WO2013037297A1 - 小区切换的控制和测量方法、装置及*** - Google Patents

小区切换的控制和测量方法、装置及*** Download PDF

Info

Publication number
WO2013037297A1
WO2013037297A1 PCT/CN2012/081344 CN2012081344W WO2013037297A1 WO 2013037297 A1 WO2013037297 A1 WO 2013037297A1 CN 2012081344 W CN2012081344 W CN 2012081344W WO 2013037297 A1 WO2013037297 A1 WO 2013037297A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
information
terminal
cell
target
Prior art date
Application number
PCT/CN2012/081344
Other languages
English (en)
French (fr)
Inventor
肖登坤
韩静
张宇翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12832458.9A priority Critical patent/EP2741556B1/en
Publication of WO2013037297A1 publication Critical patent/WO2013037297A1/zh
Priority to US14/204,784 priority patent/US9179374B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method, device, and system for controlling and measuring cell handover. Background of the invention
  • LPN Low Power Node
  • the low power node and the macro cell node together form a heterogeneous network.
  • the main uses of low-power nodes are: coverage enhancement, increased capacity, improved edge user communication quality, group mobility and temporary network deployment, and reduced costs.
  • the introduction of low-power nodes has changed the topology of the original communication system. Therefore, it is of practical significance to study the new features in heterogeneous network scenarios.
  • a process of performing a cell handover by a terminal also referred to as a user equipment, UE for short
  • the source macro cell node that is, the source base station
  • the terminal sends a handover command to the terminal; after receiving the handover command, the terminal sends a random to the target macro base node, that is, the target base station.
  • the access request; the target base station receives the random access request sent by the terminal, allocates resources required for the terminal to communicate in the target macro cell, and passes the corresponding configuration information of the resource to a random access response (RAR).
  • the terminal sends the RAR and performs resource reconfiguration of the target macro cell according to the configuration information carried by the RAR, thereby completing the handover of the terminal from the source macro cell to the target macro cell.
  • Het-net For the Heterogenous network (Het-net), the same frequency interference exists between the macro cell node and the low power node due to the introduction of the low power node. Due to Due to the co-channel interference of the neighboring macro cell node and the low-power node, the probability of failure of the RAR transmission is high, so that the failure rate of the terminal to perform cell handover is high. Summary of the invention
  • the embodiments of the present invention provide a method and a device and a system for controlling and measuring cell handover, which are used to improve the success rate of a cell handover by a terminal.
  • the embodiment of the invention provides a method for controlling cell handover, which includes:
  • the random access response After receiving the random access request sent by the terminal, performing a beamforming on the random access response corresponding to the random access request according to the terminal information, and sending the packet to the terminal; the random access response includes And the configuration information of the resources required for the terminal to communicate after the terminal switches from the source cell covered by the source base station to the target cell covered by the target base station.
  • the embodiment of the present invention further provides another method for controlling cell handover, including:
  • the embodiment of the invention further provides a method for measuring cell information, including:
  • the embodiment of the invention further provides a base station, including:
  • An obtaining module configured to acquire terminal information
  • a processing module configured to: after receiving the random access request sent by the terminal, perform a beam U-shape on the random access response corresponding to the random access request according to the terminal information acquired by the acquiring module; a sending module, configured to send the random access response after the beam shaping of the processing module to the terminal; the random access response includes: the terminal switching from a source cell covered by a source base station to a target base station coverage Configuration information of resources required for communication by the terminal after the target cell.
  • Another embodiment of the present invention provides another base station, including:
  • An obtaining module configured to acquire terminal information
  • a sending module configured to send the terminal information acquired by the acquiring module to the target base station, where the target base station switches the target cell that is covered by the source cell covered by the source base station to the target cell covered by the target base station according to the terminal information.
  • the random access response is beamformed.
  • the embodiment of the invention further provides a terminal, including:
  • a receiving module configured to receive, by the source base station, a measurement indication that includes the information of the neighboring cell, where the measurement module is configured to measure the precoding of the neighboring cell according to the neighboring cell information included in the measurement indication received by the receiving module Matrix indicating information, where the neighboring cell includes a target cell;
  • a sending module configured to send, to the source base station, precoding matrix indication information of the neighboring cell measured by the measurement module.
  • the embodiment of the invention further provides a communication system, comprising: the source base station and the target base station.
  • the target base station may carry configuration information of resources required for the terminal to communicate in the target cell according to the terminal information in the process of the cell handover by the terminal.
  • the random access response performs beamforming and sends a beamforming shaped random access response to the terminal. Since the random access response enhances the signal strength transmitted to the terminal after being shaped by the terminal information beam, it can effectively suppress the transmission interference of the random access response, and increase the probability that the terminal correctly receives the random access response, thereby improving the terminal.
  • the success rate of cell handover is a method of cells required for the terminal to communicate in the target cell according to the terminal information in the process of the cell handover by the terminal.
  • the random access response performs beamforming and sends a beamforming shaped random access response to the terminal. Since the random access response enhances the signal strength transmitted to the terminal after being shaped by the terminal information beam, it can effectively suppress the transmission interference of the random access response, and increase the probability that the terminal correctly receives the random access response, thereby improving the terminal.
  • FIG. 1 is a flowchart of a method for controlling cell handover according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for controlling cell handover according to Embodiment 2 of the present invention
  • Embodiment 3 is a flowchart of a measurement method according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of a heterogeneous network of an LTE-A communication system in an application scenario according to an embodiment of the present invention
  • FIG. 5 is a signaling interaction diagram of a method for controlling cell handover according to Embodiment 4 of the present invention
  • FIG. 6 is a flowchart of a method for acquiring low-power node information according to Embodiment 5 of the present invention
  • FIG. 7 is a base station according to Embodiment 6 of the present invention; Schematic diagram of the structure;
  • FIG. 8 is a schematic structural diagram of a base station according to Embodiment 7 of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal according to Embodiment 8 of the present invention.
  • FIG. 10 is a schematic structural diagram of a communication system according to Embodiment 9 of the present invention. Mode for carrying out the invention
  • FIG. 1 is a flowchart of a method for controlling cell handover according to Embodiment 1 of the present invention.
  • the executor of this embodiment may be a target base station, and the method shown in FIG. 1 includes: Step 11: Obtain terminal information.
  • the terminal information includes: location information of the terminal, and/or precoding matrix indication information of the target cell measured by the terminal.
  • the location information of the terminal can be obtained through Global Positioning System (GPS) positioning, network positioning, and the like. Since the coverage area of the low power node is narrow, the location information of the low power node of the terminal serving the terminal can also be approximated as the location information of the terminal.
  • GPS Global Positioning System
  • Step 12 After receiving the random access request sent by the terminal, performing beamforming on the random access response corresponding to the random access request according to the terminal information, and sending the message to the terminal;
  • the input response includes: configuration information of resources required for the terminal to communicate after the terminal switches from the source cell covered by the source base station to the target cell covered by the target base station.
  • the terminal When the terminal receives the handover command sent by the source base station, the terminal sends a random access request to the target base station to request to switch from the source cell covered by the source base station to the target cell covered by the target base station.
  • the target base station After receiving the random access request sent by the terminal, the target base station allocates resources required for the terminal to communicate in the target cell, and generates a random access response carrying the configuration information of the resource. Thereafter, the target base station performs beamforming on the random access response according to the acquired terminal information, and sends a random access response after the terminal information beamforming to the terminal.
  • the target base station performs beamforming on the random access response carrying the configuration information of the resources required by the terminal in the target cell communication according to the terminal information, and sends a beamforming to the terminal. After random access response. Since the random access response enhances the signal strength transmitted to the terminal after being shaped by the terminal information beam, it can effectively suppress the transmission interference of the random access response, and increase the probability that the terminal correctly receives the random access response, thereby improving the terminal. The success rate of cell handover.
  • the target base station may obtain the foregoing terminal information by receiving a handover request sent by the source base station.
  • the handover request sent by the source base station may further include: information that is located in the source cell and serves the low power node of the terminal.
  • the target base station may end according to the service.
  • the information of the low-power node of the terminal, the terminal is allocated, and the resource required for the terminal to communicate after the terminal switches to the target cell, thereby facilitating the reduction of co-channel interference and improving the target base station as a terminal that is handed over to the target cell.
  • the accuracy of resource scheduling is provided.
  • FIG. 2 is a flowchart of a method for controlling cell handover according to Embodiment 2 of the present invention.
  • the executor of this embodiment may be a source base station, and the method shown in FIG. 2 includes:
  • Step 21 Obtain terminal information.
  • the terminal information includes: location information of the terminal, and/or precoding matrix indication information of the target cell measured by the terminal.
  • the location information of the terminal can be obtained by means of GPS positioning, network positioning, and the like. Since the coverage area of the low power node is narrow, the location information of the terminal serving the low power node can also be similar to the location information of the terminal.
  • the precoding matrix indication information of the target cell may be instructed by the source base station to measure the terminal.
  • the source base station may send, to the terminal, a measurement indication including the neighboring cell information, before the target base station sends the precoding matrix indication information of the target cell, to indicate that the terminal measures the precoding matrix indication information of the neighboring cell;
  • the base station receives the precoding matrix indication information of the neighboring cell measured by the terminal, where the neighboring cell includes the target cell.
  • Step 22 Send the terminal information to the target base station, so that the target base station performs, according to the terminal information, a random access response of the terminal switched from the source cell covered by the source base station to the target cell covered by the target base station. Beamforming.
  • the source base station sends the terminal information to the target base station in the process of the cell handover, so that when the terminal initiates the request for the random access target cell, the target base station may use the terminal information to communicate with the carried terminal in the target cell.
  • the random access response of the configuration information of the required resources is beamformed, and the beamformed random access response is sent to the terminal. Since the random access response enhances the signal strength transmitted to the terminal after beamforming, it can effectively suppress the transmission interference of the random access response, and increase the probability that the terminal correctly receives the random access response, thereby improving the terminal to perform the cell.
  • the success rate of the switch is the process of the cell handover, so that when the terminal initiates the request for the random access target cell, the target base station may use the terminal information to communicate with the carried terminal in the target cell.
  • the random access response of the configuration information of the required resources is beamformed, and the beamformed random access response is sent to the terminal. Since the random access response enhances the signal strength transmitted to the terminal after beamforming, it can effectively suppress the transmission
  • the source base station may carry the terminal positioning reference information in the handover request, and send the handover request and the like to the target base station.
  • the handover request sent by the source base station may further include: information that is located in the source cell and serves the low power node of the terminal.
  • the target base station may allocate the terminal to the terminal according to the information of the low power node serving the terminal, and the terminal switches to the target cell. The resources required for the terminal communication are later, thereby improving the accuracy of resource scheduling by the target base station for the terminal that is handed over to the target cell.
  • FIG. 3 is a flowchart of a measurement method according to Embodiment 3 of the present invention.
  • the execution host of this embodiment may be a terminal, and the method shown in FIG. 3 includes:
  • Step 31 Receive a measurement indication that the neighboring cell information is sent by the source base station.
  • the terminal When the terminal receives the measurement indication including the neighbor cell information, it determines that the Precoding Matrix Indicator (PMI) information of the neighboring cell needs to be measured.
  • PMI Precoding Matrix Indicator
  • Step 32 The precoding matrix indication information of the neighboring cell is measured and sent to the source base station according to the neighboring cell information, where the neighboring cell includes a target cell.
  • the terminal sends a measurement report to the source base station, where the measurement report includes PMI information of the neighboring cell currently measured by the terminal, where the PMI information of the neighboring cell measured by the terminal includes: PMI information of the target cell.
  • the terminal measures the PMI information of the neighboring cell including the target cell according to the measurement indication of the source base station, and reports the measurement report to the source base station.
  • the source base station may send, to the target base station, PMI information of the target cell currently measured by the terminal, for the target base station to send the random access response to the terminal according to the PMI information.
  • the beamforming is performed to suppress interference in the random access response transmission process, and the success rate of the cell handover by the terminal is improved.
  • FIG. 4 is a schematic diagram of a heterogeneous network of an LTE-A communication system in an application scenario according to an embodiment of the present invention.
  • the macro cell node and the low power node may form a heterogeneous network of the same frequency, wherein: the macro cell node is a base station, such as an evolved base station (E-UTRAN NodeB, Jane)
  • the eNB can be a remote radio head (RRH) or a repeater (Reapter).
  • each base station transmits the same center frequency and the coverage of the same cell range, and the low-power node is located in the cell covered by the eNB, and the coverage of the low-power node is smaller than the coverage range of the eNB.
  • the solid arrow in FIG. 4 indicates the signal transmitted by the serving cell of the UE, and the dotted arrow indicates the interference introduced by the neighboring cell. Affected by the interference, the probability of the UE UE cell handover failure is high.
  • the technical solution provided by the embodiment of the present invention can improve the cell handover success rate of the UE.
  • the technical solution provided by the embodiment of the present invention is described in detail below with reference to the heterogeneous network shown in FIG. 4 and in conjunction with FIG. 5 or FIG.
  • FIG. 5 is a signaling interaction diagram of a method for controlling cell handover according to Embodiment 4 of the present invention.
  • the UE needs to perform inter-cell handover, that is, the UE needs to switch from the source cell covered by the source eNB (represented as S-eNB) to the target cell covered by the target eNB (represented as T-eNB).
  • the method for controlling cell handover provided by this embodiment includes: Step 50: The S-eNB sends a measurement indication to the UE.
  • the measurement indication sent by the S_eNB to the UE includes the neighbor cell information, and is used to instruct the UE to test the PMI information of the neighboring cell according to the neighbor cell information; the neighbor cell includes the target cell to which the UE needs to switch.
  • Step 51 The UE sends a Measurement Report to the S-eNB.
  • the UE receives the measurement indication sent by the S-eNB, tests the PMI information of the neighboring cell according to the neighbor cell information included in the measurement indication, and sends a measurement report to the S-eNB.
  • the measurement report sent by the UE to the S-eN may include: location information of the UE, and/or PMI information of the neighboring cell measured by the UE.
  • Step 52 The S-eNB sends an enhanced handover request (Enhanced Handover Request) to the T-eNB, where the enhanced handover request includes UE information, where the UE information includes: location information of the UE, and/or a target cell measured by the UE. PMI.
  • Enhanced Handover Request includes UE information, where the UE information includes: location information of the UE, and/or a target cell measured by the UE. PMI.
  • the enhanced handover request may further include: low-work of the serving UE located in the source cell.
  • the information of the rate node, the information of the low power node serving the UE may include, but is not limited to: an RRH identifier of the serving UE, or a relay identifier of the serving UE.
  • Table 1 shows an example of a signaling format for an enhanced handover request.
  • the enhanced handover request shown in Table 1 is extended by adding a new information element (IE) based on the signaling format of the existing handover request.
  • IE information element
  • the state "M” indicates a mandatory cell
  • the state "0” indicates an optional cell
  • the new content "UE Information” may include the following cells:
  • the location information of the UE may be obtained by using a GPS positioning method or a network positioning method; the location information of the low-power node of the serving UE may also be approximated as the location information of the UE;
  • Serving UE RRH ID or Repeater ID a mandatory cell, where the low-power node identifier of the serving UE is, for example, a low-power node such as an RRH or a repeater serving the UE in the source cell. logo. Since the coverage of the low power node is small, the location information of the low power node of the serving UE may also be approximated as the location information of the UE;
  • PMI Indicates the PMI information of the target cell.
  • the T-eNB receives the enhanced handover request, and saves the UE information carried in the enhanced handover request.
  • the S-eNB may further carry other information of the low-power node of the service UE, such as location information and radio frequency information, in the handover request, and send the information to the T-eNB.
  • Step 53 The T-eNB sends a Handover Request ACK to the S-eNB.
  • the S_eNB instructs the UE to handover from the source cell to the target cell by transmitting a handover command to the UE.
  • the handover command may include, but is not limited to: T—the eNB covers measurement information, location information, and the like of the cell.
  • Step 55 The UE sends a random access code (RAPremable) to the T-eNB.
  • RAPremable random access code
  • the UE sends a random access request to the T-eNB, where the random access request includes a random access code, and is used to request to access the target cell.
  • Step 25 The T eNB allocates resources required for the UE to perform communication after the UE switches to the target cell, generates an RAR that carries the configuration information of the resource, and performs beamforming on the RAR according to the acquired UE information.
  • the T-eNB may identify, according to the low-power node of the serving UE, the resource currently used by the corresponding low-power node.
  • the information is allocated to the UE for resources required for communication after the UE switches to the target cell, thereby facilitating the reduction of co-channel interference.
  • the information of the low-power node serving the UE may be obtained by using, but not limited to, the following manner: the S-eNB notifies the T-eNB in the handover request, or by T - The eNB acquires from the MME, or acquires the method as shown in the fifth embodiment below.
  • the reason for reducing the same-frequency interference in this embodiment is as follows: low-power nodes are usually distributed at the cell edge, and the time required for the UE to perform cell handover is usually short (such as millisecond level).
  • the distance between the UE and the low-power node of the original serving UE is usually closer; when the T-eNB allocates resources for the UE, the resource block allocated for the UE is different from the resource block currently used by the low-power node of the original serving UE, so that The resource used by the UE communication has a larger frequency interval than the resource used by the low-power node of the original serving UE, thereby reducing the same-frequency interference caused by the low-power node of the original serving UE to the UE, and improving the accuracy of interference coordination.
  • the UE information acquired by the T-eNB in the foregoing step 52 includes: location information of the UE, and/or PMI information of the target cell measured by the UE, then: the T-eNB according to the location information of the UE, and/or The PMI information of the target cell measured by the UE is beamformed to the RAR, where the RAR carries configuration information of resources required for the T-eNB to allocate for the UE and the UE to switch to the target cell.
  • the T-eNB may determine the pre-acquired low-power node information. Location information of the low power node corresponding to the identifier. Due to low The coverage of the power node is small. Therefore, the T-eNB can approximate the location information of the low power node serving the UE as the location information of the UE. In this case, the T-eNB may perform beamforming on the RAR according to the location information of the low-power node serving the UE and/or the PMI information of the target cell measured by the UE.
  • Step 57 The T eNB sends the beamformed RAR to the UE.
  • Step 58 The UE receives the RAR, and performs resource reconfiguration of the target cell according to the configuration information carried by the RAR; and ends the random access procedure of the UE.
  • FIG. 6 is a flowchart of a method for acquiring low-power node information according to Embodiment 5 of the present invention.
  • the executor of this embodiment is any base station, such as any one of the heterogeneous networks shown in FIG.
  • the method shown in Figure 6 includes:
  • Step 61 The current base station is updated, such as increasing or decreasing the network element within the coverage of the current base station.
  • Step 62 Determine whether the low power node in the current cell covered by the current base station changes. If yes, go to step 63. Otherwise, go to step 64.
  • Step 63 The current base station sends the base station configuration update information to the neighboring base station, which is referred to as "first base station configuration update information".
  • the first base station configuration update information includes: information of the low power node located in the current cell covered by the current base station; End this process.
  • the information of the low power node may include, but is not limited to, an identifier of the low power node, radio frequency information of the low power node, location information of the low power node, and the like.
  • the information of the low-power node located in the cell covered by the current base station may be carried in the signaling format of the base station configuration update information, and sent by the current base station to the base station.
  • Step 64 The current base station does not send the base station configuration update information to the neighboring base station; the process ends.
  • the current base station may also receive the base station configuration update information sent by the neighboring base station, which is referred to as: “second base station configuration update information”, where the second base station configuration update information includes: a low location in the neighboring cell covered by the neighboring base station. Information about the power node.
  • the foregoing first base station configuration update information and the second base station configuration update information may be based on a signaling format named "Serving Cell Information" on the basis of the signaling format of the existing base station configuration update information.
  • the content of the meta is expanded.
  • Table 2 shows an example of the signaling format of the base station configuration update information.
  • Table 3 shows an example of the format of the extended "Serving Cell Information” cell.
  • a cell as shown in Table 3 may be added to the "Cell Cell Information" cell shown in Table 2 to carry low-power node information located in the current cell coverage cell, such as carrying the cell located in the current base station coverage cell. RRH information or repeater information.
