WO2013038948A1 - Unsintered laminate for all-solid-state battery, all-solid-state battery, and production method therefor - Google Patents

Unsintered laminate for all-solid-state battery, all-solid-state battery, and production method therefor Download PDF

Info

Publication number
WO2013038948A1
WO2013038948A1 PCT/JP2012/072426 JP2012072426W WO2013038948A1 WO 2013038948 A1 WO2013038948 A1 WO 2013038948A1 JP 2012072426 W JP2012072426 W JP 2012072426W WO 2013038948 A1 WO2013038948 A1 WO 2013038948A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
solid
unsintered
carbon material
layer
Prior art date
Application number
PCT/JP2012/072426
Other languages
French (fr)
Japanese (ja)
Inventor
充 吉岡
倍太 尾内
剛司 林
武郎 石倉
彰佑 伊藤
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2013533617A priority Critical patent/JP5644951B2/en
Publication of WO2013038948A1 publication Critical patent/WO2013038948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an unsintered laminate for an all-solid battery, an all-solid battery, and a method for producing the same.
  • the battery having the above configuration has a risk of leakage of the electrolyte.
  • the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2007-5279 discloses a method for producing an all-solid battery in which an active material containing a phosphoric acid compound and a solid electrolyte are respectively mixed with a solution containing a binder and a plasticizer.
  • the active material green sheet and solid electrolyte green sheet obtained by forming the slurry by dispersing in the slurry are laminated, and the binder and the plasticizer are thermally decomposed and removed, and then sintered. By doing so, it is described that a laminate of an all-solid-state battery is manufactured.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-258148 (hereinafter referred to as Patent Document 2), as an all-solid battery manufacturing method, an electrode paste prepared by mixing an electrode active material and acetylene black is used as a solid electrolyte. It is described that a laminated fired body in which an electrode layer and a solid electrolyte layer are fired and integrated is manufactured by screen printing on both surfaces of the body and then baking.
  • an object of the present invention is to suppress the burning of carbon as a conductive agent contained in an unsintered electrode layer and improve the capacity, an unsintered laminate for an all-solid battery, an all-solid battery, and its It is to provide a manufacturing method.
  • the use of a plurality of types of carbon materials having different combustion start temperatures as the conductive agent contained in the unsintered electrode layer, the unsintered electrode layer It has been found that combustion of the conductive agent contained in can be suppressed. That is, even if the carbon material having a low combustion start temperature burns with the removal of the organic material in the firing process, the carbon material having a combustion start temperature higher than that of the organic material to be removed is included in the electrode layer. It was revealed that the burning of the agent can be suppressed, and the capacity of the electrode active material can be sufficiently extracted as in the case of the battery using the organic electrolyte. Based on such knowledge of the inventors, the present invention has the following features.
  • the all solid state battery according to the present invention includes at least one of the positive electrode layer and the negative electrode layer and a solid electrolyte layer laminated on the electrode layer.
  • the electrode layer includes a first carbon material that starts burning at a first temperature, and a second carbon material that starts burning at a second temperature higher than the first temperature.
  • the electrode layer contains more second carbon material than first carbon material.
  • An unsintered laminate for an all-solid battery according to the present invention was laminated on an unsintered electrode layer that is an unsintered body of at least one of a positive electrode layer and a negative electrode layer, and an unsintered electrode layer.
  • An unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer.
  • An unsintered electrode layer contains the 1st carbon material which starts combustion at the 1st temperature, and the 2nd carbon material which starts combustion at the 2nd temperature higher than the 1st temperature.
  • the unsintered electrode layer and the unsintered solid electrolyte layer may be in the form of a green sheet or a printed layer.
  • the manufacturing method of the all-solid-state battery according to the present invention includes the following steps.
  • the unsintered electrode layer includes a first carbon material that starts to burn at a first temperature and a second carbon material that starts to burn at a second temperature higher than the first temperature.
  • the first carbon material has a larger amount of burning than the second carbon material at the decomposition temperature of the organic material contained in the laminate.
  • the second carbon material is preferably carbon powder.
  • the first carbon material covers at least a part of the surface of the electrode active material particles contained in the unsintered electrode layer, or at least one of the electrode active material particles. It is preferably carried on the surface of the part.
  • the material forming at least one layer selected from the group consisting of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer is a solid electrolyte comprising a lithium-containing phosphate compound having a NASICON structure It is preferable to contain.
  • the material forming at least one layer selected from the group consisting of a positive electrode layer and a negative electrode layer contains an electrode active material composed of a lithium-containing phosphate compound.
  • a non-sintered electrode layer and a non-sintered solid electrolyte layer should just have the form of a green sheet or a printing layer.
  • the charge / discharge capacity can be increased.
  • an all-solid battery 10 is constituted by a single battery including a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13.
  • the positive electrode layer 11 is disposed on one surface of the solid electrolyte layer 12, and the negative electrode layer 13 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 12.
  • the positive electrode layer 11 and the negative electrode layer 13 are provided at positions facing each other with the solid electrolyte layer 12 interposed therebetween.
  • Each of the positive electrode layer 11 and the negative electrode layer 13 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 12 includes a solid electrolyte.
  • Each of the positive electrode layer 11 and the negative electrode layer 13 includes a carbon material or the like as a conductive agent.
  • At least one of the positive electrode layer 11 and the negative electrode layer 13 includes a first carbon material that starts burning at a first temperature, and a first carbon material that is higher than the first temperature. And a second carbon material that starts burning at a temperature of 2.
  • the all-solid battery unsintered laminate used for producing the all-solid battery 10 includes a non-sintered electrode layer which is at least one of the positive electrode layer 11 and the negative electrode layer 13, and And a non-sintered solid electrolyte layer that is a non-sintered body of the solid electrolyte layer 12 laminated on the non-sintered electrode layer.
  • the fired laminate is sealed, for example, in a coin cell.
  • the sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin.
  • an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
  • a conductive layer such as a metal layer may be formed on the positive electrode layer 11 and the negative electrode layer 13.
  • the method for forming the conductive layer include a sputtering method.
  • the metal paste may be applied or dipped and heat-treated.
  • the unsintered electrode layer includes a first carbon material that starts to burn at a first temperature and a second carbon material that starts to burn at a second temperature higher than the first temperature.
  • the unsintered electrode layer and the unsintered solid electrolyte layer have the form of a green sheet or a printed layer.
  • the unsintered electrode layer includes two or more carbon materials having different combustion start temperatures, even if the carbon material is burned out in the process of firing the laminate, One carbon material burns first. Accordingly, oxygen existing in the stack or oxygen supplied to the stack is preferentially consumed for the combustion of the first carbon material, so that the second carbon material having a high combustion start temperature burns. Can be prevented from being burned out. Thereby, since it can suppress that the effect of the carbon which provides electronic conductivity to an electrode layer becomes small, it can suppress that charging / discharging capacity
  • the electrode layer includes a first carbon material that starts burning at a first temperature and a second carbon material that starts burning at a second temperature higher than the first temperature.
  • the combustion start temperature can be measured as a temperature at which weight loss of carbon occurs by differential thermal and thermogravimetric simultaneous measurement (TG-DTA).
  • the carbon material may be crystalline carbon or carbon containing an amorphous part.
  • At least one of the positive electrode layer 11 and the negative electrode layer 13 contains more second carbon material than first carbon material.
  • the first carbon material has a larger amount of burning than the second carbon material at the decomposition temperature of the organic material contained in the laminate. That is, it is preferable that the first carbon material burns more easily than the second carbon material. In this case, even when the first carbon material (combustible carbon material) having a low combustion start temperature is burned out during firing of the laminate, the second carbon material (non-combustible carbon material) having a high combustion start temperature. Remains. Thereby, since it can suppress that the effect of the carbon which provides electronic conductivity to an electrode layer becomes small, it can suppress that charging / discharging capacity
  • the flame-retardant carbon material may be a carbon material that does not completely burn out at a temperature at which the laminate is fired to decompose the organic material. It does not have to be a carbon material that does not burn.
  • the flammable carbon material may be any carbon material that burns at the temperature at which the laminate is fired to decompose the organic matter, and does not need to be completely burned at the temperature at which the laminate is fired to decompose the organic matter. .
  • the second carbon material is preferably carbon powder.
  • the physical properties of the carbon powder are not particularly limited, but the specific surface area is preferably 10 to 80 m 2 / g, the particle size is preferably 10 nm to several ⁇ m, the specific surface area is 50 to 80 m 2 / g, and the particle size is 10 to 100 nm. It is particularly preferred.
  • the first carbon material covers at least a part of the surface of the electrode active material particles included in the unsintered electrode layer or is supported on at least a part of the surface of the electrode active material particles.
  • at least a part of the surface of the electrode active material particles can be coated with a carbon component using sugar or an organic acid, or a carbon component is applied to at least a part of the surface of the electrode active material particles using carbon black. Can be supported.
  • the thickness of the coating layer is preferably 10 nm or more.
  • a laminated body may be formed by laminating a plurality of laminated bodies having the above single cell structure with an unsintered current collector interposed therebetween.
  • a plurality of laminates having a single battery structure may be laminated electrically in series or in parallel.
  • the method for forming the green electrode layer and the green solid electrolyte layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, or the like for forming a green sheet, or a printing layer is formed. Screen printing or the like can be used.
  • the method for laminating the above-mentioned unsintered electrode layer and unsintered solid electrolyte layer is not particularly limited, but the unsintered electrode using a hot isostatic press, a cold isostatic press, an isostatic press, etc.
  • the layer and the unsintered solid electrolyte layer can be laminated.
  • a slurry for forming a green sheet or printed layer is prepared by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent, and a positive electrode active material, a negative electrode active material, a solid electrolyte, or a current collector material.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the slurry may contain a plasticizer.
  • plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
  • the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
  • the type of the electrode active material contained in the positive electrode layer 11 or negative electrode layer 13 of the all-solid-state cell 10 producing method of the present invention is applied is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) Lithium-containing phosphate compounds having a nasic structure such as 3, lithium-containing phosphate compounds having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, etc.
  • a lithium-containing compound having a spinel structure such as LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 can be used.
  • MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ⁇ x ⁇ 2.0.
  • a compound having a composition represented by the following formula can be used.
  • a mixture obtained by mixing two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used.
  • graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. A thing etc. can be used.
  • the type of solid electrolyte contained in the positive electrode layer 11, the negative electrode layer 13, or the solid electrolyte layer 12 of the all-solid battery 10 to which the manufacturing method of the present invention is applied is not limited.
  • a lithium-containing phosphoric acid compound having the following can be used.
  • part of P in the above chemical formula may be substituted with B, Si, or the like.
  • a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used.
  • the lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
  • a material used for said solid electrolyte it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure.
  • examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate
  • Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
  • Examples thereof include compounds having
  • the material forming at least one of the positive electrode layer 11, the solid electrolyte layer 12, or the negative electrode layer 13 of the all-solid battery 10 to which the manufacturing method of the present invention is applied is composed of a lithium-containing phosphate compound having a NASICON structure. It preferably contains a solid electrolyte. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained.
  • glass or glass ceramics having a composition of a lithium-containing phosphate compound having a NASICON type structure is used as a solid electrolyte, a denser sintered body can be easily obtained due to the viscous flow of the glass phase in the firing step. It is particularly preferred to prepare the solid electrolyte starting material in the form of glass or glass ceramic.
  • the material forming at least one of the positive electrode layer 11 or the negative electrode layer 13 of the all solid state battery 10 to which the manufacturing method of the present invention is applied includes an electrode active material made of a lithium-containing phosphate compound.
  • the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased.
  • an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Example 1 Preparation of electrode active material> A powder containing a lithium-containing vanadium phosphate compound Li 3 V 2 (PO 4 ) 3 (hereinafter referred to as “LVP”) as an electrode active material was produced as follows.
  • LVP lithium-containing vanadium phosphate compound Li 3 V 2 (PO 4 ) 3
  • Lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so as to have a molar ratio of 27.3% -Li 2 CO 3 , 18.2% -V 2 O 3 , 54.5%-(NH 4 ) 2 HPO 4 and sealed in a container. The container was rotated at 150 rpm for 6 hours to obtain a mixed powder of starting materials.
  • the obtained mixed powder was fired in an air atmosphere at a temperature of 600 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
  • the fired powder was pulverized by adding water and a small amount of sucrose, enclosing it in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
  • the obtained pulverized powder was fired in a nitrogen gas atmosphere at a temperature of 900 ° C. for 20 hours, so that the surfaces of the particles were coated with carbon remaining after pyrolysis of sucrose (hereinafter referred to as “carbon material 1”).
  • carbon material 1 carbon remaining after pyrolysis of sucrose
  • the electrode active material powder obtained above was mixed in a binder solution in which polyvinyl alcohol (hereinafter referred to as “organic material 1”) serving as a binder was dissolved in an organic solvent to prepare an electrode active material slurry.
  • organic material 1 polyvinyl alcohol
  • the mixing ratio of the electrode active material powder and the organic material 1 was 80:20 by weight.
  • LAGP Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3
  • the above glass powder of LAGP was mixed in a binder solution obtained by dissolving the organic material 1 serving as a binder in an organic solvent to prepare a solid electrolyte slurry.
  • the mixing ratio of the glass powder of LAGP and the organic material 1 was 80:20 by weight.
  • Acetylene black (hereinafter referred to as “AB”) powder (hereinafter referred to as “carbon material 2”) was mixed in a binder solution in which the organic material 1 serving as a binder was dissolved in an organic solvent to prepare a conductive agent slurry.
  • the mixing ratio of the carbon material 2 and the organic material 1 was 80:20 by weight.
  • the electrode active material slurry, the solid electrolyte slurry, and the conductive agent slurry prepared above are mixed so that the mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 2 is 45:45:10 by weight. Mixing was performed to prepare an electrode slurry.
  • Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet.
  • the thickness of the molded body was 50 ⁇ m.
  • a laminate in which a positive electrode layer and a solid electrolyte layer were laminated was produced. Specifically, an electrode sheet cut into a circular shape with a diameter of 12 mm is laminated on one side of a solid electrolyte sheet cut into a circular shape with a diameter of 12 mm, and a pressure of 1 ton is applied at a temperature of 80 ° C. Thermocompression bonding was performed.
  • this laminate was fired under the following conditions.
  • the organic material 1 was removed by baking at a temperature of 500 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen.
  • the positive electrode layer and the solid electrolyte layer were joined by baking at a temperature of 600 ° C. in a nitrogen gas atmosphere.
  • moisture content was removed by drying the laminated body after baking at the temperature of 100 degreeC.
  • a laminate and a metal lithium plate as a counter electrode were laminated.
  • a polymethyl methacrylate resin (hereinafter referred to as “PMMA”) gel compound was applied on a metal lithium plate prepared as a negative electrode.
  • PMMA polymethyl methacrylate resin
  • the laminated body and the metal lithium plate were laminated
  • Example 1 The electrode active material slurry and the solid electrolyte slurry prepared in Example 1 were mixed so that the mixing ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight to prepare an electrode slurry. Except for this, an all-solid battery was produced in the same manner as in Example 1.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 1.
  • the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 20 mAh / g.
  • the positive electrode layer includes the carbon component (carbon material 1) covering the surface of the electrode active material particles and the AB powder (carbon material 2). For this reason, even if the carbon material 1 whose combustion start temperature is lower than that of the organic material 1 is burned off when the organic material 1 is removed, the carbon material 2 whose combustion start temperature is higher than that of the organic material 1 remains. It can be seen that the all solid state battery No. 1 shows a high capacity. On the other hand, in Comparative Example 1, since the positive electrode layer includes the carbon material 1 but does not include the carbon material 2, the carbon material 1 having a lower combustion start temperature than the organic material 1 is burned out when the organic material 1 is removed. It can be seen that the all solid state battery of Example 1 exhibits a low capacity.
  • Example 2 An all-solid battery was produced in the same manner as in Example 1 except that the electrode active material powder was produced as follows.
  • Example 2 Water was added to the fired powder produced in Example 1, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
  • pulverized powder and conductive carbon black (trade name: Super-P, registered trademark: sp, hereinafter referred to as “sp”) manufactured by Timcal Corporation were weighed so as to have a weight ratio of 100: 20. By mixing in a mortar, mixed pulverized powder was obtained.
  • the obtained mixed and pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 900 ° C. for 20 hours to produce an electrode active material powder in which sp (hereinafter referred to as “carbon material 3”) is supported on the surface of the particles. did.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 1.
  • the obtained charge / discharge curve (solid line) is shown in FIG. It was confirmed that charging / discharging was possible at a discharge capacity of about 130 mAh / g. Further, it was confirmed that a flat region was exhibited in the voltage range of 3.4 to 4.0 V during discharge.
  • Example 2 The electrode active material slurry and the solid electrolyte slurry prepared in Example 2 were mixed so that the preparation ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight to prepare an electrode slurry. Except for this, an all-solid battery was fabricated in the same manner as in Example 2.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 1.
  • the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 60 mAh / g.
  • Example 2 sp (carbon material 3) supported on the surface of the electrode active material particles and AB powder (carbon material 2) are included in the positive electrode layer. For this reason, even if the carbon material 3 having the same combustion start temperature as the organic material 1 is burned off when the organic material 1 is removed, the carbon material 2 having a higher combustion start temperature than the organic material 1 remains. It can be seen that the all-solid-state battery of Example 2 shows a high capacity. On the other hand, in Comparative Example 2, since the positive electrode layer includes the carbon material 3 but does not include the carbon material 2, the carbon material 1 having a combustion start temperature similar to that of the organic material 1 is burned off when the organic material 1 is removed. It can be seen that the all solid state battery of Comparative Example 2 exhibits a low capacity.
  • Example 3 A powder containing a lithium-containing iron manganese phosphate compound LiMn 0.75 Fe 0.25 (PO 4 ) (hereinafter referred to as “LFMP”) as an electrode active material was produced as follows.
  • LFMP lithium-containing iron manganese phosphate compound LiMn 0.75 Fe 0.25
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnCO 3 ), iron oxide (Fe 2 O 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. Mole ratio of these raw materials to 21.1% -Li 2 CO 3 , 31.6% -MnCO 3 , 5.3% -Fe 2 O 3 , 42.1%-(NH 4 ) 2 HPO 4 The mixture was sealed in a container, and the container was rotated at 150 rpm for 6 hours to obtain a mixed powder of starting materials.
  • the obtained mixed powder was fired in an air atmosphere at a temperature of 500 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
  • the water was added to the fired powder, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
  • the obtained pulverized powder and a highly conductive carbon black (trade name: Ketjen Black, registered trademark: KB, hereinafter referred to as “KB”) manufactured by Lion Co., Ltd. are weighed so as to have a weight ratio of 100: 20. And mixed in a mortar to obtain a mixed and pulverized powder.
  • the obtained mixed and pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 700 ° C. for 20 hours to produce an electrode active material powder in which KB (hereinafter referred to as “carbon material 4”) is supported on the surface of the particles. did.
  • the electrode active material powder obtained above was mixed in a binder solution in which polyvinyl alcohol (hereinafter referred to as “organic material 2”) serving as a binder was dissolved in an organic solvent to prepare an electrode active material slurry.
  • organic material 2 polyvinyl alcohol
  • the mixing ratio of the electrode active material powder and polyvinyl alcohol was 80:20 by weight.
  • VGCF vapor grown carbon fiber
  • carbon material 5 a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent (hereinafter referred to as “VGCF”) , Referred to as “carbon material 5”) to prepare a conductive agent slurry.
  • the mixing ratio of the carbon material 5 and the organic material 2 was 80:20 by weight.
  • the mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 5 is 45 parts by weight of the electrode active material slurry and conductive agent slurry prepared above and the solid electrolyte slurry prepared in Example 1. : 45:10 was mixed to prepare an electrode slurry.
  • Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet.
  • the thickness of the molded body was 50 ⁇ m.
  • an all-solid battery was produced in the same manner as in Example 1. However, firing was performed under the following conditions. First, the organic material 2 was removed by baking at a temperature of 400 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, it baked at the temperature of 600 degreeC in nitrogen gas atmosphere.
  • Example 3 (Comparative Example 3) The electrode active material slurry and the solid electrolyte slurry prepared in Example 3 were mixed so that the preparation ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight to prepare an electrode slurry. Except for this, an all-solid battery was produced in the same manner as in Example 3.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 3.
  • the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 30 mAh / g.
  • Example 3 KB (carbon material 4) supported on the surface of the electrode active material particles and VGCF (carbon material 5) are included in the positive electrode layer. For this reason, even if the carbon material 4 whose combustion start temperature is lower than that of the organic material 2 is burned off when the organic material 2 is removed, the carbon material 5 whose combustion start temperature is higher than that of the organic material 2 remains. It can be seen that the all-solid battery No. 3 shows a high capacity. On the other hand, in Comparative Example 3, since the positive electrode layer includes the carbon material 4 but does not include the carbon material 5, the carbon material 4 having a lower combustion start temperature than the organic material 2 is burned out when the organic material 2 is removed. It can be seen that the all solid state battery of Example 3 exhibits a low capacity.
  • Example 4 ⁇ Preparation of electrode active material> A powder containing a lithium-containing iron manganese phosphate compound LiMn (PO 4 ) (hereinafter referred to as “LMP”) as an electrode active material was produced as follows.
  • LMP lithium-containing iron manganese phosphate compound LiMn (PO 4 )
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnCO 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so as to be 20.0% -Li 2 CO 3 , 40.0% -MnCO 3 , 40.0%-(NH 4 ) 2 HPO 4 in a molar ratio, sealed in a container, The container was rotated at a rotational speed of 150 rpm for 6 hours to obtain a mixed powder of starting materials.
  • the obtained mixed powder was fired in an air atmosphere at a temperature of 500 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
  • the water was added to the fired powder, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
  • the obtained pulverized powder and AB powder were weighed so as to have a weight ratio of 100: 20, and mixed with a planetary ball mill to obtain a coated pulverized powder having particles coated with AB by a mechanical alloying method. Produced.
  • the obtained coated pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 700 ° C. for 20 hours, whereby the surface of the particles is coated with AB (hereinafter referred to as “carbon material 6”) by a mechanical alloying method.
  • An active material powder was prepared.
  • the electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry.
  • the mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
  • the carbon material 4 used in Example 3 was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent, thereby preparing a conductive agent slurry.
  • the mixing ratio of the carbon material 4 and the organic material 2 was 80:20 by weight.
  • the mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 4 is 45 parts by weight of the electrode active material slurry and conductive agent slurry prepared above and the solid electrolyte slurry prepared in Example 1. : 45:10 was mixed to prepare an electrode slurry.
  • Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet.
  • the thickness of the molded body was 50 ⁇ m.
  • an all-solid battery was produced in the same manner as in Example 1. However, firing was performed under the following conditions. First, the organic material 2 was removed by baking at a temperature of 400 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, it baked at the temperature of 600 degreeC in nitrogen gas atmosphere.
  • the pulverized powder produced in Example 4 and the carbon material 4 were weighed so as to have a weight ratio of 100: 20, and mixed in a mortar to obtain a mixed pulverized powder.
  • the obtained mixed and pulverized powder was baked at a temperature of 700 ° C. for 20 hours in a nitrogen gas atmosphere to prepare an electrode active material powder in which the carbon material 4 was supported on the particle surfaces.
  • the electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry.
  • the mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
  • the electrode active material slurry prepared above and the solid electrolyte slurry prepared in Example 1 were mixed so that the mixing ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight.
  • An electrode slurry was prepared.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 4.
  • the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 10 mAh / g.
  • Example 4 AB (carbon material 6) and KB (carbon material 4) covering the surface of the electrode active material particles by the mechanical alloying method are included in the positive electrode layer. For this reason, even if the carbon material 4 whose combustion start temperature is lower than that of the organic material 2 is burned off when the organic material 2 is removed, the carbon material 6 whose combustion start temperature is higher than that of the organic material 2 remains. It can be seen that the all-solid battery No. 4 shows a high capacity. On the other hand, in Comparative Example 4, since the positive electrode layer includes the carbon material 4 but does not include the carbon material 6, the carbon material 4 having a lower combustion start temperature than the organic material 2 is burned out when the organic material 2 is removed. It can be seen that the all solid state battery of Example 4 exhibits a low capacity.
  • Example 5 A powder containing a lithium-containing cobalt phosphate compound LiCo (PO 4 ) (hereinafter referred to as “LCP”) as an electrode active material was produced as follows.
  • LCP lithium-containing cobalt phosphate compound LiCo (PO 4 )
  • Lithium carbonate (Li 2 CO 3 ), cobalt phosphate octahydrate (Co 3 (PO 4 ) 2 8H 2 O), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so that the molar ratio is 42.9% -Li 2 CO 3 , 28.6% -Co 3 (PO 4 ) 2 8H 2 O, 28.6%-(NH 4 ) 2 HPO 4. The mixture was sealed in a container, and the container was rotated at 150 rpm for 6 hours to obtain a mixed powder of starting materials.
  • the obtained mixed powder was fired in an air atmosphere at a temperature of 500 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
  • the water was added to the fired powder, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
  • the obtained pulverized powder and AB powder were weighed so as to have a weight ratio of 100: 20, and mixed with a planetary ball mill to obtain a coated pulverized powder having particles coated with AB by a mechanical alloying method. Produced.
  • the obtained coated pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 700 ° C. for 20 hours, whereby the surface of the particles is coated with AB (hereinafter referred to as “carbon material 6”) by a mechanical alloying method.
  • An active material powder was prepared.
  • the electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry.
  • the mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
  • the carbon material 4 used in Example 3 was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent, thereby preparing a conductive agent slurry.
  • the mixing ratio of the carbon material 4 and the organic material 2 was 80:20 by weight.
  • the mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 4 is 45 parts by weight of the electrode active material slurry and conductive agent slurry prepared above and the solid electrolyte slurry prepared in Example 1. : 45:10 was mixed to prepare an electrode slurry.
  • Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet.
  • the thickness of the molded body was 50 ⁇ m.
  • an all-solid battery was produced in the same manner as in Example 1. However, firing was performed under the following conditions. First, the organic material 2 was removed by baking at a temperature of 400 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, it baked at the temperature of 600 degreeC in nitrogen gas atmosphere.
  • the pulverized powder prepared in Example 5 and the carbon material 4 were weighed so as to have a weight ratio of 100: 20, and mixed in a mortar to obtain a mixed pulverized powder.
  • the obtained mixed and pulverized powder was baked at a temperature of 700 ° C. for 20 hours in a nitrogen gas atmosphere to prepare an electrode active material powder in which the carbon material 4 was supported on the particle surfaces.
  • the electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry.
  • the mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
  • the electrode active material slurry prepared above and the solid electrolyte slurry prepared in Example 1 were mixed so that the mixing ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight.
  • An electrode slurry was prepared.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 5.
  • the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 10 mAh / g.
  • Example 5 AB (carbon material 6) for covering the surface of the electrode active material particles by the mechanical alloying method and KB (carbon material 4) are included in the positive electrode layer. For this reason, even if the carbon material 4 whose combustion start temperature is lower than that of the organic material 2 is burned off when the organic material 2 is removed, the carbon material 6 whose combustion start temperature is higher than that of the organic material 2 remains. It can be seen that the all-solid-state battery 5 shows a high capacity. On the other hand, in Comparative Example 5, since the positive electrode layer includes the carbon material 4 but does not include the carbon material 6, the carbon material 4 having a lower combustion start temperature than the organic material 2 is burned off when the organic material 2 is removed. It can be seen that the all solid state battery of Example 5 exhibits a low capacity.
  • the carbon powder is not limited to the AB powder, and the firing step is performed. If the combustion start temperature is higher than that of the organic material to be removed in step 1, the same effect can be obtained even if another carbon material is used.
  • carbon material in addition to AB, carbon nanofiber (CNF), carbon nanotube (CNT), or the like may be used.
  • the LAGP raw material powder is not limited to the amorphous body.
  • the same effect can be obtained by using a crystal.
  • the negative electrode includes a graphite-lithium compound, a lithium alloy such as Li-Al, Li 3 V 2 (PO 4 ) 3 , TiO 2. Similar effects can be obtained by using oxides such as 2 , MoO 2 and Nb 2 O 5 , and the all-solid-state battery of the present invention is not limited to those using metallic lithium as the negative electrode.
  • the present invention is particularly useful for the production of an all-solid secondary battery.

