WO2013034393A1 - Verfahren zur steuerung eines abgassystems eines dieselmotors sowie abgassystem eines dieselmotors - Google Patents

Verfahren zur steuerung eines abgassystems eines dieselmotors sowie abgassystem eines dieselmotors Download PDF

Info

Publication number
WO2013034393A1
WO2013034393A1 PCT/EP2012/065691 EP2012065691W WO2013034393A1 WO 2013034393 A1 WO2013034393 A1 WO 2013034393A1 EP 2012065691 W EP2012065691 W EP 2012065691W WO 2013034393 A1 WO2013034393 A1 WO 2013034393A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
mass flow
soot load
exhaust
flow sensor
Prior art date
Application number
PCT/EP2012/065691
Other languages
English (en)
French (fr)
Inventor
Hans-Ulrich Kühnel
Karl WÜBBEKE
Original Assignee
Pierburg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Gmbh filed Critical Pierburg Gmbh
Publication of WO2013034393A1 publication Critical patent/WO2013034393A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/6983Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters adapted for burning-off deposits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for controlling an exhaust system of a diesel engine, in which a sensor element is arranged, with which a soot load in the exhaust gas flow is determined, depending on a regeneration of a particulate filter is performed and an exhaust system of a diesel engine with an exhaust system in which a particulate filter is arranged, an exhaust gas recirculation channel, which branches off from the exhaust line, an exhaust gas cooler, which is arranged in the AbgasschreibGermankanai, an exhaust gas mass flow sensor, an exhaust gas recirculation valve, which is arranged in the AbgasschreibGermankanai and a control unit, which is connected to the exhaust gas mass flow sensor and means for initiating the regeneration phase of the particulate filter. Diesel engines with particulate filters are known.
  • Regeneration phases are initiated at regular intervals or as a function of a measured pressure loss via the particle filter, in which the soot in the filter is burned off at a temperature of more than 500 ° C.
  • additional fuel is injected into the exhaust line, so that a temperature-increasing afterburning takes place.
  • a pressure sensor in front of and behind the particle filter so that the regeneration phase is carried out when a pressure difference limit value is exceeded.
  • a constructed exhaust system is known for example from DE 103 26 784 AI.
  • About this pressure difference is closed in a deposit calculation unit via different algorithms on a Schwebstoffablagerungsmenge and set the date of the regeneration phase.
  • DE 10 2005 061 548 B4 discloses an exhaust gas mass flow sensor which, as a function of its heating time, can be switched from a normal operating mode to a cleaning mode in order to freely burn its surface by increasing the temperature of deposits.
  • All these different exhaust systems have the disadvantage that the components used, whether exhaust gas sensors or pressure sensors, do not fulfill any additional function and cause correspondingly no additional costs. Therefore, very inexpensive sensors are often used, but often are not built sufficiently robust to ensure a sufficiently long life.
  • This object is achieved by a method for controlling an exhaust system of a diesel engine with the features of claim 1 and by an exhaust system of a diesel engine having the features of claim 6.
  • a exhaust gas mass flow sensor is used as sensor element, which is switched to soot load of the exhaust gas mass flow sensor on a soot load of the particulate filter, about which the time is set to perform the regeneration of the particulate filter, no additional Sensor used to determine the regeneration phase.
  • a discharged or an exhaust gas quantity recirculated to the intake manifold is measured via the exhaust gas mass flow sensor, which exhaust gas is used, for example, for controlling or regulating the exhaust gas recirculation valve or the exhaust gas flap.
  • the exhaust gas mass flow sensor Since, regardless of the installation location of the exhaust gas mass flow sensor, it is always supplied with exhaust gas whose soot content per mass unit essentially corresponds to the carbon black fraction with which the particle filter is charged, it can be deduced from the soot loading of the exhaust gas mass flow sensor on the soot load of the particulate filter. It would also be conceivable, arranged from a change in the soot load on a behind the particulate filter Close exhaust gas mass flow sensor to the load of the particulate filter.
  • a map is stored in the control unit, via which a soot load of the exhaust gas cooler depending on the soot load of the exhaust gas mass flow sensor and the exhaust gas mass flow can be determined so that the soot load of an exhaust gas cooler from the soot load of the exhaust gas mass flow sensor and the exhaust gas mass flow is determined via the map.
  • a soot load of the exhaust gas cooler depending on the soot load of the exhaust gas mass flow sensor and the exhaust gas mass flow can be determined so that the soot load of an exhaust gas cooler from the soot load of the exhaust gas mass flow sensor and the exhaust gas mass flow is determined via the map.
  • the exhaust gas mass flow sensor operates on the principle of hot film manometry.
  • the sensor has heating resistors which are heated, whereby the generated heat of these heating resistors is delivered to the flowing medium by convection.
  • the resulting temperature change of the heating resistor or the additional power consumption to obtain the Schuwiderstandstemperatur are a measure of the existing Mass flow, these sensors are very reliable. Only deposits on the surfaces are to be avoided, so that when used in the exhaust system usually additional heating wires for burning off the deposits are provided. This is also done on the basis of parameters to be defined, which serve as a measure of the layer thickness and thus of the soot content in the exhaust gas.
  • this heating time can serve as a measure of the loading of the particulate filter with appropriately deposited characteristic.
  • a temperature sensor is preferably arranged in front of the particle filter, which is connected to the control unit. In this way, it can be considered whether, during normal engine operation, temperatures may possibly be reached which already result in regeneration of the particulate filter or of the exhaust gas cooler. Furthermore, the particle filter tends to grow faster at lower temperatures, so that the temperature can also be stored in the map or can be taken into account in an appropriate algorithm reproducing the map.
  • the exhaust gas mass flow sensor is arranged downstream of the exhaust gas cooler in the exhaust gas recirculation channel. This reduces the thermal Load the exhaust gas mass flow sensor and increases the
  • control unit is connected to an injection valve, via which fuel for regeneration of the particulate filter in the exhaust line can be injected.
  • an injection valve via which fuel for regeneration of the particulate filter in the exhaust line can be injected.
  • the figure shows a schematic diagram of two alternative or jointly usable embodiments of an exhaust system according to the invention.
  • the exhaust system consists of an engine block 2, in which takes place in a known manner combustion of a fuel-air mixture with supplied exhaust gas.
  • an exhaust gas line 4 initially leads in the form of an exhaust manifold to an exhaust gas outlet 6.
  • an exhaust gas flap 8 is arranged in the exhaust gas line 4.
  • Upstream of the exhaust valve 8 and downstream of a diesel particulate filter 9, which is also in the Exhaust line 4 is arranged branches off from the exhaust line 4, a low-pressure exhaust gas recirculation channel 10 from.