  • the status "M” indicates a mandatory cell
  • the status "0” indicates an optional cell
  • the italic portion has the name "service cell information”.
  • What's new in the cell, the new content "UE information" can include the following cells:
  • RRH-ID is the cell identification number of the remote radio head
  • Repeater -ID is the cell identification number of the repeater (Reapter).
  • RRH-ID may further include the following cells:
  • RRH EARFCN Indicates the radio frequency information of the RRH, such as the absolute RF channel number of the E-UTRA of the RRH;
  • RRH Coordinate Indicates the location information of the RRH, such as the coordinate information of the RRH.
  • the above cell named “Repeater -ID” may further include the following cells:
  • Repeater EARFCN Indicates the RF information of the repeater, such as the E-UTRA absolute RF channel number of the repeater;
  • Repeater Coordinate Indicates the position information of the repeater, such as the coordinate information of the repeater.
  • Table 2 and Table 3 above are only one format alternative for the base station configuration update information, and should not be construed as limiting the technical solution of the present invention.
  • the method provided in this embodiment adds a base station in the transmission of the base station configuration update information.
  • the information of the low-power nodes in the cell is covered, so that the base station performs interference coordination on the handover of the terminal from the current cell to the neighboring cell according to the information of the low-power node of the neighboring cell in the process of performing inter-cell handover control on the terminal.
  • the target base station acquires the identifier of the low-power node serving the terminal in the source cell
  • the Identifying information of the corresponding low-power node such as location information of the low-power node and resources used, and allocating resources different from resources used by the low-power node, so that the terminal after switching to the target cell uses
  • the frequency of the resource used by the low-power node is relatively large, thereby reducing the same-frequency interference caused by the low-power node to the terminal, and improving the accuracy of interference coordination.
  • FIG. 7 is a schematic structural diagram of a base station according to Embodiment 6 of the present invention.
  • the base station provided in this embodiment includes: an obtaining module 71, a processing module 72, and a sending module 73.
  • the obtaining module 71 can be used to obtain terminal information.
  • the terminal information may include, but is not limited to: location information of the terminal, and/or precoding matrix indication information of the target cell measured by the terminal.
  • the processing module 72 is configured to perform beam U-shape on the random access response corresponding to the random access request according to the terminal information acquired by the obtaining module 71 after receiving the random access request sent by the terminal.
  • the sending module 73 is configured to send, to the terminal, the random access response after the beamforming of the processing module 72.
  • the random access response includes: the terminal switching from a source cell covered by the source base station to a coverage of the target base station. Configuration information of resources required for communication by the terminal after the target cell.
  • the obtaining module 71 is specifically configured to obtain the terminal information according to the received handover request that includes the terminal information sent by the source base station, according to the manner in which the terminal information is obtained.
  • the handover request may further include: information that is located in the source cell and serves a low power node of the terminal.
  • the base station may further include: an allocation module 74.
  • the allocating module 74 can be configured to: before the processing module beamforms the random access response, according to the service And the information about the low power node of the terminal is used to allocate, for the terminal, resources required for the terminal to communicate after the terminal switches to the target cell.
  • the base station may further include: a neighbor base station information receiving module 75.
  • the neighboring base station information receiving module 75 is configured to receive the first base station configuration update information sent by the neighboring base station, where the first base station configuration update information includes: information of the low power node currently located in the neighboring cell covered by the neighboring base station.
  • the sending module 73 of the base station is further configured to: when the information of the low-power node located in the current cell changes, send the second base station configuration update information to the neighboring base station, where the second base station configuration update information includes : Information of a low power node currently located within the current cell.
  • the base station may perform the inter-cell handover control on the terminal according to the information of the low-power node of the acquired neighboring cell.
  • the current cell to neighbor cell handover performs interference coordination, which is beneficial to reduce co-channel interference and improve the accuracy of interference coordination.
  • the base station provided in this embodiment may be represented as a target base station for terminal handover.
  • the base station provided in this embodiment performs beamforming on the random access response carrying the configuration information of the resources required by the terminal for communication in the target cell according to the terminal information, and sends a beamforming shaped random access response to the terminal.
  • the signal strength transmitted to the terminal direction is enhanced, so that the transmission interference of the random access response can be effectively suppressed, and the probability that the terminal correctly receives the random access response is increased, thereby improving the terminal.
  • the success rate of cell handover For the working mechanism of the base station provided in this embodiment, refer to the descriptions of FIG. 1 and FIG. 6, and the description of the target base station in FIG. 5, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a base station according to Embodiment 7 of the present invention.
  • the base station provided in this embodiment includes: an obtaining module 81 and a sending module 82.
  • the obtaining module 81 can be used to obtain terminal information.
  • the terminal information may include, but is not limited to: location information of the terminal, and/or precoding matrix indication information of the target cell measured by the terminal.
  • the sending module 82 is configured to send the terminal information acquired by the acquiring module 81 to the target base station, where the target base station sends the source cell covered by the source base station to the target according to the terminal information.
  • the random access response of the terminal switched by the target cell covered by the base station performs beamforming.
  • the sending module 82 is specifically configured to send a handover request to the target base station, where the handover request includes the terminal information.
  • the base station may further include a receiving module 83.
  • the handover request may further include: information that is located in the source cell and serves a low power node of the terminal.
  • the sending module 82 is further configured to send, to the terminal, a measurement indication that includes neighbor cell information, and is used to instruct the terminal to measure precoding matrix indication information of the neighboring cell.
  • the receiving module 83 is configured to receive precoding matrix indication information of the neighboring cell measured by the terminal, where the neighboring cell includes the target cell.
  • the sending module 82 is further configured to: when the information of the low-power node located in the current cell changes, send the second base station configuration update information to the neighboring base station, where the second base station The configuration update information includes: information of a low power node currently located in the current cell.
  • the receiving module 83 is configured to receive the first base station configuration update information sent by the neighboring base station, where the first base station configuration update information includes: information about the low power node currently located in the neighboring cell covered by the neighboring base station.
  • the base station may perform the inter-cell handover control on the terminal according to the information of the low-power node of the acquired neighboring cell.
  • the current cell to neighbor cell handover performs interference coordination, which is beneficial to reduce co-channel interference and improve the accuracy of interference coordination.
  • the base station provided in this embodiment may be represented as a source base station for terminal handover.
  • the base station provided by the embodiment may send the terminal information to the target base station in the process of the cell handover by the terminal, so that when the terminal initiates the request of the random access target cell, the target base station may use the terminal information to carry the terminal in the target.
  • the random access response of the configuration information of the resources required for cell communication is beamformed, and the beamformed random access response is transmitted to the terminal. Since the random access response enhances the signal strength transmitted to the terminal after beamforming, it can effectively suppress the transmission interference of the random access response, and increase the probability that the terminal correctly receives the random access response, thereby improving the terminal to perform the cell.
  • the success rate of the switch The working mechanism of the base station provided in this embodiment can be seen in Figure 2. The description of FIG. 6 and the description of the source base station in FIG. 5 will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a terminal according to Embodiment 8 of the present invention.
  • the terminal provided by this embodiment includes: a receiving module 91, a measuring module 92, and a sending module 93.
  • the receiving module 91 is configured to receive a measurement indication that is sent by the source base station and includes neighbor cell information.
  • the measurement module 92 is configured to measure precoding matrix indication information of the neighboring cell according to the neighbor cell information included in the measurement indication received by the receiving module, where the neighboring cell includes a target cell.
  • the sending module 93 is configured to send, to the source base station, PMI information of the neighboring cell measured by the measurement module.
  • the terminal provided by the embodiment may measure the PMI information of the neighboring cell including the target cell according to the measurement indication of the source base station, and report the measurement report to the source base station.
  • the source base station may send, to the target base station, PMI information of the target cell currently measured by the terminal, for the target base station to send the random access response to the terminal according to the PMI information.
  • the beamforming is performed to suppress interference in the random access response transmission process, and the success rate of the cell handover by the terminal is improved.
  • FIG. 10 is a schematic structural diagram of a communication system according to Embodiment 9 of the present invention.
  • the communication system provided in this embodiment includes: a source base station 101 and a target base station 102, and the source base station 101 and the target base station 102 are communicatively connected.
  • the structure of the source base station 101 refer to the description of the corresponding embodiment in FIG. 7.
  • the working mechanism can be referred to the descriptions of FIG. 1 and FIG. 6.
  • the structure of the target base station 102 can be referred to the description of the corresponding embodiment in FIG.
  • the description of FIG. 2 and FIG. 6 will not be repeated here.
  • the communication system may further include: a terminal 103, where the terminal 103 is in communication connection with the source base station 101 and the target base station 102, respectively.
  • a terminal 103 For the structure of the terminal 103, refer to the description of the corresponding embodiment in FIG. 9.
  • the communication interaction process of the source base station 101, the target base station 102, and the terminal 103 can be referred to the description of the corresponding embodiment in FIG. 5, and details are not described herein again.
  • the target base station may perform beamforming on the random access response carrying the configuration information of the resources required by the terminal in the target cell communication according to the terminal information in the process of the cell handover by the terminal, and Sending a beam-shaped random access response to the terminal.
  • the random access response enhances the signal strength transmitted to the terminal after being shaped by the terminal information beam, it can effectively suppress the transmission interference of the random access response, and increase the probability that the terminal correctly receives the random access response, thereby improving the terminal.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment as described in the embodiments, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种小区切换的控制和测量方法、装置及***。其中小区切换的控制方法包括:获取终端信息;在接收到终端发送的随机接入请求后,根据所述终端信息,对与所述随机接入请求对应的随机接入响应进行波束赋形并向所述终端发送;所述随机接入响应包括:所述终端从源基站覆盖的源小区切换到目标基站覆盖的目标小区后、所述终端通信所需的资源的配置信息。本发明实施例提高了终端进行小区切换的成功率。

Description

小区切换的控制和测量方法、 装置及*** 本申请要求于 2011 年 9 月 13 日提交中国专利局、 申请号为 201110269232.3、 发明名称为 "小区切换的控制和测量方法、 装置及***" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 特别是涉及一种小区切换的控制和 测量方法、 装置及***。 发明背景
在先进长期演进 ( Long Term Evolution Advanced, 简称 LTE-A )通信 ***中, 引入了低功率节点 (Low Power Node, 简称 LPN ), 低功率节点 和宏小区节点一起组成了异构网络。 在异构网络中, 低功率节点的主要用 途为: 覆盖增强、 容量增加、 提高边缘用户通信质量、 群组移动性和临时 网络部署以及降低成本等。 低功率节点的引入改变了原有通信***的拓朴 结构, 因此研究异构网络场景下的新特性具有实际意义。
终端 (也称为用户设备, User Equipment, 简称 UE )进行小区切换的 过程例如: 源宏小区节点即源基站向终端发送切换命令; 终端接收到切换 命令后对目标宏小区节点即目标基站发送随机接入请求; 目标基站接收终 端发送的随机接入请求, 为终端分配终端在目标宏小区通信所需的资源, 并将该资源的相应配置信息通过随机接入响应 (Radom Access Response, 简称 RAR )发送给终端; 终端接收 RAR并根据 RAR携带的配置信息进行 目标宏小区的资源重配置, 从而完成终端从源宏小区到目标宏小区的切换。
对于同频的异构网络 ( Heterogenous network , 简称 Het-net )而言, 由 于引入了低功率节点, 宏小区节点与低功率节点之间存在同频干扰。 由于 受到邻宏小区节点与低功率节点的同频干扰, RAR传输失败的概率较高, 使得终端进行小区切换的失败率较高。 发明内容
本发明实施例提供一种小区切换的控制和测量方法、 装置及***, 用 以提高终端进行小区切换的成功率。
本发明实施例提供了一种小区切换的控制方法, 包括:
获取终端信息;
在接收到终端发送的随机接入请求后, 根据所述终端信息, 对与所述 随机接入请求对应的随机接入响应进行波束赋形并向所述终端发送; 所述 随机接入响应包括: 所述终端从源基站覆盖的源小区切换到目标基站覆盖 的目标小区后、 所述终端通信所需的资源的配置信息。
本发明实施例还提供了另一种小区切换的控制方法, 包括:
获取终端信息;
向目标基站发送所述终端信息, 以供所述目标基站根据所述终端信息, 对从源基站覆盖的源小区向所述目标基站覆盖的目标小区切换的终端的随 机接入响应进行波束赋形。
本发明实施例还提供了一种小区信息的测量方法, 包括:
接收源基站发送的、 包括邻小区信息的测量指示;
根据所述邻小区信息, 测量邻小区的预编码矩阵指示信息并向所述源 基站发送, 其中, 所述邻小区包括目标小区。
本发明实施例还提供了一种基站, 包括:
获取模块, 用于获取终端信息;
处理模块, 用于在接收到终端发送的随机接入请求后, 根据所述获取 模块获取的所述终端信息, 对与所述随机接入请求对应的随机接入响应进 行波束 U武形; 发送模块, 用于向所述终端发送经所述处理模块波束赋形后的所述随 机接入响应; 所述随机接入响应包括: 所述终端从源基站覆盖的源小区切 换到目标基站覆盖的目标小区后、 所述终端通信所需的资源的配置信息。
本发明实施例还提供了另一种基站, 包括:
获取模块, 用于获取终端信息;
发送模块, 用于向目标基站发送所述获取模块获取的终端信息, 以供 所述目标基站根据所述终端信息, 对从源基站覆盖的源小区向所述目标基 站覆盖的目标小区切换的终端的随机接入响应进行波束赋形。
本发明实施例还提供了一种终端, 包括:
接收模块, 用于接收源基站发送的、 包括邻小区信息的测量指示; 测量模块, 用于根据所述接收模块接收到的所述测量指示包括的所述 邻小区信息, 测量邻小区的预编码矩阵指示信息, 其中, 所述邻小区包括 目标小区;
发送模块, 用于向所述源基站发送所述测量模块测量的所述邻小区的 预编码矩阵指示信息。
本发明实施例还提供了一种通信***, 包括: 上述源基站和上述目 标基站。
本发明实施例提供的小区切换的控制和测量方法、 装置及***中, 目 标基站在终端进行小区切换的过程中可根据终端信息, 对携带有终端在目 标小区通信所需的资源的配置信息的随机接入响应进行波束赋形, 并向终 端发送波束赋形后的随机接入响应。 由于随机接入响应经终端信息波束赋 形后增强了向终端方向传输的信号强度, 因此能有效抑制随机接入响应的 传输干扰, 增加了终端正确接收随机接入响应的概率, 从而提高了终端进 行小区切换的成功率。 附图简要说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例一提供的小区切换的控制方法流程图;
图 2为本发明实施例二提供的小区切换的控制方法流程图;
图 3为本发明实施例三提供的测量方法的流程图;
图 4为本发明实施例提供的应用场景中 LTE-A通信***的异构网络示 意图;
图 5为本发明实施例四提供的小区切换的控制方法信令交互图; 图 6为本发明实施例五提供的低功率节点信息获取方法流程图; 图 7为本发明实施例六提供的基站的结构示意图;
图 8为本发明实施例七提供的基站的结构示意图;
图 9为本发明实施例八提供的终端的结构示意图;
图 10为本发明实施例九提供的通信***的结构示意图。 实施本发明的方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有付出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明以下实施例的序号仅仅为了描述, 不代表实施例的优劣。
图 1 为本发明实施例一提供的小区切换的控制方法流程图。 本实施例 的执行主体可为目标基站, 如图 1所示的方法包括: 步骤 11 : 获取终端信息。
所述终端信息包括: 终端的位置信息、 和 /或终端测量的目标小区的预 编码矩阵指示信息。 终端的位置信息可通过全球定位*** ( Global Positioning System , 简称 GPS )定位、 网络定位等方式获取。 由于低功率 节点的覆盖区域较窄, 因此, 终端的服务所述终端的低功率节点的位置信 息, 也可近似作为终端的位置信息。
步骤 12: 在接收到终端发送的随机接入请求后, 根据所述终端信息, 对与所述随机接入请求对应的随机接入响应进行波束赋形并向所述终端发 送; 所述随机接入响应包括: 所述终端从源基站覆盖的源小区切换到目标 基站覆盖的目标小区后、 所述终端通信所需的资源的配置信息。
当终端接收到源基站发送的切换命令时, 终端向目标基站发送随机接 入请求, 用于请求从源基站覆盖的源小区切换到目标基站覆盖的目标小区。 目标基站在接收到终端发送的随机接入请求后, 为终端分配终端在目标小 区通信所需的资源, 并生成携带有该资源的配置信息的随机接入响应。 之 后, 目标基站根据获取的终端信息对随机接入响应进行波束赋形, 并向终 端发送经终端信息波束赋形后的随机接入响应。
本实施例在终端进行小区切换的过程中, 目标基站根据终端信息, 对 携带有终端在目标小区通信所需的资源的配置信息的随机接入响应进行波 束赋形 , 并向终端发送波束赋形后的随机接入响应。 由于随机接入响应经 终端信息波束赋形后增强了向终端方向传输的信号强度, 因此能有效抑制 随机接入响应的传输干扰, 增加了终端正确接收随机接入响应的概率, 从 而提高了终端进行小区切换的成功率。
可选的, 上述技术方案中, 目标基站可通过接收源基站发送的切换请 求, 获取上述终端信息。 进一步的, 源基站发送的切换请求还可包括: 位 于所述源小区内、 服务所述终端的低功率节点的信息。 该情形下, 目标基 站在对所述随机接入响应进行波束赋形之前, 目标基站可根据服务所述终 端的低功率节点的信息, 为所述终端分配、 所述终端切换到所述目标小区 后所述终端通信所需的资源, 从而有利于降低同频干扰, 提高目标基站为 切换到目标小区的终端进行资源调度的准确性。
图 2为本发明实施例二提供的小区切换的控制方法流程图。 本实施例 的执行主体可为源基站, 如图 2所示的方法包括:
步骤 21 : 获取终端信息。
所述终端信息包括: 终端的位置信息、 和 /或终端测量的目标小区的预 编码矩阵指示信息。
终端的位置信息可通过 GPS定位、 网络定位等方式获取。 由于低功率 节点的覆盖区域较窄, 因此, 终端的服务低功率节点的位置信息, 也可近 似作为终端的位置信息。
目标小区的预编码矩阵指示信息, 可由源基站指示终端测量。 例如: 源基站可在向目标基站发送目标小区的预编码矩阵指示信息之前, 向所述 终端发送包括邻小区信息的测量指示, 用于指示所述终端测量邻小区的预 编码矩阵指示信息; 源基站接收所述终端测量的、 所述邻小区的预编码矩 阵指示信息, 其中, 所述邻小区包括所述目标小区。
步骤 22: 向目标基站发送所述终端信息, 以供所述目标基站根据所述 终端信息, 对从源基站覆盖的源小区向所述目标基站覆盖的目标小区切换 的终端的随机接入响应进行波束赋形。
本实施例在终端进行小区切换的过程中, 源基站向目标基站发送终端 信息, 这样, 在终端发起随机接入目标小区的请求时, 目标基站可使用终 端信息, 对携带有终端在目标小区通信所需的资源的配置信息的随机接入 响应进行波束赋形, 并向终端发送经波束赋形后的随机接入响应。 由于随 机接入响应经波束赋形后增强了向终端方向传输的信号强度, 因此能有效 抑制随机接入响应的传输干扰, 增加了终端正确接收随机接入响应的概率 , 从而提高了终端进行小区切换的成功率。 可选的, 上述技术方案中, 源基站可将上述终端定位参考信息携带在 切换请求中, 并向目标基站发送该切换请求等。 进一步的, 源基站发送的 切换请求还可包括: 位于所述源小区内、 服务所述终端的低功率节点的信 息。 该情形下, 目标基站在对所述随机接入响应进行波束赋形之前, 目标 基站可根据服务所述终端的低功率节点的信息, 为所述终端分配、 所述终 端切换到所述目标小区后所述终端通信所需的资源, 从而提高了目标基站 为切换到目标小区的终端进行资源调度的准确性。
图 3 为本发明实施例三提供的测量方法的流程图。 本实施例的执行主 体可为终端, 如图 3所示的方法包括:
步骤 31 : 接收源基站发送的、 包括邻小区信息的测量指示。
当终端接收到包括邻小区信息的测量指示时, 确定需要测量邻小区的 预编码矩阵指示 ( Precoding Matrix Indicator, 简称 PMI )信息。
步骤 32: 才艮据所述邻小区信息, 测量邻小区的预编码矩阵指示信息并 向所述源基站发送, 其中, 所述邻小区包括目标小区。
终端向源基站发送测量报告, 该测量报告中包括终端当前测量的、 邻 小区的 PMI信息; 其中, 终端测量的邻小区的 PMI信息包括: 目标小区的 PMI信息。
本实施例提供的小区切换的控制方法中, 终端根据源基站的测量指示, 测量包括目标小区在内的邻小区的 PMI信息,并将测量报告上报给源基站。 源基站在确定终端需要从源小区切换到目标基站覆盖的目标小区时, 可向 目标基站发送终端当前测量的目标小区的 PMI信息, 以供目标基站根据 PMI信息对待发送给终端的随机接入响应进行波束赋形, 从而抑制随机接 入响应传输过程中的干扰, 提高终端进行小区切换的成功率。
图 4为本发明实施例提供的应用场景中 LTE-A通信***的异构网络示 意图。 LTE-A通信***中, 宏小区节点和低功率节点可组成同频的异构网 络, 其中: 宏小区节点为基站, 具体如演进型基站(E-UTRAN NodeB, 简 称 eNB )等,低功率节点可为远端射频头( Remote Radio Header,简称 RRH ) 或中继器(Reapter )等。 在同频的异构网络中, 各基站如各 eNB发射的中 心频率相同且覆盖的小区范围相同, 低功率节点位于 eNB覆盖的小区内, 且低功率节点的覆盖范围小于 eNB覆盖的范围。 同频的异构网络中存在干 扰,例如图 4中的实线箭头表示 UE的服务小区发送的信号,虚线箭头表示 邻小区引入的干扰。 受干扰影响, 现有技术 UE小区切换失败的概率较高。 釆用本发明实施例提供的技术方案,可提高 UE的小区切换成功率。下面参 考图 4所示的异构网络, 并结合图 5或图 6, 详细说明本发明实施例提供的 技术方案。
图 5 为本发明实施例四提供的小区切换的控制方法信令交互图。 本实 施例的应用场景中, UE需要进行小区间切换, 即 UE需要从源 eNB (表示 为 S— eNB )覆盖的源小区, 切换到目标 eNB (表示为 T— eNB )覆盖的目标 小区。 如图 4和图 5所示, 本实施例提供的小区切换的控制方法包括: 步骤 50: S— eNB向 UE发送测量指示。
S_eNB向 UE发送的测量指示包括邻小区信息,用于指示 UE根据邻小 区信息, 测试邻小区的 PMI信息; 该邻小区包括 UE需要切换到的目标小 区。
步骤 51: UE向 S— eNB发送测量 4艮告 ( Measurement Report )。
UE接收 S— eNB发送的测量指示, 根据该测量指示中包括的邻小区信 息, 测试邻小区的 PMI信息, 并向 S— eNB发送测量报告。
UE向 S— eN发送的测量报告可包括: UE的位置信息, 和 /或, UE测量 的邻小区的 PMI信息。
步骤 52: S— eNB向 T— eNB发送增强的切换请求 (Enhanced Handover Request ), 该增强的切换请求包括 UE信息, 所述 UE信息包括: UE的位 置信息, 和 /或, UE测量的目标小区的 PMI。
可选的,该增强的切换请求还可包括: 位于源小区内的服务 UE的低功 率节点的信息, 服务 UE的低功率节点的信息可包括但不限于: 服务 UE的 RRH标识, 或者, 服务 UE的中继器标识。
表 1为增强的切换请求的信令格式示例。 如表 1所示的增强的切换请 求,是在现有切换请求的信令格式的基础上,通过增加新的信元( Information Element, 简称 IE) 的方式扩展得到。
表 1 信元 /项目 状 态 范围 IE 类型和参 语义描述 ■ho -j - 临界赋值 名 IE/Group ( Pres ( Ra 考信息 ( IE ( Semant ί ( Ass igne
Name ) ence ) nge ) ty e and cs tical d
reference ) descripti ity ) Critical! on ) ty) 消 息 类 型 M 9.2.13 YES reject
( Message
Ty e )
… ...
UE上下文信 YES reject 息 ( UE
Context
Inf ormat io
n )
腿 UE服 M 整 数 MME分配的
务接入点 ( INTEGER ) MME HE
ID ( MME UE (0..2 l -1) S1.AP ID
S1AP ID)
>UE信息( UE
inf ormat io
n)
»UE的位置 M/0
信息 ( UE
Coordina te
)
»服务 UE的 M/0
低功率节点
标 识
( Serving UE RRH ID
or Repea ter
ID)
»PMI M/O
.·· ■·· 如表 1所示的增强的切换请求的信令格式示例中, 状态 "M"表示必选 信元, 状态 "0" 表示可选信元; 斜体部分的 "UE信息" 为名称为 "UE 上下文信息" 的信元的新增内容, 新增内容 "UE信息" 可包括以下信元:
UE的位置信息 (UE Coordinate ): UE的位置信息可通过 GPS定位方 法或网络定位方法获取;服务 UE的低功率节点的位置信息,也可近似作为 UE的位置信息;
服务 UE的低功率节点标识( Serving UE RRH ID or Repeater ID ): 必选 信元, 其中, 服务 UE的低功率节点标识例如: 在源小区为 UE提供服务的 RRH或中继器等低功率节点的标识。 由于低功率节点的覆盖范围较小, 因 此, 服务 UE的低功率节点的位置信息, 也可近似作为该 UE的位置信息; 以及,
PMI: 表示目标小区的 PMI信息。 T— eNB接收增强的切换请求, 保存 该增强的切换请求中携带的 UE信息。
上述表 1 仅为增强的切换请求格式的一个可选示例, 不应理解为对本 发明技术方案的限制。 可选的, 上述增强的切换请求中, S— eNB 还可将服 务 UE的低功率节点的其他信息, 如位置信息、射频信息等, 携带在切换请 求中发送给 T— eNB。
步骤 53: T— eNB向 S— eNB发送切换请求响应( Handover Request ACK )。 步骤 54: S— eNB向 UE发送切换命令 ( Handover Command )。
S_eNB通过向 UE发送切换命令, 指示 UE从源小区切换到目标小区。 切换命令可包括但不限于: T— eNB覆盖小区的测量信息、 位置信息等。
步骤 55: UE向 T— eNB发送随机接入码( RAPremable )。 UE在接收到 S— eNB发送的切换命令时,向 T— eNB发送随机接入请求, 该随机接入请求包括随机接入码, 用于请求接入目标小区。
步骤 56: T eNB为 UE分配 UE切换到目标小区后进行通信所需的资 源, 生成携带有该资源的配置信息的 RAR, 并根据获取的 UE信息对 RAR 进行波束赋形。
可选的, 如果 T— eNB在上述步骤 52获取的 UE信息包括: 服务 UE的 低功率节点标识, 则 T— eNB可根据服务 UE的低功率节点标识对应的低功 率节点当前所使用的资源的信息,为 UE分配 UE切换到目标小区后通信所 需的资源, 从而有利于降低同频干扰。 服务 UE的低功率节点的信息, 如低 功率节点的位置信息、 射频信息等使用资源信息, 可釆用但不限于以下方 式获取: 由 S— eNB在切换请求中通知 T— eNB, 或由 T— eNB向 MME获取, 或如釆用下文实施五所示的方法获取等。 本实施例降低同频干扰的原因例 如:低功率节点通常分布在小区边缘, 而 UE进行小区切换所需的时间通常 较短(如毫秒级), 因此, 当 UE从源小区切换到目标小区之后, UE与原 服务 UE的低功率节点之间的距离通常较近; T— eNB在为 UE分配资源时, 为 UE分配的资源块与原服务 UE的低功率节点当前使用的资源块不同,使 得 UE通信使用的资源与原服务 UE的低功率节点使用的资源频率间隔较 大, 从而降低了原服务 UE的低功率节点对 UE造成的同频干扰, 提高了干 扰协调的准确性。可选的,如果 T— eNB在上述步骤 52获取的 UE信息包括: UE的位置信息, 和 /或, UE测量的目标小区的 PMI信息, 则: T— eNB根 据 UE的位置信息, 和 /或, UE测量的目标小区的 PMI信息, 对 RAR进行 波束赋形, 该 RAR携带有 T— eNB为 UE分配、 UE切换到目标小区后通信 所需的资源的配置信息。
可选的,如果 T— eNB在上述步骤 52获取的 UE信息不包括 UE的位置 信息、 但包括服务 UE的低功率节点标识, 则: T— eNB可在预先获取的低 功率节点信息中, 确定与所述标识对应的低功率节点的位置信息。 由于低 功率节点的覆盖范围较小, 因此, T— eNB可将服务 UE的低功率节点的位 置信息, 近似作为该 UE的位置信息。 该情形下, T— eNB可根据服务 UE 的低功率节点的位置信息,和 /或, UE测量的目标小区的 PMI信息,对 RAR 进行波束赋形。
步骤 57: T eNB向 UE发送经波束赋形后的 RAR。
步骤 58: UE接收 RAR, 并根据 RAR携带的配置信息, 进行目标小区 的资源重配置; 结束 UE的随机接入流程。
图 6为本发明实施例五提供的低功率节点信息获取方法流程图。 本实 施例的执行主体为任一基站,如图 4所示的异构网络中的任一 eNB。如图 6 所示的方法包括:
步骤 61 : 当前基站更新, 如当前基站覆盖范围内增加或减少网元等。 步骤 62:确定当前基站覆盖的当前小区内的低功率节点是否发生变化, 如果是, 则执行步骤 63 , 否则执行步骤 64。
步骤 63: 当前基站向邻基站发送基站配置更新信息, 这里称之为 "第 一基站配置更新信息", 第一基站配置更新信息包括: 位于当前基站覆盖的 当前小区内的低功率节点的信息; 结束本流程。
低功率节点的信息可包括但不限于: 低功率节点的标识、 低功率节点 的射频信息、 低功率节点的位置信息等。 位于当前基站覆盖的小区内的上 述低功率节点的信息, 可携带在基站配置更新信息的信令格式中, 由当前 基站发送给部基站。
步骤 64: 当前基站不向邻基站发送基站配置更新信息; 结束本流程。 可选的, 当前基站也可接收邻基站发送的基站配置更新信息, 这里称 之为: "第二基站配置更新信息" , 第二基站配置更新信息包括: 位于邻 基站覆盖的邻小区内的低功率节点的信息。
上述第一基站配置更新信息和第二基站配置更新信息, 可在现有基站 配置更新信息的信令格式的基础上, 通过对名称为 "服务小区信息" 的信 元的内容进行扩展得到。 表 2为基站配置更新信息的信令格式示例。
表 2
D C
Ό O - a
-
Figure imgf000015_0001
表 3为扩展后的 "服务小区信息" 信元的格式示例。 可在表 2所示的 "服务小区信息" 信元中, 新增如表 3 所示的信元, 以携带位于当前基站 覆盖小区内的低功率节点信息, 如携带位于当前基站覆盖小区内的 RRH信 息或中继器信息。
表 3 信元 /项目 狀 本 范围 IE 类型和参 语'义.描述 1Γ 介 临界赋值 名 IE /Group ( Ra 考信息 ( IE ( Semant i ( Crit
Name ) ence ) nge ) type and cs Icalit ed
reference ) y) Critical ity) … …
>RRI1-ID Μ/ΰ
»RRH M/O
BARFCN
»RRH M/O
Coordina te
>RGpGB tGT M/O
ID
» Repea ter M/O
EARFCN
» Repea ter M/O
Coordlna te
― ― 如表 3所示的增强的切换请求的信令格式示例中, 状态 "M"表示必选 信元, 状态 "0" 表示可选信元; 斜体部分的为名称为 "服务小区信息" 的 信元的新增内容, 新增内容 "UE信息" 可包括以下信元:
"RRH-ID": 为远端射频头的小区标识号码;
"Repeater -ID" : 为中继器(Reapter ) 的小区标识号码。
上述名称为 "RRH-ID" 的信元, 可进一步包括以下信元:
"RRH EARFCN" : 表示 RRH的射频信息, 如 RRH的 E-UTRA绝对 的射频信道号码;
"RRH Coordinate": 表示 RRH的位置信息, 如 RRH的坐标信息。 上述名称为 "Repeater -ID" 的信元, 可进一步包括以下信元:
"Repeater EARFCN" : 表示中继器的射频信息, 如中继器的 E-UTRA 绝对的射频信道号码;
"Repeater Coordinate" :表示中继器的位置信息,如中继器的坐标信息。 上述表 2和表 3仅为基站配置更新信息的一个格式可选示例, 不应理 解为对本发明技术方案的限制。
本实施例提供的方法在基站配置更新信息的传输中, 添加了位于基站 覆盖小区内低功率节点的信息, 使得基站在对终端进行小区间切换控制的 过程中, 可根据获取的邻小区的低功率节点的信息, 对终端从当前小区到 邻小区的切换进行干扰协调。
例如一种可选的实施方式为: 在如图 4或 5所示的终端从源小区切换 到目标小区过程中, 目标基站获取源小区内服务该终端的低功率节点的标 识后, 可根据该标识对应的低功率节点的信息, 如该低功率节点的位置信 息和所使用资源等信息, 为该终端分配与该低功率节点所使用资源不同的 资源, 使得切换到目标小区后的该终端使用的资源与该低功率节点使用资 源的频率间隔较大, 从而降低了该低功率节点对终端造成的同频干扰, 提 高了干扰协调的准确性。
图 7为本发明实施例六提供的基站的结构示意图。 如图 7所示, 本实 施例提供的基站包括: 获取模块 71、 处理模块 72和发送模块 73。
获取模块 71可用于获取终端信息。 所述终端信息可包括但不限于: 终 端的位置信息、 和 /或, 终端测量的目标小区的预编码矩阵指示信息。
处理模块 72可用于在接收到终端发送的随机接入请求后, 根据所述获 取模块 71获取的所述终端信息, 对与所述随机接入请求对应的随机接入响 应进行波束 U武形。
发送模块 73可用于向所述终端发送经处理模块 72波束赋形后的所述 随机接入响应; 所述随机接入响应包括: 所述终端从源基站覆盖的源小区 切换到目标基站覆盖的目标小区后、 所述终端通信所需的资源的配置信息。
根据所述终端信息的获取方式的不同, 可选的, 获取模块 71具体可用 于根据接收到的、 所述源基站发送的包括所述终端信息的切换请求, 获取 所述终端信息。
所述切换请求还可包括: 位于所述源小区内、 服务所述终端的低功率 节点的信息。 该情形下, 所述基站可进一步包括: 分配模块 74。 分配模块 74可用于在所述处理模块对所述随机接入响应进行波束赋形之前, 根据服 务所述终端的低功率节点的信息, 为所述终端分配当所述终端切换到所述 目标小区后所述终端通信所需的资源。
可选的, 所述基站还可包括: 邻基站信息接收模块 75。 邻基站信息接 收模块 75用于接收邻基站发送的第一基站配置更新信息, 所述第一基站配 置更新信息包括: 当前位于所述邻基站覆盖的邻小区内的低功率节点的信 息。和 /或, 所述基站包括的发送模块 73还可用于在位于当前小区内的低功 率节点的信息发生变化时, 向邻基站发送第二基站配置更新信息, 所述第 二基站配置更新信息包括: 当前位于所述当前小区内的低功率节点的信息。 任一基站在获取邻基站覆盖的邻小区内的低功率节点的信息之后, 该基站 在对终端进行小区间切换控制的过程中, 可根据获取的邻小区的低功率节 点的信息, 对终端从当前小区到邻小区的切换进行干扰协调, 从而有利于 降低同频干扰, 提高干扰协调的准确性。
本实施例提供的基站可表现为终端切换的目标基站。 本实施例提供的 基站根据终端信息, 对携带有终端在目标小区通信所需的资源的配置信息 的随机接入响应进行波束赋形, 并向终端发送波束赋形后的随机接入响应。 于随机接入响应经终端信息波束赋形后增强了向终端方向传输的信号强 度, 因此能有效抑制随机接入响应的传输干扰, 增加了终端正确接收随机 接入响应的概率, 从而提高了终端进行小区切换的成功率。 本实施例提供 的基站的工作机理, 可参见图 1和图 6的记载, 以及图 5中关于目标基站 的记载, 在此不再赘述。
图 8为本发明实施例七提供的基站的结构示意图。 如图 8所示, 本实 施例提供的基站包括: 获取模块 81和发送模块 82。
获取模块 81可用于获取终端信息。 所述终端信息可包括但不限于: 终 端的位置信息、 和 /或, 终端测量的目标小区的预编码矩阵指示信息。
发送模块 82可用于向目标基站发送获取模块 81获取的终端信息, 以 供所述目标基站根据所述终端信息, 对从源基站覆盖的源小区向所述目标 基站覆盖的目标小区切换的终端的随机接入响应进行波束赋形。
根据所述终端信息的发送方式不同, 可选的, 所述发送模块 82具体可 用于向所述目标基站发送切换请求, 所述切换请求包括所述终端信息。
可选的, 所述基站还可包括接收模块 83。
在一种可选的实施方式中, 所述切换请求还可包括: 位于所述源小区 内、 服务所述终端的低功率节点的信息。 所述发送模块 82还可用于向所述 终端发送包括邻小区信息的测量指示, 用于指示所述终端测量邻小区的预 编码矩阵指示信息。 所述接收模块 83可用于接收所述终端测量的、 所述邻 小区的预编码矩阵指示信息, 其中, 所述邻小区包括所述目标小区。
在另一种可选的实施方式中, 所述发送模块 82还可用于在位于当前小 区内的低功率节点的信息发生变化时, 向邻基站发送第二基站配置更新信 息, 所述第二基站配置更新信息包括: 当前位于所述当前小区内的低功率 节点的信息。和 /或,接收模块 83用于接收邻基站发送的第一基站配置更新 信息, 所述第一基站配置更新信息包括: 当前位于所述邻基站覆盖的邻小 区内的低功率节点的信息。 任一基站在获取邻基站覆盖的邻小区内的低功 率节点的信息之后, 该基站在对终端进行小区间切换控制的过程中, 可根 据获取的邻小区的低功率节点的信息, 对终端从当前小区到邻小区的切换 进行干扰协调, 从而有利于降低同频干扰, 提高干扰协调的准确性。
本实施例提供的基站可表现为终端切换的源基站。 本实施例提供的基 站在终端进行小区切换的过程中, 可向目标基站发送终端信息, 这样, 在 终端发起随机接入目标小区的请求时, 目标基站可使用终端信息, 对携带 有终端在目标小区通信所需的资源的配置信息的随机接入响应进行波束赋 形, 并向终端发送经波束赋形后的随机接入响应。 由于随机接入响应经波 束赋形后增强了向终端方向传输的信号强度, 因此能有效抑制随机接入响 应的传输干扰, 增加了终端正确接收随机接入响应的概率, 从而提高了终 端进行小区切换的成功率。 本实施例提供的基站的工作机理, 可参见图 2 和图 6的记载, 以及图 5中关于源基站的记载, 在此不再赘述。
图 9为本发明实施例八提供的终端的结构示意图。 如图 9所示, 本实 施例提供的终端包括: 接收模块 91、 测量模块 92和发送模块 93。
接收模块 91可用于接收源基站发送的、 包括邻小区信息的测量指示。 测量模块 92可用于根据所述接收模块接收到的所述测量指示包括的所 述邻小区信息, 测量邻小区的预编码矩阵指示信息, 其中, 所述邻小区包 括目标小区。
发送模块 93可用于向所述源基站发送所述测量模块测量的所述邻小区 的 PMI信息。
本实施例提供的终端可根据源基站的测量指示, 测量包括目标小区在 内的邻小区的 PMI信息, 并将测量报告上报给源基站。 源基站在确定终端 需要从源小区切换到目标基站覆盖的目标小区时, 可向目标基站发送终端 当前测量的目标小区的 PMI信息, 以供目标基站根据 PMI信息对待发送给 终端的随机接入响应进行波束赋形 , 从而抑制随机接入响应传输过程中的 干扰, 提高终端进行小区切换的成功率。 本实施例提供的终端的工作机理, 可参见图 3的记载, 以及图 4和图 5中关于终端的记载, 在此不再赘述。
图 10为本发明实施例九提供的通信***的结构示意图。 如图 10所示, 本实施例提供的通信***包括: 源基站 101和目标基站 102, 源基站 101和 目标基站 102通信连接。 其中, 源基站 101的结构可参见图 7对应实施例 的记载, 其工作机理可参见图 1和图 6的记载; 目标基站 102的结构可参 见图 8对应实施例的记载, 其工作机理可参见图 2和图 6的记载; 在此不 再赘述。
可选的, 所述通信***还可包括: 终端 103 , 终端 103 分别与源基站 101和目标基站 102通信连接。 其中, 终端 103的结构可参见图 9对应实施 例的记载, 源基站 101、 目标基站 102以及终端 103的通信交互过程可参见 图 5对应实施例的记载, 在此不再赘述。 本实施例提供的通信***中, 目标基站在终端进行小区切换的过程中 可根据终端信息, 对携带有终端在目标小区通信所需的资源的配置信息的 随机接入响应进行波束赋形, 并向终端发送波束赋形后的随机接入响应。 由于随机接入响应经终端信息波束赋形后增强了向终端方向传输的信号强 度, 因此能有效抑制随机接入响应的传输干扰, 增加了终端正确接收随机 接入响应的概率, 从而提高了终端进行小区切换的成功率。
本领域普通技术人员可以理解: 附图只是一个实施例的示意图, 附图 中的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解: 实施例中的装置中的模块可以按照实 施例描述分布于实施例的装置中, 也可以进行相应变化位于不同于本实施 例的一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以 进一步拆分成多个子模块。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种小区切换的控制方法, 其特征在于, 包括:
获取终端信息;
在接收到终端发送的随机接入请求后, 根据所述终端信息, 对与所述 随机接入请求对应的随机接入响应进行波束赋形并向所述终端发送;
所述随机接入响应包括: 所述终端从源基站覆盖的源小区切换到目标 基站覆盖的目标小区后、 所述终端通信所需的资源的配置信息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述终端信息包括: 终 端的位置信息、 和 /或终端测量的目标小区的预编码矩阵指示信息。
3、根据权利要求 1或 2所述的方法,其特征在于, 所述获取终端信息, 包括:
根据接收到的、 所述源基站发送的包括所述终端信息的切换请求, 获 取所述终端信息。
4、 根据权利要求 3所述的方法, 其特征在于, 所述切换请求还包括: 位于所述源小区内、 服务所述终端的低功率节点的信息。
5、 根据权利要求 4所述的方法, 其特征在于, 在对所述随机接入响应 进行波束赋形之前, 所述方法还包括:
根据服务所述终端的低功率节点的信息, 为所述终端分配当所述终端 切换到所述目标小区后所述终端通信所需的资源。
6、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 接收邻基站发送的第一基站配置更新信息, 所述第一基站配置更新信 息包括: 当前位于所述邻基站覆盖的邻小区内的低功率节点的信息;
和 /或,
在位于当前小区内的低功率节点的信息发生变化时, 向邻基站发送第 二基站配置更新信息, 所述第二基站配置更新信息包括: 当前位于所述当 前小区内的低功率节点的信息。
7、 一种小区切换的控制方法, 其特征在于, 包括:
获取终端信息;
向目标基站发送所述终端信息, 以供所述目标基站根据所述终端信息, 对从源基站覆盖的源小区向所述目标基站覆盖的目标小区切换的终端的随 机接入响应进行波束赋形。
8、 根据权利要求 7所述的方法, 其特征在于, 所述终端信息包括: 终 端的位置信息、 和 /或终端测量的目标小区的预编码矩阵指示信息。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述向目标基站发 送所述终端信息, 包括:
向所述目标基站发送切换请求, 所述切换请求包括所述终端信息。
10、 根据权利要求 9所述的方法, 其特征在于, 所述切换请求还包括: 位于所述源小区内、 服务所述终端的低功率节点的信息。
11、 根据权利要求 8所述的方法, 其特征在于, 向所述目标基站发送 所述终端测量的目标小区的预编码矩阵指示信息之前, 所述方法还包括: 向所述终端发送包括邻小区信息的测量指示, 用于指示所述终端测量 邻小区的预编码矩阵指示信息;
接收所述终端测量的、 所述邻小区的预编码矩阵指示信息, 其中, 所 述邻小区包括所述目标小区。
12、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 接收邻基站发送的第一基站配置更新信息, 所述第一基站配置更新信 息包括: 当前位于所述邻小区内的低功率节点的信息;
和 /或,
在位于当前小区内的低功率节点的信息发生变化时, 向邻基站发送第 二基站配置更新信息, 所述第二基站配置更新信息包括: 当前位于所述当 前小区内的低功率节点的信息。
13、 一种小区信息的测量方法, 其特征在于, 包括: 接收源基站发送的、 包括邻小区信息的测量指示;
根据所述邻小区信息, 测量邻小区的预编码矩阵指示信息并向所述源 基站发送, 其中, 所述邻小区包括目标小区。
14、 一种基站, 其特征在于, 包括:
获取模块, 用于获取终端信息;
处理模块, 用于在接收到终端发送的随机接入请求后, 根据所述获取 模块获取的所述终端信息, 对与所述随机接入请求对应的随机接入响应进 行波束 U武形;
发送模块, 用于向所述终端发送经所述处理模块波束赋形后的所述随 机接入响应; 所述随机接入响应包括: 所述终端从源基站覆盖的源小区切 换到目标基站覆盖的目标小区后、 所述终端通信所需的资源的配置信息。
15、 根据权利要求 14所述的基站, 其特征在于, 所述终端信息包括: 终端的位置信息、 和 /或终端测量的目标小区的预编码矩阵指示信息。
16、 根据权利要求 14或 15所述的基站, 其特征在于,
所述获取模块, 具体用于根据接收到的、 所述源基站发送的包括所述 终端信息的切换请求, 获取所述终端信息。
17、根据权利要求 16所述的基站,其特征在于, 所述切换请求还包括: 位于所述源小区内、 服务所述终端的低功率节点的信息。
18、 根据权利要求 17所述的基站, 其特征在于, 还包括:
分配模块, 用于在所述处理模块对所述随机接入响应进行波束赋形之 前, 根据服务所述终端的低功率节点的信息, 为所述终端分配当所述终端 切换到所述目标小区后所述终端通信所需的资源。
19、 根据权利要求 14所述的基站, 其特征在于,
所述发送模块, 还用于在位于当前小区内的低功率节点的信息发生变 化时, 向邻基站发送第二基站配置更新信息, 所述第二基站配置更新信息 包括: 当前位于所述当前小区内的低功率节点的信息; 和 /或,
所述基站还包括: 邻基站信息接收模块, 用于接收邻基站发送的第一 基站配置更新信息, 所述第一基站配置更新信息包括: 当前位于所述邻基 站覆盖的邻小区内的低功率节点的信息。
20、 一种基站, 其特征在于, 包括:
获取模块, 用于获取终端信息;
发送模块, 用于向目标基站发送所述获取模块获取的终端信息, 以供 所述目标基站根据所述终端信息, 对从源基站覆盖的源小区向所述目标基 站覆盖的目标小区切换的终端的随机接入响应进行波束赋形。
21、 根据权利要求 20所述的基站, 其特征在于, 所述终端信息包括: 终端的位置信息、 和 /或终端测量的目标小区的预编码矩阵指示信息。
22、 根据权利要求 20或 21所述的基站, 其特征在于,
所述发送模块, 具体用于向所述目标基站发送切换请求, 所述切换请 求包括所述终端信息。
23、根据权利要求 22所述的基站,其特征在于, 所述切换请求还包括: 位于所述源小区内、 服务所述终端的低功率节点的信息。
24、 根据权利要求 22所述的基站, 其特征在于, 还包括: 接收模块; 所述发送模块, 还用于向所述终端发送包括邻小区信息的测量指示, 用于指示所述终端测量邻小区的预编码矩阵指示信息;
所述接收模块, 用于接收所述终端测量的、 所述邻小区的预编码矩阵 指示信息, 其中, 所述邻小区包括所述目标小区。
25、 根据权利要求 22所述的基站, 其特征在于,
所述发送模块, 还用于在位于当前小区内的低功率节点的信息发生变 化时, 向邻基站发送第二基站配置更新信息, 所述第二基站配置更新信息 包括: 当前位于所述当前小区内的低功率节点的信息;
和 /或, 所述基站还包括: 接收模块, 用于接收邻基站发送的第一基站配置更 新信息, 所述第一基站配置更新信息包括: 当前位于所述邻基站覆盖的邻 小区内的低功率节点的信息。
26、 一种终端, 其特征在于, 包括:
接收模块, 用于接收源基站发送的、 包括邻小区信息的测量指示; 测量模块, 用于根据所述接收模块接收到的所述测量指示包括的所述 邻小区信息, 测量邻小区的预编码矩阵指示信息, 其中, 所述邻小区包括 目标小区;
发送模块, 用于向所述源基站发送所述测量模块测量的所述邻小区的 预编码矩阵指示信息。
27、 一种通信***, 其特征在于, 包括:
源基站, 为如权利要求 14-19任一所述的基站;
目标基站, 为如权利要求 20-25任一所述的基站。
28、 根据权利要求 27所述的通信***, 其特征在于, 还包括: 终端, 为如权利要求 26所述的终端。
PCT/CN2012/081344 2011-09-13 2012-09-13 小区切换的控制和测量方法、装置及*** WO2013037297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12832458.9A EP2741556B1 (en) 2011-09-13 2012-09-13 Cell handover control and measurement method, device and system
US14/204,784 US9179374B2 (en) 2011-09-13 2014-03-11 Method, apparatus, and system for controlling and measuring cell handover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110269232.3 2011-09-13
CN201110269232.3A CN103002526B (zh) 2011-09-13 2011-09-13 小区切换的控制和测量方法、装置及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/204,784 Continuation US9179374B2 (en) 2011-09-13 2014-03-11 Method, apparatus, and system for controlling and measuring cell handover

Publications (1)

Publication Number Publication Date
WO2013037297A1 true WO2013037297A1 (zh) 2013-03-21

Family

ID=47882618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081344 WO2013037297A1 (zh) 2011-09-13 2012-09-13 小区切换的控制和测量方法、装置及***

Country Status (4)

Country Link
US (1) US9179374B2 (zh)
EP (1) EP2741556B1 (zh)
CN (1) CN103002526B (zh)
WO (1) WO2013037297A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900487A (zh) * 2013-12-12 2016-08-24 英特尔公司 用于使用支持毫米波的小小区的小区关联和波束成形训练的用户设备和方法
WO2019020035A1 (zh) * 2017-07-25 2019-01-31 华为技术有限公司 一种选择波束的方法及设备
TWI693841B (zh) * 2017-03-24 2020-05-11 聯發科技股份有限公司 發送測量報告的方法和設備
CN113114325A (zh) * 2021-03-19 2021-07-13 中国联合网络通信集团有限公司 一种通信方法及装置
CN114363983A (zh) * 2022-01-13 2022-04-15 深圳市佳贤通信设备有限公司 一种定向获取终端信息的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303568B (zh) * 2013-01-11 2019-03-08 华为技术有限公司 调度信令的传输方法和设备
CN104105145B (zh) * 2013-04-01 2017-07-14 电信科学技术研究院 一种基站配置变更时的用户设备切换方法、装置及***
CN110267363B (zh) * 2013-06-28 2022-12-30 华为技术有限公司 状态信息传递、去激活的方法、站点设备和终端设备
CN105325034B (zh) * 2013-10-17 2019-05-10 富士通株式会社 切换方法、基站和通信***
CN105264968B (zh) * 2014-04-29 2019-10-01 华为技术有限公司 一种随机接入的装置及方法
WO2016026505A1 (en) * 2014-08-18 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Method and device for detecting a number of user terminals
US9603165B2 (en) * 2015-01-30 2017-03-21 Telefonaktiebolaget L M Ericsson (Publ) Random-access response with analog beamforming
CN106162687B (zh) * 2015-04-01 2021-06-11 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
CN107667481A (zh) * 2015-04-07 2018-02-06 三星电子株式会社 用于使用波束成形的无线通信***中的切换的方法和装置
EP3461178B1 (en) * 2016-06-24 2021-08-25 Huawei Technologies Co., Ltd. Scheduling in handover
JP6694413B2 (ja) * 2016-07-28 2020-05-13 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてueビームフォーミングを扱うための方法及び装置
WO2018025556A1 (ja) 2016-08-03 2018-02-08 日本電気株式会社 ビームフォーミングに関連する装置、方法、システム、プログラム及び記録媒体
US11968570B2 (en) * 2016-09-17 2024-04-23 Qualcomm Incorporated Techniques for handovers in the presence of directional wireless beams
CN108023628B (zh) * 2016-11-04 2021-08-20 华为技术有限公司 终端设备移动性的处理方法、终端设备和基站
MX2019004876A (es) 2016-11-04 2019-06-20 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de interaccion de informacion de formacion de haces y dispositivo de red.
EP3761749A1 (en) * 2016-12-26 2021-01-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and apparatus
WO2018164615A1 (en) * 2017-03-08 2018-09-13 Telefonaktiebolaget Lm Ericsson (Publ). Ue, first and second radio control node (rcn), and methods therein for adapting a process of changing radio connections
CN108521888B (zh) 2017-08-10 2022-02-01 北京小米移动软件有限公司 无人机接入方法及装置
US10791533B2 (en) * 2018-07-19 2020-09-29 Huawei Technologies Co., Ltd. Methods and systems for generalized RACH-less mobility
DE102020201827A1 (de) * 2019-02-13 2020-08-20 Apple Inc. V2x-netzwerkunterstützte side-link-konfiguration und datenübertragung
CN109981660B (zh) * 2019-03-29 2021-04-13 联想(北京)有限公司 一种信息处理方法、电子设备
CN112637920B (zh) * 2019-10-08 2022-10-21 ***通信有限公司研究院 资源协商方法、装置、相关设备及存储介质
US11758465B2 (en) * 2019-12-17 2023-09-12 Qualcomm Incorporated Repeater beacon signal for enabling inter-cell interference coordination
CN112203284B (zh) * 2020-09-07 2023-10-17 北京遥感设备研究所 终端位置自适应的多小区联合资源分配方法、装置和***
CN117880902A (zh) * 2020-10-22 2024-04-12 大唐移动通信设备有限公司 小区切换方法、终端、基站、装置和存储介质
CN113114326B (zh) * 2021-03-19 2022-09-27 中国联合网络通信集团有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409577A (zh) * 2007-10-10 2009-04-15 北京信威通信技术股份有限公司 一种基于码扩正交频分多址(cs-ofdma)的智能天线无线***
US20100027438A1 (en) * 2008-08-04 2010-02-04 Research In Motion Limited Arbitration of Measurement Gap Coincidence with Random Access
CN101873601A (zh) * 2009-04-27 2010-10-27 松下电器产业株式会社 在无线通信***中设置参考信号的方法以及***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007437A1 (fr) * 2006-07-14 2008-01-17 Fujitsu Limited Système de communication mobile et station de base
US8140076B2 (en) * 2007-12-17 2012-03-20 Motorola Mobility, Inc. Method for facilitating a mobile station to perform a fast handoff
ES2436742T3 (es) * 2008-04-04 2014-01-07 Nokia Solutions And Networks Oy Momentos de acción para traspaso de estaciones móviles
CN101594606B (zh) 2008-05-27 2012-07-25 电信科学技术研究院 用户位置信息上报方法、***及装置
KR101547544B1 (ko) * 2008-09-24 2015-08-27 삼성전자주식회사 펨토 기지국으로의 핸드 오버를 위한 통신 시스템 및 이를 위한 방법
US8538482B2 (en) * 2009-05-14 2013-09-17 Lg Electronics Inc. Apparatus and method for transmitting CoMP feedback information
CN101938773B (zh) * 2009-06-30 2014-11-05 中兴通讯股份有限公司 初始发射功率获取方法、基站
US20120094666A1 (en) * 2010-10-15 2012-04-19 Qualcomm Incorporated Uniquely identifying target femtocell to facilitate femto-assisted active hand-in

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409577A (zh) * 2007-10-10 2009-04-15 北京信威通信技术股份有限公司 一种基于码扩正交频分多址(cs-ofdma)的智能天线无线***
US20100027438A1 (en) * 2008-08-04 2010-02-04 Research In Motion Limited Arbitration of Measurement Gap Coincidence with Random Access
CN101873601A (zh) * 2009-04-27 2010-10-27 松下电器产业株式会社 在无线通信***中设置参考信号的方法以及***

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900487A (zh) * 2013-12-12 2016-08-24 英特尔公司 用于使用支持毫米波的小小区的小区关联和波束成形训练的用户设备和方法
EP3081037A4 (en) * 2013-12-12 2017-08-09 Intel Corporation User equipment and method for cell association and beamforming training with a mmwave capable small cell
US10257761B2 (en) 2013-12-12 2019-04-09 Intel Corporation User equipment and method for cell association and beamforming training with a mmwave capable small cell
TWI693841B (zh) * 2017-03-24 2020-05-11 聯發科技股份有限公司 發送測量報告的方法和設備
WO2019020035A1 (zh) * 2017-07-25 2019-01-31 华为技术有限公司 一种选择波束的方法及设备
CN113114325A (zh) * 2021-03-19 2021-07-13 中国联合网络通信集团有限公司 一种通信方法及装置
CN113114325B (zh) * 2021-03-19 2022-05-17 中国联合网络通信集团有限公司 一种通信方法及装置
CN114363983A (zh) * 2022-01-13 2022-04-15 深圳市佳贤通信设备有限公司 一种定向获取终端信息的方法
CN114363983B (zh) * 2022-01-13 2024-05-10 深圳市佳贤通信科技股份有限公司 一种定向获取终端信息的方法

Also Published As

Publication number Publication date
CN103002526B (zh) 2015-06-03
US20140194124A1 (en) 2014-07-10
EP2741556A1 (en) 2014-06-11
US9179374B2 (en) 2015-11-03
EP2741556A4 (en) 2015-04-22
CN103002526A (zh) 2013-03-27
EP2741556B1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2013037297A1 (zh) 小区切换的控制和测量方法、装置及***
EP3503620B1 (en) Method, device and system for cell handover
US11160002B2 (en) Method for supporting handover and corresponding apparatus
CN113411850B (zh) 切换方法和设备
CN110769473B (zh) 本地区域无线网中低开销移动性管理方法以及用户设备
JP6146832B2 (ja) デバイス間通信のハンドオーバのための方法及び装置
US9420501B2 (en) Method and apparatus for handover in heterogeneous system
CN113615253B (zh) 到潜在目标节点的有条件切换执行概率信息
US9743329B2 (en) Base station handover method, X2 interface setup method, base station, user equipment and system
EP2351256B1 (en) Measurement report method and apparatus in wireless communication system
JP5553938B2 (ja) ハンドオーバ方法、通信デバイス及び通信システム
KR102594041B1 (ko) 핸드오버를 지원하는 방법 및 상응하는 장치
US20140376515A1 (en) Methods, apparatuses and computer program products for wlan discovery and handover in coexisted lte and wlan networks
US20170064587A1 (en) Cell handover method, base station and system
WO2015118405A2 (en) Method, base station, and dual connectivity system for providing services to handover of a user equipment
WO2009024094A1 (fr) Système de communication, procédé et appareil de processus de transfert de réseau
KR20160004003A (ko) 핸드오버 방법 및 그 장치
JP6998374B2 (ja) 測定レポーティングの方法、ユーザ機器、およびネットワークノード
WO2016190254A1 (ja) 基地局及び無線端末
JP2015130687A (ja) ユーザ機器のコンテキストに関連するリソースを解放するための方法およびデバイス
CN114557035A (zh) 切换命令中的有条件切换
US11064406B2 (en) Method for using a short signal identity in communication between a radio terminal and a radio access node, a radio terminal and a radio access node
US20180139675A1 (en) Network nodes and methods thereof
US10805848B2 (en) Information transmission method, network device and terminal device
US20220377633A1 (en) Conditional Configuration in a Wireless Communication Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE