WO2013038980A1 - 窒化物半導体層を成長させるためのバッファ層構造を有する基板 - Google Patents

窒化物半導体層を成長させるためのバッファ層構造を有する基板 Download PDF

Info

Publication number
WO2013038980A1
WO2013038980A1 PCT/JP2012/072704 JP2012072704W WO2013038980A1 WO 2013038980 A1 WO2013038980 A1 WO 2013038980A1 JP 2012072704 W JP2012072704 W JP 2012072704W WO 2013038980 A1 WO2013038980 A1 WO 2013038980A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
buffer layer
nitride semiconductor
flow rate
Prior art date
Application number
PCT/JP2012/072704
Other languages
English (en)
French (fr)
Inventor
暢行 布袋田
信明 寺口
大輔 本田
伸之 伊藤
雅和 松林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013038980A1 publication Critical patent/WO2013038980A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to improvement of a substrate having a buffer layer structure for growing a nitride semiconductor layer, and more particularly to improvement of a buffer layer structure of the substrate.
  • An epitaxial wafer including a plurality of nitride semiconductor layers stacked on such an improved substrate can be preferably used for manufacturing a nitride semiconductor device such as a heterojunction field effect transistor.
  • a GaN substrate is expensive, so that it is on a substrate of a different material such as sapphire, SiC, or Si Conventionally, these nitride semiconductor layers have been crystal-grown.
  • a nitride semiconductor layer is grown by MOCVD (Metal Organic Vapor Deposition) on a substrate of a different material, strain based on the difference in crystal structure, lattice mismatch, thermal expansion coefficient, etc. between the substrate and the semiconductor layer Various buffer layer structures are used for relaxation.
  • MOCVD Metal Organic Vapor Deposition
  • Japanese Patent Laid-Open No. 2-229476 of Patent Document 1 teaches that an AlN layer is deposited as a buffer layer on a sapphire substrate at a relatively low substrate temperature of 400 ° C. or higher and 900 ° C. or lower.
  • Such a buffer layer deposited at a relatively low temperature is also called a low-temperature buffer layer.
  • the low-temperature buffer layer contains microcrystals and polycrystals in the amorphous matrix. Therefore, when the substrate temperature is increased to about 1000 ° C. or higher in order to grow a nitride semiconductor layer for a semiconductor device on the low-temperature buffer layer, the amorphous parent phase in the buffer layer is polycrystallized. It will contain a relatively large amount of dislocations inside. In the nitride semiconductor multilayer structure for devices grown on the buffer layer, a large amount of dislocations are introduced, the crystal quality varies, and cracks tend to occur.
  • Japanese Patent Application Laid-Open No. 2002-367917 of Patent Document 2 teaches that an AlN crystal layer is deposited on a sapphire substrate as a buffer layer at a relatively high substrate temperature of 1100 ° C. or more and 1250 ° C. or less.
  • a buffer layer deposited at a relatively high temperature is also referred to as a high temperature buffer layer.
  • Patent Document 3 also states that if the thickness of the buffer layer is increased, the substrate is likely to warp due to the difference in lattice constant between the substrate and the buffer layer, and the deposition temperature of the AlN buffer layer is further increased. It also states that if the height is increased, the surface of the buffer layer is more likely to become cloudy.
  • Patent Document 3 discloses that the temperature, pressure, and source gas during the deposition of the high-temperature AlN buffer layer are controlled in order to suppress the occurrence of white turbidity even when the high-temperature AlN buffer layer is formed thin. It teaches changing at least one of MOCVD conditions such as flow rate.
  • JP-A-2-229476 Japanese Patent Laid-Open No. 2002-367917 JP 2007-59850 A
  • An AlN crystal having a hexagonal wurtzite structure is a polar crystal in which Al atoms and N atoms are arranged asymmetrically along the c-axis.
  • the thickness of the AlN crystal layer is grown on the non-polar substrate in the c-axis direction, either the Al polarity where Al atoms exist stably on the surface or the N polarity where N atoms exist stably exists on the surface. grow up. This difference in polarity appears characteristically in the morphology of the crystal growth surface, while the Al polar surface is a highly flat surface, whereas the N polar surface is a remarkably uneven surface having hexagonal facets. Tend to be.
  • the AlN crystal layer is grown as a buffer layer without considering the polar face as in Patent Document 3, the surface of the AlN crystal layer in which the Al polar face and the N polar face are mixed is generated, and high surface flatness is obtained. I can't get it.
  • the mixture of the Al polar face and the N polar face is inherited into the nitride semiconductor multilayer structure for devices grown on the AlN buffer layer, and further deteriorates the surface flatness of the semiconductor multilayer structure.
  • the main object of the present invention is to provide a substrate having an improved buffer layer structure for growing a semiconductor laminated structure for a nitride semiconductor device.
  • the present inventors have not formed a high-temperature AlN buffer layer directly on the silicon substrate, but have a surface flatness compared to a conventional high-temperature AlN buffer layer by interposing an Al layer. As a result, it has been found that a novel buffer layer structure with significantly improved can be obtained.
  • a substrate having a buffer layer structure for growing a nitride semiconductor layer has an Al layer and an AlN crystal layer sequentially stacked on a (111) main surface of a Si single crystal substrate,
  • the Al layer has a thickness of 2 atomic layers or more and 10 atomic layers or less, and the surface of the AlN crystal layer has a (0001) plane orientation and an Al polar surface.
  • the Al layer preferably has a thickness of 2 atomic layers or more and 4 atomic layers or less.
  • the substrate according to the present invention may further have an AlGaN crystal layer on the AlN crystal layer.
  • the AlGaN crystal layer can also include a plurality of sub-layers in which the Al composition ratio is sequentially reduced.
  • a good Al polar surface can be obtained on the surface of the AlN crystal buffer layer by uniformly forming the Al layer on the Si substrate surface before growing the AlN crystal buffer layer. That is, since the surface of the AlN crystal buffer layer substantially includes only the Al polar face, it has high flatness.
