WO2013031779A1 - Method for producing α-olefin polymer - Google Patents

Method for producing α-olefin polymer Download PDF

Info

Publication number
WO2013031779A1
WO2013031779A1 PCT/JP2012/071722 JP2012071722W WO2013031779A1 WO 2013031779 A1 WO2013031779 A1 WO 2013031779A1 JP 2012071722 W JP2012071722 W JP 2012071722W WO 2013031779 A1 WO2013031779 A1 WO 2013031779A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
component
olefin polymer
olefin
Prior art date
Application number
PCT/JP2012/071722
Other languages
French (fr)
Japanese (ja)
Inventor
藤村 剛経
南 裕
岡本 卓治
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2013031779A1 publication Critical patent/WO2013031779A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a method for producing an ⁇ -olefin polymer.
  • Hydrocarbon waxes are used in various applications such as inks, paints, emulsions, and toner release agents. Hydrocarbon waxes are also used in applications other than those described above, for example, reforming of fuel oils such as resin modifiers, adhesive components, adhesive components, lubricating oil components, organic-inorganic composite materials, heat storage materials, and light oil. Applications include quality agents, asphalt modifiers, high-performance waxes, and cosmetics. Various performances are required for hydrocarbon waxes used in these applications. For example, low molecular weight can be achieved due to ease of handling, moderate melting point (20 to 120 ° C.), moderate hardness, And excellent temperature response characteristics. However, it has not been easy to achieve the desired level simultaneously, such as decreasing the molecular weight and decreasing the melting point.
  • Patent Document 1 discloses that a boron atom or a phosphorus atom is a bridging atom for the purpose of producing an ⁇ -olefin polymer having a weight average molecular weight of 5,000 or less suitable as a wax and having an excellent balance between the molecular weight and the melting point.
  • a method for producing an ⁇ -olefin polymer is disclosed in which an ⁇ -olefin having 20 to 40 carbon atoms is polymerized in the presence of a polymerization catalyst containing a transition metal compound.
  • a material having a further low molecular weight and a high melting point is desired.
  • the problem to be solved by the present invention is a low molecular weight and high melting point ⁇ having an excellent balance between the molecular weight and the melting point, a weight average molecular weight of 5,000 or less, and a melting point controlled in the range of 25 to 120 ° C. -To provide a method for efficiently producing an olefin polymer.
  • the present invention provides the following method for producing an ⁇ -olefin polymer and the ⁇ -olefin polymer produced thereby.
  • ⁇ 1> (A) a meso-type transition metal compound represented by the following general formula (I), and (B) (B-1) a meso-type transition metal compound of component (A) or a derivative thereof (C) an ⁇ -olefin having 16 to 40 carbon atoms is polymerized in the presence of a compound capable of forming an ionic complex and (B-2) a polymerization catalyst containing at least one selected from aluminoxane.
  • a process for producing an ⁇ -olefin polymer (A) a meso-type transition metal compound represented by the following general formula (I), and (B) (B-1) a meso-type transition metal compound of component (A) or a derivative thereof (C) an ⁇ -olefin having 16 to 40 carbon atoms is polymerized in the presence of a compound capable of
  • M represents a metal element of Groups 3 to 10 of the periodic table.
  • X represents a ⁇ -bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different.
  • a 1 and A 2 each independently represent a crosslinking group selected from a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group. , A 1 and A 2 are different from each other.
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • E is a group represented by the following formula (II), and two E may be the same or different from each other.
  • R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group, and a heteroatom-containing group.
  • P represents an integer of 0 to 5. When several R ⁇ 1 > exists, they may mutually be same or different.
  • the bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- .
  • the bridging group represented by -A 1- is a group represented by the following general formula (III-1)
  • the bridging group represented by -A 2- is The method for producing an ⁇ -olefin polymer according to the above ⁇ 1>, which is a group represented by the general formula (III-2).
  • B 1 and B 2 each independently represent a carbon atom, a silicon atom, a germanium atom, or a tin atom
  • R 2a , R 3a , R 2b, and R 3b Are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, or an amine having 1 to 20 carbon atoms.
  • a halogen-containing group having 1 to 20 carbon atoms are each independently an integer of 1 or more, and m + n is 3 or more.
  • ⁇ 6> The catalyst for polymerization according to any one of the above items ⁇ 1> to ⁇ 5>, wherein at least the components (A) and (B) and (D) organoaluminum previously contacted are used as the polymerization catalyst.
  • ⁇ 7> The above-mentioned polymerization catalyst, wherein at least the component (A), the component (B), the component (C) and the component (D) are previously contacted with each other, is used as the polymerization catalyst.
  • ⁇ 8> An ⁇ -olefin polymer produced by the method according to any one of ⁇ 1> to ⁇ 7>.
  • a low molecular weight and high melting point ⁇ -olefin having an excellent balance between the molecular weight and the melting point, a weight average molecular weight of 5000 or less, and a melting point controlled in the range of 25 to 120 ° C.
  • a polymer can be produced efficiently.
  • the method for producing an ⁇ -olefin polymer of the present invention comprises (A) a meso type transition metal compound represented by the following general formula (I), and (B) (B-1) a meso type transition of the component (A). In the presence of a compound capable of reacting with a metal compound or a derivative thereof to form an ionic complex, and (B-2) a polymerization catalyst containing at least one selected from aluminoxane, (C) a carbon number of 16 to 40 The ⁇ -olefin is polymerized.
  • M represents a metal element of Groups 3 to 10 of the periodic table.
  • X represents a ⁇ -bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different.
  • a 1 and A 2 each independently represent a crosslinking group selected from a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group. , A 1 and A 2 are different from each other.
  • E is a group represented by the following formula (II), and two E may be the same or different from each other.
  • R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group, and a heteroatom-containing group.
  • P represents an integer of 0 to 5.
  • R ⁇ 1 > exists, they may mutually be same or different.
  • the bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- .
  • the molecular weight and the melting point are increased.
  • an ⁇ -olefin polymer having a low molecular weight and a high melting point which has an excellent balance with the above, a weight average molecular weight of 5,000 or less and a melting point controlled in the range of 25 to 120 ° C. can be efficiently produced.
  • the specific meso type transition metal compound represented by the general formula (I) is disclosed in JP-A-2002-308893.
  • the invention disclosed in the publication is aimed at obtaining an olefin polymer having a high molecular weight and a narrow molecular weight distribution, and does not describe the production of an ⁇ -olefin polymer having a low molecular weight and a high melting point.
  • the olefin used as the monomer ethylene or ⁇ -olefin having 3 to 20 carbon atoms is generally described, but only polymerization of ethylene is described in the examples.
  • the present inventors used a specific meso-type transition metal compound represented by the above general formula (I) as a catalyst, and polymerized a higher ⁇ -olefin having 16 to 40 carbon atoms as a monomer.
  • the ligand is connected by two bridging groups A 1 and A 2 and is represented by A 1 and A 2. It was found that the difference in the structure of the two cross-linking groups makes it possible to control the steric restriction during the insertion reaction of the monomer into the catalyst and to produce an ⁇ -olefin polymer having a low molecular weight and a high melting point.
  • the present invention has been completed based on such findings.
  • the raw ⁇ -olefin used in the method for producing an ⁇ -olefin polymer of the present invention is an ⁇ -olefin having 16 to 40 carbon atoms.
  • the number of carbon atoms of the ⁇ -olefin is preferably 20 to 40, more preferably 22 to 40, and more preferably 25 to 35 from the viewpoint of controlling the melting point of the polymer and the olefin polymerization activity.
  • the ⁇ -olefin has a larger carbon number.
  • the polymer complex represented by the above formula (I) is used and an ⁇ -olefin having a large carbon number is used as a raw material. It is important to use as The production method of the present invention aims to reduce the molecular weight while maintaining high melting point while maintaining high melting point, and this effect is more prominent particularly in the case of 22 to 40 carbon atoms.
  • ⁇ -olefin having 16 to 40 carbon atoms include 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icocene, 1-docosene, 1-hexacosene, 1-octacosene and 1-tria.
  • Examples include content, 1-dotria content, 1-tetratria content, 1-hexatria content, 1-octatria content and 1-tetra content.
  • these ⁇ -olefins may be used alone or in combination of two or more.
  • the polymerization catalyst used in the method for producing an ⁇ -olefin polymer of the present invention includes (A) a meso-type transition metal compound represented by the general formula (I), and (B) (B-1) (A And (B-2) a compound capable of forming an ionic complex by reacting with the component meso transition metal compound or a derivative thereof, and (B-2) containing at least one selected from aluminoxane.
  • the meso-type transition metal compound refers to a transition metal compound in which two bridging groups bridge two Es in a bonding mode of (1, 1 ′) (2, 2 ′).
  • M represents a metal element of Groups 3 to 10 of the periodic table, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium, and lanthanoid series. Metal etc. are mentioned.
  • a metal element belonging to Group 4 of the periodic table is preferable from the viewpoint of olefin polymerization activity and the like, and titanium, zirconium and hafnium are preferable.
  • X represents a ⁇ -bonded ligand, and specific examples thereof include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number. 6-20 aryloxy groups, amide groups having 1-20 carbon atoms, silicon-containing groups having 1-20 carbon atoms, phosphide groups having 1-20 carbon atoms, sulfide groups having 1-20 carbon atoms, 1-20 carbon atoms And the acyl group.
  • q is an integer of 1 to 5 and represents [(M valence) -2]. When q is 2 or more, a plurality of Xs may be the same or different.
  • halogen atom examples include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, cyclohexyl group and octyl group; alkenyl groups such as vinyl group, propenyl group and cyclohexenyl group An arylalkyl group such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group, anthracenyl group Group, aryl group such as phenanthonyl group
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, phenylmethoxy group, and phenylethoxy group.
  • aryloxy group having 6 to 20 carbon atoms examples include a phenoxy group, a methylphenoxy group, and a dimethylphenoxy group.
  • Examples of the amide group having 1 to 20 carbon atoms include a dimethylamide group, a diethylamide group, a dipropylamide group, a dibutylamide group, a dicyclohexylamide group, and a methylethylamide group; a divinylamide group, a dipropenylamide group, Examples include alkenylamide groups such as dicyclohexenylamide groups; arylalkylamide groups such as dibenzylamide groups, phenylethylamide groups, and phenylpropylamide groups; arylamide groups such as diphenylamide groups and dinaphthylamide groups.
  • Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl such as tripropylsilyl group, dimethyl (t-butyl) silyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group, trinaphthylsilyl group, etc.
  • monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group
  • dihydrocarbon-substituted silyl groups such as
  • a hydrocarbon-substituted silyl ether group such as a trimethylsilyl ether group; a silicon-substituted alkyl group such as a trimethylsilylmethyl group; a silicon-substituted aryl group such as a trimethylsilylphenyl group; a dimethylhydrosilyl group and a methyldihydrosilyl group;
  • phosphide group having 1 to 20 carbon atoms include dimethyl phosphide group, methylphenyl phosphide group, diphenyl phosphide group, dicyclohexyl phosphide group and dibenzyl phosphide group.
  • Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, E
  • acyl group having 1 to 20 carbon atoms examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, stearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
  • Y represents a Lewis base, and specific examples thereof include amines, ethers, phosphines, and thioethers.
  • r represents an integer of 0 to 3, and when r is 2 or 3, a plurality of Y may be the same or different.
  • the amine include amines having 1 to 20 carbon atoms, specifically, methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dicyclohexyl.
  • Alkylamines such as amine, methylethylamine, trimethylamine, triethylamine, tri-n-butylamine; alkenylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine; phenylmethylamine, phenylethylamine Arylalkylamines such as phenylpropylamine; arylamines such as diphenylamine and dinaphthylamine; or ammonia, aniline, N Methylaniline, diphenylamine, N, N-dimethylaniline, methyldiphenylamine, pyridine and p- bromo -N, N-dimethylaniline.
  • ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl Aliphatic hybrid ether compounds such as ether, methyl-n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl-n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether Aliphatic unsaturated ether compounds such as methyl vinyl ether, methyl allyl ether, ethyl vinyl ether, and eth
  • phosphine examples include phosphine having 1 to 20 carbon atoms. Specifically, monohydrocarbon-substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; Trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, trihexylphosphine, tricyclohexylphosphine, and tri
  • E is a group represented by the formula (II), and two E may be the same or different from each other.
  • R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group and a heteroatom-containing group
  • p represents an integer of 0 to 5.
  • R ⁇ 1 > exists, they may mutually be same or different.
  • the bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- .
  • R 1 is bonded to the 3rd to 7th positions of the indenyl group, and preferably bonded to the 3rd position of the indenyl group.
  • the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms are the same as those described above as specific examples of X.
  • Specific examples of the halogen-containing hydrocarbon group having 1 to 4 carbon atoms include chloromethyl group, bromomethyl group, bromoethyl group, p-fluorophenyl group, p-fluorophenylmethyl group, 3,5-difluorophenyl group, pentachlorophenyl.
  • silicon-containing groups include monohydrocarbon-substituted silyl groups such as methylsilyl and phenylsilyl groups; dihydrocarbon-substituted silyl groups such as dimethylsilyl and diphenylsilyl groups; trimethylsilyl, triethylsilyl, and tripropylsilyl Groups, trihydrocarbon-substituted silyl groups such as dimethyl (t-butyl) silyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group, trinaphthylsilyl group; Examples include hydrocarbon-substituted silyl ether groups such as methylsilyl and phenylsilyl groups; dihydrocarbon-substituted silyl groups such as dimethylsilyl and diphenylsilyl groups; tri
  • a 1 and A 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group.
  • a crosslinking group selected from a group is shown, and A 1 and A 2 are different from each other.
  • two substituted or unsubstituted indenyl groups E are double-bridged.
  • a 1 and A 2 are different from each other, for example, in the case of a hydrocarbon group, means that (—CH 2 —) and (—CH 2 —CH 2 —) are different from each other.
  • the bridging group represented by -A 1 - is preferably a group represented by the following general formula (III-1), and the bridging group represented by -A 2- is A group represented by general formula (III-2) is preferable.
  • B 1 and B 2 each independently represent a carbon atom, a silicon atom, a germanium atom or a tin atom
  • R 2a , R 3a , R 2b and R 3b are , Each independently containing a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, and an amine having 1 to 20 carbon atoms Represents a group or a halogen-containing group having 1 to 20 carbon atoms.
  • m and n are each independently an integer of 1 or more, and m + n is 3 or more.
  • B 1 and B 2 are preferably the same, m and n are preferably different from each other, and B 1 and B 2 are a carbon atom or a silicon atom. It is preferable.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms and the aromatic hydrocarbon group having 6 to 20 carbon atoms include alkyl groups, alkenyl groups, which are the hydrocarbon groups having 1 to 20 carbon atoms described above as specific examples of X, The same thing as an arylalkyl group and an aryl group is mentioned.
  • Examples of the oxygen atom-containing group having 1 to 20 carbon atoms include those similar to the alkoxy group having 1 to 20 carbon atoms and the aryloxy group having 6 to 20 carbon atoms described above as specific examples of X.
  • Examples of the amine-containing group having 1 to 20 carbon atoms include monovalent groups obtained by removing one hydrogen atom from the above-described amines having 1 to 20 carbon atoms as a specific example of Y.
  • Examples of the halogen-containing group having 1 to 20 carbon atoms are the same as those described above as specific examples of R 1 .
  • crosslinking group represented by the general formulas (III-1) and (III-2) include an ethylene group, a tetramethylethylene group, a 1,2-cyclohexylene group, a tetramethyldisylylene group, and dimethylsilylene.
  • examples include a methylene group, dimethylsilylene isopropylidene group, and tetramethyldiggermylene group.
  • ethylene group, dimethylsilylene group and tetramethyldisilene group are preferred from the viewpoint of higher polymerization activity, and more specifically, the above general formulas (III-1) and (III-2) ) Is preferably a dimethylsilylene group and the other is a tetramethyldisilylene group.
  • a transition metal compound having a double-bridged bisindenyl derivative represented by the following general formula (IV) as a ligand is preferable.
  • a 1 , A 2 , R 1 , M, X, Y, q, and r are A 1 , A 2 , R 1 , M, X, Y, in the general formula (I). Same as q and r.
  • meso-type transition metal compound represented by the general formula (I) include (1,1′-dimethylsilylene) (2,2′-tetramethyldisilylene) bis (indenyl) zirconium dichloride, (1 , 1'-dimethylsilylene) (2,2'-tetramethyldisiylene) bis (3-methylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-tetramethyldisilene) bis (3-Trimethylsilylmethylindenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′-ethylene) bis (indenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′- Ethylene) bis (3-methylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'- Tylene) bis (3-trimethylsily
  • a method for synthesizing the transition metal compound represented by the general formula (I) is described in, for example, “J. Organomet. Chem.”, Volume 369, Page 359 (1989) ”. It can be synthesized by the method described. That is, it can be synthesized by a reaction between a corresponding substituted cycloalkenyl anion and a metal halide represented by M in the general formula (I).
  • any compound that can form an ionic complex by reacting with the transition metal compound of the component (A) can be used.
  • a compound represented by formula (V) or (VI) can be preferably used. ([L 1 ⁇ R 4 ] k + ) a ([Z] ⁇ ) b (V) ([L 2 ] k + ) a ([Z] ⁇ ) b (VI)
  • L 1 represents a Lewis base.
  • the Lewis base include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, Amines such as trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline, triethylphosphine, triphenylphosphine, diphenylphosphine Phosphines such as tetrahydrothiophene, esters such as ethyl benzoate, nitriles such as acetonitrile and benzonitrile, and the like.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, or an arylalkyl group. Specific examples of R 4 include a hydrogen atom, a methyl group, an ethyl group, a benzyl group, and a trityl group.
  • [Z] ⁇ is a non-coordinating anion, and examples of [Z] ⁇ include [Z 1 ] ⁇ and [Z 2 ] ⁇ shown below.
  • [Z 1 ] ⁇ represents an anion having a plurality of groups bonded to the element, ie, [M 1 G 1 G 2 ... G f ] ⁇ .
  • M 1 represents a group 5 to 15 element of the periodic table, preferably a group 13 to 15 element of the periodic table.
  • Specific examples of M 1 include B, Al, Si, P, As and Sb, and B and Al are preferable.
  • G 1 to G f are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, respectively.
  • Two or more of G 1 to G f may form a ring.
  • f represents an integer of [(valence of central metal M 1 ) +1].
  • G 1 to G f include dimethylamino group and diethylamino group as dialkylamino group, methoxy group, ethoxy group, n-butoxy group, phenoxy group and the like as alkoxy group or aryloxy group, and methyl group as hydrocarbon group.
  • [Z 2 ] ⁇ is a Bronsted acid alone having a logarithm (pKa) of the reciprocal of the acid dissociation constant or a conjugate base of a combination of Bronsted acid and Lewis acid, or an acid generally defined as a super strong acid.
  • the conjugate salt of In addition, a Lewis base may be coordinated.
  • [Z 2 ] ⁇ include trifluoromethanesulfonate anion (CF 3 SO 3 ) ⁇ , bis (trifluoromethanesulfonyl) methyl anion, bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide, Perchlorate anion (ClO 4 ) ⁇ , trifluoroacetate anion (CF 3 CO 2 ) ⁇ , hexafluoroantimony anion (SbF 6 ) ⁇ , fluorosulfonate anion (FSO 3 ) ⁇ , chlorosulfonate anion (ClSO 3 ) -, fluorosulfonic acid anion / antimony pentafluoride (FSO 3 / SbF 5) - , fluorosulfonic acid anion / 5- fluoride arsenic (FSO 3 / AsF 5)
  • L 2 represents M 2 , R 5 R 6 M 3 , R 7 3 C or R 8 M 3 .
  • M 2 includes elements in groups 1 to 3, 11 to 13, and 17 of the periodic table, and M 3 represents elements in groups 7 to 12 of the periodic table.
  • Specific examples of M 2 include Li, Na, K, Ag, Cu, Br, I and I 3.
  • Specific examples of M 3 include Mn, Fe, Co, Ni and Zn. Can be mentioned.
  • R 5 and R 6 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a fluorenyl group, or a substituted fluorenyl group.
  • R 5 and R 6 include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
  • R 7 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group. Specific examples of R 7 include a phenyl group, a p-tolyl group, and a p-methoxyphenyl group.
  • R 8 represents a macrocyclic ligand, and specific examples thereof include tetraphenylporphine and phthalocyanine.
  • the compound (B-1) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl tetraphenylborate (tri-n -Butyl) ammonium, benzyl (tri-n-butyl) ammonium tetraphenylborate, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, tetraphenyl Benzylpyridinium borate, methyl tetraphenylborate (2-cyanopyridinium), tetrakis (pentafluor
  • Examples of the aluminoxane of the component (B-2) in the component (B) include a chain aluminoxane represented by the following general formula (VII) and a cyclic aluminoxane represented by the following general formula (VIII).
  • R 9 represents a hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group or an arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms or a halogen atom, and w represents an average degree of polymerization, Usually, it is an integer of 2 to 50, preferably 2 to 40.
  • Each R 9 may be the same or different.
  • aluminoxane represented by the general formula (VII) or (VIII) include methylaluminoxane, ethylaluminoxane, and isobutylaluminoxane.
  • the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means thereof is not particularly limited and may be reacted according to a known method.
  • the aluminoxane may be insoluble in toluene. These aluminoxanes may be used alone or in combination of two or more.
  • the use ratio of the component (A) and the component (B) in the polymerization catalyst used in the production method of the present invention is preferably a molar ratio when the compound (B-1) is used as the component (B).
  • the range is from 10: 1 to 1: 100, more preferably from 2: 1 to 1:10. If it exists in this range, the catalyst cost per unit mass polymer will not become so high, and it is practical.
  • the ratio of the component (A) to the component (B-2) is preferably 1: 1 to 1: 1000000, more preferably 1:10 in terms of molar ratio. It is in the range of ⁇ 1: 10000. If it exists in this range, the catalyst cost per unit mass polymer will not become so high, and it is practical.
  • the catalyst component (B) the compound of the component (B-1) and / or the compound of the component (B-2) can be used alone or in combination of two or more.
  • an organoaluminum compound can be used as the component (D) in addition to the components (A) and (B).
  • the organoaluminum compound of the component (D) a compound represented by the following general formula (IX) can be used.
  • R 10 v AlJ 3-v (IX) [Wherein R 10 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. It is an integer. ]
  • Specific examples of the compound represented by the general formula (IX) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like.
  • an organoaluminum compound to which a hydrocarbon group having 4 or more carbon atoms is bonded is preferable from the viewpoint of excellent high-temperature stability, and a hydrocarbon group having 4 to 8 carbon atoms is more preferable from this viewpoint. More preferably, when the reaction temperature is 100 ° C. or higher, a hydrocarbon group having 6 to 8 carbon atoms is more preferable.
  • the organoaluminum compound may be used singly or in combination of two or more.
  • the amount of organoaluminum used as component (D) is preferably 1: 1 to 1: 10000, more preferably 1: 5 to 1: 2000, and still more preferably 1 in terms of the molar ratio of component (A) to component (D). : The range is 10 to 1: 1000.
  • the polymerization activity per transition metal can be improved.
  • (A) :( D) is in the range of 1: 1 to 1: 10000, the balance between the effect of addition of component (D) and economy is good, and the resulting ⁇ -olefin polymer has a good balance. There is no fear of a large amount of aluminum.
  • At least one of the catalyst components can be supported on a suitable carrier and used.
  • the type of the carrier is not particularly limited, and any of inorganic oxide carriers, other inorganic carriers, and organic carriers can be used. In particular, inorganic oxide carriers or other inorganic carriers are preferable.
  • the inorganic oxide carrier examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , Fe 2 O 3 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof.
  • examples thereof include silica alumina, zeolite, ferrite, glass fiber and the like. Of these, SiO 2 and Al 2 O 3 are particularly preferable.
  • the inorganic oxide carrier may contain a small amount of carbonate, nitrate, sulfate and the like.
  • a magnesium compound represented by the general formula MgR 11 x X 1 y typified by MgCl 2 , Mg (OC 2 H 5 ) 2 or the like, a complex salt thereof, or the like can be given.
  • R 11 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms
  • X 1 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms
  • x is 0 to 2
  • y is 0 to 2
  • x + y 2.
  • Each R 11 and each X 1 may be the same or different.
  • the organic carrier examples include polymers such as polystyrene, styrene-divinylbenzene copolymer, polyethylene, poly 1-butene, substituted polystyrene, polyarylate, starch, carbon and the like.
  • the carrier for the polymerization catalyst used in the present invention MgCl 2 , MgCl (OC 2 H 5 ), Mg (OC 2 H 5 ) 2 , SiO 2 , Al 2 O 3 and the like are preferable.
  • the properties of the carrier vary depending on the type and production method, but the average particle size is usually 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the specific surface area of the carrier is usually 1 to 1000 m 2 / g, preferably 50 to 500 m 2 / g, and the pore volume is usually 0.1 to 5 cm 3 / g, preferably 0.3 to 3 cm 3 / g. is there. When either the specific surface area or the pore volume deviates from the above range, the catalytic activity may decrease.
  • the specific surface area and pore volume can be determined, for example, from the volume of nitrogen gas adsorbed according to the BET method [J. Am. Chem. Soc. , 60, 309 (1983)].
  • the carrier is an inorganic oxide carrier, it is usually used by firing at 150 to 1000 ° C., preferably 200 to 800 ° C.
  • at least one catalyst component is supported on the carrier, it is preferable to support at least one of the component (A) and the component (B), preferably both the component (A) and the component (B).
  • the method for supporting at least one of the component (A) and the component (B) on the carrier is not particularly limited. For example, (1) at least one of the component (A) and the component (B) is mixed with the carrier.
  • Method (2) A method in which a support is treated with an organoaluminum compound or a halogen-containing silicon compound and then mixed with at least one of the component (A) and the component (B) in an inert solvent, (3) the support and (A) Method of reacting component and / or component (B) with organoaluminum compound or halogen-containing silicon compound, (4) (B) component or (A) after (A) component or (B) component is supported on a carrier ) A method of mixing with the component, (5) a method of mixing the contact reaction product of the component (A) with the component (B) with the carrier, and (6) a carrier during the contact reaction of the component (A) with the component (B). Use a method to coexist Rukoto can.
  • an organoaluminum compound as the component (C) can also be added.
  • a catalyst can be produced
  • the component (A) and the component (B), a carrier, and if necessary, the organoaluminum compound of the component (D) are added, and an olefin such as ethylene is added in an amount of 0.1 to 2 MPa (Gauge), and ⁇ 20
  • the ratio of the component (B-1) to the support used in the catalyst used in the present invention is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 by mass ratio.
  • the use ratio of the component (B-2) to the carrier is preferably 1: 0.5 to 1: 1000, more preferably 1: 1 to 1:50 by mass ratio.
  • carrier is in the said range by mass ratio.
  • the ratio of the component (A) to the carrier used is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 in terms of mass ratio.
  • the average particle diameter of the polymerization catalyst thus prepared is usually 2 to 200 ⁇ m, preferably 10 to 150 ⁇ m, particularly preferably 20 to 100 ⁇ m, and the specific surface area is usually 20 to 1000 m 2 / g, preferably 50-500 m 2 / g. If the average particle size is less than 2 ⁇ m, fine powder in the polymer may increase, and if it exceeds 200 ⁇ m, coarse particles in the polymer may increase.
  • the activity may decrease, and when it exceeds 1000 m 2 / g, the bulk density of the polymer may decrease.
  • the amount of transition metal in 100 g of the support is usually 0.05 to 10 g, particularly preferably 0.1 to 2 g. If the amount of transition metal is outside the above range, the activity may be lowered. In this way, a polymer having an industrially advantageous high bulk density and an excellent particle size distribution can be obtained by supporting it on a carrier.
  • the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method may be used.
  • a polymerization method is particularly preferred.
  • the polymerization temperature is usually 0 to 200 ° C., more preferably 20 to 200 ° C., particularly preferably 70 to 200 ° C.
  • the ratio of the catalyst to the reaction raw material is preferably from 1 to 100 million, more preferably from 1 to 1000, as the raw material monomer / the component (A) (molar ratio).
  • the polymerization time is usually 5 minutes to 30 hours, preferably 15 minutes to 25 hours.
  • the hydrogen pressure is usually 0 to 10 MPa (Gauge).
  • the hydrogen pressure is preferably from 0.1 to 5.0 MPa (Gauge), and more preferably from 0.1 to 1.0 MPa (Gauge).
  • the polymerization activity improves as the hydrogenation amount increases. However, even if the amount exceeds 10 MPa (Gauge) or more, there is little influence on the activity, and conversely, problems such as enlargement of production facilities occur.
  • a polymerization solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and decalin, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, aliphatics such as pentane, hexane, heptane and octane Hydrocarbons, halogenated hydrocarbons such as chloroform and dichloromethane can be used. These solvents may be used alone or in combination of two or more. Moreover, it can carry out without a solvent depending on the polymerization method.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and decalin
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane
  • aliphatics such as pentane, hexane
  • a polymerization catalyst may be prepared by performing preliminary polymerization.
  • the prepolymerization can be performed, for example, by bringing a small amount of olefin into contact with the catalyst component, but the method is not particularly limited, and a known method can be used.
  • the olefin used in the prepolymerization is not particularly limited, and examples thereof include an ⁇ -olefin having 3 to 18 carbon atoms, or a mixture thereof. The same as the ⁇ -olefin used as a raw material in the polymerization (C) It is advantageous to use an ⁇ -olefin having 16 to 40 carbon atoms as a component.
  • the polymerization catalyst is prepared by previously contacting the components (A), (B) and (C), or the components (A), (B), (C) and Examples include preparing a polymerization catalyst by bringing the component (D) into contact in advance.
  • the prepolymerization temperature is usually ⁇ 20 to 200 ° C., preferably ⁇ 10 to 130 ° C., more preferably 0 to 80 ° C.
  • aliphatic hydrocarbons, aromatic hydrocarbons, monomers and the like can be used as solvents.
  • the intrinsic viscosity [ ⁇ ] (measured in 135 ° C.
  • the degree of polymerization tends to decrease, and when a monomer having a small carbon number is used, the degree of polymerization tends to increase.
  • the ⁇ -olefin polymer obtained by the production method of the present invention has a weight average molecular weight (Mw) of 5000 or less and a melting point (Tm) in the range of 25 to 120 ° C.
  • the ⁇ -olefin polymer of the present invention has a melting component amount of ( ⁇ -olefin polymer melting point ⁇ 20) ° C. of 12% or less, or a dimer component content of 10% by mass or less.
  • it can be controlled by the manufacturing method of the present invention described above.
  • the weight average molecular weight of the ⁇ -olefin polymer obtained by the production method of the present invention is 5000 or less, preferably 1000 to 5000, more preferably 3000 to 4500.
  • a low molecular weight that is, low viscosity
  • the weight average molecular weight is 5000 or less, such a function as a wax is satisfied. Fluidity is obtained.
  • the weight average molecular weight is 1000 or more, it has a property that is distinguished from a monomer that is a liquid.
  • the weight average molecular weight in the present invention is a weight average molecular weight in terms of polystyrene measured by the gel permeation chromatography (GPC) method using the apparatus and conditions described in the examples.
  • the melting point (Tm) of the ⁇ -olefin polymer obtained by the production method of the present invention is in the range of 25 to 120 ° C., and the required range varies depending on the use. ° C, more preferably 60 to 80 ° C, still more preferably 70 to 80 ° C.
  • the melting point (Tm) of the ⁇ -olefin polymer needs to be set to an appropriate melting point according to various uses such as inks, paints, emulsions, and toner release agents.
  • Tm melting point
  • storage durability at 55 ° C. is required from the viewpoint of toner storage and storage in a warehouse, and the amount of a component that melts at a temperature of 55 ° C. or less in an ⁇ -olefin polymer (55 When the amount of the melting component at 0 ° C. or less is increased, toner aggregation occurs and the storage durability is poor.
  • the crystalline ⁇ -olefin polymer obtained by using a specific metallocene catalyst has a narrow molecular weight distribution and is a sharp melt, so that the melting point is preferably 50 ° C. or higher, and if the melting point is 70 ° C. or higher.
  • the amount of the melting component at 55 ° C. or less in the ⁇ -olefin polymer is remarkably reduced, and the storage durability is excellent.
  • a low-temperature melting component amount will reduce significantly if melting
  • a component that melts at a temperature of 20 ° C. or less from the melting point of the ⁇ -olefin polymer is defined as a “low-temperature melting component”, and the total amount of heat absorbed when the entire ⁇ -olefin polymer melts is defined.
  • the ratio of the endothermic amount of the low-temperature melting component is defined as “low-temperature melting component amount (%)”, which is indicated as “(Tm-20) ° C. melting component amount (%)”.
  • Tm represents the melting point of the ⁇ -olefin polymer.
  • the amount of the melting component at (Tm-20) ° C. in the ⁇ -olefin polymer of the present invention is preferably 12% or less, more preferably 10% or less, still more preferably 7% or less.
  • the small amount of low-temperature melting component in the ⁇ -olefin polymer means that the ⁇ -olefin polymer has a uniform crystal size and few crystal components that melt to near the melting point, that is, high temperature storage durability.
  • the material is excellent and does not cause problems such as stickiness to the vicinity of the melting point.
  • the amount of the low-temperature melting component can be reduced to 12% or less, and the amount of the low-temperature melting component can be reduced by using a specific catalyst or adjusting the polymerization conditions.
  • the melting component amount of ( ⁇ -olefin polymer melting point ⁇ 20) ° C. in the ⁇ -olefin polymer is calculated from the endothermic peak area in the DSC chart by the following formula.
  • (Tm ⁇ 20) Melting component amount at% (%) ⁇ H (Tm ⁇ 20) / ⁇ H (whole) ⁇ 100
  • Tm represents the melting point of the ⁇ -olefin polymer.
  • ⁇ H (Tm-20) indicates the amount of heat absorbed by melting to “(Tm-20) ° C.” at the endothermic peak of the DSC chart, and ⁇ H (overall) indicates the amount of heat of the entire endothermic peak in the DSC chart.
  • the proportion of low isomers such as 5-6 mers increases, and the amount of dimer components in particular among the low isomers is increased. It is considered that the melting point is lowered by increasing the amount of.
  • the weight average molecular weight is 5000 or less, the amount of dimer component is small, and the decrease in melting point and the increase in low-temperature melting component amount can be suppressed.
  • An ⁇ -olefin polymer having a high melting point can be produced efficiently.
  • the content of the dimer component in the ⁇ -olefin polymer of the present invention is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less. Content of said dimer can be calculated
  • GC gas chromatography
  • the content of the dimer component can be 10% by mass or less, and the content of the dimer component can be reduced by using a specific catalyst or adjusting the polymerization conditions. be able to.
  • DSC measurement Using a differential scanning calorimeter (manufactured by Perkin Elmer, trade name: DSC-7), 10 mg of a sample is held at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated to 120 ° C. at 10 ° C./min. The peak end of the endothermic peak observed on the highest temperature side of the melting endothermic curve obtained as described above was taken as the melting point (Tm). In addition, the peak width at 50% height of the endothermic peak when the melting point was measured was defined as the half width.
  • the amount of the melting component of 55 ° C. or less in the ⁇ -olefin polymer obtained by polymerizing the mixture of ⁇ -olefins having 26 and 28 carbon atoms is the area of the portion of 55 ° C. or less in the endothermic peak of the DSC chart.
  • the amount of the melting component of ( ⁇ -olefin polymer melting point ⁇ 20) ° C. in the ⁇ -olefin polymer was calculated from the endothermic peak area in the DSC chart by the following formula.
  • (Tm ⁇ 20) Melting component amount at% (%) ⁇ H (Tm ⁇ 20) / ⁇ H (whole) ⁇ 100
  • Tm represents the melting point of the ⁇ -olefin polymer.
  • ⁇ H (Tm-20) indicates the amount of heat absorbed by melting to “(Tm-20) ° C.” at the endothermic peak of the DSC chart
  • ⁇ H (overall) indicates the amount of heat of the entire endothermic peak in the DSC chart.
  • Example 1 First, in the same manner as in Example 2 described in JP-A No. 2002-308893, (1,1′-tetramethyldisilene) (2,2′-dimethylsilylene) bis (indenyl) zirconium dichloride (hereinafter, “Complex (1)”) was synthesized.
  • Complex (1) (1,1′-tetramethyldisilene) (2,2′-dimethylsilylene) bis (indenyl) zirconium dichloride
  • Examples 2-4 An ⁇ -olefin polymer was produced in the same manner as in Example 1 except that the polymerization temperature was changed as shown in Table 1 in Example 1.
  • Example 2 the catalyst was prepared from (1,1′-Me 2 SiSiMe 2 ) (2,2 ′-(i-Pr) 2 NB) bis (described in Preparation Example 1 of WO 08/102729). Indenyl) Zirconium dichloride (hereinafter referred to as “complex (2)”) was prepared in the same manner as in Example 1 except that the hydrogen pressure and polymerization time were changed as shown in Table 1. did.
  • Example 5 In a 1 L autoclave that had been dried by heating, 200 ml of a mixture of ⁇ -olefins having 26 and 28 carbon atoms (C26: 56.9% by mass, C28: 39.4% by mass), 0.5 mmol of triisobutylaluminum, complex (1 ) 1 ⁇ mol and 4 ⁇ mol of dimethylanilinium tetrakispentafluorophenylborate were added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was carried out at a polymerization temperature of 150 ° C. for 60 minutes. After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 128 g of an ⁇ -olefin polymer.
  • Example 6 In a 1 L autoclave that had been heat-dried, 400 ml of a mixture of ⁇ -olefins having 20, 22 and 24 carbon atoms (C20: 42% by mass, C22: 36% by mass, C24: 21% by mass), 0.5 mmol of triisobutylaluminum Then, 1 ⁇ mol of complex (1) and 4 ⁇ mol of dimethylanilinium tetrakispentafluorophenyl borate were added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was performed at a polymerization temperature of 110 ° C. for 60 minutes. After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 185 g of an ⁇ -olefin polymer.
  • a mixture of ⁇ -olefins having 20, 22 and 24 carbon atoms C20: 42% by mass, C22: 36% by mass, C24: 21% by mass
  • Example 7 In a 1 L autoclave that had been dried by heating, 400 ml of a mixture of ⁇ -olefins having 16 and 18 carbon atoms (C16: 10% by mass, C18: 90% by mass), 0.5 mmol of triisobutylaluminum, 1 ⁇ mol of complex (1), dimethyl Anilinium tetrakispentafluorophenylborate (4 ⁇ mol) was added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was carried out at a polymerization temperature of 110 ° C. for 60 minutes. After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 205 g of an ⁇ -olefin polymer.
  • Comparative Example 3 In a heat-dried 1 liter autoclave, 400 ml of a mixture of ⁇ -olefins having 20, 22 and 24 carbon atoms (C20: 42% by mass, C22: 36% by mass, C24: 21% by mass), 1 mmol of triisobutylaluminum, complex ( 3) 1 ⁇ mol and tetrakispentafluorophenyl borate 8 ⁇ mol were added, and hydrogen 0.15 MPa (G) was further introduced. Polymerization was conducted for 1 hour at 110 ° C. with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 90 g of an ⁇ -olefin oligomer.
  • Comparative Example 4 In a heat-dried 1 liter autoclave, 400 ml of a mixture of ⁇ -olefins having 26 and 28 carbon atoms (C26: 56.9% by mass, C28: 39.4% by mass), 1 mmol of triisobutylaluminum, 1 ⁇ mol of complex (3), Tetrakis pentafluorophenyl borate (8 ⁇ mol) was added, and hydrogen (0.15 MPa (G)) was further introduced. Polymerization was conducted for 1 hour at 120 ° C. with stirring. After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 80 g of an ⁇ -olefin oligomer.
  • Comparative Example 1 the amount of melting component at 55 ° C. or less, which is considered as a factor for lowering the melting point, is as high as 19.8%, the amount of melting component at (Tm-20) ° C. is also high as 14.3%, and ⁇ -olefin weight The melting point of the coalescence was less than 70 ° C. The yield was as low as 37% by mass. Similarly, in Comparative Examples 2 to 4, the amount of melting components at (Tm-20) ° C. was large and the yield was low. In contrast, in Examples 1 to 4, low molecular weight and high melting point ⁇ -olefin polymers having a weight average molecular weight of 5000 or less and a melting point controlled in the range of 70 to 120 ° C. were obtained.
  • Example 5 Although the weight average molecular weight was as low as 2500, the melting point was as high as 70 ° C. or higher. In Example 6, the melting point was higher than that in Comparative Example 3 having the same number of monomer carbons, although the weight average molecular weight was low. Generally, when the number of monomer carbon atoms is small, the melting point of the polymer tends to decrease. However, comparing Comparative Example 3 using 18 carbon atoms and Example 7 using 16 or 18 carbon monomers, Example 7 yielded an ⁇ -olefin polymer having a lower molecular weight and a higher melting point. It was the result.
  • the ⁇ -olefin polymer produced by the method of the present invention has a low molecular weight and a high melting point, and is useful for various applications such as inks, paints, emulsions, and toner release agents.

Abstract

A method for producing an α-olefin polymer, characterized by comprising polymerizing (C) an α-olefin having 16 to 40 carbon atoms in the presence of (A) a specific meso-form transition metal compound and (B) a polymerization catalyst comprising (B-1) a compound capable of reacting with the component (A), i.e., the meso-form transition metal compound, or a derivative thereof to form an ionic complex and/or (B-2) aluminoxane.

Description

α-オレフィン重合体の製造方法Method for producing α-olefin polymer
 本発明は、α-オレフィン重合体の製造方法に関する。 The present invention relates to a method for producing an α-olefin polymer.
 炭化水素系ワックスは、インキ、塗料、エマルジョン、トナー用離型剤等の種々の用途に供されている。また、炭化水素系ワックスは上記以外の用途においても用いられ、例えば、樹脂改質剤、粘着剤成分、接着剤成分、潤滑油成分、有機無機複合材料、蓄熱材、軽油等の燃料油の改質剤、アスファルトの改質剤、高性能ワックス、化粧品等の用途が挙げられる。
 これらの用途で用いられる炭化水素系ワックスに対しては種々の性能が求められ、例えば、取扱いの容易性から低分子量化させること、また、適度な融点(20~120℃)、適度な硬度、および優れた温度応答特性等が挙げられる。しかしながら、分子量を下げると同時に融点が下がる等、所望の水準を同時に達成することは容易ではなかった。
 特許文献1には、ワックス等として好適な重量平均分子量が5000以下であって分子量と融点とのバランスに優れたα-オレフィン重合体を製造することを目的として、ホウ素原子又はリン原子が架橋原子となっている遷移金属化合物を含有する重合用触媒の存在下、炭素数20~40のα-オレフィンを重合させるα-オレフィン重合体の製造方法が開示されている。しかしながら、特にトナー等の用途においては、更なる低分子量かつ高融点の材料が望まれている。
Hydrocarbon waxes are used in various applications such as inks, paints, emulsions, and toner release agents. Hydrocarbon waxes are also used in applications other than those described above, for example, reforming of fuel oils such as resin modifiers, adhesive components, adhesive components, lubricating oil components, organic-inorganic composite materials, heat storage materials, and light oil. Applications include quality agents, asphalt modifiers, high-performance waxes, and cosmetics.
Various performances are required for hydrocarbon waxes used in these applications. For example, low molecular weight can be achieved due to ease of handling, moderate melting point (20 to 120 ° C.), moderate hardness, And excellent temperature response characteristics. However, it has not been easy to achieve the desired level simultaneously, such as decreasing the molecular weight and decreasing the melting point.
Patent Document 1 discloses that a boron atom or a phosphorus atom is a bridging atom for the purpose of producing an α-olefin polymer having a weight average molecular weight of 5,000 or less suitable as a wax and having an excellent balance between the molecular weight and the melting point. A method for producing an α-olefin polymer is disclosed in which an α-olefin having 20 to 40 carbon atoms is polymerized in the presence of a polymerization catalyst containing a transition metal compound. However, in applications such as toners, a material having a further low molecular weight and a high melting point is desired.
国際公開第08/102729号International Publication No. 08/102729
 本発明が解決しようとする課題は、分子量と融点とのバランスに優れ、重量平均分子量が5000以下であり、かつ、融点が25~120℃の範囲に制御された、低分子量かつ高融点のα-オレフィン重合体を効率良く製造する方法を提供することにある。 The problem to be solved by the present invention is a low molecular weight and high melting point α having an excellent balance between the molecular weight and the melting point, a weight average molecular weight of 5,000 or less, and a melting point controlled in the range of 25 to 120 ° C. -To provide a method for efficiently producing an olefin polymer.
 すなわち本発明は、以下のα-オレフィン重合体の製造方法及びそれにより製造されたα-オレフィン重合体を提供するものである。
<1>(A)下記一般式(I)で表されるメソ型遷移金属化合物、並びに(B)(B-1)該(A)成分のメソ型遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物、及び(B-2)アルミノキサンから選ばれる少なくとも一種を含有する重合用触媒の存在下、(C)炭素数16~40のα-オレフィンを重合させることを特徴とする、α-オレフィン重合体の製造方法。
Figure JPOXMLDOC01-appb-C000004
[式(I)中、Mは、周期律表第3~10族の金属元素を示す。Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよい。A1及びA2は、それぞれ独立に炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基及びスズ含有基から選ばれる架橋基を示し、A1及びA2は互いに異なる。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。Eは、下記式(II)で表される基であって、2つのEは互いに同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000005
[式(II)中、R1は、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示し、pは0~5の整数を示す。複数のR1が存在する場合、それらの互いに同一であっても異なっていてもよい。波線で示される結合は、架橋基-A1-及び-A2-との結合を表す。]
<2>前記一般式(I)において、-A1-で表される架橋基が下記一般式(III-1)で表される基であり、-A2-で表される架橋基が下記一般式(III-2)で表される基である、前記<1>に記載のα-オレフィン重合体の製造方法。
Figure JPOXMLDOC01-appb-C000006
[式(III-1)及び(III-2)中、B1及びB2は、それぞれ独立に炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子を表し、R2a、R3a、R2b及びR3bは、それぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20の酸素原子含有基、炭素数1~20のアミン含有基又は炭素数1~20のハロゲン含有基を表す。m及びnはそれぞれ独立に1以上の整数であり、m+nは3以上である。]
<3>前記一般式(III-1)及び(III-2)において、B1及びB2が同一であり、mとnとが互いに異なる、前記<2>に記載のα-オレフィン重合体の製造方法。
<4>前記一般式(III-1)及び(III-2)におけるB1及びB2が炭素原子又はケイ素原子である、前記<2>又は<3>に記載のα-オレフィン重合体の製造方法。
<5>前記一般式(I)におけるMが周期律表第4族の金属元素である、前記<1>~<4>のいずれかに記載のα-オレフィン重合体の製造方法。
<6>前記重合用触媒として、少なくとも前記の(A)成分及び(B)成分、並びに(D)有機アルミニウムを予め接触させたものを使用する、前記<1>~<5>のいずれかに記載のα-オレフィン重合体の製造方法。
<7>前記重合用触媒として、少なくとも前記の(A)成分、(B)成分、(C)成分及び(D)成分を予め接触させたものを使用する、前記<6>に記載のα-オレフィン重合体の製造方法。
<8>前記<1>~<7>のいずれかに記載の方法により製造されたα-オレフィン重合体。
<9>炭素数16~40のα-オレフィンを重合して得られるα-オレフィン重合体であって、(α-オレフィン重合体の融点-20)℃の融解成分量が12%以下である、α-オレフィン重合体。
<10>炭素数16~40のα-オレフィンを重合して得られるα-オレフィン重合体であって、二量体成分の含有量が10質量%以下である、α-オレフィン重合体。
That is, the present invention provides the following method for producing an α-olefin polymer and the α-olefin polymer produced thereby.
<1> (A) a meso-type transition metal compound represented by the following general formula (I), and (B) (B-1) a meso-type transition metal compound of component (A) or a derivative thereof (C) an α-olefin having 16 to 40 carbon atoms is polymerized in the presence of a compound capable of forming an ionic complex and (B-2) a polymerization catalyst containing at least one selected from aluminoxane. A process for producing an α-olefin polymer.
Figure JPOXMLDOC01-appb-C000004
[In the formula (I), M represents a metal element of Groups 3 to 10 of the periodic table. X represents a σ-bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different. A 1 and A 2 each independently represent a crosslinking group selected from a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group. , A 1 and A 2 are different from each other. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3. E is a group represented by the following formula (II), and two E may be the same or different from each other. ]
Figure JPOXMLDOC01-appb-C000005
[In the formula (II), R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group, and a heteroatom-containing group. , P represents an integer of 0 to 5. When several R < 1 > exists, they may mutually be same or different. The bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- . ]
<2> In the general formula (I), the bridging group represented by -A 1- is a group represented by the following general formula (III-1), and the bridging group represented by -A 2- is The method for producing an α-olefin polymer according to the above <1>, which is a group represented by the general formula (III-2).
Figure JPOXMLDOC01-appb-C000006
[In the formulas (III-1) and (III-2), B 1 and B 2 each independently represent a carbon atom, a silicon atom, a germanium atom, or a tin atom, and R 2a , R 3a , R 2b, and R 3b Are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, or an amine having 1 to 20 carbon atoms. And a halogen-containing group having 1 to 20 carbon atoms. m and n are each independently an integer of 1 or more, and m + n is 3 or more. ]
<3> The α-olefin polymer according to <2>, wherein in the general formulas (III-1) and (III-2), B 1 and B 2 are the same and m and n are different from each other. Production method.
<4> Production of α-olefin polymer according to the above <2> or <3>, wherein B 1 and B 2 in the general formulas (III-1) and (III-2) are carbon atoms or silicon atoms Method.
<5> The method for producing an α-olefin polymer according to any one of <1> to <4>, wherein M in the general formula (I) is a metal element belonging to Group 4 of the periodic table.
<6> The catalyst for polymerization according to any one of the above items <1> to <5>, wherein at least the components (A) and (B) and (D) organoaluminum previously contacted are used as the polymerization catalyst. A process for producing the α-olefin polymer as described.
<7> The above-mentioned polymerization catalyst, wherein at least the component (A), the component (B), the component (C) and the component (D) are previously contacted with each other, is used as the polymerization catalyst. A method for producing an olefin polymer.
<8> An α-olefin polymer produced by the method according to any one of <1> to <7>.
<9> An α-olefin polymer obtained by polymerizing an α-olefin having 16 to 40 carbon atoms, wherein the melting component amount at (melting point of α-olefin polymer−20) ° C. is 12% or less. α-olefin polymer.
<10> An α-olefin polymer obtained by polymerizing an α-olefin having 16 to 40 carbon atoms, wherein the content of the dimer component is 10% by mass or less.
 本発明の方法によれば、分子量と融点とのバランスに優れ、重量平均分子量が5000以下であり、かつ、融点が25~120℃の範囲に制御された、低分子量かつ高融点のα-オレフィン重合体を効率良く製造することができる。 According to the method of the present invention, a low molecular weight and high melting point α-olefin having an excellent balance between the molecular weight and the melting point, a weight average molecular weight of 5000 or less, and a melting point controlled in the range of 25 to 120 ° C. A polymer can be produced efficiently.
 本発明のα-オレフィン重合体の製造方法は、(A)下記一般式(I)で表されるメソ型遷移金属化合物、並びに(B)(B-1)該(A)成分のメソ型遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物、及び(B-2)アルミノキサンから選ばれる少なくとも一種を含有する重合用触媒の存在下、(C)炭素数16~40のα-オレフィンを重合させることを特徴とする。
Figure JPOXMLDOC01-appb-C000007
[式(I)中、Mは、周期律表第3~10族の金属元素を示す。Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよい。A1及びA2は、それぞれ独立に炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基及びスズ含有基から選ばれる架橋基を示し、A1及びA2は互いに異なる。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。Eは、下記式(II)で表される基であって、2つのEは互いに同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000008
[式(II)中、R1は、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示し、pは0~5の整数を示す。複数のR1が存在する場合、それらの互いに同一であっても異なっていてもよい。波線で示される結合は、架橋基-A1-及び-A2-との結合を表す。]
The method for producing an α-olefin polymer of the present invention comprises (A) a meso type transition metal compound represented by the following general formula (I), and (B) (B-1) a meso type transition of the component (A). In the presence of a compound capable of reacting with a metal compound or a derivative thereof to form an ionic complex, and (B-2) a polymerization catalyst containing at least one selected from aluminoxane, (C) a carbon number of 16 to 40 The α-olefin is polymerized.
Figure JPOXMLDOC01-appb-C000007
[In the formula (I), M represents a metal element of Groups 3 to 10 of the periodic table. X represents a σ-bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different. A 1 and A 2 each independently represent a crosslinking group selected from a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group. , A 1 and A 2 are different from each other. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3. E is a group represented by the following formula (II), and two E may be the same or different from each other. ]
Figure JPOXMLDOC01-appb-C000008
[In the formula (II), R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group, and a heteroatom-containing group. , P represents an integer of 0 to 5. When several R < 1 > exists, they may mutually be same or different. The bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- . ]
 本発明では、前記一般式(I)で表される特定のメソ型遷移金属化合物を触媒として使用して、炭素数が16~40の高級α-オレフィンをモノマーとして使用することで、分子量と融点とのバランスに優れ、重量平均分子量が5000以下であり、かつ、融点が25~120℃の範囲に制御された、低分子量かつ高融点のα-オレフィン重合体を効率良く製造することができる。
 ここで、前記一般式(I)で表される特定のメソ型遷移金属化合物は、特開2002-308893号公報に開示されている。しかし、同公報に開示された発明は、高分子量で狭い分子量分布をもつオレフィン系重合体を得ることを目的としており、低分子量かつ高融点のα-オレフィン重合体の製造については記載されていない。また、モノマーとして使用するオレフィンとしてはエチレン又は炭素数3~20のα-オレフィンが一般的に記載されているが、実施例にはエチレンの重合しか記載されていない。
 これに対し、本発明者らは、前記一般式(I)で表される特定のメソ型遷移金属化合物を触媒として使用し、炭素数が16~40の高級α-オレフィンをモノマーとして重合させたときに、前記一般式(I)で表される特定のメソ型遷移金属化合物において、配位子が2つの架橋基A1及びA2で連結されており、かつA1及びA2で表される2つの架橋基の構造が異なることで、モノマーの触媒への挿入反応時の立体規制制御が可能となり、低分子量かつ高融点のα-オレフィン重合体を製造することができることを見出した。本発明は、このような知見に基づき完成するに至ったものである。
In the present invention, by using the specific meso-type transition metal compound represented by the general formula (I) as a catalyst and using a higher α-olefin having 16 to 40 carbon atoms as a monomer, the molecular weight and the melting point are increased. Thus, an α-olefin polymer having a low molecular weight and a high melting point, which has an excellent balance with the above, a weight average molecular weight of 5,000 or less and a melting point controlled in the range of 25 to 120 ° C. can be efficiently produced.
Here, the specific meso type transition metal compound represented by the general formula (I) is disclosed in JP-A-2002-308893. However, the invention disclosed in the publication is aimed at obtaining an olefin polymer having a high molecular weight and a narrow molecular weight distribution, and does not describe the production of an α-olefin polymer having a low molecular weight and a high melting point. . As the olefin used as the monomer, ethylene or α-olefin having 3 to 20 carbon atoms is generally described, but only polymerization of ethylene is described in the examples.
In contrast, the present inventors used a specific meso-type transition metal compound represented by the above general formula (I) as a catalyst, and polymerized a higher α-olefin having 16 to 40 carbon atoms as a monomer. Sometimes, in the specific meso-type transition metal compound represented by the general formula (I), the ligand is connected by two bridging groups A 1 and A 2 and is represented by A 1 and A 2. It was found that the difference in the structure of the two cross-linking groups makes it possible to control the steric restriction during the insertion reaction of the monomer into the catalyst and to produce an α-olefin polymer having a low molecular weight and a high melting point. The present invention has been completed based on such findings.
[原料α-オレフィン((C)成分)]
 本発明のα-オレフィン重合体の製造方法に用いられる原料のα-オレフィンは、炭素数16~40のα-オレフィンである。α-オレフィンの炭素数は、重合体の融点を制御する観点及びオレフィン重合活性等の観点から、20~40が好ましく、22~40がより好ましく、25~35がより好ましい。
 より高融点である重合体を製造する場合、α-オレフィンの炭素数は大きい方が好ましい。また、重量平均分子量が5000以下の重合体を製造する場合は、低量体を抑制する必要があるため、前記式(I)で示される重合錯体を用い、炭素数が大きいα-オレフィンを原料として用いることが重要である。
 本発明の製造方法は、高活性で、融点を維持しつつ低分子量化することを目的としており、特に、炭素数22~40において、本効果がより顕著に表れる。
 炭素数16~40のα-オレフィンの具体例としては、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-イコセン、1-ドコセン、1-ヘキサコセン、1-オクタコセン、1-トリアコンテン、1-ドトリアコンテン、1-テトラトリアコンテン、1-ヘキサトリアコンテン、1-オクタトリアコンテン及び1-テトラコンテン等が挙げられる。本発明においては、これらのα-オレフィンはそれぞれ単独で用いてもよく、二種以上を組み合わせて用いてもよい。
[Raw material α-olefin (component (C))]
The raw α-olefin used in the method for producing an α-olefin polymer of the present invention is an α-olefin having 16 to 40 carbon atoms. The number of carbon atoms of the α-olefin is preferably 20 to 40, more preferably 22 to 40, and more preferably 25 to 35 from the viewpoint of controlling the melting point of the polymer and the olefin polymerization activity.
When producing a polymer having a higher melting point, it is preferable that the α-olefin has a larger carbon number. In the case of producing a polymer having a weight average molecular weight of 5,000 or less, it is necessary to suppress the low polymer. Therefore, the polymer complex represented by the above formula (I) is used and an α-olefin having a large carbon number is used as a raw material. It is important to use as
The production method of the present invention aims to reduce the molecular weight while maintaining high melting point while maintaining high melting point, and this effect is more prominent particularly in the case of 22 to 40 carbon atoms.
Specific examples of the α-olefin having 16 to 40 carbon atoms include 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icocene, 1-docosene, 1-hexacosene, 1-octacosene and 1-tria. Examples include content, 1-dotria content, 1-tetratria content, 1-hexatria content, 1-octatria content and 1-tetra content. In the present invention, these α-olefins may be used alone or in combination of two or more.
[重合用触媒]
 本発明のα-オレフィン重合体の製造方法に用いられる重合用触媒は、(A)前記一般式(I)で表されるメソ型遷移金属化合物、並びに(B)(B-1)該(A)成分のメソ型遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物、及び(B-2)アルミノキサンから選ばれる少なくとも一種を含有する。
[Polymerization catalyst]
The polymerization catalyst used in the method for producing an α-olefin polymer of the present invention includes (A) a meso-type transition metal compound represented by the general formula (I), and (B) (B-1) (A And (B-2) a compound capable of forming an ionic complex by reacting with the component meso transition metal compound or a derivative thereof, and (B-2) containing at least one selected from aluminoxane.
<(A)成分>
 前記メソ型遷移金属化合物とは、2つの架橋基が(1,1’)(2,2’)の結合様式で、2つのEを架橋する遷移金属化合物のことをいう。
 前記一般式(I)において、Mは周期律表第3~10族の金属元素を示し、具体例としてはチタン、ジルコニウム、ハフニウム、イットリウム、バナジウム、クロム、マンガン、ニッケル、コバルト、パラジウム及びランタノイド系金属等が挙げられる。これらの中ではオレフィン重合活性等の点から周期律表第4族の金属元素が好ましく、チタン、ジルコニウム及びハフニウムが好適である。
<(A) component>
The meso-type transition metal compound refers to a transition metal compound in which two bridging groups bridge two Es in a bonding mode of (1, 1 ′) (2, 2 ′).
In the general formula (I), M represents a metal element of Groups 3 to 10 of the periodic table, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium, and lanthanoid series. Metal etc. are mentioned. Among these, a metal element belonging to Group 4 of the periodic table is preferable from the viewpoint of olefin polymerization activity and the like, and titanium, zirconium and hafnium are preferable.
 前記一般式(I)において、Xはσ結合性の配位子を示し、その具体例としては、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のアミド基、炭素数1~20の珪素含有基、炭素数1~20のホスフィド基、炭素数1~20のスルフィド基、炭素数1~20のアシル基等が挙げられる。qは1~5の整数で、[(Mの原子価)-2]を示し、qが2以上の場合、複数のXは同じでも異なっていてもよい。 In the general formula (I), X represents a σ-bonded ligand, and specific examples thereof include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number. 6-20 aryloxy groups, amide groups having 1-20 carbon atoms, silicon-containing groups having 1-20 carbon atoms, phosphide groups having 1-20 carbon atoms, sulfide groups having 1-20 carbon atoms, 1-20 carbon atoms And the acyl group. q is an integer of 1 to 5 and represents [(M valence) -2]. When q is 2 or more, a plurality of Xs may be the same or different.
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基等のアルキル基;ビニル基、プロペニル基、シクロヘキセニル基等のアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントラセニル基、フェナントニル基等のアリール基等が挙げられる。
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェニルメトキシ基及びフェニルエトキシ基等が挙げられる。炭素数6~20のアリールオキシ基としては、フェノキシ基、メチルフェノキシ基及びジメチルフェノキシ基等が挙げられる。
Examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
Examples of the hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, cyclohexyl group and octyl group; alkenyl groups such as vinyl group, propenyl group and cyclohexenyl group An arylalkyl group such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group, anthracenyl group Group, aryl group such as phenanthonyl group, and the like.
Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, phenylmethoxy group, and phenylethoxy group. Examples of the aryloxy group having 6 to 20 carbon atoms include a phenoxy group, a methylphenoxy group, and a dimethylphenoxy group.
 炭素数1~20のアミド基としては、ジメチルアミド基、ジエチルアミド基、ジプロピルアミド基、ジブチルアミド基、ジシクロヘキシルアミド基、メチルエチルアミド基等のアルキルアミド基;ジビニルアミド基、ジプロペニルアミド基、ジシクロヘキセニルアミド基等のアルケニルアミド基;ジベンジルアミド基、フェニルエチルアミド基、フェニルプロピルアミド基等のアリールアルキルアミド基;ジフェニルアミド基、ジナフチルアミド基等のアリールアミド基等が挙げられる。
 炭素数1~20の珪素含有基としては、メチルシリル基、フェニルシリル基等のモノ炭化水素置換シリル基;ジメチルシリル基、ジフェニルシリル基等のジ炭化水素置換シリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、ジメチル(t-ブチル)シリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基等のトリ炭化水素置換シリル基;トリメチルシリルエーテル基等の炭化水素置換シリルエーテル基;トリメチルシリルメチル基等の珪素置換アルキル基;トリメチルシリルフェニル基等の珪素置換アリール基、ジメチルヒドロシリル基及びメチルジヒドロシリル基等が挙げられる。
Examples of the amide group having 1 to 20 carbon atoms include a dimethylamide group, a diethylamide group, a dipropylamide group, a dibutylamide group, a dicyclohexylamide group, and a methylethylamide group; a divinylamide group, a dipropenylamide group, Examples include alkenylamide groups such as dicyclohexenylamide groups; arylalkylamide groups such as dibenzylamide groups, phenylethylamide groups, and phenylpropylamide groups; arylamide groups such as diphenylamide groups and dinaphthylamide groups.
Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl such as tripropylsilyl group, dimethyl (t-butyl) silyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group, trinaphthylsilyl group, etc. A hydrocarbon-substituted silyl ether group such as a trimethylsilyl ether group; a silicon-substituted alkyl group such as a trimethylsilylmethyl group; a silicon-substituted aryl group such as a trimethylsilylphenyl group; a dimethylhydrosilyl group and a methyldihydrosilyl group;
 炭素数1~20のホスフィド基の具体例としては、ジメチルホスフィド基、メチルフェニルホスフィド基、ジフェニルホスフィド基、ジシクロヘキシルホスフィド基及びジベンジルホスフィド基等が挙げられる。
 炭素数1~20のスルフィド基としては、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、ヘキシルスルフィド基、シクロヘキシルスルフィド基、オクチルスルフィド基等のアルキルスルフィド基;ビニルスルフィド基、プロペニルスルフィド基、シクロヘキセニルスルフィド基等のアルケニルスルフィド基;ベンジルスルフィド基、フェニルエチルスルフィド基、フェニルプロピルスルフィド基等のアリールアルキルスルフィド基;フェニルスルフィド基、トリルスルフィド基、ジメチルフェニルスルフィド基、トリメチルフェニルスルフィド基、エチルフェニルスルフィド基、プロピルフェニルスルフィド基、ビフェニルスルフィド基、ナフチルスルフィド基、メチルナフチルスルフィド基、アントラセニルスルフィド基、フェナントニルスルフィド基等のアリールスルフィド基等が挙げられる。
 炭素数1~20のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、パルミトイル基、ステアロイル基、オレオイル基等のアルキルアシル基、ベンゾイル基、トルオイル基、サリチロイル基、シンナモイル基、ナフトイル基、フタロイル基等のアリールアシル基、シュウ酸、マロン酸、コハク酸等のジカルボン酸からそれぞれ誘導されるオキサリル基、マロニル基、スクシニル基等が挙げられる。
Specific examples of the phosphide group having 1 to 20 carbon atoms include dimethyl phosphide group, methylphenyl phosphide group, diphenyl phosphide group, dicyclohexyl phosphide group and dibenzyl phosphide group.
Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, Ethyl phenyl sulfide group, propyl phenyl sulfide group, biphenyl sulfide group, naphthyl sulfide group, methyl naphthyl sulfide group, Tiger Se Nils sulfide groups, and aryl sulfide groups such as a phenanthridine Nils sulfide group.
Examples of the acyl group having 1 to 20 carbon atoms include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, stearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
 前記一般式(I)において、Yはルイス塩基を示し、その具体例としては、アミン、エーテル、ホスフィン、チオエーテル類等を挙げることができる。rは0~3の整数を示し、rが2又は3の場合、複数のYは同じでも異なっていてもよい。
 アミンとしては、炭素数1~20のアミン類が挙げられ、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、シクロヘキシルアミン、メチルエチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン、メチルエチルアミン、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン等のアルキルアミン;ビニルアミン、プロペニルアミン、シクロヘキセニルアミン、ジビニルアミン、ジプロペニルアミン、ジシクロヘキセニルアミン等のアルケニルアミン;フェニルメチルアミン、フェニルエチルアミン、フェニルプロピルアミン等のアリールアルキルアミン;ジフェニルアミン、ジナフチルアミン等のアリールアミン、又はアンモニア、アニリン、N-メチルアニリン、ジフェニルアミン、N,N-ジメチルアニリン、メチルジフェニルアミン、ピリジン及びp-ブロモ-N,N-ジメチルアニリン等が挙げられる。
In the general formula (I), Y represents a Lewis base, and specific examples thereof include amines, ethers, phosphines, and thioethers. r represents an integer of 0 to 3, and when r is 2 or 3, a plurality of Y may be the same or different.
Examples of the amine include amines having 1 to 20 carbon atoms, specifically, methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dicyclohexyl. Alkylamines such as amine, methylethylamine, trimethylamine, triethylamine, tri-n-butylamine; alkenylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine; phenylmethylamine, phenylethylamine Arylalkylamines such as phenylpropylamine; arylamines such as diphenylamine and dinaphthylamine; or ammonia, aniline, N Methylaniline, diphenylamine, N, N-dimethylaniline, methyldiphenylamine, pyridine and p- bromo -N, N-dimethylaniline.
 エーテルの具体例としては、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル、ブチルエーテル、イソブチルエーテル、n-アミルエーテル、イソアミルエーテル等の脂肪族単一エーテル化合物;メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチル-n-アミルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチル-n-アミルエーテル、エチルイソアミルエーテル等の脂肪族混成エーテル化合物;ビニルエーテル、アリルエーテル、メチルビニルエーテル、メチルアリルエーテル、エチルビニルエーテル、エチルアリルエーテル等の脂肪族不飽和エーテル化合物;アニソール、フェネトール、フェニルエーテル、ベンジルエーテル、フェニルベンジルエーテル、α-ナフチルエーテル、β-ナフチルエーテル等の芳香族エーテル化合物;酸化エチレン、酸化プロピレン、酸化トリメチレン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環式エーテル化合物等が挙げられる。 Specific examples of ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl Aliphatic hybrid ether compounds such as ether, methyl-n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl-n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether Aliphatic unsaturated ether compounds such as methyl vinyl ether, methyl allyl ether, ethyl vinyl ether, and ethyl allyl ether; Aromatic ether compounds such as sole, phenetole, phenyl ether, benzyl ether, phenyl benzyl ether, α-naphthyl ether, β-naphthyl ether; cyclic ethers such as ethylene oxide, propylene oxide, trimethylene oxide, tetrahydrofuran, tetrahydropyran, dioxane Compounds and the like.
 ホスフィンとしては、炭素数1~20のホスフィンが挙げられる。具体的には、メチルホスフィン、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、ヘキシルホスフィン、シクロヘキシルホスフィン、オクチルホスフィン等のモノ炭化水素置換ホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジプロピルホスフィン、ジブチルホスフィン、ジヘキシルホスフィン、ジシクロヘキシルホスフィン、ジオクチルホスフィン等のジ炭化水素置換ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィン等のトリ炭化水素置換ホスフィン等のアルキルホスフィン;ビニルホスフィン、プロペニルホスフィン、シクロヘキセニルホスフィン等のモノアルケニルホスフィンやホスフィンの水素原子をアルケニルが2個置換したジアルケニルホスフィン;ホスフィンの水素原子をアルケニルが3個置換したトリアルケニルホスフィン;ベンジルホスフィン、フェニルエチルホスフィン、フェニルプロピルホスフィン等のアリールアルキルホスフィン;ホスフィンの水素原子をアリール又はアルケニルが3個置換したジアリールアルキルホスフィン又はアリールジアルキルホスフィン;フェニルホスフィン、トリルホスフィン、ジメチルフェニルホスフィン、トリメチルフェニルホスフィン、エチルフェニルホスフィン、プロピルフェニルホスフィン、ビフェニルホスフィン、ナフチルホスフィン、メチルナフチルホスフィン、アントラセニルホスフィン、フェナントニルホスフィン;ホスフィンの水素原子をアルキルアリールが2個置換したジ(アルキルアリール)ホスフィン;ホスフィンの水素原子をアルキルアリールが3個置換したトリ(アルキルアリール)ホスフィン等のアリールホスフィン等が挙げられる。
 チオエーテルの具体例としては、上記のスルフィドが挙げられる。
Examples of phosphine include phosphine having 1 to 20 carbon atoms. Specifically, monohydrocarbon-substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; Trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, trihexylphosphine, tricyclohexylphosphine, and trihydrocarbon-substituted phosphine alkylphosphine; vinylphosphine , Monoalkenes such as propenylphosphine and cyclohexenylphosphine Dialkenylphosphine in which two alkenyls are substituted for phosphine and phosphine hydrogen atoms; Trialkenylphosphine in which three alkenyls are substituted for phosphine hydrogen atoms; Arylalkylphosphine such as benzylphosphine, phenylethylphosphine, phenylpropylphosphine; Diarylalkylphosphine or aryldialkylphosphine substituted with 3 aryl or alkenyl hydrogen atoms; phenylphosphine, tolylphosphine, dimethylphenylphosphine, trimethylphenylphosphine, ethylphenylphosphine, propylphenylphosphine, biphenylphosphine, naphthylphosphine, methylnaphthylphosphine , Anthracenylphosphine, phenanthenylphosphine; phosphine hydrogen Child alkylaryl Two substituted di (alkylaryl) phosphine; arylphosphine such as a hydrogen atom of phosphine alkylaryl three substituted with tri (alkylaryl) phosphines, and the like.
Specific examples of the thioether include the above sulfides.
 前記一般式(I)において、Eは、前記式(II)で表される基であって、2つのEは互いに同一でも異なっていてもよい。
 式(II)中、R1は、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示し、pは0~5の整数を示す。複数のR1が存在する場合、それらの互いに同一であっても異なっていてもよい。波線で示される結合は、架橋基-A1-及び-A2-との結合を表す。
In the general formula (I), E is a group represented by the formula (II), and two E may be the same or different from each other.
In formula (II), R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group and a heteroatom-containing group, p represents an integer of 0 to 5. When several R < 1 > exists, they may mutually be same or different. The bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- .
 前記式(II)において、R1はインデニル基の3位~7位に結合しており、インデニル基の3位に結合していることが好ましい。
 ハロゲン原子、炭素数1~20の炭化水素基としては、Xの具体例として上述したものと同様のものが挙げられる。
 炭素数1~4のハロゲン含有炭化水素基の具体例としては、クロロメチル基、ブロモメチル基、ブロモエチル基、p-フルオロフェニル基、p-フルオロフェニルメチル基、3,5-ジフルオロフェニル基、ペンタクロロフェニル基、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基及び3,5-ビス(トリフルオロメチル)フェニル基等が挙げられる。
 珪素含有基の具体例としては、メチルシリル基、フェニルシリル基等のモノ炭化水素置換シリル基;ジメチルシリル基、ジフェニルシリル基等のジ炭化水素置換シリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、ジメチル(t-ブチル)シリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基等のトリ炭化水素置換シリル基;トリメチルシリルエーテル基等の炭化水素置換シリルエーテル基;トリメチルシリルメチル基等の珪素置換アルキル基;トリメチルシリルフェニル基等の珪素置換アリール基、ジメチルヒドロシリル基及びメチルジヒドロシリル基等が挙げられる。
 ヘテロ原子含有基の具体例としては、ジフェニルホスフィノ基、ジメチルボリル基、ジフェニルボリル基及びジメチオルアルセニル基等が挙げられる。
In the formula (II), R 1 is bonded to the 3rd to 7th positions of the indenyl group, and preferably bonded to the 3rd position of the indenyl group.
Examples of the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms are the same as those described above as specific examples of X.
Specific examples of the halogen-containing hydrocarbon group having 1 to 4 carbon atoms include chloromethyl group, bromomethyl group, bromoethyl group, p-fluorophenyl group, p-fluorophenylmethyl group, 3,5-difluorophenyl group, pentachlorophenyl. Group, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3,5-bis (trifluoromethyl) phenyl group and the like.
Specific examples of silicon-containing groups include monohydrocarbon-substituted silyl groups such as methylsilyl and phenylsilyl groups; dihydrocarbon-substituted silyl groups such as dimethylsilyl and diphenylsilyl groups; trimethylsilyl, triethylsilyl, and tripropylsilyl Groups, trihydrocarbon-substituted silyl groups such as dimethyl (t-butyl) silyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group, trinaphthylsilyl group; Examples include hydrocarbon-substituted silyl ether groups such as ether groups; silicon-substituted alkyl groups such as trimethylsilylmethyl groups; silicon-substituted aryl groups such as trimethylsilylphenyl groups, dimethylhydrosilyl groups, and methyldihydrosilyl groups.
Specific examples of the heteroatom-containing group include a diphenylphosphino group, a dimethylboryl group, a diphenylboryl group, and a dimethylthiolsenyl group.
 前記一般式(I)において、A1及びA2は、それぞれ独立に炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基及びスズ含有基から選ばれる架橋基を示し、A1及びA2は互いに異なる。これらの架橋基によって、2つの置換又は無置換のインデニル基Eが二重架橋される。ここで、A1及びA2が互いに異なるとは、例えば炭化水素基の場合、(-CH2-)と(-CH2-CH2-)とが互いに異なることを意味する。
 前記架橋基A1及びA2が互いに異なる構造であることにより、二量体等の数量体成分が少なくなり、高融点化するという効果があると考えられる。また、A1及びA2がホウ素原子やリン原子等の電子供与性が高い原子を含まないことで、重合活性を向上させることができると考えられる。
 前記一般式(I)において、-A1-で表される架橋基が下記一般式(III-1)で表される基であることが好ましく、-A2-で表される架橋基が下記一般式(III-2)で表される基であることが好ましい。
In the general formula (I), A 1 and A 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group. A crosslinking group selected from a group is shown, and A 1 and A 2 are different from each other. By these bridging groups, two substituted or unsubstituted indenyl groups E are double-bridged. Here, A 1 and A 2 are different from each other, for example, in the case of a hydrocarbon group, means that (—CH 2 —) and (—CH 2 —CH 2 —) are different from each other.
It is thought that when the crosslinkable groups A 1 and A 2 are different from each other, the quantity component such as a dimer is reduced and the melting point is increased. Further, A 1 and A 2 that does not contain an electron donating high atoms such as boron atoms or phosphorus atoms, is considered possible to improve the polymerization activity.
In the general formula (I), the bridging group represented by -A 1 -is preferably a group represented by the following general formula (III-1), and the bridging group represented by -A 2- is A group represented by general formula (III-2) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(III-1)及び(III-2)中、B1及びB2は、それぞれ独立に炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子を表し、R2a、R3a、R2b及びR3bは、それぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20の酸素原子含有基、炭素数1~20のアミン含有基又は炭素数1~20のハロゲン含有基を表す。m及びnはそれぞれ独立に1以上の整数であり、m+nは3以上である。重合活性の向上及び二量体成分の抑制の点から、B1及びB2が同一であり、mとnとが互いに異なることが好ましく、さらにB1及びB2が炭素原子又はケイ素原子であることが好ましい。 In formulas (III-1) and (III-2), B 1 and B 2 each independently represent a carbon atom, a silicon atom, a germanium atom or a tin atom, and R 2a , R 3a , R 2b and R 3b are , Each independently containing a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, and an amine having 1 to 20 carbon atoms Represents a group or a halogen-containing group having 1 to 20 carbon atoms. m and n are each independently an integer of 1 or more, and m + n is 3 or more. From the viewpoint of improving the polymerization activity and suppressing the dimer component, B 1 and B 2 are preferably the same, m and n are preferably different from each other, and B 1 and B 2 are a carbon atom or a silicon atom. It is preferable.
 炭素数1~20の脂肪族炭化水素基及び炭素数6~20の芳香族炭化水素基としては、Xの具体例として上述した炭素数1~20の炭化水素基であるアルキル基、アルケニル基、アリールアルキル基、アリール基と同様のものが挙げられる。
 炭素数1~20の酸素原子含有基としては、Xの具体例として上述した炭素数1~20のアルコキシ基及び炭素数6~20のアリールオキシ基と同様のものが挙げられる。
 炭素数1~20のアミン含有基としては、Yの具体例として上述した炭素数1~20のアミン類から水素原子を1つ取り除いた1価の基が挙げられる。
 炭素数1~20のハロゲン含有基としては、R1の具体例として上述したものと同様のものが挙げられる。
Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms and the aromatic hydrocarbon group having 6 to 20 carbon atoms include alkyl groups, alkenyl groups, which are the hydrocarbon groups having 1 to 20 carbon atoms described above as specific examples of X, The same thing as an arylalkyl group and an aryl group is mentioned.
Examples of the oxygen atom-containing group having 1 to 20 carbon atoms include those similar to the alkoxy group having 1 to 20 carbon atoms and the aryloxy group having 6 to 20 carbon atoms described above as specific examples of X.
Examples of the amine-containing group having 1 to 20 carbon atoms include monovalent groups obtained by removing one hydrogen atom from the above-described amines having 1 to 20 carbon atoms as a specific example of Y.
Examples of the halogen-containing group having 1 to 20 carbon atoms are the same as those described above as specific examples of R 1 .
 前記一般式(III-1)及び(III-2)で表される架橋基の具体例としては、エチレン基,テトラメチルエチレン基,1,2-シクロヘキシレン基,テトラメチルジシリレン基,ジメチルシリレンメチレン基,ジメチルシリレンイソプロピリデン基,テトラメチルジゲルミレン基等を挙げることができる。これらの中では、重合活性がより高くなる点から、エチレン基,ジメチルシリレン基及びテトラメチルジシリレン基が好適であり、より具体的には、前記一般式(III-1)及び(III-2)で表される架橋基のうち、一方がジメチルシリレン基であり、他方がテトラメチルジシリレン基であることが好ましい。 Specific examples of the crosslinking group represented by the general formulas (III-1) and (III-2) include an ethylene group, a tetramethylethylene group, a 1,2-cyclohexylene group, a tetramethyldisylylene group, and dimethylsilylene. Examples include a methylene group, dimethylsilylene isopropylidene group, and tetramethyldiggermylene group. Among these, ethylene group, dimethylsilylene group and tetramethyldisilene group are preferred from the viewpoint of higher polymerization activity, and more specifically, the above general formulas (III-1) and (III-2) ) Is preferably a dimethylsilylene group and the other is a tetramethyldisilylene group.
 このような前記一般式(I)で表されるメソ型遷移金属化合物の中では、下記一般式(IV)で表される二重架橋型ビスインデニル誘導体を配位子とする遷移金属化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
Among such meso type transition metal compounds represented by the general formula (I), a transition metal compound having a double-bridged bisindenyl derivative represented by the following general formula (IV) as a ligand is preferable.
Figure JPOXMLDOC01-appb-C000010
 前記一般式(IV)において、A1、A2、R1、M、X、Y、q及びrは、前記一般式(I)におけるA1、A2、R1、M、X、Y、q及びrと同じである。 In the general formula (IV), A 1 , A 2 , R 1 , M, X, Y, q, and r are A 1 , A 2 , R 1 , M, X, Y, in the general formula (I). Same as q and r.
 前記一般式(I)で表されるメソ型遷移金属化合物の具体例としては、(1,1’-ジメチルシリレン)(2,2’-テトラメチルジシリレン)ビス(インデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-テトラメチルジシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-テトラメチルジシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-エチレン)ビス(インデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-エチレン)ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-エチレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-ジメチルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-ジメチルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド等が挙げられる。また、これらの化合物におけるジルコニウムを、チタン又はハフニウムに置換したものや他の族の金属元素に置換した類似化合物を挙げることができる。もちろんこれらに限定されるものではない。 Specific examples of the meso-type transition metal compound represented by the general formula (I) include (1,1′-dimethylsilylene) (2,2′-tetramethyldisilylene) bis (indenyl) zirconium dichloride, (1 , 1'-dimethylsilylene) (2,2'-tetramethyldisiylene) bis (3-methylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-tetramethyldisilene) bis (3-Trimethylsilylmethylindenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′-ethylene) bis (indenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′- Ethylene) bis (3-methylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'- Tylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,1′-tetramethyldisylylene) (2,2′-dimethylsilylene) bis (indenyl) zirconium dichloride, (1,1′-tetramethyldichloride) Silylene) (2,2'-dimethylsilylene) bis (3-methylindenyl) zirconium dichloride, (1,1'-tetramethyldisylylene) (2,2'-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) ) Zirconium dichloride, (1,1′-ethylene) (2,2′-dimethylsilylene) bis (indenyl) zirconium dichloride, (1,1′-ethylene) (2,2′-dimethylsilylene) bis (3-methyl) Indenyl) zirconium dichloride, (1,1′-ethylene) (2,2 - dimethylsilylene) bis (3-trimethylsilyl-methylindenyl) zirconium dichloride, and the like. Moreover, the compound which substituted the zirconium in these compounds by titanium or hafnium, and the similar compound substituted by the metal element of another group can be mentioned. Of course, it is not limited to these.
 前記一般式(I)で表される遷移金属化合物の合成方法は、例えば、「ジャーナル・オブ・オルガノメタリックケミストリー(J.Organomet.Chem.)、第369巻、第359ページ(1989年)」に記載された方法により合成できる。すなわち、対応する置換されたシクロアルケニル陰イオンと、前記一般式(I)においてMで示される金属のハライドとの反応により合成することができる。 A method for synthesizing the transition metal compound represented by the general formula (I) is described in, for example, “J. Organomet. Chem.”, Volume 369, Page 359 (1989) ”. It can be synthesized by the method described. That is, it can be synthesized by a reaction between a corresponding substituted cycloalkenyl anion and a metal halide represented by M in the general formula (I).
<(B)成分>
 (B)成分のうちの(B-1)成分としては、前記(A)成分の遷移金属化合物と反応してイオン性の錯体を形成しうる化合物であればいずれのものでも使用できるが、下記一般式(V)又は(VI)で表される化合物を好適に使用することができる。
   (〔L1-R4k+a(〔Z〕-b   ・・・(V)
   (〔L2k+a(〔Z〕-b      ・・・(VI)
<(B) component>
As the component (B-1) in the component (B), any compound that can form an ionic complex by reacting with the transition metal compound of the component (A) can be used. A compound represented by formula (V) or (VI) can be preferably used.
([L 1 −R 4 ] k + ) a ([Z] ) b (V)
([L 2 ] k + ) a ([Z] ) b (VI)
 前記一般式(V)において、L1はルイス塩基を示し、ルイス塩基の具体例としては、アンモニア、メチルアミン、アニリン、ジメチルアミン、ジエチルアミン、N-メチルアニリン、ジフェニルアミン、N,N-ジメチルアニリン、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、メチルジフェニルアミン、ピリジン、p-ブロモ-N、N-ジメチルアニリン、p-ニトロ-N,N-ジメチルアニリン等のアミン類、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン等のホスフィン類、テトラヒドロチオフェン等のチオエーテル類、安息香酸エチル等のエステル類、アセトニトリル、ベンゾニトリル等のニトリル類等を挙げることができる。
 R4は、水素原子,炭素数1~20のアルキル基,炭素数6~20のアリール基,アルキルアリール基又はアリールアルキル基を示す。R4の具体例としては、水素原子、メチル基、エチル基、ベンジル基及びトリチル基等を挙げることができる。
In the general formula (V), L 1 represents a Lewis base. Specific examples of the Lewis base include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, Amines such as trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline, triethylphosphine, triphenylphosphine, diphenylphosphine Phosphines such as tetrahydrothiophene, esters such as ethyl benzoate, nitriles such as acetonitrile and benzonitrile, and the like.
R 4 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, or an arylalkyl group. Specific examples of R 4 include a hydrogen atom, a methyl group, an ethyl group, a benzyl group, and a trityl group.
 前記一般式(V)及び(VI)において、〔Z〕-は非配位性アニオンであり、〔Z〕-としては以下に示す〔Z1-及び〔Z2-が挙げられる。
 〔Z1-は、複数の基が元素に結合したアニオン、即ち〔M112・・・Gf-を示す。ここで、M1は、周期律表第5~15族元素、好ましくは周期律表第13~15族元素を示す。M1の具体例としては、B、Al、Si、P、As及びSb等が挙げられ、B及びAlが好ましい。
In the general formulas (V) and (VI), [Z] is a non-coordinating anion, and examples of [Z] include [Z 1 ] and [Z 2 ] shown below.
[Z 1 ] represents an anion having a plurality of groups bonded to the element, ie, [M 1 G 1 G 2 ... G f ] . Here, M 1 represents a group 5 to 15 element of the periodic table, preferably a group 13 to 15 element of the periodic table. Specific examples of M 1 include B, Al, Si, P, As and Sb, and B and Al are preferable.
 G1~Gfは、それぞれ水素原子,ハロゲン原子,炭素数1~20のアルキル基,炭素数2~40のジアルキルアミノ基,炭素数1~20のアルコキシ基,炭素数6~20のアリール基,炭素数6~20のアリールオキシ基,炭素数7~40のアルキルアリール基,炭素数7~40のアリールアルキル基,炭素数1~20のハロゲン置換炭化水素基,炭素数1~20のアシルオキシ基,有機メタロイド基、又は炭素数2~20のヘテロ原子含有炭化水素基を示す。G1~Gfのうち2つ以上が環を形成していてもよい。fは〔(中心金属M1の原子価)+1〕の整数を示す。 G 1 to G f are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, respectively. , Aryloxy group having 6 to 20 carbon atoms, alkylaryl group having 7 to 40 carbon atoms, arylalkyl group having 7 to 40 carbon atoms, halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, acyloxy having 1 to 20 carbon atoms Group, an organic metalloid group, or a heteroatom-containing hydrocarbon group having 2 to 20 carbon atoms. Two or more of G 1 to G f may form a ring. f represents an integer of [(valence of central metal M 1 ) +1].
 G1~Gfの具体例としては、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基等、アルコキシ基又はアリールオキシ基としてメトキシ基、エトキシ基、n-ブトキシ基、フェノキシ基等、炭化水素基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基、n-イコシル基、フェニル基、p-トリル基、ベンジル基、4-t-ブチルフェニル基、3,5-ジメチルフェニル基等、ハロゲン原子としてフッ素、塩素、臭素、ヨウ素、ヘテロ原子含有炭化水素基としてp-フルオロフェニル基、3,5-ジフルオロフェニル基、ペンタクロロフェニル基、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基、3,5-ビス(トリフルオロメチル)フェニル基、ビス(トリメチルシリル)メチル基等、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニル硼素等が挙げられる。 Specific examples of G 1 to G f include dimethylamino group and diethylamino group as dialkylamino group, methoxy group, ethoxy group, n-butoxy group, phenoxy group and the like as alkoxy group or aryloxy group, and methyl group as hydrocarbon group. Group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-octyl group, n-icosyl group, phenyl group, p-tolyl group, benzyl group, 4-t-butylphenyl group, 3,5-dimethylphenyl group, etc., halogen, fluorine, chlorine, bromine, iodine, heteroatom-containing hydrocarbon group, p-fluorophenyl group, 3,5-difluorophenyl group, pentachlorophenyl group, 3,4,5 -Trifluorophenyl group, pentafluorophenyl group, 3,5-bis (trifluoromethyl) phenyl group Bis (trimethylsilyl) methyl group, pentamethyl antimony group as organic metalloid group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group, dicyclohexyl antimony group, diphenyl boron, and the like.
 〔Z2-は、酸解離定数の逆数の対数(pKa)が-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合せの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩を示す。また、ルイス塩基が配位していてもよい。
 〔Z2-の具体例としては、トリフルオロメタンスルホン酸アニオン(CF3SO3-、ビス(トリフルオロメタンスルホニル)メチルアニオン、ビス(トリフルオロメタンスルホニル)ベンジルアニオン、ビス(トリフルオロメタンスルホニル)アミド、過塩素酸アニオン(ClO4-、トリフルオロ酢酸アニオン(CF3CO2-、ヘキサフルオロアンチモンアニオン(SbF6-、フルオロスルホン酸アニオン(FSO3-、クロロスルホン酸アニオン(ClSO3-、フルオロスルホン酸アニオン/5-フッ化アンチモン(FSO3/SbF5-、フルオロスルホン酸アニオン/5-フッ化砒素(FSO3/AsF5-及びトリフルオロメタンスルホン酸/5-フッ化アンチモン(CF3SO3/SbF5-等を挙げることができる。
[Z 2 ] is a Bronsted acid alone having a logarithm (pKa) of the reciprocal of the acid dissociation constant or a conjugate base of a combination of Bronsted acid and Lewis acid, or an acid generally defined as a super strong acid. The conjugate salt of In addition, a Lewis base may be coordinated.
Specific examples of [Z 2 ] include trifluoromethanesulfonate anion (CF 3 SO 3 ) , bis (trifluoromethanesulfonyl) methyl anion, bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide, Perchlorate anion (ClO 4 ) , trifluoroacetate anion (CF 3 CO 2 ) , hexafluoroantimony anion (SbF 6 ) , fluorosulfonate anion (FSO 3 ) , chlorosulfonate anion (ClSO 3 ) -, fluorosulfonic acid anion / antimony pentafluoride (FSO 3 / SbF 5) - , fluorosulfonic acid anion / 5- fluoride arsenic (FSO 3 / AsF 5) - and trifluoromethanesulfonic acid / antimony pentafluoride (CF 3 SO 3 / SbF 5 ) - or the like It can gel.
 前記一般式(V)及び(VI)において、kは〔L1-R4〕,〔L2〕のイオン価数で1~3の整数、aは1以上の整数、b=(k×a)である。
 前記一般式(VI)において、L2はM2、R563、R7 3C又はR83を示す。ここで、M2は、周期律表第1~3、11~13、17族元素を含むものであり、M3は、周期律表第7~12族元素を示す。M2の具体例としては、Li、Na、K、Ag、Cu、Br、I及びI3等を挙げることができ、M3の具体例としては、Mn、Fe、Co、Ni及びZn等を挙げることができる。
 R5及びR6は、それぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基、フルオレニル基又は置換フルオレニル基を示す。R5及びR6の具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基及びペンタメチルシクロペンタジエニル基等を挙げることができる。
In the general formulas (V) and (VI), k is an ionic valence of [L 1 -R 4 ], [L 2 ], an integer of 1 to 3, a is an integer of 1 or more, and b = (k × a ).
In the general formula (VI), L 2 represents M 2 , R 5 R 6 M 3 , R 7 3 C or R 8 M 3 . Here, M 2 includes elements in groups 1 to 3, 11 to 13, and 17 of the periodic table, and M 3 represents elements in groups 7 to 12 of the periodic table. Specific examples of M 2 include Li, Na, K, Ag, Cu, Br, I and I 3. Specific examples of M 3 include Mn, Fe, Co, Ni and Zn. Can be mentioned.
R 5 and R 6 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a fluorenyl group, or a substituted fluorenyl group. Specific examples of R 5 and R 6 include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
 R7は、炭素数1~20のアルキル基,アリール基,アルキルアリール基又はアリールアルキル基を示す。R7の具体例としては、フェニル基、p-トリル基及びp-メトキシフェニル基等を挙げることができる。R8は、大環状配位子を示し、その具体例としては、テトラフェニルポルフィン、フタロシアニン等を挙げることができる。 R 7 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group. Specific examples of R 7 include a phenyl group, a p-tolyl group, and a p-methoxyphenyl group. R 8 represents a macrocyclic ligand, and specific examples thereof include tetraphenylporphine and phthalocyanine.
 (B-1)成分の化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ-n-ブチルアンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラフェニル硼酸テトラエチルアンモニウム,テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム,テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム,テトラフェニル硼酸ジメチルジフェニルアンモニウム,テトラフェニル硼酸トリフェニル(メチル)アンモニウム,テトラフェニル硼酸トリメチルアニリニウム,テトラフェニル硼酸メチルピリジニウム,テトラフェニル硼酸ベンジルピリジニウム,テトラフェニル硼酸メチル(2-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ-n-ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラ-n-ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ-n-ブチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸メチル(2-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸メチル(4-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム,テトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム,テトラフェニル硼酸フェロセニウム,テトラフェニル硼酸銀、テトラフェニル硼酸トリチル,テトラフェニル硼酸テトラフェニルポルフィリンマンガン,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸(1,1’-ジメチルフェロセニウム),テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸リチウム,テトラキス(ペンタフルオロフェニル)硼酸ナトリウム,テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン,テトラフルオロ硼酸銀,ヘキサフルオロリン酸銀,ヘキサフルオロ砒素酸銀,過塩素酸銀,トリフルオロ酢酸銀,トリフルオロメタンスルホン酸銀等を挙げることができる。(B-1)成分の化合物は単独で又は二種以上を組み合わせて用いてもよい。 Specific examples of the compound (B-1) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl tetraphenylborate (tri-n -Butyl) ammonium, benzyl (tri-n-butyl) ammonium tetraphenylborate, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, tetraphenyl Benzylpyridinium borate, methyl tetraphenylborate (2-cyanopyridinium), tetrakis (pentafluorophenyl) triethylanborate Tri-n-butylammonium tetrakis (pentafluorophenyl) borate, triphenylammonium tetrakis (pentafluorophenyl) borate, tetra-n-butylammonium tetrakis (pentafluorophenyl) borate, tetraethylammonium tetrakis (pentafluorophenyl) borate , Benzyl (tri-n-butyl) ammonium tetrakis (pentafluorophenyl) borate, methyldiphenylammonium tetrakis (pentafluorophenyl) borate, triphenyl (methyl) ammonium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) boric acid Methylanilinium, tetrakis (pentafluorophenyl) borate dimethylanilinium, tetrakis (pentafluoropheny) ) Trimethylanilinium borate, methyl pyridinium tetrakis (pentafluorophenyl) borate, benzylpyridinium tetrakis (pentafluorophenyl) borate, methyl tetrakis (pentafluorophenyl) borate (2-cyanopyridinium), benzyl tetrakis (pentafluorophenyl) borate ( 2-cyanopyridinium), tetrakis (pentafluorophenyl) methyl borate (4-cyanopyridinium), tetrakis (pentafluorophenyl) triphenylphosphonium borate, tetrakis [bis (3,5-ditrifluoromethyl) phenyl] dimethylanilinium borate , Ferrocenium tetraphenylborate, silver tetraphenylborate, trityl tetraphenylborate, tetraphenylporphyrin manganese tetraphenylborate, Trakis (pentafluorophenyl) borate ferrocenium, tetrakis (pentafluorophenyl) borate (1,1′-dimethylferrocenium), tetrakis (pentafluorophenyl) decamethylferrocenium borate, tetrakis (pentafluorophenyl) silver borate, Tetrakis (pentafluorophenyl) triborate borate, tetrakis (pentafluorophenyl) lithium borate, tetrakis (pentafluorophenyl) sodium borate, tetrakis (pentafluorophenyl) borate tetraphenylporphyrin manganese, silver tetrafluoroborate, silver hexafluorophosphate Examples include silver hexafluoroarsenate, silver perchlorate, silver trifluoroacetate, and silver trifluoromethanesulfonate. The compounds of component (B-1) may be used alone or in combination of two or more.
 (B)成分のうちの(B-2)成分のアルミノキサンとしては、下記一般式(VII)で表される鎖状アルミノキサン、及び下記一般式(VIII)で示される環状アルミノキサンを挙げることができる。 Examples of the aluminoxane of the component (B-2) in the component (B) include a chain aluminoxane represented by the following general formula (VII) and a cyclic aluminoxane represented by the following general formula (VIII).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、R9は炭素数1~20、好ましくは1~12のアルキル基,アルケニル基,アリール基,アリールアルキル基等の炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2~50、好ましくは2~40の整数である。なお、各R9は同じでも異なっていてもよい。] [Wherein R 9 represents a hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group or an arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms or a halogen atom, and w represents an average degree of polymerization, Usually, it is an integer of 2 to 50, preferably 2 to 40. Each R 9 may be the same or different. ]
 前記一般式(VII)又は(VIII)で表されるアルミノキサンとして具体的には、メチルアルミノキサン、エチルアルミノキサン及びイソブチルアルミノキサン等が挙げられる。
 前記アルミノキサンの製造法としては、アルキルアルミニウムと水等の縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
 例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させ方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(3)金属塩等に含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、更に水を反応させる方法等がある。なお、アルミノキサンとしては、トルエン不溶性のものであってもよい。これらのアルミノキサンは、一種用いてもよく、二種以上を組み合わせて用いてもよい。
Specific examples of the aluminoxane represented by the general formula (VII) or (VIII) include methylaluminoxane, ethylaluminoxane, and isobutylaluminoxane.
Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means thereof is not particularly limited and may be reacted according to a known method.
For example, (1) a method in which an organoaluminum compound is dissolved in an organic solvent and brought into contact with water, (2) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (3) a metal There are a method of reacting crystallization water contained in a salt or the like, water adsorbed on an inorganic or organic material with an organoaluminum compound, and (4) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water. . The aluminoxane may be insoluble in toluene. These aluminoxanes may be used alone or in combination of two or more.
 本発明の製造方法で用いる重合用触媒における(A)成分と(B)成分の使用割合は、(B)成分として(B-1)成分の化合物を用いた場合には、モル比で好ましくは10:1~1:100、より好ましくは2:1~1:10の範囲である。この範囲にあれば、単位質量ポリマー当りの触媒コストがあまり高くならず、実用的である。
 また、(B-2)成分の化合物を用いた場合、(A)成分と(B-2)成分の使用割合は、モル比で好ましくは1:1~1:1000000、より好ましくは1:10~1:10000の範囲である。この範囲にあれば、単位質量ポリマー当りの触媒コストがあまり高くならず、実用的である。
 触媒成分(B)としては、(B-1)成分の化合物及び/又は(B-2)成分の化合物を単独又は二種以上組み合わせて用いることもできる。
The use ratio of the component (A) and the component (B) in the polymerization catalyst used in the production method of the present invention is preferably a molar ratio when the compound (B-1) is used as the component (B). The range is from 10: 1 to 1: 100, more preferably from 2: 1 to 1:10. If it exists in this range, the catalyst cost per unit mass polymer will not become so high, and it is practical.
When the compound (B-2) is used, the ratio of the component (A) to the component (B-2) is preferably 1: 1 to 1: 1000000, more preferably 1:10 in terms of molar ratio. It is in the range of ˜1: 10000. If it exists in this range, the catalyst cost per unit mass polymer will not become so high, and it is practical.
As the catalyst component (B), the compound of the component (B-1) and / or the compound of the component (B-2) can be used alone or in combination of two or more.
<(D)成分>
 本発明で用いる重合用触媒としては、前記(A)成分及び(B)成分に加えて(D)成分として有機アルミニウム化合物を用いることができる。ここで、(D)成分の有機アルミニウム化合物としては、下記一般式(IX)で表される化合物を用いることができる。
   R10 vAlJ3-v   ・・・(IX)
[式中、R10は炭素数1~10のアルキル基、Jは水素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数である。]
<(D) component>
As the polymerization catalyst used in the present invention, an organoaluminum compound can be used as the component (D) in addition to the components (A) and (B). Here, as the organoaluminum compound of the component (D), a compound represented by the following general formula (IX) can be used.
R 10 v AlJ 3-v (IX)
[Wherein R 10 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. It is an integer. ]
 前記一般式(IX)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリド等が挙げられる。これらの中で、炭素数4以上の炭化水素基が結合した有機アルミニウム化合物は、高温安定性に優れる点で好ましく、当該観点から炭素数4~8の炭化水素基がより好ましい。さらに好ましくは100℃以上の反応温度の場合は、炭素数6~8の炭化水素基がより好ましい。前記有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。 Specific examples of the compound represented by the general formula (IX) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like. Among these, an organoaluminum compound to which a hydrocarbon group having 4 or more carbon atoms is bonded is preferable from the viewpoint of excellent high-temperature stability, and a hydrocarbon group having 4 to 8 carbon atoms is more preferable from this viewpoint. More preferably, when the reaction temperature is 100 ° C. or higher, a hydrocarbon group having 6 to 8 carbon atoms is more preferable. The organoaluminum compound may be used singly or in combination of two or more.
 (D)成分の有機アルミニウムの使用量は、(A)成分と(D)成分のモル比で好ましくは1:1~1:10000、より好ましくは1:5~1:2000、更に好ましくは1:10~1:1000の範囲である。(D)成分を用いることにより、遷移金属当たりの重合活性を向上させることができる。(A):(D)が1:1~1:10000の範囲にあると、(D)成分の添加効果と経済性とのバランスが良好であり、また、得られるα-オレフィン重合体中にアルミニウムが多量に存在するおそれがない。 The amount of organoaluminum used as component (D) is preferably 1: 1 to 1: 10000, more preferably 1: 5 to 1: 2000, and still more preferably 1 in terms of the molar ratio of component (A) to component (D). : The range is 10 to 1: 1000. By using the component (D), the polymerization activity per transition metal can be improved. When (A) :( D) is in the range of 1: 1 to 1: 10000, the balance between the effect of addition of component (D) and economy is good, and the resulting α-olefin polymer has a good balance. There is no fear of a large amount of aluminum.
<担体>
 本発明においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
<Carrier>
In the present invention, at least one of the catalyst components can be supported on a suitable carrier and used. The type of the carrier is not particularly limited, and any of inorganic oxide carriers, other inorganic carriers, and organic carriers can be used. In particular, inorganic oxide carriers or other inorganic carriers are preferable.
 無機酸化物担体としては、具体的には、SiO2,Al23,MgO,ZrO2,TiO2,Fe23,B23,CaO,ZnO,BaO,ThO2やこれらの混合物、例えば、シリカアルミナ,ゼオライト,フェライト,グラスファイバー等が挙げられる。これらの中では、特にSiO2,Al23が好ましい。なお、前記無機酸化物担体は、少量の炭酸塩,硝酸塩,硫酸塩等を含有してもよい。一方、上記以外の担体として、MgCl2,Mg(OC252等で代表される一般式MgR11 x1 yで表されるマグネシウム化合物やその錯塩等を挙げることができる。ここで、R11は炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数6~20のアリール基、X1はハロゲン原子又は炭素数1~20のアルキル基を示し、xは0~2、yは0~2であり、かつx+y=2である。各R11及び各X1はそれぞれ同一でもよく、異なっていてもよい。 Specific examples of the inorganic oxide carrier include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , Fe 2 O 3 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof. Examples thereof include silica alumina, zeolite, ferrite, glass fiber and the like. Of these, SiO 2 and Al 2 O 3 are particularly preferable. The inorganic oxide carrier may contain a small amount of carbonate, nitrate, sulfate and the like. On the other hand, as a carrier other than the above, a magnesium compound represented by the general formula MgR 11 x X 1 y typified by MgCl 2 , Mg (OC 2 H 5 ) 2 or the like, a complex salt thereof, or the like can be given. Here, R 11 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, X 1 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms, x is 0 to 2, y is 0 to 2, and x + y = 2. Each R 11 and each X 1 may be the same or different.
 有機担体としては、ポリスチレン,スチレン-ジビニルベンゼン共重合体,ポリエチレン,ポリ1-ブテン,置換ポリスチレン,ポリアリレート等の重合体やスターチ,カーボン等を挙げることができる。本発明に用いられる重合用触媒の担体としては、MgCl2,MgCl(OC25),Mg(OC252,SiO2,Al23等が好ましい。また、担体の性状は、その種類及び製法により異なるが、平均粒径は通常1~300μm、好ましくは10~200μm、より好ましくは20~100μmである。粒径が小さいとオリゴマー中の微粉が増大し、粒径が大きいとオリゴマー中の粗大粒子が増大し嵩密度の低下やホッパーの詰まりの原因になる。また、担体の比表面積は、通常1~1000m2/g、好ましくは50~500m2/g、細孔容積は通常0.1~5cm3/g、好ましくは0.3~3cm3/gである。比表面積又は細孔容積のいずれかが上記範囲を逸脱すると、触媒活性が低下することがある。なお、比表面積及び細孔容積は、例えば、BET法に従って吸着された窒素ガスの体積から求めることができる〔J.Am.Chem.Soc.,60,309(1983)参照〕。 Examples of the organic carrier include polymers such as polystyrene, styrene-divinylbenzene copolymer, polyethylene, poly 1-butene, substituted polystyrene, polyarylate, starch, carbon and the like. As the carrier for the polymerization catalyst used in the present invention, MgCl 2 , MgCl (OC 2 H 5 ), Mg (OC 2 H 5 ) 2 , SiO 2 , Al 2 O 3 and the like are preferable. The properties of the carrier vary depending on the type and production method, but the average particle size is usually 1 to 300 μm, preferably 10 to 200 μm, more preferably 20 to 100 μm. When the particle size is small, fine powder in the oligomer increases, and when the particle size is large, coarse particles in the oligomer increase, which causes a decrease in bulk density and clogging of the hopper. The specific surface area of the carrier is usually 1 to 1000 m 2 / g, preferably 50 to 500 m 2 / g, and the pore volume is usually 0.1 to 5 cm 3 / g, preferably 0.3 to 3 cm 3 / g. is there. When either the specific surface area or the pore volume deviates from the above range, the catalytic activity may decrease. The specific surface area and pore volume can be determined, for example, from the volume of nitrogen gas adsorbed according to the BET method [J. Am. Chem. Soc. , 60, 309 (1983)].
 更に、上記担体が無機酸化物担体である場合には、通常150~1000℃、好ましくは200~800℃で焼成して用いることが好ましい。触媒成分の少なくとも一種を前記担体に担持させる場合、(A)成分及び(B)成分の少なくとも一方を、好ましくは(A)成分及び(B)成分の両方を担持させるのが好ましい。該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば(1)(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、(2)担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理した後、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、(3)担体と(A)成分及び/又は(B)成分と有機アルミニウム化合物又はハロゲン含有ケイ素化合物とを反応させる方法、(4)(A)成分又は(B)成分を担体に担持させた後、(B)成分又は(A)成分と混合する方法、(5)(A)成分と(B)成分との接触反応物を担体と混合する方法、(6)(A)成分と(B)成分との接触反応に際して、担体を共存させる方法等を用いることができる。なお、上記(4)、(5)及び(6)の方法において、(C)成分の有機アルミニウム化合物を添加することもできる。 Further, when the carrier is an inorganic oxide carrier, it is usually used by firing at 150 to 1000 ° C., preferably 200 to 800 ° C. When at least one catalyst component is supported on the carrier, it is preferable to support at least one of the component (A) and the component (B), preferably both the component (A) and the component (B). The method for supporting at least one of the component (A) and the component (B) on the carrier is not particularly limited. For example, (1) at least one of the component (A) and the component (B) is mixed with the carrier. Method, (2) A method in which a support is treated with an organoaluminum compound or a halogen-containing silicon compound and then mixed with at least one of the component (A) and the component (B) in an inert solvent, (3) the support and (A) Method of reacting component and / or component (B) with organoaluminum compound or halogen-containing silicon compound, (4) (B) component or (A) after (A) component or (B) component is supported on a carrier ) A method of mixing with the component, (5) a method of mixing the contact reaction product of the component (A) with the component (B) with the carrier, and (6) a carrier during the contact reaction of the component (A) with the component (B). Use a method to coexist Rukoto can. In the methods (4), (5) and (6), an organoaluminum compound as the component (C) can also be added.
 このようにして得られた触媒は、いったん溶媒留去を行って固体として取り出してから重合に用いてもよいし、そのまま重合に用いてもよい。また、本発明においては、(A)成分及び(B)成分の少なくとも一方の担体への担持操作を重合系内で行うことにより触媒を生成させることができる。例えば、(A)成分及び(B)成分の少なくとも一方と担体と更に必要により前記(D)成分の有機アルミニウム化合物を加え、エチレン等のオレフィンを0.1~2MPa(Gauge)加えて、-20~200℃で1分~2時間程度予備重合を行い、触媒粒子を生成させる方法を用いることができる。 The catalyst obtained in this manner may be used for polymerization after removing the solvent once as a solid and may be used for polymerization as it is. Moreover, in this invention, a catalyst can be produced | generated by performing the carrying | support operation to the support | carrier of at least one of (A) component and (B) component within a polymerization system. For example, at least one of the component (A) and the component (B), a carrier, and if necessary, the organoaluminum compound of the component (D) are added, and an olefin such as ethylene is added in an amount of 0.1 to 2 MPa (Gauge), and −20 A method of preliminarily polymerizing at about 200 ° C. for about 1 minute to 2 hours to produce catalyst particles can be used.
 本発明に用いられる触媒における(B-1)成分と担体との使用割合は、質量比で好ましくは1:5~1:10000、より好ましくは1:10~1:500である。(B-2)成分と担体との使用割合は、質量比で好ましくは1:0.5~1:1000、より好ましくは1:1~1:50である。(B)成分として二種以上を混合して用いる場合は、各(B)成分と担体との使用割合が質量比で上記範囲内にあることが好ましい。また、(A)成分と担体との使用割合は、質量比で、好ましくは1:5~1:10000、より好ましくは1:10~1:500である。(B)成分〔(B-1)成分又は(B-2)成分〕と担体との使用割合、又は(A)成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。このようにして調製された重合用触媒の平均粒径は、通常2~200μm、好ましくは10~150μm、特に好ましくは20~100μmであり、比表面積は、通常20~1000m2/g、好ましくは50~500m2/gである。平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。比表面積が20m2/g未満であると活性が低下することがあり、1000m2/gを超えると重合体の嵩密度が低下することがある。また、本発明に用いられる触媒において、担体100g中の遷移金属量は、通常0.05~10g、特に0.1~2gであることが好ましい。遷移金属量が上記範囲外であると、活性が低くなることがある。このように担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有する重合体を得ることができる。 The ratio of the component (B-1) to the support used in the catalyst used in the present invention is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 by mass ratio. The use ratio of the component (B-2) to the carrier is preferably 1: 0.5 to 1: 1000, more preferably 1: 1 to 1:50 by mass ratio. When using 2 or more types as a component (B), it is preferable that the usage ratio of each (B) component and a support | carrier is in the said range by mass ratio. The ratio of the component (A) to the carrier used is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 in terms of mass ratio. If the proportion of the component (B) [component (B-1) or component (B-2)] and the carrier, or the proportion of component (A) and the carrier used deviates from the above ranges, the activity may decrease. is there. The average particle diameter of the polymerization catalyst thus prepared is usually 2 to 200 μm, preferably 10 to 150 μm, particularly preferably 20 to 100 μm, and the specific surface area is usually 20 to 1000 m 2 / g, preferably 50-500 m 2 / g. If the average particle size is less than 2 μm, fine powder in the polymer may increase, and if it exceeds 200 μm, coarse particles in the polymer may increase. When the specific surface area is less than 20 m 2 / g, the activity may decrease, and when it exceeds 1000 m 2 / g, the bulk density of the polymer may decrease. In the catalyst used in the present invention, the amount of transition metal in 100 g of the support is usually 0.05 to 10 g, particularly preferably 0.1 to 2 g. If the amount of transition metal is outside the above range, the activity may be lowered. In this way, a polymer having an industrially advantageous high bulk density and an excellent particle size distribution can be obtained by supporting it on a carrier.
[重合方法及び重合条件]
 本発明において、重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法等のいずれの方法を用いてもよいが、スラリー重合法,溶液重合法が特に好ましい。重合条件については、重合温度は通常0~200℃、より好ましくは20~200℃、特に好ましくは70~200℃である。また、反応原料に対する触媒の使用割合は、原料モノマー/前記(A)成分(モル比)が好ましくは1~100000000、より好ましくは1~1000である。
[Polymerization method and conditions]
In the present invention, the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method may be used. A polymerization method is particularly preferred. Regarding the polymerization conditions, the polymerization temperature is usually 0 to 200 ° C., more preferably 20 to 200 ° C., particularly preferably 70 to 200 ° C. Further, the ratio of the catalyst to the reaction raw material is preferably from 1 to 100 million, more preferably from 1 to 1000, as the raw material monomer / the component (A) (molar ratio).
 重合時間は通常5分~30時間、好ましくは15分~25時間である。水素圧力は通常は、0~10MPa(Gauge)である。本発明において、水素を添加すると重合活性が大幅に向上する。したがって、水素圧は、0.1~5.0MPa(Gauge)が好ましく、0.1~1.0MPa(Gauge)がより好ましい。水素添加量が大きいほど重合活性は向上するが、10MPa(Gauge)以上より大きくても活性への影響は少なく、逆に製造設備の巨大化等の不具合が生じる。 The polymerization time is usually 5 minutes to 30 hours, preferably 15 minutes to 25 hours. The hydrogen pressure is usually 0 to 10 MPa (Gauge). In the present invention, when hydrogen is added, the polymerization activity is greatly improved. Accordingly, the hydrogen pressure is preferably from 0.1 to 5.0 MPa (Gauge), and more preferably from 0.1 to 1.0 MPa (Gauge). The polymerization activity improves as the hydrogenation amount increases. However, even if the amount exceeds 10 MPa (Gauge) or more, there is little influence on the activity, and conversely, problems such as enlargement of production facilities occur.
 重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼン、デカリン等の芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサン等の脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタン等の脂肪族炭化水素、クロロホルム,ジクロロメタン等のハロゲン化炭化水素等を用いることができる。これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。また、重合方法によっては無溶媒で行うことができる。 When using a polymerization solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and decalin, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, aliphatics such as pentane, hexane, heptane and octane Hydrocarbons, halogenated hydrocarbons such as chloroform and dichloromethane can be used. These solvents may be used alone or in combination of two or more. Moreover, it can carry out without a solvent depending on the polymerization method.
<予備重合>
 重合に際しては、予備重合を行うことで重合用触媒を調製してもよい。予備重合は、触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。予備重合に用いるオレフィンについては特に制限はなく、例えば、炭素数3~18のα-オレフィン、あるいはこれらの混合物等を挙げることができるが、該重合において原料として用いるα-オレフィンと同じ(C)成分の炭素数16~40のα-オレフィンを用いることが有利である。予備重合の具体例としては、(A)成分、(B)成分及び(C)成分を予め接触させて重合用触媒を調製したり、(A)成分、(B)成分、(C)成分及び(D)成分を予め接触させて重合用触媒を調製したりする例が挙げられる。予備重合温度は、通常-20~200℃、好ましくは-10~130℃、より好ましくは0~80℃である。予備重合においては、溶媒として、脂肪族炭化水素,芳香族炭化水素,モノマー等を用いることができる。また、予備重合は無溶媒で行ってもよい。予備重合においては、予備重合生成物の極限粘度〔η〕(135℃デカリン中で測定)が0.1デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1~10000g、特に10~1000gとなるように条件を調整することが望ましい。
 α-オレフィン重合体の特性を変える方法として、各触媒成分の種類、使用量、重合温度の選択、更には水素存在下での重合等がある。窒素等の不活性ガスを存在させてもよい。本発明の製造方法においては、高温で反応を行うと重合度が小さくなる傾向があり、また炭素数の小さいモノマーを用いると、重合度が大きくなる傾向がある。
<Preliminary polymerization>
In the polymerization, a polymerization catalyst may be prepared by performing preliminary polymerization. The prepolymerization can be performed, for example, by bringing a small amount of olefin into contact with the catalyst component, but the method is not particularly limited, and a known method can be used. The olefin used in the prepolymerization is not particularly limited, and examples thereof include an α-olefin having 3 to 18 carbon atoms, or a mixture thereof. The same as the α-olefin used as a raw material in the polymerization (C) It is advantageous to use an α-olefin having 16 to 40 carbon atoms as a component. As specific examples of the prepolymerization, the polymerization catalyst is prepared by previously contacting the components (A), (B) and (C), or the components (A), (B), (C) and Examples include preparing a polymerization catalyst by bringing the component (D) into contact in advance. The prepolymerization temperature is usually −20 to 200 ° C., preferably −10 to 130 ° C., more preferably 0 to 80 ° C. In the prepolymerization, aliphatic hydrocarbons, aromatic hydrocarbons, monomers and the like can be used as solvents. Moreover, you may perform prepolymerization without a solvent. In the prepolymerization, the intrinsic viscosity [η] (measured in 135 ° C. decalin) of the prepolymerized product is 0.1 deciliter / g or more, and the amount of the prepolymerized product per 1 mmol of the transition metal component in the catalyst is 1. It is desirable to adjust the conditions so as to be ˜10000 g, particularly 10 to 1000 g.
Methods for changing the characteristics of the α-olefin polymer include selection of the type of catalyst component, amount used, polymerization temperature, and polymerization in the presence of hydrogen. An inert gas such as nitrogen may be present. In the production method of the present invention, when the reaction is carried out at a high temperature, the degree of polymerization tends to decrease, and when a monomer having a small carbon number is used, the degree of polymerization tends to increase.
[α-オレフィン重合体]
 本発明の製造方法により得られるα-オレフィン重合体は、重量平均分子量(Mw)が5000以下であり、かつ、融点(Tm)が25~120℃の範囲にある。
 また、本発明のα-オレフィン重合体は、(α-オレフィン重合体の融点-20)℃の融解成分量が12%以下であり、又は、二量体成分の含有量が10質量%以下であることが好ましく、上述の本発明の製造方法により制御可能である。
[Α-olefin polymer]
The α-olefin polymer obtained by the production method of the present invention has a weight average molecular weight (Mw) of 5000 or less and a melting point (Tm) in the range of 25 to 120 ° C.
The α-olefin polymer of the present invention has a melting component amount of (α-olefin polymer melting point−20) ° C. of 12% or less, or a dimer component content of 10% by mass or less. Preferably, it can be controlled by the manufacturing method of the present invention described above.
<重量平均分子量(Mw)>
 本発明の製造方法により得られるα-オレフィン重合体の重量平均分子量は、5000以下であり、好ましくは1000~5000、より好ましくは3000~4500である。
 トナーやインク等の用途においては、離型性の観点から低分子量(つまり低粘度)であることが望まれており、重量平均分子量が5000以下であると、そのようなワックスとしての機能を満足する流動性が得られる。また、重量平均分子量が1000以上であると、液体であるモノマーとは区別される性状を有することとなる。
 本発明における重量平均分子量は、ゲルパーミエイションクロマトグラフィ(GPC)法により、実施例に記載の装置及び条件で測定したポリスチレン換算の重量平均分子量である。
<Weight average molecular weight (Mw)>
The weight average molecular weight of the α-olefin polymer obtained by the production method of the present invention is 5000 or less, preferably 1000 to 5000, more preferably 3000 to 4500.
In applications such as toner and ink, a low molecular weight (that is, low viscosity) is desired from the viewpoint of releasability, and when the weight average molecular weight is 5000 or less, such a function as a wax is satisfied. Fluidity is obtained. Further, when the weight average molecular weight is 1000 or more, it has a property that is distinguished from a monomer that is a liquid.
The weight average molecular weight in the present invention is a weight average molecular weight in terms of polystyrene measured by the gel permeation chromatography (GPC) method using the apparatus and conditions described in the examples.
<融点(Tm)>
 本発明の製造方法により得られるα-オレフィン重合体の融点(Tm)は、25~120℃の範囲にあり、用途により求められる範囲が異なるが、保存性等の観点から、好ましくは50~100℃、より好ましくは60~80℃、更に好ましくは70~80℃の範囲にある。
<Melting point (Tm)>
The melting point (Tm) of the α-olefin polymer obtained by the production method of the present invention is in the range of 25 to 120 ° C., and the required range varies depending on the use. ° C, more preferably 60 to 80 ° C, still more preferably 70 to 80 ° C.
 α-オレフィン重合体の融点(Tm)は、インキ、塗料、エマルジョン、トナー用離型剤等の種々の用途に応じて適当な融点に設定する必要がある。
 例えば、トナーの輸送時や倉庫での保管性の観点からは、55℃での保存耐久性が求められており、α-オレフィン重合体中の55℃以下の温度で融解する成分の量(55℃以下の融解成分量)が多くなるとトナーの凝集等が発生し、保存耐久性に劣る。一方、特定のメタロセン触媒を用いて得られる結晶性α-オレフィン重合体は、分子量分布が狭くシャープメルトであるため、融点が50℃以上であることが好ましく、更に融点が70℃以上であれば、α-オレフィン重合体中の55℃以下の融解成分量が著しく少なくなり保存耐久性に優れる。
 また、融点が1℃上昇すれば低温融解成分量が大幅に減少するという作用効果があるので、保存性を向上させる観点からは、融点は少しでも高い方が好ましい。
The melting point (Tm) of the α-olefin polymer needs to be set to an appropriate melting point according to various uses such as inks, paints, emulsions, and toner release agents.
For example, storage durability at 55 ° C. is required from the viewpoint of toner storage and storage in a warehouse, and the amount of a component that melts at a temperature of 55 ° C. or less in an α-olefin polymer (55 When the amount of the melting component at 0 ° C. or less is increased, toner aggregation occurs and the storage durability is poor. On the other hand, the crystalline α-olefin polymer obtained by using a specific metallocene catalyst has a narrow molecular weight distribution and is a sharp melt, so that the melting point is preferably 50 ° C. or higher, and if the melting point is 70 ° C. or higher. The amount of the melting component at 55 ° C. or less in the α-olefin polymer is remarkably reduced, and the storage durability is excellent.
Moreover, since there exists an effect that a low-temperature melting component amount will reduce significantly if melting | fusing point raises 1 degreeC, the one where a melting | fusing point is as high as possible is preferable from a viewpoint of improving preservability.
 本発明における融点は、示差走査熱量測定(DSC)法により、実施例に記載の装置及び条件で測定される。また、α-オレフィン重合体中の55℃以下の融解成分量は、DSCチャートにおける融解ピークの55℃以下の部分の面積及び全体の面積から下記式により算出される。
 α-オレフィン重合体中の55℃以下の融解成分量(%)=(DSCチャートにおける融解ピークの55℃以下の部分の面積/DSCチャートにおける融解ピーク全体の面積)×100
The melting point in the present invention is measured by the differential scanning calorimetry (DSC) method with the apparatus and conditions described in the examples. Further, the amount of the melting component at 55 ° C. or less in the α-olefin polymer is calculated from the area of the melting peak at 55 ° C. or less and the entire area in the DSC chart by the following formula.
Amount of melting component (%) at 55 ° C. or less in α-olefin polymer = (area of 55 ° C. or less of melting peak on DSC chart / area of entire melting peak on DSC chart) × 100
<低温融解成分量>
 α-オレフィン重合体中に融点よりもかなり低温で融解する成分が多いと、その材料の融点が高くても、融点よりもかなり低温に晒されると、融解する成分が多量に存在するため、ベタつきや強度低下等の不具合を生じる可能性がある。
 本発明では、α-オレフィン重合体の融点から20℃引いた温度以下で融解する成分を「低温融解成分」と定義し、α-オレフィン重合体全体が融解する際に吸熱される全体の熱量に対する低温融解成分の吸熱量の割合を「低温融解成分量(%)」と定義し、「(Tm-20)℃における融解成分量(%)」と示す。ここでTmはα-オレフィン重合体の融点を示す。
 本発明のα-オレフィン重合体中の(Tm-20)℃における融解成分量は、好ましくは12%以下であり、より好ましくは10%以下、更に好ましくは7%以下である。α-オレフィン重合体中の低温融解成分量が少ないことは、そのα-オレフィン重合体の結晶の大きさが均一であり、融点近傍までに融解する結晶成分が少なく、つまり、高温保存耐久性に優れ、融点近傍までベタつき等の不具合が生じない材料であることを示す。本発明の製造方法により、低温融解成分量を12%以下とすることができ、特定の触媒を用いたり、重合条件を調整することでより少ない低温融解成分量とすることができる。
<Low-temperature melting component amount>
If there are many components in the α-olefin polymer that melt at a temperature considerably lower than the melting point, even if the melting point of the material is high, there are a large amount of components that melt when exposed to a temperature much lower than the melting point. There is a possibility of causing problems such as strength reduction.
In the present invention, a component that melts at a temperature of 20 ° C. or less from the melting point of the α-olefin polymer is defined as a “low-temperature melting component”, and the total amount of heat absorbed when the entire α-olefin polymer melts is defined. The ratio of the endothermic amount of the low-temperature melting component is defined as “low-temperature melting component amount (%)”, which is indicated as “(Tm-20) ° C. melting component amount (%)”. Here, Tm represents the melting point of the α-olefin polymer.
The amount of the melting component at (Tm-20) ° C. in the α-olefin polymer of the present invention is preferably 12% or less, more preferably 10% or less, still more preferably 7% or less. The small amount of low-temperature melting component in the α-olefin polymer means that the α-olefin polymer has a uniform crystal size and few crystal components that melt to near the melting point, that is, high temperature storage durability. It indicates that the material is excellent and does not cause problems such as stickiness to the vicinity of the melting point. By the production method of the present invention, the amount of the low-temperature melting component can be reduced to 12% or less, and the amount of the low-temperature melting component can be reduced by using a specific catalyst or adjusting the polymerization conditions.
 本発明におけるα-オレフィン重合体中の(α-オレフィン重合体の融点-20)℃の融解成分量は、DSCチャートにおける吸熱ピーク面積から下記式により算出される。
 (Tm-20)℃における融解成分量(%)=ΔH(Tm-20)/ΔH(全体)×100
 式中、Tmはα-オレフィン重合体の融点を示す。ΔH(Tm-20)はDSCチャートの吸熱ピークにおいて、「(Tm-20)℃」までに融解により吸熱した熱量を示し、ΔH(全体)はDSCチャートにおける吸熱ピーク全体の熱量を示す。
In the present invention, the melting component amount of (α-olefin polymer melting point−20) ° C. in the α-olefin polymer is calculated from the endothermic peak area in the DSC chart by the following formula.
(Tm−20) Melting component amount at% (%) = ΔH (Tm−20) / ΔH (whole) × 100
In the formula, Tm represents the melting point of the α-olefin polymer. ΔH (Tm-20) indicates the amount of heat absorbed by melting to “(Tm-20) ° C.” at the endothermic peak of the DSC chart, and ΔH (overall) indicates the amount of heat of the entire endothermic peak in the DSC chart.
<重量平均分子量(Mw)と融点(Tm)との関係>
 上記のように、トナーやインク等の用途においては、離型性の観点から低分子量(つまり低粘度)であることが望まれており、重量平均分子量が5000以下であることが望ましい。しかしながら、従来法では、α-オレフィン重合体の重量平均分子量を5000以下とすると、分子量の低下に伴って融点も降下してしまい、分子量と融点とのバランスをとることが難しかった。すなわち、国際公開第2010/117028号に開示されているように、分子量を低くすることで5~6量体等の低量体の割合が増え、低量体のなかでも特に二量体成分量が多くなることによって融点が下がると考えられる。
 これに対し、本発明の製造方法によれば、重量平均分子量が5000以下であっても二量体成分量が少なく融点の降下や低温融解成分量の増加を抑制することができ、低分子量かつ高融点のα-オレフィン重合体を効率良く製造することができる。
 本発明のα-オレフィン重合体中の二量体成分の含有量は、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。上記の二量体の含有量は、例えばガスクロマトグラフィー(GC)を用いて求めることができる。本発明の製造方法により、二量体成分の含有量を10質量%以下とすることができ、特定の触媒を用いたり、重合条件を調整することでより少ない二量体成分の含有量とすることができる。
<Relationship between weight average molecular weight (Mw) and melting point (Tm)>
As described above, in applications such as toner and ink, a low molecular weight (that is, low viscosity) is desired from the viewpoint of releasability, and a weight average molecular weight is desirably 5000 or less. However, in the conventional method, when the weight average molecular weight of the α-olefin polymer is 5000 or less, the melting point is lowered with the decrease of the molecular weight, and it is difficult to balance the molecular weight and the melting point. That is, as disclosed in International Publication No. 2010/117028, by reducing the molecular weight, the proportion of low isomers such as 5-6 mers increases, and the amount of dimer components in particular among the low isomers is increased. It is considered that the melting point is lowered by increasing the amount of.
On the other hand, according to the production method of the present invention, even if the weight average molecular weight is 5000 or less, the amount of dimer component is small, and the decrease in melting point and the increase in low-temperature melting component amount can be suppressed. An α-olefin polymer having a high melting point can be produced efficiently.
The content of the dimer component in the α-olefin polymer of the present invention is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less. Content of said dimer can be calculated | required, for example using gas chromatography (GC). By the production method of the present invention, the content of the dimer component can be 10% by mass or less, and the content of the dimer component can be reduced by using a specific catalyst or adjusting the polymerization conditions. be able to.
 以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to these examples.
[GPC測定]
 下記の装置及び条件にて、ポリスチレン換算値として重量平均分子量(Mw)を測定した。
<GPC測定装置>
 カラム    :TOSO GMHHR-H(S)HT(商品名、東ソー(株)製)
 検出器    :液体クロマトグラム用RI検出器(ウォーターズ・コーポレーション製、商品名:WATERS 150C)
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0ml/分
 試料濃度   :2.2mg/ml
 注入量    :160μl
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
[GPC measurement]
The weight average molecular weight (Mw) was measured as a polystyrene conversion value with the following apparatus and conditions.
<GPC measurement device>
Column: TOSO GMHHR-H (S) HT (trade name, manufactured by Tosoh Corporation)
Detector: RI detector for liquid chromatogram (product name: WATERS 150C, manufactured by Waters Corporation)
<Measurement conditions>
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml
Injection volume: 160 μl
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
[DSC測定]
 示差走査型熱量計(パーキン・エルマー社製、商品名:DSC-7)を用い、試料10mgを窒素雰囲気下、-10℃で5分間保持した後、120℃まで10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測される吸熱ピークのピークトップを融点(Tm)とした。また、融点を測定した際の吸熱ピークの50%高さにおけるピーク幅を半値幅とした。
[DSC measurement]
Using a differential scanning calorimeter (manufactured by Perkin Elmer, trade name: DSC-7), 10 mg of a sample is held at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated to 120 ° C. at 10 ° C./min. The peak end of the endothermic peak observed on the highest temperature side of the melting endothermic curve obtained as described above was taken as the melting point (Tm). In addition, the peak width at 50% height of the endothermic peak when the melting point was measured was defined as the half width.
 また、炭素数26及び28からなるα-オレフィンの混合物を重合して得られるα-オレフィン重合体中の55℃以下の融解成分量は、DSCチャートの吸熱ピークにおける55℃以下の部分の面積及び全体の面積から下記式により算出した。
 α-オレフィン重合体中の55℃以下の融解成分量(%)=(DSCチャートの吸熱ピークにおける55℃以下の部分の面積/DSCチャートにおける吸熱ピーク全体の面積)×100
The amount of the melting component of 55 ° C. or less in the α-olefin polymer obtained by polymerizing the mixture of α-olefins having 26 and 28 carbon atoms is the area of the portion of 55 ° C. or less in the endothermic peak of the DSC chart. The total area was calculated from the following formula.
Melting component amount (%) at 55 ° C. or less in α-olefin polymer = (Area of 55 ° C. or less at endothermic peak of DSC chart / Area of entire endothermic peak at DSC chart) × 100
 また、α-オレフィン重合体中の(α-オレフィン重合体の融点-20)℃の融解成分量は、DSCチャートにおける吸熱ピーク面積から下記式により算出した。
 (Tm-20)℃における融解成分量(%)=ΔH(Tm-20)/ΔH(全体)×100
 式中、Tmはα-オレフィン重合体の融点を示す。ΔH(Tm-20)はDSCチャートの吸熱ピークにおいて、「(Tm-20)℃」までに融解により吸熱した熱量を示し、ΔH(全体)はDSCチャートにおける吸熱ピーク全体の熱量を示す。
Further, the amount of the melting component of (α-olefin polymer melting point−20) ° C. in the α-olefin polymer was calculated from the endothermic peak area in the DSC chart by the following formula.
(Tm−20) Melting component amount at% (%) = ΔH (Tm−20) / ΔH (whole) × 100
In the formula, Tm represents the melting point of the α-olefin polymer. ΔH (Tm-20) indicates the amount of heat absorbed by melting to “(Tm-20) ° C.” at the endothermic peak of the DSC chart, and ΔH (overall) indicates the amount of heat of the entire endothermic peak in the DSC chart.
[GC測定]
 試料0.05gをトルエン5mlに溶解してガスクロマトグラフィー(GC)測定を行い、α-オレフィン重合体中の二量体成分量を求めた。
<GC測定条件>
 カラム:HT-Simdist-CB(5m×0.53mmφ,膜厚:0.17μm)
 カラム温度:50℃(0.1min)、20℃/minで430℃まで上昇、430℃(15min)
 注入口(COC)温度:オーブントラック
 検出器(FID)温度:440℃
 キャリアガス:He
 線速度:40cm/sec
 モード:コンスタントフロー
 注入量:0.5μl
[GC measurement]
A sample of 0.05 g was dissolved in 5 ml of toluene, and gas chromatography (GC) measurement was performed to determine the amount of the dimer component in the α-olefin polymer.
<GC measurement conditions>
Column: HT-Simdist-CB (5 m × 0.53 mmφ, film thickness: 0.17 μm)
Column temperature: 50 ° C. (0.1 min), increased to 430 ° C. at 20 ° C./min, 430 ° C. (15 min)
Inlet (COC) temperature: Oven track Detector (FID) temperature: 440 ° C
Carrier gas: He
Linear velocity: 40 cm / sec
Mode: Constant flow Injection volume: 0.5 μl
実施例1
 まず、特開2002-308893号公報に記載の実施例2と同様の方法で、(1,1’-テトラメチルジシリレン)(2,2’-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロライド(以下、「錯体(1)」という。)を合成した。
 次いで、熱乾燥させた1Lのオートクレーブに、炭素数26及び28からなるα-オレフィンの混合物(C26:56.9質量%、C28:39.4質量%)200ml、トリイソブチルアルミニウム0.5mmol、錯体(1)1μmol、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート4μmolを加え、さらに水素を0.05MPa(G)で導入し、重合温度80℃にて60分間重合した。
 重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、α-オレフィン重合体112gを得た。
Example 1
First, in the same manner as in Example 2 described in JP-A No. 2002-308893, (1,1′-tetramethyldisilene) (2,2′-dimethylsilylene) bis (indenyl) zirconium dichloride (hereinafter, "Complex (1)") was synthesized.
Subsequently, 200 ml of a mixture of α-olefins having 26 and 28 carbon atoms (C26: 56.9% by mass, C28: 39.4% by mass), 0.5 mmol of triisobutylaluminum, complex, and heat-dried 1 L autoclave (1) 1 μmol and 4 μmol of dimethylanilinium tetrakispentafluorophenylborate were added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was carried out at a polymerization temperature of 80 ° C. for 60 minutes.
After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 112 g of an α-olefin polymer.
実施例2~4
 実施例1において、重合温度を表1のとおり変更した以外は、実施例1と同様の方法でα-オレフィン重合体を製造した。
Examples 2-4
An α-olefin polymer was produced in the same manner as in Example 1 except that the polymerization temperature was changed as shown in Table 1 in Example 1.
比較例1
 実施例1において、触媒を、国際公開第08/102729号の製造例1に記載された(1,1’-Me2SiSiMe2)(2,2’-(i-Pr)2NB)ビス(インデニル)ジルコニウムジクロリド(以下、「錯体(2)」という。)に変更し、水素圧及び重合時間を表1のとおり変更した以外は、実施例1と同様の方法でα-オレフィン重合体を製造した。
Comparative Example 1
In Example 1, the catalyst was prepared from (1,1′-Me 2 SiSiMe 2 ) (2,2 ′-(i-Pr) 2 NB) bis (described in Preparation Example 1 of WO 08/102729). Indenyl) Zirconium dichloride (hereinafter referred to as “complex (2)”) was prepared in the same manner as in Example 1 except that the hydrogen pressure and polymerization time were changed as shown in Table 1. did.
実施例5
 加熱乾燥させた1Lのオートクレーブに、炭素数26及び28からなるα-オレフィンの混合物(C26:56.9質量%、C28:39.4質量%)200ml、トリイソブチルアルミニウム0.5mmol、錯体(1)1μmol、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート4μmolを加え、さらに水素を0.05MPa(G)で導入し、重合温度150℃にて60分間重合した。
 重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、α-オレフィン重合体128gを得た。
Example 5
In a 1 L autoclave that had been dried by heating, 200 ml of a mixture of α-olefins having 26 and 28 carbon atoms (C26: 56.9% by mass, C28: 39.4% by mass), 0.5 mmol of triisobutylaluminum, complex (1 ) 1 μmol and 4 μmol of dimethylanilinium tetrakispentafluorophenylborate were added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was carried out at a polymerization temperature of 150 ° C. for 60 minutes.
After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 128 g of an α-olefin polymer.
実施例6
 加熱乾燥させた1Lのオートクレーブに、炭素数20、22及び24からなるα-オレフィンの混合物(C20:42質量%、C22:36質量%、C24:21質量%)400ml、トリイソブチルアルミニウム0.5mmol、錯体(1)1μmol、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート4μmolを加え、さらに水素を0.05MPa(G)で導入し、重合温度110℃にて60分間重合した。
 重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、α-オレフィン重合体185gを得た。
Example 6
In a 1 L autoclave that had been heat-dried, 400 ml of a mixture of α-olefins having 20, 22 and 24 carbon atoms (C20: 42% by mass, C22: 36% by mass, C24: 21% by mass), 0.5 mmol of triisobutylaluminum Then, 1 μmol of complex (1) and 4 μmol of dimethylanilinium tetrakispentafluorophenyl borate were added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was performed at a polymerization temperature of 110 ° C. for 60 minutes.
After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 185 g of an α-olefin polymer.
実施例7
 加熱乾燥させた1Lのオートクレーブに、炭素数16及び18からなるα-オレフィンの混合物(C16:10質量%、C18:90質量%)400ml、トリイソブチルアルミニウム0.5mmol、錯体(1)1μmol、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート4μmolを加え、さらに水素を0.05MPa(G)で導入し、重合温度110℃にて60分間重合した。
 重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、α-オレフィン重合体205gを得た。
Example 7
In a 1 L autoclave that had been dried by heating, 400 ml of a mixture of α-olefins having 16 and 18 carbon atoms (C16: 10% by mass, C18: 90% by mass), 0.5 mmol of triisobutylaluminum, 1 μmol of complex (1), dimethyl Anilinium tetrakispentafluorophenylborate (4 μmol) was added, hydrogen was further introduced at 0.05 MPa (G), and polymerization was carried out at a polymerization temperature of 110 ° C. for 60 minutes.
After the completion of the polymerization reaction, the reaction product was precipitated with acetone, followed by drying under heating and reduced pressure to obtain 205 g of an α-olefin polymer.
比較例2
 加熱乾燥した1リットルオートクレーブに、1-オクタデセン400ml、トリイソブチルアルミニウム1mmol、錯体(3)1μmol、テトラキスペンタフルオロフェニルボレート8μmolを加え、更に水素0.20MPa(G)を導入した。撹拌しながら温度120℃で1時間重合した。
 重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、α-オレフィンオリゴマー105gを得た。
Comparative Example 2
To a heat-dried 1 liter autoclave, 400 ml of 1-octadecene, 1 mmol of triisobutylaluminum, 1 μmol of complex (3), 8 μmol of tetrakispentafluorophenylborate were added, and hydrogen 0.20 MPa (G) was further introduced. Polymerization was conducted for 1 hour at 120 ° C. with stirring.
After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 105 g of an α-olefin oligomer.
比較例3
 加熱乾燥した1リットルオートクレーブに、炭素数20、22及び24からなるα-オレフィンの混合物(C20:42質量%、C22:36質量%、C24:21質量%)400ml、トリイソブチルアルミニウム1mmol、錯体(3)1μmol、テトラキスペンタフルオロフェニルボレート8μmolを加え、更に水素0.15MPa(G)を導入した。撹拌しながら温度110℃で1時間重合した。
 重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、α-オレフィンオリゴマー90gを得た。
Comparative Example 3
In a heat-dried 1 liter autoclave, 400 ml of a mixture of α-olefins having 20, 22 and 24 carbon atoms (C20: 42% by mass, C22: 36% by mass, C24: 21% by mass), 1 mmol of triisobutylaluminum, complex ( 3) 1 μmol and tetrakispentafluorophenyl borate 8 μmol were added, and hydrogen 0.15 MPa (G) was further introduced. Polymerization was conducted for 1 hour at 110 ° C. with stirring.
After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 90 g of an α-olefin oligomer.
比較例4
 加熱乾燥した1リットルオートクレーブに、炭素数26及び28からなるα-オレフィンの混合物(C26:56.9質量%、C28:39.4質量%)400ml、トリイソブチルアルミニウム1mmol、錯体(3)1μmol、テトラキスペンタフルオロフェニルボレート8μmolを加え、更に水素0.15MPa(G)を導入した。撹拌しながら温度120℃で1時間重合した。
 重合反応終了後、反応液をアセトン中へ移した。沈殿物をろ過後、加熱、減圧下にて乾燥することにより、α-オレフィンオリゴマー80gを得た。
Comparative Example 4
In a heat-dried 1 liter autoclave, 400 ml of a mixture of α-olefins having 26 and 28 carbon atoms (C26: 56.9% by mass, C28: 39.4% by mass), 1 mmol of triisobutylaluminum, 1 μmol of complex (3), Tetrakis pentafluorophenyl borate (8 μmol) was added, and hydrogen (0.15 MPa (G)) was further introduced. Polymerization was conducted for 1 hour at 120 ° C. with stirring.
After completion of the polymerization reaction, the reaction solution was transferred into acetone. The precipitate was filtered and then heated and dried under reduced pressure to obtain 80 g of an α-olefin oligomer.
 得られた各α-オレフィン重合体について、上記の方法により物性を測定した。結果を表1に示す。 The physical properties of each α-olefin polymer obtained were measured by the method described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 比較例1では、融点を降下させる要因として考えられる55℃以下の融解成分量が19.8%と高く、(Tm-20)℃における融解成分量も14.3%と高く、α-オレフィン重合体の融点は70℃未満であった。また、収率は37質量%と低いものであった。同様に比較例2~4においても、(Tm-20)℃における融解成分量ともに多く、収率も低い結果であった。
 これに対し、実施例1~4では、重量平均分子量が5000以下であり、かつ、融点が70~120℃の範囲に制御された低分子量かつ高融点のα-オレフィン重合体が得られた。しかも、その収率は67~77質量%であり、比較例1に比べて格段に高いものであった。
 また実施例5は、重量平均分子量が2500と低いにもかかわらず、融点が70℃以上と高い結果であった。
 実施例6は、同じモノマー炭素数の比較例3に比べて、重量平均分子量が低いにもかかわらず、融点が高い結果であった。
 一般的にモノマー炭素数が小さいと重合体の融点が下がる傾向がある。しかし、炭素数18を用いた比較例3と、炭素数16,18のモノマーを用いた実施例7を比較すると、実施例7の方が低分子量かつ高融点のα-オレフィン重合体が得られた結果となっていた。
In Comparative Example 1, the amount of melting component at 55 ° C. or less, which is considered as a factor for lowering the melting point, is as high as 19.8%, the amount of melting component at (Tm-20) ° C. is also high as 14.3%, and α-olefin weight The melting point of the coalescence was less than 70 ° C. The yield was as low as 37% by mass. Similarly, in Comparative Examples 2 to 4, the amount of melting components at (Tm-20) ° C. was large and the yield was low.
In contrast, in Examples 1 to 4, low molecular weight and high melting point α-olefin polymers having a weight average molecular weight of 5000 or less and a melting point controlled in the range of 70 to 120 ° C. were obtained. Moreover, the yield was 67 to 77% by mass, which was much higher than that of Comparative Example 1.
Further, in Example 5, although the weight average molecular weight was as low as 2500, the melting point was as high as 70 ° C. or higher.
In Example 6, the melting point was higher than that in Comparative Example 3 having the same number of monomer carbons, although the weight average molecular weight was low.
Generally, when the number of monomer carbon atoms is small, the melting point of the polymer tends to decrease. However, comparing Comparative Example 3 using 18 carbon atoms and Example 7 using 16 or 18 carbon monomers, Example 7 yielded an α-olefin polymer having a lower molecular weight and a higher melting point. It was the result.
 本発明の方法により製造されるα-オレフィン重合体は、低分子量かつ高融点であり、インキ、塗料、エマルジョン、トナー用離型剤を始めとする各種の用途に有用である。 The α-olefin polymer produced by the method of the present invention has a low molecular weight and a high melting point, and is useful for various applications such as inks, paints, emulsions, and toner release agents.

Claims (10)

  1.  (A)下記一般式(I)で表されるメソ型遷移金属化合物、並びに(B)(B-1)該(A)成分のメソ型遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物、及び(B-2)アルミノキサンから選ばれる少なくとも一種を含有する重合用触媒の存在下、(C)炭素数16~40のα-オレフィンを重合させることを特徴とする、α-オレフィン重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Mは、周期律表第3~10族の金属元素を示す。Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよい。A1及びA2は、それぞれ独立に炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基及びスズ含有基から選ばれる架橋基を示し、A1及びA2は互いに異なる。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。Eは、下記式(II)で表される基であって、2つのEは互いに同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R1は、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示し、pは0~5の整数を示す。複数のR1が存在する場合、それらの互いに同一であっても異なっていてもよい。波線で示される結合は、架橋基-A1-及び-A2-との結合を表す。]
    (A) a meso-type transition metal compound represented by the following general formula (I), and (B) (B-1) a meso-type transition metal compound of component (A) or a derivative thereof to react with an ionic (C) an α-olefin having 16 to 40 carbon atoms is polymerized in the presence of a compound capable of forming a complex, and (B-2) a polymerization catalyst containing at least one selected from aluminoxane, A method for producing an α-olefin polymer.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), M represents a metal element of Groups 3 to 10 of the periodic table. X represents a σ-bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different. A 1 and A 2 each independently represent a crosslinking group selected from a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, and a tin-containing group. , A 1 and A 2 are different from each other. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3. E is a group represented by the following formula (II), and two E may be the same or different from each other. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (II), R 1 represents a group selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group, and a heteroatom-containing group. , P represents an integer of 0 to 5. When several R < 1 > exists, they may mutually be same or different. The bond indicated by the wavy line represents a bond with the bridging groups -A 1 -and -A 2- . ]
  2.  前記一般式(I)において、-A1-で表される架橋基が下記一般式(III-1)で表される基であり、-A2-で表される架橋基が下記一般式(III-2)で表される基である、請求項1に記載のα-オレフィン重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式(III-1)及び(III-2)中、B1及びB2は、それぞれ独立に炭素原子、ケイ素原子、ゲルマニウム原子又はスズ原子を表し、R2a、R3a、R2b及びR3bは、それぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20の酸素原子含有基、炭素数1~20のアミン含有基又は炭素数1~20のハロゲン含有基を表す。m及びnはそれぞれ独立に1以上の整数であり、m+nは3以上である。]
    In the general formula (I), the bridging group represented by —A 1 — is a group represented by the following general formula (III-1), and the bridging group represented by —A 2 — is represented by the following general formula ( The method for producing an α-olefin polymer according to claim 1, which is a group represented by III-2).
    Figure JPOXMLDOC01-appb-C000003
    [In the formulas (III-1) and (III-2), B 1 and B 2 each independently represent a carbon atom, a silicon atom, a germanium atom, or a tin atom, and R 2a , R 3a , R 2b, and R 3b Are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, or an amine having 1 to 20 carbon atoms. And a halogen-containing group having 1 to 20 carbon atoms. m and n are each independently an integer of 1 or more, and m + n is 3 or more. ]
  3.  前記一般式(III-1)及び(III-2)において、B1及びB2が同一であり、mとnとが互いに異なる、請求項2に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 2, wherein in the general formulas (III-1) and (III-2), B 1 and B 2 are the same, and m and n are different from each other.
  4.  前記一般式(III-1)及び(III-2)におけるB1及びB2が炭素原子又はケイ素原子である、請求項2又は3に記載のα-オレフィン重合体の製造方法。 4. The method for producing an α-olefin polymer according to claim 2, wherein B 1 and B 2 in the general formulas (III-1) and (III-2) are carbon atoms or silicon atoms.
  5.  前記一般式(I)におけるMが周期律表第4族の金属元素である、請求項1~4のいずれかに記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to any one of claims 1 to 4, wherein M in the general formula (I) is a metal element of Group 4 of the periodic table.
  6.  前記重合用触媒として、少なくとも前記の(A)成分及び(B)成分、並びに(D)有機アルミニウムを予め接触させたものを使用する、請求項1~5のいずれかに記載のα-オレフィン重合体の製造方法。 The α-olefin heavy catalyst according to any one of claims 1 to 5, wherein at least the components (A) and (B) and (D) organoaluminum previously contacted are used as the polymerization catalyst. Manufacturing method of coalescence.
  7.  前記重合用触媒として、少なくとも前記の(A)成分、(B)成分、(C)成分及び(D)成分を予め接触させたものを使用する、請求項6に記載のα-オレフィン重合体の製造方法。 The α-olefin polymer according to claim 6, wherein at least the component (A), the component (B), the component (C) and the component (D) are used in advance as the polymerization catalyst. Production method.
  8.  請求項1~7のいずれかに記載の方法により製造されたα-オレフィン重合体。 An α-olefin polymer produced by the method according to any one of claims 1 to 7.
  9.  炭素数16~40のα-オレフィンを重合して得られるα-オレフィン重合体であって、(α-オレフィン重合体の融点-20)℃の融解成分量が12%以下である、α-オレフィン重合体。 An α-olefin polymer obtained by polymerizing an α-olefin having 16 to 40 carbon atoms, and having a melting component amount of 12% or less at (melting point of α-olefin polymer−20) ° C. Polymer.
  10.  炭素数16~40のα-オレフィンを重合して得られるα-オレフィン重合体であって、二量体成分の含有量が10質量%以下である、α-オレフィン重合体。 An α-olefin polymer obtained by polymerizing an α-olefin having 16 to 40 carbon atoms and having a dimer component content of 10% by mass or less.
PCT/JP2012/071722 2011-09-01 2012-08-28 Method for producing α-olefin polymer WO2013031779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-191062 2011-09-01
JP2011191062 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031779A1 true WO2013031779A1 (en) 2013-03-07

Family

ID=47756263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071722 WO2013031779A1 (en) 2011-09-01 2012-08-28 Method for producing α-olefin polymer

Country Status (2)

Country Link
TW (1) TW201323463A (en)
WO (1) WO2013031779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147078A1 (en) * 2022-01-31 2023-08-03 Nucera Solutions Llc Poly (alpha-olefin) polymerization process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335607A (en) * 2000-05-30 2001-12-04 Idemitsu Petrochem Co Ltd METHOD FOR PRODUCING alpha-OLEFIN POLYMER, AND LUBRICATING OIL
JP2005075908A (en) * 2003-08-29 2005-03-24 Idemitsu Kosan Co Ltd HIGHER alpha-OLEFIN COPOLYMER AND METHOD FOR PRODUCING THE SAME
WO2008102729A1 (en) * 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. α-OLEFIN POLYMER AND PROCESS FOR PRODUCTION THEREOF
JP2008202024A (en) * 2007-01-23 2008-09-04 Idemitsu Kosan Co Ltd alpha-OLEFIN POLYMER AND METHOD FOR PRODUCING THE SAME
WO2010117028A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Α-olefin ologimer and method for producing same
WO2012035710A1 (en) * 2010-09-16 2012-03-22 出光興産株式会社 Highly viscous higher alphaolefin polymer and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335607A (en) * 2000-05-30 2001-12-04 Idemitsu Petrochem Co Ltd METHOD FOR PRODUCING alpha-OLEFIN POLYMER, AND LUBRICATING OIL
JP2005075908A (en) * 2003-08-29 2005-03-24 Idemitsu Kosan Co Ltd HIGHER alpha-OLEFIN COPOLYMER AND METHOD FOR PRODUCING THE SAME
JP2008202024A (en) * 2007-01-23 2008-09-04 Idemitsu Kosan Co Ltd alpha-OLEFIN POLYMER AND METHOD FOR PRODUCING THE SAME
WO2008102729A1 (en) * 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. α-OLEFIN POLYMER AND PROCESS FOR PRODUCTION THEREOF
WO2010117028A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Α-olefin ologimer and method for producing same
WO2012035710A1 (en) * 2010-09-16 2012-03-22 出光興産株式会社 Highly viscous higher alphaolefin polymer and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147078A1 (en) * 2022-01-31 2023-08-03 Nucera Solutions Llc Poly (alpha-olefin) polymerization process

Also Published As

Publication number Publication date
TW201323463A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
JP3955573B2 (en) Crystalline higher α-olefin polymer and process for producing the same
JP5379677B2 (en) α-olefin polymer and process for producing the same
JP4448579B2 (en) Transition metal compound, catalyst for olefin polymerization, and method for producing olefin polymer
JP2005075908A (en) HIGHER alpha-OLEFIN COPOLYMER AND METHOD FOR PRODUCING THE SAME
WO2013024701A1 (en) Α-olefin oligomer and production method thereof
WO2012035710A1 (en) Highly viscous higher alphaolefin polymer and method for producing same
JP5845259B2 (en) Process for producing olefin polymer
JP2008285443A (en) Transition metal compound, olefin polymerization catalyst containing the same, method for producing olefinic polymer using the catalyst, and terminal-unsaturated propylenic polymer and method for producing the same
US20120095273A1 (en) Alpha-olefin oligomer and method for producing same
EP1247814B1 (en) Transition metal compounds, polymerization catalysts for olefins, olefin polymers and process for their production
JP5043518B2 (en) Asphalt modifier and asphalt composition
JP2009057573A (en) Higher alpha-olefin copolymer and method for producing the same
WO2013031779A1 (en) Method for producing α-olefin polymer
JP4902053B2 (en) Transition metal compound, catalyst for olefin polymerization, olefin polymer and production method thereof
JP5290959B2 (en) Oxidation-modified α-olefin polymer and process for producing the same
JP3436273B2 (en) Olefin polymerization catalyst and method for producing olefin polymer
JPH06340711A (en) Catalyst for polymerization of olefin and production of polyolefin using the catalyst
JP2010150265A (en) Propylene-based polymer, transition metal compound, catalyst, and resin composition and molded article consisting of the polymer
JP2004217798A (en) 1-butene-based polymer and method for producing the same
JP2004196848A (en) Butene block copolymer and method for producing the same
JPWO2008105317A1 (en) Oxidation-modified propylene polymer and process for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP