軌道縮重性を持たせ(縮重フロンティア分子軌道)、さらに、充放電過程で電気を運ぶ電子がこれらの軌道を部分的あるいは全部を占めるように分子設計し、且つ、特定の構造を有するようにした結果)、上記課題を解決した二次電池が得られることを見出した。本発明は、このような知見に基づき、さらに研究を重ねた結果、完成されたものである。すなわち、本発明は、以下の項1-1~2-12に係る発明を包含する。
 項1-1.グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む、二次電池用正極活物質。
 項1-2.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、縮重フロンティア分子軌道を有する開殻分子スピン、あるいは中間状態の閉殻構造の分子である、項1-1に記載の二次電池用正極活物質。
 項1-3.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、実線と破線からなる二重線は単結合又は二重結合である。]
で示される化学分子構造を有する、項1-1又は1-2に記載の二次電池用正極活物質。
 項1-4.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、一般式(2):
Figure JPOXMLDOC01-appb-C000004
[式中、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基又はハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
で示される有機化合物又はその誘導体を含む、項1-1~1-3のいずれかに記載の二次電池用正極活物質。
 項1-5.一般式(2):
Figure JPOXMLDOC01-appb-C000005
[式中、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基又はハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩を含む、項1-4に記載の二次電池用正極活物質。
 項1-6.R~Rがいずれもハロゲン原子である、項1-4又は1-5に記載の二次電池用正極活物質。
 項1-7.R~Rがいずれも臭素原子である、項1-4~1-6のいずれかに記載の二次電池用正極活物質。
 項1-8.項1-1~1-7のいずれかに記載の二次電池用正極活物質を含む二次電池用正極。
 項1-9.さらに、導電性炭素繊維を含む、項1-8に記載の二次電池用正極。
 項1-10.項1-8又は1-9に記載の正極を備える有機分子スピンバッテリー。
 項1-11.さらに、リチウム化合物を含む電解液を有する、項1-10に記載の有機分子スピンバッテリー。
 項2-1.グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む二次電池用正極活物質であって、前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体は、
一般式(2):
Figure JPOXMLDOC01-appb-C000006
[式中、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基、ハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩、並びに
一般式(2’):
Figure JPOXMLDOC01-appb-C000007
[式中、R~Rは同じか又は異なり、それぞれハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
で示される有機化合物又はその誘導体
よりなる群から選ばれる少なくとも1種を含有する、二次電池用正極活物質。
 項2-2.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、縮重フロンティア分子軌道を有する、項2-1に記載の二次電池用正極活物質。
 項2-3.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、一般式(2)で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩を含有する、項2-1又は2-2に記載の二次電池用正極活物質。
 項2-4.前記一般式(2)において、R~Rは同じか又は異なり、いずれもハロゲン原子である、項2-1~2-3のいずれかに記載の二次電池用正極活物質。
 項2-5.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、一般式(2’)で示される有機化合物又はその誘導体を含有する、項2-1又は2-2に記載の二次電池用正極活物質。
 項2-6.前記一般式(2)及び(2’)において、R~Rがいずれも臭素原子である、項2-1~2-5のいずれかに記載の二次電池用正極活物質。
 項2-7.項2-1~2-4のいずれかに記載の二次電池用正極活物質を含む二次電池用正極。
 項2-8.さらに、導電性炭素繊維を含む、項2-7に記載の二次電池用正極。
 項2-9.グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む二次電池用正極活物質と、導電性炭素繊維とを含む、二次電池用正極。
 項2-10.前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、縮重フロンティア分子軌道を有する、項2-9に記載の二次電池用正極。
 項2-11.項2-7~2-10のいずれかに記載の正極を備える有機分子スピンバッテリー。
 項2-12.さらに、リチウム化合物を含む電解液を有する、項2-10に記載の有機分子スピンバッテリー。
 本発明によれば、グラフェンフラグメント骨格を有する有機化合物又はその誘導体をレアメタルフリーの正極活物質として用いる(特にフロンティア分子軌道に量子力学的な軌道縮重性を持たせ(縮重フロンティア分子軌道)、さらに、充放電過程で電気を運ぶ電子がこれらの軌道を部分的あるいは全部を占めるように分子設計し、且つ、特定の構造を有する)ことで、高容量且つサイクル特性に優れる二次電池を提供することができる。
比較例1の6OPO、実施例1の(t-Bu)TOT、実施例4のBrTOTに関する量子化学計算の結果を示すエネルギー準位図である。 参考例1の(t-Bu)TOTのBu塩及び参考例2のBrTOTアニオンのBu塩の酸化還元挙動を示すCV曲線図である。 比較例2(a)、実施例5(b)の各コイン型電池の充放電特性及びサイクル特性の結果を示すグラフである。なお、赤線は1サイクル目、青線は2サイクル目、黒はその他のサイクルである。 比較例2のコイン型電池の充放電特性について、充放電の条件を2C(a)、3C(b)とした場合の結果を示すグラフである。なお、赤線は1サイクル目、青線は2サイクル目、黒はその他のサイクルである。 比較例2のコイン型電池の充放電特性について、100サイクル~500サイクルの結果を示すグラフである。 実施例9のコイン型電池の、1Cで充放電したときの充放電特性(a)(赤線は1サイクル目、青線は2サイクル目、黒はその他のサイクル)及び、1C(赤)又は2C(青)で充放電したときのサイクル特性(b)の結果を示すグラフである。
 1.正極活物質
 本発明の正極活物質は、グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む。
 特に、グラフェンフラグメント骨格を有する有機化合物又はその誘導体は、
一般式(2):
Figure JPOXMLDOC01-appb-C000008
[式中、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基、ハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩、並びに
一般式(2’):
Figure JPOXMLDOC01-appb-C000009
[式中、R~Rは同じか又は異なり、それぞれハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
で示される有機化合物又はその誘導体
よりなる群から選ばれる少なくとも1種を含有することが好ましい。以下、詳述する。
 グラフェンフラグメント骨格を有する有機化合物又はその誘導体としては、特に、縮重フロンティア分子軌道を有する開殻有機分子系であることが好ましい。ここで、縮重フロンティア分子軌道における「縮重」とは、エネルギー準位が等しい量子状態が複数存在することを言い、分子・原子サイズの微視的な物理的実在に出現する、量子力学的な性質である。この縮重は、分子の幾何学・立体的構造に由来する群論的な縮重、あるいは分子を構成する原子の位置や導入する置換基の位置を制御して作るトポロジー的な対称性に由来する縮重であってもよい。また、「開殻有機分子」とは、分子内に1個以上の不対電子(化学結合に与らない電子)を持ち、電子スピン角運動量に由来する固有の量子的性質を有する有機分子のことを指す。
 グラフェンフラグメント構造とは、本発明においては、例えば、
Figure JPOXMLDOC01-appb-C000010
[式中、実線と破線からなる二重線は単結合又は二重結合である。]
等で示され、具体的には、
Figure JPOXMLDOC01-appb-C000011
等が挙げられる。
 グラフェンフラグメント骨格を有する有機化合物又はその誘導体としては、具体的には、一般式(1):
Figure JPOXMLDOC01-appb-C000012
[式中、実線と破線からなる二重線は単結合又は二重結合である。]
で示される構造を有するものが好ましい。
 具体的には、一般式(2):
Figure JPOXMLDOC01-appb-C000013
[式中、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基又はハロゲン原子;実線と破線からなる二重線は前記に同じである。]
で示される有機化合物又はその誘導体が好適に挙げられる。
 特に、この一般式(2)で示される化合物又はその誘導体は、
Figure JPOXMLDOC01-appb-C000014
[式中、R~R、実線と破線からなる二重線は前記に同じである。]
のように、1分子で4個の電子を授受することができる。つまり、縮重軌道酸化還元反応において、介在する電子が占める縮重分子軌道間のエネルギーギャップを制御でき、かつ多数の電子が関与することができる(例えば、2個の電子を授受するフェナレニル骨格を有する化合物の2倍)ため、電流容量を劇的に向上させることができる。
 一般式(2)において、酸素原子とグラフェンフラグメント骨格との間の結合は、単結合でもよいし二重結合でもよい。単結合の場合であっても、中性ラジカル、アニオン、荷電ラジカルが非局在化されるために安定に存在することができる。また、当該化合物は、平面状の化合物同士が積み重なった構造となることが多い。このため、酸化還元反応の反応部位であるラジカル、アニオン等が外部に出ており、反応性を低下させずに安定な活物質となる。
 一般式(2)において、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基又はハロゲン原子である。具体的には、メチル基、エチル基、プロピル基、t-ブチル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、電流容量をより大きくでき、サイクル特性をさらに劇的に向上させることができる点から、いずれも、ハロゲン原子、特に臭素原子が好ましい。
 さらに具体的には、
Figure JPOXMLDOC01-appb-C000015
[式中、実線と破線からなる二重線は前記に同じである。]
等が挙げられ、特に、
Figure JPOXMLDOC01-appb-C000016
等が挙げられる。これらの誘導体も好ましく使用することができる。
 本発明で使用できるグラフェンフラグメント骨格を有する有機化合物又はその誘導体としては、中性ラジカルに限られない。グラフェンフラグメント骨格を有する有機化合物又はその誘導体を由来とするアニオンと、金属カチオンとからなる塩であってもよい。これらの化合物においても、グラフェンフラグメント骨格に由来する縮重軌道に派生する量子力学的な性質が保持されるからである。
 例えば、一般式(2):
Figure JPOXMLDOC01-appb-C000017
[式中、R~R、実線と破線からなる二重線は前記に同じである。]
で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩も使用できる。その理由は、前記のとおりである。
 一般式(2)で示される有機化合物を由来とするアニオンとは、例えば、一般式(2a):
Figure JPOXMLDOC01-appb-C000018
[式中、R~R、実線と破線からなる二重線は前記に同じである。]
で示されるように、1価のアニオンが好ましい。
 金属カチオンとしては、1価のカチオンが好ましく、リチウムイオン、カリウムイオン等が挙げられるが、サイクル特性を考慮すると、リチウムイオンが好ましい。
 本発明では、上記したように、中性ラジカルでも塩でも使用できるが、容量及びサイクル特性の観点から中性ラジカルが好ましい。
 本発明において、グラフェンフラグメント骨格を有する有機化合物又はその誘導体の合成方法は、特に限定されない。
 例えば、R~Rがいずれも炭素数1~6のアルキル基である化合物を合成する場合には、これに限定されるわけではないが、一般式(3):
Figure JPOXMLDOC01-appb-C000019
[式中Xはハロゲン原子、Rは炭素数1~6のアルキル基である]
で示される化合物を出発物質として合成することができる。
 この化合物において、Xとしては、好ましくは臭素原子である。また、Rとしては、好ましくはtert-ブチル基である。つまり、好ましい出発物質は
Figure JPOXMLDOC01-appb-C000020
である。
 工程(1)
Figure JPOXMLDOC01-appb-C000021
[式中Xはハロゲン原子、Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基である]
 最初に、一般式(3)で示される化合物に、有機リチウム化合物を作用させた後にカーボネート化合物を作用させ、一般式(4)で示される化合物を得る。
 有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム、ヘキシルリチウム、シクロヘキシルリチウム、フェニルリチウム等が挙げられる。これらのうち、tert-ブチルリチウム等が好ましい。また、カーボネート化合物としては、例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、エチレンカーボネート等が挙げられる。
 この場合、反応雰囲気は特に限定はなく、具体的には、例えば、空気雰囲気、不活性ガス雰囲気等が挙げられる。
 各物質の使用量、反応時間、反応温度等は特に制限はない。当該反応に通常適用される条件とすることができる。
 ここで出発物質が
Figure JPOXMLDOC01-appb-C000022
の場合は、
Figure JPOXMLDOC01-appb-C000023
が得られる。
 工程(2)
Figure JPOXMLDOC01-appb-C000024
[式中Xは同じか又は異なり、それぞれハロゲン原子;Rは前記に同じである]
 ここでは、水酸基を還元脱離する。還元脱離の方法は、特に制限されず、例えば、ハロゲン(特にヨウ素)と、ホスフィン酸等の還元剤を用いることができる。
 この場合、反応雰囲気は特に限定はなく、具体的には、例えば、空気雰囲気、不活性ガス雰囲気等が挙げられる。
 各物質の使用量、溶媒、反応時間、反応温度等は特に制限はない。当該反応に通常適用される条件とすることができる。
 次に、各アリール基の2位をハロゲン化する。この際の方法も特に制限はない。
 例えば、ヨウ素化する場合には、ヨウ素と過ヨウ素酸、ヨウ素酸等を酢酸及び硫酸の存在下で反応させることが好ましい。これにより、不活性な基質であってもヨウ素化することができる。
 この場合、反応雰囲気は特に限定はなく、具体的には、例えば、空気雰囲気、不活性ガス雰囲気等が挙げられる。
 各物質の使用量、反応時間、反応温度等は特に制限はない。当該反応に通常適用される条件とすることができる。
 これにより、一般式(5)で示される化合物が得られる。
 ここで出発物質が
Figure JPOXMLDOC01-appb-C000025
の場合は、
Figure JPOXMLDOC01-appb-C000026
が得られる。
 工程(3)
Figure JPOXMLDOC01-appb-C000027
[式中X及びRは前記に同じである]
 ここでは、アリール基の2位のハロゲン原子をカルボキシル基に置換する。その方法としては、特に制限されない。例えば、パラジウム触媒の存在下で一酸化炭素及び水を使用する方法等が挙げられる。具体的には、溶媒中、パラジウム触媒の存在下でCOガスを吹き込み、その後アルカリ条件下で加水分解することが好ましい。
 パラジウム触媒としては、金属パラジウムをはじめ、有機化合物(高分子化合物を含む)等の合成用触媒として公知のパラジウム化合物等が挙げられる。具体的には、Pd(PPh、PdCl(PPh、Pd(CHCOO)、トリス(ジベンジリデンアセトン)二パラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリt-ブチルホスフィノ)パラジウム(0)等が挙げられる。本工程では、Pd(CHCOO)等が好ましい。
 また、上記カップリング工程において、必要に応じて、上記パラジウム系触媒の中心元素であるパラジウム原子に配位し得る配位子を触媒とともに用いることができる。この配位子としては、例えば、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、2-(ジ-t-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ-2’,6’-ジメトキシ-1,1’-ビフェニル(S-Phos)、2-(ジシクロヘキシルホスフィノ-2’,4’,6’-トリ-イソプロピル-1,1’-ビフェニル(X-Phos)、ビス(2-ジフェニルホスフィノフェニル)エーテル(DPEPhos)等が挙げられる。
 溶媒としては、特に制限されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミド、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、ベンゼン、トルエン、キシレン、エタノール、メタノール、プロパノール等を使用することができる。
 アルカリ条件とするためのアルカリとしても特に制限されない。例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化カルシウムを使用することが好ましい。
 各物質の使用量、反応時間、反応温度等は特に制限はない。当該反応に通常適用される条件とすることができる。
 これにより、一般式(6)で示される化合物が得られる。
 ここで出発物質が
Figure JPOXMLDOC01-appb-C000028
の場合は、
Figure JPOXMLDOC01-appb-C000029
が得られる。
 工程(4)
Figure JPOXMLDOC01-appb-C000030
[式中R、及び実線と破線からなる二重線は前記に同じである]
 ここでは、ハロゲン化剤を作用させた後、ルイス酸触媒を作用させる。この反応は、フリーデルクラフツ反応(Friedel-Crafts reaction)として知られる反応である。
 ハロゲン化剤としては、オキサリルクロリド、塩化チオニル等が挙げられるが、オキサリルクロリドが望ましい。
 ルイス酸触媒としては、具体的には、金属又は半金属のハロゲン化物であり、例えば、塩化アルミニウム、臭化アルミニウム、塩化鉄(III)、臭化鉄(III)、塩化チタン(IV)等が挙げられるが、塩化アルミニウムが好ましい。
 この場合、反応雰囲気は特に限定はなく、具体的には、例えば、空気雰囲気、不活性ガス雰囲気等が挙げられる。
 各物質の使用量、溶媒、反応時間、反応温度等は特に制限はない。当該反応に通常適用される条件とすることができる。
 これにより、一般式(7)で示される化合物が得られる。
 ここで出発物質が
Figure JPOXMLDOC01-appb-C000031
の場合は、
Figure JPOXMLDOC01-appb-C000032
[式中実線と破線からなる二重線は前記に同じである]
が得られる。
 この後、一般式(7)で示される化合物を中和した後に、水酸化テトラブチルアンモニウム(BuNOH)を作用させることで、一般式(2a)においてR~Rがいずれも炭素数1~6のアルキル基であるアニオンの、テトラブチルアンモニウム塩が得られる。
 また、一般式(7)で示される化合物を中和して得られるアニオンを、酸化剤(特にクロラニル)で酸化させることで、一般式(2)において、R~Rがいずれも炭素数1~6のアルキル基である中性ラジカルが得られる。
 さらに、前記テトラブチルアンモニウム塩を塩酸等の酸で中和した後に、カリウム化合物(KOH等)、リチウム化合物(LiOH・HO等)を作用させることで、一般式(2a)においてR~Rがいずれも炭素数1~6のアルキル基であるアニオンの、カリウム塩、リチウム塩等が得られる。
 また、出発物質として、一般式(1’):
Figure JPOXMLDOC01-appb-C000033
[式中、X及びXは同じか又は異なり、それぞれハロゲン原子;Rは炭素数1~6のアルキル基である。]
で示される化合物、特に
Figure JPOXMLDOC01-appb-C000034
を用いて上記と同様の方法を採用すれば、一般式(2)において、R~Rがいずれもハロゲン原子である中性ラジカル、一般式(2a)においてR~Rがいずれもハロゲン原子であるアニオンの、テトラブチルアンモニウム塩、リチウム塩、カリウム塩等を得ることもできる。
 2.正極
 電極活物質(単に活物質とも言う)とは、充電反応及び放電反応等の電極反応に直接寄与する物質のことであり、電池システムの中心的役割を果たすものである。本発明では、電極活物質として、上述したグラフェンフラグメント骨格を有する有機化合物又はその誘導体を用いる。なお、上述したグラフェンフラグメント骨格を有する有機化合物又はその誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
 また、電極活物質として、上述したグラフェンフラグメント骨格を有する有機化合物又はその誘導体のみを使用してもよいし、従来から公知の活物質を組合せて使用してもよい。ただし、レアメタルフリーの二次電池を得る観点と、高容量且つサイクル特性に優れる二次電池を得る観点から、上述したグラフェンフラグメント骨格を有する有機化合物又はその誘導体を主体とすることが好ましく、上述したグラフェンフラグメント骨格を有する有機化合物又はその誘導体を50質量%以上、特に70質量%以上、さらに90質量%以上含むことが好ましい。グラフェンフラグメント骨格を有する有機化合物又はその誘導体を質量%として主要に含むことが好ましい理由は、これらの分子のグラフェンフラグメント骨格に由来する縮重軌道を占有する多数電子を電池の酸化還元反応に利用できるからである。
 本発明では、上述したグラフェンフラグメント骨格を有する有機化合物又はその誘導体以外に、導電材として、炭素材料を使用することがより好ましい。炭素材料は導電付与材として従来のリチウムイオン電池等にも使用されているが、本発明の場合は金属粉末、導電性高分子等では電池としての動作が認められないことから、単なる集電材以上の何らかの作用を及ぼしていると考えられる。
 本発明で使用できる炭素材料としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子;気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維等が挙げられる。本発明ではこれらの炭素材料を単独で、または2種類以上混合して用いることもできる。なかでも、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維等が好ましい。電極中の炭素質材料の混合割合は特に限定されないが、例えば10~90質量%とすることができる。
 正極の各構成材料間の結びつきを強めるために、結着剤(バインダ)を用いることもできる。この結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダが挙げられる。これらの樹脂バインダは、単独でまたは2種類以上混合して用いることもできる。電極中のバインダの割合は特に限定されないが、例えば5~30質量%とすることができる。
 本発明において正極集電体として、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、半金属、半導体も含めた金属平板、メッシュ状などの形状の集電体を用いることができる。
 3.有機分子スピンバッテリー
 本発明の有機分子スピンバッテリーは、上述した本発明の正極を有する。
 対向電極は、正極電極に対向して設けられ、本発明では、負極に相当する。本発明においては、リチウム重ね合わせ銅箔、白金版等のカチオンが析出可能な導体;負極活物質を含む電極等が利用できる。このうち、負極活物質としてはカチオンを吸蔵・放出可能な材料であれば特に限定されず、天然黒鉛、石炭・石油ピッチ等を高温で熱処理して得られる黒鉛化炭素等の結晶質カーボン、石炭、石油ピッチコークス、アセチレンピッチコークス等を熱処理して得られる非晶質カーボンやリチウム合金等、二次電池の負極活物質として従来公知の材料が使用できる。
 本発明において負極集電体として、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、半金属、半導体も含めた金属平板、メッシュ状などの形状の集電体を用いることができる。
 本発明では従来のリチウムイオン二次電池と同様に正極と負極を隔てる目的でセパレータを利用することもできる。
 正極層と対向電極の間の荷電担体輸送を行うために、電解液を使用することができる。一般には、電解液中の電解質としては、室温で10-5~10-1 S/cmのイオン伝導性を有するものがより好適に用いられる。電解質としては、例えば、電解質塩を溶剤に溶解した電解液、電解質塩を含む高分子化合物からなる固体電解質等を利用することができる。
 電解液を構成する電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、Li(CFSON、Li(CSON、Li(CFSOC、Li(CSOC等のリチウム化合物を用いることができる。
 電解質塩を溶解するための溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等の有機溶媒を用いることができる。これらは、1種単独又は2種以上で用いることができる。
 固体電解質を構成する高分子化合物としては、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体;アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアクリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリロニトリル系重合体;ポリエチレンオキシド、エチレンオキシド-プロピレンオキシド共重合体、これらのアクリレート体、メタクリレート体の重合体等が挙げられる。なお、固体電解質は、これらの高分子化合物に電解液を含ませてゲル状にしたものを用いても、高分子化合物のみでそのまま用いてもよい。
 本発明において、電池の形状は特に限定されず、従来の電池で行われている円筒型、角型、コイン型、シート型等の形状とすることができる。また、外装方法も特に限定されず、金属ケース、モールド樹脂、アルミラミネートフィルム等によって行うことができる。また、電極からのリードの取り出し等についても従来公知の方法を用いることができる。
 以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例に何ら制約されるものではない。
 [比較例1]
 2,5,8-トリ-tert-ブチル-6-オキソフェナェレンオキシル(6OPO):
Figure JPOXMLDOC01-appb-C000035
は、公知の文献(非特許文献1)に記載の方法に従い、合成した。
 [参考例1:(t-Bu)TOTのBu塩]
 一般式(2a):
Figure JPOXMLDOC01-appb-C000036
で示されるアニオンのテトラブチルアンモニウム塩((t-Bu)TOTのBu塩)は、以下のように合成した。
 工程(1)
 4-tert-ブチルブロモベンゼン:
Figure JPOXMLDOC01-appb-C000037
に、tert-ブチルリチウムを作用させた後にジエチルカーボネートを作用させ、
Figure JPOXMLDOC01-appb-C000038
を得た。
 具体的には、200-mL滴下漏斗を付けた1-Lシュレンク管に、4-tert-ブチルブロモベンゼン(14 mL,85.3 mmol)を入れ、テトラヒドロフラン(400 mL)に溶解させた。ドライアイス-エタノール浴で冷却して1時間撹拌した。滴下漏斗を用いてtert-ブチルリチウム(1.48 M ペンタン溶液,115 mL,170.7 mmol)を滴下した。その後、-78°Cまで昇温してから1時間撹拌した。再び反応溶液を冷却し、炭酸ジエチル(3.10 mL,25.6 mmol)を滴下した。滴下後昇温して4時間撹拌した。反応液に水(150 mL)を加えた後、酢酸エチルで抽出し、無水硫酸ナトリウム上で乾燥後、ろ過して減圧濃縮した。粗成生物を桐山漏斗上ヘキサンで洗って、トリフェニルメタノール誘導体(10.3 g,94%)を白色固体として得た。
 工程(2)
 次に、前記工程(1)で得た化合物中の水酸基を、ヨウ素(I)とホスフィン酸を用いて還元脱離した。また、アリール基を過ヨウ素酸及びホスフィン酸の存在下でヨウ素(I)でヨウ素化した。その結果、
Figure JPOXMLDOC01-appb-C000039
を得た。
 具体的には、1-Lナスフラスコに トリフェニルメタノール誘導体(12.0 g,28.0 mmol)、酢酸(400 mL)、ヨウ素(7.11 g, 28.0 mmol)、そして50%ホスフィン酸(30mL)を入れ、還流冷却管を取り付け60°Cで3時間加熱した。放冷後、水を加えて、生じた白色固体を桐山漏斗で濾取し、トリフェニルメタン誘導体を合成した。
 トリフェニルメタン誘導体(5.40 g,13.1 mmol)、酢酸(50 mL)、蒸留水(10 mL)、過ヨウ素酸二水和物(23.9 g,105 mmol)、ヨウ素(13.1 g,52.3 mmol)そして濃硫酸(1.50 mL)をナスフラスコに入れ、110°Cで加熱還流した。15時間後、放冷し飽和亜硫酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出し、無水硫酸ナトリウム上で乾燥後、ろ過して濃縮した。粗生成物を塩化メチレンに溶解させ、カラムクロマトグラフィーに供することで、トリ(ヨードフェニル)メタン誘導体(5.96 g,56%)を白色固体として得た。
 工程(3)
 次に、アルカリ条件下で、溶媒としてN,N-ジメチルホルムアミド中、Pd(CHCOO)の存在下で一酸化炭素(CO)ガスを吹き込み、その後加水分解した。その結果、
Figure JPOXMLDOC01-appb-C000040
を得た。
 具体的には、100-mLナスフラスコにトリ(ヨードフェニル)メタン誘導体(4.00 g, 5.06  mmol)、1,3-ジフェニルホスフィノプロパン(313 mg,0.759 mmol)、酢酸パラジウム(II)(170 mg,0.759 mmol)、N,N-ジメチルホルムアミド(40 mL)、メタノール(4 mL)、そしてトリエチルアミン(4.24 mL, 30.4 mmol)を入れた。一酸化炭素ガス雰囲気下80°Cで4日間撹拌した。反応終了後、室温まで冷却し、飽和塩化ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和塩化ナトリウム水溶液で洗ったのち、無水硫酸ナトリウム上乾燥、ろ過して濃縮した。粗生成物を塩化メチレンに溶解させ、カラムクロマトグラフィーに供してトリエステル誘導体(1.35 g, 45%)を淡黄色泡状固体として得た。
 50-mLナスフラスコにトリエステル誘導体(900 mg, 1.53 mmol)を入れ、エタノール(35 mL)と、水酸化カリウム(4.3 g, 76.7 mmol)を水(7 mL)に溶解させた水溶液を加え、3時間加熱還流した。放冷した後、2 mol/L塩酸を加えて酢酸エチルで抽出した。有機層を無水硫酸ナトリウム上で乾燥した後、ろ過して濃縮し、トリカルボン酸誘導体(820 mg)を淡黄色固体として得た。
 工程(4)
 さらに、オキサリルクロライドで作用した後、ルイス酸触媒として塩化アルミニウム(AlCl)で作用することで、
Figure JPOXMLDOC01-appb-C000041
[式中実線と破線からなる二重線は前記に同じである]
を得た。
 具体的には、100-Lナスフラスコに、トリカルボン酸誘導体(400 mg, 0.734 mmol)を入れ、オキサリルクロリド(10.0 mL)を加えて加熱還流した。2時間後、過剰のオキサリルクロリドを減圧留去した。残査を塩化メチレン(12 mL)に溶解させ、低温下で塩化アルミニウム(979 mg, 7.34 mmol)を加えて撹拌した。2時間後、塩化メチレンを真空下留去し、青色の残査に炭酸カリウム(8 g)を加えて混ぜ合わせ、水冷しながらさらに蒸留水を加えて懸濁させた。酢酸エチルで抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸ナトリウム上で乾燥させた後、ろ過して濃縮することで(t-Bu)TOTアニオンのカリウム塩(563 mg)を青色固体として得た。
 工程(5)
 この後、得られた化合物を中和して、
Figure JPOXMLDOC01-appb-C000042
で示されるヒドロキシジケトン誘導体を得、さらに、水酸化テトラブチルアンモニウム(BuNOH)を作用させることで、(t-Bu)TOTアニオンのBu塩を得た。
 具体的には、このアニオンのカリウム塩(563 mg)を20-mLナスフラスコに入れ、2 mol/L塩酸(20 mL)に懸濁させ、2時間加熱撹拌した。放冷後、固体を桐山漏斗でろ取し、2 mol/L塩酸で洗浄することでヒドロキシジケトン誘導体(294 mg)を得た。
 続いて、30-mLナスフラスコにヒドロキシジケトン誘導体(497 mg, 1.01 mmol)を入れ、水酸化テトラブチルアンモニウム水溶液(2 mL)を水(5 mL)で希釈した水溶液に懸濁させた。30分間撹拌した後、青色固体を桐山漏斗でろ取した後、蒸留水で洗った。真空乾燥させることで、t-Bu)TOTアニオンのBu塩(536 mg,57%)を青色固体として得た。
Bu4N+ salt of (t-Bu)3TOT anion: blue blocks containing triglyme and water molecules as crystal solvents; mp: 203-204℃; 1H NMR (270 MHz, DMSO-d6): δ 0.93 (t, J = 7.3 Hz, 12H), 1.30 (m, 8H), 1.49 (s, 27H), 1.49-1.61 (m, 8H), 3.12-3.18 (m, 8H), 8.81 (s, 6H); Analysis (calcd, found for C50H69NO3(C8H18O4)0.5(H2O)): C (77.28, 77.20), H (9.61, 9.35), N (1.67, 1.84).
 [実施例1:(t-Bu)TOT]
 合成例1の途中で得たTOTアニオンを、クロラニルで酸化させることで、
Figure JPOXMLDOC01-appb-C000043
で示される中性ラジカル((t-Bu)TOT)を得た。
 具体的には、30-mLナスフラスコにTOTアニオン(100mg, 0.137 mmol)、クロラニル(33.6 g, 0.137mmol)を入れ、1,2-ジメトキシエタン(5 mL)に溶解させた。室温で 20 分間撹拌した後、溶媒を真空減圧下留去した。粗生成物をクロロホルム(80 mL)に溶解させ、カラムクロマトグラフィーに供すことで、中性ラジカル(51.9 mg,77%)を茶色固体として得た。
(t-Bu)3TOT neutral radical: black needles containing water molecule as a crystal solvent; dp > 300℃; Analysis (calcd, found for C34H33O3(H2O)0.15): C (82.95, 82.75), H (6.82, 6.64), N (0.00, 0.00).
 [実施例2:(t-Bu)TOTアニオンのK塩]
 合成例1で得た(t-Bu)TOTアニオンのBu塩を2MのHClで中和した後、KOHを作用させることで、目的物((t-Bu)TOTアニオンのK塩)を得た。
 具体的には、アニオンのBu塩(43 mg, 0.09 mmol)を20-mLナスフラスコに入れてエタノール(5 mL)に溶解させた。炭酸カリウム(61 mg, 0.44 mmol)を加えて攪拌した。1.5時間後、水(1 mL)を加えて生じた沈殿を桐山漏斗でろ取し、真空乾燥させることで、アニオンのK塩を青色固体として得た。
K+ salt of (t-Bu)3TOTanion: blue powder containing water; dp > 300℃; Analysis (calcd, found for C34H33O3K(H2O)3): C (70.07, 69.90), H (6.75, 6.72), N (0.00, 0.00).
 [実施例3:(t-Bu)TOTアニオンのLi塩]
 合成例1で得た(t-Bu)TOTアニオンのBu塩を2MのHClで中和した後、LiOH・HOを作用させることで、目的物((t-Bu)TOTアニオンのLi塩)を得た。
 具体的には、アニオンのBu塩(58 mg, 0.12 mmol)を20-mLナスフラスコに入れてエタノール(5 mL)に溶解させた。水酸化リチウム一水和物(50 mg, 1.2 mmol)を加えて攪拌した。2時間後、水(10 mL)を加えて生じた沈殿を桐山漏斗でろ取し、真空乾燥させることで、アニオンのLi塩を青色固体として得た。
Li+ salt of (t-Bu)3TOTanion: blue powder containing water; dp > 300℃; Analysis (calcd, found for C34H33O3Li(H2O)2): C (76.67, 76.61), H (7.00, 6.85), N (0.00, 0.00).
 [参考例2:BrTOTアニオンのBu塩]
 出発物質として、
Figure JPOXMLDOC01-appb-C000044
を用いること以外は合成例1と同様の手法により、
Figure JPOXMLDOC01-appb-C000045
で示されるアニオン(BrTOTアニオン)のBu塩を得た。
 具体的には、1-Lシュレンク管に、2-ヨード-5-ブロモトルエン(9.0 mL, 63.7 mmol)を入れ、テトラヒドロフラン(30 mL)に溶解させた。-78 °Cに冷却し、n-ブチルリチウム(1.6 M ヘキサン溶液, 40 mL, 64 mmol)を滴下し、1時間撹拌した。その後、炭酸ジエチル(2.3 mL, 19.1 mmol)を滴下し、1.5時間撹拌した。反応液に水(100 mL)を加えて、酢酸エチルで抽出し、有機層を飽和食塩水で洗った。硫酸ナトリウム上で乾燥した後、ろ過して濃縮した。粗生成物を塩化メチレンに溶解させ、カラムクロマトグラフィーに供して、トリフェニルメタノール誘導体(4.52 g,44%)を白色粉末として得た。
 1-Lシュレンク管に、 トリフェニルメタノール誘導体(4.32 g, 8.38 mmol)を入れ、トリフルオロ酢酸(300 mL)に溶解させ、氷浴で冷却した。水素化ホウ素ナトリウム(3.17 g, 83.8 mmol)を加え、室温まで昇温させて30分間撹拌した。トリフルオロ酢酸を留去し、飽和炭酸水素ナトリウム水溶液を加えて中和した。酢酸エチルで抽出し、有機層を飽和食塩水で洗い、硫酸ナトリウム上で乾燥した後、ろ過し、濃縮することで、トリフェニルメタン誘導体(4.10 g,98%)を白色粉末として得た。
 1-Lナスフラスコに2-メチル-2-プロパノール(300 mL)、水(300 mL)、トリフェニルメタン誘導体(5.80 g, 11.1 mmol)、過マンガン酸カリウム(52.6 g,333 mmol)を入れ、加熱還流した。40時間後、室温まで冷却し、不溶性の物質をろ別し、酢酸エチルで洗った。ろ液に 2 mol/L塩酸を加え、酢酸エチルで抽出、有機層を飽和食塩水で洗い、硫酸ナトリウム上で乾燥させた後、ろ過し濃縮することで、トリカルボン酸誘導体(6.00 g,89%)を白色粉末として得た。
 200-mLナスフラスコにトリカルボン酸誘導体(2.80 g, 4.57 mmol)を入れ、濃硫酸(60 mL)に溶解させ、1時間加熱撹拌した。放冷後、析出した沈殿物をろ取し、水、塩化メチレン、アセトンで洗い、ヒドロキシジケトン体(1.51 g,58%)を紫色粉末として得た。
 100-mLナスフラスコに、ヒドロキシジケトン体(406 mg, 0.73 mmol)を入れ、アセトン(50 mL)に溶解させた。水酸化テトラブチルアンモニウム水溶液(2.2 mL)を加えて攪拌した。1時間後、溶媒を減圧留去し、残渣を水で洗浄することで、アニオンのBu塩(507 mg,87%)で得た。
Bu4N+ salt of Br3TOT anion: blue crystals containing water molecule as a crystal solvent; dp: 191-192℃; 1H NMR (400 MHz, DMSO-d6): δ 0.93 (t, J = 7.3 Hz. 12H), 1.25-1.35 (m, 8H), 1.52-1.62 (m, 8H), 3.15 (t, J = 8.5 Hz, 8H), 8.59 (s, 6H); Analysis (calcd, found for C38H42Br3O3N(H2O)0.4): C (56.51, 56.53), H (5.34, 5.27), N (1.73, 1.83).
 [実施例4:BrTOT]
 出発物質として、
Figure JPOXMLDOC01-appb-C000046
を用いること以外は合成例1~2と同様の手法により、
Figure JPOXMLDOC01-appb-C000047
で示される中性ラジカル(BrTOT)を得た。
 具体的には、100-mLナスフラスコに、アニオンのBu塩(503 mg,0.63 mmol)を入れ、塩化メチレン(40 mL)に溶解させた。2,3-ジクロロ-5,6-ジシアノベンゾキノン(223 mg, 0.95 mmol)を加えて室温で攪拌した。1時間後、生じた沈殿を桐山漏斗でろ取することで、中性ラジカル(351 mg,~100%)で得た。
Br3TOT neutral radical: black blocks; dp: 268℃; Analysis (calcd, found for C22H6Br3O3): C (47.35, 47.04), H (1.08, 1.30), N (0.00, 0.00).
 [試験例1:エネルギー準位図]
 比較例1の6OPO、実施例1の(t-Bu)TOT及び実施例4のBrTOTについて、以下のように、分子設計の要になる電子構造に関して知見を得るために、量子化学計算を行った。
 量子化学計算は、UB3LYP/6-31G(d,p)レベルで最適化された分子構造を用いて、ROB3LYP/6-31G(d,p)レベルでGAUSSIAN 03に用いて行った。結果を図1に示す。
 その結果、6OPOは、SOMO、LUMO間のエネルギーギャップは0.94 eVであった。また、(t-Bu)TOT及びBrTOTは、いずれもSOMOと2つの縮重したLUMOを有し、エネルギーギャップはそれぞれ0.82 eV、0.56 eVであった。BrTOTのフロンティア分子軌道は、6OPO及び(t-Bu)TOTよりも低い位置に存在していた。
 [試験例2:酸化還元挙動(CV曲線)]
 参考例1の(t-Bu)TOTのBu塩及び参考例2のBrTOTアニオンのBu塩について、以下のように酸化還元挙動を測定した。
 290 K(17℃)で、参考例1の(t-Bu)TOTのBu塩の1×10-3 MのTHF溶液中に、支持電解質としてBuNClOを0.1 M投入した。その後、直径1.6 mmの金の作用極と、白金ワイヤーの対極を用い、室温且つアルゴン雰囲気下で、Ag/10 mMAgNOの参照極を用いて測定した。なお、結果は、フェロセン/フェロセニウムで標準化した。
 BrTOTアニオンのBu塩の測定については、参考例2のBrTOTアニオンのBu塩の3×10-3 MのTHF溶液を用いること以外は上記と同様にした。
 結果を図2に示す。なお、上は参考例1、下は参考例2である。
 参考例1については、-0.40 V以外に、-2.0~-2.6 Vの間で電位差の小さな3個のレドックス波が可逆的によく観測された。一方、参考例2では、0 V付近に電気化学的に不可逆な波と、-2.0~-3.05 Vの間でレドックス波が観測された。このことから、4段階の酸化還元能を有することが示唆される。
 [比較例2:6OPOを用いた電池]
 比較例1の6OPO、ポリテトラフルオロエチレン及びVGCFを、質量比で10:10:80になるように秤り取り、均一に混合しながら混練した。この混合体を、加圧成型して、厚さ約150 μmの薄板を得た。これを、真空中80 ℃で1時間乾燥した後、直径12 mmの円形に打ち抜き、6OPOを含む正極層とした。
 次に、得られた正極層を電解液に含浸し、電極中の空隙に電解液を染み込ませた。電解液としては、1.0 MのLiPF電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(混合容積比3:7)を用いた。この正極を、コイン型電池を構成する正極集電体上に置き、その上に同じく電解液を含浸させたポリプロピレン多孔質フィルムからなるセパレータを積層し、さらに負極となるリチウム張り合わせ銅箔を積層した。その後、周囲に絶縁パッキンを配置した状態でコイン型電池のアルミ外装(Hohsen製)を重ね、かしめ機によって加圧し、正極活物質として6OPO、負極活物質として金属リチウムを用いた密閉型のコイン型電池を作製した。
 [実施例5:(t-Bu)TOTを用いた電池(1)]
 カソードの活物質として、6OPOではなく実施例1の(t-Bu)TOTを用いたこと以外は比較例2と同様に、正極活物質として(t-Bu)TOT、負極活物質として金属リチウムを用いた密閉型のコイン型電池を作製した。
 [実施例6:(t-Bu)TOTを用いた電池(2)]
 実施例1の(t-Bu)TOT、ポリテトラフルオロエチレン及びアセチレンブラックを、質量比で10:30:60になるように測り採り、均一に混合しながら混練した。この混合体を、加圧成型して、厚さ約150 μmの薄板を得た。これを、真空中80 ℃で1時間乾燥した後、直径12 mmの円形に打ち抜き、(t-Bu)TOTを含む正極層とした。
 次に、得られた正極層を電解液に含浸し、電極中の空隙に電解液を染み込ませた。電解液としては、1.0 MのLiN(SOCF電解質塩を含むトリエチレングリコールジメチルエーテル溶液を用いた。この正極を、コイン型電池を構成する正極集電体上に置き、その上に同じく電解液を含浸させたポリプロピレン多孔質フィルムからなるセパレータを積層し、さらに負極となるリチウム張り合わせ銅箔を積層した。その後、周囲に絶縁パッキンを配置した状態でコイン型電池のアルミ外装(Hohsen製)を重ね、かしめ機によって加圧し、正極活物質として(t-Bu)TOT、負極活物質として金属リチウムを用いた密閉型のコイン型電池を作製した。
 [実施例7:(t-Bu)TOTアニオンのK塩を用いた電池]
 カソードの活物質として、6OPOではなく実施例2の(t-Bu)TOTアニオンのK塩を用いたこと以外は比較例2と同様に、正極活物質として(t-Bu)TOTアニオンのK塩、負極活物質として金属リチウムを用いた密閉型のコイン型電池を作製した。
 [実施例8:(t-Bu)TOTアニオンのLi塩を用いた電池]
 カソードの活物質として、6OPOではなく実施例3の(t-Bu)TOTアニオンのLi塩を用いたこと以外は比較例2と同様に、正極活物質として(t-Bu)TOTアニオンのLi塩、負極活物質として金属リチウムを用いた密閉型のコイン型電池を作製した。
 [実施例9:BrTOTを用いた電池]
 実施例4のBrTOT、ポリフッ化ビニリデン及びアセチレンブラックを、質量比で10:10:80になるように測り採り、均一に混合しながら混練した。この混合体を、加圧成型して、厚さ約150 μmの薄板を得た。これを、真空中100℃で12時間乾燥した後、直径12 mmの円形に打ち抜き、BrTOTを含む正極層とした。
 次に、得られた正極層を電解液に含浸し、電極中の空隙に電解液を染み込ませた。電解液としては、1.0 MのLiPF電解質塩を含むエチレンカーボネート/エチルメチルカーボネート混合溶液(混合容積比3:7)を用いた。この正極を、コイン型電池を構成する正極集電体上に置き、その上に同じく電解液を含浸させたポリプロピレン多孔質フィルムからなるセパレータを積層し、さらに負極となるリチウム張り合わせ銅箔を積層した。その後、周囲に絶縁パッキンを配置した状態でコイン型電池のアルミ外装(Hohsen製)を重ね、かしめ機によって加圧し、正極活物質としてBrTOT、負極活物質として金属リチウムを用いた密閉型のコイン型電池を作製した。
 [試験例3:充放電特性及びサイクル特性]
 比較例2、実施例5~9のコイン型電池の充放電特性及びサイクル特性を以下のように測定した。
 比較例2
 比較例2のコイン型電池を、1Cで電圧が4.0 Vになるまで充電し、その後、1 Cで2.0Vまで放電を行った。その後、2.0~4.0 Vの間の充放電を同様に、100サイクル繰り返した。結果を図3a、図4及び図5に示す。
 その結果、初期放電容量は152 Ah/kgであり、理論値の147 Ah/kgと近い値であった。
 2サイクル目以降の充電過程においては、最初に挙動が変わる電位が3.0 Vと低下し、階段的な挙動は示さなかった。一方、放電過程においては、3.5 V、2.7 V、2.1 V(平均電位:2.9 V)の3箇所で段階的に挙動が変化した。
 この挙動は、充放電条件を1 Cではなく、2 C又は3 Cとしても同様であった。
 また、100サイクル後の放電容量は33 Ah/kgまで低下し、サイクル特性は22%でしかなかった。サイクル数を500サイクルまで測定すると、さらに容量は低下した。
 実施例5
 実施例5のコイン型電池を用い、充放電条件を、0.3 Cで1.4~3.8 Vの間の充放電を行ったこと以外は比較例2のコイン型電池の場合と同様にした。結果を図3bに示す。
 初期容量(311 Ah/kg)及び2サイクル目の容量(169 Ah/kg)は、比較例2のコイン型電池や、従来のLiCoOを用いたリチウムイオン電池より著しく優れており、約2倍であった。なお、初期容量は、理論値(220 Ah/kg)よりもはるかに大きい値であった。
 また、100サイクル後の放電容量は73 Ah/kgのため、サイクル特性は43%であり、比較例2と比較して大きく向上した。
 実施例6
 実施例6のコイン型電池を用い、充放電条件を、0.2 Cで1.4~3.6 Vの間の充放電を行ったこと以外は比較例2のコイン型電池の場合と同様にした。その結果、初期容量及びサイクル特性ともに、実施例5よりは低下し、導電材としてVGCFが優れていることが示唆された。
 実施例7
 実施例7のコイン型電池を用い、充放電条件を、0.3 Cで1.2~4.0 Vの間の充放電を行ったこと以外は比較例2のコイン型電池の場合と同様にした。その結果、初期容量及びサイクル特性ともに、後述の実施例8よりは低下し、カチオンとしてはリチウムイオンが優れていることが示唆された。
 実施例8
 実施例8のコイン型電池を用い、充放電条件を、0.1 Cで1.2~4.0 Vの間の充放電を行ったこと以外は比較例2のコイン型電池の場合と同様にした。その結果、初期容量及びサイクル特性ともに、実施例5よりは低下し、中性ラジカルが優れていることが示唆された。
 実施例9
 実施例9のコイン型電池を用い、充放電条件を、1 C又は2 Cで1.4~4.0 Vの間の充放電を行ったこと以外は比較例2のコイン型電池の場合と同様にした。結果を図6に示す。
 その結果、1 Cで充放電した際の初期容量は225 Ah/kg、2Cで充放電した際の初期容量は208 Ah/kgと、理論値(192 Ah/kg)と近い値であった。
 また、100サイクル後の放電容量は、1 Cでは159 Ah/kgのためサイクル特性は71%、2 Cでは177 Ah/kgのためサイクル特性は85%であり、他の実施例及び比較例と比較すると、容量及びサイクル特性(特にサイクル特性)が劇的に向上した。

Claims (12)

  1. グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む二次電池用正極活物質であって、前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体は、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R~Rは同じか又は異なり、それぞれ炭素数1~6のアルキル基、ハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
    で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩、並びに
    一般式(2’):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R~Rは同じか又は異なり、それぞれハロゲン原子;実線と破線からなる二重線は単結合又は二重結合である。]
    で示される有機化合物又はその誘導体
    よりなる群から選ばれる少なくとも1種を含有する、二次電池用正極活物質。
  2. 前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、縮重フロンティア分子軌道を有する、請求項1に記載の二次電池用正極活物質。
  3. 前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、一般式(2)で示される有機化合物を由来とするアニオンと、金属カチオンとからなる塩を含有する、請求項1又は2に記載の二次電池用正極活物質。
  4. 前記一般式(2)において、R~Rは同じか又は異なり、いずれもハロゲン原子である、請求項1~3のいずれかに記載の二次電池用正極活物質。
  5. 前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、一般式(2’)で示される有機化合物又はその誘導体を含有する、請求項1又は2に記載の二次電池用正極活物質。
  6. 前記一般式(2)及び(2’)において、R~Rがいずれも臭素原子である、請求項1~5のいずれかに記載の二次電池用正極活物質。
  7. 請求項1~4のいずれかに記載の二次電池用正極活物質を含む二次電池用正極。
  8. さらに、導電性炭素繊維を含む、請求項7に記載の二次電池用正極。
  9. グラフェンフラグメント骨格を有する有機化合物又はその誘導体を含む二次電池用正極活物質と、導電性炭素繊維とを含む、二次電池用正極。
  10. 前記グラフェンフラグメント骨格を有する有機化合物又はその誘導体が、縮重フロンティア分子軌道を有する、請求項9に記載の二次電池用正極。
  11. 請求項7~10のいずれかに記載の正極を備える有機分子スピンバッテリー。
  12. さらに、リチウム化合物を含む電解液を有する、請求項10に記載の有機分子スピンバッテリー。
PCT/JP2012/074000 2011-09-20 2012-09-20 有機分子スピンバッテリー WO2013042706A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-204821 2011-09-20
JP2011204821 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013042706A1 true WO2013042706A1 (ja) 2013-03-28

Family

ID=47914468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074000 WO2013042706A1 (ja) 2011-09-20 2012-09-20 有機分子スピンバッテリー

Country Status (2)

Country Link
JP (1) JPWO2013042706A1 (ja)
WO (1) WO2013042706A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230830A (ja) * 2014-06-05 2015-12-21 国立大学法人大阪大学 活物質、それを用いたナトリウムイオン電池およびリチウムイオン電池
JP2015230829A (ja) * 2014-06-05 2015-12-21 国立大学法人大阪大学 ナトリウムイオン電池用活物質およびナトリウムイオン電池
JP2016172702A (ja) * 2015-03-17 2016-09-29 株式会社カネカ アリールリチウム化合物の製造方法
WO2017010334A1 (ja) * 2015-07-13 2017-01-19 株式会社カネカ 非水電解質二次電池に用いる電極シートおよび非水電解質二次電池
JP2017147157A (ja) * 2016-02-18 2017-08-24 株式会社カネカ 有機ラジカル化合物を含む非水電解液二次電池
WO2018030237A1 (ja) * 2016-08-09 2018-02-15 株式会社カネカ Tot化合物およびそれを利用した非水電解液二次電池
JP2019067625A (ja) * 2017-09-29 2019-04-25 トヨタ自動車株式会社 二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229927A (ja) * 2000-02-21 2001-08-24 Natl Inst Of Advanced Industrial Science & Technology Meti 炭素材料を負極に含むリチウムイオン2次電池及びその炭素材料の識別方法
JP2008266152A (ja) * 2007-04-17 2008-11-06 Japan Science & Technology Agency フッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(hbc)誘導体が面方向に配向したチューブ状のナノサイズの自己集積体、及びその製造方法
JP2009021449A (ja) * 2007-07-12 2009-01-29 Kaneka Corp 電解液を蓄電に利用する新規エネルギー貯蔵デバイス
JP2009143855A (ja) * 2007-12-14 2009-07-02 Toyota Central R&D Labs Inc 有機ラジカル化合物、蓄電デバイス用電極及び蓄電デバイス
JP2009151956A (ja) * 2007-12-18 2009-07-09 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP2009533799A (ja) * 2006-04-07 2009-09-17 ハイ パワー リチウム ソシエテ アノニム リチウム充電式電気化学電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229927A (ja) * 2000-02-21 2001-08-24 Natl Inst Of Advanced Industrial Science & Technology Meti 炭素材料を負極に含むリチウムイオン2次電池及びその炭素材料の識別方法