  • FIG. 1 It is typical sectional drawing which shows an example of the laminated structure of the heterojunction field effect transistor which can be produced using the board
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of heterojunction field effect transistors that can be manufactured using a substrate according to the present invention.
  • a Si substrate having a (111) main surface is used as the substrate 1.
  • the substrate is set in a chamber of an MOCVD (metal organic chemical vapor deposition) apparatus.
  • MOCVD metal organic chemical vapor deposition
  • the Si substrate 1 is heated to 1050 ° C., and the substrate surface is cleaned for 300 seconds in a hydrogen atmosphere with a chamber internal pressure of 13.3 kPa. Thereafter, an Al layer 2a and an AlN crystal buffer layer 2b are laminated on the Si substrate 1 under the conditions detailed in Examples described later.
  • TMA trimethylaluminum
  • TMG trimethylgallium
  • NH 3 flow rate 12.5 slm.
  • a Ga 0.3 N layer 3 is deposited to a thickness of 400 nm.
  • the superlattice multilayer buffer layer structure 6 may be omitted from the viewpoint of the manufacturing cost and manufacturing time of the heterojunction field effect transistor.
  • the GaN layer 8 is deposited to a thickness of 0.5 ⁇ m under a pressure of 90 kPa.
  • the deposition pressure is low, carbon contained in TMG is easily doped into the GaN layer, and when the deposition pressure is high, carbon tends to be hardly doped from TMG into the GaN layer.
  • an AlN characteristic improving layer 9 (1 nm thickness), an Al 0.2 Ga 0.8 N barrier layer 10 (20 nm thickness), and a GaN cap layer 11 (1 nm) under a pressure of 13.3 kPa.
  • An electron supply layer is deposited, including (thickness).
  • the Al composition ratio of the AlGaN layers 3, 4 and 5 was changed in the order of 0.7, 0.4 and 0.1.
  • the combination of composition ratios is not limited to this combination.
  • the number of AlGaN layers included in the composition gradient buffer layer structure and having different Al composition ratios is not limited to three, and can be any number. What is important is that the Al composition ratio gradually decreases from the lower surface to the upper surface of the composition gradient buffer layer structure.
  • the super lattice multi-layer buffer layer structure 6 is not limited to the repetition of the AlN layer / the Al 0.1 Ga 0.9 N layer,, for example the Al 0.1 Ga 0.9 N layer, has another composition ratio AlGaN It is also possible to replace it with a layer.
  • Comparative Example 1 In order to investigate the improvement effect of the substrate of the present invention, a substrate as Comparative Example 1 was produced using conventional technology.
  • the substrate of Comparative Example 1 has the Si substrate 1, the AlN crystal buffer layer 2b, and the composition gradient buffer layer structure 3-5 in FIG. 1, but does not have the Al layer 2a.
  • the AlN crystal buffer layer 2b is formed on the Si substrate 1 that has been surface-cleaned in the same manner as in the above-described embodiment.
  • the substrate temperature is 1050 ° C.
  • the pressure is 13.3 kPa
  • the TMA is 108.5 sccm.
  • the film was grown to a thickness of 200 nm under MOCVD conditions with a flow rate and NH 3 flow rate of 12.5 slm.
  • a composition gradient buffer layer structure 3-5 was formed on the AlN crystal buffer layer 2b in the same manner as in the above-described embodiment.
  • FIG. 2 shows an optical dark field photomicrograph of the surface of the Al 0.1 Ga 0.9 N layer 5 on the substrate of Comparative Example 1 obtained in this way.
  • the white line segment in this micrograph has shown the scale of 50 micrometers.
  • the surface of the substrate of Comparative Example 1 contained many fine convex defects, and the defect density was measured to be 4.4 ⁇ 10 7 pieces / cm 2 .
  • Comparative Example 2 In order to more reliably investigate the improvement effect of the substrate of the present invention, a substrate as Comparative Example 2 was further fabricated using the conventional technique.
  • the substrate of Comparative Example 2 has the Si substrate 1, the AlN crystal buffer layer 2b, and the composition gradient buffer layer structure 3-5 in FIG. 1, but has a silicon nitride layer instead of the Al layer 2a. .
  • the surface of the Si substrate 1 subjected to the surface cleaning process in the same manner as in the above-described embodiment is performed under the conditions of the substrate temperature of 1050 ° C., the pressure of 13.3 kPa, and the NH 3 flow rate of 12.5 slm. Nitrided for 40 seconds.
  • the AlN crystal buffer layer 2b has a substrate temperature of 1050 ° C., a pressure of 13.3 kPa, a TMA flow rate of 108.5 sccm, and 12.5 slm.
  • the film was grown to a thickness of 200 nm under MOCVD conditions with NH 3 flow rate, after which a compositionally graded buffer layer structure 3-5 was formed.
  • FIG. 3 shows an optical dark field photomicrograph of the surface of the Al 0.1 Ga 0.9 N layer 5 on the substrate of Comparative Example 2 obtained in this way.
  • the white line segment in this micrograph also shows the scale of 50 micrometers.
  • the surface of the substrate of Comparative Example 2 also contains many fine convex defects, and the defect density was measured to be 2.4 ⁇ 10 7 pieces / cm 2 . That is, in the substrate of Comparative Example 2, it can be seen that the defect density is reduced to about 1 ⁇ 2 compared to Comparative Example 1 due to the effect of nitriding the surface of the Si substrate 1.
  • Reference Example 1 In order to investigate the effective range of the present invention, a substrate as Reference Example 1 closely related to the present invention was also produced.
  • the substrate of Reference Example 1 includes the Si substrate 1, the Al layer 2a, the AlN crystal buffer layer 2b, and the composition gradient buffer layer structure 3-5 shown in FIG.
  • the Al layer 2a was deposited for 6 seconds under the conditions of a substrate temperature of 1050 ° C., a pressure of 13.3 kPa, and a TMA flow rate of 27 sccm.
  • This deposition condition corresponds to the condition for depositing the Al layer 2a having an average thickness of one atomic layer on the surface of the Si substrate 1.
  • the AlN crystal buffer layer 2b has a substrate temperature of 1050 ° C., a pressure of 13.3 kPa, a TMA flow rate of 108.5 sccm, and NH 3 of 12.5 slm.
  • the film was grown to a thickness of 200 nm under flow rate MOCVD conditions, after which a compositionally graded buffer layer structure 3-5 was formed.
  • FIG. 4 shows an optical dark field photomicrograph of the surface of the Al 0.1 Ga 0.9 N layer 5 on the substrate of Reference Example 1 thus obtained.
  • the white line segment in this micrograph also shows a scale of 50 ⁇ m.
  • the surface of the substrate of Reference Example 1 also contains many fine convex defects, and the defect density measured was 1.2 ⁇ 10 8 / cm 2 . That is, in the substrate of Reference Example 1, the Al layer 2a corresponding to the average thickness of one atomic layer was deposited, but it can be seen that the defect density is increased rather than reduced as compared with Comparative Example 1. This is because, on average, the Al layer 2a corresponding to the thickness of one atomic layer is non-uniform, and the surface of the Si substrate is partially exposed. This non-uniformity rather increases the defect density. It is thought that I let you.
  • Example 1 A substrate according to Example 1 according to the present invention was prepared in a manner similar to Reference Example 1.
  • the substrate of Example 1 is different from that of Reference Example 1 only in that the deposition conditions for the Al layer 2a are changed.
  • the flow rate of TMA is increased from 27 sccm in Reference Example 1 to 54 sccm. That is, the TMA flow rate of 54 sccm corresponds to the condition for depositing the Al layer 2 a having an average thickness of two atomic layers on the surface of the Si substrate 1.
  • the AlN crystal buffer layer 2b has a substrate temperature of 1050 ° C., a pressure of 13.3 kPa, a TMA flow rate of 108.5 sccm, and NH 3 of 12.5 slm.
  • the film was grown to a thickness of 200 nm under flow rate MOCVD conditions, after which a compositionally graded buffer layer structure 3-5 was formed.
  • FIG. 5 shows an optical dark field photomicrograph of the surface of the Al 0.1 Ga 0.9 N layer 5 on the substrate of Example 1 obtained in this way.
  • the white line segment in this micrograph also shows a scale of 50 ⁇ m.
  • the fine convex defects were remarkably reduced on the surface of the substrate of Example 1, and the defect density measured was 1.1 ⁇ 10 5 / cm 2. It was. That is, in the substrate of Example 1, the defect density is drastically reduced to about 1/400 compared with Comparative Example 1 as an effect of depositing the Al layer 2a corresponding to the average thickness of the two atomic layers. .
  • the surface of the Si substrate 1 is covered with the Al layer 2a corresponding to the thickness of the two atomic layers on the average without being exposed, and the AlN crystal has a smooth surface of Al polarity on the Al layer 2a.
  • the buffer layer 2b has grown. That is, since the AlN crystal buffer layer 2b has an Al-polar smooth surface, it is considered that the defect density is drastically reduced also on the surface of the composition gradient buffer layer structure 3-5 grown thereon.
  • Example 2 A substrate according to Example 2 according to the present invention was further fabricated similar to Example 1.
  • the substrate of Example 2 is different from that of Example only in that the average deposition thickness of the Al layer 2a is changed.
  • the flow rate of TMA is further increased from 54 sccm in the first embodiment to 108 sccm. That is, the TMA flow rate of 108 sccm corresponds to the condition for depositing the Al layer 2 a having an average thickness of four atomic layers on the surface of the Si substrate 1.
  • the AlN crystal buffer layer 2b has a substrate temperature of 1050 ° C., a pressure of 13.3 kPa, a TMA flow rate of 108.5 sccm, and NH 3 of 12.5 slm.
  • the film was grown to a thickness of 200 nm under flow rate MOCVD conditions, after which a compositionally graded buffer layer structure 3-5 was formed.
  • FIG. 6 shows an optical dark field photomicrograph of the surface of the Al 0.1 Ga 0.9 N layer 5 on the substrate of Example 2 obtained in this way.
  • the white line segment in this micrograph also shows a scale of 50 ⁇ m.
  • fine convex defects were significantly reduced on the surface of the substrate of Example 2 as compared with Comparative Example 1, and the defect density was measured to find 1.9 ⁇ 10 5.
  • Pieces / cm 2 it can be seen that the defect density in the substrate of Example 2 does not change significantly as compared to Example 1, but rather increases slightly.
  • the thickness of the Al layer 2a is preferably a thickness of 10 atomic layers or less in order to avoid the adverse effects of the fine protrusions generated on the surface.
  • FIGS. 9 and 10 show graphs showing the cross-sectional shape of the surface irregularities along one scanning line in the AFM images of FIGS. 7 and 8, respectively. That is, the horizontal axis of these graphs represents the distance ( ⁇ m) parallel to the surface, and the vertical axis represents the distance (nm) in the direction perpendicular to the plane parallel to the surface.
  • the surface roughness can be measured from such a surface cross-sectional shape.
  • the RMS roughness average square root roughness
  • Ra arithmetic average roughness
  • a nitride semiconductor device in which the Al layer 2a, the composition gradient buffer layer 3-5, and the superlattice multilayer buffer layer structure 6 are omitted from the stacked structure shown in FIG. It was made. That is, in this nitride semiconductor device, the AlN crystal buffer layer 2b was deposited on the Si substrate 1 under the conditions described in Comparative Example 1. On the AlN crystal buffer layer 2b, the carbon-doped GaN layer 7, the undoped GaN channel layer 8, the AlN characteristic improving layer 9, the Al 0.2 Ga 0.8 N barrier layer 10, and the GaN cap layer 11 are described above. Deposited sequentially under the conditions described in the embodiment.
  • the electronic characteristics of the GaN channel layer 8 in the nitride semiconductor device according to the related art obtained in this way were obtained by using well-known hole measurement.
  • the sheet resistance Rs was 1240 ⁇ / ⁇
  • the sheet carrier concentration Ns was 4.6 ⁇ 10 12 cm ⁇ 2
  • the carrier mobility ⁇ was 1090 cm 2 / Vs.
  • nitride semiconductor device using the present invention was fabricated in a manner similar to the above-described conventional nitride semiconductor device.
  • This nitride semiconductor device utilizing the present invention is nitrided according to the above-described prior art only in that the diatomic Al layer 2a according to the first embodiment is interposed between the Si substrate 1 and the AlN crystal buffer layer 2b. It was different from physical semiconductor devices.
  • the electronic properties of the GaN channel layer 8 in this nitride semiconductor device using the present invention were also determined using well-known hole measurements.
  • the sheet resistance Rs was 748 ⁇ / ⁇
  • the sheet carrier concentration Ns was 5.03 ⁇ 10 12 cm ⁇ 2
  • the carrier mobility ⁇ was 1660 cm 2 / Vs.
  • the sheet resistance Rs is reduced, the carrier concentration Ns is increased, and the carrier concentration is increased in the channel layer in the nitride semiconductor device using the present invention as compared with the nitride semiconductor device according to the prior art.
  • the mobility ⁇ is increased and all the electronic characteristics are improved.
  • it is preferable that the carrier mobility ⁇ is remarkably improved.
  • the AlN crystal buffer layer surface is smoothened by uniformly forming an Al layer having a predetermined thickness on the substrate surface before the AlN crystal buffer layer is grown.
  • the smoothness of the surface of the nitride semiconductor layer grown on the AlN crystal buffer layer can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

 窒化物半導体層を成長させるためのバッファ層構造を有する基板であって、Si単結晶基板の(111)主面上に順次積層されたAl層およびAlN結晶層を有し、そのAl層は2原子層以上で10原子層以下の厚さを有し、AlN結晶層の表面は(0001)の面方位とAl極性の表面を有している。

Description

窒化物半導体層を成長させるためのバッファ層構造を有する基板
 本発明は、窒化物半導体層を成長させるためのバッファ層構造を有する基板の改善に関し、特にその基板が有するバッファ層構造の改善に関する。そのように改善された基板上に積層された複数の窒化物半導体層を含むエピタキシャルウエハは、例えばヘテロ接合電界効果トランジスタのような窒化物半導体デバイスの作製に好ましく利用され得るものである。
 ヘテロ接合電界効果トランジスタに必要な例えばGaNチャネル層とAlGaN障壁層との積層構造を含むエピタキシャルウエハを作製する場合、GaN基板が高価であることから、サファイア、SiC、Siなどの異種材料の基板上にそれらの窒化物半導体層を結晶成長させることが従来から行なわれている。
 異種材料の基板上に窒化物半導体層をMOCVD(有機金属気相堆積)で成長させる場合、基板と半導体層との間における結晶構造の相違、格子不整合、熱膨張係数差などに基づく歪を緩和するために、種々のバッファ層構造が用いられている。
 例えば特許文献1の特開平2-229476号公報は、サファイア基材上に400℃以上900℃以下の比較的低い基板温度でAlN層をバッファ層として堆積させることを教示している。このように比較的低温で堆積されたバッファ層は、低温バッファ層とも呼ばれる。
 しかし、低温バッファ層は、非晶質の母相中に微結晶や多結晶を含んでいる。したがって、半導体デバイス用の窒化物半導体層を低温バッファ層上に結晶成長させるために基板温度を1000℃程度以上まで上昇させたとき、そのバッファ層内の非晶質の母相が多結晶化して内部に比較的多量の転位を含むことになる。そして、そのバッファ層上に成長させたデバイス用の窒化物半導体積層構造において、多量の転位が導入されると共に、結晶品質がばらついて、クラックが入りやすくなる傾向がある。
 他方、例えば特許文献2の特開2002-367917号公報は、サファイア基板上に1100℃以上1250℃以下の比較的高い基板温度でAlN結晶層をバッファ層として堆積させることを教示している。このように比較的高温で堆積されたバッファ層は、高温バッファ層とも呼ばれる。
