WO2013038933A1 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
WO2013038933A1
WO2013038933A1 PCT/JP2012/072329 JP2012072329W WO2013038933A1 WO 2013038933 A1 WO2013038933 A1 WO 2013038933A1 JP 2012072329 W JP2012072329 W JP 2012072329W WO 2013038933 A1 WO2013038933 A1 WO 2013038933A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treatment method
acid
salt
electric double
Prior art date
Application number
PCT/JP2012/072329
Other languages
French (fr)
Japanese (ja)
Inventor
幸祐 志村
山田 学
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to SG11201400256PA priority Critical patent/SG11201400256PA/en
Publication of WO2013038933A1 publication Critical patent/WO2013038933A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a water treatment method for producing feed water for a steam generation plant such as a boiler.
  • the present invention is an operation that significantly reduces heat and water loss due to blow compared to conventional soft water supply without using strong alkali or strong acid, and without using a large amount of sodium chloride. It is related with the water treatment method which can perform.
  • the present invention prevents scaling on the heat transfer surface due to calcium and magnesium, and also prevents iron scaled in from the steam condensate, thereby keeping the heat transfer surface clean.
  • the present invention relates to a water treatment method.
  • a steam generation plant such as a boiler
  • tap water such as city water or groundwater
  • a softener filled with sodium-type cation exchange resin so that calcium and magnesium in the water are treated.
  • Softened water replaced with sodium is used as makeup water. This is because hardness components such as calcium and magnesium are brought into the boiler can and scaled on the heat transfer surface to inhibit heat transfer, resulting in energy loss or heat transfer surface overheating and damage. This is to prevent it.
  • Non-patent Document 1 A method of removing dissolved ions using a strongly basic anion exchange resin and a strongly acidic cation exchange resin (Non-patent Document 1). In this method, it is necessary to frequently regenerate the ion exchange resin with a strong acid and a strong alkali.
  • Non-patent Document 2 A method of removing dissolved salts from feed water with a reverse osmosis membrane device after treatment with a softener.
  • a large amount of sodium chloride is used to regenerate the cation exchange resin filled in the softener, and a relatively large amount of concentrated water is used in the reverse osmosis membrane treatment as in the conventional softening method. Therefore, the amount of softened water used for the reverse osmosis membrane treatment is further increased, so that the amount of sodium chloride is further increased. Even if the amount of blow reduction is subtracted, the amount of water used is greater than when treated with a softener alone.
  • Non-patent Document 3 A method of treating with an electrodeionization device combining an ion exchange membrane and a DC power source after treatment with a reverse osmosis membrane device.
  • the treated water obtained is water with very few dissolved substances, but the apparatus becomes very large and expensive.
  • Recovering steam condensate generated from the boiler and reusing it as feed water is a recovery of heat and water, and when softening water is replenished, by reducing the dissolved substances brought into the boiler from the feed water, It leads to further energy saving by reducing blow water.
  • the iron oxide scale adheres to the heat transfer surface in the boiler can, reducing heat transfer efficiency and causing corrosion problems at the bottom of the attached scale. It can be a cause. For this reason, when the iron concentration of the collected condensed water is high, it may be discharged without being reused as water supply.
  • the flow-through type electric double layer capacitor desalination apparatus used in the present invention is applied to the production of pure water, etc., and a desalination method is also known in which treatment is performed sequentially with a flow-through type electric double layer capacitor desalination apparatus and an ion exchange apparatus.
  • Patent Document 1 Patent Document 1
  • Boiler Water Management ⁇ Knowledge and Application> Published by Japan Boiler Association.
  • 146-176 Boiler Water Management ⁇ Knowledge and Application> Published by Japan Boiler Association.
  • 183 Boiler Water Management ⁇ Knowledge and Application> Published by Japan Boiler Association. 191-193
  • the present invention improves the low-pressure boiler blow reduction operation, which has improved the problems of requiring a large amount of sodium chloride, strong acid and strong alkali, and discharging a large amount of concentrated water in the feed water treatment. It is a first object to provide a water treatment method that enables this.
  • the present invention realizes energy-saving operation by recovery and reuse of heat and water as feed water for steam condensate that leads to energy saving and water saving, and energy saving operation by reducing blow without causing energy loss or corrosion trouble due to scale adhesion.
  • a second object is to provide a water treatment method.
  • the present inventors have applied a liquid passing type electric double layer capacitor desalting apparatus, and further, a water-soluble polymer having a carboxyl group in the molecule as a scale inhibitor. It has been found that the above-mentioned problems can be solved by using.
  • the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
  • a water treatment method characterized in that raw water is fed to a steam generator with treated water obtained by passing raw water in the order of a liquid passing type electric double layer capacitor desalinator and a softener.
  • the raw water is passed through a liquid-type electric double-layer condenser desalination device,
  • the water treatment method is characterized in that the recovered water of the steam condensed water is supplied to a steam generator as feed water, and a water-soluble polymer having a carboxyl group in the molecule is added to the feed water.
  • the water treatment method of the present invention when a strong base anion exchange resin and a strong acid cation exchange resin are used, without using a strong alkali or strong acid, or when treating only with a softener.
  • a water-soluble polymer having a carboxyl group in the molecule is added to the treated water that has been treated only with a liquid-permeable electric double layer capacitor desalinator to the steam generator.
  • Water can be supplied, and in this case, a softener can be dispensed with, and sodium chloride for simplification of the apparatus and regeneration of the softener can be dispensed with.
  • the iron contained with the steam condensate is scaled to allow calcium contained in the liquid-type electric double-layer capacitor demineralizer to coexist and a water-soluble polymer having a carboxyl group in the molecule is added. By doing so, both iron and calcium can be discharged by blowing without scaling.
  • the water treatment method is characterized in that treated water obtained by passing raw water through water-flowing electric double layer capacitor desalting apparatus and softener in this order is supplied to a steam generator.
  • the raw water is treated with a liquid-type electric double layer capacitor desalting apparatus, and cations such as sodium ions, calcium ions, magnesium ions, and the like, and chloride ions, sulfate ions, nitrate ions, etc. in the raw water.
  • cations such as sodium ions, calcium ions, magnesium ions, and the like, and chloride ions, sulfate ions, nitrate ions, etc.
  • the concentration of salts brought into the boiler water can be greatly reduced, the increase in electrical conductivity caused by these dissolved salts can also be greatly reduced, and blow water is greatly reduced. can do.
  • a strong alkali or a strong acid as in the case of using an ion exchange resin is also unnecessary.
  • the softener replaces calcium ions, magnesium ions, and the like with sodium ions by a cation exchange resin.
  • a concentrated aqueous sodium chloride solution is used to regenerate the cation exchange resin.
  • the water treatment method is a steam generation facility that collects and reuses steam condensate as feed water, and passes raw water through a liquid-type electric double-layer capacitor desalination apparatus without using a softener.
  • the treated water obtained by water and the recovered water of the steam condensed water are supplied to a steam generator as feed water, and a water-soluble polymer having a carboxyl group in the molecule is added to the feed water.
  • a water-soluble polymer having a carboxyl group in the molecule is added to the feed water.
  • the softener since the softener is unnecessary, the sodium chloride for regeneration of a softener is also unnecessary.
  • the salt concentration brought into the boiler is greatly reduced as compared with the case where raw water is treated only with a softener, blow can be reduced.
  • the amount of the water treatment chemical to be added is also reduced.
  • the liquid passing type electric double layer capacitor desalting apparatus has a configuration in which two conductive layers having a high specific surface area are sandwiched between them and a collector electrode is disposed outside these conductive layers. By applying a voltage to the collector electrode, ions in the raw water are electrically adsorbed to the conductor layer, and treated water in which the concentration of dissolved salts is reduced can be obtained.
  • activated carbon is suitable as the high specific surface area conductor.
  • ionic substances in the inflow water are removed through the following processing steps.
  • This processing mechanism will be described with reference to FIGS. 1 and 2 by taking as an example the case where the ionic substance contained in the influent water is sodium chloride and the high specific surface area conductor is activated carbon.
  • the sodium ions and chloride ions adsorbed on the activated carbon layers 2 and 4 are desorbed as shown in FIG.
  • the outflow water containing sodium chloride having a concentration much higher than the sodium chloride concentration in the inflow water is discharged from the outlet. If the flow velocity at this time is slowed, the sodium chloride adsorbed on the activated carbon layers 2 and 4 can be discharged with a small amount of flowing water.
  • boiler feed water is manufactured using such a liquid-permeable electric double layer capacitor desalting apparatus.
  • the liquid-permeable type electric double layer capacitor desalting apparatus repeats the desalting process and the discharging process at the electrode portion, and therefore, desalted water cannot be obtained during the discharging process.
  • a plurality of liquid-permeable electric double layer capacitors may be installed to control the operation time so that the necessary amount of treated water can be secured.
  • the raw water to be treated in the present invention includes any water such as well water, tap water, river water, industrial water, middle water, sewage and the like.
  • FIG. 3 is a system diagram showing an embodiment of the first aspect of the present invention.
  • the raw water is first introduced into the flow-through type electric double layer capacitor demineralizer 11 and processed, so that cations such as sodium ion, calcium ion and magnesium ion, and negative ions such as chloride ion, sulfate ion and nitrate ion are obtained. Ions are removed. At least several tens of percent or more of ions in the raw water can be removed by the liquid passing type electric double layer capacitor desalting apparatus 11, and the subsequent ion load of the softener 12 is reduced to a fraction of a few tenths. Can be reduced.
  • the amount of sodium chloride used for the regeneration of the softener 12 can be reduced to a fraction of a few tenths, and the treated water of the water softener 12 is supplied to the boiler 14 via the water supply tank 13.
  • the concentration of salts brought into the boiler water can be greatly reduced, and the increase in electrical conductivity caused by these dissolved salts can also be greatly reduced.
  • the liquid flow type electric double layer capacitor desalinator 11 and the softener 12 can be reduced in the amount of treated water, and there is an advantage that the amount of sodium chloride used for the regeneration of the softener is further reduced. It is done. Moreover, since the amount of water supplied to the boiler 14 is reduced, the amount of water treatment chemical added to the water supply at a predetermined concentration is also reduced. Furthermore, since the concentration of boiler water increases due to the reduction in blow, the concentration of water treatment chemicals that prevent corrosion and scale in the can by maintaining a predetermined concentration in the boiler water is lower than in the past. be able to.
  • the water recovery rate in the liquid passing type electric double layer capacitor desalting apparatus is about 80 to 95% and the removal rate of dissolved salts is about 70 to 90%. If the water recovery rate of the flow-through type electric double layer capacitor desalinator is too low, the amount of raw water used will increase, and if it is too high, the dissolved salts will not be removed sufficiently. If the removal rate of the dissolved salt in the liquid-passing electric double layer capacitor desalting apparatus is too low, the ion load of the subsequent softener increases and the softener regeneration frequency increases. If the removal rate of dissolved salts in the liquid-passing electric double layer capacitor desalting apparatus is too high, the economic efficiency decreases due to an increase in power consumption.
  • FIG. 4 is a system diagram showing an embodiment of the second aspect of the present invention.
  • the treated water in which the raw water is passed through the liquid-type electric double layer condenser desalination device 21 and the dissolved ions are reduced to a fraction of a few tenths is supplied to the water supply tank 22 without passing through the water softener. Supplied.
  • the water supply tank 22 is also supplied with the recovered steam condensed water (drain).
  • a water-soluble polymer having a carboxyl group in the molecule is added to the water in the water supply tank 22 in proportion to the flow rate of the treated water in the liquid passing type electric double layer capacitor desalting apparatus 21 to supply water to the boiler.
  • the softener since the softener is not used, the facilities are simplified, and sodium chloride for regenerating the softener is not necessary.
  • the salt concentration brought into the boiler is greatly reduced compared to the case where raw water is treated only with a softener, so that blow can be reduced, and the discharged heat, water, and water treatment chemical components are reduced.
  • the amount of water treatment chemicals to be added is reduced by reducing the amount of water supplied.
  • the iron eluted from the heat exchanger and the piping contained in the steam condensed water recovered as the feed water was added with the hardness component contained in the treated water of the liquid passing type electric double layer capacitor demineralizer 21. Due to the effect of the water-soluble polymer having a carboxyl group in the molecule, it is possible to effectively prevent the scale from adhering to the heat transfer surface by being blown out and brought into the boiler can.
  • the water recovery rate in the flow-through type electric double layer capacitor demineralizer is about 80 to 95% and the removal rate of dissolved salts is about 70 to 90%. If the water recovery rate of the flow-through type electric double layer capacitor desalinator is too low, the amount of raw water used will increase, and if it is too high, the dissolved salts will not be removed sufficiently. If the removal rate of dissolved salt in the flow-through type electric double layer capacitor demineralizer is too low, it is necessary to increase the amount of blown water, but the removal rate of dissolved salt in the flow-through type electric double layer capacitor demineralizer is excessively high.
  • the effect of preventing the above-described iron from being scaled by calcium in the treated water of the liquid passing type electric double layer capacitor desalting apparatus cannot be sufficiently obtained. Accordingly, by appropriately adjusting the removal rate of dissolved salts of the liquid passing type electric double layer capacitor demineralizer, the calcium is adjusted so that the calcium concentration in the boiler feed water is about 0.1 to 10 mg-CaCO 3 / L. It is preferable to leave it.
  • water-soluble polymer having a carboxyl group in the molecule examples include acrylic acid and / or a salt thereof, maleic acid and / or a salt thereof, itaconic acid and / or a salt thereof, methacrylic acid and / or a salt thereof.
  • Homopolymers, copolymers, or terpolymers of carboxylic acids and / or salts thereof such as 2-hydroxy-3-allyloxypropane sulfonic acid and / or salts thereof and copolymers of the above carboxylic acids and / or salts thereof; Copolymers of acrylamido-2-methylpropanesulfonic acid and / or its salt and the above carboxylic acid and / or its salt; bis (poly-2-carboxyethyl) phosphinic acid and / or its salt; carboxymethylcellulose and the like .
  • the carboxylic acid, sulfonic acid, and phosphinic acid salts include alkali metal salts such as sodium salts and potassium salts.
  • a sodium acrylate homopolymer is particularly preferable.
  • the weight average molecular weight of the water-soluble polymer having a carboxyl group in the molecule is preferably 1000 to 100,000, particularly 1500 to 50,000. If the molecular weight is excessively large, a gelled product may be generated due to binding with calcium, and the strainer or the like may be blocked. If this molecular weight is too small, sufficient effects may not be exhibited.
  • the amount of the water-soluble polymer having a carboxyl group in the molecule is adjusted to be 0.5 to 10 times, more preferably 1 to 5 times the calcium concentration in the boiler feed water. If the concentration of the water-soluble polymer added is higher than the above lower limit, the effect of dispersing iron brought in from the steam condensed water recovery line is reduced, and the amount of scale attached increases. If the addition concentration of the water-soluble polymer is less than the above upper limit, the effect of preventing scale adhesion in the boiler can of the hardness component contained in the treated water of the liquid-type electric double layer capacitor demineralizer will be insufficient. There is.
  • an alkali agent NaOH, KOH, K 2 CO 3 , Na 2 CO 3 etc.
  • an oxygen scavenger hydroazine, tannin, tannin
  • corrosion inhibitor gluconic acid and / or salt thereof, glucoheptonic acid and / or salt thereof, succinic acid and / Or salt thereof, citric acid and / or salt thereof, tartaric acid and / or salt thereof, etc.
  • phosphoric acid and / or salt thereof polymerized phosphoric acid and / or salt thereof, phosphonic acid and / or salt thereof, etc. May be.
  • natural water processed by the following Example and comparative example is a tap water of Nogi-machi, Tochigi Prefecture, Japan with the following water quality.
  • Comparative Example 2 In Comparative Example 1, after treating Nogicho water with a softener, it was passed through a reverse osmosis membrane device and operated at a water recovery rate of 80% (the removal rate of dissolved salts at this time was 98% on average), and reverse osmosis The treated water of the membrane device is put into a water supply tank, and the water treatment chemical is sodium erythorbate 30 mg / L as the oxygen scavenger, and the pH of the boiler water as the alkali agent is 11.5, and the electrical conductivity is 3.0%. While adding NaOH 19 mg / L calculated so that the rate was 300 mS / m, water was supplied to the experimental boiler and operated at a pressure of 0.7 MPa for 10 days.
  • the amount of evaporation at this time was 0.39 t / h.
  • the water supply to the boiler is 0.401 m 3 / h
  • the raw water flow rate is 0.501 m 3 / h on average
  • the softener is regenerated 7 times during the test period.
  • the sodium chloride used for the regeneration is 16.1 kg. there were.
  • Example 1 Nogicho water is passed through a flow-through type electric double-layer capacitor desalination unit and operated at a water recovery rate of 90% (average removal rate of dissolved salts at this time is 80%).
  • the treated water of the desalinizer was passed through the softener as in Comparative Example 1, and the treated water was placed in a water supply tank.
  • the water treatment chemical was deoxygenated sodium erythorbate 30 mg / L and the alkaline agent was boiler water. While adding 17 mg / L of NaOH whose P alkalinity is 1.7 times that of silica, water is supplied to the experimental boiler and blown at a pressure of 0.7 MPa so that the electrical conductivity of the boiler water is 300 mS / m.
  • Example 1 treated with the liquid-type electric double layer capacitor desalting apparatus and the softener, the amount of water used was about 1 m 3 and the amount of sodium chloride used was less than that of Comparative Example 1 treated with the softener alone.
  • Nogicho water is passed through a flow-through type electric double-layer capacitor desalination unit and operated at a water recovery rate of 90% (average removal rate of dissolved salts at this time is 80%).
  • the treated water of the desalting apparatus was passed through a softener to replace Ca ions and Mg ions in the water with Na ions, and then put into a 10 L water supply tank.
  • the water concentration in the water supply tank is 2 mg / L assuming that the water recovered in the water supply tank of steam condensate water is simulated and iron is eluted in the recovery line to pure water heated to 90 ° C. What added ferric chloride was supplied at 4 L / h.
  • the water supply from this water tank is 10 mg / L of succinic acid as a corrosion inhibitor as a water treatment chemical
  • the water-soluble polymer shown in Table 1 is added at the concentration shown in Table 1
  • the alkalinity of P alkali in boiler water is While adding 13 mg / L NaOH, which is 1.7 times the concentration of silica, water was supplied to a 5 L stainless steel test boiler and operated at a pressure of 0.7 MPa, an evaporation amount of 8 L / h, and a blow rate of 5%.
  • the heat transfer tube made of stainless steel, surface area 200 cm 2 ⁇ 3
  • Example 2 the softener was removed and the water-soluble polymer shown in Table 1 was added as the water-soluble polymer at the addition concentration shown in Table 1, and the operation was performed under the same conditions. The adhesion amount of the heat transfer tube was measured. The results are shown in Table 1.
  • the calcium concentration in the treated water of the liquid passing type electric double layer capacitor desalting apparatus is 6 mg-CaCO 3 / L, and the treated water of this liquid passing type electric double layer capacitor desalting apparatus is further softened.
  • the calcium concentration of the boiler feed water was less than 0.1 mg-CaCO 3 / L.
  • Example 8 to 19 in which the treated water of the liquid-type electric double layer condenser desalination apparatus was not treated with a softener and was used as boiler feed water together with the simulated water of the condensed water recovered, the calcium concentration in the boiler feed water was Was 3 mg-CaCO 3 / L.
  • the ratio of the polymer addition concentration to the calcium concentration of boiler feed water in Examples 2 to 19 is as shown in Table 1.

Abstract

Provided is a water treatment that enables operation whereby heat and water loss due to blowdown are decreased considerably compared with a soft water feed, but without the use of strong alkali or strong acid and without the use of a large amount of sodium chloride, and the water treatment is carried out so that a thermal conduction surface clean is kept clean by preventing calcium and magnesium scaling of the thermal conduction surface and by preventing scaling by iron carried in by the steam condensate. In a steam generator facility that collects and reuses steam condensate as feed water, treated water obtained by passing raw water through a liquid pass-through type electric double-layer capacitor desalter (21) and water collected from the steam condensate are supplied to a steam generator as feed water without the use of a softening apparatus, and a water-soluble polymer having a carboxyl group within its molecule is added to the feed water.

Description

水処理方法Water treatment method
 本発明は、ボイラ等の蒸気発生プラントの給水を製造するための水処理方法に関する。詳しくは、本発明は、強アルカリや強酸を使用することなく、また、多量の塩化ナトリウムを使用することなく、従来の軟水給水に比べて、ブローによる熱と水のロスを大幅に低減した運転を行うことができる水処理方法に関する。本発明は、カルシウムやマグネシウムによる伝熱面でのスケール化を防止するとともに、蒸気凝縮水から持ち込まれる鉄のスケール化も併せて防止することができ、これにより、伝熱面を清浄に保つことができる水処理方法に関する。 The present invention relates to a water treatment method for producing feed water for a steam generation plant such as a boiler. Specifically, the present invention is an operation that significantly reduces heat and water loss due to blow compared to conventional soft water supply without using strong alkali or strong acid, and without using a large amount of sodium chloride. It is related with the water treatment method which can perform. The present invention prevents scaling on the heat transfer surface due to calcium and magnesium, and also prevents iron scaled in from the steam condensate, thereby keeping the heat transfer surface clean. The present invention relates to a water treatment method.
 ボイラ等の蒸気発生プラントでは、運転圧力が低い場合は、一般に、市水等の水道水や地下水等をナトリウム型陽イオン交換樹脂を充填した軟化器で処理することにより、水中のカルシウムとマグネシウムをナトリウムに置換した軟化水を補給水として使用している。これは、カルシウムやマグネシウムといった硬度成分がボイラ缶内に持ち込まれて伝熱面でスケール化して伝熱を阻害することでエネルギーロスが生じたり、伝熱面が過熱して損傷したりするのを防止するためである。 In a steam generation plant such as a boiler, when the operating pressure is low, generally, tap water such as city water or groundwater is treated with a softener filled with sodium-type cation exchange resin, so that calcium and magnesium in the water are treated. Softened water replaced with sodium is used as makeup water. This is because hardness components such as calcium and magnesium are brought into the boiler can and scaled on the heat transfer surface to inhibit heat transfer, resulting in energy loss or heat transfer surface overheating and damage. This is to prevent it.
 補給水として軟化水を用いて蒸気発生プラントを運転する場合、軟化器の陽イオン交換樹脂の再生に多量の塩化ナトリウムを使用するという問題がある。軟化器で得られる軟化水中には溶存塩類が多量に含まれているため、蒸気の発生に伴う濃縮により缶水中の塩類濃度が上昇し、缶水が蒸気とともに同伴されるキャリオーバが生じやすくなる。このため、比較的多量の缶水をブローして濃縮倍率を所定の範囲に維持する必要がある。缶水をブローすることにより、補給水が多くなると共に、ブロー水に同伴して失われる熱量が多くなる。 When operating a steam generation plant using softened water as make-up water, there is a problem that a large amount of sodium chloride is used to regenerate the cation exchange resin of the softener. Since the softened water obtained by the softener contains a large amount of dissolved salts, the concentration of the salt in the can water increases due to the concentration accompanying the generation of steam, and the carry-over in which the can water is accompanied with the steam tends to occur. For this reason, it is necessary to blow a relatively large amount of can water to maintain the concentration ratio within a predetermined range. By blowing the can water, the amount of makeup water increases and the amount of heat lost with the blow water increases.
 ブローによって捨てられる熱を削減するために、低圧ボイラの補給水を処理することにより、補給水中の溶存物質を除去し、ブロー水量を削減する下記i~iiiの方法が知られている。各方法には、それぞれ以下のような問題点がある。 In order to reduce the heat thrown away by blowing, the following methods i to iii are known in which the replenishing water of the low-pressure boiler is treated to remove dissolved substances in the replenishing water and reduce the amount of blown water. Each method has the following problems.
i) 強塩基性陰イオン交換樹脂と強酸性陽イオン交換樹脂を用いて溶存イオンを除去する方法(非特許文献1)。
 この方法では、頻繁に強酸と強アルカリでイオン交換樹脂を再生する必要がある。
i) A method of removing dissolved ions using a strongly basic anion exchange resin and a strongly acidic cation exchange resin (Non-patent Document 1).
In this method, it is necessary to frequently regenerate the ion exchange resin with a strong acid and a strong alkali.
ii) 軟化器で処理した後に逆浸透膜装置で給水の溶存塩類を除去する方法(非特許文献2)。
 この方法では、従来の軟化器により軟化する方法と同様に、軟化器に充填されている陽イオン交換樹脂の再生に多量の塩化ナトリウムを使用するとともに、逆浸透膜処理において比較的多くの濃縮水が排出さるため、逆浸透膜処理に供する軟化水の使用量が更に増す従って、塩化ナトリウムの使用量が更に増す。ブローの削減分を差し引いても水の使用量が軟化器のみで処理する場合に比べて多くなる。
ii) A method of removing dissolved salts from feed water with a reverse osmosis membrane device after treatment with a softener (Non-patent Document 2).
In this method, a large amount of sodium chloride is used to regenerate the cation exchange resin filled in the softener, and a relatively large amount of concentrated water is used in the reverse osmosis membrane treatment as in the conventional softening method. Therefore, the amount of softened water used for the reverse osmosis membrane treatment is further increased, so that the amount of sodium chloride is further increased. Even if the amount of blow reduction is subtracted, the amount of water used is greater than when treated with a softener alone.
iii) 逆浸透膜装置で処理した後、イオン交換膜及び直流電源を組み合わせた電気脱塩装置で処理する方法(非特許文献3)。
 この方法は、得られる処理水は極めて溶存物質が少ない水となるが、装置が非常に大掛かりとなり、高価でもある。
iii) A method of treating with an electrodeionization device combining an ion exchange membrane and a DC power source after treatment with a reverse osmosis membrane device (Non-patent Document 3).
In this method, the treated water obtained is water with very few dissolved substances, but the apparatus becomes very large and expensive.
 ボイラから発生した蒸気の凝縮水を回収して給水として再利用することは、熱と水の回収となるとともに、軟化水を補給する場合においては、給水からボイラに持ち込まれる溶存物質の低減により、ブロー水の削減による更なる省エネルギーにも繋がる。凝縮水を回収する配管から溶出した鉄がボイラに持ち込まれることで、ボイラ缶内の伝熱面に酸化鉄スケールが付着し、伝熱効率を低下させたり、付着したスケールの下部における腐食トラブルの発生原因となることもある。このため、回収した凝縮水の鉄濃度が高い場合は、給水として再利用できずに排出する場合もある。 Recovering steam condensate generated from the boiler and reusing it as feed water is a recovery of heat and water, and when softening water is replenished, by reducing the dissolved substances brought into the boiler from the feed water, It leads to further energy saving by reducing blow water. When iron eluted from the piping that collects condensed water is brought into the boiler, the iron oxide scale adheres to the heat transfer surface in the boiler can, reducing heat transfer efficiency and causing corrosion problems at the bottom of the attached scale. It can be a cause. For this reason, when the iron concentration of the collected condensed water is high, it may be discharged without being reused as water supply.
 本発明で用いる通液型電気二重層コンデンサ脱塩装置は、純水の製造などに適用されており、通液型電気二重層コンデンサ脱塩装置とイオン交換装置で順次処理する脱塩方法も知られている(特許文献1)。 The flow-through type electric double layer capacitor desalination apparatus used in the present invention is applied to the production of pure water, etc., and a desalination method is also known in which treatment is performed sequentially with a flow-through type electric double layer capacitor desalination apparatus and an ion exchange apparatus. (Patent Document 1).
特開2002-210468号公報JP 2002-210468 A
 本発明は、従来技術の、多量の塩化ナトリウムや強酸・強アルカリを必要するという問題点や、給水処理において多量の濃縮水が排出されるといった問題点を改善した、低圧ボイラのブロー削減運転を可能とする水処理方法を提供することを第1の目的とする。
 本発明は、省エネルギー・節水に繋がる蒸気凝縮水の給水としての回収・再利用による熱と水の回収再利用及びブロー削減による省エネルギー運転を、スケール付着によるエネルギーロスや腐食トラブルなどを生じることなく実現する水処理方法を提供することを第2の目的とする。
The present invention improves the low-pressure boiler blow reduction operation, which has improved the problems of requiring a large amount of sodium chloride, strong acid and strong alkali, and discharging a large amount of concentrated water in the feed water treatment. It is a first object to provide a water treatment method that enables this.
The present invention realizes energy-saving operation by recovery and reuse of heat and water as feed water for steam condensate that leads to energy saving and water saving, and energy saving operation by reducing blow without causing energy loss or corrosion trouble due to scale adhesion. A second object is to provide a water treatment method.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、通液型電気二重層コンデンサ脱塩装置の適用により、更には、スケール防止剤として分子内にカルボキシル基を有する水溶性ポリマーを用いることにより、上記課題を解決することができることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have applied a liquid passing type electric double layer capacitor desalting apparatus, and further, a water-soluble polymer having a carboxyl group in the molecule as a scale inhibitor. It has been found that the above-mentioned problems can be solved by using.
 本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
[1] 原水を、通液型電気二重層コンデンサ脱塩装置及び軟化器の順に通水して得られた処理水を、蒸気発生器に給水することを特徴とする水処理方法。 [1] A water treatment method, characterized in that raw water is fed to a steam generator with treated water obtained by passing raw water in the order of a liquid passing type electric double layer capacitor desalinator and a softener.
[2] 蒸気凝縮水を給水として回収・再利用する蒸気発生設備において、軟化器を使用せずに、原水を通液型電気二重層コンデンサ脱塩装置に通水して得られた処理水と、前記蒸気凝縮水の回収水とを給水として蒸気発生器に供給するとともに、該給水に、分子内にカルボキシル基を有する水溶性ポリマーを添加することを特徴とする水処理方法。 [2] In the steam generation facility that collects and reuses steam condensate as feed water, without using a softener, the raw water is passed through a liquid-type electric double-layer condenser desalination device, The water treatment method is characterized in that the recovered water of the steam condensed water is supplied to a steam generator as feed water, and a water-soluble polymer having a carboxyl group in the molecule is added to the feed water.
[3] [2]において、前記蒸気発生器への給水中のカルシウム量に対して、前記カルボキシル基を有する水溶性ポリマーを1~5重量倍添加することを特徴とする水処理方法。 [3] The water treatment method according to [2], wherein the water-soluble polymer having a carboxyl group is added 1 to 5 times by weight with respect to the amount of calcium in water supplied to the steam generator.
[4] [2]又は[3]において、前記カルボキシル基を有する水溶性ポリマーが、アクリル酸ナトリウムのホモポリマーであることを特徴とする水処理方法。 [4] The water treatment method according to [2] or [3], wherein the water-soluble polymer having a carboxyl group is a homopolymer of sodium acrylate.
 本発明の水処理方法によれば、強塩基性陰イオン交換樹脂と強酸性陽イオン交換樹脂を用いる場合のように、強アルカリ、強酸を使用することなく、また、軟化器のみで処理する場合のように多量の塩化ナトリウムを使用することなく、従来の軟化器のみで処理した軟化水やこれを更に逆浸透膜装置で処理して給水とする場合に比べて、ブローによる熱と水のロスを大幅に低減した運転を行うことができる。カルシウムやマグネシウムによる伝熱面でのスケール化を防止するとともに、蒸気凝縮水から持ち込まれる鉄のスケール化も併せて防止することで、伝熱面を清浄に維持し得る水処理を行うことができる。 According to the water treatment method of the present invention, when a strong base anion exchange resin and a strong acid cation exchange resin are used, without using a strong alkali or strong acid, or when treating only with a softener. Heat and water loss due to blow compared to softened water treated only with a conventional softener and treated with a reverse osmosis membrane device to supply water without using a large amount of sodium chloride as in It is possible to perform operation with significantly reduced It is possible to perform water treatment that can keep the heat transfer surface clean by preventing scaling on the heat transfer surface due to calcium and magnesium and also preventing the iron brought in from the steam condensate. .
 特に、蒸気凝縮水を回収・再利用する場合において、通液型電気二重層コンデンサ脱塩装置のみで処理した処理水に、分子内にカルボキシル基を有する水溶性ポリマーを添加して蒸気発生器に給水することができ、この場合には、軟化器を不要とすることができ、装置の簡略化と軟化器の再生のための塩化ナトリウムを不要とすることが可能である。この方法においては、蒸気凝縮水とともに持ち込まれる鉄のスケール化を、通液型電気二重層コンデンサ脱塩装置に含まれているカルシウムを共存させると共に、分子内にカルボキシル基を有する水溶性ポリマーを添加することで、鉄とカルシウムを共にスケール化することなくブローで排出させることができる。 In particular, when recovering and reusing steam condensate, a water-soluble polymer having a carboxyl group in the molecule is added to the treated water that has been treated only with a liquid-permeable electric double layer capacitor desalinator to the steam generator. Water can be supplied, and in this case, a softener can be dispensed with, and sodium chloride for simplification of the apparatus and regeneration of the softener can be dispensed with. In this method, the iron contained with the steam condensate is scaled to allow calcium contained in the liquid-type electric double-layer capacitor demineralizer to coexist and a water-soluble polymer having a carboxyl group in the molecule is added. By doing so, both iron and calcium can be discharged by blowing without scaling.
軟化器の原理を示す模式図であって、電圧印加(脱塩)時を示す。It is a schematic diagram which shows the principle of a softener, Comprising: The time of voltage application (desalting) is shown. 軟化器の原理を示す模式図であって、短絡(排出)時を示す。It is a schematic diagram which shows the principle of a softener, Comprising: The time of a short circuit (discharge) is shown. 本発明の第1態様に係る水処理方法の実施形態の一例を示す系統図である。It is a systematic diagram showing an example of an embodiment of a water treatment method according to the first aspect of the present invention. 本発明の第2態様に係る水処理方法の実施形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the water treatment method which concerns on the 2nd aspect of this invention.
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の第1態様の水処理方法は、原水を、通液型電気二重層コンデンサ脱塩装置及び軟化器の順に通水して得られた処理水を、蒸気発生器に給水することを特徴とする。
 第1態様によると、原水を通液型電気二重層コンデンサ脱塩装置で処理して原水中のナトリウムイオン、カルシウムイオン、マグネシウムイオン等の陽イオン、及び塩化物イオン、硫酸イオン、硝酸イオン等の陰イオンを除去して、原水中のイオンを大幅に低減することができる。このため、後段の軟化器のイオン負荷を低減し、軟化器の再生に用いる塩化ナトリウム量を大幅に削減することができる。第1態様によると、ボイラ水中に持ち込まれる塩類の濃度を大幅に低減することができ、これらの溶存塩類に起因する電気伝導率の上昇も大幅に低減させることができ、ブロー水を大幅に削減することができる。第1態様によると、イオン交換樹脂を用いる場合のような強アルカリや強酸も不要である。軟化器は、陽イオン交換樹脂によってカルシウムイオン、マグネシウムイオン等をナトリウムイオンに置換する。陽イオン交換樹脂の再生には濃厚な塩化ナトリウム水溶液が用いられる。
The water treatment method according to the first aspect of the present invention is characterized in that treated water obtained by passing raw water through water-flowing electric double layer capacitor desalting apparatus and softener in this order is supplied to a steam generator. And
According to the first aspect, the raw water is treated with a liquid-type electric double layer capacitor desalting apparatus, and cations such as sodium ions, calcium ions, magnesium ions, and the like, and chloride ions, sulfate ions, nitrate ions, etc. in the raw water. By removing the anions, the ions in the raw water can be greatly reduced. For this reason, the ion load of the latter-stage softener can be reduced, and the amount of sodium chloride used for the regeneration of the softener can be greatly reduced. According to the first aspect, the concentration of salts brought into the boiler water can be greatly reduced, the increase in electrical conductivity caused by these dissolved salts can also be greatly reduced, and blow water is greatly reduced. can do. According to the first aspect, a strong alkali or a strong acid as in the case of using an ion exchange resin is also unnecessary. The softener replaces calcium ions, magnesium ions, and the like with sodium ions by a cation exchange resin. A concentrated aqueous sodium chloride solution is used to regenerate the cation exchange resin.
 本発明の第2態様の水処理方法は、蒸気凝縮水を給水として回収・再利用する蒸気発生設備において、軟化器を使用せずに、原水を通液型電気二重層コンデンサ脱塩装置に通水して得られた処理水と、前記蒸気凝縮水の回収水とを給水として蒸気発生器に供給するとともに、該給水に、分子内にカルボキシル基を有する水溶性ポリマーを添加することを特徴とする。
 第2態様によると、軟化器が不要であるため、軟化器の再生のための塩化ナトリウムも不要である。第2態様によると、ボイラに持ち込まれる塩類濃度は、原水を軟化器のみで処理する場合に比べて大幅に低減されるため、ブローを削減することが可能となる。第2態様によると、排出される熱や水、水処理薬品成分が削減され、給水量が減少するので、添加する水処理薬品の量も削減される。
 第2態様によると、通液型電気二重層コンデンサ脱塩装置の処理水中に含まれるカルシウムと、給水に添加した分子内にカルボキシル基を有する水溶性ポリマーとで、蒸気凝縮水と共に持ち込まれる鉄のスケール化を防止して、ブロー水中に排出することができる。このため、給水中にカルシウムが存在することが好ましく、従って、通液型電気二重層コンデンサ脱塩装置の処理水を軟化器で処理せずに給水する。
The water treatment method according to the second aspect of the present invention is a steam generation facility that collects and reuses steam condensate as feed water, and passes raw water through a liquid-type electric double-layer capacitor desalination apparatus without using a softener. The treated water obtained by water and the recovered water of the steam condensed water are supplied to a steam generator as feed water, and a water-soluble polymer having a carboxyl group in the molecule is added to the feed water. To do.
According to the 2nd aspect, since the softener is unnecessary, the sodium chloride for regeneration of a softener is also unnecessary. According to the second aspect, since the salt concentration brought into the boiler is greatly reduced as compared with the case where raw water is treated only with a softener, blow can be reduced. According to the 2nd aspect, since the heat | fever and water discharged | emitted and the water treatment chemical component are reduced and the amount of water supply decreases, the amount of the water treatment chemical to be added is also reduced.
According to the second embodiment, the calcium contained in the treated water of the liquid-type electric double-layer capacitor desalination apparatus and the water-soluble polymer having a carboxyl group in the molecule added to the feed water, the iron brought in along with the steam condensed water. Scaling can be prevented and discharged into blow water. For this reason, it is preferable that calcium is present in the water supply, and therefore, the treated water of the liquid-type electric double layer capacitor desalting apparatus is supplied without being processed by the softener.
 通液型電気二重層コンデンサ脱塩装置は、間に通液路を挟んで2つの高比表面積の導電体層を有し、これらの導電体層の外側に集電極を配置した構成を有する。集電極に電圧を加えることによって、原水中のイオンを導電体層に電気的に吸着させ、溶存塩類の濃度が減少した処理水を得ることができる。上記高比表面積の導電体としては、例えば活性炭が好適である。 The liquid passing type electric double layer capacitor desalting apparatus has a configuration in which two conductive layers having a high specific surface area are sandwiched between them and a collector electrode is disposed outside these conductive layers. By applying a voltage to the collector electrode, ions in the raw water are electrically adsorbed to the conductor layer, and treated water in which the concentration of dissolved salts is reduced can be obtained. For example, activated carbon is suitable as the high specific surface area conductor.
 通液型電気二重層コンデンサ脱塩装置においては、以下に示す処理工程を経て流入水中のイオン性物質が除去される。この処理機構を、流入水に含まれるイオン性物質が塩化ナトリウムであり、前記高比表面積の導電体が活性炭である場合を例にして、図1,2を用いて説明する。 In the liquid flow type electric double layer capacitor desalting apparatus, ionic substances in the inflow water are removed through the following processing steps. This processing mechanism will be described with reference to FIGS. 1 and 2 by taking as an example the case where the ionic substance contained in the influent water is sodium chloride and the high specific surface area conductor is activated carbon.
 図1に示すように、電圧印加時において、流入水中のナトリウムイオンは陰極側の集電極1に接する活性炭層2に電気的に吸着され、塩化物イオンは陽極側の集電極3に接する活性炭層4に電気的に吸着される。このため、出口から得られる処理水は、塩化ナトリウム濃度が大きく低下したものとなる。通水を長時間続けると、活性炭層2、4に対するイオンの吸着が飽和に近づくため、出口から得られる処理水の塩化ナトリウム濃度が高くなる。そこで、吸着飽和に達する前に陽極側と陰極側とを短絡させるか、あるいは逆転すれば、図2に示すように、活性炭層2,4に吸着されていたナトリウムイオン及び塩化物イオンが脱離し、流入水中の塩化ナトリウム濃度よりはるかに高濃度の塩化ナトリウムを含む流出水が出口より排出される。このときの流速を遅くすれば、少ない流水量で活性炭層2,4に吸着された塩化ナトリウムを排出することができる。 As shown in FIG. 1, when a voltage is applied, sodium ions in the inflowing water are electrically adsorbed on the activated carbon layer 2 in contact with the collector electrode 1 on the cathode side, and chloride ions are in contact with the collector electrode 3 on the anode side. 4 is electrically adsorbed. For this reason, the treated water obtained from the outlet has a greatly reduced sodium chloride concentration. If the water flow is continued for a long time, the adsorption of ions to the activated carbon layers 2 and 4 approaches saturation, so that the sodium chloride concentration of the treated water obtained from the outlet increases. Therefore, if the anode side and the cathode side are short-circuited or reversed before reaching adsorption saturation, the sodium ions and chloride ions adsorbed on the activated carbon layers 2 and 4 are desorbed as shown in FIG. The outflow water containing sodium chloride having a concentration much higher than the sodium chloride concentration in the inflow water is discharged from the outlet. If the flow velocity at this time is slowed, the sodium chloride adsorbed on the activated carbon layers 2 and 4 can be discharged with a small amount of flowing water.
 本発明では、このような通液型電気二重層コンデンサ脱塩装置を用いてボイラ給水を製造する。 In the present invention, boiler feed water is manufactured using such a liquid-permeable electric double layer capacitor desalting apparatus.
 通液型電気二重層コンデンサ脱塩装置は、上述の如く、電極部において脱塩工程と排出工程を繰り返すため、排出工程中は脱塩処理水を得ることができない。連続的に処理水を得る必要がある場合は、複数の通液型電気二重層コンデンサを設置して必要な処理水量が確保できるよう動作時期を制御すればよい。 As described above, the liquid-permeable type electric double layer capacitor desalting apparatus repeats the desalting process and the discharging process at the electrode portion, and therefore, desalted water cannot be obtained during the discharging process. When it is necessary to obtain treated water continuously, a plurality of liquid-permeable electric double layer capacitors may be installed to control the operation time so that the necessary amount of treated water can be secured.
 本発明で処理する原水としては、井水、水道水、河川水、工業用水、中水、下水等のあらゆる水が挙げられる。 The raw water to be treated in the present invention includes any water such as well water, tap water, river water, industrial water, middle water, sewage and the like.
 以下に、図3を参照して、本発明の第1態様について具体的に説明する。 Hereinafter, the first aspect of the present invention will be described in detail with reference to FIG.
 図3は、本発明の第1態様の実施形態を示す系統図である。原水はまず通液型電気二重層コンデンサ脱塩装置11に導入されて処理されることにより、ナトリウムイオン、カルシウムイオン、マグネシウムイオン等の陽イオン、及び塩化物イオン、硫酸イオン、硝酸イオン等の陰イオンが除去される。通液型電気二重層コンデンサ脱塩装置11により、原水中のイオンを少なくとも数十%以上除去することができ、これに続く軟化器12のイオン負荷を数分の一から数十分の一に低減することができる。従って、軟化器12の再生に使用する塩化ナトリウムの量も数分の一から数十分の一に低減することができるとともに、軟水器12の処理水が給水タンク13を介してボイラ14に給水されることにより、ボイラ水中に持ち込まれる塩類の濃度を大幅に低減することができ、これらの溶存塩類に起因する電気伝導率の上昇も大幅に低減させることができる。このため、ブロー水を大幅に削減することが可能となり、ブローによって排出される水と熱が削減されると共に、所定の蒸気を発生するためのボイラへの給水量も減少する。この結果、通液型電気二重層コンデンサ脱塩装置11や軟化器12を処理水量の小さなものにすることができ、軟化器の再生に使用する塩化ナトリウムの量が更に削減されるというメリットが得られる。また、ボイラ14への給水量が減少することで、給水に所定濃度添加する水処理薬品の使用量も削減される。更に、ブローの削減により、ボイラ水の濃縮が上昇するため、ボイラ水中に所定濃度を維持することにより缶内の腐食やスケールを防止する水処理薬品については添加濃度を従来に比べてより低くすることができる。また、給水に分子内にカルボキシル基を有する水溶性ポリマーを添加することで、給水中にごく微量に含まれる硬度成分のボイラ缶内におけるスケール化を防止し、伝熱ロスやスケール下部における腐食の発生等も抑制した水処理を行うこともできる。 FIG. 3 is a system diagram showing an embodiment of the first aspect of the present invention. The raw water is first introduced into the flow-through type electric double layer capacitor demineralizer 11 and processed, so that cations such as sodium ion, calcium ion and magnesium ion, and negative ions such as chloride ion, sulfate ion and nitrate ion are obtained. Ions are removed. At least several tens of percent or more of ions in the raw water can be removed by the liquid passing type electric double layer capacitor desalting apparatus 11, and the subsequent ion load of the softener 12 is reduced to a fraction of a few tenths. Can be reduced. Accordingly, the amount of sodium chloride used for the regeneration of the softener 12 can be reduced to a fraction of a few tenths, and the treated water of the water softener 12 is supplied to the boiler 14 via the water supply tank 13. As a result, the concentration of salts brought into the boiler water can be greatly reduced, and the increase in electrical conductivity caused by these dissolved salts can also be greatly reduced. For this reason, it becomes possible to reduce blow water significantly, the water and heat discharged by blow are reduced, and the amount of water supplied to the boiler for generating predetermined steam is also reduced. As a result, the liquid flow type electric double layer capacitor desalinator 11 and the softener 12 can be reduced in the amount of treated water, and there is an advantage that the amount of sodium chloride used for the regeneration of the softener is further reduced. It is done. Moreover, since the amount of water supplied to the boiler 14 is reduced, the amount of water treatment chemical added to the water supply at a predetermined concentration is also reduced. Furthermore, since the concentration of boiler water increases due to the reduction in blow, the concentration of water treatment chemicals that prevent corrosion and scale in the can by maintaining a predetermined concentration in the boiler water is lower than in the past. be able to. In addition, by adding a water-soluble polymer having a carboxyl group in the molecule to the feed water, scaling of the hardness component contained in the trace amount in the boiler can be prevented, and heat transfer loss and corrosion at the bottom of the scale are prevented. Water treatment in which generation and the like are suppressed can also be performed.
 第1態様において、通液型電気二重層コンデンサ脱塩装置における水回収率は80~95%程度で溶存塩類の除去率は70~90%程度とすることが好ましい。通液型電気二重層コンデンサ脱塩装置の水回収率が低過ぎると原水使用量が増し、高過ぎると溶存塩類を十分に除去しない。通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率が低過ぎると、後段の軟化器のイオン負荷が大きくなり、軟化器の再生頻度が高くなる。通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率が高過ぎると、使用電力の増加により経済性が低下する。 In the first embodiment, it is preferable that the water recovery rate in the liquid passing type electric double layer capacitor desalting apparatus is about 80 to 95% and the removal rate of dissolved salts is about 70 to 90%. If the water recovery rate of the flow-through type electric double layer capacitor desalinator is too low, the amount of raw water used will increase, and if it is too high, the dissolved salts will not be removed sufficiently. If the removal rate of the dissolved salt in the liquid-passing electric double layer capacitor desalting apparatus is too low, the ion load of the subsequent softener increases and the softener regeneration frequency increases. If the removal rate of dissolved salts in the liquid-passing electric double layer capacitor desalting apparatus is too high, the economic efficiency decreases due to an increase in power consumption.
 図4は、本発明の第2態様の実施形態を示す系統図である。原水を通液型電気二重層コンデンサ脱塩装置21に通水して溶存イオンが数分の一から数十分の一に低減された処理水が、軟水器を介することなくそのまま給水タンク22に供給される。この給水タンク22には、回収した蒸気凝縮水(ドレン)も供給される。この給水タンク22の水に、通液型電気二重層コンデンサ脱塩装置21の処理水流量に比例して、分子内にカルボキシル基を有する水溶性ポリマーを添加してボイラに給水する。本実施形態では軟化器を使用しないため設備がシンプルになるとともに、軟化器の再生用の塩化ナトリウムが不要となる。また、ボイラに持ち込まれる塩類濃度は、原水を軟化器のみで処理する場合に比べて大幅に低減されるため、ブローを削減することが可能となり、排出される熱や水、水処理薬品成分が削減され、給水量が減少することで添加する水処理薬品の量も削減される。また、給水として回収された蒸気凝縮水中に含まれる熱交換器や配管からの溶出鉄は、通液型電気二重層コンデンサ脱塩装置21の処理水中に含まれている硬度成分と、添加された分子内にカルボキシル基を有する水溶性ポリマーの効果により、効果的にブローで排出され、ボイラ缶内に持ち込まれることによる伝熱面へのスケール付着を効果的に抑制することができる。 FIG. 4 is a system diagram showing an embodiment of the second aspect of the present invention. The treated water in which the raw water is passed through the liquid-type electric double layer condenser desalination device 21 and the dissolved ions are reduced to a fraction of a few tenths is supplied to the water supply tank 22 without passing through the water softener. Supplied. The water supply tank 22 is also supplied with the recovered steam condensed water (drain). A water-soluble polymer having a carboxyl group in the molecule is added to the water in the water supply tank 22 in proportion to the flow rate of the treated water in the liquid passing type electric double layer capacitor desalting apparatus 21 to supply water to the boiler. In this embodiment, since the softener is not used, the facilities are simplified, and sodium chloride for regenerating the softener is not necessary. In addition, the salt concentration brought into the boiler is greatly reduced compared to the case where raw water is treated only with a softener, so that blow can be reduced, and the discharged heat, water, and water treatment chemical components are reduced. The amount of water treatment chemicals to be added is reduced by reducing the amount of water supplied. In addition, the iron eluted from the heat exchanger and the piping contained in the steam condensed water recovered as the feed water was added with the hardness component contained in the treated water of the liquid passing type electric double layer capacitor demineralizer 21. Due to the effect of the water-soluble polymer having a carboxyl group in the molecule, it is possible to effectively prevent the scale from adhering to the heat transfer surface by being blown out and brought into the boiler can.
 第2態様において、通液型電気二重層コンデンサ脱塩装置における水回収率は80~95%程度で溶存塩類の除去率は70~90%程度とすることが好ましい。通液型電気二重層コンデンサ脱塩装置の水回収率が低過ぎると原水使用量が増し、高過ぎると溶存塩類を十分に除去しない。通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率が低過ぎるとブロー水量を多くする必要が生じるが、通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率が過度に高いと、通液型電気二重層コンデンサ脱塩装置の処理水中のカルシウムによる上記鉄のスケール化防止効果を十分に得ることができない。
 従って、通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率を適宜調整することにより、ボイラ給水中のカルシウム濃度が0.1~10mg-CaCO/L程度となるように、カルシウムを残留させることが好ましい。
In the second embodiment, it is preferable that the water recovery rate in the flow-through type electric double layer capacitor demineralizer is about 80 to 95% and the removal rate of dissolved salts is about 70 to 90%. If the water recovery rate of the flow-through type electric double layer capacitor desalinator is too low, the amount of raw water used will increase, and if it is too high, the dissolved salts will not be removed sufficiently. If the removal rate of dissolved salt in the flow-through type electric double layer capacitor demineralizer is too low, it is necessary to increase the amount of blown water, but the removal rate of dissolved salt in the flow-through type electric double layer capacitor demineralizer is excessively high. In addition, the effect of preventing the above-described iron from being scaled by calcium in the treated water of the liquid passing type electric double layer capacitor desalting apparatus cannot be sufficiently obtained.
Accordingly, by appropriately adjusting the removal rate of dissolved salts of the liquid passing type electric double layer capacitor demineralizer, the calcium is adjusted so that the calcium concentration in the boiler feed water is about 0.1 to 10 mg-CaCO 3 / L. It is preferable to leave it.
 本発明で使用される分子内にカルボキシル基を有する水溶性ポリマーとしては、アクリル酸及び/又はその塩、マレイン酸及び/又はその塩、イタコン酸及び/又はその塩、メタクリル酸及び/又はその塩等のカルボン酸及び/又はその塩のホモポリマー、コポリマー、又はタポリマー;2-ヒドロキシ-3-アリロキシプロパンスルホン酸及び/又はその塩と上記のカルボン酸及び/又はその塩とのコポリマー;2-アクリルアミド-2-メチルプロパンスルホン酸及び/又はその塩と上記のカルボン酸及び/又はその塩とのコポリマー;ビス(ポリ-2-カルボキシエチル)ホスフィン酸及び/又はその塩;カルボキシメチルセルロースなどが挙げられる。なお、上記のカルボン酸、スルホン酸、ホスフィン酸の塩としては、ナトリウム塩、カリウム塩などのアルカリ金属塩が挙げられる。
 分子内にカルボキシル基を有する水溶性ポリマーとしては、なかでもアクリル酸ナトリウムのホモポリマーが好適である。
Examples of the water-soluble polymer having a carboxyl group in the molecule include acrylic acid and / or a salt thereof, maleic acid and / or a salt thereof, itaconic acid and / or a salt thereof, methacrylic acid and / or a salt thereof. Homopolymers, copolymers, or terpolymers of carboxylic acids and / or salts thereof such as 2-hydroxy-3-allyloxypropane sulfonic acid and / or salts thereof and copolymers of the above carboxylic acids and / or salts thereof; Copolymers of acrylamido-2-methylpropanesulfonic acid and / or its salt and the above carboxylic acid and / or its salt; bis (poly-2-carboxyethyl) phosphinic acid and / or its salt; carboxymethylcellulose and the like . Examples of the carboxylic acid, sulfonic acid, and phosphinic acid salts include alkali metal salts such as sodium salts and potassium salts.
As the water-soluble polymer having a carboxyl group in the molecule, a sodium acrylate homopolymer is particularly preferable.
 分子内にカルボキシル基を有する水溶性ポリマーの重量平均分子量は、1000~100000、特に1500~50000であることが好ましい。この分子量が過度に大きいとカルシウムとの結合によりゲル化物が生成してストレーナ等を閉塞させるおそれがある。この分子量が、小さ過ぎると十分な効果を発揮しないことがある。 The weight average molecular weight of the water-soluble polymer having a carboxyl group in the molecule is preferably 1000 to 100,000, particularly 1500 to 50,000. If the molecular weight is excessively large, a gelled product may be generated due to binding with calcium, and the strainer or the like may be blocked. If this molecular weight is too small, sufficient effects may not be exhibited.
 分子内にカルボキシル基を有する水溶性ポリマーの添加量は、ボイラ給水中のカルシウム濃度に対して0.5~10倍、より望ましくは1~5倍の濃度となるように調整するのが良い。上記下限よりも水溶性ポリマーの添加濃度が多くなると、蒸気凝縮水の回収ラインから持ち込まれた鉄の分散効果が低下し、スケールの付着量が増加する。上記上限よりも水溶性ポリマーの添加濃度が少ないと、通液型電気二重層コンデンサ脱塩装置の処理水に含まれている硬度成分のボイラ缶内におけるスケール付着の防止効果が不十分となることがある。 The amount of the water-soluble polymer having a carboxyl group in the molecule is adjusted to be 0.5 to 10 times, more preferably 1 to 5 times the calcium concentration in the boiler feed water. If the concentration of the water-soluble polymer added is higher than the above lower limit, the effect of dispersing iron brought in from the steam condensed water recovery line is reduced, and the amount of scale attached increases. If the addition concentration of the water-soluble polymer is less than the above upper limit, the effect of preventing scale adhesion in the boiler can of the hardness component contained in the treated water of the liquid-type electric double layer capacitor demineralizer will be insufficient. There is.
 本発明においては、上記水溶性ポリマーの他に、水処理薬品として一般的に使用するアルカリ剤(NaOH、KOH、KCO、NaCOなど)や脱酸素剤(ヒドラジン、タンニン、タンニン酸及び/又はその塩、エリソルビン酸及び/又はその塩、アスコルビン酸及び/又はその塩、グルコースなど)、腐食抑制剤(グルコン酸及び/又はその塩、グルコヘプトン酸及び/又はその塩、コハク酸及び/又はその塩、クエン酸及び/又はその塩、酒石酸及び/又はその塩など)、りん酸及び/又はその塩、重合りん酸及び/又はその塩、ホスホン酸及び/又はその塩等を併用しても良い。 In the present invention, in addition to the water-soluble polymer, an alkali agent (NaOH, KOH, K 2 CO 3 , Na 2 CO 3 etc.) or an oxygen scavenger (hydrazine, tannin, tannin) generally used as a water treatment chemical Acid and / or salt thereof, erythorbic acid and / or salt thereof, ascorbic acid and / or salt thereof, glucose, etc.), corrosion inhibitor (gluconic acid and / or salt thereof, glucoheptonic acid and / or salt thereof, succinic acid and / Or salt thereof, citric acid and / or salt thereof, tartaric acid and / or salt thereof, etc.), phosphoric acid and / or salt thereof, polymerized phosphoric acid and / or salt thereof, phosphonic acid and / or salt thereof, etc. May be.
 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
 なお、以下の実施例及び比較例で処理した原水は、下記水質の日本国栃木県野木町の水道水である。
<原水水質>
 電気伝導率:25mS/m
 Mアルカリ度:23mg-CaCO/L
 シリカ:18mg/L
 Ca硬度:30mg-CaCO/L
 Mg硬度:15mg-CaCO/L
In addition, the raw | natural water processed by the following Example and comparative example is a tap water of Nogi-machi, Tochigi Prefecture, Japan with the following water quality.
<Raw water quality>
Electrical conductivity: 25mS / m
M alkalinity: 23 mg-CaCO 3 / L
Silica: 18mg / L
Ca hardness: 30 mg-CaCO 3 / L
Mg hardness: 15 mg-CaCO 3 / L
[比較例1]
 野木町水を、陽イオン交換樹脂量18Lの軟化器に通水した処理水を給水タンクに入れ、これに水処理薬品として脱酸素剤のエリソルビン酸ナトリウム30mg/Lとアルカリ剤としてボイラ水中のPアルカリ度がシリカの1.7倍濃度となるNaOH27mg/Lを添加しながら、0.450m/hで実験用ボイラに給水し、圧力0.7MPaにてボイラ水の電気伝導率が300mS/mとなるようにブローしながら10日間運転した。
 このときのブロー率は平均で13.5%、蒸発量は0.39トン/hであった。また、試験期間中に軟化器の再生を6回行い、再生に使用した塩化ナトリウムは13.8kgであった。
[Comparative Example 1]
The treated water obtained by passing Nogicho water through a softener with a cation exchange resin amount of 18L is put in a water supply tank, and as a water treatment chemical, sodium erythorbate 30mg / L as an oxygen scavenger and P in boiler water as an alkali agent are added. While adding 27 mg / L of NaOH whose alkalinity is 1.7 times that of silica, water was supplied to the experimental boiler at 0.450 m 3 / h, and the electrical conductivity of the boiler water was 300 mS / m at a pressure of 0.7 MPa. The car was operated for 10 days while blowing.
At this time, the blow rate was 13.5% on average and the evaporation amount was 0.39 ton / h. Moreover, the softener was regenerated 6 times during the test period, and the sodium chloride used for the regeneration was 13.8 kg.
[比較例2]
 比較例1において、野木町水を軟化器で処理した後に、逆浸透膜装置に通水して水回収率80%で運転し(このときの溶存塩類の除去率は平均98%)、逆浸透膜装置の処理水を給水タンクに入れ、これに水処理薬品として脱酸素剤のエリソルビン酸ナトリウム30mg/Lと、アルカリ剤としてボイラ水のpHが11.5となりブロー率3.0%で電気伝導率が300mS/mとなるように算出したNaOH19mg/Lを添加しながら実験用ボイラに給水し、圧力0.7MPaにて10日間運転した。
 このときの蒸発量は0.39t/hであった。ボイラへの給水量は0.401m/h、原水流量は平均0.501m/hであり、試験期間中に軟化器の再生を7回行い、再生に使用した塩化ナトリウムは16.1kgであった。
[Comparative Example 2]
In Comparative Example 1, after treating Nogicho water with a softener, it was passed through a reverse osmosis membrane device and operated at a water recovery rate of 80% (the removal rate of dissolved salts at this time was 98% on average), and reverse osmosis The treated water of the membrane device is put into a water supply tank, and the water treatment chemical is sodium erythorbate 30 mg / L as the oxygen scavenger, and the pH of the boiler water as the alkali agent is 11.5, and the electrical conductivity is 3.0%. While adding NaOH 19 mg / L calculated so that the rate was 300 mS / m, water was supplied to the experimental boiler and operated at a pressure of 0.7 MPa for 10 days.
The amount of evaporation at this time was 0.39 t / h. The water supply to the boiler is 0.401 m 3 / h, the raw water flow rate is 0.501 m 3 / h on average, and the softener is regenerated 7 times during the test period. The sodium chloride used for the regeneration is 16.1 kg. there were.
[実施例1]
 野木町水を、通液型電気二重層コンデンサ脱塩装置に通水し、水回収率90%で運転し(このときの溶存塩類の除去率は平均80%)、通液型電気二重層コンデンサ脱塩装置の処理水を比較例1と同様に軟化器に通水した処理水を給水タンクに入れ、これに水処理薬品として脱酸素剤のエリソルビン酸ナトリウム30mg/Lとアルカリ剤としてボイラ水中のPアルカリ度がシリカの1.7倍濃度となるNaOH17mg/Lを添加しながら、実験用ボイラに給水し、圧力0.7MPaにてボイラ水の電気伝導率が300mS/mとなるようにブローしながら10日間運転した。
 このときのブロー率は平均で3.0%、蒸発量は0.39t/hであった。ボイラへの給水量は0.401m/h、原水流量は平均0.446m/hであり、試験期間中に軟化器の再生を1回行い、再生に使用した塩化ナトリウムは2.3kgであった。
[Example 1]
Nogicho water is passed through a flow-through type electric double-layer capacitor desalination unit and operated at a water recovery rate of 90% (average removal rate of dissolved salts at this time is 80%). The treated water of the desalinizer was passed through the softener as in Comparative Example 1, and the treated water was placed in a water supply tank. The water treatment chemical was deoxygenated sodium erythorbate 30 mg / L and the alkaline agent was boiler water. While adding 17 mg / L of NaOH whose P alkalinity is 1.7 times that of silica, water is supplied to the experimental boiler and blown at a pressure of 0.7 MPa so that the electrical conductivity of the boiler water is 300 mS / m. I drove for 10 days.
At this time, the blow rate was 3.0% on average and the evaporation amount was 0.39 t / h. The amount of water supplied to the boiler is 0.401 m 3 / h, the raw water flow rate is 0.446 m 3 / h on average, and the softener is regenerated once during the test period. The sodium chloride used for the regeneration is 2.3 kg. there were.
 上記の比較例1,2及び実施例1の結果から、次のことが分かる。
 即ち、通液型電気二重層コンデンサ脱塩装置と軟化器で処理した実施例1では、軟化器のみで処理した比較例1に比べて水の使用量は約1m、塩化ナトリウムの使用量は11.5(=13.8-2.3)kg削減され、燃料のA重油の使用量も2.5%削減された。また、実施例1では、軟化器と逆浸透膜装置で処理した比較例2に比べて水の使用量は132(=(0.501-0.446)×24×10)m、塩化ナトリウムの使用量は13.8(=16.1-2.3)kg削減された。燃料使用量は同等であった。
From the results of Comparative Examples 1 and 2 and Example 1, the following can be understood.
That is, in Example 1 treated with the liquid-type electric double layer capacitor desalting apparatus and the softener, the amount of water used was about 1 m 3 and the amount of sodium chloride used was less than that of Comparative Example 1 treated with the softener alone. The fuel consumption was reduced by 11.5 (= 13.8-2.3) kg, and the amount of A fuel oil used was reduced by 2.5%. In Example 1, the amount of water used was 132 (= (0.501−0.446) × 24 × 10) m 3 , sodium chloride compared to Comparative Example 2 treated with a softener and a reverse osmosis membrane device. Was reduced by 13.8 (= 16.1-2.3) kg. Fuel consumption was equivalent.
[実施例2~7]
 野木町水を、通液型電気二重層コンデンサ脱塩装置に通水し、水回収率90%で運転し(このときの溶存塩類の除去率は平均80%)、通液型電気二重層コンデンサ脱塩装置の処理水を軟化器で通水して水中のCaイオン及びMgイオンをNaイオンに置換してから容量10Lの給水タンクに入れた。また、この給水タンクに、蒸気凝縮水の給水タンクへの回収水を模擬して、90℃に加熱した純水に回収ラインにおける鉄の溶出を想定して鉄濃度が2mg/Lとなるように塩化第二鉄を添加したものを4L/hで供給した。この給水タンクからの給水に水処理薬品として腐食抑制剤のコハク酸を10mg/L、表1に示す水溶性ポリマーを表1に示す添加濃度で、また、アルカリ剤としてボイラ水中のPアルカリ度がシリカの1.7倍濃度となるNaOH13mg/Lを添加しながら、容量5Lのステンレス製テストボイラに給水し、圧力0.7MPa、蒸発量8L/h、ブロー率5%で運転した。
 1週間連続運転した後に停止して伝熱チューブ(ステンレス製、表面積200cm×3本)を取り出したところ、多量の赤褐色スケールの付着が認められたため、掻き取って付着量を測定した。結果を表1に示す。
[Examples 2 to 7]
Nogicho water is passed through a flow-through type electric double-layer capacitor desalination unit and operated at a water recovery rate of 90% (average removal rate of dissolved salts at this time is 80%). The treated water of the desalting apparatus was passed through a softener to replace Ca ions and Mg ions in the water with Na ions, and then put into a 10 L water supply tank. In addition, the water concentration in the water supply tank is 2 mg / L assuming that the water recovered in the water supply tank of steam condensate water is simulated and iron is eluted in the recovery line to pure water heated to 90 ° C. What added ferric chloride was supplied at 4 L / h. The water supply from this water tank is 10 mg / L of succinic acid as a corrosion inhibitor as a water treatment chemical, the water-soluble polymer shown in Table 1 is added at the concentration shown in Table 1, and the alkalinity of P alkali in boiler water is While adding 13 mg / L NaOH, which is 1.7 times the concentration of silica, water was supplied to a 5 L stainless steel test boiler and operated at a pressure of 0.7 MPa, an evaporation amount of 8 L / h, and a blow rate of 5%.
After continuous operation for one week, the heat transfer tube (made of stainless steel, surface area 200 cm 2 × 3) was taken out and a large amount of reddish brown scale was observed. The results are shown in Table 1.
[実施例8~19]
 実施例2において、軟化器を取り除き、水溶性ポリマーとして表1に示した水溶性ポリマーを表1に示す添加濃度で添加した他は同様の条件で運転し、同様に1週間連続運転した後の伝熱チューブの付着量を測定した。結果を表1に示す。
[Examples 8 to 19]
In Example 2, the softener was removed and the water-soluble polymer shown in Table 1 was added as the water-soluble polymer at the addition concentration shown in Table 1, and the operation was performed under the same conditions. The adhesion amount of the heat transfer tube was measured. The results are shown in Table 1.
 実施例1~17において、通液型電気二重層コンデンサ脱塩装置の処理水中のカルシウム濃度は6mg-CaCO/Lであり、この通液型電気二重層コンデンサ脱塩装置の処理水を更に軟化器で処理して上記凝縮水の回収水の模擬水と共にボイラ給水とした実施例2~7では、ボイラ給水のカルシウム濃度は0.1mg-CaCO/L未満であった。また、通液型電気二重層コンデンサ脱塩装置の処理水を軟化器で処理せずに上記凝縮水の回収水の模擬水と共にボイラ給水とした実施例8~19では、ボイラ給水中のカルシウム濃度は3mg-CaCO/Lであった。
 実施例2~19におけるボイラ給水のカルシウム濃度に対するポリマー添加濃度比は表1に示す通りである。
In Examples 1 to 17, the calcium concentration in the treated water of the liquid passing type electric double layer capacitor desalting apparatus is 6 mg-CaCO 3 / L, and the treated water of this liquid passing type electric double layer capacitor desalting apparatus is further softened. In Examples 2 to 7 where the boiler feed water was used together with the simulated water collected from the condensed water after being treated in a vessel, the calcium concentration of the boiler feed water was less than 0.1 mg-CaCO 3 / L. Further, in Examples 8 to 19 in which the treated water of the liquid-type electric double layer condenser desalination apparatus was not treated with a softener and was used as boiler feed water together with the simulated water of the condensed water recovered, the calcium concentration in the boiler feed water was Was 3 mg-CaCO 3 / L.
The ratio of the polymer addition concentration to the calcium concentration of boiler feed water in Examples 2 to 19 is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の実施例2~19の結果から、蒸気凝縮水を回収して再利用する場合において、軟化器を用いずに、通液型電気二重層コンデンサ脱塩装置のみで、分子内にカルボキシル基を有する水溶性ポリマーの所定量を添加することにより、スケール障害を防止して安定運転を継続することができることが分かる。 From the results of Examples 2 to 19 in Table 1, in the case where steam condensate is recovered and reused, a carboxyl group in the molecule can be obtained by using only a liquid-type electric double layer capacitor desalting apparatus without using a softener. It can be seen that, by adding a predetermined amount of the water-soluble polymer having, the scale operation can be prevented and the stable operation can be continued.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2011年9月15日付で出願された日本特許出願(特願2011-201947)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
Note that this application is based on a Japanese patent application filed on September 15, 2011 (Japanese Patent Application No. 2011-2001947), which is incorporated by reference in its entirety.

Claims (10)

  1.  蒸気発生器の給水を製造するための水処理方法であって、
     原水を、軟化器を使用せずに、通液型電気二重層コンデンサ脱塩装置に通水して処理水を得る工程と、
     この処理水と蒸気凝縮水とを混合して給水を製造する工程と、
     該給水に、分子内にカルボキシル基を有する水溶性ポリマーを添加する工程と
    を有する水処理方法。
    A water treatment method for producing feed water for a steam generator,
    Passing raw water through a liquid-permeable electric double layer capacitor desalinator without using a softener to obtain treated water;
    The process of mixing this treated water and steam condensed water to produce feed water,
    Adding a water-soluble polymer having a carboxyl group in the molecule to the water supply.
  2.  請求項1において、前記蒸気発生器への給水中のカルシウム量に対して、前記カルボキシル基を有する水溶性ポリマーを1~5重量倍添加する水処理方法。 The water treatment method according to claim 1, wherein the water-soluble polymer having a carboxyl group is added 1 to 5 times by weight with respect to the amount of calcium in the water supplied to the steam generator.
  3.  請求項1又は2において、前記カルボキシル基を有する水溶性ポリマーが、アクリル酸及び/又はその塩、マレイン酸及び/又はその塩、イタコン酸及び/又はその塩、メタクリル酸及び/又はその塩等のカルボン酸及び/又はその塩のホモポリマー、コポリマー、又はタポリマー;2-ヒドロキシ-3-アリロキシプロパンスルホン酸及び/又はその塩と上記のカルボン酸及び/又はその塩とのコポリマー;2-アクリルアミド-2-メチルプロパンスルホン酸及び/又はその塩と上記のカルボン酸及び/又はその塩とのコポリマー;ビス(ポリ-2-カルボキシエチル)ホスフィン酸及び/又はその塩;カルボキシメチルセルロースよりなる群から選ばれた少なくとも1つである水処理方法。 3. The water-soluble polymer having a carboxyl group according to claim 1, wherein acrylic acid and / or a salt thereof, maleic acid and / or a salt thereof, itaconic acid and / or a salt thereof, methacrylic acid and / or a salt thereof, and the like Homopolymers, copolymers or terpolymers of carboxylic acids and / or their salts; copolymers of 2-hydroxy-3-allyloxypropanesulfonic acid and / or its salts with the above carboxylic acids and / or their salts; A copolymer of 2-methylpropanesulfonic acid and / or salt thereof and the above carboxylic acid and / or salt thereof; bis (poly-2-carboxyethyl) phosphinic acid and / or salt thereof; selected from the group consisting of carboxymethylcellulose A water treatment method that is at least one.
  4.  請求項1又は2において、前記カルボキシル基を有する水溶性ポリマーが、アクリル酸ナトリウムのホモポリマーである水処理方法。 The water treatment method according to claim 1 or 2, wherein the water-soluble polymer having a carboxyl group is a homopolymer of sodium acrylate.
  5.  請求項1又は2において、前記カルボキシル基を有する水溶性ポリマーが、ポリアクリル酸-2-ヒドロキシ-3-アリロキシプロパンスルホン酸ナトリウム、ポリアクリル酸-2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム、ポリビス(ポリ-2-カルボキシルエチル)ホスフィン酸ナトリウム、カルボキシメチルセルロースである水処理方法。 The water-soluble polymer having a carboxyl group according to claim 1 or 2, wherein the sodium polyacrylic acid-2-hydroxy-3-allyloxypropane sulfonate, sodium polyacrylic acid-2-acrylamido-2-methylpropanesulfonate, A water treatment method comprising sodium polybis (poly-2-carboxylethyl) phosphinate, carboxymethylcellulose.
  6.  請求項1又は2において、原水は、井水、水道水、又は河川水である水処理方法。 3. The water treatment method according to claim 1 or 2, wherein the raw water is well water, tap water, or river water.
  7.  請求項1又は2において、通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率が70~90%である水処理方法。 The water treatment method according to claim 1 or 2, wherein the removal rate of dissolved salts in the liquid-passing electric double layer capacitor desalting apparatus is 70 to 90%.
  8.  蒸気発生器の給水を製造するための水処理方法であって、
     原水を通液型電気二重層コンデンサ脱塩装置に通水する工程と、
     該脱塩装置で処理された水を軟化器に通水する工程と
    を有する水処理方法。
    A water treatment method for producing feed water for a steam generator,
    Passing raw water through a liquid-type electric double-layer capacitor desalination device;
    And a step of passing water treated by the desalting apparatus through a softener.
  9.  請求項8において、原水は、井水、水道水、又は河川水である水処理方法。 9. The water treatment method according to claim 8, wherein the raw water is well water, tap water, or river water.
  10.  請求項8又は9において、通液型電気二重層コンデンサ脱塩装置の溶存塩類の除去率が70~90%である水処理方法。 The water treatment method according to claim 8 or 9, wherein the removal rate of dissolved salts in the liquid passing type electric double layer capacitor demineralizer is 70 to 90%.
PCT/JP2012/072329 2011-09-15 2012-09-03 Water treatment method WO2013038933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201400256PA SG11201400256PA (en) 2011-09-15 2012-09-03 Water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201947A JP5987286B2 (en) 2011-09-15 2011-09-15 Water treatment method
JP2011-201947 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038933A1 true WO2013038933A1 (en) 2013-03-21

Family

ID=47883164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072329 WO2013038933A1 (en) 2011-09-15 2012-09-03 Water treatment method

Country Status (5)

Country Link
JP (1) JP5987286B2 (en)
MY (1) MY171036A (en)
SG (1) SG11201400256PA (en)
TW (1) TWI548595B (en)
WO (1) WO2013038933A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068797A1 (en) 2013-11-07 2015-05-14 富士フイルム株式会社 Ion exchange membrane electrode assembly, method for manufacturing same, and capacitor demineralization device
CN104528958B (en) * 2015-01-13 2016-04-06 周新华 The flexible water treatment ion bar of high pressure static electricity
CN111495193A (en) * 2019-05-16 2020-08-07 河北权科环保科技有限公司 Reverse osmosis membrane repairing reagent and preparation method and application thereof
JP6864275B2 (en) * 2020-03-17 2021-04-28 三浦工業株式会社 Fuel cell system
TWI739524B (en) * 2020-07-22 2021-09-11 財團法人工業技術研究院 Water treatment device and water treatment method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154996A (en) * 1998-08-19 2000-06-06 Miura Co Ltd Method for removing scale of boiler
JP2001087767A (en) * 1999-09-24 2001-04-03 Japan Organo Co Ltd Method and device for passing liquid in liquid passing type capacitor
JP2002210468A (en) * 2001-01-19 2002-07-30 Kurita Water Ind Ltd Demineralizing device and demineralizing method
JP2002273439A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Desalting method and device therefor
JP2003039070A (en) * 2001-07-27 2003-02-12 Kurita Water Ind Ltd Device and method for producing desalted water
JP2008006369A (en) * 2006-06-29 2008-01-17 Kurita Water Ind Ltd Scale prevention method
JP2008209126A (en) * 2007-02-23 2008-09-11 Kurita Water Ind Ltd Scale adhesion judging agent and scale adhesion judging method
JP2008221143A (en) * 2007-03-13 2008-09-25 Kurita Water Ind Ltd Magnesium based scale preventive
JP2010230183A (en) * 2009-03-25 2010-10-14 Miura Co Ltd Steam boiler apparatus and method for operating the same
JP2011147893A (en) * 2010-01-22 2011-08-04 Kurita Water Ind Ltd Method for treating water of boiler water system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117607B2 (en) * 2002-10-01 2008-07-16 栗田工業株式会社 Cooling water treatment method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154996A (en) * 1998-08-19 2000-06-06 Miura Co Ltd Method for removing scale of boiler
JP2001087767A (en) * 1999-09-24 2001-04-03 Japan Organo Co Ltd Method and device for passing liquid in liquid passing type capacitor
JP2002210468A (en) * 2001-01-19 2002-07-30 Kurita Water Ind Ltd Demineralizing device and demineralizing method
JP2002273439A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Desalting method and device therefor
JP2003039070A (en) * 2001-07-27 2003-02-12 Kurita Water Ind Ltd Device and method for producing desalted water
JP2008006369A (en) * 2006-06-29 2008-01-17 Kurita Water Ind Ltd Scale prevention method
JP2008209126A (en) * 2007-02-23 2008-09-11 Kurita Water Ind Ltd Scale adhesion judging agent and scale adhesion judging method
JP2008221143A (en) * 2007-03-13 2008-09-25 Kurita Water Ind Ltd Magnesium based scale preventive
JP2010230183A (en) * 2009-03-25 2010-10-14 Miura Co Ltd Steam boiler apparatus and method for operating the same
JP2011147893A (en) * 2010-01-22 2011-08-04 Kurita Water Ind Ltd Method for treating water of boiler water system

Also Published As

Publication number Publication date
TWI548595B (en) 2016-09-11
TW201313619A (en) 2013-04-01
JP2013063364A (en) 2013-04-11
JP5987286B2 (en) 2016-09-07
SG11201400256PA (en) 2014-03-28
MY171036A (en) 2019-09-23

Similar Documents

Publication Publication Date Title
JP4648307B2 (en) Continuous electrodeionization apparatus and method
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN103755082B (en) System and method for resource recovery of regenerated wastewater of ion exchange resin
TW201335077A (en) Electrodialysis with ion exchange and bi-polar electrodialysis
AU2014212394B2 (en) Rechargeable electrochemical cells
WO2013038933A1 (en) Water treatment method
JP4449204B2 (en) Boiler feed water treatment apparatus and boiler feed water treatment method
JP2011131210A (en) Device and method for treating nitrogen compound-containing acidic solutions
CN203768157U (en) Ion exchange resin regenerated waste water resource recycling system
JP3773187B2 (en) Desalination wastewater treatment method and apparatus
JP2011131209A (en) Method and apparatus for treating acidic solution
JP2012149001A (en) Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
KR20140036609A (en) Desalination method and system
JP3729347B2 (en) Electric regenerative desalination equipment
JPH09294974A (en) Water treatment apparatus
JPS586297A (en) Treatment of raw water of high content of silica
JP3731847B2 (en) Chemical cleaning method for electric deionized water production equipment
JP2012196630A (en) Treatment equipment and treatment method of acid liquid
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JP2012196626A (en) Treatment equipment and treatment method of acid liquid
JP3979889B2 (en) How to produce deionized water
JPH11179369A (en) Electric deionized water producing apparatus
JP2012210611A (en) Apparatus and method for treating acidic solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832267

Country of ref document: EP

Kind code of ref document: A1