JP2009533799A (ja) * 2006-04-07 2009-09-17 ハイ パワー リチウム ソシエテ アノニム リチウム充電式電気化学電池
JP2008266152A (ja) * 2007-04-17 2008-11-06 Japan Science & Technology Agency フッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(hbc)誘導体が面方向に配向したチューブ状のナノサイズの自己集積体、及びその製造方法
JP2009021449A (ja) * 2007-07-12 2009-01-29 Kaneka Corp 電解液を蓄電に利用する新規エネルギー貯蔵デバイス
JP2009143855A (ja) * 2007-12-14 2009-07-02 Toyota Central R&D Labs Inc 有機ラジカル化合物、蓄電デバイス用電極及び蓄電デバイス
JP2009151956A (ja) * 2007-12-18 2009-07-09 Toyota Central R&D Labs Inc リチウムイオン二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHINSUKE NISHIDA ET AL.: "Curve-Structured Phenalenyl Chemistry: Synthesis, Electronic Structure, and Bowl-Inversion Barrier of a Phenalenyl-Fused Corannulene Anion", J.AM.CHEM.SOC., vol. 130, 21 October 2008 (2008-10-21), pages 14954 - 14955, XP003030973 *
SHUICHI SUZUKI ET AL.: "Aromaticity on the Pancake-Bonded Dimer of Neutral Phenalenyl Radical as Studied by MS and NMR Spectroscopies and NICS Analysis", J.AM.CHEM.SOC., vol. 128, 3 February 2006 (2006-02-03), pages 2530 - 2531, XP003030972 *
YASUSHI MORITA ET AL.: "Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals", NATURE MATERIALS, vol. 10, December 2011 (2011-12-01), pages 947 - 951, XP003030974 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230830A (ja) * 2014-06-05 2015-12-21 国立大学法人大阪大学 活物質、それを用いたナトリウムイオン電池およびリチウムイオン電池
JP2015230829A (ja) * 2014-06-05 2015-12-21 国立大学法人大阪大学 ナトリウムイオン電池用活物質およびナトリウムイオン電池
US9728785B2 (en) 2014-06-05 2017-08-08 Toyota Jidosha Kabushiki Kaisha Active material for sodium ion battery, and sodium ion battery
US9725396B2 (en) 2014-06-05 2017-08-08 Toyota Jidosha Kabushiki Kaisha Active material, and sodium ion battery and lithium ion battery using the same
JP2016172702A (ja) * 2015-03-17 2016-09-29 株式会社カネカ アリールリチウム化合物の製造方法
WO2017010334A1 (ja) * 2015-07-13 2017-01-19 株式会社カネカ 非水電解質二次電池に用いる電極シートおよび非水電解質二次電池
JPWO2017010334A1 (ja) * 2015-07-13 2018-04-26 株式会社カネカ 非水電解質二次電池に用いる電極シートおよび非水電解質二次電池
US10826056B2 (en) 2015-07-13 2020-11-03 Kaneka Corporation Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017147157A (ja) * 2016-02-18 2017-08-24 株式会社カネカ 有機ラジカル化合物を含む非水電解液二次電池
WO2018030237A1 (ja) * 2016-08-09 2018-02-15 株式会社カネカ Tot化合物およびそれを利用した非水電解液二次電池
JP2019067625A (ja) * 2017-09-29 2019-04-25 トヨタ自動車株式会社 二次電池

Also Published As

Publication number Publication date
JPWO2013042706A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2013042706A1 (ja) 有機分子スピンバッテリー
JP5625151B2 (ja) ラジカルを有する化合物、重合体、およびその重合体を用いた蓄電デバイス
WO2010104002A1 (ja) ピロリン系ニトロキシド重合体およびそれを用いた電池
US20180062176A1 (en) Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries
JPWO2015037489A1 (ja) ナトリウムイオン二次電池用正極材料
Wang et al. High‐Performance Magnesium‐Sulfur Batteries Based on a Sulfurated Poly (acrylonitrile) Cathode, a Borohydride Electrolyte, and a High‐Surface Area Magnesium Anode
Wang et al. Benzene-bridged anthraquinones as a high-rate and long-lifespan organic cathode for advanced Na-ion batteries
JP5240808B2 (ja) 分子結晶性二次電池
Jia et al. In situ electrochemical tuning of MIL‐88B (V)@ rGO into amorphous V2O5@ rGO as cathode for high‐performance aqueous zinc‐ion battery
WO2018211896A1 (ja) ビニルスルホン化合物、リチウムイオン電池用電解液及びリチウムイオン電池
JP5455669B2 (ja) 二次電池用活物質及び二次電池
JP6814064B2 (ja) 有機化合物、電極活物質及びこれを用いた二次電池
Wang et al. Vanadium dissolution restraint and conductive assistant in MnV12O31· 10H2O to boost energy storage property for aqueous zinc-ion batteries
JP2020077542A (ja) 電解液及び二次電池
JP2016008227A (ja) ポリキノン誘導体、及びそれを用いた二次電池用電極活物質
JP5280806B2 (ja) 二次電池用活物質及び二次電池
JP5176129B2 (ja) ポリラジカル化合物および電池
JP5282259B2 (ja) 分子クラスター二次電池
JP5799781B2 (ja) ポリアセチレン誘導体、非水系二次電池用の正極活物質及び正極、非水系二次電池、並びに車両
JP4110980B2 (ja) 二次電池
JP4737365B2 (ja) 電極活物質、電池および重合体
JP4955233B2 (ja) 電極活物質、電池および重合体
JP4752218B2 (ja) 電極活物質、電池およびポリラジカル化合物
JP4259043B2 (ja) リチウム二次電池
JP6959617B2 (ja) Tot化合物およびそれを利用した非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834059

Country of ref document: EP

Kind code of ref document: A1