WO2013035564A1 - Polymer compound and organic transistor - Google Patents

Polymer compound and organic transistor Download PDF

Info

Publication number
WO2013035564A1
WO2013035564A1 PCT/JP2012/071526 JP2012071526W WO2013035564A1 WO 2013035564 A1 WO2013035564 A1 WO 2013035564A1 JP 2012071526 W JP2012071526 W JP 2012071526W WO 2013035564 A1 WO2013035564 A1 WO 2013035564A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
structural unit
polymer compound
unit represented
Prior art date
Application number
PCT/JP2012/071526
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 寺井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013035564A1 publication Critical patent/WO2013035564A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to a polymer compound and an organic transistor using the same.
  • organic transistors using organic semiconductor materials are expected to be lighter, have lower manufacturing costs and can be manufactured at lower temperatures than conventional transistors using inorganic semiconductor materials, they are actively researched and developed. Has been done.
  • the field effect mobility which is one of the performances of organic transistors, greatly depends on the field effect mobility of the organic semiconductor material contained in the active layer. Therefore, it is considered to use various organic semiconductor materials for the active layer of the organic transistor.
  • Chemistry of Materials, 2011, Vol. 23, pp. 2185-2200 proposes the following polymer compound having alkoxythiophene as a structural unit as an organic semiconductor material used for an organic transistor.
  • the organic transistor using the above polymer compound has not sufficiently high field effect mobility.
  • the present invention provides a polymer compound having a high field effect mobility and an organic transistor using the same.
  • the present invention is at least one selected from the group consisting of a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), and a structural unit represented by formula (1-3).
  • a polymer compound comprising a seed structural unit and a structural unit represented by formula (2).
  • R 1 is independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, or a monovalent heterocyclic ring. Represents a group or a halogen atom. When a plurality of R 1 are present, they may be the same or different.
  • R 2 represents an optionally substituted alkyl group having 2 or more carbon atoms.
  • E is, -O -, - S -, - Se- , or -N (R a) - represents a.
  • R a represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, or a monovalent heterocyclic group.
  • Ring A represents an aromatic ring or a heterocyclic ring.
  • n 2 represents an integer of 0 or more, and n 3 represents an integer of 1 to 3. ]
  • Ar ⁇ 1 > represents an arylene group or a bivalent heterocyclic group each independently.
  • Ar 1 is different from the structural unit represented by the formula (1-1), the structural unit represented by the formula (1-2), and the structural unit represented by the formula (1-3).
  • a plurality of Ar 1 may be the same or different.
  • m 1 represents an integer of 3 to 10.
  • the present invention also provides an organic semiconductor material containing the polymer compound. Furthermore, this invention provides the organic-semiconductor element which has an organic layer containing the said organic-semiconductor material.
  • FIG. 1 is a schematic cross-sectional view showing an example of the organic transistor of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
  • 1 is a substrate
  • 2 and 2a are active layers
  • 3 is an insulating layer.
  • 4 represents a gate electrode
  • 5 represents a source electrode
  • 6 represents a drain electrode
  • 100, 110, 120, 130, 140, 150, 160, 170 and 180 represent organic transistors.
  • R 1 Represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic ring or a halogen atom.
  • the alkyl group may have one or more substituents, and the alkyl group excluding the substituents usually has 1 to 60 carbon atoms, and preferably 1 to 20 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • Specific examples of the alkyl group include linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group, n-hexyl group, n-octyl group, n-dodecyl group, n-octadecyl group, Isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 3,7,11-trimethyldodecyl group, 2-hexyldecyl group, 2-octyldodecyl group
  • cyclic alkyl groups such as a branched alkyl group such as cyclopentyl group and cyclohexyl group.
  • the alkyl group may have include an alkoxy group (normally 1 to 60 carbon atoms), an aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like.
  • Specific examples of the substituted alkyl group include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
  • the alkoxy group may have one or more substituents, and the alkoxy group excluding the substituents usually has 1 to 60 carbon atoms, and preferably 1 to 20 carbon atoms.
  • the alkyl part of the alkoxy group may be linear, branched or cyclic.
  • alkoxy group examples include n-butoxy group, n-hexyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, and n-dodecyloxy group.
  • substituent that the alkoxy group may have include an aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like.
  • the alkylthio group may have one or more substituents, and the alkylthio group excluding the substituents usually has 1 to 60 carbon atoms, and preferably 1 to 20 carbon atoms.
  • the alkyl part of the alkylthio group may be linear, branched or cyclic.
  • alkylthio group examples include n-butylthio group, n-hexylthio group, 2-ethylhexylthio group, 3,7-dimethyloctylthio group and n-dodecylthio group.
  • substituent that the alkylthio group may have include an aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like.
  • An aryl group is an atomic group obtained by removing one hydrogen atom directly bonded to an aromatic ring from an aromatic hydrocarbon compound which may have a substituent, a group having a benzene ring, a group having a condensed ring, an independent group A group in which two or more selected from an aromatic ring and a condensed ring are directly bonded.
  • the carbon number of the aryl group excluding the substituent of the aromatic hydrocarbon compound is usually 6 to 60, and preferably 6 to 20.
  • aryl group for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, Examples include 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and 4-phenylphenyl group.
  • substituent that the aromatic hydrocarbon compound may have include an alkyl group (carbon number is usually 1 to 60), an alkoxy group (carbon number is usually 1 to 60), an alkylthio group (carbon number is usually 1 to 60).
  • a monovalent heterocyclic group, a halogen atom, etc. are mentioned.
  • the aryl group containing these groups include 4-hexylphenyl group, 3,5-dimethoxyphenyl group, pentafluorophenyl group and the like.
  • the aromatic hydrocarbon compound has a substituent, the substituent is preferably an alkyl group.
  • the monovalent heterocyclic group is an atomic group obtained by removing one hydrogen atom directly bonded to a ring from an optionally substituted heterocyclic compound, a group having a condensed ring, an independent heterocyclic ring And a group in which two or more selected from fused rings are directly bonded.
  • the number of carbon atoms of the monovalent heterocyclic group excluding the substituent of the heterocyclic compound is usually 2 to 60, and preferably 3 to 20.
  • a monovalent aromatic heterocyclic group is preferable.
  • heterocyclic compound examples include an alkyl group (normally 1 to 60 carbon atoms), an alkoxy group (normally 1 to 60 carbon atoms), an alkylthio group (normally 1 to 60 carbon atoms). ), An aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like.
  • alkyl group normally 1 to 60 carbon atoms
  • alkoxy group normally 1 to 60 carbon atoms
  • alkylthio group normally 1 to 60 carbon atoms
  • An aryl group normally 6 to 60 carbon atoms
  • a halogen atom examples include a 5-octyl-2-thienyl group and a 5-phenyl-2-furyl group.
  • the substituent is preferably an alkyl group.
  • the halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the R 1 Is preferably a hydrogen atom, an alkoxy group or a halogen atom, more preferably a hydrogen atom or an alkoxy group, and even more preferably a hydrogen atom.
  • R 2 Represents an optionally substituted alkyl group having 2 or more carbon atoms.
  • the number of carbon atoms of the alkyl group, excluding the substituent, represented by the formula is usually 2 to 60, and preferably 2 to 24.
  • R 2 The alkyl group represented by may be linear, branched or cyclic.
  • alkyl group represented by the formula are linear alkyl groups such as ethyl group, n-propyl group, n-butyl group, n-hexyl group, n-octyl group, n-dodecyl group, and n-octadecyl group.
  • Isopropyl group isobutyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 3,7,11-trimethyldodecyl group, 2-hexyldecyl group, 2-octyldodecyl group And branched alkyl groups such as a group, and cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group.
  • the alkyl group represented by the formula (1) may have one or more substituents, and examples of the substituent that the alkyl group may have include an alkoxy group (normally 1 to 60 carbon atoms), an aryl group (carbon The number is usually 6 to 60), and halogen atoms and the like can be mentioned.
  • Specific examples of the substituted alkyl group include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
  • the R 2 Is preferably an alkyl group having 8 or more carbon atoms, more preferably an alkyl group having 12 or more carbon atoms, and still more preferably an alkyl group having 16 or more carbon atoms. Also, from the viewpoint of increasing solubility in order to produce an organic semiconductor element by a printing method, R 2 Is preferably a branched alkyl group. E is -O-, -S-, -Se- or -N (R a )-. R a Represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group.
  • R in the formula (1-1) 1 The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
  • E is preferably -S-.
  • Specific examples of the structural unit represented by Formula (1-1) include structural units represented by Formula (1-1-1) to Formula (1-1-11). From the viewpoint of enhancing solubility in order to produce an organic semiconductor element by a printing method, the structural unit represented by formula (1-1) is represented by formula (1-1-1) or formula (1-1-2).
  • Formula (1-1-4) to Formula (1-1-11) are preferable, and Formula (1-1-1), Formula (1-1-2), and Formula (1-1-5) are preferable. It is more preferable that they are the formula (1-1-9) and the formula (1-1-11).
  • the structural unit represented by Formula (1-1) is preferably Formula (1-1-1) to Formula (1-1-6).
  • R 1 Each independently represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom. .
  • R 1 When two or more exist, they may be the same or different. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, the optionally substituted alkylthio group, the aryl group, the monovalent heterocyclic group, and the halogen atom are shown in the formula (1).
  • R in -1) 1 The same as the definition and specific examples of the alkyl group which may be substituted, the alkoxy group which may be substituted, the alkylthio group which may be substituted, the aryl group, the monovalent heterocyclic group and the halogen atom represented by It is.
  • N 2 Represents an integer of 0 or more.
  • R 2 Represents an optionally substituted alkyl group having 2 or more carbon atoms.
  • the definition, specific examples and preferred examples of the optionally substituted alkyl group having 2 or more carbon atoms are represented by R in the formula (1-1). 2 Are the same as the definitions, specific examples and preferred examples of the optionally substituted alkyl group having 2 or more carbon atoms.
  • E is -O-, -S-, -Se-, or -N (R a )-.
  • R a Represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group.
  • R in the formula (1-1) 1 The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
  • a preferable example of E is the same as the preferable example of E in the formula (1-1).
  • Ring A represents an aromatic ring or a heterocyclic ring. Ring A is condensed with a 5-membered ring containing E.
  • the carbon number of the aromatic ring represented by ring A is usually 6 to 60, and preferably 6 to 20.
  • the number of carbon atoms of the heterocyclic ring represented by ring A is usually 2 to 60, and preferably 3 to 20.
  • Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a tetracene ring, and a pentacene ring.
  • Examples of the heterocyclic ring include a furan ring, a thiophene ring, a selenophene ring, a pyrrole ring, and a thienothiophene ring. And a benzothiophene ring.
  • the ring A is preferably a heterocyclic ring, more preferably a thiophene ring, a thienothiophene ring, or a benzothiophene ring.
  • Specific examples of the structural unit represented by Formula (1-2) include the structural units represented by Formula (1-2-1) to Formula (1-2-9).
  • the structural unit represented by the formula (1-2) includes the formula (1-2-1) to the formula (1-2-3).
  • Formula (1-2-1) is more preferable.
  • R 1 Each independently represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom. . Multiple R 1 May be the same or different. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, the optionally substituted alkylthio group, the aryl group, the monovalent heterocyclic group, and the halogen atom are shown in the formula (1).
  • R in -1) 1 The same as the definition and specific examples of the alkyl group that may be substituted, the alkoxy group that may be substituted, the alkylthio group that may be substituted, the aryl group, the monovalent heterocyclic group, and the halogen atom It is.
  • N 3 Represents an integer of 1 to 3.
  • E represents -O-, -S-, -Se-, or -N (R a )-.
  • R a Represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group.
  • R in the formula (1-1) 1 The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
  • a preferred example of E is the same as the preferred example of E in the formula (1-1).
  • Specific examples of the structural unit represented by Formula (1-3) include structural units represented by Formula (1-3-1) to Formula (1-3-6). From the viewpoint of enhancing solubility in order to produce an organic semiconductor element by a printing method, the structural unit represented by formula (1-3) is represented by formula (1-3-2) or formula (1-3-3). It is preferable that it is Formula (1-3-2).
  • the structural unit represented by Formula (1-3) is preferably Formula (1-3-1) to Formula (1-3-4).
  • the structural unit represented by the formula (1-1) is a polymer compound as a structural unit represented by the formula (1-A), the formula (1-B) or the formula (1-C) in which two units are connected. It is preferable that it is contained in. [Wherein R 1 , R 2 And E independently represent the same meaning as described above.
  • R 1 Each independently represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom. . Multiple R 1 May be the same or different. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, the optionally substituted alkylthio group, the aryl group, the monovalent heterocyclic group, and the halogen atom are as defined in the above formula (1).
  • R in -1) 1 The same as the definition and specific examples of the alkyl group which may be substituted, the alkoxy group which may be substituted, the alkylthio group which may be substituted, the aryl group, the monovalent heterocyclic group and the halogen atom represented by It is.
  • R 2 Each independently represents an optionally substituted alkyl group having 2 or more carbon atoms. Multiple R 2 May be the same or different.
  • the definition, specific examples and preferred examples of the optionally substituted alkyl group having 2 or more carbon atoms are represented by R in the formula (1-1). 2 Are the same as the definition, specific examples and preferred examples of the alkyl group which may be substituted with 2 or more carbon atoms.
  • E is independently -O-, -S-, -Se- or -N (R a )-.
  • R a Represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group.
  • Definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted are as follows: R in the formula (1-1) 1 The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
  • a preferable example of E is the same as the preferable example of E in the formula (1-1).
  • the structural unit represented by the formula (1-A) include structural units represented by the formula (1-A-1) to the formula (1-A-8). From the viewpoint of ease of synthesis, the structural unit represented by Formula (1-A) is preferably Formula (1-A-1) to Formula (1-A-3). Specific examples of the structural unit represented by the formula (1-B) include structural units represented by the formula (1-B-1) to the formula (1-B-8). From the viewpoint of ease of synthesis, the structural unit represented by Formula (1-B) is preferably Formula (1-B-1) to Formula (1-B-3). Specific examples of the structural unit represented by the formula (1-C) include structural units represented by the formula (1-C-1) to the formula (1-C-8).
  • the structural unit represented by Formula (1-C) is preferably Formula (1-C-1) to Formula (1-C-3).
  • Ar 1 Each independently represents an arylene group or a divalent heterocyclic group. Multiple Ar 1 May be the same or different.
  • M in formula (2) 1 Represents an integer of 3 to 10, m from the viewpoint of ease of synthesis. 1 Is preferably an integer of 3 to 7, more preferably an integer of 3 to 5, and even more preferably 3.
  • the arylene group is an atomic group obtained by removing two hydrogen atoms directly bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon compound which may have a substituent, and includes a group having a condensed ring.
  • a group in which two or more selected from an aromatic ring and a condensed ring which are independent divalent groups are directly bonded is not included in the arylene group defined here.
  • the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, and a halogen atom.
  • alkyl groups, alkoxy groups, alkylthio groups, aryl groups, monovalent heterocyclic groups and halogen atoms are as follows: R in the above formula (1-1) 1
  • the definition and specific examples of the alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group and halogen atom represented by the formula are the same.
  • the carbon number of the arylene group not containing a substituent is usually 6 to 60, and preferably 6 to 20.
  • arylene group examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a tetracenediyl group, a pyrenediyl group, a pentacenediyl group, a perylenediyl group, and a fluorenediyl group.
  • the divalent heterocyclic group is an atomic group obtained by removing two hydrogen atoms directly bonded to a ring from a heterocyclic compound which may have a substituent, and includes a group having a condensed ring.
  • a group in which two or more selected from a heterocyclic ring and a condensed ring which are independent divalent groups are directly bonded is not included in the divalent heterocyclic ring defined herein.
  • the carbon number of the divalent heterocyclic group excluding the substituent of the heterocyclic compound is usually 2 to 60, and preferably 3 to 20.
  • the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, and a halogen atom.
  • alkyl groups, alkoxy groups, alkylthio groups, aryl groups, monovalent heterocyclic groups and halogen atoms are as follows: R in the above formula (1-1) 1
  • the definition and specific examples of the alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group and halogen atom represented by the formula are the same.
  • Ar 1 At least one of these is preferably an arylene group having an electron-withdrawing substituent or a carbonyl group from the viewpoint of further increasing the field-effect mobility of the polymer compound of the present invention.
  • Ar 1 At least one of the electron withdrawing substituents, sp 2 It is preferably a divalent aromatic heterocyclic group having a nitrogen atom or a carbonyl group, and an electron-withdrawing substituent or sp 2 More preferably, it is a divalent aromatic heterocyclic group having a nitrogen atom and a carbonyl group.
  • Electron withdrawing substituent is Hammett's ⁇ p A substituent whose value is positive. Hammett ⁇ of the substituent p Values are given in, for example, Chemical Review, 1991, Vol. 91, p. 165-195. ⁇ not listed here p The value is obtained by calculation.
  • the acid dissociation equilibrium constant of the compound is calculated by the method described in Journal of Physical Chemistry A (1997), Vol. 101, pages 5593-5595, and Hammett's ⁇ p The value can be determined.
  • the Hammett ⁇ of the substituent p The value is preferably in the range of 0.01 to 1.00.
  • Specific examples of the substituent include a nitro group, a cyano group, a trifluoromethylcarbonyl group, a trifluoromethyl group, a perfluorohexyl group, an acetyl group, a chlorine atom, and a fluorine atom, and a cyano group and a trifluoromethyl group.
  • the divalent heterocyclic group is preferably a divalent aromatic heterocyclic group, such as an oxadiazole diyl group, a thiadiazole diyl group, a thiophene diyl group, a pyrrole diyl group, a furandyl group, a selenophene diyl group, or a pyridinediyl group.
  • Triazinediyl group Triazinediyl group, benzothiophenediyl group, benzopyrrolediyl group, benzofurandiyl group, quinolinediyl group, isoquinolinediyl group, thienothiophenediyl group, benzodithiophenediyl group, cyclopentadithiophenediyl group, and formula (Ar 1 -1) to formula (Ar 1 Group represented by -14) and the like.
  • the formula (Ar 1 -1) to formula (Ar 1 ⁇ 11) is more preferable, and the group represented by formula (Ar) 1 -1), formula (Ar 1 -2), formula (Ar 1 -3), formula (Ar 1 -6), formula (Ar 1 -7) is particularly preferred, and the group represented by the formula (Ar 1 The group represented by -6) is most preferable.
  • R 3 Each independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, a monovalent heterocyclic group or a halogen atom.
  • R 3 When two or more exist, they may be the same or different.
  • R 4 Each independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group.
  • R 4 When two or more exist, they may be the same or different.
  • Y independently represents -S-, -O-, or -Se-. When a plurality of Y are present, they may be the same or different.
  • the R 3 Is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and particularly preferably a hydrogen atom or a methyl group. .
  • the R 4 Is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and particularly preferably a hydrogen atom or a methyl group.
  • Ar 1 At least one of these is preferably a monocyclic arylene group or a monocyclic divalent heterocyclic group from the viewpoint of further increasing the field-effect mobility of the polymer compound of the present invention.
  • the monocyclic arylene group or monocyclic divalent heterocyclic group has the formula (Ar 1 -1) to formula (Ar 1 It is preferable to combine with the group represented by -11) from the viewpoint of further increasing the electric field mobility of the polymer compound of the present invention.
  • Specific examples of the structural unit represented by Formula (2) include structural units represented by Formula (2-1) to Formula (2-25).
  • the structural unit represented by the formula (2) includes the formula (2-1) to the formula (2-6) and the formula (2-12) to Formula (2-16), Formula (2-23) to Formula (2-25) are preferable, Formula (2-1), Formula (2-3), Formula (2-5), Formula (2-6) Is more preferable.
  • the polymer compound of the present invention includes a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), a structural unit represented by formula (1-3), and a formula (1 -A), a structural unit represented by formula (1-B), a structural unit represented by formula (1-C), and a structural unit other than the structural unit represented by formula (2) (Hereinafter may be referred to as “other structural units”).
  • Other structural units may be contained alone or in combination of two or more in the polymer compound.
  • R b And R c Each independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, a monovalent heterocyclic group or a halogen atom.
  • R b And R c The definitions and specific examples of the optionally substituted alkyl group, aryl group, monovalent heterocyclic group and halogen atom represented by formula (1-1) are as follows: 1 The definition and specific examples of the alkyl group, aryl group, monovalent heterocyclic group and halogen atom which may be substituted may be the same.
  • the polymer compound of the present invention is preferably a conjugated polymer compound from the viewpoint of further increasing the field effect mobility of the polymer compound.
  • the polymer compound of the present invention is selected from the group consisting of a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), and a structural unit represented by formula (1-3).
  • a polymer compound comprising at least one selected structural unit, a structural unit represented by the formula (2), and another structural unit. It is preferably a polymer compound composed of a structural unit represented by (1-1), a structural unit represented by formula (2), and another structural unit, represented by formula (1-A).
  • the total proportion of the structural unit represented by formula (1-3) and the structural unit represented by formula (2) is preferably 50 mol% or more, and 70 mol% or more. Is more preferable.
  • the structural unit represented by the formula (1-1), the structural unit represented by the formula (1-2), or the formula (1-3) It is preferable that it is a copolymer of the structural unit represented by the structural unit represented by Formula (2), and is represented by the structural unit represented by Formula (1-1), and Formula (2).
  • the polymer compound of the present invention includes a structural unit represented by the formula (1-A), a structural unit represented by the formula (1-B), or a structure represented by the formula (1-C).
  • Examples thereof include a polymer compound represented by the formula (3-1) to the formula (3-32), which is a copolymer of the unit and the structural unit represented by the formula (2).
  • the polymer compound of the present invention may be produced by any method, for example, the formula: X 11 -A 11 -X 12 And a compound represented by the formula: X 13 -A 12 -X 14 Can be synthesized by a polymerization method such as known aryl coupling using an appropriate catalyst by dissolving in an organic solvent as necessary, adding a base as necessary.
  • a 11 Represents a structural unit represented by the formula (1-1), (1-2), (1-3), (1-A), (1-B) or (1-C), and
  • a 12 Represents a structural unit represented by the formula (2).
  • X 11 , X 12 , X 13 And X 14 Each independently represents a polymerization reactive group.
  • Polymerization reactive groups include halogen atoms, boric acid ester residues, boric acid residues (-B (OH) 2 ), A trialkylstannyl group and the like.
  • the halogen atom that is the polymerization reactive group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • boric acid ester residue that is the polymerization reactive group examples include groups represented by the following formula.
  • examples of the trialkylstannyl group that is the polymerization reactive group include a trimethylstannyl group and a tributylstannyl group.
  • Polymerization methods such as aryl coupling include polymerization by Suzuki coupling reaction (Chemical Review, 1995, Vol. 95, pages 2457-2483), polymerization by Stille coupling reaction (European Polymer Journal, 2005). Year 41, 2923-2933).
  • the polymerization reactive group is a halogen atom, a boric acid ester residue, a boric acid residue or the like when a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction is used.
  • a bromine atom, an iodine atom, and a boric acid ester residue are preferable.
  • the ratio of the total moles of bromine and iodine atoms and the total moles of boric acid ester residues, which are the polymerization reactive groups is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
  • the polymerization reactive group is a halogen atom, a trialkylstannyl group or the like when a palladium catalyst such as Stille coupling reaction is used.
  • the ratio of the total number of moles of bromine atom and iodine atom and the total number of moles of trialkylstannyl group, which are the polymerization reactive groups is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
  • the organic solvent used for polymerization include benzene, toluene, xylene, chlorobenzene, dichlorobenzene, tetrahydrofuran, and dioxane.
  • Bases used for polymerization include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide And organic bases such as tetraethylammonium hydroxide and tetrabutylammonium hydroxide.
  • inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide
  • organic bases such as tetraethylammonium hydroxide and tetrabutylammonium hydroxide.
  • the catalyst used for the polymerization examples include transition metal complexes such as tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, palladium acetate, dichlorobistriphenylphosphine palladium, and a transition metal complex, if necessary. It is a catalyst comprising a ligand such as phenylphosphine, tri-t-butylphosphine, tricyclohexylphosphine. As these catalysts, those synthesized in advance may be used, or those prepared in the reaction system may be used as they are. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.
  • transition metal complexes such as tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, palladium acetate, dichlorobistriphenylphosphine
  • the polymerization reaction temperature is preferably 0 to 200 ° C, more preferably 0 to 150 ° C, and still more preferably 0 to 120 ° C.
  • the polymerization reaction time is usually 1 hour or longer, preferably 2 to 500 hours.
  • the post-treatment of the polymerization can be carried out by a known method, for example, by a method in which the reaction solution obtained by the polymerization is added to a lower alcohol such as methanol and the resulting precipitate is filtered and dried.
  • a lower alcohol such as methanol
  • the resulting precipitate is filtered and dried.
  • the purity of the polymer compound obtained by the above polymerization reaction is low, it may be purified by a method such as recrystallization, continuous extraction with a Soxhlet extractor, or column chromatography.
  • the molecular chain terminal is preferably a stable group such as an aryl group or a monovalent aromatic heterocyclic group.
  • the polymer compound of the present invention may be any type of copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
  • the polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present invention is usually 1 ⁇ 10.
  • the number average molecular weight is 2 ⁇ 10 3 The above is preferable. From the viewpoint of increasing the solubility in a solvent and facilitating the preparation of a thin film, the number average molecular weight is 1 ⁇ 10 6 The following is preferable.
  • Organic semiconductor element include an organic transistor, an organic solar battery, and an organic electroluminescence element. The polymer compound of the present invention is particularly useful as a charge transport material for organic transistors.
  • the organic semiconductor material may contain one kind of the polymer compound of the present invention alone, or may contain two or more kinds.
  • the organic semiconductor material may further contain a low-molecular compound or a polymer compound having field effect mobility.
  • the polymer compound of the present invention is preferably contained in an amount of 30% by weight or more, more preferably 50% by weight or more. When the content of the polymer compound of the present invention is less than 30% by weight, it may be difficult to form a thin film.
  • Examples of the compound having field effect mobility include arylamine derivatives, stilbene derivatives, oligothiophene and derivatives thereof, low molecular compounds such as oxadiazole derivatives, fullerenes and derivatives thereof, poly (N-vinylcarbazole) and derivatives thereof, Examples thereof include polymer compounds such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
  • the organic semiconductor material may contain a polymer compound material as a polymer binder.
  • polymer binder examples include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof.
  • Derivatives, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.
  • Organic transistor has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path The thing which has is mentioned.
  • Examples of the organic transistor having such a configuration include a field effect organic transistor and a static induction organic transistor.
  • a field effect organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path.
  • the organic transistor having an active layer and an insulating layer disposed between the gate electrode.
  • an organic transistor in which a source electrode and a drain electrode are provided in contact with an active layer and a gate electrode is provided with an insulating layer in contact with the active layer interposed therebetween is preferable.
  • the electrostatic induction organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path And the gate electrode is provided in the active layer.
  • an organic transistor in which a source electrode, a drain electrode, and a gate electrode are provided in contact with the active layer is preferable.
  • the gate electrode may have a structure in which a current path flowing from the source electrode to the drain electrode can be formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. .
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic transistor (field-effect organic transistor) of the present invention.
  • An organic transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the substrate 1 at a predetermined interval, and a source electrode 5 and a drain electrode 6 so as to cover the substrate 1. Formed on the insulating layer 3 so as to cover the active layer 2 formed on the insulating layer 3, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 on the region between the source electrode 5 and the drain electrode 6. The gate electrode 4 is provided.
  • FIG. 2 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention.
  • FIG. 5 is a schematic sectional view showing another example of the organic transistor (electrostatic induction type organic transistor) of the present invention.
  • FIG. 5 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the source electrode 5, and a plurality of active transistors 2 with a predetermined interval on the active layer 2.
  • FIG. 6 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention.
  • FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • An active layer 2 formed so as to cover the region of the insulating layer 3 formed on the active layer 2, a source electrode 5 formed on the active layer 2 so as to cover a part of the active layer 2, and one of the active layers 2
  • a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval are provided so as to cover the portion.
  • FIG. 8 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention.
  • the organic transistor 180 shown in FIG. 9 includes a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, a source electrode 5 and a drain electrode 6 formed on the insulating layer 3 with a predetermined interval,
  • the active layer 2 is formed on the insulating layer 3 so as to cover a part of the source electrode 5 and the drain electrode 6.
  • the active layer 2 and / or the active layer 2a is composed of a film containing the polymer compound of the present invention, and a current path (channel) between the source electrode 5 and the drain electrode 6 is formed.
  • the gate electrode 4 controls the amount of current passing through the current path (channel) by applying a voltage.
  • Such a field effect organic transistor can be manufactured by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic transistor can be produced by a known method such as the method described in US2004 / 004215.
  • the material of the substrate 1 may be any material that does not hinder the characteristics of the organic transistor.
  • the material of the insulating layer 3 may be any material having high electrical insulation, such as SiO x , SiN x , Ta 2 O 5 Polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, photoresist, and the like can be used. From the viewpoint of lowering the voltage, it is preferable to use a material having a high dielectric constant.
  • a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. It is also possible to form the active layer 2 after the modification.
  • silane coupling agents include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, and fluorinated alkylalkoxysilanes.
  • silylamine compounds such as hexamethyldisilazane (HMDS).
  • HMDS hexamethyldisilazane
  • the surface of the insulating layer is treated with ozone UV treatment, O before treatment with the surface treatment agent. 2 Plasma treatment may be performed.
  • the gate electrode 4 includes metals such as gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low-resistance polysilicon, low-resistance amorphous silicon, tin oxide, indium oxide, indium / tin oxide.
  • a material such as (ITO) can be used. These materials may be used alone or in combination of two or more. Note that a highly doped silicon substrate can be used as the gate electrode 4.
  • a highly doped silicon substrate has not only the performance as a gate electrode but also the performance as a substrate.
  • the substrate 1 may be omitted in the organic transistor in which the substrate 1 and the gate electrode 4 are in contact with each other.
  • the source electrode 5 and the drain electrode 6 are preferably made of a low resistance material, and particularly preferably made of gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum or the like. These materials may be used alone or in combination of two or more.
  • a layer composed of another compound may be interposed between the source electrode 5 and the drain electrode 6 and the active layer 2.
  • Such layers include low molecular compounds having electron transport properties, low molecular compounds having hole transport properties, alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, iodine, bromine, Halogens such as chlorine and iodine chloride, sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide and sulfate, nitric oxide compounds such as nitric acid, nitrogen dioxide and nitrate, halogenated compounds such as perchloric acid and hypochlorous acid, Examples thereof include layers made of aromatic thiol compounds such as alkyl thiol compounds, aromatic thiols, and fluorinated alkyl aromatic thiols.
  • an organic transistor is interrupted
  • the protective film can also reduce the influence on the organic transistor in the formation process.
  • a method for forming a protective film an organic transistor, UV curable resin, thermosetting resin or inorganic SiON x Examples include a method of covering with a film or the like.
  • a field effect organic transistor which is a kind of organic transistor configured as described above, can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display.
  • the organic field effect transistor of embodiment mentioned above is equipped with the active compound which contains the high molecular compound of this invention as an active layer, and the charge transport property improved by it, the field effect mobility is provided. Is expensive. Therefore, it is useful for manufacturing a display having a sufficient response speed.
  • NMR analysis> The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (Varian, INOVA300).
  • ⁇ Molecular weight analysis> The number average molecular weight and the weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC, manufactured by Waters, trade name: Alliance GPC 2000). The polymer compound to be measured was dissolved in orthodichlorobenzene and injected into GPC. Orthodichlorobenzene was used for the mobile phase of GPC.
  • the reaction solution was poured into water, washed with water, and toluene was distilled off with an evaporator.
  • the obtained liquid was purified with a silica gel column using hexane as a developing solvent to obtain 3- (2-octyldodecyloxy) thiophene.
  • the yield was 15.2 g and the yield was 91%.
  • the result of 1 H-NMR analysis of 3- (2-octyldodecyloxy) thiophene is shown below.
  • the reaction solution was filtered through celite, and the filtrate was concentrated with an evaporator.
  • Toluene and water were added here, and extracted with toluene. Washed with hydrochloric acid followed by water.
  • the toluene solution was evaporated with an evaporator.
  • the obtained liquid was subjected to silica gel column purification using a 4/1 mixed solution of hexane and chloroform as a developing solvent to obtain 3,3′-bis (2-octyldodecyloxy) -2,2′-bithiophene.
  • the yield was 7.72 g, and the yield was 44%.
  • Example 1 Synthesis of polymer compound P1>
  • 0.300 g (0.224 mmol) of compound M1 0.0987 g (0.215 mmol) of compound M2, 50 mL of toluene, 3 of tris (dibenzylideneacetone) dipalladium 0.1 mg and 6.1 mg of triortho-tolylphosphine were added and refluxed for 5 hours.
  • 35 mg of bromobenzene was added and refluxed for 1 hour.
  • the reaction solution was added dropwise to acetone to obtain a precipitate.
  • the precipitate was collected by filtration.
  • Toluene, water, and sodium N, N-diethyldithiocarbamate trihydrate were added to the precipitate and refluxed for 3 hours. Thereafter, the toluene layer was extracted. After the toluene solution was washed with an acetic acid aqueous solution and water, the toluene solution was added dropwise to acetone to obtain a precipitate. The precipitate was Soxhlet washed using acetone as a solvent to obtain a polymer compound P1. The yield was 0.15 g, the polystyrene-equivalent number average molecular weight was 6.6 ⁇ 10 4 , and the weight average molecular weight was 1.3 ⁇ 10 5 .
  • Example 2 Synthesis of polymer compound P2> A polymer compound P2 was synthesized in the same manner as in Example 1 except that 0.0937 g (0.202 mmol) of the compound M3 was used instead of the compound M2. The yield was 0.13 g, the number average molecular weight in terms of polystyrene was 1.7 ⁇ 10 4 , and the weight average molecular weight was 2.4 ⁇ 10 5 .
  • Compound M3 was synthesized according to the method described in Chemistry A European Journal, 2010, Vol. 16, p. 3743.
  • Example 3 Synthesis of polymer compound P3> A polymer compound P3 was synthesized in the same manner as in Example 1 except that 0.138 g (0.220 mmol) of the compound M4 was used instead of the compound M2. The yield was 0.21 g, the number average molecular weight in terms of polystyrene was 3.1 ⁇ 10 4 , and the weight average molecular weight was 8.8 ⁇ 10 4 .
  • Compound M4 was synthesized according to the method described in Synthetic Metals, 2010, 160, 2422.
  • ⁇ Synthesis Example 4 Synthesis of Compound M5> Compound M5-1 was synthesized according to the method described in “Tetrahedron, 2010, 66, 1837”.
  • Example 4 Synthesis of polymer compound P4> A polymer compound P4 was synthesized in the same manner as in Example 1 except that 0.0872 g (0.179 mmol) of the compound M5 was used instead of the compound M2. The yield was 0.12 g, the polystyrene-equivalent number average molecular weight was 2.5 ⁇ 10 4 , and the weight average molecular weight was 1.5 ⁇ 10 5 .
  • ⁇ Synthesis Example 5 Synthesis of polymer compound PA> A polymer compound PA was synthesized in the same manner as in Example 1 except that 0.0653 g (0.222 mmol) of 4,7-dibromobenzo-2,1,3-thiadiazole was used in place of the compound M2.
  • Example 5 Production and evaluation of organic transistor 1> An organic transistor 1 having a structure shown in FIG. 9 was produced using a solution containing the polymer compound P1. The surface of the heavily doped n-type silicon substrate to be the gate electrode was thermally oxidized to form a silicon oxide film (hereinafter referred to as “thermal oxide film”). The thermal oxide film functions as an insulating layer. Next, a source electrode and a drain electrode were formed on the thermal oxide film by a photolithography process.
  • the source electrode and the drain electrode had a chromium (Cr) layer and a gold (Au) layer from the thermal oxide film side, and had a channel length of 20 ⁇ m and a channel width of 2 mm.
  • the substrate on which the thermal oxide film, the source electrode, and the drain electrode thus obtained were ultrasonically cleaned with acetone, and UV ozone treatment was performed with an ozone UV cleaner. Thereafter, the surface of the thermal oxide film was modified with ⁇ -phenethyltrichlorosilane, and the surfaces of the source electrode and the drain electrode were modified with pentafluorobenzenethiol.
  • the surface-treated thermal oxide film, the source electrode and the drain electrode are spin-coated with an orthodichlorobenzene solution of 0.5% by weight of the polymer compound P1 at a rotational speed of 1000 rpm, and an organic semiconductor layer (active layer) ) Was formed. Thereafter, the organic semiconductor layer was heated at 170 ° C. for 30 minutes to manufacture the organic transistor 1.
  • the transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 1 obtained.
  • the field effect mobility was 1.6 ⁇ 10 ⁇ 2 cm 2 / Vs. The results are shown in Table 2.
  • Example 6 Production and evaluation of organic transistor 2> Organic transistor 2 was produced in the same manner as in Example 5 except that polymer compound P2 was used instead of polymer compound P1. The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 2 obtained. The field effect mobility was 1.4 ⁇ 10 ⁇ 2 cm 2 / Vs. The results are shown in Table 2.
  • Example 7 Production and evaluation of organic transistor 3> An organic transistor 3 was produced in the same manner as in Example 5 except that the polymer compound P3 was used instead of the polymer compound P1. The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 3 obtained.
  • Example 8 Production and evaluation of organic transistor 4> An organic transistor 4 was produced in the same manner as in Example 5 except that the polymer compound P4 was used instead of the polymer compound P1. The gate voltage Vg and source-drain voltage Vsd of the obtained organic transistor 4 were changed, and transistor characteristics were measured. The field effect mobility was 2.7 ⁇ 10 ⁇ 1 cm 2 / Vs. The results are shown in Table 2.
  • ⁇ Comparative Example 1 Production and Evaluation of Organic Transistor C1> Organic transistor C1 was produced in the same manner as in Example 5 except that polymer compound PA was used instead of polymer compound P1. The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the obtained organic transistor C1. The field effect mobility was 3.5 ⁇ 10 ⁇ 4 cm 2 / Vs. The results are shown in Table 2.
  • a polymer compound having sufficiently high field effect mobility can be provided.
  • an organic transistor including the polymer compound of the present invention in an active layer and having sufficiently high field effect mobility can be provided.

Abstract

A polymer compound, which contains a structural unit represented by formula (2) and at least one kind of structural unit that is selected from the group consisting of structural units represented by formula (1-1) to formula (1-3), is useful for the production of an organic transistor that has high field effect mobility. (In formulae (1-1)-(1-3), R1 represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom; R2 represents an optionally substituted alkyl group having 2 or more carbon atoms; E represents -O-, -S-, -Se- or -N(Ra)-; Ra represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group; ring A represents an aromatic ring or a heterocyclic ring; n2 represents an integer of 0 or more; and n3 represents an integer of 1-3.) (In formula (2), Ar1 represents an arylene group or a divalent heterocyclic group; and m1 represents an integer of 3-10.)

Description

高分子化合物及び有機トランジスタPolymer compounds and organic transistors
 本発明は、高分子化合物及びそれを用いた有機トランジスタに関する。 The present invention relates to a polymer compound and an organic transistor using the same.
 有機半導体材料を利用した有機トランジスタは、従来の無機半導体材料を利用したトランジスタと比較して、デバイスの軽量化や、製造コストの低下、低温で製造できることが期待されるため、盛んに研究開発が行われている。
 有機トランジスタの性能の一つである電界効果移動度は、活性層に含まれる有機半導体材料の電界効果移動度に大きく依存するため、様々な有機半導体材料を有機トランジスタの活性層に用いることが検討されている。
 例えば、Chemistry of Materials、2011年、23巻、2185−2200頁には、有機トランジスタに用いる有機半導体材料として、アルコキシチオフェンを構造単位として有する、下記高分子化合物が提案されている。
Figure JPOXMLDOC01-appb-I000005
 しかしながら、上記高分子化合物を用いた有機トランジスタは、電界効果移動度が十分高くはなかった。
Since organic transistors using organic semiconductor materials are expected to be lighter, have lower manufacturing costs and can be manufactured at lower temperatures than conventional transistors using inorganic semiconductor materials, they are actively researched and developed. Has been done.
The field effect mobility, which is one of the performances of organic transistors, greatly depends on the field effect mobility of the organic semiconductor material contained in the active layer. Therefore, it is considered to use various organic semiconductor materials for the active layer of the organic transistor. Has been.
For example, Chemistry of Materials, 2011, Vol. 23, pp. 2185-2200 proposes the following polymer compound having alkoxythiophene as a structural unit as an organic semiconductor material used for an organic transistor.
Figure JPOXMLDOC01-appb-I000005
However, the organic transistor using the above polymer compound has not sufficiently high field effect mobility.
 本発明は、電界効果移動度の高い高分子化合物及びそれを用いた有機トランジスタを提供する。
 本発明は、式(1−1)で表される構造単位、式(1−2)で表される構造単位及び式(1−3)で表される構造単位からなる群から選ばれる少なくとも1種の構造単位と、式(2)で表される構造単位とを含む高分子化合物を提供する。
Figure JPOXMLDOC01-appb-I000006
[式中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基又はハロゲン原子を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。Rは、炭素数が2以上の置換されていてもよいアルキル基を表す。Eは、−O−、−S−、−Se−又は−N(R)−を表す。Rは、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。環Aは、芳香環又は複素環を表す。nは0以上の整数を表し、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-I000007
[式中、Arは、それぞれ独立に、アリーレン基又は2価の複素環基を表す。但し、Arは式(1−1)で表される構造単位、式(1−2)で表される構造単位及び式(1−3)で表される構造単位とは異なる。複数存在するArは同一であっても異なっていてもよい。mは3~10の整数を表す。]
 また、本発明は、前記高分子化合物を含む有機半導体材料を提供する。
 さらに、本発明は、前記有機半導体材料を含む有機層を有する有機半導体素子を提供する。
The present invention provides a polymer compound having a high field effect mobility and an organic transistor using the same.
The present invention is at least one selected from the group consisting of a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), and a structural unit represented by formula (1-3). Provided is a polymer compound comprising a seed structural unit and a structural unit represented by formula (2).
Figure JPOXMLDOC01-appb-I000006
[Wherein, R 1 is independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, or a monovalent heterocyclic ring. Represents a group or a halogen atom. When a plurality of R 1 are present, they may be the same or different. R 2 represents an optionally substituted alkyl group having 2 or more carbon atoms. E is, -O -, - S -, - Se- , or -N (R a) - represents a. R a represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, or a monovalent heterocyclic group. Ring A represents an aromatic ring or a heterocyclic ring. n 2 represents an integer of 0 or more, and n 3 represents an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-I000007
[In formula, Ar < 1 > represents an arylene group or a bivalent heterocyclic group each independently. However, Ar 1 is different from the structural unit represented by the formula (1-1), the structural unit represented by the formula (1-2), and the structural unit represented by the formula (1-3). A plurality of Ar 1 may be the same or different. m 1 represents an integer of 3 to 10. ]
The present invention also provides an organic semiconductor material containing the polymer compound.
Furthermore, this invention provides the organic-semiconductor element which has an organic layer containing the said organic-semiconductor material.
 図1は本発明の有機トランジスタの一例を示す模式断面図である。
 図2は本発明の有機トランジスタの他の例を示す模式断面図である。
 図3は本発明の有機トランジスタの他の例を示す模式断面図である。
 図4は本発明の有機トランジスタの他の例を示す模式断面図である。
 図5は本発明の有機トランジスタの他の例を示す模式断面図である。
 図6は本発明の有機トランジスタの他の例を示す模式断面図である。
 図7は本発明の有機トランジスタの他の例を示す模式断面図である。
 図8は本発明の有機トランジスタの他の例を示す模式断面図である。
 図9は本発明の有機トランジスタの他の例を示す模式断面図である。
 図中、1は基板、2及び2aは活性層、3は絶縁層を表す。4はゲート電極、5はソース電極、6はドレイン電極を表し、100、110、120、130、140、150、160、170及び180は有機トランジスタを表す。
FIG. 1 is a schematic cross-sectional view showing an example of the organic transistor of the present invention.
FIG. 2 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 3 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 4 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 5 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 6 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 7 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 8 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
FIG. 9 is a schematic cross-sectional view showing another example of the organic transistor of the present invention.
In the figure, 1 is a substrate, 2 and 2a are active layers, and 3 is an insulating layer. 4 represents a gate electrode, 5 represents a source electrode, 6 represents a drain electrode, and 100, 110, 120, 130, 140, 150, 160, 170 and 180 represent organic transistors.
 以下、必要に応じて図面を参照することにより、本発明の好適な実施の形態について詳細に説明する。なお、図面の説明においては、同一の要素には同一の符号を付し、重複する説明は省略する。
<式(1−1)で表される構造単位>
 前記式(1−1)中、Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環又はハロゲン原子を表す。
 アルキル基は、1以上の置換基を有していてもよく、置換基を除いたアルキル基の炭素数は通常1~60であり、1~20であることが好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよい。
 アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基、n−ドデシル基、n−オクタデシル基等の直鎖アルキル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、3,7,11−トリメチルドデシル基、2−ヘキシルデシル基、2−オクチルドデシル基等の分岐アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基が挙げられる。
 アルキル基が有していてもよい置換基としては、アルコキシ基(炭素数は通常1~60)、アリール基(炭素数は通常6~60)、ハロゲン原子等が挙げられる。置換基されたアルキル基の具体例としては、メトキシエチル基、ベンジル基、トリフルオロメチル基及びパーフルオロヘキシル基が挙げられる。
 アルコキシ基は、1以上の置換基を有していてもよく、置換基を除いたアルコキシ基の炭素数は通常1~60であり、1~20であることが好ましい。アルコキシ基のアルキル部は、直鎖、分岐、環状のいずれでもよい。
 アルコキシ基の具体例としては、n−ブトキシ基、n−ヘキシルオキシ基、2−エチルヘキシルオキシ基、3,7−ジメチルオクチルオキシ基及びn−ドデシルオキシ基が挙げられる。
 アルコキシ基が有していてもよい置換基としては、アリール基(炭素数は通常6~60)、ハロゲン原子等が挙げられる。
 アルキルチオ基は、1以上の置換基を有していてもよく、置換基を除いたアルキルチオ基の炭素数は通常1~60であり、1~20であることが好ましい。アルキルチオ基のアルキル部は、直鎖、分岐、環状のいずれでもよい。
 アルキルチオ基の具体例としては、n−ブチルチオ基、n−ヘキシルチオ基、2−エチルヘキシルチオ基、3,7−ジメチルオクチルチオ基及びn−ドデシルチオ基が挙げられる。
 アルキルチオ基が有していてもよい置換基としては、アリール基(炭素数は通常6~60)、ハロゲン原子等が挙げられる。
 アリール基は、置換基を有していてもよい芳香族炭化水素化合物から芳香環に直接結合する水素原子1個を除いた原子団であり、ベンゼン環を有する基、縮合環を有する基、独立した芳香環及び縮合環から選ばれる2個以上が直接結合した基を含む。
 芳香族炭化水素化合物の置換基を除いたアリール基の炭素数は、通常6~60であり、6~20であることが好ましい。アリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、1−ピレニル基、2−ピレニル基、4−ピレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基及び4−フェニルフェニル基が挙げられる。
 芳香族炭化水素化合物が有していてもよい置換基としては、アルキル基(炭素数は通常1~60)、アルコキシ基(炭素数は通常1~60)、アルキルチオ基(炭素数は通常1~60)、1価の複素環基、ハロゲン原子等が挙げられる。これらの基を含むアリール基としては、4−ヘキシルフェニル基、3,5−ジメトキシフェニル基、ペンタフルオロフェニル基等が挙げられる。芳香族炭化水素化合物が置換基を有する場合、置換基としてはアルキル基が好ましい。
 1価の複素環基は、置換基を有していてもよい複素環式化合物から、環に直接結合する水素原子1個を除いた原子団であり、縮合環を有する基、独立した複素環及び縮合環から選ばれる2個以上が直接結合した基を含む。
 複素環式化合物の置換基を除いた1価の複素環基が有する炭素数は、通常2~60であり、3~20であることが好ましい。
 1価の複素環基としては、1価の芳香族複素環基が好ましく、例えば、2−フリル基、3−フリル基、2−チエニル基、3−チエニル基、2−ピロリル基、3−ピロリル基、2−オキサゾリル基、2−チアゾリル基、2−イミダゾリル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ベンゾフリル基、2−ベンゾチエニル基及び2−チエノチエニル基が挙げられる。
 複素環式化合物が有していてもよい置換基としては、アルキル基(炭素数は通常1~60)、アルコキシ基(炭素数は通常1~60)、アルキルチオ基(炭素数は通常1~60)、アリール基(炭素数は通常6~60)、ハロゲン原子等が挙げられる。これらの基を含む1価の複素環基としては、例えば、5−オクチル−2−チエニル基及び5−フェニル−2−フリル基が挙げられる。複素環式化合物が置換基を有する場合、置換基としてはアルキル基が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 高分子化合物の電界効果移動度をより高める観点から、前記Rは、水素原子、アルコキシ基、ハロゲン原子が好ましく、水素原子、アルコキシ基がより好ましく、水素原子がさらに好ましい。
 前記Rは、置換されていてもよい炭素数が2以上のアルキル基を表す。
 Rで表される、置換基を除いたアルキル基の炭素数は、通常2~60であり、2~24であることが好ましい。Rで表されるアルキル基は、直鎖、分岐、環状のいずれでもよい。
 Rで表されるアルキル基の具体例としては、エチル基、n−プロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基、n−ドデシル基、n−オクタデシル基等の直鎖アルキル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、3,7,11−トリメチルドデシル基、2−ヘキシルデシル基、2−オクチルドデシル基等の分岐アルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。
 Rで表されるアルキル基は1以上の置換基を有していてもよく、アルキル基が有していてもよい置換基としては、アルコキシ基(炭素数は通常1~60)、アリール基(炭素数は通常6~60)、ハロゲン原子等が挙げられる。置換されたアルキル基の具体例としては、メトキシエチル基、ベンジル基、トリフルオロメチル基及びパーフルオロヘキシル基が挙げられる。
 印刷法により有機半導体素子の作成を行うために溶解性を高める観点から、前記Rは、炭素数が8以上のアルキル基であることが好ましく、炭素数が12以上のアルキル基であることがより好ましく、炭素数が16以上のアルキル基であることがさらに好ましい。
 また、印刷法により有機半導体素子の作製を行うために溶解性を高める観点から、Rは、分岐アルキル基であることが好ましい。
 Eは、−O−、−S−、−Se−又は−N(R)−を表す。
 Rは、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例と同じである。
 合成の容易さの観点から、Eは、−S−であることが好ましい。
 式(1−1)で表される構造単位の具体例としては、式(1−1−1)~式(1−1−11)で表される構造単位が挙げられる。印刷法により有機半導体素子の作成を行うために溶解性を高める観点から、式(1−1)で表される構造単位は、式(1−1−1)、式(1−1−2)、式(1−1−4)~式(1−1−11)であることが好ましく、式(1−1−1)、式(1−1−2)、式(1−1−5)~式(1−1−9)、式(1−1−11)であることがより好ましい。また、合成の容易さの観点からは、式(1−1)で表される構造単位は、式(1−1−1)~式(1−1−6)であることが好ましい。
Figure JPOXMLDOC01-appb-I000008
<式(1−2)で表される構造単位>
 式(1−2)中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基又はハロゲン原子を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例と同じである。
 nは0以上の整数を表す。
 式(1−2)中、Rは、炭素数が2以上の置換されていてもよいアルキル基を表す。炭素数が2以上の置換されていてもよいアルキル基の定義、具体例及び好ましい例は、前記式(1−1)におけるRで表される炭素数が2以上の置換されていてもよいアルキル基の定義、具体例及び好ましい例と同じである。
 式(1−2)中、Eは、−O−、−S−、−Se−又は−N(R)−を表す。
 Rは、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例と同じである。
 Eの好ましい例は、前記式(1−1)におけるEの好ましい例と同じである。
 環Aは、芳香環又は複素環を表す。環Aは、前記Eを含む5員環と縮合するものである。
 環Aで表される芳香環の炭素数は、通常6~60であり、6~20であることが好ましい。また、環Aで表される複素環の炭素数は、通常2~60であり、3~20であることが好ましい。芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環及びペンタセン環が挙げられ、複素環としては、例えば、フラン環、チオフェン環、セレノフェン環、ピロール環、チエノチオフェン環及びベンゾチオフェン環が挙げられる。本発明の高分子化合物の電界効果移動度をより高める観点から、環Aは、複素環が好ましく、チオフェン環、チエノチオフェン環、ベンゾチオフェン環がより好ましい。
 式(1−2)で表される構造単位の具体例としては、式(1−2−1)~式(1−2−9)で表される構造単位が挙げられる。本発明の高分子化合物の電界効果移動度をより高める観点から、式(1−2)で表される構造単位としては、式(1−2−1)~式(1−2−3)が好ましく、式(1−2−1)がより好ましい。
Figure JPOXMLDOC01-appb-I000009
<式(1−3)で表される構造単位>
 式(1−3)中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基又はハロゲン原子を表す。複数存在するRは、同一であっても異なっていてもよい。置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例と同じである。
 nは1~3の整数を表す。
 式(1−3)中、Eは、−O−、−S−、−Se−又は−N(R)−を表す。
 Rは、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例と同じである。
 Eの好ましい例は、前記式(1−1)におけるEの好ましい例と同様である。
 式(1−3)で表される構造単位の具体例としては、式(1−3−1)~式(1−3−6)で表される構造単位が挙げられる。印刷法により有機半導体素子の作成を行うために溶解性を高める観点から、式(1−3)で表される構造単位は、式(1−3−2)、式(1−3−3)であることが好ましく、式(1−3−2)であることがより好ましい。また、合成の容易さの観点から、式(1−3)で表される構造単位は、式(1−3−1)~式(1−3−4)であることが好ましい。
Figure JPOXMLDOC01-appb-I000010
<式(1−A)、式(1−B)及び式(1−C)で表される構造単位>
 式(1−1)で表される構造単位は、2個連結した、式(1−A)、式(1−B)または式(1−C)で表される構造単位として、高分子化合物に含まれることが好ましい。
Figure JPOXMLDOC01-appb-I000011
[式中、R、R及びEは、それぞれ独立に、前記と同じ意味を表す。]
 式(1−A)~式(1−C)中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基又はハロゲン原子を表す。複数存在するRは、同一であっても異なっていてもよい。置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例と同じである。
 式(1−A)~式(1−C)中、Rは、それぞれ独立に、炭素数が2以上の置換されていてもよいアルキル基を表す。複数存在するRは、同一であっても異なっていてもよい。炭素数が2以上の置換されていてもよいアルキル基の定義、具体例及び好ましい例は、前記式(1−1)におけるRで表される炭素数が2以上の置換されていてもよいアルキル基の定義、具体例及び好ましい例と同様である。
 式(1−A)~式(1−C)中、Eは、それぞれ独立に、−O−、−S−、−Se−又は−N(R)−を表す。複数存在するEは、同一であっても異なっていてもよい。
 Rは、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、アリール基及び1価の複素環基の定義及び具体例と同じである。
 Eの好ましい例は、前記式(1−1)におけるEの好ましい例と同じである。
 式(1−A)で表される構造単位の具体例としては、式(1−A−1)~式(1−A−8)で表される構造単位が挙げられる。合成の容易さの観点から、式(1−A)で表される構造単位は、式(1−A−1)~式(1−A−3)であることが好ましい。
Figure JPOXMLDOC01-appb-I000012
 式(1−B)で表される構造単位の具体例としては、式(1−B−1)~式(1−B−8)で表される構造単位が挙げられる。合成の容易さの観点から、式(1−B)で表される構造単位は、式(1−B−1)~式(1−B−3)であることが好ましい。
Figure JPOXMLDOC01-appb-I000013
 式(1−C)で表される構造単位の具体例としては、式(1−C−1)~式(1−C−8)で表される構造単位が挙げられる。合成の容易さの観点から、式(1−C)で表される構造単位は、式(1−C−1)~式(1−C−3)であることが好ましい。
Figure JPOXMLDOC01-appb-I000014
<式(2)で表される構造単位>
 式(2)中、Arは、それぞれ独立に、アリーレン基又は2価の複素環基を表す。複数存在するArは同一であっても異なっていてもよい。
 式(2)中、mは3~10の整数を表し、合成の容易さの観点から、mは3~7の整数であることが好ましく、3~5の整数であることがより好ましく、3であることがさらに好ましい。
 アリーレン基は、置換基を有していてもよい芳香族炭化水素化合物から芳香環を構成する炭素原子に直接結合する水素原子2個を除いた原子団であり、縮合環を有する基を含む。尚、独立した2価の基である芳香環及び縮合環から選ばれる2個以上が直接結合した基はここで定義されるアリーレン基には含まれない。
 該置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、ハロゲン原子が挙げられる。アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例は、前記式(1−1)におけるRで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例と同じである。置換基を含まないアリーレン基の炭素数は、通常6~60であり、6~20であることが好ましい。
 アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、テトラセンジイル基、ピレンジイル基、ペンタセンジイル基、ペリレンジイル基及びフルオレンジイル基が挙げられる。
 2価の複素環基は、置換基を有していてもよい複素環式化合物から、環に直接結合する水素原子2個を除いた原子団であり、縮合環を有する基を含む。尚、独立した2価の基である複素環及び縮合環から選ばれる2個以上が直接結合した基はここで定義される2価の複素環には含まれない。
 複素環式化合物の置換基を除いた2価の複素環基が有する炭素数は、通常2~60であり、3~20であることが好ましい。
 該置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基及びハロゲン原子が挙げられる。アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例は、前記式(1−1)におけるRで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例と同じである。
 Arの少なくとも1つは、本発明の高分子化合物の電界効果移動度をより高める観点から、電子吸引性置換基又はカルボニル基を有するアリーレン基であることが好ましい。
 また、Arの少なくとも1つは、電子吸引性置換基、sp窒素原子又はカルボニル基を有する2価の芳香族複素環基であることが好ましく、電子吸引性置換基又はsp窒素原子とカルボニル基とを有する2価の芳香族複素環基であることがさらに好ましい。
 電子吸引性置換基とは、ハメットのσ値が正である置換基である。置換基のハメットのσ値は、例えば、ケミカル レビュー(Chemical Review)、1991年、第91巻、p.165−195に記載されている。ここに記載されていないσ値は、計算で求める。計算で求める場合は、ジャーナル オブ フィジカル ケミストリー エー(Journal of Physical Chemistry A)、1997年、第101巻、5593−5595頁に記載の方法で化合物の酸解離平衡定数を算出し、置換基のハメットのσ値を求めることができる。
 置換基のハメットのσ値は、0.01~1.00の範囲内であることが好ましい。具体的な置換基としては、ニトロ基、シアノ基、トリフルオロメチルカルボニル基、トリフルオロメチル基、パーフルオロヘキシル基、アセチル基、塩素原子、フッ素原子等が挙げられ、シアノ基、トリフルオロメチル基、塩素原子、フッ素原子が特に好ましい。
 前記2価の複素環基としては、2価の芳香族複素環基が好ましく、オキサジアゾールジイル基、チアジアゾールジイル基、チオフェンジイル基、ピロールジイル基、フランジイル基、セレノフェンジイル基、ピリジンジイル基、トリアジンジイル基、ベンゾチオフェンジイル基、ベンゾピロールジイル基、ベンゾフランジイル基、キノリンジイル基、イソキノリンジイル基、チエノチオフェンジイル基、ベンゾジチオフェンジイル基、シクロペンタジチオフェンジイル基、及び式(Ar−1)~式(Ar−14)で表される基等が挙げられる。2価の複素環基としては、本発明の高分子化合物の電界効果移動度をより高める観点から、式(Ar−1)~式(Ar−11)で表される基であることがさらに好ましく、式(Ar−1)、式(Ar−2)、式(Ar−3)、式(Ar−6)、式(Ar−7)で表される基であることが特に好ましく、式(Ar−6)で表される基であることが最も好ましい。
Figure JPOXMLDOC01-appb-I000015
[式中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、アリール基、1価の複素環基又はハロゲン原子を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。Yは、それぞれ独立に、−S−、−O−又は−Se−を表す。Yが複数存在する場合、それらは同一であっても異なっていてもよい。]
 本発明の高分子化合物の電界効果移動度をより高める観点から、前記Rは、水素原子又は炭素数が1~6のアルキル基であることが好ましく、水素原子又は炭素数が1~3のアルキル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。
 本発明の高分子化合物の電界効果移動度をより高める観点から、前記Rは、水素原子又は炭素数が1~6のアルキル基であることが好ましく、水素原子又は炭素数が1~3のアルキル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。
 前記Arの少なくとも1つは、本発明の高分子化合物の電界効果移動度をより高める観点から、単環式のアリーレン基又は単環式の2価の複素環基であることが好ましく、無置換のアリーレン基又は無置換の2価の複素環基であることがより好ましく、無置換のフェニレン基又は無置換のチオフェンジイル基であることが更に好ましい。
 該単環式のアリーレン基または単環式の2価の複素環基は、式(Ar−1)~式(Ar−11)で表される基と組み合わせることが、本発明の高分子化合物の電界移動度をより高める観点から好ましい。
 式(2)で表される構造単位の具体例としては、式(2−1)~式(2−25)で表される構造単位が挙げられる。本発明の高分子化合物の電界移動度をより高める観点から、式(2)で表される構造単位としては、式(2−1)~式(2−6)、式(2−12)~式(2−16)、式(2−23)~式(2−25)が好ましく、式(2−1)、式(2−3)、式(2−5)、式(2−6)がより好ましい。
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
<他の構造単位>
 本発明の高分子化合物は、式(1−1)で表される構造単位、式(1−2)で表される構造単位、式(1−3)で表される構造単位、式(1−A)で表される構造単位、式(1−B)で表される構造単位、式(1−C)で表される構造単位及び式(2)で表される構造単位以外の構造単位(以下、「他の構造単位」という場合がある。)を含んでいてもよい。他の構造単位は、高分子化合物中に一種のみ含まれていても二種以上含まれていてもよい。
 他の構造単位としては、例えば、式−CR −で表される基、式−CR=CR−で表される基及び式−C(=O)−で表される基が挙げられる。
 R及びRは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、アリール基、1価の複素環基又はハロゲン原子を表す。R及びRで表される、置換されていてもよいアルキル基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例は、前記式(1−1)におけるRで表される置換されていてもよいアルキル基、アリール基、1価の複素環基及びハロゲン原子の定義及び具体例と同じである。
<高分子化合物>
 本発明の高分子化合物は、高分子化合物の電界効果移動度をより高める観点からは、共役高分子化合物であることが好ましい。
 本発明の高分子化合物は、式(1−1)で表される構造単位、式(1−2)で表される構造単位及び式(1−3)で表される構造単位からなる群から選ばれる少なくとも1種の構造単位と、式(2)で表される構造単位と、他の構造単位からなる高分子化合物であるが、高分子化合物の電界効果移動度をより高める観点から、式(1−1)で表される構造単位と、式(2)で表される構造単位と、他の構造単位からなる高分子化合物であることが好ましく、式(1−A)で表される構造単位、式(1−B)で表される構造単位及び式(1−C)で表される構造単位からなる群から選ばれる少なくとも1種の構造単位と、式(2)で表される構造単位と、他の構造単位からなる高分子化合物であることがより好ましい。
 本発明の高分子化合物の電界効果移動度をより高める観点から、高分子化合物が有する構造単位の合計に対する、式(1−1)で表される構造単位、式(1−2)で表される構造単位、式(1−3)で表される構造単位及び式(2)で表される構造単位の合計の割合が、50モル%以上であることが好ましく、70モル%以上であることがより好ましい。
 本発明の高分子化合物の電界効果移動度をより高める観点から、式(1−1)で表される構造単位、式(1−2)で表される構造単位又は式(1−3)で表される構造単位と、式(2)で表される構造単位との共重合体であることが好ましく、式(1−1)で表される構造単位と、式(2)で表される構造単位との共重合体であることがより好ましく、式(1−A)で表される構造単位、式(1−B)で表される構造単位及び式(1−C)で表される構造単位からなる群から選ばれる少なくとも1種の構造単位と、式(2)で表される構造単位との共重合体であることがさらに好ましい。
 本発明の高分子化合物の好ましい具体例としては、式(1−A)で表される構造単位、式(1−B)で表される構造単位又は式(1−C)で表される構造単位と、式(2)で表される構造単位との共重合体である、式(3−1)~式(3−32)で表される高分子化合物が挙げられ、式(1−1)で表される構造単位、式(1−2)で表される構造単位又は式(1−3)で表される構造単位と、式(2)で表される構造単位との共重合体である、式(3−33)~式(3−38)で表される高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000019
<高分子化合物の製造方法>
 次に、本発明の高分子化合物の製造方法を説明する。
 本発明の高分子化合物は、いかなる方法で製造してもよいが、例えば、式:X11−A11−X12で表される化合物と、式:X13−A12−X14で表される化合物とを、必要に応じて有機溶媒に溶解し、必要に応じて塩基を加え、適切な触媒を用いた公知のアリールカップリング等の重合方法により合成することができる。
 式中、A11は、式(1−1)、(1−2)、(1−3)、(1−A)、(1−B)又は(1−C)で表される構造単位を示し、A12は、式(2)で表される構造単位を示す。式中、X11、X12、X13及びX14は、それぞれ独立に、重合反応性基を表す。
 重合反応性基としては、ハロゲン原子、ホウ酸エステル残基、ホウ酸残基(−B(OH))、トリアルキルスタンニル基等が挙げられる。
 前記重合反応性基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 前記重合反応性基であるホウ酸エステル残基としては、下記式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-I000020
 前記重合反応性基であるトリアルキルスタンニル基としては、例えば、トリメチルスタンニル基及びトリブチルスタンニル基が挙げられる。
 前記アリールカップリング等の重合方法としては、Suzukiカップリング反応により重合する方法(Chemical Review、1995年、第95巻、2457−2483頁)、Stilleカップリング反応により重合する方法(European Polymer Journal、2005年、第41巻、2923−2933頁)等が挙げられる。
 前記重合反応性基は、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、ハロゲン原子、ホウ酸エステル残基、ホウ酸残基等である。重合反応の簡便さの観点から、臭素原子、ヨウ素原子、ホウ酸エステル残基が好ましい。
 本発明の高分子化合物をSuzukiカップリング反応により重合する場合は、前記重合反応性基である、臭素原子、ヨウ素原子の合計モル数とホウ酸エステル残基の合計モル数との比率が0.7~1.3とすることが好ましく、0.8~1.2とすることがより好ましい。
 前記重合反応性基は、Stilleカップリング反応等のパラジウム触媒を用いる場合には、ハロゲン原子、トリアルキルスタンニル基等である。重合反応の簡便さの観点からは、臭素原子、ヨウ素原子、トリアルキルスタンニル基が好ましい。
 本発明の高分子化合物をStilleカップリング反応により重合する場合は、前記重合反応性基である、臭素原子、ヨウ素原子の合計モル数とトリアルキルスタンニル基の合計モル数との比率が0.7~1.3とすることが好ましく、0.8~1.2とすることがより好ましい。
 重合に用いられる有機溶媒としては、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、テトラヒドロフラン、ジオキサン等が挙げられる。これらの有機溶媒は、一種単独で用いても二種以上を混合して用いてもよい。
 重合に用いられる塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基が挙げられる。
 重合に用いられる触媒としては、テトラキス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、パラジウムアセテート、ジクロロビストリフェニルホスフィンパラジウム等のパラジウム錯体等の遷移金属錯体と、必要に応じて、トリフェニルホスフィン、トリ−t−ブチルホスフィン、トリシクロヘキシルホスフィン等の配位子とからなる触媒である。これらの触媒は、予め合成したものを用いてもよいし、反応系中で調製したものをそのまま用いてもよい。また、これらの触媒は、一種単独で用いても二種以上を併用してもよい。
 重合反応温度は、好ましくは0~200℃であり、より好ましくは0~150℃であり、更に好ましくは0~120℃である。
 重合反応時間は、通常、1時間以上であり、好ましくは2~500時間である。
 重合の後処理は、公知の方法で行うことができ、例えば、メタノール等の低級アルコールに前記重合で得られた反応液を加えて析出させた沈殿を濾過、乾燥させる方法で行うことができる。
 上記の重合反応により得られる高分子化合物の純度が低い場合には、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の方法にて精製すればよい。
 本発明の高分子化合物は、分子鎖末端に重合反応に活性である基が残っていると、該高分子化合物の電界効果移動度が低下する可能性がある。そのため、分子鎖末端は、アリール基、1価の芳香族複素環基等の安定な基であることが好ましい。
 本発明の高分子化合物は、いかなる種類の共重合体であってもよく、例えば、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体等のいずれであってもよい。
 本発明の高分子化合物のゲルパーミエーションクロマトグラフィー(以下、「GPC」と言う。)で測定したポリスチレン換算の数平均分子量(Mn)は、通常、1×10~1×10である。薄膜作製時に良好な薄膜を形成する観点から、数平均分子量は2×10以上が好ましい。溶媒への溶解性を高め、薄膜作製を容易にする観点から、数平均分子量は1×10以下であることが好ましい。
<有機半導体素子>
 本発明の高分子化合物は、電界効果移動度が高いことから、有機半導体材料として、例えば、有機半導体素子の有機層に含ませて用いることができる。有機半導体素子としては、有機トランジスタ、有機太陽電池、有機エレクトロルミネッセンス素子等が挙げられる。本発明の高分子化合物は、中でも、有機トランジスタの電荷輸送材料として特に有用である。
<有機半導体材料>
 有機半導体材料は、本発明の高分子化合物の1種類を単独で含むものであってもよく、2種類以上を含むものであってもよい。また、有機半導体材料は、本発明の高分子化合物に加え、電界効果移動度を有する低分子化合物又は高分子化合物を更に含んでいてもよい。有機半導体材料が、本発明の高分子化合物以外の成分を含む場合は、本発明の高分子化合物を30重量%以上含むことが好ましく、50重量%以上含むことがより好ましい。本発明の高分子化合物の含有量が30重量%未満である場合、薄膜化が困難となる場合がある。
 電界効果移動度を有する化合物としては、アリールアミン誘導体、スチルベン誘導体、オリゴチオフェン及びその誘導体、オキサジアゾール誘導体、フラーレン類及びその誘導体等の低分子化合物、ポリ(N−ビニルカルバゾール)及びその誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等の高分子化合物が例示できる。
 有機半導体材料は、高分子化合物材料を高分子バインダーとして含有していてもよい。該高分子バインダーの例としては、ポリ(N−ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p−フェニレンビニレン)及びその誘導体、ポリ(2,5−チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
<有機トランジスタ>
 有機トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられる。このような構成を有する有機トランジスタとしては、電界効果型有機トランジスタ、静電誘導型有機トランジスタ等が挙げられる。
 電界効果型有機トランジスタは、通常、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極と、活性層とゲート電極との間に配置される絶縁層とを有する有機トランジスタである。特に、ソース電極及びドレイン電極が、活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられている有機トランジスタが好ましい。
 静電誘導型有機トランジスタは、通常、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極とを有し、該ゲート電極が活性層中に設けられている有機トランジスタである。特に、ソース電極、ドレイン電極及びゲート電極が、活性層に接して設けられている有機トランジスタが好ましい。
 ゲート電極は、ソース電極からドレイン電極へ流れる電流経路が形成でき、かつ、ゲート電極に印加した電圧で該電流経路を流れる電流量が制御できる構造であればよく、例えば、くし型電極が挙げられる。
 図1は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の一例を示す模式断面図である。図1に示す有機トランジスタ100は、基板1と、基板1上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された活性層2と、活性層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の領域上の絶縁層3を覆うように絶縁層3上に形成されたゲート電極4とを備えるものである。
 図2は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図2に示す有機トランジスタ110は、基板1と基板1上に形成されたソース電極5と、ソース電極5を覆うようにして基板1上に形成された活性層2と、ソース電極5と所定の間隔を持って活性層2上に形成されたドレイン電極6と、活性層2及びドレイン電極6上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の領域上の絶縁層3を覆うように絶縁層3上に形成されたゲート電極4とを備えるものである。
 図3は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図3に示す有機トランジスタ120は、基板1と基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域の一部を覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆うように絶縁層3上に形成された活性層2とを備えるものである。
 図4は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図4に示す有機トランジスタ130は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域の一部を覆うように絶縁層3上に形成されたソース電極5と、ソース電極5の一部を覆うようにして絶縁層3上に形成された活性層2と、活性層2の一部を覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6とを備えるものである。
 図5は、本発明の有機トランジスタ(静電誘導型有機トランジスタ)の他の例を示す模式断面図である。図5に示す有機トランジスタ140は、基板1と、基板1上に形成されたソース電極5と、ソース電極5上に形成された活性層2と、活性層2上に所定の間隔を持って複数形成されたゲート電極4と、ゲート電極4の全てを覆うようにして活性層2上に形成された活性層2a(活性層2aを構成する材料は、活性層2と同一であっても異なっていてもよい)と、活性層2a上に形成されたドレイン電極6とを備えるものである。
 図6は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図6に示す有機トランジスタ150は、基板1と、基板1上に形成された活性層2と、活性層2上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆うようにして活性層2上に形成された絶縁層3と、ソース電極5が下部に形成されている絶縁層3の領域とドレイン電極6が下部に形成されている絶縁層3の領域とをそれぞれ一部覆うように、絶縁層3上に形成されたゲート電極4とを備えるものである。
 図7は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図7に示す有機トランジスタ160は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を覆うように形成された活性層2と、活性層2の一部を覆うように活性層2上に形成されたソース電極5と、活性層2の一部を覆うように、ソース電極5と所定の間隔を持って活性層2上に形成されたドレイン電極6とを備えるものである。
 図8は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図8に示す有機トランジスタ170は、ゲート電極4と、ゲート電極4上に形成された絶縁層3と、絶縁層3上に形成された活性層2と、活性層2上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、を備えるものである。この場合、ゲート電極4は基板1を兼ねる構成となっている。
 図9は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図9に示す有機トランジスタ180は、ゲート電極4と、ゲート電極4上に形成された絶縁層3と、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆うように絶縁層3上に形成された活性層2とを備えるものである。
 上述した本発明の有機トランジスタにおいては、活性層2及び/又は活性層2aは、本発明の高分子化合物を含有する膜によって構成され、ソース電極5とドレイン電極6との間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより電流通路(チャネル)を通る電流量を制御する。
 このような電界効果型有機トランジスタは、公知の方法、例えば特開平5−110069号公報記載の方法により製造することができる。また、静電誘導型有機トランジスタは、US2004/004215に記載の方法等の公知の方法により製造することができる。
 基板1の材料は、有機トランジスタの特性を阻害しない材料であればよい。基板としては、ガラス基板、フレキシブルなフィルム基板、プラスチック基板を用いることができる。
 絶縁層3の材料は、電気の絶縁性が高い材料であればよく、SiO、SiN、Ta、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、有機ガラス、フォトレジスト等を用いることができるが、低電圧化の観点からは、誘電率の高い材料を用いることが好ましい。
 絶縁層3の上に活性層2を形成する場合は、絶縁層3と活性層2の界面特性を改善するため、シランカップリング剤等の表面処理剤で絶縁層3の表面を処理して表面改質した後に活性層2を形成することも可能である。
 有機電界効果トランジスタの場合、電子やホール等の電荷は、一般に絶縁層と活性層の界面付近を通過する。従って、この界面の状態がトランジスタの移動度に大きな影響を与える。そこで、界面状態を改良して特性を向上させる方法として、シランカップリング剤による界面の制御が提案されている(例えば、表面化学、2007年、第28巻、第5号、242−248頁)。
 シランカップリング剤の例としては、アルキルクロロシラン類(オクチルトリクロロシラン(OTS)、オクタデシルトリクロロシラン(ODTS)、フェニルエチルトリクロロシラン等)、アルキルアルコキシシラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン類、ヘキサメチルジシラザン(HMDS)等のシリルアミン化合物が挙げられる。また、表面処理剤で処理する前に、絶縁層表面をオゾンUV処理、Oプラズマ処理してもよい。このような処理によって、絶縁層として用いられるシリコン酸化膜等の表面エネルギーを制御することができる。また、表面処理により、活性層を構成している膜の絶縁層上での配向性が向上し、高い電荷輸送性(移動度)が得られる。
 ゲート電極4には、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン、低抵抗ポリシリコン、低抵抗アモルファスシリコン等の金属や、錫酸化物、酸化インジウム、インジウム・錫酸化物(ITO)等の材料を用いることができる。これらの材料は、1種を単独で用いても2種以上を併用してもよい。なお、ゲート電極4としては、高濃度にドープされたシリコン基板を用いることも可能である。高濃度にドープされたシリコン基板は、ゲート電極としての性能とともに、基板としての性能も併有する。このような基板としての性能も有するゲート電極4を用いる場合には、基板1とゲート電極4とが接している有機トランジスタにおいて、基板1を省略してもよい。
 ソース電極5及びドレイン電極6は、低抵抗の材料から構成されることが好ましく、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン等から構成されることが特に好ましい。これらの材料は1種単独で用いても2種以上を併用してもよい。
 有機トランジスタにおいて、ソース電極5及びドレイン電極6と、活性層2との間には、更に他の化合物から構成された層が介在していてもよい。このような層としては、電子輸送性を有する低分子化合物、ホール輸送性を有する低分子化合物、アルカリ金属、アルカリ土類金属、希土類金属、これらの金属と有機化合物との錯体、ヨウ素、臭素、塩素、塩化ヨウ素等のハロゲン、硫酸、無水硫酸、二酸化硫黄、硫酸塩等の酸化硫黄化合物、硝酸、二酸化窒素、硝酸塩等の酸化窒素化合物、過塩素酸、次亜塩素酸等のハロゲン化化合物、アルキルチオール化合物、芳香族チオール類、フッ素化アルキル芳香族チオール類等の芳香族チオール化合物等からなる層が挙げられる。
 また、上述したような有機トランジスタを作製した後には、素子を保護するため、有機トランジスタ上に保護膜を形成することが好ましい。これにより、有機トランジスタが大気から遮断され、有機トランジスタの特性の低下を抑制することができる。また、有機トランジスタの上に駆動する表示デバイスを形成する場合、その形成工程における有機トランジスタへの影響も該保護膜により低減することができる。
 保護膜を形成する方法としては、有機トランジスタを、UV硬化樹脂、熱硬化樹脂や無機のSiON膜等で覆う方法等が挙げられる。大気との遮断を効果的に行うため、有機トランジスタを作製後、有機トランジスタを大気にさらすことなく(例えば、乾燥した窒素雰囲気中、真空中等で)保護膜を形成することが好ましい。
 このように構成された有機トランジスタの一種である電界効果型有機トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子等として適用できる。そして、上述した実施形態の有機電界効果トランジスタは、活性層として、本発明の高分子化合物を含有し、そのことにより電荷輸送性が向上した活性層とを備えているため、その電界効果移動度が高いものとなる。したがって、十分な応答速度を持つディスプレイの製造等に有用である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.
<Structural Unit Represented by Formula (1-1)>
In the formula (1-1), R1Represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic ring or a halogen atom.
The alkyl group may have one or more substituents, and the alkyl group excluding the substituents usually has 1 to 60 carbon atoms, and preferably 1 to 20 carbon atoms. The alkyl group may be linear, branched or cyclic.
Specific examples of the alkyl group include linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group, n-hexyl group, n-octyl group, n-dodecyl group, n-octadecyl group, Isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 3,7,11-trimethyldodecyl group, 2-hexyldecyl group, 2-octyldodecyl group And cyclic alkyl groups such as a branched alkyl group such as cyclopentyl group and cyclohexyl group.
Examples of the substituent that the alkyl group may have include an alkoxy group (normally 1 to 60 carbon atoms), an aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like. Specific examples of the substituted alkyl group include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
The alkoxy group may have one or more substituents, and the alkoxy group excluding the substituents usually has 1 to 60 carbon atoms, and preferably 1 to 20 carbon atoms. The alkyl part of the alkoxy group may be linear, branched or cyclic.
Specific examples of the alkoxy group include n-butoxy group, n-hexyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, and n-dodecyloxy group.
Examples of the substituent that the alkoxy group may have include an aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like.
The alkylthio group may have one or more substituents, and the alkylthio group excluding the substituents usually has 1 to 60 carbon atoms, and preferably 1 to 20 carbon atoms. The alkyl part of the alkylthio group may be linear, branched or cyclic.
Specific examples of the alkylthio group include n-butylthio group, n-hexylthio group, 2-ethylhexylthio group, 3,7-dimethyloctylthio group and n-dodecylthio group.
Examples of the substituent that the alkylthio group may have include an aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like.
An aryl group is an atomic group obtained by removing one hydrogen atom directly bonded to an aromatic ring from an aromatic hydrocarbon compound which may have a substituent, a group having a benzene ring, a group having a condensed ring, an independent group A group in which two or more selected from an aromatic ring and a condensed ring are directly bonded.
The carbon number of the aryl group excluding the substituent of the aromatic hydrocarbon compound is usually 6 to 60, and preferably 6 to 20. As the aryl group, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, Examples include 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and 4-phenylphenyl group.
Examples of the substituent that the aromatic hydrocarbon compound may have include an alkyl group (carbon number is usually 1 to 60), an alkoxy group (carbon number is usually 1 to 60), an alkylthio group (carbon number is usually 1 to 60). 60) A monovalent heterocyclic group, a halogen atom, etc. are mentioned. Examples of the aryl group containing these groups include 4-hexylphenyl group, 3,5-dimethoxyphenyl group, pentafluorophenyl group and the like. When the aromatic hydrocarbon compound has a substituent, the substituent is preferably an alkyl group.
The monovalent heterocyclic group is an atomic group obtained by removing one hydrogen atom directly bonded to a ring from an optionally substituted heterocyclic compound, a group having a condensed ring, an independent heterocyclic ring And a group in which two or more selected from fused rings are directly bonded.
The number of carbon atoms of the monovalent heterocyclic group excluding the substituent of the heterocyclic compound is usually 2 to 60, and preferably 3 to 20.
As the monovalent heterocyclic group, a monovalent aromatic heterocyclic group is preferable. For example, 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 2-pyrrolyl group, 3-pyrrolyl group. Group, 2-oxazolyl group, 2-thiazolyl group, 2-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-benzofuryl group, 2-benzothienyl group and 2-thienothienyl group. .
Examples of the substituent that the heterocyclic compound may have include an alkyl group (normally 1 to 60 carbon atoms), an alkoxy group (normally 1 to 60 carbon atoms), an alkylthio group (normally 1 to 60 carbon atoms). ), An aryl group (normally 6 to 60 carbon atoms), a halogen atom, and the like. Examples of the monovalent heterocyclic group containing these groups include a 5-octyl-2-thienyl group and a 5-phenyl-2-furyl group. When the heterocyclic compound has a substituent, the substituent is preferably an alkyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
From the viewpoint of further increasing the field effect mobility of the polymer compound, the R1Is preferably a hydrogen atom, an alkoxy group or a halogen atom, more preferably a hydrogen atom or an alkoxy group, and even more preferably a hydrogen atom.
R2Represents an optionally substituted alkyl group having 2 or more carbon atoms.
R2The number of carbon atoms of the alkyl group, excluding the substituent, represented by the formula is usually 2 to 60, and preferably 2 to 24. R2The alkyl group represented by may be linear, branched or cyclic.
R2Specific examples of the alkyl group represented by the formula are linear alkyl groups such as ethyl group, n-propyl group, n-butyl group, n-hexyl group, n-octyl group, n-dodecyl group, and n-octadecyl group. , Isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 3,7,11-trimethyldodecyl group, 2-hexyldecyl group, 2-octyldodecyl group And branched alkyl groups such as a group, and cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group.
R2The alkyl group represented by the formula (1) may have one or more substituents, and examples of the substituent that the alkyl group may have include an alkoxy group (normally 1 to 60 carbon atoms), an aryl group (carbon The number is usually 6 to 60), and halogen atoms and the like can be mentioned. Specific examples of the substituted alkyl group include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
From the viewpoint of enhancing solubility in order to produce an organic semiconductor element by a printing method, the R2Is preferably an alkyl group having 8 or more carbon atoms, more preferably an alkyl group having 12 or more carbon atoms, and still more preferably an alkyl group having 16 or more carbon atoms.
Also, from the viewpoint of increasing solubility in order to produce an organic semiconductor element by a printing method, R2Is preferably a branched alkyl group.
E is -O-, -S-, -Se- or -N (Ra)-.
RaRepresents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group. Definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted are as follows: R in the formula (1-1)1The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
From the viewpoint of ease of synthesis, E is preferably -S-.
Specific examples of the structural unit represented by Formula (1-1) include structural units represented by Formula (1-1-1) to Formula (1-1-11). From the viewpoint of enhancing solubility in order to produce an organic semiconductor element by a printing method, the structural unit represented by formula (1-1) is represented by formula (1-1-1) or formula (1-1-2). Formula (1-1-4) to Formula (1-1-11) are preferable, and Formula (1-1-1), Formula (1-1-2), and Formula (1-1-5) are preferable. It is more preferable that they are the formula (1-1-9) and the formula (1-1-11). Further, from the viewpoint of ease of synthesis, the structural unit represented by Formula (1-1) is preferably Formula (1-1-1) to Formula (1-1-6).
Figure JPOXMLDOC01-appb-I000008
<Structural Unit Represented by Formula (1-2)>
In formula (1-2), R1Each independently represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom. . R1When two or more exist, they may be the same or different. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, the optionally substituted alkylthio group, the aryl group, the monovalent heterocyclic group, and the halogen atom are shown in the formula (1). R in -1)1The same as the definition and specific examples of the alkyl group which may be substituted, the alkoxy group which may be substituted, the alkylthio group which may be substituted, the aryl group, the monovalent heterocyclic group and the halogen atom represented by It is.
N2Represents an integer of 0 or more.
In formula (1-2), R2Represents an optionally substituted alkyl group having 2 or more carbon atoms. The definition, specific examples and preferred examples of the optionally substituted alkyl group having 2 or more carbon atoms are represented by R in the formula (1-1).2Are the same as the definitions, specific examples and preferred examples of the optionally substituted alkyl group having 2 or more carbon atoms.
In formula (1-2), E is -O-, -S-, -Se-, or -N (Ra)-.
RaRepresents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group. Definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted are as follows: R in the formula (1-1)1The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
A preferable example of E is the same as the preferable example of E in the formula (1-1).
Ring A represents an aromatic ring or a heterocyclic ring. Ring A is condensed with a 5-membered ring containing E.
The carbon number of the aromatic ring represented by ring A is usually 6 to 60, and preferably 6 to 20. The number of carbon atoms of the heterocyclic ring represented by ring A is usually 2 to 60, and preferably 3 to 20. Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a tetracene ring, and a pentacene ring. Examples of the heterocyclic ring include a furan ring, a thiophene ring, a selenophene ring, a pyrrole ring, and a thienothiophene ring. And a benzothiophene ring. From the viewpoint of further increasing the field effect mobility of the polymer compound of the present invention, the ring A is preferably a heterocyclic ring, more preferably a thiophene ring, a thienothiophene ring, or a benzothiophene ring.
Specific examples of the structural unit represented by Formula (1-2) include the structural units represented by Formula (1-2-1) to Formula (1-2-9). From the viewpoint of further increasing the field effect mobility of the polymer compound of the present invention, the structural unit represented by the formula (1-2) includes the formula (1-2-1) to the formula (1-2-3). Preferably, Formula (1-2-1) is more preferable.
Figure JPOXMLDOC01-appb-I000009
<Structural Unit Represented by Formula (1-3)>
In formula (1-3), R1Each independently represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom. . Multiple R1May be the same or different. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, the optionally substituted alkylthio group, the aryl group, the monovalent heterocyclic group, and the halogen atom are shown in the formula (1). R in -1)1The same as the definition and specific examples of the alkyl group that may be substituted, the alkoxy group that may be substituted, the alkylthio group that may be substituted, the aryl group, the monovalent heterocyclic group, and the halogen atom It is.
N3Represents an integer of 1 to 3.
In formula (1-3), E represents -O-, -S-, -Se-, or -N (Ra)-.
RaRepresents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group. Definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted are as follows: R in the formula (1-1)1The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
A preferred example of E is the same as the preferred example of E in the formula (1-1).
Specific examples of the structural unit represented by Formula (1-3) include structural units represented by Formula (1-3-1) to Formula (1-3-6). From the viewpoint of enhancing solubility in order to produce an organic semiconductor element by a printing method, the structural unit represented by formula (1-3) is represented by formula (1-3-2) or formula (1-3-3). It is preferable that it is Formula (1-3-2). Moreover, from the viewpoint of ease of synthesis, the structural unit represented by Formula (1-3) is preferably Formula (1-3-1) to Formula (1-3-4).
Figure JPOXMLDOC01-appb-I000010
<Structural Unit Represented by Formula (1-A), Formula (1-B) and Formula (1-C)>
The structural unit represented by the formula (1-1) is a polymer compound as a structural unit represented by the formula (1-A), the formula (1-B) or the formula (1-C) in which two units are connected. It is preferable that it is contained in.
Figure JPOXMLDOC01-appb-I000011
[Wherein R1, R2And E independently represent the same meaning as described above. ]
In formula (1-A) to formula (1-C), R1Each independently represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, a monovalent heterocyclic group or a halogen atom. . Multiple R1May be the same or different. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, the optionally substituted alkylthio group, the aryl group, the monovalent heterocyclic group, and the halogen atom are as defined in the above formula (1). R in -1)1The same as the definition and specific examples of the alkyl group which may be substituted, the alkoxy group which may be substituted, the alkylthio group which may be substituted, the aryl group, the monovalent heterocyclic group and the halogen atom represented by It is.
In formula (1-A) to formula (1-C), R2Each independently represents an optionally substituted alkyl group having 2 or more carbon atoms. Multiple R2May be the same or different. The definition, specific examples and preferred examples of the optionally substituted alkyl group having 2 or more carbon atoms are represented by R in the formula (1-1).2Are the same as the definition, specific examples and preferred examples of the alkyl group which may be substituted with 2 or more carbon atoms.
In formulas (1-A) to (1-C), E is independently -O-, -S-, -Se- or -N (Ra)-. A plurality of E may be the same or different.
RaRepresents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group. Definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted are as follows: R in the formula (1-1)1The same as the definitions and specific examples of the alkyl group, aryl group and monovalent heterocyclic group which may be substituted.
A preferable example of E is the same as the preferable example of E in the formula (1-1).
Specific examples of the structural unit represented by the formula (1-A) include structural units represented by the formula (1-A-1) to the formula (1-A-8). From the viewpoint of ease of synthesis, the structural unit represented by Formula (1-A) is preferably Formula (1-A-1) to Formula (1-A-3).
Figure JPOXMLDOC01-appb-I000012
Specific examples of the structural unit represented by the formula (1-B) include structural units represented by the formula (1-B-1) to the formula (1-B-8). From the viewpoint of ease of synthesis, the structural unit represented by Formula (1-B) is preferably Formula (1-B-1) to Formula (1-B-3).
Figure JPOXMLDOC01-appb-I000013
Specific examples of the structural unit represented by the formula (1-C) include structural units represented by the formula (1-C-1) to the formula (1-C-8). From the viewpoint of ease of synthesis, the structural unit represented by Formula (1-C) is preferably Formula (1-C-1) to Formula (1-C-3).
Figure JPOXMLDOC01-appb-I000014
<Structural unit represented by formula (2)>
In formula (2), Ar1Each independently represents an arylene group or a divalent heterocyclic group. Multiple Ar1May be the same or different.
M in formula (2)1Represents an integer of 3 to 10, m from the viewpoint of ease of synthesis.1Is preferably an integer of 3 to 7, more preferably an integer of 3 to 5, and even more preferably 3.
The arylene group is an atomic group obtained by removing two hydrogen atoms directly bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon compound which may have a substituent, and includes a group having a condensed ring. In addition, a group in which two or more selected from an aromatic ring and a condensed ring which are independent divalent groups are directly bonded is not included in the arylene group defined here.
Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, and a halogen atom. Definitions and specific examples of alkyl groups, alkoxy groups, alkylthio groups, aryl groups, monovalent heterocyclic groups and halogen atoms are as follows: R in the above formula (1-1)1The definition and specific examples of the alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group and halogen atom represented by the formula are the same. The carbon number of the arylene group not containing a substituent is usually 6 to 60, and preferably 6 to 20.
Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a tetracenediyl group, a pyrenediyl group, a pentacenediyl group, a perylenediyl group, and a fluorenediyl group.
The divalent heterocyclic group is an atomic group obtained by removing two hydrogen atoms directly bonded to a ring from a heterocyclic compound which may have a substituent, and includes a group having a condensed ring. In addition, a group in which two or more selected from a heterocyclic ring and a condensed ring which are independent divalent groups are directly bonded is not included in the divalent heterocyclic ring defined herein.
The carbon number of the divalent heterocyclic group excluding the substituent of the heterocyclic compound is usually 2 to 60, and preferably 3 to 20.
Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, and a halogen atom. Definitions and specific examples of alkyl groups, alkoxy groups, alkylthio groups, aryl groups, monovalent heterocyclic groups and halogen atoms are as follows: R in the above formula (1-1)1The definition and specific examples of the alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group and halogen atom represented by the formula are the same.
Ar1At least one of these is preferably an arylene group having an electron-withdrawing substituent or a carbonyl group from the viewpoint of further increasing the field-effect mobility of the polymer compound of the present invention.
Also Ar1At least one of the electron withdrawing substituents, sp2It is preferably a divalent aromatic heterocyclic group having a nitrogen atom or a carbonyl group, and an electron-withdrawing substituent or sp2More preferably, it is a divalent aromatic heterocyclic group having a nitrogen atom and a carbonyl group.
Electron withdrawing substituent is Hammett's σpA substituent whose value is positive. Hammett σ of the substituentpValues are given in, for example, Chemical Review, 1991, Vol. 91, p. 165-195. Σ not listed herepThe value is obtained by calculation. When calculating, the acid dissociation equilibrium constant of the compound is calculated by the method described in Journal of Physical Chemistry A (1997), Vol. 101, pages 5593-5595, and Hammett's σpThe value can be determined.
The Hammett σ of the substituentpThe value is preferably in the range of 0.01 to 1.00. Specific examples of the substituent include a nitro group, a cyano group, a trifluoromethylcarbonyl group, a trifluoromethyl group, a perfluorohexyl group, an acetyl group, a chlorine atom, and a fluorine atom, and a cyano group and a trifluoromethyl group. Particularly preferred are a chlorine atom and a fluorine atom.
The divalent heterocyclic group is preferably a divalent aromatic heterocyclic group, such as an oxadiazole diyl group, a thiadiazole diyl group, a thiophene diyl group, a pyrrole diyl group, a furandyl group, a selenophene diyl group, or a pyridinediyl group. , Triazinediyl group, benzothiophenediyl group, benzopyrrolediyl group, benzofurandiyl group, quinolinediyl group, isoquinolinediyl group, thienothiophenediyl group, benzodithiophenediyl group, cyclopentadithiophenediyl group, and formula (Ar1-1) to formula (Ar1Group represented by -14) and the like. As the divalent heterocyclic group, from the viewpoint of further increasing the field-effect mobility of the polymer compound of the present invention, the formula (Ar1-1) to formula (Ar1−11) is more preferable, and the group represented by formula (Ar)1-1), formula (Ar1-2), formula (Ar1-3), formula (Ar1-6), formula (Ar1-7) is particularly preferred, and the group represented by the formula (Ar1The group represented by -6) is most preferable.
Figure JPOXMLDOC01-appb-I000015
[Wherein R3Each independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, a monovalent heterocyclic group or a halogen atom. R3When two or more exist, they may be the same or different. R4Each independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a monovalent heterocyclic group. R4When two or more exist, they may be the same or different. Y independently represents -S-, -O-, or -Se-. When a plurality of Y are present, they may be the same or different. ]
From the viewpoint of further increasing the field effect mobility of the polymer compound of the present invention, the R3Is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and particularly preferably a hydrogen atom or a methyl group. .
From the viewpoint of further increasing the field effect mobility of the polymer compound of the present invention, the R4Is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and particularly preferably a hydrogen atom or a methyl group. .
Ar1At least one of these is preferably a monocyclic arylene group or a monocyclic divalent heterocyclic group from the viewpoint of further increasing the field-effect mobility of the polymer compound of the present invention. It is more preferably a group or an unsubstituted divalent heterocyclic group, and further preferably an unsubstituted phenylene group or an unsubstituted thiophenediyl group.
The monocyclic arylene group or monocyclic divalent heterocyclic group has the formula (Ar1-1) to formula (Ar1It is preferable to combine with the group represented by -11) from the viewpoint of further increasing the electric field mobility of the polymer compound of the present invention.
Specific examples of the structural unit represented by Formula (2) include structural units represented by Formula (2-1) to Formula (2-25). From the viewpoint of further increasing the electric field mobility of the polymer compound of the present invention, the structural unit represented by the formula (2) includes the formula (2-1) to the formula (2-6) and the formula (2-12) to Formula (2-16), Formula (2-23) to Formula (2-25) are preferable, Formula (2-1), Formula (2-3), Formula (2-5), Formula (2-6) Is more preferable.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
<Other structural units>
The polymer compound of the present invention includes a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), a structural unit represented by formula (1-3), and a formula (1 -A), a structural unit represented by formula (1-B), a structural unit represented by formula (1-C), and a structural unit other than the structural unit represented by formula (2) (Hereinafter may be referred to as “other structural units”). Other structural units may be contained alone or in combination of two or more in the polymer compound.
Other structural units include, for example, the formula -CRb 2A group represented by the formula: -CRc= CRcAnd a group represented by the formula -C (= O)-.
RbAnd RcEach independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, a monovalent heterocyclic group or a halogen atom. RbAnd RcThe definitions and specific examples of the optionally substituted alkyl group, aryl group, monovalent heterocyclic group and halogen atom represented by formula (1-1) are as follows:1The definition and specific examples of the alkyl group, aryl group, monovalent heterocyclic group and halogen atom which may be substituted may be the same.
<Polymer compound>
The polymer compound of the present invention is preferably a conjugated polymer compound from the viewpoint of further increasing the field effect mobility of the polymer compound.
The polymer compound of the present invention is selected from the group consisting of a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), and a structural unit represented by formula (1-3). A polymer compound comprising at least one selected structural unit, a structural unit represented by the formula (2), and another structural unit. It is preferably a polymer compound composed of a structural unit represented by (1-1), a structural unit represented by formula (2), and another structural unit, represented by formula (1-A). At least one structural unit selected from the group consisting of a structural unit, a structural unit represented by formula (1-B), and a structural unit represented by formula (1-C), and represented by formula (2) More preferably, it is a polymer compound comprising a structural unit and another structural unit.
From the viewpoint of further increasing the field effect mobility of the polymer compound of the present invention, the structural unit represented by the formula (1-1) and the formula (1-2) with respect to the total of the structural units of the polymer compound The total proportion of the structural unit represented by formula (1-3) and the structural unit represented by formula (2) is preferably 50 mol% or more, and 70 mol% or more. Is more preferable.
From the viewpoint of further increasing the field effect mobility of the polymer compound of the present invention, the structural unit represented by the formula (1-1), the structural unit represented by the formula (1-2), or the formula (1-3) It is preferable that it is a copolymer of the structural unit represented by the structural unit represented by Formula (2), and is represented by the structural unit represented by Formula (1-1), and Formula (2). More preferably, it is a copolymer with a structural unit, and is represented by a structural unit represented by the formula (1-A), a structural unit represented by the formula (1-B), and a formula (1-C). A copolymer of at least one structural unit selected from the group consisting of structural units and the structural unit represented by formula (2) is more preferable.
Preferred specific examples of the polymer compound of the present invention include a structural unit represented by the formula (1-A), a structural unit represented by the formula (1-B), or a structure represented by the formula (1-C). Examples thereof include a polymer compound represented by the formula (3-1) to the formula (3-32), which is a copolymer of the unit and the structural unit represented by the formula (2). ), A structural unit represented by formula (1-2) or a structural unit represented by formula (1-3), and a copolymer of the structural unit represented by formula (2) And the high molecular compounds represented by the formulas (3-33) to (3-38).
Figure JPOXMLDOC01-appb-T000019
<Method for producing polymer compound>
Next, a method for producing the polymer compound of the present invention will be described.
The polymer compound of the present invention may be produced by any method, for example, the formula: X11-A11-X12And a compound represented by the formula: X13-A12-X14Can be synthesized by a polymerization method such as known aryl coupling using an appropriate catalyst by dissolving in an organic solvent as necessary, adding a base as necessary.
In the ceremony, A11Represents a structural unit represented by the formula (1-1), (1-2), (1-3), (1-A), (1-B) or (1-C), and A12Represents a structural unit represented by the formula (2). Where X11, X12, X13And X14Each independently represents a polymerization reactive group.
Polymerization reactive groups include halogen atoms, boric acid ester residues, boric acid residues (-B (OH)2), A trialkylstannyl group and the like.
Examples of the halogen atom that is the polymerization reactive group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the boric acid ester residue that is the polymerization reactive group include groups represented by the following formula.
Figure JPOXMLDOC01-appb-I000020
Examples of the trialkylstannyl group that is the polymerization reactive group include a trimethylstannyl group and a tributylstannyl group.
Polymerization methods such as aryl coupling include polymerization by Suzuki coupling reaction (Chemical Review, 1995, Vol. 95, pages 2457-2483), polymerization by Stille coupling reaction (European Polymer Journal, 2005). Year 41, 2923-2933).
The polymerization reactive group is a halogen atom, a boric acid ester residue, a boric acid residue or the like when a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction is used. From the viewpoint of simplicity of the polymerization reaction, a bromine atom, an iodine atom, and a boric acid ester residue are preferable.
When the polymer compound of the present invention is polymerized by a Suzuki coupling reaction, the ratio of the total moles of bromine and iodine atoms and the total moles of boric acid ester residues, which are the polymerization reactive groups, is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
The polymerization reactive group is a halogen atom, a trialkylstannyl group or the like when a palladium catalyst such as Stille coupling reaction is used. From the viewpoint of simplicity of the polymerization reaction, a bromine atom, an iodine atom, and a trialkylstannyl group are preferable.
When the polymer compound of the present invention is polymerized by Stille coupling reaction, the ratio of the total number of moles of bromine atom and iodine atom and the total number of moles of trialkylstannyl group, which are the polymerization reactive groups, is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
Examples of the organic solvent used for polymerization include benzene, toluene, xylene, chlorobenzene, dichlorobenzene, tetrahydrofuran, and dioxane. These organic solvents may be used alone or in combination of two or more.
Bases used for polymerization include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide And organic bases such as tetraethylammonium hydroxide and tetrabutylammonium hydroxide.
Examples of the catalyst used for the polymerization include transition metal complexes such as tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, palladium acetate, dichlorobistriphenylphosphine palladium, and a transition metal complex, if necessary. It is a catalyst comprising a ligand such as phenylphosphine, tri-t-butylphosphine, tricyclohexylphosphine. As these catalysts, those synthesized in advance may be used, or those prepared in the reaction system may be used as they are. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.
The polymerization reaction temperature is preferably 0 to 200 ° C, more preferably 0 to 150 ° C, and still more preferably 0 to 120 ° C.
The polymerization reaction time is usually 1 hour or longer, preferably 2 to 500 hours.
The post-treatment of the polymerization can be carried out by a known method, for example, by a method in which the reaction solution obtained by the polymerization is added to a lower alcohol such as methanol and the resulting precipitate is filtered and dried.
When the purity of the polymer compound obtained by the above polymerization reaction is low, it may be purified by a method such as recrystallization, continuous extraction with a Soxhlet extractor, or column chromatography.
In the polymer compound of the present invention, if a group active in the polymerization reaction remains at the molecular chain end, the field effect mobility of the polymer compound may be lowered. Therefore, the molecular chain terminal is preferably a stable group such as an aryl group or a monovalent aromatic heterocyclic group.
The polymer compound of the present invention may be any type of copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
The polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present invention is usually 1 × 10.3~ 1 × 108It is. From the viewpoint of forming a good thin film during thin film preparation, the number average molecular weight is 2 × 103The above is preferable. From the viewpoint of increasing the solubility in a solvent and facilitating the preparation of a thin film, the number average molecular weight is 1 × 106The following is preferable.
<Organic semiconductor element>
Since the polymer compound of the present invention has high field effect mobility, it can be used as an organic semiconductor material, for example, in an organic layer of an organic semiconductor element. Examples of the organic semiconductor element include an organic transistor, an organic solar battery, and an organic electroluminescence element. The polymer compound of the present invention is particularly useful as a charge transport material for organic transistors.
<Organic semiconductor materials>
The organic semiconductor material may contain one kind of the polymer compound of the present invention alone, or may contain two or more kinds. In addition to the polymer compound of the present invention, the organic semiconductor material may further contain a low-molecular compound or a polymer compound having field effect mobility. When the organic semiconductor material contains a component other than the polymer compound of the present invention, the polymer compound of the present invention is preferably contained in an amount of 30% by weight or more, more preferably 50% by weight or more. When the content of the polymer compound of the present invention is less than 30% by weight, it may be difficult to form a thin film.
Examples of the compound having field effect mobility include arylamine derivatives, stilbene derivatives, oligothiophene and derivatives thereof, low molecular compounds such as oxadiazole derivatives, fullerenes and derivatives thereof, poly (N-vinylcarbazole) and derivatives thereof, Examples thereof include polymer compounds such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
The organic semiconductor material may contain a polymer compound material as a polymer binder. Examples of the polymer binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof. Derivatives, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.
<Organic transistor>
The organic transistor has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path The thing which has is mentioned. Examples of the organic transistor having such a configuration include a field effect organic transistor and a static induction organic transistor.
A field effect organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path. The organic transistor having an active layer and an insulating layer disposed between the gate electrode. In particular, an organic transistor in which a source electrode and a drain electrode are provided in contact with an active layer and a gate electrode is provided with an insulating layer in contact with the active layer interposed therebetween is preferable.
The electrostatic induction organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path And the gate electrode is provided in the active layer. In particular, an organic transistor in which a source electrode, a drain electrode, and a gate electrode are provided in contact with the active layer is preferable.
The gate electrode may have a structure in which a current path flowing from the source electrode to the drain electrode can be formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. .
FIG. 1 is a schematic cross-sectional view showing an example of an organic transistor (field-effect organic transistor) of the present invention. An organic transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the substrate 1 at a predetermined interval, and a source electrode 5 and a drain electrode 6 so as to cover the substrate 1. Formed on the insulating layer 3 so as to cover the active layer 2 formed on the insulating layer 3, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 on the region between the source electrode 5 and the drain electrode 6. The gate electrode 4 is provided.
FIG. 2 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention. An organic transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 so as to cover the source electrode 5, a source electrode 5, and a predetermined electrode The drain electrode 6 formed on the active layer 2 with an interval, the insulating layer 3 formed on the active layer 2 and the drain electrode 6, and the insulating layer on the region between the source electrode 5 and the drain electrode 6 And a gate electrode 4 formed on the insulating layer 3 so as to cover 3.
FIG. 3 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention. The organic transistor 120 shown in FIG. 3 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. A source electrode 5 and a drain electrode 6 formed on the insulating layer 3 with a predetermined interval so as to cover a part of the region of the insulating layer 3 formed, and a part of the source electrode 5 and the drain electrode 6 And an active layer 2 formed on the insulating layer 3 so as to cover the surface.
FIG. 4 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention. An organic transistor 130 shown in FIG. 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. The source electrode 5 formed on the insulating layer 3 so as to cover a part of the region of the insulating layer 3 formed on the active layer 3 and the active formed on the insulating layer 3 so as to cover a part of the source electrode 5 A layer 2 and a drain electrode 6 formed on the insulating layer 3 at a predetermined interval so as to cover a part of the active layer 2 are provided.
FIG. 5 is a schematic sectional view showing another example of the organic transistor (electrostatic induction type organic transistor) of the present invention. The organic transistor 140 shown in FIG. 5 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the source electrode 5, and a plurality of active transistors 2 with a predetermined interval on the active layer 2. The formed gate electrode 4 and the active layer 2a formed on the active layer 2 so as to cover the gate electrode 4 (the material constituting the active layer 2a is the same as or different from that of the active layer 2). And a drain electrode 6 formed on the active layer 2a.
FIG. 6 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention. The organic transistor 150 shown in FIG. 6 includes a substrate 1, an active layer 2 formed on the substrate 1, a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval, and a source electrode. 5 and an insulating layer 3 formed on the active layer 2 so as to cover a part of the drain electrode 6, a region of the insulating layer 3 in which the source electrode 5 is formed in the lower portion, and a drain electrode 6 are formed in the lower portion. And a gate electrode 4 formed on the insulating layer 3 so as to partially cover each region of the insulating layer 3.
FIG. 7 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention. The organic transistor 160 shown in FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. An active layer 2 formed so as to cover the region of the insulating layer 3 formed on the active layer 2, a source electrode 5 formed on the active layer 2 so as to cover a part of the active layer 2, and one of the active layers 2 A source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval are provided so as to cover the portion.
FIG. 8 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention. An organic transistor 170 shown in FIG. 8 has a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, an active layer 2 formed on the insulating layer 3, and a predetermined interval on the active layer 2. A source electrode 5 and a drain electrode 6 formed in this manner. In this case, the gate electrode 4 also serves as the substrate 1.
FIG. 9 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention. The organic transistor 180 shown in FIG. 9 includes a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, a source electrode 5 and a drain electrode 6 formed on the insulating layer 3 with a predetermined interval, The active layer 2 is formed on the insulating layer 3 so as to cover a part of the source electrode 5 and the drain electrode 6.
In the above-described organic transistor of the present invention, the active layer 2 and / or the active layer 2a is composed of a film containing the polymer compound of the present invention, and a current path (channel) between the source electrode 5 and the drain electrode 6 is formed. ) The gate electrode 4 controls the amount of current passing through the current path (channel) by applying a voltage.
Such a field effect organic transistor can be manufactured by a known method, for example, a method described in JP-A-5-110069. The electrostatic induction organic transistor can be produced by a known method such as the method described in US2004 / 004215.
The material of the substrate 1 may be any material that does not hinder the characteristics of the organic transistor. As the substrate, a glass substrate, a flexible film substrate, or a plastic substrate can be used.
The material of the insulating layer 3 may be any material having high electrical insulation, such as SiOx, SiNx, Ta2O5Polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, photoresist, and the like can be used. From the viewpoint of lowering the voltage, it is preferable to use a material having a high dielectric constant.
When the active layer 2 is formed on the insulating layer 3, the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. It is also possible to form the active layer 2 after the modification.
In the case of an organic field effect transistor, charges such as electrons and holes generally pass near the interface between the insulating layer and the active layer. Therefore, the state of this interface greatly affects the mobility of the transistor. Therefore, as a method of improving the interface state and improving the properties, control of the interface with a silane coupling agent has been proposed (for example, Surface Chemistry, 2007, Vol. 28, No. 5, pages 242-248). .
Examples of silane coupling agents include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, and fluorinated alkylalkoxysilanes. And silylamine compounds such as hexamethyldisilazane (HMDS). In addition, the surface of the insulating layer is treated with ozone UV treatment, O before treatment with the surface treatment agent.2Plasma treatment may be performed. By such treatment, the surface energy of the silicon oxide film or the like used as the insulating layer can be controlled. Further, the surface treatment improves the orientation of the film constituting the active layer on the insulating layer, and high charge transportability (mobility) can be obtained.
The gate electrode 4 includes metals such as gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low-resistance polysilicon, low-resistance amorphous silicon, tin oxide, indium oxide, indium / tin oxide. A material such as (ITO) can be used. These materials may be used alone or in combination of two or more. Note that a highly doped silicon substrate can be used as the gate electrode 4. A highly doped silicon substrate has not only the performance as a gate electrode but also the performance as a substrate. When the gate electrode 4 having such a performance as a substrate is used, the substrate 1 may be omitted in the organic transistor in which the substrate 1 and the gate electrode 4 are in contact with each other.
The source electrode 5 and the drain electrode 6 are preferably made of a low resistance material, and particularly preferably made of gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum or the like. These materials may be used alone or in combination of two or more.
In the organic transistor, a layer composed of another compound may be interposed between the source electrode 5 and the drain electrode 6 and the active layer 2. Examples of such layers include low molecular compounds having electron transport properties, low molecular compounds having hole transport properties, alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, iodine, bromine, Halogens such as chlorine and iodine chloride, sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide and sulfate, nitric oxide compounds such as nitric acid, nitrogen dioxide and nitrate, halogenated compounds such as perchloric acid and hypochlorous acid, Examples thereof include layers made of aromatic thiol compounds such as alkyl thiol compounds, aromatic thiols, and fluorinated alkyl aromatic thiols.
In addition, after manufacturing the organic transistor as described above, it is preferable to form a protective film on the organic transistor in order to protect the element. Thereby, an organic transistor is interrupted | blocked from air | atmosphere and the fall of the characteristic of an organic transistor can be suppressed. Further, when a display device to be driven is formed on an organic transistor, the protective film can also reduce the influence on the organic transistor in the formation process.
As a method for forming a protective film, an organic transistor, UV curable resin, thermosetting resin or inorganic SiONxExamples include a method of covering with a film or the like. In order to effectively block the atmosphere, it is preferable to form a protective film after the organic transistor is manufactured without exposing the organic transistor to the atmosphere (for example, in a dry nitrogen atmosphere or in a vacuum).
A field effect organic transistor, which is a kind of organic transistor configured as described above, can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display. And since the organic field effect transistor of embodiment mentioned above is equipped with the active compound which contains the high molecular compound of this invention as an active layer, and the charge transport property improved by it, the field effect mobility is provided. Is expensive. Therefore, it is useful for manufacturing a display having a sufficient response speed.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
<NMR分析>
 NMR測定は、化合物を重クロロホルムに溶解させ、NMR装置(Varian社製、INOVA300)を用いて行った。
<分子量分析>
 高分子化合物の数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC、Waters社製、商品名:Alliance GPC 2000)を用いて求めた。測定する高分子化合物は、オルトジクロロベンゼンに溶解させ、GPCに注入した。GPCの移動相にはオルトジクロロベンゼンを用いた。カラムは、TSKgel GMHHR−H(S)HT(2本連結、東ソー製)を用いた。検出器にはUV検出器を用いた。
<合成例1:3−(2−オクチルドデシルオキシ)チオフェンの合成>
Figure JPOXMLDOC01-appb-I000021
 フラスコに、3−メトキシチオフェンを5.00g(43.8mmol)、1−ヒドロキシ−2−オクチルドデカンを26.1g(87.6mmol)、パラトルエンスルホン酸−水和物を0.833g(4.38mmol)、トルエン100mLを入れて16時間還流させた。反応液を水に注ぎ、水で洗浄し、エバポレーターでトルエンを留去した。得られた液体を、ヘキサンを展開溶媒として用いてシリカゲルカラムで精製を行い、3−(2−オクチルドデシルオキシ)チオフェンを得た。収量は15.2gであり、収率は91%であった。
 3−(2−オクチルドデシルオキシ)チオフェンのH−NMR分析の結果を以下に示す。
H−NMR(300MHz,CDCl):δ(ppm)=7.16(m,1H),6.75(m,1H),6.22(m,1H),3.81(d,2H),1.74(m,1H),1.00−1.70(m,34H),0.88(t,6H).
<合成例2:3,3’−ビス(2−オクチルドデシルオキシ)−2,2’−ビチオフェンの合成>
Figure JPOXMLDOC01-appb-I000022
 フラスコに、3−(2−オクチルドデシルオキシ)チオフェンを17.5g(46.0mmol)、臭素を7.35g(46.0mmol)、テトラヒドロフラン200mLを入れ、2時間撹拌した。この溶液に、2,2’−ビピリジルを28.7g(184mmol)、ビス(シクロオクタジエン)ニッケル(0)を13.9g(50.6mmol)を加えて60℃で3時間撹拌した。反応液をセライト濾過し、濾液をエバポレーターで濃縮した。ここへトルエンと水を加え、トルエンで抽出した。塩酸で洗浄し、続いて水で洗浄した。トルエン溶液をエバポレーターで蒸発させた。得られた液体をヘキサンとクロロホルムの4/1混合液を展開溶媒として用いたシリカゲルカラム精製を行い、3,3’−ビス(2−オクチルドデシルオキシ)−2,2’−ビチオフェンを得た。収量は7.72gであり、収率は44%であった。
 3,3’−ビス(2−オクチルドデシルオキシ)−2,2’−ビチオフェンのH−NMR分析の結果を以下に示す。
H−NMR(300MHz,CDCl):δ(ppm)=7.07(d,2H),6.83(d,2H),4.09(d,4H),0.80−1.90(m,82H).
<合成例3:化合物M1の合成>
Figure JPOXMLDOC01-appb-I000023
 フラスコに、3,3’−ビス(2−オクチルドデシルオキシ)−2,2’−ビチオフェンを7.72g(10.2mmol)、テトラヒドロフラン200mLを入れ、0℃に冷却した。この溶液に、n−ブチルリチウムのヘキサン溶液(2.6mol/L、15.6mL)を滴下し、室温まで昇温して1時間撹拌した。反応液を再度0℃に冷却し、塩化トリブチルスズを13.2g(40.7mmol)加えた。反応液を室温まで昇温して2時間撹拌した。反応液を水に注ぎ、トルエンで抽出し、水で洗浄した。トルエンをエバポレーターで留去して得られた液体を、アセトニトリルとテトラヒドロフランの1/1混合液を展開溶媒として用いた逆相シリカゲルカラムで精製を行い、化合物M1を得た。収量は11.6gであり、収率は85%であった。
 化合物M1のH−NMR分析の結果を以下に示す。
H−NMR(300MHz,CDCl):δ(ppm)=6.82(d,2H),4.01(d,4H),0.80−1.90(m,136H).
<実施例1:高分子化合物P1の合成>
Figure JPOXMLDOC01-appb-I000024
 フラスコ内の気体を窒素で置換したフラスコに、化合物M1を0.300g(0.224mmol)、化合物M2を0.0987g(0.215mmol)、トルエンを50mL、トリス(ジベンジリデンアセトン)ジパラジウムを3.1mg、トリオルトトリルホスフィンを6.1mg入れて、5時間還流させた。反応液に、ブロモベンゼンを35mg加えて、1時間還流させた。反応液をアセトンに滴下し、析出物を得た。析出物を濾取した。析出物に、トルエンと水とN,N−ジエチルジチオカルバミド酸ナトリウム三水和物を加えて、3時間還流させた。その後、トルエン層を抽出した。トルエン溶液を酢酸水溶液及び水で洗浄した後、トルエン溶液をアセトンに滴下し、析出物を得た。析出物を、アセトンを溶媒として用いてソックスレー洗浄し、高分子化合物P1を得た。収量は0.15gであり、ポリスチレン換算の数平均分子量は6.6×10であり、重量平均分子量は1.3×10であった。
 尚、化合物M2は、Chemistry of Materials、2008年、20巻、4045頁に記載の方法に従って合成した。
<実施例2:高分子化合物P2の合成>
Figure JPOXMLDOC01-appb-I000025
 化合物M2に代えて化合物M3を0.0937g(0.202mmol)を用いた以外は実施例1と同様に高分子化合物P2を合成した。収量は0.13gであり、ポリスチレン換算の数平均分子量は1.7×10であり、重量平均分子量は2.4×10であった。
 尚、化合物M3は、Chemistry A European Journal、2010年、16巻、3743頁に記載の方法に従って合成した。
<実施例3:高分子化合物P3の合成>
Figure JPOXMLDOC01-appb-I000026
 化合物M2に代えて化合物M4を0.138g(0.220mmol)を用いた以外は実施例1と同様に高分子化合物P3を合成した。収量は0.21gであり、ポリスチレン換算の数平均分子量は3.1×10であり、重量平均分子量は8.8×10であった。
 尚、化合物M4は、Synthetic Metals、2010年、160巻、2422頁に記載の方法に従って合成した。
<合成例4:化合物M5の合成>
Figure JPOXMLDOC01-appb-I000027
 化合物M5−1を、「Tetrahedron、2010年、66巻、1837頁」に記載の方法に従って合成した。
 フラスコに、化合物M5−1を4.30g(13.1mmol)、N−ブロモスクシンイミドを4.90g(27.5mmol)、クロロホルム300mLを入れ、3時間撹拌した。反応液を濃縮し、メタノールに注いだ。得られた沈殿を濾過し、メタノール及びアセトンで洗浄して化合物M5を得た。収量は3.17gであり、収率は50%であった。
 化合物M1のH−NMR分析の結果を以下に示す。
H−NMR(300MHz,CDCl):δ(ppm)=8.66(d,2H),7.26(d,2H),3.57(s,6H).
<実施例4:高分子化合物P4の合成>
Figure JPOXMLDOC01-appb-I000028
 化合物M2に代えて化合物M5を0.0872g(0.179mmol)を用いた以外は実施例1と同様に高分子化合物P4を合成した。収量は0.12gであり、ポリスチレン換算の数平均分子量は2.5×10であり、重量平均分子量は1.5×10であった。
<合成例5:高分子化合物PAの合成>
Figure JPOXMLDOC01-appb-I000029
 化合物M2に代えて4,7−ジブロモベンゾ−2,1,3−チアジアゾールを0.0653g(0.222mmol)を用いた以外は実施例1と同様に高分子化合物PAを合成した。収量は0.12gであり、ポリスチレン換算の数平均分子量は2.7×10であり、重量平均分子量は1.1×10であった。
<実施例5:有機トランジスタ1の作製及び評価>
 高分子化合物P1を含む溶液を用いて、図9に示す構造を有する有機トランジスタ1を作製した。
 ゲート電極となる高濃度にドーピングされたn−型シリコン基板の表面を熱酸化し、シリコン酸化膜(以下、「熱酸化膜」という。)を形成した。熱酸化膜は絶縁層として機能する。次に、フォトリソグラフィー工程により熱酸化膜上にソース電極及びドレイン電極を作製した。該ソース電極及び該ドレイン電極は、熱酸化膜側からクロム(Cr)層と金(Au)層とを有し、チャネル長が20μm、チャネル幅が2mmであった。こうして得られた熱酸化膜、ソース電極及びドレイン電極を形成した基板をアセトンで超音波洗浄を行ない、オゾンUVクリーナーでUVオゾン処理を行なった。その後、β−フェネチルトリクロロシランで熱酸化膜の表面を修飾し、ペンタフルオロベンゼンチオールでソース電極及びドレイン電極の表面を修飾した。次に、上記表面処理した熱酸化膜、ソース電極及びドレイン電極上に、0.5重量%の高分子化合物P1のオルトジクロロベンゼン溶液を1000rpmの回転速度でスピンコートし、有機半導体層(活性層)を形成した。その後、有機半導体層を170℃で30分間加熱し、有機トランジスタ1を製造した。
 得られた有機トランジスタ1のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、1.6×10−2cm/Vsであった。結果を表2に示す。
<実施例6:有機トランジスタ2の作製及び評価>
 高分子化合物P1に代えて高分子化合物P2を用いた以外は実施例5と同様に有機トランジスタ2を作製した。
 得られた有機トランジスタ2のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、1.4×10−2cm/Vsであった。結果を表2に示す。
<実施例7:有機トランジスタ3の作製及び評価>
 高分子化合物P1に代えて高分子化合物P3を用いた以外は実施例5と同様に有機トランジスタ3を作製した。
 得られた有機トランジスタ3のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、3.6×10−2cm/Vsであった。結果を表2に示す。
<実施例8:有機トランジスタ4の作製及び評価>
 高分子化合物P1に代えて高分子化合物P4を用いた以外は実施例5と同様に有機トランジスタ4を作製した。
 得られた有機トランジスタ4のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、2.7×10−1cm/Vsであった。結果を表2に示す。
<比較例1:有機トランジスタC1の作製及び評価>
 高分子化合物P1にかえて高分子化合物PAを用いた以外は実施例5と同様に有機トランジスタC1を作製した。
 得られた有機トランジスタC1のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、3.5×10−4cm/Vsであった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000030
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
<NMR analysis>
The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (Varian, INOVA300).
<Molecular weight analysis>
The number average molecular weight and the weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC, manufactured by Waters, trade name: Alliance GPC 2000). The polymer compound to be measured was dissolved in orthodichlorobenzene and injected into GPC. Orthodichlorobenzene was used for the mobile phase of GPC. As the column, TSKgel GMHHR-H (S) HT (two linked, manufactured by Tosoh Corporation) was used. A UV detector was used as the detector.
<Synthesis Example 1: Synthesis of 3- (2-octyldodecyloxy) thiophene>
Figure JPOXMLDOC01-appb-I000021
In a flask, 5.00 g (43.8 mmol) of 3-methoxythiophene, 26.1 g (87.6 mmol) of 1-hydroxy-2-octyldodecane, and 0.833 g of paratoluenesulfonic acid hydrate (4. 38 mmol) and 100 mL of toluene, and refluxed for 16 hours. The reaction solution was poured into water, washed with water, and toluene was distilled off with an evaporator. The obtained liquid was purified with a silica gel column using hexane as a developing solvent to obtain 3- (2-octyldodecyloxy) thiophene. The yield was 15.2 g and the yield was 91%.
The result of 1 H-NMR analysis of 3- (2-octyldodecyloxy) thiophene is shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 7.16 (m, 1H), 6.75 (m, 1H), 6.22 (m, 1H), 3.81 (d, 2H) ), 1.74 (m, 1H), 1.00-1.70 (m, 34H), 0.88 (t, 6H).
<Synthesis Example 2: Synthesis of 3,3′-bis (2-octyldodecyloxy) -2,2′-bithiophene>
Figure JPOXMLDOC01-appb-I000022
To the flask, 17.5 g (46.0 mmol) of 3- (2-octyldodecyloxy) thiophene, 7.35 g (46.0 mmol) of bromine and 200 mL of tetrahydrofuran were added and stirred for 2 hours. To this solution, 28.7 g (184 mmol) of 2,2′-bipyridyl and 13.9 g (50.6 mmol) of bis (cyclooctadiene) nickel (0) were added and stirred at 60 ° C. for 3 hours. The reaction solution was filtered through celite, and the filtrate was concentrated with an evaporator. Toluene and water were added here, and extracted with toluene. Washed with hydrochloric acid followed by water. The toluene solution was evaporated with an evaporator. The obtained liquid was subjected to silica gel column purification using a 4/1 mixed solution of hexane and chloroform as a developing solvent to obtain 3,3′-bis (2-octyldodecyloxy) -2,2′-bithiophene. The yield was 7.72 g, and the yield was 44%.
The results of 1 H-NMR analysis of 3,3′-bis (2-octyldodecyloxy) -2,2′-bithiophene are shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 7.07 (d, 2H), 6.83 (d, 2H), 4.09 (d, 4H), 0.80-1.90 (M, 82H).
<Synthesis Example 3: Synthesis of Compound M1>
Figure JPOXMLDOC01-appb-I000023
The flask was charged with 7.72 g (10.2 mmol) of 3,3′-bis (2-octyldodecyloxy) -2,2′-bithiophene and 200 mL of tetrahydrofuran, and cooled to 0 ° C. To this solution, a hexane solution of n-butyllithium (2.6 mol / L, 15.6 mL) was dropped, and the mixture was warmed to room temperature and stirred for 1 hour. The reaction solution was cooled again to 0 ° C., and 13.2 g (40.7 mmol) of tributyltin chloride was added. The reaction was warmed to room temperature and stirred for 2 hours. The reaction solution was poured into water, extracted with toluene, and washed with water. The liquid obtained by distilling off toluene with an evaporator was purified by a reverse phase silica gel column using a 1/1 mixed solution of acetonitrile and tetrahydrofuran as a developing solvent to obtain Compound M1. The yield was 11.6 g, and the yield was 85%.
The results of 1 H-NMR analysis of compound M1 are shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 6.82 (d, 2H), 4.01 (d, 4H), 0.80-1.90 (m, 136H).
<Example 1: Synthesis of polymer compound P1>
Figure JPOXMLDOC01-appb-I000024
In a flask in which the gas in the flask was replaced with nitrogen, 0.300 g (0.224 mmol) of compound M1, 0.0987 g (0.215 mmol) of compound M2, 50 mL of toluene, 3 of tris (dibenzylideneacetone) dipalladium 0.1 mg and 6.1 mg of triortho-tolylphosphine were added and refluxed for 5 hours. To the reaction solution, 35 mg of bromobenzene was added and refluxed for 1 hour. The reaction solution was added dropwise to acetone to obtain a precipitate. The precipitate was collected by filtration. Toluene, water, and sodium N, N-diethyldithiocarbamate trihydrate were added to the precipitate and refluxed for 3 hours. Thereafter, the toluene layer was extracted. After the toluene solution was washed with an acetic acid aqueous solution and water, the toluene solution was added dropwise to acetone to obtain a precipitate. The precipitate was Soxhlet washed using acetone as a solvent to obtain a polymer compound P1. The yield was 0.15 g, the polystyrene-equivalent number average molecular weight was 6.6 × 10 4 , and the weight average molecular weight was 1.3 × 10 5 .
Compound M2 was synthesized according to the method described in Chemistry of Materials, 2008, 20, 4045.
<Example 2: Synthesis of polymer compound P2>
Figure JPOXMLDOC01-appb-I000025
A polymer compound P2 was synthesized in the same manner as in Example 1 except that 0.0937 g (0.202 mmol) of the compound M3 was used instead of the compound M2. The yield was 0.13 g, the number average molecular weight in terms of polystyrene was 1.7 × 10 4 , and the weight average molecular weight was 2.4 × 10 5 .
Compound M3 was synthesized according to the method described in Chemistry A European Journal, 2010, Vol. 16, p. 3743.
<Example 3: Synthesis of polymer compound P3>
Figure JPOXMLDOC01-appb-I000026
A polymer compound P3 was synthesized in the same manner as in Example 1 except that 0.138 g (0.220 mmol) of the compound M4 was used instead of the compound M2. The yield was 0.21 g, the number average molecular weight in terms of polystyrene was 3.1 × 10 4 , and the weight average molecular weight was 8.8 × 10 4 .
Compound M4 was synthesized according to the method described in Synthetic Metals, 2010, 160, 2422.
<Synthesis Example 4: Synthesis of Compound M5>
Figure JPOXMLDOC01-appb-I000027
Compound M5-1 was synthesized according to the method described in “Tetrahedron, 2010, 66, 1837”.
A flask was charged with 4.30 g (13.1 mmol) of Compound M5-1, 4.90 g (27.5 mmol) of N-bromosuccinimide, and 300 mL of chloroform, and stirred for 3 hours. The reaction mixture was concentrated and poured into methanol. The resulting precipitate was filtered and washed with methanol and acetone to give compound M5. The yield was 3.17 g, and the yield was 50%.
The results of 1 H-NMR analysis of compound M1 are shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 8.66 (d, 2H), 7.26 (d, 2H), 3.57 (s, 6H).
<Example 4: Synthesis of polymer compound P4>
Figure JPOXMLDOC01-appb-I000028
A polymer compound P4 was synthesized in the same manner as in Example 1 except that 0.0872 g (0.179 mmol) of the compound M5 was used instead of the compound M2. The yield was 0.12 g, the polystyrene-equivalent number average molecular weight was 2.5 × 10 4 , and the weight average molecular weight was 1.5 × 10 5 .
<Synthesis Example 5: Synthesis of polymer compound PA>
Figure JPOXMLDOC01-appb-I000029
A polymer compound PA was synthesized in the same manner as in Example 1 except that 0.0653 g (0.222 mmol) of 4,7-dibromobenzo-2,1,3-thiadiazole was used in place of the compound M2. The yield was 0.12 g, the number average molecular weight in terms of polystyrene was 2.7 × 10 4 , and the weight average molecular weight was 1.1 × 10 5 .
<Example 5: Production and evaluation of organic transistor 1>
An organic transistor 1 having a structure shown in FIG. 9 was produced using a solution containing the polymer compound P1.
The surface of the heavily doped n-type silicon substrate to be the gate electrode was thermally oxidized to form a silicon oxide film (hereinafter referred to as “thermal oxide film”). The thermal oxide film functions as an insulating layer. Next, a source electrode and a drain electrode were formed on the thermal oxide film by a photolithography process. The source electrode and the drain electrode had a chromium (Cr) layer and a gold (Au) layer from the thermal oxide film side, and had a channel length of 20 μm and a channel width of 2 mm. The substrate on which the thermal oxide film, the source electrode, and the drain electrode thus obtained were ultrasonically cleaned with acetone, and UV ozone treatment was performed with an ozone UV cleaner. Thereafter, the surface of the thermal oxide film was modified with β-phenethyltrichlorosilane, and the surfaces of the source electrode and the drain electrode were modified with pentafluorobenzenethiol. Next, the surface-treated thermal oxide film, the source electrode and the drain electrode are spin-coated with an orthodichlorobenzene solution of 0.5% by weight of the polymer compound P1 at a rotational speed of 1000 rpm, and an organic semiconductor layer (active layer) ) Was formed. Thereafter, the organic semiconductor layer was heated at 170 ° C. for 30 minutes to manufacture the organic transistor 1.
The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 1 obtained. The field effect mobility was 1.6 × 10 −2 cm 2 / Vs. The results are shown in Table 2.
<Example 6: Production and evaluation of organic transistor 2>
Organic transistor 2 was produced in the same manner as in Example 5 except that polymer compound P2 was used instead of polymer compound P1.
The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 2 obtained. The field effect mobility was 1.4 × 10 −2 cm 2 / Vs. The results are shown in Table 2.
<Example 7: Production and evaluation of organic transistor 3>
An organic transistor 3 was produced in the same manner as in Example 5 except that the polymer compound P3 was used instead of the polymer compound P1.
The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 3 obtained. The field effect mobility was 3.6 × 10 −2 cm 2 / Vs. The results are shown in Table 2.
<Example 8: Production and evaluation of organic transistor 4>
An organic transistor 4 was produced in the same manner as in Example 5 except that the polymer compound P4 was used instead of the polymer compound P1.
The gate voltage Vg and source-drain voltage Vsd of the obtained organic transistor 4 were changed, and transistor characteristics were measured. The field effect mobility was 2.7 × 10 −1 cm 2 / Vs. The results are shown in Table 2.
<Comparative Example 1: Production and Evaluation of Organic Transistor C1>
Organic transistor C1 was produced in the same manner as in Example 5 except that polymer compound PA was used instead of polymer compound P1.
The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the obtained organic transistor C1. The field effect mobility was 3.5 × 10 −4 cm 2 / Vs. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000030
 本発明によれば、電界効果移動度が十分に高い高分子化合物を提供することができる。また、本発明の高分子化合物を活性層に含み、電界効果移動度が十分に高い有機トランジスタを提供することができる。 According to the present invention, a polymer compound having sufficiently high field effect mobility can be provided. In addition, an organic transistor including the polymer compound of the present invention in an active layer and having sufficiently high field effect mobility can be provided.

Claims (17)

  1.  式(1−1)で表される構造単位、式(1−2)で表される構造単位及び式(1−3)で表される構造単位からなる群から選ばれる少なくとも1種の構造単位と、式(2)で表される構造単位とを含む高分子化合物。
    Figure JPOXMLDOC01-appb-I000001
    [式中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、アリール基、1価の複素環基又はハロゲン原子を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。Rは、炭素数が2以上の置換されていてもよいアルキル基を表す。Eは、−O−、−S−、−Se−又は−N(R)−を表す。Rは、水素原子、置換されていてもよいアルキル基、アリール基又は1価の複素環基を表す。環Aは、芳香環又は複素環を表す。nは0以上の整数を表し、nは1~3の整数を表す。]
    Figure JPOXMLDOC01-appb-I000002
    [式中、Arは、それぞれ独立に、アリーレン基又は2価の複素環基を表す。但し、Arは式(1−1)で表される構造単位、式(1−2)で表される構造単位及び式(1−3)で表される構造単位とは異なる。複数存在するArは同一であっても異なっていてもよい。mは3~10の整数を表す。]
    At least one structural unit selected from the group consisting of a structural unit represented by formula (1-1), a structural unit represented by formula (1-2), and a structural unit represented by formula (1-3) And a polymer compound comprising the structural unit represented by formula (2).
    Figure JPOXMLDOC01-appb-I000001
    [Wherein, R 1 is independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an aryl group, or a monovalent heterocyclic ring. Represents a group or a halogen atom. When a plurality of R 1 are present, they may be the same or different. R 2 represents an optionally substituted alkyl group having 2 or more carbon atoms. E is, -O -, - S -, - Se- , or -N (R a) - represents a. R a represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, or a monovalent heterocyclic group. Ring A represents an aromatic ring or a heterocyclic ring. n 2 represents an integer of 0 or more, and n 3 represents an integer of 1 to 3. ]
    Figure JPOXMLDOC01-appb-I000002
    [In formula, Ar < 1 > represents an arylene group or a bivalent heterocyclic group each independently. However, Ar 1 is different from the structural unit represented by the formula (1-1), the structural unit represented by the formula (1-2), and the structural unit represented by the formula (1-3). A plurality of Ar 1 may be the same or different. m 1 represents an integer of 3 to 10. ]
  2.  式(1−1)で表される構造単位と式(2)で表される構造単位とを含む請求項1に記載の高分子化合物。 The polymer compound according to claim 1, comprising a structural unit represented by the formula (1-1) and a structural unit represented by the formula (2).
  3.  式(1−A)で表される構造単位、式(1−B)で表される構造単位及び式(1−C)で表される構造単位からなる群から選ばれる少なくとも1種の構造単位を含む請求項1又は2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-I000003
    [式中、R、R及びEは、それぞれ独立に、前記と同じ意味を表す。]
    At least one structural unit selected from the group consisting of a structural unit represented by formula (1-A), a structural unit represented by formula (1-B), and a structural unit represented by formula (1-C) The high molecular compound of Claim 1 or 2 containing this.
    Figure JPOXMLDOC01-appb-I000003
    [Wherein, R 1 , R 2 and E each independently represent the same meaning as described above. ]
  4.  式(1−A)で表される構造単位、式(1−B)で表される構造単位又は式(1−C)で表される構造単位と、式(2)で表される構造単位との交互共重合体である請求項3に記載の高分子化合物。 Structural unit represented by formula (1-A), structural unit represented by formula (1-B) or structural unit represented by formula (1-C), and structural unit represented by formula (2) The polymer compound according to claim 3, wherein the polymer compound is an alternating copolymer.
  5.  Rが、炭素数8以上のアルキル基である請求項1~4のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 4, wherein R 2 is an alkyl group having 8 or more carbon atoms.
  6.  Rが、炭素数8以上の分岐アルキル基である請求項5に記載の高分子化合物。 The polymer compound according to claim 5, wherein R 2 is a branched alkyl group having 8 or more carbon atoms.
  7.  Eが、−S−である請求項1~6のいずれか一項に記載の高分子化合物。 E is -S-, The polymer compound according to any one of claims 1 to 6.
  8.  Arの少なくとも1つが、電子吸引性置換基又はカルボニル基を有するアリーレン基である請求項1~7のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 7, wherein at least one of Ar 1 is an arylene group having an electron-withdrawing substituent or a carbonyl group.
  9.  Arの少なくとも1つが、電子吸引性置換基、sp窒素原子又はカルボニル基を有する2価の芳香族複素環基である請求項1~7のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 7, wherein at least one of Ar 1 is a divalent aromatic heterocyclic group having an electron-withdrawing substituent, an sp 2 nitrogen atom, or a carbonyl group.
  10.  Arの少なくとも1つが、式(Ar−1)で表される基~式(Ar−11)で表される基からなる群から選ばれる少なくとも1種の基である請求項1~9のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-I000004
    [式中、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、アリール基、2価の複素環基又はハロゲン原子を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
     Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、アリール基又は2価の複素環基を表す。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
     Yは、それぞれ独立に、−S−、−O−又は−Se−を表す。Yが複数存在する場合、それらは同一であっても異なっていてもよい。]
    At least one of Ar 1, wherein a group represented by - formula in (Ar 1 -1) (Ar 1 -11) is at least one group selected from the group consisting of groups represented by claims 1-9 The high molecular compound as described in any one of these.
    Figure JPOXMLDOC01-appb-I000004
    [Wherein R 3 independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group, a divalent heterocyclic group or a halogen atom. When a plurality of R 3 are present, they may be the same or different.
    R 4 each independently represents a hydrogen atom, an optionally substituted alkyl group, an aryl group or a divalent heterocyclic group. When a plurality of R 4 are present, they may be the same or different.
    Y independently represents -S-, -O-, or -Se-. When a plurality of Y are present, they may be the same or different. ]
  11.  前記R及びRが、水素原子又は炭素数が1~6のアルキル基である、請求項10に記載の高分子化合物。 The polymer compound according to claim 10, wherein R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  12.  Arの少なくとも1つが、単環式のアリーレン基又は単環式の2価の複素環基である、請求項1~11のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 11, wherein at least one of Ar 1 is a monocyclic arylene group or a monocyclic divalent heterocyclic group.
  13.  Arの少なくとも1つが、無置換のアリーレン基又は無置換の2価の複素環基である、請求項1~12のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 12, wherein at least one of Ar 1 is an unsubstituted arylene group or an unsubstituted divalent heterocyclic group.
  14.  Arの少なくとも一つが、無置換のフェニレン基又は無置換のチオフェンジイル基である、請求項13に記載の高分子化合物。 The polymer compound according to claim 13, wherein at least one of Ar 1 is an unsubstituted phenylene group or an unsubstituted thiophenediyl group.
  15.  請求項1~14のいずれか一項に記載の高分子化合物を含む有機半導体材料。 An organic semiconductor material comprising the polymer compound according to any one of claims 1 to 14.
  16.  請求項15に記載の有機半導体材料を含む有機層を有する有機半導体素子。 An organic semiconductor element having an organic layer containing the organic semiconductor material according to claim 15.
  17.  ソース電極、ドレイン電極、ゲート電極及び活性層を有し、活性層に請求項15に記載の有機半導体材料を含む有機トランジスタ。 An organic transistor having a source electrode, a drain electrode, a gate electrode, and an active layer, wherein the active layer includes the organic semiconductor material according to claim 15.
PCT/JP2012/071526 2011-09-07 2012-08-21 Polymer compound and organic transistor WO2013035564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-194758 2011-09-07
JP2011194758A JP5760875B2 (en) 2011-09-07 2011-09-07 Polymer compound and organic transistor using the same

Publications (1)

Publication Number Publication Date
WO2013035564A1 true WO2013035564A1 (en) 2013-03-14

Family

ID=47832014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071526 WO2013035564A1 (en) 2011-09-07 2012-08-21 Polymer compound and organic transistor

Country Status (3)

Country Link
JP (1) JP5760875B2 (en)
TW (1) TW201326248A (en)
WO (1) WO2013035564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119503A (en) * 2013-04-25 2014-10-29 海洋王照明科技股份有限公司 Conjugated polymer material containing thienothiophene-dithienobenzotriazole-diazosulfide and preparation method and application thereof
CN104211915A (en) * 2013-05-29 2014-12-17 海洋王照明科技股份有限公司 Conjugated polymer, preparation method, and applications thereof
JP2015521672A (en) * 2012-07-02 2015-07-30 メルク パテント ゲーエムベーハー Conjugated polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915205B1 (en) 2012-10-31 2017-05-31 Toyota Motor Europe NV/SA Organic active materials for electrochemical energy storage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221434A (en) * 2002-01-11 2003-08-05 Xerox Corp Polythiophene and method for producing the same
JP2003261655A (en) * 2002-01-11 2003-09-19 Xerox Corp Polythiophenes and device using these
JP2006037098A (en) * 2004-07-08 2006-02-09 Samsung Electronics Co Ltd Poly(oligo thiophene-arylene) derivative, organic semiconductor copolymer, semiconductive multilayered structure, and method for producing poly(oligo thiophene-arylene) derivative
WO2010117449A2 (en) * 2009-04-06 2010-10-14 University Of Kentucky Research Foundation Semiconducting compounds and devices incorporating same
WO2011005370A2 (en) * 2009-05-26 2011-01-13 University Of Florida Research Foundation, Inc. Earth-toned photovoltaic devices
JP2011060998A (en) * 2009-09-10 2011-03-24 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing the same, solar cell using the same, and optical sensor array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221434A (en) * 2002-01-11 2003-08-05 Xerox Corp Polythiophene and method for producing the same
JP2003261655A (en) * 2002-01-11 2003-09-19 Xerox Corp Polythiophenes and device using these
JP2006037098A (en) * 2004-07-08 2006-02-09 Samsung Electronics Co Ltd Poly(oligo thiophene-arylene) derivative, organic semiconductor copolymer, semiconductive multilayered structure, and method for producing poly(oligo thiophene-arylene) derivative
WO2010117449A2 (en) * 2009-04-06 2010-10-14 University Of Kentucky Research Foundation Semiconducting compounds and devices incorporating same
WO2011005370A2 (en) * 2009-05-26 2011-01-13 University Of Florida Research Foundation, Inc. Earth-toned photovoltaic devices
JP2011060998A (en) * 2009-09-10 2011-03-24 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing the same, solar cell using the same, and optical sensor array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521672A (en) * 2012-07-02 2015-07-30 メルク パテント ゲーエムベーハー Conjugated polymer
US9695190B2 (en) 2012-07-02 2017-07-04 Merck Patent Gmbh Conjugated polymers
CN104119503A (en) * 2013-04-25 2014-10-29 海洋王照明科技股份有限公司 Conjugated polymer material containing thienothiophene-dithienobenzotriazole-diazosulfide and preparation method and application thereof
CN104211915A (en) * 2013-05-29 2014-12-17 海洋王照明科技股份有限公司 Conjugated polymer, preparation method, and applications thereof

Also Published As

Publication number Publication date
JP2013056959A (en) 2013-03-28
JP5760875B2 (en) 2015-08-12
TW201326248A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5164134B2 (en) Fused ring compound and method for producing the same, polymer, organic thin film containing them, and organic thin film element and organic thin film transistor comprising the same
WO2009101982A1 (en) Fused ring compound, method for producing the same, polymer, organic thin film containing the compound and/or the polymer, and organic thin film device and organic thin film transistor each comprising the organic thin film
WO2009102031A1 (en) Condensed polycyclic compound, condensed polycyclic polymer and organic thin film containing the compound or the polymer
KR20090021146A (en) Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film
JP5954814B2 (en) Nitrogen-containing condensed ring compound, nitrogen-containing condensed ring polymer, organic thin film and organic thin film element
WO2012105517A1 (en) Polycyclic condensed ring compound, polycyclic condensed ring polymer, and organic thin film comprising same
JPWO2015163206A1 (en) Composition, polymer compound, and organic semiconductor device containing the composition or polymer compound
JP5760875B2 (en) Polymer compound and organic transistor using the same
JP6006573B2 (en) Polymer compound and organic transistor using the same
JP2013057007A (en) Polymer compound, and thin film and composition containing the same
JP2013181071A (en) Polymer compound, composition including the same, ink composition, thin film and element
JP5987237B2 (en) Polymer compound, organic semiconductor material, organic transistor and organic solar cell using the same
WO2012050102A1 (en) Polymeric compound, organic semiconductor material, and organic transistor
JP5363771B2 (en) Nitrogen-containing condensed ring compound, nitrogen-containing condensed ring polymer, organic thin film and organic thin film element
JP2013028750A (en) Polymeric compound, and organic transistor using the same
JP6252264B2 (en) Polymer compound and organic semiconductor device using the same
JP5914238B2 (en) Polymer compound, and organic semiconductor device and organic transistor using the polymer compound
WO2012050103A1 (en) Condensed aromatic compound, organic semiconductor material, and organic transistor element
JP5995594B2 (en) Polymer compound and organic transistor using the same
JP2013237767A (en) Polymer compound and organic transistor produced by using the same
JP2015157910A (en) Polymer compound and organic semiconductor element prepared using the same
WO2009101914A1 (en) Polymer, organic thin film using the same, and organic thin film device
JP2013184932A (en) Compound, and organic semiconductor material, organic transistor and organic solar cell using the compound
JP2013151622A (en) High polymer compound, organic semiconductor element using the same, and organic transistor
JP2013159726A (en) Polymer compound and organic transistor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829581

Country of ref document: EP

Kind code of ref document: A1