  • a first exhaust gas recirculation valve 16 and a first exhaust gas cooler 18 are arranged, by means of which the temperature of the exhaust gas and the desired amount of exhaust gas in o Nieder Kunststoffabgasschreib1700kanal 10 can be adjusted can.
  • the low pressure exhaust gas recirculation channel 10 opens upstream of a compressor 20 of the turbocharger 14 in an intake passage 22 of the internal combustion engine, ie in a region of low pressure before compression of the exhaust air-air mixture.
  • an exhaust gas mass flow sensor 24 is arranged in the low pressure exhaust gas recirculation channel 10, which is thus arranged downstream of the diesel particulate filter 9. This is used in a known manner to determine the recirculated exhaust gas mass flow and is connected to a control unit 25, which processes the data of the exhaust gas mass flow sensor 24 and uses, for example, for optimized adjustment of the exhaust gas recirculation valve 16.
  • the position in front of the exhaust gas cooler 18 and the exhaust gas recirculation valve 16 reduces the tendency to form condensate in the area of the exhaust gas mass flow sensor 24, since the highest temperatures in the low pressure exhaust gas recirculation channel 10 are present in front of the exhaust gas cooler, the temperature of the exhaust gas already being significantly lower compared to the temperature at the outlet of the engine block 2 is.
  • the arrangement in front of the exhaust gas recirculation valve 16 prevents disturbances of the flow through the exhaust gas recirculation valve 16 from influencing the measurement.
  • the exhaust gas mass flow sensor 24 is a working according to the principle of hot film manometry sensor having, for example, a heating resistor which serves to burn down deposits on the ceramic body in a cleaning mode, so as to ensure proper functioning of the exhaust gas mass flow sensor 24.
  • the exhaust gas mass flow sensor 24 is arranged downstream of the particle filter 9, so that a relatively low soot load can be assumed, but increase with heavy loading of the particulate filter 9 due to the sinking absorption capacity becomes.
  • the soot load of the exhaust gas mass flow sensor 24 resulting from, for example, the heating time or the heating time change and the actual exhaust gas mass flow are too high soot loading of the particulate filter 9 via a characteristic map traced in the control unit 25. If this is detected, a regeneration phase of the particulate filter 9 is initiated by additional fuel is injected via the injection valve 27 into the exhaust line 4, whereby an afterburning, by which the temperature is increased so that the particulate filter 9 is burned free.
  • the control unit 25 also controls the further units for carrying out the regeneration phase in a known manner.
  • the exhaust gas mass flow can be calculated from the recirculated exhaust gas mass flow and the intake air quantity.
  • these values of the exhaust gas mass flow sensor 24 can also be used to burn off the exhaust gas cooler 18 or the exhaust gas recirculation valve 16, for which purpose either a separate characteristic map is deposited in order to conclude that burning is necessary or also with the regeneration of the particulate filter 9 Regeneration of the exhaust gas cooler 18 is initiated.
  • a separate map of course, the measured recirculated exhaust gas mass flow with the soot load of the exhaust gas mass flow sensor 24 depending on the soot load of the exhaust gas cooler 18 is deposited directly.
  • a temperature sensor 29 is arranged in front of the particle filter 9, which is also connected to the control unit and whose values can also be taken into account in the map.
  • this temperature sensor 29 is suitable for determining whether temperatures arise during operation which possibly make regeneration unnecessary.
  • this regeneration can also take place as a function of the measured values of a second exhaust gas mass flow sensor 34, which is arranged in a high-pressure exhaust gas return channel 28 and is thus arranged upstream of the particle filter 9.
  • the intake passage 22 leads from the mouth of the low-pressure exhaust gas recirculation passage 10 via the compressor 20 of the turbocharger 14 to a charge air cooler 26, in which the compressed air-exhaust gas mixture is cooled to improve the combustion. From here, the intake passage 22 leads to the engine block 2, wherein in this flow path a branch is arranged, at which the high-pressure exhaust gas return passage 28 opens into the intake passage 22.
  • This high pressure exhaust gas return passage 28 branches off from the exhaust passage 4 upstream of the turbine 12 of the turbocharger 14.
  • a second exhaust gas recirculation valve 30 for controlling the exhaust gas mass flow
  • a second exhaust gas cooler 32 for controlling the temperature of the exhaust gas is arranged.
  • the exhaust gas mass flow sensor 34 which also according to the principle of Hot film manometry is located downstream of the exhaust gas cooler 32.
  • the same sensors 24, 34 can be used for both exhaust gas recirculation channels 10, 28.
  • the exhaust gas mass flow in the high-pressure exhaust gas recirculation channel 28 and the soot load of the exhaust gas mass flow can also be measured directly and accurately via the exhaust gas mass flow sensor 34, for example via the heating time, and made available to the control unit 25 for controlling this second exhaust gas quantity and for deducing the soot load of the particulate filter 9.
  • the exhaust gas mass flow sensor 34 is acted upon by the same soot load per unit volume of the exhaust gas as the particulate filter 9. Accordingly, from the soot load of this exhaust gas mass flow sensor 34 to a soot load of the particulate filter 9 are closed and thus Time to perform the regeneration of the particulate filter 9 are set.
  • the method proceeds in the same way as already described for execution in the low pressure range, so that here, for example, the exhaust gas cooler can be regenerated if necessary, which will be necessary here less often because of the high temperatures. It is thus possible without additional measuring medium to determine the soot loading of the particulate filter and thus initiate a regeneration phase at the optimum time. By saving further measuring means incurred in comparison to known designs lower costs. Fuel is saved compared to versions where regeneration takes place at fixed intervals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Es sind Abgassysteme eines Dieselmotors mit einem Abgasstrang (4), in dem ein Partikelfilter (9) angeordnet ist, der in einer Regenerationsphase durch Erhöhung der Abgastemperatur gesäubert wird, sowie Verfahren zur Steuerung eines derartigen Abgassystems, in dem ein Sensorelement angeordnet ist, mit welchem eine Rußbelastung im Abgasstrom festgestellt wird, in deren Abhängigkeit eine Regeneration eines Partikelfilters (9) durchgeführt wird, bekannt. Zum Einleiten der Regeneration sind bislang zusätzliche Messmittel erforderlich. Um hierauf verzichten zu können, wird vorgeschlagen, dass in der Steuereinheit (25) ein Kennfeld hinterlegt ist, über welches eine Rußbelastung des Partikelfilters (9) in Abhängigkeit der Rußbelastung des Abgasmassenstromsensors (24, 34) und des Abgasmassenstroms bestimmbar ist. Als Sensorelement wird ein Abgasmassenstromsensor (24, 34) eingesetzt, der bei zu hoher Rußbelastung in einen Reinigungsmodus geschaltet wird, wobei aus der Rußbelastung des Abgasmassenstromsensors (24, 34) auf eine Rußbelastung des Partikelfilters (9) geschlossen wird, worüber der Zeitpunkt zum Durchführen der Regeneration des Partikelfilters (9) festgelegt wird.

Description

B E S C H R E I B U N G
Verfahren zur Steuerung eines Abgassystems eines Dieselmotors sowie Abgassystem eines Dieselmotors
Die Erfindung betrifft ein Verfahren zur Steuerung eines Abgassystems eines Dieselmotors, in dem ein Sensorelement angeordnet ist, mit welchem eine Rußbelastung im Abgasstrom festgestellt wird, in deren Abhängigkeit eine Regeneration eines Partikelfilters durchgeführt wird sowie ein Abgassystem eines Dieselmotors mit einem Abgasstrang, in dem ein Partikelfilter angeordnet ist, einem Abgasrückführkanai, der vom Abgasstrang abzweigt, einem Abgaskühler, der im Abgasrückführkanai angeordnet ist, einem Abgasmassenstromsensor, einem Abgasrückführventil, welches im Abgasrückführkanai angeordnet ist und einer Steuereinheit, welche mit dem Abgasmassenstromsensor sowie Mitteln zur Einleitung der Regenerationsphase des Partikelfilters verbunden ist. Dieselmotoren mit Partikelfiltern sind bekannt. In regelmäßigen Abständen oder in Abhängigkeit eines gemessenen Druckverlustes über den Partikelfilter werden Regenerationsphasen eingeleitet, in denen bei einer Temperatur von über 500°C der Ruß im Filter abgebrannt wird. Hierzu wird beispielsweise zusätzlich Kraftstoff in den Abgasstrang eingespritzt, so dass eine die Temperatur erhöhende Nachverbrennung stattfindet.
Diese Nacheinspritzungen erhöhen jedoch den Kraftstoffverbrauch deutlich. Da die Intervalle, in denen eine Regeneration notwendig ist jedoch insbesondere bei Fahrzeugen, die hauptsächlich im Stadtverkehr gefahren werden recht kurz sind, ist es wichtig die Regenerationsphase nicht rein zeitabhängig sondern in Abhängigkeit von der tatsächlichen Rußbeiastung des Partikelfilters durchzuführen.
Zu diesem Zweck ist es bekannt vor und hinter dem Partikelfilter jeweils einen Drucksensor anzuordnen, so dass bei Überschreiten eines Druckdifferenzgrenzwertes die Regenerationsphase durchgeführt wird. Ein derartig aufgebautes Abgassystem ist beispielsweise aus der DE 103 26 784 AI bekannt. Über diese Druckdifferenz wird in einer Ablagerungsberechnungseinheit über verschiedene Algorithmen auf eine Schwebstoffablagerungsmenge geschlossen und hierüber der Zeitpunkt der Regenerationsphase festgelegt.
Alternativ ist es aus der DE 10 2009 007 126 AI bekannt zur Messung der Rußbeladung hinter dem Partikelfilter ein Partikelsensorelement vorzusehen, mit welchem die Rußbeladung des Abgases hinter dem Filter gemessen wird, woraus auf die Funktionsfähigkeit des Partikelfilters geschlossen wird.
Des Weiteren ist aus der DE 10 2005 061 548 B4 ein Abgasmassenstromsensor bekannt, der in Abhängigkeit seiner Aufheizzeit von einem Normalbetriebsmodus in einen Reinigungsmodus umgeschaltet werden kann, um seine Oberfläche durch Erhöhen der Temperatur von Ablagerungen frei zu brennen. All diese verschiedenen Abgassysteme weisen den Nachteil auf, dass die verwendeten Bauteile, seien es Abgassensoren oder Drucksensoren, keine zusätzliche Funktion erfüllen und entsprechend Kosten ohne zusätzlichen Nutzen verursachen. Daher werden häufig sehr kostengünstige Sensoren verwendet, die jedoch häufig nicht ausreichend robust aufgebaut sind, um eine ausreichend lange Lebensdauer sicher zu stellen. Es stellt sich daher die Aufgabe, ein Abgassystem eines Dieselmotors sowie ein Verfahren zur Steuerung eines derartigen Abgassystems zur Verfügung zu stellen, mit denen eine Regenerationsphase für einen Partikelfilter festgelegt werden kann, ohne zusätzliche Bauteile 5 verwenden zu müssen und dennoch sicher zu stellen, dass eine Regeneration nur durchgeführt wird, wenn eine zu hohe Belastung des Partikelfilters mit Ruß tatsächlich besteht, so dass keine unnötige Verbrauchserhöhung erfolgt. o Diese Aufgabe wird durch ein Verfahren zur Steuerung eines Abgassystems eines Dieselmotors mit den Merkmalen des Anspruchs 1 sowie durch ein Abgassystem eines Dieselmotors mit den Merkmalen des Anspruchs 6 gelöst. Dadurch, dass als Sensorelement ein Abgasmassenstromsensor eingesetzt wird, der bei zu hoher Rußbelastung in einen Reinigungsmodus geschaltet wird, wobei aus der Rußbelastung des Abgasmassenstromsensors auf eine Rußbelastung des Partikelfilters geschlossen wird, worüber der Zeitpunkt zum Durchführen der Regeneration des Partikelfilters festgelegt wird, muss kein zusätzlicher Sensor verwendet werden, um die Regenerationsphase festzulegen. Über den Abgasmassenstromsensor wird je nach Einbauort entweder eine abgeführte oder eine zum Saugrohr zurückgeführte Abgasmenge gemessen, die beispielsweise zur Motorsteuerung oder Regelung des Abgasrückführventils oder der Abgasklappe verwendet wird. Da unabhängig vom Einbauort des Abgasmassenstromsensors dieser immer mit Abgas beaufschlagt wird, dessen Rußanteil pro Masseneinheit im Wesentlichen dem Rußanteil entspricht, mit dem der Partikelfilter beaufschlagt wird, kann aus der Rußbeladung des Abgasmassenstromsensors auf die Rußbeladung des Partikelfilters geschlossen werden. Auch wäre es denkbar, aus einer Änderung der Rußbeladung an einem hinter dem Partikelfilter angeordneten Abgasmassenstromsensor auf die Beladung des Partikelfilters zu schließen.
Diese Vorteile sind mit einem Abgassystem nutzbar, bei dem in der 5 Steuereinheit ein Kennfeld hinterlegt ist, über welches eine Rußbelastung des Partikeffilters in Abhängigkeit der Rußbelastung des Abgasmassenstromsensors und des Abgasmassenstroms bestimmbar ist. Dies bedeutet, dass über ein Kennfeld die Rußbelastung des Partikelfilters aus der Rußbelastung des Abgasmassenstromsensors und dem D Abgasmassenstrom ermittelt wird und aus diesem Ergebnis gegebenenfalls ein Start der Regenerationsphase des Partikelfilters folgt.
Vorzugsweise ist in der Steuereinheit zusätzlich ein Kennfeld hinterlegt, über welches eine Rußbelastung des Abgaskühlers in Abhängigkeit der i Rußbelastung des Abgasmassenstromsensors und des Abgasmassenstroms bestimmbar ist, so dass über das Kennfeld die Rußbelastung eines Abgaskühlers aus der Rußbelastung des Abgasmassenstromsensors und dem Abgasmassenstrom ermittelt wird. Auf diese Weise kann ein optimaler Zeitpunkt zum Freibrennen des Abgaskühlers bestimmt werden. Dies kann gegebenenfalls gleichzeitig mit der Regeneration des Partikelfilters erfolgen. Dabei kann der Zeitpunkt festgelegt werden, ohne zusätzliche Sensoren anbringen zu müssen, so dass der Bauteileaufwand zur Regeneration des Partikelfilters und zum Freibrennen des Abgaskühlers minimiert wird.
Vorzugsweise arbeitet der Abgasmassenstromsensor nach dem Prinzip der Heißfilmanemometrie. Dies bedeutet, dass der Sensor Heizwiderstände aufweist, die erhitzt werden, wobei durch Konvektion die erzeugte Wärme dieser Heizwiderstände auf das strömende Medium abgegeben wird. Die daraus resultierende Temperaturänderung des Heizwiderstandes oder die zusätzliche Leistungsaufnahme zum Erhalt der Heizwiderstandstemperatur sind ein Maß für den vorhandenen Massenstrom, Diese Sensoren arbeiten sehr zuverlässig. Es sind lediglich Ablagerungen an den Oberflächen zu vermeiden, so dass beim Einsatz im Abgassystem üblicherweise zusätzliche Heizdrähte zum Abbrennen der Ablagerungen vorgesehen werden. Dies erfolgt ebenfalls aufgrund festzulegender Parameter, welche als Maß für die Schichtdicke und somit für den Rußgehalt im Abgas dienen.
Insbesondere wird aus der Aufheizzeit auf die Rußbelastung des Abgasmassenstromsensors geschlossen. Eine größere Rußbelastung hat eine Erhöhung der Aufheizzeit zur Folge, so dass bei ständiger Messung der Aufheizzeit auf die jeweilige Schichtdicke und über die jeweiligen Schichtdickenänderungen auf die Rußbeladung des Abgases geschlossen werden kann. Entsprechend kann diese Aufheizzeit bei entsprechend hinterlegtem Kennfeid als Maß für die Beladung des Partikelfilters dienen.
Besonders vorteilhaft ist es, vor dem Partikelfilter die Temperatur des Abgases zu messen, welche zusätzlich bei der Bestimmung der Rußbelastung des Partikelfilters berücksichtigt wird. Dementsprechend ist vorzugsweise vor dem Partikelfilter ein Temperatursensor angeordnet, der mit der Steuereinheit verbunden ist. Hierdurch kann berücksichtigt werden, ob beim normalen Motorbetrieb gegebenenfalls Temperaturen erreicht werden, die bereits eine Regeneration des Partikelfilters oder des Abgaskühlers zur Folge haben. Des Weiteren neigt der Partikelfilter bei geringeren Temperaturen schneller dazu zuzuwachsen, so dass auch die Temperatur im Kennfeld hinterlegt werden kann beziehungsweise in einen entsprechenden das Kennfeld wiedergebenden Algorithmus berücksichtigt werden kann.
In einer weiterführenden Ausführungsform ist der Abgasmassenstromsensor stromabwärts des Abgaskühlers im Abgasrückführkanal angeordnet. Dies vermindert die thermische Belastung des Abgasmassenstromsensors und erhöht die
Messgenauigkeit des Sensors.
Vorzugsweise ist die Steuereinheit mit einem Einspritzventil verbunden, über welches Kraftstoff zur Regeneration des Partikelfilters in den Abgasstrang einspritzbar ist. Dies ermöglicht die direkte Ansteuerung des Einspritzventils zur zeitgenauen und schnellen Regeneration des Partikelfilters. Es wird somit ein Verfahren zur Steuerung eines Abgassystems sowie ein Abgassystem für einen Dieselmotor geschaffen, bei denen der Partikelfilter zu einem optimalen Zeitpunkt, das heißt nur bei tatsächlich vorliegender zu hoher Partikelbelastung regeneriert wird, ohne zusätzliche Sensoren verwenden zu müssen . So werden Kosten reduziert. Dabei kann die ohnehin vorhandene Rußmessung am Abgasmassenstromsensor genutzt werden, wenn entsprechende Kennfelder in der Motorsteuerung hinterlegt werden.
Ein Ausführungsbeispiel eines erfindungsgemäßen Abgasrückführsystems ist in der Figur dargestellt und wird ebenso wie das zugehörige Verfahren im Folgenden beschrieben.
Die Figur zeigt eine Prinzipskizze zweier alternativ oder gemeinsam nutzbarer Ausführungsbeispiele eines erfindungsgemäßen Abgassystems.
Das erfindungsgemäße Abgassystem besteht aus einem Motorblock 2, in dem in bekannter Weise eine Verbrennung eines Kraftstoff-Luftgemisches mit zugeführtem Abgas stattfindet. Vom Motorblock 2 führt ein Abgasstrang 4 zunächst in Form eines Abgaskrümmers zu einem Abgasauslass 6. Stromaufwärtig zum Abgasauslass 6 ist im Abgasstrang 4 eine Abgasklappe 8 angeordnet ist. Stromaufwärts der Abgasklappe 8 und stromabwärts eines Dieselpartikelfilters 9, der ebenfalls im Abgasstrang 4 angeordnet ist, zweigt vom Abgasstrang 4 ein Niederdruckabgasrückführkanal 10 ab.
Dieser Niederdruckabgasrückführkanal 10 befindet sich im 5 Niederdruckbereich des Verbrennungsmotors also stromabwärts einer Abgasturbine 12 eines Abgasturboladers 14. Im Niederdruckabgasrückführkanal 10 sind ein erstes Abgasrückführventil 16 sowie ein erster Abgaskühler 18 angeordnet, mittels derer die Temperatur des Abgases sowie die gewünschte Abgasmenge im o Niederdruckabgasrückführkanal 10 eingestellt werden können. Der Niederdruckabgasrückführkanal 10 mündet stromaufwärts eines Verdichters 20 des Turboladers 14 in einen Ansaugkanal 22 des Verbrennungsmotors, also in einem Bereich niedrigen Druckes vor einer Verdichtung des Abgas-Luftgemisches.
In Strömungsrichtung des Abgases vor dem ersten Abgasrückführventil 16 und vor dem ersten Abgaskühler 18 ist im Niederdruckabgasrückführkanal 10 ein Abgasmassenstromsensor 24 angeordnet, der somit stromabwärtig zum Dieselpartikelfilter 9 angeordnet ist. Dieser dient in bekannter Weise zur Bestimmung des rückgeführten Abgasmassenstromes und ist mit einer Steuereinheit 25 verbunden, welche die Daten des Abgasmassenstromsensors 24 verarbeitet und beispielsweise zur optimierten Einstellung des Abgasrückführventils 16 nutzt. Die Position vor dem Abgaskühler 18 und dem Abgasrückführventil 16 vermindert die Neigung zur Kondensatbildung im Bereich des Abgasmassenstromsensors 24, da vor dem Abgaskühler die höchsten Temperaturen im Niederdruckabgasrückführkanal 10 vorliegen, wobei die Temperatur des Abgases im Vergleich zur Temperatur am Auslass des Motorblocks 2 bereits deutlich geringer ist. Die Anordnung vor dem Abgasrückführventil 16 verhindert, dass Störungen der Strömung durch das Abgasrückführventil 16 Einfluss auf die Messung haben. Der Abgasmassenstromsensor 24 ist ein nach dem Prinzip der Heißfilmanemometrie arbeitender Sensor, der beispielsweise einen Heizwiderstand aufweist, der dazu dient, in einem Reinigungsmodus Ablagerungen auf dem Keramikkörper abzubrennen, um so eine einwandfreie Funktion des Abgasmassenstromsensors 24 zu gewährleisten. Dieses Freibrennen erfolgt beispielsweise in Abhängigkeit der Aufheizdauer der Heizwiderstände des Abgasmassenstromsensors 24. Im vorliegenden Fall ist der Abgasmassenstromsensor 24 stromabwärts zum Partikelfilter 9 angeordnet, so dass von einer relativ geringen Rußbelastung auszugehen ist, die jedoch bei starker Beladung des Partikelfilters 9 aufgrund der sinkenden Aufnahmefähigkeit steigen wird. Entsprechend kann über ein in der Steuereinheit 25 hinteriegtes Kennfeld aus der Rußbelastung des Abgasmassenstromsensors 24, die sich beispielsweise aus der Aufheizzeit beziehungsweise der Aufheizzeitänderung ergibt sowie dem tatsächlichen Abgasmassenstrom auf eine zu hohe Rußbeladung des Partikelfilters 9 geschlossen werden. Wird diese festgestellt, wird eine Regenerationsphase des Partikelfilters 9 eingeleitet, indem zusätzlicher Kraftstoff über das Einspritzventil 27 in den Abgasstrang 4 eingespritzt wird, wodurch eine Nachverbrennung entsteht, durch die die Temperatur so weit erhöht wird, dass der Partikelfilter 9 freigebrannt wird. Selbstverständlich werden über die Steuereinheit 25 auch die weiteren Aggregate zur Durchführung der Regenerationsphase in bekannter Weise angesteuert. Der Abgasmassenstrom kann dabei aus dem rückgeführten Abgasmassenstrom sowie der angesaugten Luftmenge berechnet werden.
Zusätzlich können diese Werte des Abgasmassenstromsensors 24 auch zum Freibrennen des Abgaskühlers 18 beziehungsweise des Abgasrückführventils 16 genutzt werden, wozu entweder ein separates Kennfeld hinterlegt wird, um auf ein notwendiges Abbrennen zu schließen oder jeweils mit der Regeneration des Partikelfilters 9 auch eine Regeneration des Abgaskühlers 18 eingeleitet wird. Bei Hinterlegung eines separaten Kennfeldes wird selbstverständlich direkt der gemessene rückgeführte Abgasmassenstrom mit der Rußbelastung des Abgasmassenstromsensors 24 in Abhängigkeit der Rußbeladung des 5 Abgaskühlers 18 hinterlegt.
Zu weiteren Verbesserung dieser Steuerung wird vor dem Partikelfilter 9 ein Temperatursensor 29 angeordnet, der ebenfalls mit der Steuereinheit verbunden ist und dessen Werte ebenfalls im Kennfeld berücksichtigt o werden können. Insbesondere eignet sich dieser Temperatursensor 29, um festzustellen ob im Betrieb Temperaturen entstehen, die gegebenenfalls eine Regeneration unnötig machen.
Alternativ kann diese Regeneration auch in Abhängigkeit der Messewerte eines zweiten Abgasmassenstromsensors 34 erfolgen, der in einem Hochdruckabgasrückführkanal 28 angeordnet ist und somit stromaufwärtig zum Partikelfilter 9 angeordnet ist.
Der Ansaugkanal 22 führt von der Mündung des Niederdruckabgasrückführkanals 10 über den Verdichter 20 des Turboladers 14 zu einem Ladeluftkühler 26, in dem das verdichtete Luft- Abgasgemisch zur Verbesserung der Verbrennung abgekühlt wird. Von hier aus führt der Ansaugkanal 22 zum Motorblock 2, wobei in diesem Strömungsweg eine Abzweigung angeordnet ist, an der der Hochdruckabgasrückführkanal 28 in den Ansaugkanal 22 mündet.
Dieser Hochdruckabgasrückführkanal 28 zweigt vom Abgaskanal 4 stromaufwärts der Turbine 12 des Turboladers 14 ab. In diesem Hochdruckabgasrückführkanal 28 ist ein zweites Abgasrückführventil 30 zur Regelung des Abgasmassenstroms und ein zweiter Abgaskühler 32 zur Regelung der Temperatur des Abgases angeordnet. Der Abgasmassenstromsensor 34, der ebenfalls nach dem Prinzip der Heißfilmanemometrie arbeitet, ist stromabwärts des Abgaskühlers 32 angeordnet. Hier liegt eine nicht mehr so hohe Abgastemperatur wie am Eintritt des Hochdruckabgasrückführkanals 28 vor. Dies ermöglicht eine genauere Messung, da diese Sensoren nicht für die extrem hohen Abgastemperaturen ausgelegt und kalibriert sind. So können für beide Abgasrückführkanäle 10, 28 gleiche Sensoren 24, 34 verwendet werden. Über diesen Abgasmassenstromsensor 34 kann ebenfalls auf direkte und exakte Weise der Abgasmassenstrom im Hochdruckabgasrückführkanal 28 als auch die Rußbeladung des Abgasmassenstroms beispielsweise über die Aufheizzeit gemessen und der Steuereinheit 25 zur Regelung dieser zweiten Abgasmenge und zum Rückschluss auf die Rußbelastung des Partikelfilters 9 zur Verfügung gestellt werden. Im Gegensatz zur ersten Ausführung zur Anordnung des Abgasmassenstromsensors wird im vorliegenden Fall der Abgasmassenstromsensor 34 mit der gleichen Rußbeladung pro Volumeneinheit des Abgases beaufschlagt wie der Partikelfilter 9. Entsprechend kann auch aus der Rußbelastung dieses Abgasmassenstromsensors 34 auf eine Rußbelastung des Partikelfilters 9 geschlossen werden und damit ein Zeitpunkt zum Durchführen der Regeneration des Partikelfilters 9 festgelegt werden. Dies kann wiederum über ein Kennfeld in der Steuereinheit 25 erfolgen, in der die Rußbeladung des Partikelfilters 9 über der Rußbeladung des Abgasmassenstromsensors 34 in Abhängigkeit des Abgasmassenstromes ermittelt wird. Dabei kann wiederum aus dem angesaugten Luftmassenstrom und dem rückgeführten Abgasmassenstrom auf den abgeführten Abgasmassenstrom geschlossen werden.
Im Übrigen läuft das Verfahren in gleicher Weise ab ,wie bereits zur Ausführung im Niederdruckbereich beschrieben, so dass auch hier beispielsweise der Abgaskühler falls notwendig regeneriert werden kann, was hier aufgrund der hohen Temperaturen seltener notwendig sein wird. Es wird somit ohne zusätzliche anzubringende Mess mittel möglich, die Rußbeladung des Partikelfilters zu ermitteln und somit zum optimalen Zeitpunkt eine Regenerationsphase einzuleiten. Durch das Einsparen weiterer Messmittel entstehen im Vergleich zu bekannten Ausführungen geringere Kosten. Im Vergleich zu Ausführungen, bei denen die Regeneration in festgelegten Intervallen stattfindet, wird Kraftstoff eingespart.
Es sollte deutlich sein, dass der Schutzbereich der vorliegenden Anmeldung nicht auf die beschriebenen Ausführungsbeispiele beschränkt ist. Sowohl Abgassystem mit einem reinen Niederdruck oder einem reinen Hochdruckkanal aber auch Systeme mit beiden Abgasrückführkanälen eignen sich für das beschriebene Verfahren. Auch können unterschiedlich arbeitende Abgasmassenstromsensoren eingesetzt werden. Das Kennfeld oder die Kennfelder können entweder in einer separaten Steuereinheit oder im Motorsteuergerät hinterlegt werden. Gegebenenfalls kann statt eines Kennfeldes auch ein entsprechender Algorithmus hinterlegt werden, um die Abhängigkeit der Werte wiederzugeben. Die Kennfelder sind für die Motoren jeweils vorab durch Versuche zu ermitteln.

Claims

P A T E N T A N S P Ü C H E
1. Verfahren zur Steuerung eines Abgassystems eines Dieselmotors, in dem ein Sensorelement angeordnet ist, mit welchem eine Rußbelastung im Abgasstrom festgestellt wird, in deren Abhängigkeit eine Regeneration eines Parti kelfiiters durchgeführt wird,
dadurch gekennzeichnet, dass
als Sensorelement ein Abgasmassenstromsensor (24, 34) eingesetzt wird, der bei zu hoher Rußbelastung in einen Reinigungsmodus geschaltet wird, wobei aus der Rußbelastung des Abgasmassenstromsensors (24, 34) auf eine Rußbelastung des Partikelfilters (9) geschlossen wird, worüber der Zeitpunkt zum Durchführen der Regeneration des Partikelfilters (9) festgelegt wird.
2. Verfahren zur Steuerung eines Abgassystems eines Dieselmotors nach Anspruch 1,
dadurch gekennzeichnet, dass
über ein Kennfeld die Rußbelastung des Partikelfilters (9) aus der Rußbelastung des Abgasmassenstromsensors (24, 34) und dem Abgasmassenstrom ermittelt wird.
3. Verfahren zur Steuerung eines Abgassystems eines Dieselmotors nach Anspruch 2,
dadurch gekennzeichnet, dass
über ein Kennfeld die Rußbelastung eines Abgaskühlers (18, 32) aus der Rußbelastung des Abgasmassenstromsensors (24, 34) und dem Abgasmassenstrom ermittelt wird und bei zu hoher Rußbelastung des Abgaskühlers (18, 32) dieser freigebrannt wird.
4. Verfahren zur Steuerung eines Abgassystems eines Dieselmotors nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
vor dem Partikelfilter (9) die Temperatur des Abgases gemessen wird, welche zusätzlich bei der Bestimmung der Rußbelastung des Partikelfilters (9) berücksichtigt wird.
5. Verfahren zur Steuerung eines Abgassystems eines Dieselmotors nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
aus der Aufheizzeit auf die Rußbelastung des Abgasmassenstromsensors (24, 34) geschlossen wird.
6. Abgassystem eines Dieselmotors mit
einem Abgasstrang (4), in dem ein Partikelfilter (9) angeordnet ist, einem Abgasrückführkanal (10, 28), der vom Abgasstrang (4) abzweigt,
einem Abgaskühler (18, 32), der im Abgasrückführkanal (10, 28) angeordnet ist,
einem Abgasmassenstromsensor (24, 34),
einem Abgasrückführventil (16, 30), welches im Abgasrückführkanal (10, 28) angeordnet ist,
einer Steuereinheit (25), welche mit dem Abgasmassenstromsensor (24, 34) sowie Mitteln (27) zur Einleitung der Regenerationsphase des Partikelfilters (9) verbunden ist,
dadurch gekennzeichnet, dass
in der Steuereinheit (25) ein Kennfeld hinterlegt ist, über welches eine Rußbelastung des Partikelfilters (9) in Abhängigkeit der Rußbelastung des Abgasmassenstromsensors (24, 34) und des Abgasmassenstroms bestimmbar ist.
7. Abgassystem eines Dieselmotors nach Anspruch 6, dadurch gekennzeichnet, dass
in der Steuereinheit (25) ein Kennfeid hinterlegt ist, über weiches eine Rußbelastung des Abgaskühlers (18, 32) in Abhängigkeit der
Rußbelastung des Abgasmassenstromsensors (24, 34) und des Abgasmassenstroms bestimmbar ist.
8. Abgassystem eines Dieselmotors nach einem der Ansprüche 6 oder
7,
dadurch gekennzeichnet, dass
der Abgasmassenstromsensor (24, 34) nach dem Prinzip der Heißfilmanemometrie arbeitet.
9. Abgassystem eines Dieselmotors nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass
der Abgasmassenstromsensor (24, 34) stromabwärts des Abgaskühlers (18, 32) im Abgasrückführkanal (10, 28) angeordnet ist.
10. Abgassystem eines Dieselmotors nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass
vor dem Partikelfilter (9) ein Temperatursensor (29) angeordnet ist, der mit der Steuereinheit (25) verbunden ist.
11. Abgassystem eines Dieselmotors nach einem der Ansprüche 6 bis
10,
dadurch gekennzeichnet, dass
die Steuereinheit (25) mit einem Einspritzventil (27) verbunden ist, über welches Kraftstoff zur Regeneration des Partikelfilters (9) in den Abgasstrang (4) einspritzbar ist.
PCT/EP2012/065691 2011-09-09 2012-08-10 Verfahren zur steuerung eines abgassystems eines dieselmotors sowie abgassystem eines dieselmotors WO2013034393A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011053419.9 2011-09-09
DE102011053419.9A DE102011053419B4 (de) 2011-09-09 2011-09-09 Verfahren zur Steuerung eines Abgassystems eines Dieselmotors sowie Abgassystem eines Dieselmotors

Publications (1)

Publication Number Publication Date
WO2013034393A1 true WO2013034393A1 (de) 2013-03-14

Family

ID=46640696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/065691 WO2013034393A1 (de) 2011-09-09 2012-08-10 Verfahren zur steuerung eines abgassystems eines dieselmotors sowie abgassystem eines dieselmotors

Country Status (2)

Country Link
DE (1) DE102011053419B4 (de)
WO (1) WO2013034393A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121613A (zh) * 2016-11-09 2019-08-13 Avl排放测试***有限责任公司 用于废气测量设备的冷凝物排放***
CN112004999A (zh) * 2018-05-09 2020-11-27 宝马汽车股份有限公司 内燃机的颗粒过滤器的灰分负荷的求取

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213200B4 (de) * 2014-07-08 2022-06-30 Volkswagen Aktiengesellschaft Kühlkreislauf mit einem Abgasrückführungskühler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139325C1 (en) * 1991-11-29 1993-01-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Function monitoring soot filter in exhaust pipe of IC engine
EP1099939A2 (de) * 1999-11-09 2001-05-16 Pierburg Aktiengesellschaft Anordnung zur Abgasregelung mit einem Massensensor
DE10326784A1 (de) 2002-06-14 2004-02-26 Denso Corp., Kariya Abgasreinigungsanlage einer Brennkraftmaschine
WO2007074122A1 (de) * 2005-12-22 2007-07-05 Pierburg Gmbh Verfahren zum betreiben eines abgasmassenstromsensors
WO2008000494A2 (de) * 2006-06-30 2008-01-03 Heraeus Sensor Technology Gmbh Schichtwiderstand im abgasrohr
WO2010086435A1 (de) * 2009-02-02 2010-08-05 Continental Automotive Gmbh Verfahren und vorrichtung zur messung der russbeladung in abgassystemen von dieselmotoren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501386B1 (de) * 2003-08-11 2008-10-15 Univ Graz Tech Russsensor
US20080282682A1 (en) * 2007-05-16 2008-11-20 Honeywell International Inc. Integrated DPF loading and failure sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139325C1 (en) * 1991-11-29 1993-01-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Function monitoring soot filter in exhaust pipe of IC engine
EP1099939A2 (de) * 1999-11-09 2001-05-16 Pierburg Aktiengesellschaft Anordnung zur Abgasregelung mit einem Massensensor
DE10326784A1 (de) 2002-06-14 2004-02-26 Denso Corp., Kariya Abgasreinigungsanlage einer Brennkraftmaschine
WO2007074122A1 (de) * 2005-12-22 2007-07-05 Pierburg Gmbh Verfahren zum betreiben eines abgasmassenstromsensors
DE102005061548B4 (de) 2005-12-22 2007-12-06 Pierburg Gmbh Verfahren zum Betreiben eines Abgasmassenstromsensors
WO2008000494A2 (de) * 2006-06-30 2008-01-03 Heraeus Sensor Technology Gmbh Schichtwiderstand im abgasrohr
WO2010086435A1 (de) * 2009-02-02 2010-08-05 Continental Automotive Gmbh Verfahren und vorrichtung zur messung der russbeladung in abgassystemen von dieselmotoren
DE102009007126A1 (de) 2009-02-02 2010-08-12 Continental Automotive Gmbh Verfahren und Vorrichtung zur Messung der Rußbeladung in Abgassystemen von Dieselmotoren

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121613A (zh) * 2016-11-09 2019-08-13 Avl排放测试***有限责任公司 用于废气测量设备的冷凝物排放***
US11703419B2 (en) 2016-11-09 2023-07-18 Avl Emission Test Systems Gmbh Condensate discharging system for an exhaust-gas measuring device
CN112004999A (zh) * 2018-05-09 2020-11-27 宝马汽车股份有限公司 内燃机的颗粒过滤器的灰分负荷的求取

Also Published As

Publication number Publication date
DE102011053419A1 (de) 2013-03-14
DE102011053419B4 (de) 2014-11-06

Similar Documents

Publication Publication Date Title
DE602004001100T2 (de) Abgasregeleinrichtung einer Brennkraftmaschine und Verfahren zur Schätzung des Abgasdurchflusses
DE102004013603B4 (de) Abgasreinigungssystem und Regenerationsende-Ermittlungsverfahren
DE102010038153B3 (de) Partikelsensor, Abgassystem und Verfahren zum Schutz von Komponenten eines turbogeladenen Motors mit Abgasrückführung
DE4041917A1 (de) Abgasreinigungsvorrichtung fuer brennkraftmaschinen
DE102005000978B4 (de) Vorrichtung zur Steuerung des Schadstoffausstoßes eines selbstzündenden Verbrennungsmotors
DE102012007053B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE102010027975A1 (de) Verfahren und Vorrichtung zur Eigendiagnose einer Abgassonde
DE102010042271A1 (de) Verfahren und Vorrichtung für ein Temperaturmanagement einer Abgasreinigungsanlage
DE10130633B4 (de) Verfahren zur Regenerierung eines Partikelfilters
WO2018130541A1 (de) Verfahren zur regeneration eines partikelfilters
WO2007057268A1 (de) Regeneration eines partikelfilters durch nacheinspritzung in intervallen
DE102009018525A1 (de) Abgasrückführsystem für einen Verbrennungsmotor
DE102011053419B4 (de) Verfahren zur Steuerung eines Abgassystems eines Dieselmotors sowie Abgassystem eines Dieselmotors
DE102006028436A1 (de) Verfahren zum Betreiben einer in einem Abgasbereich einer Brennkraftmaschine angeordneten Abgasreinigungsanlage
DE102011015061A1 (de) Verfahren und Vorrichtung zur Dosierung des Additivs zur Regenerierung eines Dieselpartikelfilters
DE102005025737A1 (de) Betriebsverfahren für eine Einspritzbrennkraftmaschine
DE102011014129A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Startzeitpunkts eines Regenerationsprozesses zur Regenerierung eines Dieselpartikelfilters
DE10028886A1 (de) Verfahren und Vorrichtung zum Überwachen des Betriebs eines Verbrennungsmotors
DE102011056534B4 (de) Verfahren zur Steuerung eines Abgassystems eines Dieselmotors
EP2561204A1 (de) Verfahren zum betreiben eines verbrennungsmotors
DE102007001553A1 (de) Verfahren und Steuergerät zum Betreiben einer Brennkraftmaschine und Ladeluftkühler mit schaltbarer Wärmetauscherfläche
EP1534405A2 (de) Verfahren zur reinigung eines partikelfilters
DE102015211151B4 (de) Verfahren und Vorrichtung zur Ermittlung des Beladungszustands eines Abgaspartikelfilters
DE10053674B4 (de) Verfahren zur Temperierung eines in einem Abgasstrang von einer Verbrennungskraftmaschine zu einem Katalysator geführten Abgasstroms und entsprechendes Abgastemperiersystem
DE102009018526B4 (de) Abgasrückführsystem für einen Verbrennungsmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745700

Country of ref document: EP

Kind code of ref document: A1