 しかし、特許文献3の特開2007-59850号公報は、高温バッファ層上に成長させた窒化物半導体積層構造においてはクラックが発生しにくくなるが、そのバッファ層の表面において原子レベルでの平坦性を確保するためには、バッファ層の厚さを大きくしなければならないと述べている。実際に、特許文献2は、その発明の実施例において高温AlNバッファ層をかなり大きな2μmの厚さに堆積することを教示している。特許文献3はまた、バッファ層の厚さを大きくすれば基板とバッファ層との格子定数差に起因して基板に反りが発生しやすくなることも述べており、さらにAlNバッファ層の堆積温度を高くすればそのバッファ層の表面に白濁が発生しやすくなることも述べている。
 このような問題に鑑み、特許文献3は、高温AlNバッファ層を薄く形成してもその表面に白濁が生じることを抑制するために、高温AlNバッファ層の堆積の途中で温度、圧力、原料ガス流量などのMOCVD条件の少なくともいずれかを変化させることを教示している。
特開平2-229476号公報 特開2002-367917号公報 特開2007-59850号公報
 六方晶系のウルツ鉱型構造を有するAlN結晶は、c軸に沿ってAl原子とN原子が非対称に配列した極性結晶である。無極性の基板上にAlN結晶層の厚さをc軸方向に成長させる場合、表面にAl原子が安定して存在するAl極性とN原子が安定して存在するN極性のいずれかの方位で成長する。このような極性の相違は結晶成長表面のモフォロジーに特徴的に表れ、Al極性面は平坦性の高い表面であるのに対して、N極性面は六角形状のファセットを有する凹凸の顕著な表面になる傾向にある。
 したがって、特許文献3におけるように極性面を考慮せずにAlN結晶層をバッファ層として成長させれば、Al極性面とN極性面が混在したAlN結晶層の表面を生じ、高い表面平坦性が得られない。そして、そのAl極性面とN極性面の混在は、AlNバッファ層上に成長させられるデバイス用窒化物半導体積層構造内まで引き継がれ、半導体積層構造のさらなる表面平坦性の悪化を招く。
 上述のような課題に鑑み、本願発明は、窒化物半導体デバイス用の半導体積層構造を成長させるために改善されたバッファ層構造を有する基板を提供することを主要な目的としている。
 本発明者達は、鋭意検討を重ねた結果、シリコン基板上に直接に高温AlNバッファ層を形成するのではなくて、Al層を介在させることによって従来の高温AlNバッファ層に比べて表面平坦性が顕著に改善された新規なバッファ層構造が得られることを見出すに至った。
 本発明によれば、窒化物半導体層を成長させるためのバッファ層構造を有する基板は、Si単結晶基板の(111)主面上に順次積層されたAl層およびAlN結晶層を有し、そのAl層は2原子層以上で10原子層以下の厚さを有し、AlN結晶層の表面は(0001)の面方位とAl極性の表面を有していることを特徴としている。
 なお、Al層は、2原子層以上で4原子層以下の厚さを有することが好ましい。本発明による基板は、AlN結晶層上に、AlGaN結晶層をさらに有していてもよい。また、そのAlGaN結晶層は、Al組成比が順次低減された複数のサブ層を含むこともできる。
 上記のような本発明によれば、AlN結晶バッファ層を成長させる前にSi基板表面にAl層を均一に形成することによって、AlN結晶バッファ層の表面に良質なAl極性面が得られる。すなわち、そのAlN結晶バッファ層の表面は、実質的にAl極性面のみを含んでいるので、高い平坦性を有している。
本発明による基板を用いて作製し得るヘテロ接合電界効果トランジスタの積層構造の一例を示す模式的断面図である。 従来技術を利用して比較例1として作製された基板の表面の光学暗視野顕微鏡写真である。 従来技術を利用して比較例2として作製された基板の表面の光学暗視野顕微鏡写真である。 本発明に密接に関連する参考例1として作製された基板の光学暗視野顕微鏡写真である。 本発明の実施例1として作製された基板の光学暗視野顕微鏡写真である。 本発明の実施例2として作製された基板の光学暗視野顕微鏡写真である。 従来技術による比較例2における基板の表面のAFM(原子間力顕微鏡)像である。 本発明による実施例1における基板の表面のAFM像である。 図7の比較例2におけるAFM像に関する一走査線上の表面凹凸形状を示すグラフである。 図8の実施例1におけるAFM像に関する一走査線上の表面凹凸形状を示すグラフである。
 (実施形態)
 図1は、本発明による基板を用いて作製し得るヘテロ接合電界効果トランジスタの積層構造の一例を模式的断面図で示している。このようなヘテロ接合電界効果トランジスタの積層構造の作製方法の一例が、以下において説明される。基板1としては、(111)主面を有するSi基板が用いられる。まず、フッ酸系のエッチャントでSi基板1の表面酸化膜を除去した後に、MOCVD(有機金属気相堆積)装置のチャンバ内にその基板がセットされる。
 MOCVD装置内ではSi基板1が1050℃に加熱され、チャンバ内圧力13.3kPaの水素雰囲気にて基板表面のクリーニングが300秒間行なわれる。その後、Si基板1上に、Al層2aとAlN結晶バッファ層2bが後述の実施例で詳述される条件下で積層される。
 その後、基板温度を1150℃に上昇させ、TMA(トリメチルアルミニウム)流量=90.0sccm、TMG(トリメチルガリウム)流量=12.7sccm、およびNH流量=12.5slmの条件下で、Al0.7Ga0.3N層3が400nmの厚さに堆積される。続いて、TMA流量=50.9sccm、TMG流量=22.1sccm、およびNH流量=12.5slmの条件下で、Al0.4Ga0.6N層4が400nmの厚さに堆積され、さらにTMA流量=16.4sccm、TMG流量=30.4、およびNH流量=12.5slmの条件下で、Al0.1Ga0.9N層5が400nmの厚さに堆積される。これによって、組成傾斜バッファ層構造3-5が形成される。
 Al0.1Ga0.9N層5上には、同じ基板温度の下で、AlN層(5nm厚)/Al0.1Ga0.9N(20nm厚)層の50周期の繰返しを含む超格子多層バッファ層構造6が堆積される。このとき、AlN層はTMA流量=102μmol/minおよびNH流量=12.5slmの条件下で堆積され、Al0.1Ga0.9N層はTMG流量=720μmol/min、TMA流量=80μmol/minおよびNH流量=12.5slmの条件下で堆積され得る。なお、超格子多層バッファ層構造6は、ヘテロ接合電界効果トランジスタの製造コストや製造時間などの観点から省略されてもよい。
 その後に基板温度が1100℃に下げられ、TMG流量=224μmol/minおよびNH流量=12.5slmの条件下で、GaN層7が13.3kPaの圧力下で1.0μmの厚さに堆積され、GaN層8が90kPaの圧力下で0.5μmの厚さに堆積される。ここで、堆積圧力が低い場合にTMGに含まれるカーボンがGaN層内にドープされやすく、堆積圧力が高い場合にTMGからGaN層内にカーボンがドープされにくい傾向にある。
 そして、GaN層8上には、13.3kPaの圧力下で、AlN特性改善層9(1nm厚)、Al0.2Ga0.8N障壁層10(20nm厚)およびGaNキャップ層11(1nm厚)を含む電子供給層が堆積される。このとき、AlN層9はTMA流量=51μmol/minおよびNH流量=12.5slmの条件下で堆積され、AlGaN層10はTMG流量=46μmol/min、TMA流量=7μmol/minおよび、NH流量=12.5slmの条件下で堆積され、そしてGaN層11はTMG流量=58μmol/minおよびNH流量=12.5slmの条件下で堆積され得る。