Abstract

Provided are: an unsintered laminate for an all-solid-state battery, capable of suppressing combustion of carbon as a conductive agent included in an unsintered electrode layer, and of improving capacity; an all-solid-state battery; and a production method therefor. The all-solid-state battery (10) comprises: at least one electrode layer of either a positive electrode layer (11) or a negative electrode layer (13); and a solid electrolyte layer (12) laminated on the electrode layer. The electrode layer includes: a first carbon material that starts combusting at a first temperature; and a second carbon material that starts combusting at a second temperature higher than the first temperature. In order to produce the all-solid-state battery (10): the unsintered electrode layer, being an unsintered body of at least either the positive electrode layer (11) or the negative electrode layer (13), and an unsintered solid electrolyte layer, being an unsintered body of the solid electrolyte layer (12), are prepared; the unsintered electrode layer and the unsintered solid electrolyte layer are laminated, and a laminate is formed; and the laminate is then fired. The unsintered electrode layer includes: the first carbon material that starts combusting at the first temperature; and the second carbon material that starts combusting at the second temperature higher than the first temperature.

Description

全固体電池用未焼結積層体、全固体電池およびその製造方法Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
 本発明は、全固体電池用未焼結積層体、全固体電池およびその製造方法に関する。 The present invention relates to an unsintered laminate for an all-solid battery, an all-solid battery, and a method for producing the same.
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。 In recent years, the demand for batteries as a power source for portable electronic devices such as mobile phones and portable personal computers has greatly increased. In a battery used for such an application, an electrolyte (electrolytic solution) such as an organic solvent has been conventionally used as a medium for moving ions.
 しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。 However, the battery having the above configuration has a risk of leakage of the electrolyte. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
 そこで、電池の安全性を高めるための一つの対策は、電解質として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。 Therefore, as one countermeasure for improving the safety of the battery, it has been proposed to use a solid electrolyte as the electrolyte instead of the electrolytic solution. Furthermore, development of an all-solid battery in which a solid electrolyte is used as an electrolyte and the other constituent elements are also made of solid is being promoted.
 たとえば、特開2007‐5279号公報(以下、特許文献1という)には、全固体電池の製造方法として、リン酸化合物を含む活物質と固体電解質とを、それぞれ、バインダおよび可塑剤を含む溶液中に分散させて、スラリーを作製し、これらのスラリーを成形して得られた活物質グリーンシートと固体電解質グリーンシートとを積層し、バインダおよび可塑剤を熱分解させて除去した後、焼結することによって、全固体電池の積層体を製造することが記載されている。 For example, Japanese Unexamined Patent Application Publication No. 2007-5279 (hereinafter referred to as Patent Document 1) discloses a method for producing an all-solid battery in which an active material containing a phosphoric acid compound and a solid electrolyte are respectively mixed with a solution containing a binder and a plasticizer. The active material green sheet and solid electrolyte green sheet obtained by forming the slurry by dispersing in the slurry are laminated, and the binder and the plasticizer are thermally decomposed and removed, and then sintered. By doing so, it is described that a laminate of an all-solid-state battery is manufactured.
 また、たとえば、特開2007‐258148号公報(以下、特許文献2という)には、全固体電池の製造方法として、電極活物質とアセチレンブラックを混合して調製された電極ペーストを固体電解質の焼成体の両面上にスクリーン印刷した後、焼き付けることによって、電極層と固体電解質層が焼成一体化された積層焼成体を製造することが記載されている。 Also, for example, in Japanese Patent Application Laid-Open No. 2007-258148 (hereinafter referred to as Patent Document 2), as an all-solid battery manufacturing method, an electrode paste prepared by mixing an electrode active material and acetylene black is used as a solid electrolyte. It is described that a laminated fired body in which an electrode layer and a solid electrolyte layer are fired and integrated is manufactured by screen printing on both surfaces of the body and then baking.
特開2007‐5279号公報JP 2007-5279 A 特開2007‐258148号公報JP 2007-258148 A
 発明者らが、特許文献1、2に記載されているような全固体電池の製造方法を種々検討した結果、焼成工程において電極層のグリーンシートまたはペーストに含まれる導電剤としての炭素が燃焼してしまうことがわかった。そのため、電極層に電子伝導性を付与する炭素の効果が小さくなり、容量が低下することがわかった。本発明は、上記の知見に基づいてなされたものである。 As a result of various studies by the inventors on the production methods of all-solid batteries as described in Patent Documents 1 and 2, carbon as a conductive agent contained in the green sheet or paste of the electrode layer burns in the firing process. I understood that. Therefore, it was found that the effect of carbon that imparts electron conductivity to the electrode layer is reduced, and the capacity is reduced. The present invention has been made based on the above findings.
 したがって、本発明の目的は、未焼結電極層に含まれる導電剤としての炭素の燃焼を抑制し、容量を向上させることが可能な全固体電池用未焼結積層体、全固体電池およびその製造方法を提供することである。 Therefore, an object of the present invention is to suppress the burning of carbon as a conductive agent contained in an unsintered electrode layer and improve the capacity, an unsintered laminate for an all-solid battery, an all-solid battery, and its It is to provide a manufacturing method.
 発明者らが上記の課題を解決するために種々検討を重ねた結果、未焼結電極層に含まれる導電剤として燃焼開始温度が異なる複数種類の炭素材料を用いることにより、未焼結電極層に含まれる導電剤の燃焼を抑制することが可能になることを見出した。すなわち、焼成工程において有機材料の除去とともに燃焼開始温度の低い炭素材料が燃焼したとしても、除去される有機材料よりも燃焼開始温度の高い炭素材料を電極層に含ませることにより、焼成工程において導電剤の燃焼を抑制することができ、有機電解液を用いた電池と同等に電極活物質の容量を十分に引き出すことができることが明らかになった。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。 As a result of various studies by the inventors in order to solve the above problems, the use of a plurality of types of carbon materials having different combustion start temperatures as the conductive agent contained in the unsintered electrode layer, the unsintered electrode layer It has been found that combustion of the conductive agent contained in can be suppressed. That is, even if the carbon material having a low combustion start temperature burns with the removal of the organic material in the firing process, the carbon material having a combustion start temperature higher than that of the organic material to be removed is included in the electrode layer. It was revealed that the burning of the agent can be suppressed, and the capacity of the electrode active material can be sufficiently extracted as in the case of the battery using the organic electrolyte. Based on such knowledge of the inventors, the present invention has the following features.
 本発明に従った全固体電池は、正極層または負極層の少なくともいずれか一方の電極層と、電極層に積層された固体電解質層とを備える。電極層が、第1の温度で燃焼開始する第1の炭素材料と、第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む。 The all solid state battery according to the present invention includes at least one of the positive electrode layer and the negative electrode layer and a solid electrolyte layer laminated on the electrode layer. The electrode layer includes a first carbon material that starts burning at a first temperature, and a second carbon material that starts burning at a second temperature higher than the first temperature.
 本発明の全固体電池において、電極層が、第1の炭素材料よりも第2の炭素材料を多く含むことが好ましい。 In the all solid state battery of the present invention, it is preferable that the electrode layer contains more second carbon material than first carbon material.
 本発明に従った全固体電池用未焼結積層体は、正極層または負極層の少なくともいずれか一方の未焼結体である未焼結電極層と、未焼結電極層に積層された、固体電解質層の未焼結体である未焼結固体電解質層とを備える。未焼結電極層が、第1の温度で燃焼開始する第1の炭素材料と、第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む。 An unsintered laminate for an all-solid battery according to the present invention was laminated on an unsintered electrode layer that is an unsintered body of at least one of a positive electrode layer and a negative electrode layer, and an unsintered electrode layer. An unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer. An unsintered electrode layer contains the 1st carbon material which starts combustion at the 1st temperature, and the 2nd carbon material which starts combustion at the 2nd temperature higher than the 1st temperature.
 本発明の全固体電池用未焼結積層体において、未焼結電極層と未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有していればよい。 In the unsintered laminate for an all solid state battery of the present invention, the unsintered electrode layer and the unsintered solid electrolyte layer may be in the form of a green sheet or a printed layer.
 本発明に従った全固体電池の製造方法は、以下の工程を備える。 The manufacturing method of the all-solid-state battery according to the present invention includes the following steps.
 (A)正極層または負極層の少なくともいずれか一方の未焼結体である未焼結電極層と、固体電解質層の未焼結体である未焼結固体電解質層とを作製する未焼結層作製工程 (A) An unsintered electrode layer that is an unsintered body of at least one of a positive electrode layer and an anode layer, and an unsintered solid electrolyte layer that is an unsintered body of a solid electrolyte layer Layer fabrication process
 (B)未焼結電極層と未焼結固体電解質層とを積層して積層体を形成する積層体形成工程 (B) Laminate forming step of forming a laminate by laminating an unsintered electrode layer and an unsintered solid electrolyte layer
 (C)積層体を焼成する焼成工程 (C) Firing step of firing the laminate
 (D)未焼結電極層が、第1の温度で燃焼開始する第1の炭素材料と、第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む。 (D) The unsintered electrode layer includes a first carbon material that starts to burn at a first temperature and a second carbon material that starts to burn at a second temperature higher than the first temperature.
 焼成工程においては、積層体に含まれる有機材料の分解温度にて、第1の炭素材料が第2の炭素材料よりも焼失量が多いことが好ましい。 In the firing step, it is preferable that the first carbon material has a larger amount of burning than the second carbon material at the decomposition temperature of the organic material contained in the laminate.
 本発明の全固体電池の製造方法において、第2の炭素材料が炭素粉末であることが好ましい。 In the method for producing an all solid state battery of the present invention, the second carbon material is preferably carbon powder.
 また、本発明の全固体電池の製造方法において、第1の炭素材料が、未焼結電極層に含まれる電極活物質粒子の少なくとも一部表面を被覆し、または、電極活物質粒子の少なくとも一部表面に担持されていることが好ましい。 In the method for producing an all solid state battery of the present invention, the first carbon material covers at least a part of the surface of the electrode active material particles contained in the unsintered electrode layer, or at least one of the electrode active material particles. It is preferably carried on the surface of the part.
 本発明の全固体電池の製造方法において、正極層、固体電解質層および負極層からなる群より選ばれた少なくとも一つの層を形成する材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。 In the method for producing an all-solid battery of the present invention, the material forming at least one layer selected from the group consisting of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer is a solid electrolyte comprising a lithium-containing phosphate compound having a NASICON structure It is preferable to contain.
 本発明の全固体電池の製造方法において、正極層および負極層からなる群より選ばれた少なくとも一つの層を形成する材料が、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。 In the method for producing an all solid state battery of the present invention, it is preferable that the material forming at least one layer selected from the group consisting of a positive electrode layer and a negative electrode layer contains an electrode active material composed of a lithium-containing phosphate compound.
 なお、本発明の全固体電池の製造方法において、未焼結電極層と未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有していればよい。 In addition, in the manufacturing method of the all-solid-state battery of this invention, a non-sintered electrode layer and a non-sintered solid electrolyte layer should just have the form of a green sheet or a printing layer.
 本発明によれば、正極層または負極層では導電剤としての炭素の燃焼を抑制することができるので、充放電容量を高めることができる。 According to the present invention, since the combustion of carbon as a conductive agent can be suppressed in the positive electrode layer or the negative electrode layer, the charge / discharge capacity can be increased.
本発明の実施形態としての全固体電池の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the all-solid-state battery as embodiment of this invention. 本発明の実施例1と比較例1で作製された全固体電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the all-solid-state battery produced by Example 1 and Comparative Example 1 of this invention. 本発明の実施例2と比較例2で作製された全固体電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the all-solid-state battery produced by Example 2 and Comparative Example 2 of this invention. 本発明の実施例3と比較例3で作製された全固体電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the all-solid-state battery produced in Example 3 and Comparative Example 3 of this invention. 本発明の実施例4と比較例4で作製された全固体電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the all-solid-state battery produced by Example 4 and Comparative Example 4 of this invention. 本発明の実施例5と比較例5で作製された全固体電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the all-solid-state battery produced in Example 5 and Comparative Example 5 of this invention.
 図1に示すように、本発明の一つの実施の形態としての全固体電池10は、正極層11と固体電解質層12と負極層13とからなる単電池で構成される。固体電解質層12の一方面に正極層11が配置され、固体電解質層12の一方面と反対側の他方面に負極層13が配置されている。いいかえれば、正極層11と負極層13とは、固体電解質層12を介して互いに対向する位置に設けられている。 As shown in FIG. 1, an all-solid battery 10 according to an embodiment of the present invention is constituted by a single battery including a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13. The positive electrode layer 11 is disposed on one surface of the solid electrolyte layer 12, and the negative electrode layer 13 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 12. In other words, the positive electrode layer 11 and the negative electrode layer 13 are provided at positions facing each other with the solid electrolyte layer 12 interposed therebetween.
 正極層11と負極層13のそれぞれは固体電解質と電極活物質とを含み、固体電解質層12は固体電解質を含む。正極層11と負極層13のそれぞれは、導電剤として、炭素材料等を含む。 Each of the positive electrode layer 11 and the negative electrode layer 13 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 12 includes a solid electrolyte. Each of the positive electrode layer 11 and the negative electrode layer 13 includes a carbon material or the like as a conductive agent.
 上記のように構成された全固体電池10において、正極層11または負極層13の少なくともいずれか一方は、第1の温度で燃焼開始する第1の炭素材料と、第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む。 In the all-solid-state battery 10 configured as described above, at least one of the positive electrode layer 11 and the negative electrode layer 13 includes a first carbon material that starts burning at a first temperature, and a first carbon material that is higher than the first temperature. And a second carbon material that starts burning at a temperature of 2.
 また、全固体電池10を製造するために用いられる全固体電池用未焼結積層体は、正極層11または負極層13の少なくともいずれか一方の未焼結体である未焼結電極層と、未焼結電極層に積層された、固体電解質層12の未焼結体である未焼結固体電解質層とを備える。 Further, the all-solid battery unsintered laminate used for producing the all-solid battery 10 includes a non-sintered electrode layer which is at least one of the positive electrode layer 11 and the negative electrode layer 13, and And a non-sintered solid electrolyte layer that is a non-sintered body of the solid electrolyte layer 12 laminated on the non-sintered electrode layer.
 さらに、上記のように構成された全固体電池10を製造するために、本発明では、まず、正極層11または負極層13の少なくともいずれか一方の未焼結体である未焼結電極層と、固体電解質層12の未焼結体である未焼結固体電解質層とを作製する(未焼結層作製工程)。その後、作製された未焼結電極層と未焼結固体電解質層とを積層して積層体を形成する(積層体形成工程)。そして、得られた積層体を焼成する(焼成工程)。焼成により、正極層11および/または負極層13と固体電解質層12とが接合される。最後に、焼成した積層体を、たとえばコインセル内に封止する。封止方法は特に限定されない。たとえば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することにより封止してもよい。 Furthermore, in order to manufacture the all-solid-state battery 10 configured as described above, in the present invention, first, an unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer 11 and the negative electrode layer 13; Then, an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer 12 is manufactured (unsintered layer manufacturing step). Then, the produced unsintered electrode layer and unsintered solid electrolyte layer are laminated | stacked, and a laminated body is formed (laminated body formation process). And the obtained laminated body is baked (baking process). The positive electrode layer 11 and / or the negative electrode layer 13 and the solid electrolyte layer 12 are joined by firing. Finally, the fired laminate is sealed, for example, in a coin cell. The sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin. Alternatively, an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
 なお、正極層11と負極層13から効率的に電流を引き出すため、正極層11と負極層13の上に金属層等の導電層を形成してもよい。導電層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。 In order to efficiently draw current from the positive electrode layer 11 and the negative electrode layer 13, a conductive layer such as a metal layer may be formed on the positive electrode layer 11 and the negative electrode layer 13. Examples of the method for forming the conductive layer include a sputtering method. Alternatively, the metal paste may be applied or dipped and heat-treated.
 未焼結電極層は、第1の温度で燃焼開始する第1の炭素材料と、第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む。未焼結電極層と未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有する。 The unsintered electrode layer includes a first carbon material that starts to burn at a first temperature and a second carbon material that starts to burn at a second temperature higher than the first temperature. The unsintered electrode layer and the unsintered solid electrolyte layer have the form of a green sheet or a printed layer.
 このように、未焼結電極層が燃焼開始温度の異なる二つ以上の炭素材料を含むことにより、積層体を焼成する過程において炭素材料が焼失する場合であっても、燃焼開始温度の低い第1の炭素材料が先に燃焼する。従って、積層体内部に存在する酸素、または、積層体に供給される酸素が第1の炭素材料の燃焼に優先的に消費されることにより、燃焼開始温度の高い第2の炭素材料が燃焼して焼失することを抑制することができる。これにより、電極層に電子伝導性を付与する炭素の効果が小さくなることを抑制することができるので、充放電容量が低下することを抑制することができる。結果として、充放電容量を従来よりも高めることができる。 As described above, since the unsintered electrode layer includes two or more carbon materials having different combustion start temperatures, even if the carbon material is burned out in the process of firing the laminate, One carbon material burns first. Accordingly, oxygen existing in the stack or oxygen supplied to the stack is preferentially consumed for the combustion of the first carbon material, so that the second carbon material having a high combustion start temperature burns. Can be prevented from being burned out. Thereby, since it can suppress that the effect of the carbon which provides electronic conductivity to an electrode layer becomes small, it can suppress that charging / discharging capacity | capacitance falls. As a result, the charge / discharge capacity can be increased as compared with the conventional case.
 なお、焼成後に得られた全固体電池10において、燃焼開始温度の低い第1の炭素材料が完全に燃焼して焼失しているわけではないので、正極層11または負極層13の少なくともいずれか一方の電極層は、第1の温度で燃焼開始する第1の炭素材料と、第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む。燃焼開始温度は、示差熱・熱重量同時測定(TG‐DTA)により、炭素の重量減少が生じる温度として測定することができる。炭素材料は、結晶性の炭素でもよく、非晶質の部位を含む炭素でもよい。 In the all solid state battery 10 obtained after firing, since the first carbon material having a low combustion start temperature is not completely burned and burned out, at least one of the positive electrode layer 11 and the negative electrode layer 13 is used. The electrode layer includes a first carbon material that starts burning at a first temperature and a second carbon material that starts burning at a second temperature higher than the first temperature. The combustion start temperature can be measured as a temperature at which weight loss of carbon occurs by differential thermal and thermogravimetric simultaneous measurement (TG-DTA). The carbon material may be crystalline carbon or carbon containing an amorphous part.
 正極層11または負極層13の少なくともいずれか一方の電極層が、第1の炭素材料よりも第2の炭素材料を多く含むことが好ましい。 It is preferable that at least one of the positive electrode layer 11 and the negative electrode layer 13 contains more second carbon material than first carbon material.
 焼成工程においては、積層体に含まれる有機材料の分解温度にて、第1の炭素材料が第2の炭素材料よりも焼失量が多いことが好ましい。すなわち、第1の炭素材料が第2の炭素材料よりも燃えやすいことが好ましい。この場合、燃焼開始温度が低い第1の炭素材料(易燃焼性炭素材料)が、積層体の焼成時に焼失した場合においても、燃焼開始温度が高い第2の炭素材料(難燃焼性炭素材料)が残存する。これにより、電極層に電子伝導性を付与する炭素の効果が小さくなることを抑制することができるので、充放電容量が低下することを抑制することができる。 In the firing step, it is preferable that the first carbon material has a larger amount of burning than the second carbon material at the decomposition temperature of the organic material contained in the laminate. That is, it is preferable that the first carbon material burns more easily than the second carbon material. In this case, even when the first carbon material (combustible carbon material) having a low combustion start temperature is burned out during firing of the laminate, the second carbon material (non-combustible carbon material) having a high combustion start temperature. Remains. Thereby, since it can suppress that the effect of the carbon which provides electronic conductivity to an electrode layer becomes small, it can suppress that charging / discharging capacity | capacitance falls.
 なお、難燃焼性炭素材料とは、積層体を焼成して有機材料を分解する温度において、完全には焼失しない炭素材料であればよく、積層体を焼成して有機物を分解する温度において、全く燃焼しない炭素材料である必要はない。易燃焼性炭素材料とは、積層体を焼成して有機物を分解する温度において、燃焼する炭素材料であればよく、積層体を焼成して有機物を分解する温度において、完全に燃焼する必要はない。 The flame-retardant carbon material may be a carbon material that does not completely burn out at a temperature at which the laminate is fired to decompose the organic material. It does not have to be a carbon material that does not burn. The flammable carbon material may be any carbon material that burns at the temperature at which the laminate is fired to decompose the organic matter, and does not need to be completely burned at the temperature at which the laminate is fired to decompose the organic matter. .
 第2の炭素材料が炭素粉末であることが好ましい。炭素粉末の物性は特に限定されないが、比表面積が10~80m2/g、粒径が10nm~数μmであることが好ましく、比表面積が50~80m2/g、粒径が10~100nmであることが特に好ましい。 The second carbon material is preferably carbon powder. The physical properties of the carbon powder are not particularly limited, but the specific surface area is preferably 10 to 80 m 2 / g, the particle size is preferably 10 nm to several μm, the specific surface area is 50 to 80 m 2 / g, and the particle size is 10 to 100 nm. It is particularly preferred.
 第1の炭素材料が、未焼結電極層に含まれる電極活物質粒子の少なくとも一部表面を被覆し、または、電極活物質粒子の少なくとも一部表面に担持されていることが好ましい。この場合、糖または有機酸を用いて、電極活物質粒子の少なくとも一部表面を炭素成分で被覆することができ、または、カーボンブラックを用いて、電極活物質粒子の少なくとも一部表面に炭素成分を担持させることができる。被覆層の厚みは10nm以上が好ましい。 It is preferable that the first carbon material covers at least a part of the surface of the electrode active material particles included in the unsintered electrode layer or is supported on at least a part of the surface of the electrode active material particles. In this case, at least a part of the surface of the electrode active material particles can be coated with a carbon component using sugar or an organic acid, or a carbon component is applied to at least a part of the surface of the electrode active material particles using carbon black. Can be supported. The thickness of the coating layer is preferably 10 nm or more.
 積層体形成工程では、正極層11、固体電解質層12、および、負極層13の未焼結体を積層して単電池構造の未焼結積層体を形成することが好ましい。さらに、積層体形成工程において、集電体の未焼結体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。この場合、単電池構造の積層体を複数個、電気的に直列、または並列に積層してもよい。 In the laminate forming step, it is preferable to laminate the green bodies of the positive electrode layer 11, the solid electrolyte layer 12, and the negative electrode layer 13 to form a single battery structure green laminate. Furthermore, in the laminated body forming step, a laminated body may be formed by laminating a plurality of laminated bodies having the above single cell structure with an unsintered current collector interposed therebetween. In this case, a plurality of laminates having a single battery structure may be laminated electrically in series or in parallel.
 上記の未焼結電極層と未焼結固体電解質層を形成する方法は特に限定されないが、グリーンシートを形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層を形成するためにスクリーン印刷等を使用することができる。上記の未焼結電極層と未焼結固体電解質層を積層する方法は特に限定されないが、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等を使用して未焼結電極層と未焼結固体電解質層を積層することができる。 The method for forming the green electrode layer and the green solid electrolyte layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, or the like for forming a green sheet, or a printing layer is formed. Screen printing or the like can be used. The method for laminating the above-mentioned unsintered electrode layer and unsintered solid electrolyte layer is not particularly limited, but the unsintered electrode using a hot isostatic press, a cold isostatic press, an isostatic press, etc. The layer and the unsintered solid electrolyte layer can be laminated.
 グリーンシートまたは印刷層を形成するためのスラリーは、有機材料を溶剤に溶解した有機ビヒクルと、正極活物質、負極活物質、固体電解質、または、集電体材料とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。 A slurry for forming a green sheet or printed layer is prepared by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent, and a positive electrode active material, a negative electrode active material, a solid electrolyte, or a current collector material. be able to. Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
 スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。 The slurry may contain a plasticizer. Although the kind of plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
 焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。 In the firing step, the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
 なお、本発明の製造方法が適用される全固体電池10の正極層11または負極層13に含まれる電極活物質の種類は限定されないが、正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54等のスピネル型構造を有するリチウム含有化合物を用いることができる。 The type of the electrode active material contained in the positive electrode layer 11 or negative electrode layer 13 of the all-solid-state cell 10 producing method of the present invention is applied is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) Lithium-containing phosphate compounds having a nasic structure such as 3, lithium-containing phosphate compounds having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, etc. A lithium-containing compound having a spinel structure such as LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 can be used.
 負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素であり、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512等の酸化物等を用いることができる。 As the negative electrode active material, MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ≦ x ≦ 2.0. A compound having a composition represented by the following formula can be used. For example, a mixture obtained by mixing two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used. As the negative electrode active material, graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. A thing etc. can be used.
 また、本発明の製造方法が適用される全固体電池10の正極層11、負極層13、または、固体電解質層12に含まれる固体電解質の種類は限定されないが、固体電解質としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の異なる組成を有する2つ以上のナシコン型構造を有するリチウム含有リン酸化合物を混合した混合物を用いてもよい。 In addition, the type of solid electrolyte contained in the positive electrode layer 11, the negative electrode layer 13, or the solid electrolyte layer 12 of the all-solid battery 10 to which the manufacturing method of the present invention is applied is not limited. A lithium-containing phosphoric acid compound having the following can be used. Lithium-containing phosphoric acid compound having a NASICON-type structure, the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ≦ x ≦ 2, y is a number in the range of 1 ≦ y ≦ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr). In this case, part of P in the above chemical formula may be substituted with B, Si, or the like. For example, a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used.
 また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。 The lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
 なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物等を挙げることができる。 In addition, as a material used for said solid electrolyte, it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. In addition, Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4−x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc. Examples thereof include compounds having a perovskite structure, compounds having a garnet structure having Li, La, and Zr.
 本発明の製造方法が適用される全固体電池10の正極層11、固体電解質層12、または、負極層13の少なくとも一つの層を形成する材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。この場合、全固体電池の電池動作に必須となる高いイオン伝導性を得ることができる。また、ナシコン型構造のリチウム含有リン酸化合物の組成を有するガラスまたはガラスセラミックスを固体電解質として用いると、焼成工程においてガラス相の粘性流動により、より緻密な焼結体を容易に得ることができるため、ガラスまたはガラスセラミックスの形態で固体電解質の出発原料を準備することが特に好ましい。 The material forming at least one of the positive electrode layer 11, the solid electrolyte layer 12, or the negative electrode layer 13 of the all-solid battery 10 to which the manufacturing method of the present invention is applied is composed of a lithium-containing phosphate compound having a NASICON structure. It preferably contains a solid electrolyte. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained. In addition, when glass or glass ceramics having a composition of a lithium-containing phosphate compound having a NASICON type structure is used as a solid electrolyte, a denser sintered body can be easily obtained due to the viscous flow of the glass phase in the firing step. It is particularly preferred to prepare the solid electrolyte starting material in the form of glass or glass ceramic.
 また、本発明の製造方法が適用される全固体電池10の正極層11または負極層13の少なくとも一つの層を形成する材料が、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。この場合、焼成工程において電極活物質が相変化すること、または、電極活物質が固体電解質と反応することをリン酸骨格の高い温度安定性により容易に抑制することができるため、全固体電池の容量を高くすることができる。また、リチウム含有リン酸化合物からなる電極活物質と、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質とを組み合わせて用いると、焼成工程において電極活物質と固体電解質との反応を抑制することができるとともに、両者の良好な接触を得ることができるため、上記のように電極活物質と固体電解質の材料を組み合わせて用いることが特に好ましい。 Moreover, it is preferable that the material forming at least one of the positive electrode layer 11 or the negative electrode layer 13 of the all solid state battery 10 to which the manufacturing method of the present invention is applied includes an electrode active material made of a lithium-containing phosphate compound. In this case, the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased. In addition, when an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
 以下のように、各種の導電剤を含む電極活物質を用いて実施例1~4と比較例1~4の全固体電池を作製した。 As described below, all solid state batteries of Examples 1 to 4 and Comparative Examples 1 to 4 were prepared using electrode active materials containing various conductive agents.
 (実施例1)
 <電極活物質の作製>
 電極活物質としてのリチウム含有バナジウムリン酸化合物Li32(PO43(以下、「LVP」という)を含む粉末を以下のようにして作製した。
Example 1
<Preparation of electrode active material>
A powder containing a lithium-containing vanadium phosphate compound Li 3 V 2 (PO 4 ) 3 (hereinafter referred to as “LVP”) as an electrode active material was produced as follows.
 出発原料として炭酸リチウム(Li2CO3)、酸化バナジウム(V23)、リン酸水素二アンモニウム((NH42HPO4)を用いた。これらの原料をモル比で27.3%‐Li2CO3、18.2%‐V23、54.5%‐(NH42HPO4となるように秤量し、容器に封入して、容器を150rpmの回転数で6時間回転させることにより、出発原料の混合粉末を得た。 Lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so as to have a molar ratio of 27.3% -Li 2 CO 3 , 18.2% -V 2 O 3 , 54.5%-(NH 4 ) 2 HPO 4 and sealed in a container. The container was rotated at 150 rpm for 6 hours to obtain a mixed powder of starting materials.
 得られた混合粉末を空気雰囲気中にて600℃の温度で6時間焼成して揮発成分を除去することにより、焼成粉末を得た。 The obtained mixed powder was fired in an air atmosphere at a temperature of 600 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
 焼成粉末に水と少量のスクロースを加え、直径が5mmの玉石とともに500mlのポリエチレン製容器に封入して、容器を150rpmの回転数で24時間回転させることにより、焼成粉末を粉砕した。その後、その粉末を温度が120℃のホットプレート上で乾燥させることにより、粉砕粉末を得た。 The fired powder was pulverized by adding water and a small amount of sucrose, enclosing it in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
 得られた粉砕粉末を窒素ガス雰囲気中にて900℃の温度で20時間焼成することにより、スクロースの熱分解後に残存する炭素(以下、「炭素材料1」という)で粒子の表面が被覆された電極活物質粉末を作製した。 The obtained pulverized powder was fired in a nitrogen gas atmosphere at a temperature of 900 ° C. for 20 hours, so that the surfaces of the particles were coated with carbon remaining after pyrolysis of sucrose (hereinafter referred to as “carbon material 1”). An electrode active material powder was prepared.
 <電極層シートと固体電解質層シートの作製>
 バインダとなるポリビニルアルコール(以下、「有機材料1」という)を有機溶媒に溶解したバインダ溶液中に上記で得られた電極活物質粉末を混合し、電極活物質スラリーを作製した。電極活物質粉末と有機材料1との調合比を重量部で80:20とした。
<Preparation of electrode layer sheet and solid electrolyte layer sheet>
The electrode active material powder obtained above was mixed in a binder solution in which polyvinyl alcohol (hereinafter referred to as “organic material 1”) serving as a binder was dissolved in an organic solvent to prepare an electrode active material slurry. The mixing ratio of the electrode active material powder and the organic material 1 was 80:20 by weight.
 次に、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の結晶相を析出するLi1.5Al0.5Ge1.5(PO43(以下、「LAGP」という)のガラス粉末を準備した。バインダとなる有機材料1を有機溶媒に溶解したバインダ溶液中に上記のLAGPのガラス粉末を混合し、固体電解質スラリーを作製した。LAGPのガラス粉末と有機材料1との調合比を重量部で80:20とした。 Next, a glass powder of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (hereinafter referred to as “LAGP”) that precipitates a crystal phase of a lithium-containing phosphate compound having a NASICON structure as a solid electrolyte was prepared. The above glass powder of LAGP was mixed in a binder solution obtained by dissolving the organic material 1 serving as a binder in an organic solvent to prepare a solid electrolyte slurry. The mixing ratio of the glass powder of LAGP and the organic material 1 was 80:20 by weight.
 バインダとなる有機材料1を有機溶媒に溶解したバインダ溶液中にアセチレンブラック(以下、「AB」という)粉末(以下、「炭素材料2」という)を混合し、導電剤スラリーを作製した。炭素材料2と有機材料1との調合比を重量部で80:20とした。 Acetylene black (hereinafter referred to as “AB”) powder (hereinafter referred to as “carbon material 2”) was mixed in a binder solution in which the organic material 1 serving as a binder was dissolved in an organic solvent to prepare a conductive agent slurry. The mixing ratio of the carbon material 2 and the organic material 1 was 80:20 by weight.
 上記で作製された電極活物質スラリーと固体電解質スラリーと導電剤スラリーとを、電極活物質粉末とLAGPのガラス粉末と炭素材料2との調合比が重量部で45:45:10になるように混合し、電極スラリーを作製した。 The electrode active material slurry, the solid electrolyte slurry, and the conductive agent slurry prepared above are mixed so that the mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 2 is 45:45:10 by weight. Mixing was performed to prepare an electrode slurry.
 得られた電極スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極シートと固体電解質シートの成形体を作製した。成形体の厚みは50μmとした。 Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet. The thickness of the molded body was 50 μm.
 <全固体電池の作製>
 以上のようにして得られた固体電解質シートと電極シートを用いて、全固体電池を作製した。
<Preparation of all-solid battery>
An all-solid battery was produced using the solid electrolyte sheet and electrode sheet obtained as described above.
 まず、正極層と固体電解質層が積層された積層体を作製した。具体的には、直径12mmの円形状にカットされた固体電解質シートの片面上に、直径12mmの円形状にカットされた電極シートを積層して、80℃の温度で1トンの圧力を加えて熱圧着した。 First, a laminate in which a positive electrode layer and a solid electrolyte layer were laminated was produced. Specifically, an electrode sheet cut into a circular shape with a diameter of 12 mm is laminated on one side of a solid electrolyte sheet cut into a circular shape with a diameter of 12 mm, and a pressure of 1 ton is applied at a temperature of 80 ° C. Thermocompression bonding was performed.
 次に、この積層体を、以下の条件で焼成した。まず、酸素を少量含む窒素ガス雰囲気中で500℃の温度で焼成することにより、有機材料1の除去を行った。その後、窒素ガス雰囲気中で600℃の温度で焼成することにより、正極層と固体電解質層とを接合した。そして、焼成後の積層体を、100℃の温度で乾燥することにより、水分を除去した。 Next, this laminate was fired under the following conditions. First, the organic material 1 was removed by baking at a temperature of 500 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, the positive electrode layer and the solid electrolyte layer were joined by baking at a temperature of 600 ° C. in a nitrogen gas atmosphere. And the water | moisture content was removed by drying the laminated body after baking at the temperature of 100 degreeC.
 その後、積層体と対極としての金属リチウム板とを積層した。まず、負極として用意した金属リチウム板の上に、ポリメタクリル酸メチル樹脂(以下、「PMMA」という)ゲル化合物を塗布した。そして、この塗布面と焼成後の積層体の固体電解質層側の面が接触するように、積層体と金属リチウム板とを積層した。そして、その後に2032型のコインセルで封止して、全固体電池を作製した。 Thereafter, a laminate and a metal lithium plate as a counter electrode were laminated. First, a polymethyl methacrylate resin (hereinafter referred to as “PMMA”) gel compound was applied on a metal lithium plate prepared as a negative electrode. And the laminated body and the metal lithium plate were laminated | stacked so that this application surface and the surface by the side of the solid electrolyte layer of the laminated body after baking might contact. And it sealed by the 2032 type coin cell after that, and produced the all-solid-state battery.
 <全固体電池の評価>
 得られた全固体電池に対して、3.0~4.5Vの電圧範囲で100μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、得られた充放電曲線(実線)を図2に示す。放電容量が約130mAh/gで、充放電が可能であることを確認した。また、放電時に3.4~4.0Vの電圧範囲で平坦領域を示すことが確認された。
<Evaluation of all solid state battery>
The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge at a current density of 100 μA / cm 2 in a voltage range of 3.0 to 4.5 V. As a result, the obtained charge / discharge curve (solid line) is shown in FIG. It was confirmed that charging / discharging was possible at a discharge capacity of about 130 mAh / g. Further, it was confirmed that a flat region was exhibited in the voltage range of 3.4 to 4.0 V during discharge.
 <炭素材料1、2と有機材料1の燃焼温度の評価>
 炭素材料1、2と有機材料1の燃焼温度を調査するため、セイコーインスツルメンツ社製の示差熱・熱重量同時測定装置(型番:TG‐DTA7200)を用いて、上記で作製された電極活物質粉末と炭素材料2と有機材料1を酸素ガス雰囲気中で5℃/分の昇温速度で熱分析(TG測定)を行った。
<Evaluation of combustion temperature of carbon materials 1 and 2 and organic material 1>
In order to investigate the combustion temperature of the carbon materials 1 and 2 and the organic material 1, the electrode active material powder produced as described above using a differential thermal and thermogravimetric simultaneous measurement device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc. The carbon material 2 and the organic material 1 were subjected to thermal analysis (TG measurement) in an oxygen gas atmosphere at a heating rate of 5 ° C./min.
 TG測定の結果から、電極活物質粉末の粒子表面を被覆する炭素材料1、炭素材料2、有機材料1は、それぞれ、400℃、600℃、500℃の温度から燃焼開始することがわかった。 From the results of the TG measurement, it was found that the carbon material 1, the carbon material 2, and the organic material 1 covering the particle surface of the electrode active material powder started to burn from temperatures of 400 ° C., 600 ° C., and 500 ° C., respectively.
 (比較例1)
 実施例1で作製された電極活物質スラリーと固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末との調合比が重量部で50:50になるように混合して電極スラリーを作製したこと以外は、実施例1と同様にして全固体電池を作製した。
(Comparative Example 1)
The electrode active material slurry and the solid electrolyte slurry prepared in Example 1 were mixed so that the mixing ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight to prepare an electrode slurry. Except for this, an all-solid battery was produced in the same manner as in Example 1.
 得られた全固体電池に対して実施例1と同様にして定電流定電圧充放電を行った。その結果、得られた充放電曲線(破線)を図2に示す。初期放電容量が約20mAh/gで、充放電することを確認した。 The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 1. As a result, the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 20 mAh / g.
 以上の結果から、実施例1では、電極活物質粒子の表面を被覆する炭素成分(炭素材料1)と、AB粉末(炭素材料2)とが正極層に含まれている。このため、燃焼開始温度が有機材料1よりも低い炭素材料1が有機材料1の除去時に焼失しても、有機材料1よりも燃焼開始温度が高い炭素材料2が残存しているので、実施例1の全固体電池は高い容量を示すことがわかる。一方、比較例1では、正極層が炭素材料1を含むが、炭素材料2を含まないので、燃焼開始温度が有機材料1よりも低い炭素材料1が有機材料1の除去時に焼失するので、比較例1の全固体電池は低い容量を示すことがわかる。 From the above results, in Example 1, the positive electrode layer includes the carbon component (carbon material 1) covering the surface of the electrode active material particles and the AB powder (carbon material 2). For this reason, even if the carbon material 1 whose combustion start temperature is lower than that of the organic material 1 is burned off when the organic material 1 is removed, the carbon material 2 whose combustion start temperature is higher than that of the organic material 1 remains. It can be seen that the all solid state battery No. 1 shows a high capacity. On the other hand, in Comparative Example 1, since the positive electrode layer includes the carbon material 1 but does not include the carbon material 2, the carbon material 1 having a lower combustion start temperature than the organic material 1 is burned out when the organic material 1 is removed. It can be seen that the all solid state battery of Example 1 exhibits a low capacity.
 (実施例2)
 以下のようにして電極活物質粉末を作製したこと以外は、実施例1と同様にして全固体電池を作製した。
(Example 2)
An all-solid battery was produced in the same manner as in Example 1 except that the electrode active material powder was produced as follows.
 実施例1で作製された焼成粉末に水を加え、直径が5mmの玉石とともに500mlのポリエチレン製容器に封入して、容器を150rpmの回転数で24時間回転させることにより、焼成粉末を粉砕した。その後、その粉末を温度が120℃のホットプレート上で乾燥させることにより、粉砕粉末を得た。 Water was added to the fired powder produced in Example 1, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
 得られた粉砕粉末と、ティムカル社製の導電性カーボンブラック(商品名:Super‐P、登録商標:sp、以下、「sp」という)とを重量比で100:20となるように秤量し、乳鉢で混合することにより、混合粉砕粉末を得た。 The obtained pulverized powder and conductive carbon black (trade name: Super-P, registered trademark: sp, hereinafter referred to as “sp”) manufactured by Timcal Corporation were weighed so as to have a weight ratio of 100: 20. By mixing in a mortar, mixed pulverized powder was obtained.
 得られた混合粉砕粉末を窒素ガス雰囲気中にて900℃の温度で20時間焼成することにより、sp(以下、「炭素材料3」という)が粒子の表面に担持された電極活物質粉末を作製した。 The obtained mixed and pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 900 ° C. for 20 hours to produce an electrode active material powder in which sp (hereinafter referred to as “carbon material 3”) is supported on the surface of the particles. did.
 得られた全固体電池に対して実施例1と同様にして定電流定電圧充放電を行った。その結果、得られた充放電曲線(実線)を図3に示す。放電容量が約130mAh/gで、充放電が可能であることを確認した。また、放電時に3.4~4.0Vの電圧範囲で平坦領域を示すことが確認された。 The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 1. As a result, the obtained charge / discharge curve (solid line) is shown in FIG. It was confirmed that charging / discharging was possible at a discharge capacity of about 130 mAh / g. Further, it was confirmed that a flat region was exhibited in the voltage range of 3.4 to 4.0 V during discharge.
 <炭素材料3の燃焼温度の評価>
 炭素材料の燃焼温度を調査するため、セイコーインスツルメンツ社製の示差熱・熱重量同時測定装置(型番:TG‐DTA7200)を用いて、上記で作製された電極活物質粉末を酸素ガス雰囲気中で5℃/分の昇温速度で熱分析(TG測定)を行った。
<Evaluation of combustion temperature of carbon material 3>
In order to investigate the combustion temperature of the carbon material, the electrode active material powder produced above was measured in an oxygen gas atmosphere using a differential thermal and thermogravimetric simultaneous measurement device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc. Thermal analysis (TG measurement) was performed at a temperature elevation rate of ° C / min.
 TG測定の結果から、電極活物質粉末の粒子表面に担持された炭素材料3は、500℃の温度から燃焼開始することがわかった。 From the results of TG measurement, it was found that the carbon material 3 supported on the particle surface of the electrode active material powder started to burn from a temperature of 500 ° C.
 (比較例2)
 実施例2で作製された電極活物質スラリーと固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末との調合比が重量部で50:50になるように混合して電極スラリーを作製したこと以外は、実施例2と同様にして全固体電池を作製した。
(Comparative Example 2)
The electrode active material slurry and the solid electrolyte slurry prepared in Example 2 were mixed so that the preparation ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight to prepare an electrode slurry. Except for this, an all-solid battery was fabricated in the same manner as in Example 2.
 得られた全固体電池に対して実施例1と同様にして定電流定電圧充放電を行った。その結果、得られた充放電曲線(破線)を図3に示す。初期放電容量が約60mAh/gで、充放電することを確認した。 The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 1. As a result, the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 60 mAh / g.
 以上の結果から、実施例2では、電極活物質粒子の表面に担持されたsp(炭素材料3)と、AB粉末(炭素材料2)とが正極層に含まれている。このため、燃焼開始温度が有機材料1と同程度の炭素材料3が有機材料1の除去時に焼失しても、有機材料1よりも燃焼開始温度が高い炭素材料2が残存しているので、実施例2の全固体電池は高い容量を示すことがわかる。一方、比較例2では、正極層が炭素材料3を含むが、炭素材料2を含まないので、燃焼開始温度が有機材料1と同程度の炭素材料1が有機材料1の除去時に焼失するので、比較例2の全固体電池は低い容量を示すことがわかる。 From the above results, in Example 2, sp (carbon material 3) supported on the surface of the electrode active material particles and AB powder (carbon material 2) are included in the positive electrode layer. For this reason, even if the carbon material 3 having the same combustion start temperature as the organic material 1 is burned off when the organic material 1 is removed, the carbon material 2 having a higher combustion start temperature than the organic material 1 remains. It can be seen that the all-solid-state battery of Example 2 shows a high capacity. On the other hand, in Comparative Example 2, since the positive electrode layer includes the carbon material 3 but does not include the carbon material 2, the carbon material 1 having a combustion start temperature similar to that of the organic material 1 is burned off when the organic material 1 is removed. It can be seen that the all solid state battery of Comparative Example 2 exhibits a low capacity.
 (実施例3)
 <電極活物質の作製>
 電極活物質としてのリチウム含有鉄マンガンリン酸化合物LiMn0.75Fe0.25(PO4)(以下、「LFMP」という)を含む粉末を以下のようにして作製した。
(Example 3)
<Preparation of electrode active material>
A powder containing a lithium-containing iron manganese phosphate compound LiMn 0.75 Fe 0.25 (PO 4 ) (hereinafter referred to as “LFMP”) as an electrode active material was produced as follows.
 出発原料として炭酸リチウム(Li2CO3)、酸化マンガン(MnCO3)、酸化鉄(Fe23)、リン酸水素二アンモニウム((NH42HPO4)を用いた。これらの原料をモル比で21.1%‐Li2CO3、31.6%‐MnCO3、5.3%‐Fe23、42.1%‐(NH42HPO4となるように秤量し、容器に封入して、容器を150rpmの回転数で6時間回転させることにより、出発原料の混合粉末を得た。 Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnCO 3 ), iron oxide (Fe 2 O 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. Mole ratio of these raw materials to 21.1% -Li 2 CO 3 , 31.6% -MnCO 3 , 5.3% -Fe 2 O 3 , 42.1%-(NH 4 ) 2 HPO 4 The mixture was sealed in a container, and the container was rotated at 150 rpm for 6 hours to obtain a mixed powder of starting materials.
 得られた混合粉末を空気雰囲気中にて500℃の温度で6時間焼成して揮発成分を除去することにより、焼成粉末を得た。 The obtained mixed powder was fired in an air atmosphere at a temperature of 500 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
 焼成粉末に水を加え、直径が5mmの玉石とともに500mlのポリエチレン製容器に封入して、容器を150rpmの回転数で24時間回転させることにより、焼成粉末を粉砕した。その後、その粉末を温度が120℃のホットプレート上で乾燥させることにより、粉砕粉末を得た。 The water was added to the fired powder, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
 得られた粉砕粉末と、ライオン株式会社製の高導電性カーボンブラック(商品名:ケッチェンブラック、登録商標:KB、以下、「KB」という)とを重量比で100:20となるように秤量し、乳鉢で混合することにより、混合粉砕粉末を得た。 The obtained pulverized powder and a highly conductive carbon black (trade name: Ketjen Black, registered trademark: KB, hereinafter referred to as “KB”) manufactured by Lion Co., Ltd. are weighed so as to have a weight ratio of 100: 20. And mixed in a mortar to obtain a mixed and pulverized powder.
 得られた混合粉砕粉末を窒素ガス雰囲気中にて700℃の温度で20時間焼成することにより、KB(以下、「炭素材料4」という)が粒子の表面に担持された電極活物質粉末を作製した。 The obtained mixed and pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 700 ° C. for 20 hours to produce an electrode active material powder in which KB (hereinafter referred to as “carbon material 4”) is supported on the surface of the particles. did.
 <電極層シートと固体電解質層シートの作製>
 バインダとなるポリビニルアルコール(以下、「有機材料2」という)を有機溶媒に溶解したバインダ溶液中に上記で得られた電極活物質粉末を混合し、電極活物質スラリーを作製した。電極活物質粉末とポリビニルアルコールとの調合比を重量部で80:20とした。
<Preparation of electrode layer sheet and solid electrolyte layer sheet>
The electrode active material powder obtained above was mixed in a binder solution in which polyvinyl alcohol (hereinafter referred to as “organic material 2”) serving as a binder was dissolved in an organic solvent to prepare an electrode active material slurry. The mixing ratio of the electrode active material powder and polyvinyl alcohol was 80:20 by weight.
 次に、バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に昭和電工株式会社製の気相法炭素繊維(商品名:VGCF、登録商標:VGCF、以下、「VGCF」という)(以下、「炭素材料5」という)を混合し、導電剤スラリーを作製した。炭素材料5と有機材料2との調合比を重量部で80:20とした。 Next, a vapor grown carbon fiber (trade name: VGCF, registered trademark: VGCF, hereinafter referred to as “VGCF”) manufactured by Showa Denko KK in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent (hereinafter referred to as “VGCF”) , Referred to as “carbon material 5”) to prepare a conductive agent slurry. The mixing ratio of the carbon material 5 and the organic material 2 was 80:20 by weight.
 上記で作製された電極活物質スラリーと導電剤スラリーと、実施例1で作製された固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末と炭素材料5との調合比が重量部で45:45:10になるように混合し、電極スラリーを作製した。 The mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 5 is 45 parts by weight of the electrode active material slurry and conductive agent slurry prepared above and the solid electrolyte slurry prepared in Example 1. : 45:10 was mixed to prepare an electrode slurry.
 得られた電極スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極シートと固体電解質シートの成形体を作製した。成形体の厚みは50μmとした。 Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet. The thickness of the molded body was 50 μm.
 以上のようにして得られた固体電解質シートと電極シートを用いて、実施例1と同様にして全固体電池を作製した。ただし、以下の条件で焼成した。まず、酸素を少量含む窒素ガス雰囲気中で400℃の温度で焼成することにより、有機材料2の除去を行った。その後、窒素ガス雰囲気中で600℃の温度で焼成した。 Using the solid electrolyte sheet and electrode sheet obtained as described above, an all-solid battery was produced in the same manner as in Example 1. However, firing was performed under the following conditions. First, the organic material 2 was removed by baking at a temperature of 400 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, it baked at the temperature of 600 degreeC in nitrogen gas atmosphere.
 <全固体電池の評価>
 得られた全固体電池に対して、3.0~4.5Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、得られた充放電曲線(実線)を図4に示す。放電容量が約160mAh/gで、充放電が可能であることを確認した。また、放電時に3.4~4.0Vの電圧範囲で平坦領域を示すことが確認された。
<Evaluation of all solid state battery>
The obtained all solid state battery was subjected to constant current and constant voltage charge / discharge at a current density of 50 μA / cm 2 in a voltage range of 3.0 to 4.5V. As a result, the obtained charge / discharge curve (solid line) is shown in FIG. It was confirmed that charging / discharging was possible at a discharge capacity of about 160 mAh / g. Further, it was confirmed that a flat region was exhibited in the voltage range of 3.4 to 4.0 V during discharge.
 <炭素材料4、炭素材料5と有機材料2の燃焼温度の評価>
 炭素材料4、炭素材料5と有機材料2の燃焼温度を調査するため、セイコーインスツルメンツ社製の示差熱・熱重量同時測定装置(型番:TG‐DTA7200)を用いて、炭素材料5、上記で作製された電極活物質粉末と有機材料2を酸素ガス雰囲気中で5℃/分の昇温速度で熱分析(TG測定)を行った。
<Evaluation of combustion temperature of carbon material 4, carbon material 5 and organic material 2>
In order to investigate the combustion temperature of the carbon material 4, the carbon material 5 and the organic material 2, using the differential thermal and thermogravimetric simultaneous measuring device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc., the carbon material 5 is produced as described above. The obtained electrode active material powder and the organic material 2 were subjected to thermal analysis (TG measurement) in an oxygen gas atmosphere at a heating rate of 5 ° C./min.
 TG測定の結果から、電極活物質粉末の粒子表面に担持された炭素材料4、炭素材料5、有機材料2は、それぞれ、380℃、670℃、400℃の温度から燃焼開始することがわかった。 From the results of TG measurement, it was found that the carbon material 4, the carbon material 5, and the organic material 2 supported on the particle surface of the electrode active material powder start burning from temperatures of 380 ° C., 670 ° C., and 400 ° C., respectively. .
 (比較例3)
 実施例3で作製された電極活物質スラリーと固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末との調合比が重量部で50:50になるように混合して電極スラリーを作製したこと以外は、実施例3と同様にして全固体電池を作製した。
(Comparative Example 3)
The electrode active material slurry and the solid electrolyte slurry prepared in Example 3 were mixed so that the preparation ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight to prepare an electrode slurry. Except for this, an all-solid battery was produced in the same manner as in Example 3.
 得られた全固体電池に対して実施例3と同様にして定電流定電圧充放電を行った。その結果、得られた充放電曲線(破線)を図4に示す。初期放電容量が約30mAh/gで、充放電することを確認した。 The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 3. As a result, the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 30 mAh / g.
 以上の結果から、実施例3では、電極活物質粒子の表面に担持されたKB(炭素材料4)と、VGCF(炭素材料5)とが正極層に含まれている。このため、燃焼開始温度が有機材料2よりも低い炭素材料4が有機材料2の除去時に焼失しても、有機材料2よりも燃焼開始温度が高い炭素材料5が残存しているので、実施例3の全固体電池は高い容量を示すことがわかる。一方、比較例3では、正極層が炭素材料4を含むが、炭素材料5を含まないので、燃焼開始温度が有機材料2よりも低い炭素材料4が有機材料2の除去時に焼失するので、比較例3の全固体電池は低い容量を示すことがわかる。 From the above results, in Example 3, KB (carbon material 4) supported on the surface of the electrode active material particles and VGCF (carbon material 5) are included in the positive electrode layer. For this reason, even if the carbon material 4 whose combustion start temperature is lower than that of the organic material 2 is burned off when the organic material 2 is removed, the carbon material 5 whose combustion start temperature is higher than that of the organic material 2 remains. It can be seen that the all-solid battery No. 3 shows a high capacity. On the other hand, in Comparative Example 3, since the positive electrode layer includes the carbon material 4 but does not include the carbon material 5, the carbon material 4 having a lower combustion start temperature than the organic material 2 is burned out when the organic material 2 is removed. It can be seen that the all solid state battery of Example 3 exhibits a low capacity.
 (実施例4)
 <電極活物質の作製>
 電極活物質としてのリチウム含有鉄マンガンリン酸化合物LiMn(PO4)(以下、「LMP」という)を含む粉末を以下のようにして作製した。
(Example 4)
<Preparation of electrode active material>
A powder containing a lithium-containing iron manganese phosphate compound LiMn (PO 4 ) (hereinafter referred to as “LMP”) as an electrode active material was produced as follows.
 出発原料として炭酸リチウム(Li2CO3)、酸化マンガン(MnCO3)、リン酸水素二アンモニウム((NH42HPO4)を用いた。これらの原料をモル比で20.0%‐Li2CO3、40.0%‐MnCO3、40.0%‐(NH42HPO4となるように秤量し、容器に封入して、容器を150rpmの回転数で6時間回転させることにより、出発原料の混合粉末を得た。 Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnCO 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so as to be 20.0% -Li 2 CO 3 , 40.0% -MnCO 3 , 40.0%-(NH 4 ) 2 HPO 4 in a molar ratio, sealed in a container, The container was rotated at a rotational speed of 150 rpm for 6 hours to obtain a mixed powder of starting materials.
 得られた混合粉末を空気雰囲気中にて500℃の温度で6時間焼成して揮発成分を除去することにより、焼成粉末を得た。 The obtained mixed powder was fired in an air atmosphere at a temperature of 500 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
 焼成粉末に水を加え、直径が5mmの玉石とともに500mlのポリエチレン製容器に封入して、容器を150rpmの回転数で24時間回転させることにより、焼成粉末を粉砕した。その後、その粉末を温度が120℃のホットプレート上で乾燥させることにより、粉砕粉末を得た。 The water was added to the fired powder, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
 得られた粉砕粉末とAB粉末とを重量比で100:20となるように秤量し、遊星ボールミルにて混合することにより、メカニカルアロイニング法によりABで粒子の表面が被覆された被覆粉砕粉末を作製した。 The obtained pulverized powder and AB powder were weighed so as to have a weight ratio of 100: 20, and mixed with a planetary ball mill to obtain a coated pulverized powder having particles coated with AB by a mechanical alloying method. Produced.
 得られた被覆粉砕粉末を窒素ガス雰囲気中にて700℃の温度で20時間焼成することにより、メカニカルアロイニング法によりAB(以下、「炭素材料6」という)で粒子の表面が被覆された電極活物質粉末を作製した。 The obtained coated pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 700 ° C. for 20 hours, whereby the surface of the particles is coated with AB (hereinafter referred to as “carbon material 6”) by a mechanical alloying method. An active material powder was prepared.
 <電極層シートと固体電解質層シートの作製>
 バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に上記で得られた電極活物質粉末を混合し、電極活物質スラリーを作製した。電極活物質粉末と有機材料2との調合比を重量部で80:20とした。
<Preparation of electrode layer sheet and solid electrolyte layer sheet>
The electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry. The mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
 次に、バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に、実施例3で用いた炭素材料4を混合し、導電剤スラリーを作製した。炭素材料4と有機材料2との調合比を重量部で80:20とした。 Next, the carbon material 4 used in Example 3 was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent, thereby preparing a conductive agent slurry. The mixing ratio of the carbon material 4 and the organic material 2 was 80:20 by weight.
 上記で作製された電極活物質スラリーと導電剤スラリーと、実施例1で作製された固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末と炭素材料4との調合比が重量部で45:45:10になるように混合し、電極スラリーを作製した。 The mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 4 is 45 parts by weight of the electrode active material slurry and conductive agent slurry prepared above and the solid electrolyte slurry prepared in Example 1. : 45:10 was mixed to prepare an electrode slurry.
 得られた電極スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極シートと固体電解質シートの成形体を作製した。成形体の厚みは50μmとした。 Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet. The thickness of the molded body was 50 μm.
 以上のようにして得られた固体電解質シートと電極シートを用いて、実施例1と同様にして全固体電池を作製した。ただし、以下の条件で焼成した。まず、酸素を少量含む窒素ガス雰囲気中で400℃の温度で焼成することにより、有機材料2の除去を行った。その後、窒素ガス雰囲気中で600℃の温度で焼成した。 Using the solid electrolyte sheet and electrode sheet obtained as described above, an all-solid battery was produced in the same manner as in Example 1. However, firing was performed under the following conditions. First, the organic material 2 was removed by baking at a temperature of 400 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, it baked at the temperature of 600 degreeC in nitrogen gas atmosphere.
 <全固体電池の評価>
 得られた全固体電池に対して、3.0~4.5Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、得られた充放電曲線(実線)を図5に示す。放電容量が約160mAh/gで、充放電が可能であることを確認した。また、放電時に4.0V付近に平坦領域を示すことが確認された。
<Evaluation of all solid state battery>
The obtained all solid state battery was subjected to constant current and constant voltage charge / discharge at a current density of 50 μA / cm 2 in a voltage range of 3.0 to 4.5V. As a result, the obtained charge / discharge curve (solid line) is shown in FIG. It was confirmed that charging / discharging was possible at a discharge capacity of about 160 mAh / g. In addition, it was confirmed that a flat region was shown in the vicinity of 4.0 V during discharge.
 <炭素材料6の燃焼温度の評価>
 炭素材料6の燃焼温度を調査するため、セイコーインスツルメンツ社製の示差熱・熱重量同時測定装置(型番:TG‐DTA7200)を用いて、上記で作製された電極活物質粉末を酸素ガス雰囲気中で5℃/分の昇温速度で熱分析(TG測定)を行った。
<Evaluation of combustion temperature of carbon material 6>
In order to investigate the combustion temperature of the carbon material 6, using the differential thermal and thermogravimetric simultaneous measuring device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc., the electrode active material powder prepared above was placed in an oxygen gas atmosphere. Thermal analysis (TG measurement) was performed at a heating rate of 5 ° C./min.
 TG測定の結果から、電極活物質粉末の粒子表面を被覆する炭素材料6は、600℃の温度から燃焼開始することがわかった。 From the results of TG measurement, it was found that the carbon material 6 covering the particle surface of the electrode active material powder started to burn from a temperature of 600 ° C.
 (比較例4)
 電極スラリーを以下のようにして作製したこと以外は、実施例4と同様にして全固体電池を作製した。
(Comparative Example 4)
An all-solid battery was produced in the same manner as in Example 4 except that the electrode slurry was produced as follows.
 実施例4で作製された粉砕粉末と炭素材料4とを重量比で100:20となるように秤量し、乳鉢で混合することにより、混合粉砕粉末を得た。 The pulverized powder produced in Example 4 and the carbon material 4 were weighed so as to have a weight ratio of 100: 20, and mixed in a mortar to obtain a mixed pulverized powder.
 得られた混合粉砕粉末を窒素ガス雰囲気中にて700℃の温度で20時間焼成することにより、炭素材料4が粒子の表面に担持された電極活物質粉末を作製した。 The obtained mixed and pulverized powder was baked at a temperature of 700 ° C. for 20 hours in a nitrogen gas atmosphere to prepare an electrode active material powder in which the carbon material 4 was supported on the particle surfaces.
 バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に上記で得られた電極活物質粉末を混合し、電極活物質スラリーを作製した。電極活物質粉末と有機材料2との調合比を重量部で80:20とした。 The electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry. The mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
 上記で作製された電極活物質スラリーと、実施例1で作製された固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末との調合比が重量部で50:50になるように混合し、電極スラリーを作製した。 The electrode active material slurry prepared above and the solid electrolyte slurry prepared in Example 1 were mixed so that the mixing ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight. An electrode slurry was prepared.
 得られた全固体電池に対して実施例4と同様にして定電流定電圧充放電を行った。その結果、得られた充放電曲線(破線)を図5に示す。初期放電容量が約10mAh/gで、充放電することを確認した。 The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 4. As a result, the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 10 mAh / g.
 以上の結果から、実施例4では、電極活物質粒子の表面をメカニカルアロイニング法で被覆するAB(炭素材料6)と、KB(炭素材料4)とが正極層に含まれている。このため、燃焼開始温度が有機材料2よりも低い炭素材料4が有機材料2の除去時に焼失しても、有機材料2よりも燃焼開始温度が高い炭素材料6が残存しているので、実施例4の全固体電池は高い容量を示すことがわかる。一方、比較例4では、正極層が炭素材料4を含むが、炭素材料6を含まないので、燃焼開始温度が有機材料2よりも低い炭素材料4が有機材料2の除去時に焼失するので、比較例4の全固体電池は低い容量を示すことがわかる。 From the above results, in Example 4, AB (carbon material 6) and KB (carbon material 4) covering the surface of the electrode active material particles by the mechanical alloying method are included in the positive electrode layer. For this reason, even if the carbon material 4 whose combustion start temperature is lower than that of the organic material 2 is burned off when the organic material 2 is removed, the carbon material 6 whose combustion start temperature is higher than that of the organic material 2 remains. It can be seen that the all-solid battery No. 4 shows a high capacity. On the other hand, in Comparative Example 4, since the positive electrode layer includes the carbon material 4 but does not include the carbon material 6, the carbon material 4 having a lower combustion start temperature than the organic material 2 is burned out when the organic material 2 is removed. It can be seen that the all solid state battery of Example 4 exhibits a low capacity.
 (実施例5)
 <電極活物質の作製>
 電極活物質としてのリチウム含有コバルトリン酸化合物LiCo(PO4)(以下、「LCP」という)を含む粉末を以下のようにして作製した。
(Example 5)
<Preparation of electrode active material>
A powder containing a lithium-containing cobalt phosphate compound LiCo (PO 4 ) (hereinafter referred to as “LCP”) as an electrode active material was produced as follows.
 出発原料として炭酸リチウム(Li2CO3)、リン酸コバルト八水和物(Co3(PO428H2O)、リン酸水素二アンモニウム((NH42HPO4)を用いた。これらの原料をモル比で42.9%‐Li2CO3、28.6%‐Co3(PO428H2O、28.6%‐(NH42HPO4となるように秤量し、容器に封入して、容器を150rpmの回転数で6時間回転させることにより、出発原料の混合粉末を得た。 Lithium carbonate (Li 2 CO 3 ), cobalt phosphate octahydrate (Co 3 (PO 4 ) 2 8H 2 O), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so that the molar ratio is 42.9% -Li 2 CO 3 , 28.6% -Co 3 (PO 4 ) 2 8H 2 O, 28.6%-(NH 4 ) 2 HPO 4. The mixture was sealed in a container, and the container was rotated at 150 rpm for 6 hours to obtain a mixed powder of starting materials.
 得られた混合粉末を空気雰囲気中にて500℃の温度で6時間焼成して揮発成分を除去することにより、焼成粉末を得た。 The obtained mixed powder was fired in an air atmosphere at a temperature of 500 ° C. for 6 hours to remove volatile components, thereby obtaining a fired powder.
 焼成粉末に水を加え、直径が5mmの玉石とともに500mlのポリエチレン製容器に封入して、容器を150rpmの回転数で24時間回転させることにより、焼成粉末を粉砕した。その後、その粉末を温度が120℃のホットプレート上で乾燥させることにより、粉砕粉末を得た。 The water was added to the fired powder, sealed in a 500 ml polyethylene container together with a cobblestone having a diameter of 5 mm, and the fired powder was pulverized by rotating the container at a rotation speed of 150 rpm for 24 hours. Thereafter, the powder was dried on a hot plate having a temperature of 120 ° C. to obtain a pulverized powder.
 得られた粉砕粉末とAB粉末とを重量比で100:20となるように秤量し、遊星ボールミルにて混合することにより、メカニカルアロイニング法によりABで粒子の表面が被覆された被覆粉砕粉末を作製した。 The obtained pulverized powder and AB powder were weighed so as to have a weight ratio of 100: 20, and mixed with a planetary ball mill to obtain a coated pulverized powder having particles coated with AB by a mechanical alloying method. Produced.
 得られた被覆粉砕粉末を窒素ガス雰囲気中にて700℃の温度で20時間焼成することにより、メカニカルアロイニング法によりAB(以下、「炭素材料6」という)で粒子の表面が被覆された電極活物質粉末を作製した。 The obtained coated pulverized powder is fired in a nitrogen gas atmosphere at a temperature of 700 ° C. for 20 hours, whereby the surface of the particles is coated with AB (hereinafter referred to as “carbon material 6”) by a mechanical alloying method. An active material powder was prepared.
 <電極層シートと固体電解質層シートの作製>
 バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に上記で得られた電極活物質粉末を混合し、電極活物質スラリーを作製した。電極活物質粉末と有機材料2との調合比を重量部で80:20とした。
<Preparation of electrode layer sheet and solid electrolyte layer sheet>
The electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry. The mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
 次に、バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に、実施例3で用いた炭素材料4を混合し、導電剤スラリーを作製した。炭素材料4と有機材料2との調合比を重量部で80:20とした。 Next, the carbon material 4 used in Example 3 was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent, thereby preparing a conductive agent slurry. The mixing ratio of the carbon material 4 and the organic material 2 was 80:20 by weight.
 上記で作製された電極活物質スラリーと導電剤スラリーと、実施例1で作製された固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末と炭素材料4との調合比が重量部で45:45:10になるように混合し、電極スラリーを作製した。 The mixing ratio of the electrode active material powder, the glass powder of LAGP, and the carbon material 4 is 45 parts by weight of the electrode active material slurry and conductive agent slurry prepared above and the solid electrolyte slurry prepared in Example 1. : 45:10 was mixed to prepare an electrode slurry.
 得られた電極スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極シートと固体電解質シートの成形体を作製した。成形体の厚みは50μmとした。 Each of the obtained electrode slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode sheet and a solid electrolyte sheet. The thickness of the molded body was 50 μm.
 以上のようにして得られた固体電解質シートと電極シートを用いて、実施例1と同様にして全固体電池を作製した。ただし、以下の条件で焼成した。まず、酸素を少量含む窒素ガス雰囲気中で400℃の温度で焼成することにより、有機材料2の除去を行った。その後、窒素ガス雰囲気中で600℃の温度で焼成した。 Using the solid electrolyte sheet and electrode sheet obtained as described above, an all-solid battery was produced in the same manner as in Example 1. However, firing was performed under the following conditions. First, the organic material 2 was removed by baking at a temperature of 400 ° C. in a nitrogen gas atmosphere containing a small amount of oxygen. Then, it baked at the temperature of 600 degreeC in nitrogen gas atmosphere.
 <全固体電池の評価>
 得られた全固体電池に対して、3.0~5.1Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、得られた充放電曲線(実線)を図6に示す。放電容量が約160mAh/gで、充放電が可能であることを確認した。また、放電時に4.7V付近に平坦領域を示すことが確認された。
<Evaluation of all solid state battery>
The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge at a current density of 50 μA / cm 2 in a voltage range of 3.0 to 5.1 V. As a result, the obtained charge / discharge curve (solid line) is shown in FIG. It was confirmed that charging / discharging was possible at a discharge capacity of about 160 mAh / g. In addition, it was confirmed that a flat region was shown in the vicinity of 4.7 V during discharge.
 <炭素材料6の燃焼温度の評価>
 炭素材料6の燃焼温度を調査するため、セイコーインスツルメンツ社製の示差熱・熱重量同時測定装置(型番:TG‐DTA7200)を用いて、上記で作製された電極活物質粉末を酸素ガス雰囲気中で5℃/分の昇温速度で熱分析(TG測定)を行った。
<Evaluation of combustion temperature of carbon material 6>
In order to investigate the combustion temperature of the carbon material 6, the electrode active material powder produced above was measured in an oxygen gas atmosphere using a differential thermal and thermogravimetric simultaneous measurement device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc. Thermal analysis (TG measurement) was performed at a heating rate of 5 ° C./min.
 TG測定の結果から、電極活物質粉末の粒子表面を被覆する炭素材料6は、600℃の温度から燃焼開始することがわかった。 From the results of TG measurement, it was found that the carbon material 6 covering the particle surface of the electrode active material powder started to burn from a temperature of 600 ° C.
 (比較例5)
 電極スラリーを以下のようにして作製したこと以外は、実施例5と同様にして全固体電池を作製した。
(Comparative Example 5)
An all-solid battery was produced in the same manner as in Example 5 except that the electrode slurry was produced as follows.
 実施例5で作製された粉砕粉末と炭素材料4とを重量比で100:20となるように秤量し、乳鉢で混合することにより、混合粉砕粉末を得た。 The pulverized powder prepared in Example 5 and the carbon material 4 were weighed so as to have a weight ratio of 100: 20, and mixed in a mortar to obtain a mixed pulverized powder.
 得られた混合粉砕粉末を窒素ガス雰囲気中にて700℃の温度で20時間焼成することにより、炭素材料4が粒子の表面に担持された電極活物質粉末を作製した。 The obtained mixed and pulverized powder was baked at a temperature of 700 ° C. for 20 hours in a nitrogen gas atmosphere to prepare an electrode active material powder in which the carbon material 4 was supported on the particle surfaces.
 バインダとなる有機材料2を有機溶媒に溶解したバインダ溶液中に上記で得られた電極活物質粉末を混合し、電極活物質スラリーを作製した。電極活物質粉末と有機材料2との調合比を重量部で80:20とした。 The electrode active material powder obtained above was mixed in a binder solution obtained by dissolving the organic material 2 serving as a binder in an organic solvent to prepare an electrode active material slurry. The mixing ratio of the electrode active material powder and the organic material 2 was 80:20 by weight.
 上記で作製された電極活物質スラリーと、実施例1で作製された固体電解質スラリーとを、電極活物質粉末とLAGPのガラス粉末との調合比が重量部で50:50になるように混合し、電極スラリーを作製した。 The electrode active material slurry prepared above and the solid electrolyte slurry prepared in Example 1 were mixed so that the mixing ratio of the electrode active material powder and the glass powder of LAGP was 50:50 by weight. An electrode slurry was prepared.
 得られた全固体電池に対して実施例5と同様にして定電流定電圧充放電を行った。その結果、得られた充放電曲線(破線)を図6に示す。初期放電容量が約10mAh/gで、充放電することを確認した。 The obtained all solid state battery was subjected to constant current and constant voltage charge and discharge in the same manner as in Example 5. As a result, the obtained charge / discharge curve (broken line) is shown in FIG. It was confirmed that charging / discharging was performed at an initial discharge capacity of about 10 mAh / g.
 以上の結果から、実施例5では、電極活物質粒子の表面をメカニカルアロイニング法で被覆するAB(炭素材料6)と、KB(炭素材料4)とが正極層に含まれている。このため、燃焼開始温度が有機材料2よりも低い炭素材料4が有機材料2の除去時に焼失しても、有機材料2よりも燃焼開始温度が高い炭素材料6が残存しているので、実施例5の全固体電池は高い容量を示すことがわかる。一方、比較例5では、正極層が炭素材料4を含むが、炭素材料6を含まないので、燃焼開始温度が有機材料2よりも低い炭素材料4が有機材料2の除去時に焼失するので、比較例5の全固体電池は低い容量を示すことがわかる。 From the above results, in Example 5, AB (carbon material 6) for covering the surface of the electrode active material particles by the mechanical alloying method and KB (carbon material 4) are included in the positive electrode layer. For this reason, even if the carbon material 4 whose combustion start temperature is lower than that of the organic material 2 is burned off when the organic material 2 is removed, the carbon material 6 whose combustion start temperature is higher than that of the organic material 2 remains. It can be seen that the all-solid-state battery 5 shows a high capacity. On the other hand, in Comparative Example 5, since the positive electrode layer includes the carbon material 4 but does not include the carbon material 6, the carbon material 4 having a lower combustion start temperature than the organic material 2 is burned off when the organic material 2 is removed. It can be seen that the all solid state battery of Example 5 exhibits a low capacity.
 なお、上記の実施例においては、有機材料よりも燃焼開始温度が高い炭素粉末としてAB粉末を用いた例についてのみ説明を行ったが、炭素粉末はAB粉末に限定されることはなく、焼成工程において除去される有機材料よりも燃焼開始温度が高ければ、他の炭素材料を用いても同様の効果が得られる。 In the above embodiment, only the example using the AB powder as the carbon powder having a higher combustion start temperature than the organic material has been described. However, the carbon powder is not limited to the AB powder, and the firing step is performed. If the combustion start temperature is higher than that of the organic material to be removed in step 1, the same effect can be obtained even if another carbon material is used.
 また、炭素材料としては、ABの他、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)等を用いてもよい。 Further, as the carbon material, in addition to AB, carbon nanofiber (CNF), carbon nanotube (CNT), or the like may be used.
 さらに、上記の実施例においては、LAGPの原料粉末としてガラス粉末(非晶質体)を用いた例についてのみ説明を行ったが、LAGPの原料粉末は非晶質体に限定されることはなく、結晶体を用いても同様の効果が得られる。 Further, in the above embodiment, only the example using the glass powder (amorphous body) as the LAGP raw material powder has been described, but the LAGP raw material powder is not limited to the amorphous body. The same effect can be obtained by using a crystal.
 上記の実施例においては、負極に金属リチウムを用いた例についてのみ説明を行ったが、負極としては黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、TiO2、MoO2、Nb25等の酸化物を用いても同様の効果が得られ、本発明の全固体電池は負極として金属リチウムを用いたものに限定されるものではない。 In the above embodiment, only the example using metallic lithium for the negative electrode has been described. However, the negative electrode includes a graphite-lithium compound, a lithium alloy such as Li-Al, Li 3 V 2 (PO 4 ) 3 , TiO 2. Similar effects can be obtained by using oxides such as 2 , MoO 2 and Nb 2 O 5 , and the all-solid-state battery of the present invention is not limited to those using metallic lithium as the negative electrode.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
 正極層または負極層では導電剤としての炭素の燃焼を抑制することができ、充放電容量を高めることができるので、本発明は全固体二次電池の製造に特に有用である。 In the positive electrode layer or the negative electrode layer, the combustion of carbon as a conductive agent can be suppressed, and the charge / discharge capacity can be increased. Therefore, the present invention is particularly useful for the production of an all-solid secondary battery.
 10:全固体電池、11:正極層、12:固体電解質層、13:負極層。
                                                                                
10: all-solid-state battery, 11: positive electrode layer, 12: solid electrolyte layer, 13: negative electrode layer.

Claims (11)

  1.  正極層または負極層の少なくともいずれか一方の電極層と、
     前記電極層に積層された固体電解質層と、を備え、
     前記電極層が、第1の温度で燃焼開始する第1の炭素材料と、前記第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む、全固体電池。
    At least one of the positive electrode layer and the negative electrode layer;
    A solid electrolyte layer laminated on the electrode layer,
    The all-solid-state battery in which the said electrode layer contains the 1st carbon material which starts combustion at 1st temperature, and the 2nd carbon material which starts combustion at 2nd temperature higher than said 1st temperature.
  2.  前記電極層が、前記第1の炭素材料よりも前記第2の炭素材料を多く含む、請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the electrode layer contains more of the second carbon material than the first carbon material.
  3.  正極層または負極層の少なくともいずれか一方の未焼結体である未焼結電極層と、
     前記未焼結電極層に積層された、固体電解質層の未焼結体である未焼結固体電解質層と、を備え、
     前記未焼結電極層が、第1の温度で燃焼開始する第1の炭素材料と、前記第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む、全固体電池用未焼結積層体。
    A green electrode layer that is a green body of at least one of the positive electrode layer and the negative electrode layer;
    A non-sintered solid electrolyte layer, which is a non-sintered body of a solid electrolyte layer, laminated on the unsintered electrode layer,
    The unsintered electrode layer includes a first carbon material that starts to burn at a first temperature and a second carbon material that starts to burn at a second temperature higher than the first temperature. Unsintered laminate for battery.
  4.  前記未焼結電極層と前記未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有する、請求項3に記載の全固体電池用未焼結積層体。 The unsintered laminate for an all solid state battery according to claim 3, wherein the unsintered electrode layer and the unsintered solid electrolyte layer have a form of a green sheet or a printed layer.
  5.  正極層または負極層の少なくともいずれか一方の未焼結体である未焼結電極層と、固体電解質層の未焼結体である未焼結固体電解質層とを作製する未焼結層作製工程と、
     前記未焼結電極層と前記未焼結固体電解質層とを積層して積層体を形成する積層体形成工程と、
     前記積層体を焼成する焼成工程と、を備え、
     前記未焼結電極層が、第1の温度で燃焼開始する第1の炭素材料と、前記第1の温度よりも高い第2の温度で燃焼開始する第2の炭素材料とを含む、全固体電池の製造方法。
    An unsintered layer preparation step for preparing an unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer and the negative electrode layer, and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer When,
    A laminated body forming step of forming a laminated body by laminating the green electrode layer and the green solid electrolyte layer;
    A firing step of firing the laminate,
    The unsintered electrode layer includes a first carbon material that starts to burn at a first temperature and a second carbon material that starts to burn at a second temperature higher than the first temperature. Battery manufacturing method.
  6.  前記焼成工程において、前記積層体に含まれる有機材料の分解温度にて、前記第1の炭素材料が前記第2の炭素材料よりも焼失量が多い、請求項5に記載の全固体電池の製造方法。 The all-solid-state battery production according to claim 5, wherein in the firing step, the first carbon material has a larger amount of burning than the second carbon material at a decomposition temperature of the organic material contained in the laminate. Method.
  7.  前記第2の炭素材料が炭素粉末である、請求項5または請求項6のいずれか1項に記載の全固体電池の製造方法。 The manufacturing method of the all-solid-state battery of any one of Claim 5 or Claim 6 whose said 2nd carbon material is carbon powder.
  8.  前記第1の炭素材料が、前記未焼結電極層に含まれる電極活物質粒子の少なくとも一部表面を被覆し、または、前記電極活物質粒子の少なくとも一部表面に担持されている、請求項5から請求項7までのいずれか1項に記載の全固体電池の製造方法。 The first carbon material covers at least a part of the surface of the electrode active material particles included in the green electrode layer or is supported on at least a part of the surface of the electrode active material particles. The manufacturing method of the all-solid-state battery of any one of Claim 5-7.
  9.  前記正極層、前記固体電解質層および前記負極層からなる群より選ばれた少なくとも一つの層を形成する材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含む、請求項5から請求項8までのいずれか1項に記載の全固体電池の製造方法。 The material which forms at least 1 layer chosen from the group which consists of the said positive electrode layer, the said solid electrolyte layer, and the said negative electrode layer contains the solid electrolyte which consists of a lithium containing phosphate compound of NASICON type | mold structure. Item 9. The method for producing an all solid state battery according to any one of Items 8 to 8.
  10.  前記正極層および前記負極層からなる群より選ばれた少なくとも一つの層を形成する材料が、リチウム含有リン酸化合物からなる電極活物質を含む、請求項5から請求項9までのいずれか1項に記載の全固体電池の製造方法。 The material which forms at least 1 layer chosen from the group which consists of the said positive electrode layer and the said negative electrode layer contains the electrode active material which consists of a lithium containing phosphate compound, The any one of Claim 5-9 The manufacturing method of the all-solid-state battery as described in 1 above.
  11.  前記未焼結電極層と前記未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有する、請求項5から請求項10までのいずれか1項に記載の全固体電池の製造方法。

                                                                                    
    11. The method for producing an all-solid battery according to claim 5, wherein the unsintered electrode layer and the unsintered solid electrolyte layer have a form of a green sheet or a printed layer.

PCT/JP2012/072426 2011-09-12 2012-09-04 Unsintered laminate for all-solid-state battery, all-solid-state battery, and production method therefor WO2013038948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533617A JP5644951B2 (en) 2011-09-12 2012-09-04 Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011197896 2011-09-12
JP2011-197896 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013038948A1 true WO2013038948A1 (en) 2013-03-21

Family

ID=47883179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072426 WO2013038948A1 (en) 2011-09-12 2012-09-04 Unsintered laminate for all-solid-state battery, all-solid-state battery, and production method therefor

Country Status (2)

Country Link
JP (1) JP5644951B2 (en)
WO (1) WO2013038948A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208133A1 (en) * 2013-06-28 2014-12-31 太陽誘電株式会社 All-solid secondary battery and method for manufacturing same
JP2021515963A (en) * 2018-03-15 2021-06-24 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Secondary battery electrodes and their manufacturing methods
US11075368B2 (en) 2017-11-02 2021-07-27 Taiyo Yuden Co., Ltd. All solid battery and manufacturing method of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375914B2 (en) 2020-03-16 2023-11-08 株式会社村田製作所 solid state battery
CN115413378A (en) 2020-05-25 2022-11-29 株式会社村田制作所 Solid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533373A (en) * 2002-07-12 2005-11-04 イドロ−ケベック Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
JP2011134617A (en) * 2009-12-24 2011-07-07 Ohara Inc All-solid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533373A (en) * 2002-07-12 2005-11-04 イドロ−ケベック Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
JP2011134617A (en) * 2009-12-24 2011-07-07 Ohara Inc All-solid battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208133A1 (en) * 2013-06-28 2014-12-31 太陽誘電株式会社 All-solid secondary battery and method for manufacturing same
JP2015011864A (en) * 2013-06-28 2015-01-19 太陽誘電株式会社 All-solid type secondary battery, and method for manufacturing the same
US9865899B2 (en) 2013-06-28 2018-01-09 Taiyo Yuden Co., Ltd. All-solid-state secondary battery with solid electrolyte layer containing particulate precipitate of an olivine-type crystal structure
US10249905B2 (en) 2013-06-28 2019-04-02 Taiyo Yuden Co., Ltd. All-solid-state secondary battery and method for manufacturing same
US11075368B2 (en) 2017-11-02 2021-07-27 Taiyo Yuden Co., Ltd. All solid battery and manufacturing method of the same
JP2021515963A (en) * 2018-03-15 2021-06-24 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Secondary battery electrodes and their manufacturing methods

Also Published As

Publication number Publication date
JP5644951B2 (en) 2014-12-24
JPWO2013038948A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2012008422A1 (en) All-solid-state battery
WO2011132627A1 (en) All-solid state secondary battery and production method for same
KR101319376B1 (en) Positive active material for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same
WO2013137224A1 (en) All solid state cell and method for producing same
JP5516749B2 (en) All-solid battery and method for manufacturing the same
JP5804208B2 (en) All-solid battery, unfired laminate for all-solid battery, and method for producing all-solid battery
JP2023080348A (en) All-solid battery
WO2013175991A1 (en) All-solid-state battery and method for manufacturing same
JP5796687B2 (en) Positive electrode material, secondary battery and manufacturing method thereof
JP5796798B2 (en) Positive electrode material, all solid state battery, and manufacturing method thereof
JP5796686B2 (en) All-solid battery and method for manufacturing the same
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
US20200194829A1 (en) Solid electrolyte layer and all-solid-state battery
JP6587555B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery and all-solid-state secondary battery using the same, and method for producing them
JP6030960B2 (en) Manufacturing method of all solid state battery
WO2019203334A1 (en) Solid electrolyte composition, all-solid secondary battery sheet, all-solid secondary battery, and method of manufacturing all-solid secondary battery sheet or all-solid secondary battery
JP6623083B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery and all-solid-state secondary battery using the same, and method for producing them
JP2020024780A (en) All-solid battery and manufacturing method thereof
JP6003982B2 (en) All solid battery
JPWO2013035526A1 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
WO2013161982A1 (en) Solid-state battery, and method for producing same
WO2013161981A1 (en) Method for producing solid-state battery, and solid-state battery
JP2021172545A (en) Composite material, method for producing the same and all-solid-state lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831636

Country of ref document: EP

Kind code of ref document: A1