 なお、以上の実施形態ではAlGaN層3、4および5のAl組成比が0.7、0.4および0.1の順に変化させられたが、組成傾斜バッファ層構造に含まれるAlGaN層におけるAl組成比の組合せはこの組合せに限定されるものではない。また、組成傾斜バッファ層構造に含まれて異なるAl組成比を有するAlGaN層の数も3層に限定されず、任意の数とすることができる。重要なことは、組成傾斜バッファ層構造の下面から上面に向かうにしたがってAl組成比が徐々に減少していくことである。さらに、超格子多層バッファ層構造6は、AlN層/Al0.1Ga0.9N層の繰返しに限定されず、例えばAl0.1Ga0.9N層は他の組成比を有するAlGaN層に置き換えることも可能である。
 (比較例1)
 本発明の基板の改善効果を調べるために、従来技術を利用して比較例1としての基板が作製された。この比較例1の基板は、図1におけるSi基板1、AlN結晶バッファ層2bおよび組成傾斜バッファ層構造3-5を有しているが、Al層2aを有していない。
 すなわち、比較例1においては、上述の実施形態と同様に表面クリーニング処理されたSi基板1上に、AlN結晶バッファ層2bが、1050℃の基板温度、13.3kPaの圧力、108.5sccmのTMA流量、および12.5slmのNH流量のMOCVD条件下で200nmの厚さに成長させられた。その後、AlN結晶バッファ層2b上に上述の実施形態と同様に組成傾斜バッファ層構造3-5が形成された。
 図2は、こうして得られた比較例1の基板におけるAl0.1Ga0.9N層5の表面の光学暗視野顕微鏡写真を示している。なお、この顕微鏡写真中の白い線分は、50μmのスケールを示している。図2の写真から分かるように、比較例1の基板の表面は多くの微細な凸状欠陥を含んでおり、その欠陥密度を測定したところ4.4×10個/cmであった。
 (比較例2)
 本発明の基板の改善効果をより確実に調べるために、従来技術を利用して比較例2としての基板がさらに作製された。この比較例2の基板は、図1におけるSi基板1、AlN結晶バッファ層2bおよび組成傾斜バッファ層構造3-5を有しているが、Al層2aの代わりに窒化ケイ素層を有している。
 すなわち、比較例2においては、上述の実施形態と同様に表面クリーニング処理されたSi基板1の表面が、1050℃の基板温度、13.3kPaの圧力、12.5slmのNH流量の条件下で40秒間だけ窒化処理された。
 この窒化処理された表面上には、比較例1の場合と同様に、AlN結晶バッファ層2bが、1050℃の基板温度、13.3kPaの圧力、108.5sccmのTMA流量、および12.5slmのNH流量のMOCVD条件下で200nmの厚さに成長させられ、その後に組成傾斜バッファ層構造3-5が形成された。
 図3は、こうして得られた比較例2の基板におけるAl0.1Ga0.9N層5の表面の光学暗視野顕微鏡写真を示している。なお、この顕微鏡写真中の白い線分も、50μmのスケールを示している。図3の写真から分かるように、比較例2の基板の表面も多くの微細な凸状欠陥を含んでおり、その欠陥密度を測定したところ2.4×10個/cmであった。すなわち、比較例2の基板においては、Si基板1の表面を窒化処理した効果により、比較例1に比べて欠陥密度が約1/2に減少していることが分かる。
 (参考例1)
 本発明の有効な範囲を調べるために、本発明に密接に関連する参考例1としての基板も作製された。この参考例1の基板は、図1におけるSi基板1、Al層2a、AlN結晶バッファ層2b、および組成傾斜バッファ層構造3-5を有している。
 このAl層2aは、1050℃の基板温度、13.3kPaの圧力、および27sccmのTMA流量の条件下で6秒間だけ堆積された。この堆積条件は、Si基板1の表面上に1原子層の平均厚さのAl層2aを堆積する条件に対応している。
 このAl層2a上には、比較例1の場合と同様に、AlN結晶バッファ層2bが、1050℃の基板温度、13.3kPaの圧力、108.5sccmのTMA流量、および12.5slmのNH流量のMOCVD条件下で200nmの厚さに成長させられ、その後に組成傾斜バッファ層構造3-5が形成された。
 図4は、こうして得られた参考例1の基板におけるAl0.1Ga0.9N層5の表面の光学暗視野顕微鏡写真を示している。この顕微鏡写真中の白い線分も、50μmのスケールを示している。図4の写真から分かるように、参考例1の基板の表面も多くの微細な凸状欠陥を含んでおり、その欠陥密度を測定したところ1.2×10個/cmであった。すなわち、参考例1の基板においては、1原子層の平均厚さに対応するAl層2aを堆積したが、比較例1に比べて欠陥密度が低減されずにむしろ増大していることが分かる。この理由としては、平均すれば1原子層の厚さに対応するAl層2aが不均一であって、部分的にSi基板の表面が露出しており、この不均一性がむしろ欠陥密度を増大させたと考えられる。
 (実施例1)
 本発明による実施例1による基板が参考例1に類似して作製された。この実施例1の基板は、参考例1に比べて、Al層2aの堆積条件が変更されたことのみにおいてことなっている。
 すなわち、実施例1におけるAl層2aの堆積条件においては、TMAの流量が参考例1における27sccmから倍の54sccmに増大されている。すなわち、この54sccmのTMA流量は、Si基板1の表面上に2原子層の平均厚さのAl層2aを堆積する条件に対応している。
 このAl層2a上には、参考例1の場合と同様に、AlN結晶バッファ層2bが、1050℃の基板温度、13.3kPaの圧力、108.5sccmのTMA流量、および12.5slmのNH流量のMOCVD条件下で200nmの厚さに成長させられ、その後に組成傾斜バッファ層構造3-5が形成された。
 図5は、こうして得られた実施例1の基板におけるAl0.1Ga0.9N層5の表面の光学暗視野顕微鏡写真を示している。この顕微鏡写真中の白い線分も、50μmのスケールを示している。図5の写真から分かるように、実施例1の基板の表面においては微細な凸状欠陥が顕著に減少しており、その欠陥密度を測定したところ1.1×10個/cmであった。すなわち、実施例1の基板においては、2原子層の平均厚さに対応するAl層2aを堆積した効果として、比較例1に比べて欠陥密度が約1/400に激減していることが分かる。
 この理由としては、Si基板1の表面が露出されることなく平均して2原子層厚さに対応するAl層2aよって覆われ、そのAl層2a上にAl極性の平滑な表面を有するAlN結晶バッファ層2bが成長したからであると考えられる。すなわち、AlN結晶バッファ層2bがAl極性の平滑な表面を有するので、その上に成長させられた組成傾斜バッファ層構造3-5の表面においても欠陥密度が激減したと考えられる。
 (実施例2)
 本発明による実施例2による基板が実施例1に類似してさらに作製された。この実施例2の基板は、実施例に比べて、Al層2aの平均堆積厚さが変更されたことのみにおいてことなっている。
 すなわち、実施例2におけるAl層2aの堆積条件においては、TMAの流量が実施例1の54sccmから108sccmへさらに増大されている。すなわち、この108sccmのTMA流量は、Si基板1の表面上に4原子層の平均厚さのAl層2aを堆積する条件に対応している。
 このAl層2a上には、実施例1の場合と同様に、AlN結晶バッファ層2bが、1050℃の基板温度、13.3kPaの圧力、108.5sccmのTMA流量、および12.5slmのNH流量のMOCVD条件下で200nmの厚さに成長させられ、その後に組成傾斜バッファ層構造3-5が形成された。
 図6は、こうして得られた実施例2の基板におけるAl0.1Ga0.9N層5の表面の光学暗視野顕微鏡写真を示している。この顕微鏡写真中の白い線分も、50μmのスケールを示している。図6の写真から分かるように、実施例2の基板の表面においても微細な凸状欠陥が比較例1に比べて顕著に減少しており、その欠陥密度を測定したところ1.9×10個/cmであった。しかし、実施例2の基板における欠陥密度は、実施例1に比べて顕著な変化がなく、むしろ僅かに増大していることが分かる。
 この理由としては、平均して4原子層の厚さに対応するAl層2aは完全にSi基板1の表面を覆って被覆漏れを生じることはないが、Al層の厚さが増大するにつれてその表面にAlの微小突起が生じ始めて、これが悪影響を及ぼし得ると考えられる。したがって、Al層2aの厚さは、その表面に生じる微小突起の悪影響を回避するために10原子層以下の厚さであることが好ましい。
 (比較例2と実施例1との比較)
 図7と図8は、それぞれ比較例2と実施例1の基板におけるAl0.1Ga0.9N層5の表面のAFM(原子間力顕微鏡)像を示している。これら図7と図8のAFM像においても、実施例1の基板の表面において微細な凸状欠陥が比較例2に比べて顕著に減少していることを確認することができる。
 図9と図10は、それぞれ図7と図8のAFM像中の一走査線に沿った表面凹凸の断面形状を表すグラフを示している。すなわち、これらのグラフの横軸は表面に平行な距離(μm)を表し、縦軸は表面に平行な面に直交する方向の距離(nm)を表している。このような表面断面形状から、表面粗さを測定することができる。図7と図8のAFM像に関して表面粗さを測定したところ、それぞれに関してRMS粗さ(平均二乗根粗さ)が6.93nmと3.89nmであり、Ra(算術平均粗さ)が5.32nmと3.06nmであった。すなわち、実施例1の基板の表面粗さは比較例2に比べて顕著に改善されていることが分かる。
 (Al層がデバイスの電子特性に及ぼす影響)
 Si基板1とAlNバッファ層2bとの間に介在するAl層2aがそのAlNバッファ層2b上に形成される窒化物半導体デバイスの電子特性に及ぼす影響が調べられた。
 まず、従来技術による窒化物半導体デバイスとして、図1に示された積層構造のうちでAl層2a、組成傾斜バッファ層3-5および超格子多層バッファ層構造6が省略された窒化物半導体デバイスが作製された。すなわち、この窒化物半導体デバイスにおいては、比較例1に述べられた条件下で、Si基板1上にAlN結晶バッファ層2bが堆積された。そして、このAlN結晶バッファ層2b上に、カーボンドープGaN層7、アンドープGaNチャネル層8、AlN特性改善層9、Al0.2Ga0.8N障壁層10、およびGaNキャップ層11が、前述の実施形態で説明された条件下で順次堆積された。
 こうして得られた従来技術による窒化物半導体デバイス中のGaNチャネル層8の電子特性が、周知のホール測定を利用して求められた。その結果、このチャネル層8において、シート抵抗Rsが1240Ω/□、シートキャリア濃度Nsが4.6×1012cm-2、そしてキャリア移動度μが1090cm/Vsであった。
 次に、本発明を利用した窒化物半導体デバイスが、上記の従来技術による窒化物半導体デバイスに類似して作製された。本発明を利用したこの窒化物半導体デバイスは、Si基板1とAlN結晶バッファ層2bとの間に、実施例1による2原子層のAl層2aが介在させられたことのみにおいて上記従来技術による窒化物半導体デバイスと異なっていた。
 本発明を利用したこの窒化物半導体デバイス中のGaNチャネル層8の電子特性も、周知のホール測定を利用して求められた。その結果、このチャネル層8において、シート抵抗Rsが748Ω/□、シートキャリア濃度Nsが5.03×1012cm-2、そしてキャリア移動度μが1660cm/Vsであった。
 以上から明らかなように、従来技術による窒化物半導体デバイスに比べて、本発明を利用した窒化物半導体デバイス中のチャネル層においては、シート抵抗Rsが低減され、キャリア濃度Nsが高められ、そしてキャリア移動度μが高められており、何れの電子特性も改善されていることが分かる。特に、キャリア移動度μが顕著に改善されていることが好ましい。
 以上から明らかなように、本発明によれば、AlN結晶バッファ層を成長させる前に基板表面に所定厚さのAl層を均一に形成することによって、そのAlN結晶バッファ層の表面の平滑性を顕著に改善することができ、その結果としてAlN結晶バッファ層上に成長する窒化物半導体層の表面の平滑性をも改善することができる。
 そして、そのように改善された表面平滑性を有する基板を利用することによって、その基板上に電子特性の改善された種々の窒化物半導体デバイスを作製することができる。
 1 Si基板、2a Al層、2b AlN結晶層、3 Al0.7Ga0.3N層、4 Al0.4Ga0.6N層、5 Al0.1Ga0.9N層、6 AlN/Al0.1Ga0.9N多層バッファ構造、7 カーボンドープGaN層、8 アンドープGaNチャネル層、9 AlN特性改善層、10 Al0.2Ga0.8N障壁層、11 GaNキャップ層。

Claims (4)

  1.  窒化物半導体層を成長させるためのバッファ層構造を有する基板であって、
     Si単結晶基板の(111)主面上に順次積層されたAl層およびAlN結晶層を有し、
     前記Al層は2原子層以上で10原子層以下の厚さを有し、
     前記AlN結晶層の表面は(0001)の面方位とAl極性の表面を有していることを特徴とする基板。
  2.  前記Al層は2原子層以上で4原子層以下の厚さを有することを特徴とする請求項1に記載の基板。
  3.  前記AlN結晶層上に積層されたAlGaN結晶層をさらに有することを特徴とする請求項1に記載の基板。
  4.  前記AlGaN結晶層はAl組成比が順次低減された複数のサブ層を含むことを特徴とする請求項3に記載の基板。
PCT/JP2012/072704 2011-09-15 2012-09-06 窒化物半導体層を成長させるためのバッファ層構造を有する基板 WO2013038980A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-201619 2011-09-15
JP2011201619 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038980A1 true WO2013038980A1 (ja) 2013-03-21

Family

ID=47883211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072704 WO2013038980A1 (ja) 2011-09-15 2012-09-06 窒化物半導体層を成長させるためのバッファ層構造を有する基板

Country Status (1)

Country Link
WO (1) WO2013038980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093753A (zh) * 2021-11-12 2022-02-25 松山湖材料实验室 氮化铝单晶衬底的表面处理方法及紫外发光二极管的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033781A1 (en) * 2001-10-16 2003-04-24 Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Low temperature epitaxial growth of quaternary wide bandgap semiconductors
WO2006014472A1 (en) * 2004-07-07 2006-02-09 Nitronex Corporation Iii-nitride materials including low dislocation densities and methods associated with the same
WO2007077666A1 (ja) * 2005-12-28 2007-07-12 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
WO2008123213A1 (ja) * 2007-03-26 2008-10-16 Kyoto University 半導体装置及び半導体製造方法
WO2009001888A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
JP2010205988A (ja) * 2009-03-04 2010-09-16 Panasonic Corp 窒化物半導体素子及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033781A1 (en) * 2001-10-16 2003-04-24 Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Low temperature epitaxial growth of quaternary wide bandgap semiconductors
WO2006014472A1 (en) * 2004-07-07 2006-02-09 Nitronex Corporation Iii-nitride materials including low dislocation densities and methods associated with the same
WO2007077666A1 (ja) * 2005-12-28 2007-07-12 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
WO2008123213A1 (ja) * 2007-03-26 2008-10-16 Kyoto University 半導体装置及び半導体製造方法
WO2009001888A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
JP2010205988A (ja) * 2009-03-04 2010-09-16 Panasonic Corp 窒化物半導体素子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093753A (zh) * 2021-11-12 2022-02-25 松山湖材料实验室 氮化铝单晶衬底的表面处理方法及紫外发光二极管的制备方法
CN114093753B (zh) * 2021-11-12 2022-10-25 松山湖材料实验室 氮化铝单晶衬底的表面处理方法及紫外发光二极管的制备方法

Similar Documents

Publication Publication Date Title
JP5842057B2 (ja) 半導体装置の製造方法
JP5944294B2 (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP4335187B2 (ja) 窒化物系半導体装置の製造方法
US8268646B2 (en) Group III-nitrides on SI substrates using a nanostructured interlayer
JP5179635B1 (ja) 窒化物半導体層を成長させるためのバッファ層構造を有する基板の製造方法
KR20130103293A (ko) 질화물 반도체층의 제조 방법
US20180090316A1 (en) Gaas thin film grown on si substrate, and preparation method for gaas thin film grown on si substrate
US9705031B2 (en) Semiconductor material
JP5139567B1 (ja) 窒化物半導体層を成長させるためのバッファ層構造を有する基板
US20160168752A1 (en) Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate
JP7260089B2 (ja) 窒化物半導体
JP5378128B2 (ja) 電子デバイス用エピタキシャル基板およびiii族窒化物電子デバイス用エピタキシャル基板
JP2013093515A (ja) 窒化物半導体層を成長させるためのバッファ層構造を有する基板とその製造方法
JP4535935B2 (ja) 窒化物半導体薄膜およびその製造方法
WO2015198492A1 (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
WO2013038980A1 (ja) 窒化物半導体層を成長させるためのバッファ層構造を有する基板
JP5647997B2 (ja) エピタキシャル結晶基板の製造方法、エピタキシャル結晶基板及びそれを用いて製造された半導体デバイス
JP6527667B2 (ja) 窒化物半導体基板の製造方法
KR101041659B1 (ko) 산화아연 버퍼층을 이용한 질화갈륨 에피층 제조방법
WO2017164036A1 (ja) Iii族窒化物積層体の製造方法
US9923050B2 (en) Semiconductor wafer and a method for producing the semiconductor wafer
KR101890750B1 (ko) 질화물 반도체층 성장 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP