WO2013031171A1 - Display device and production method for same - Google Patents

Display device and production method for same Download PDF

Info

Publication number
WO2013031171A1
WO2013031171A1 PCT/JP2012/005361 JP2012005361W WO2013031171A1 WO 2013031171 A1 WO2013031171 A1 WO 2013031171A1 JP 2012005361 W JP2012005361 W JP 2012005361W WO 2013031171 A1 WO2013031171 A1 WO 2013031171A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent
metal
layer
black matrix
Prior art date
Application number
PCT/JP2012/005361
Other languages
French (fr)
Japanese (ja)
Inventor
光伸 宮本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013031171A1 publication Critical patent/WO2013031171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material

Definitions

  • the present invention relates to a display device such as a liquid crystal display device and a manufacturing method thereof.
  • a thin display device such as a liquid crystal display device includes an active matrix substrate and a counter substrate facing the active matrix substrate.
  • the active matrix substrate includes, for example, a glass substrate, a TFT (Thin Film Transistor) formed on the glass substrate and provided for each pixel, and a pixel electrode.
  • TFT Thin Film Transistor
  • the counter substrate includes, for example, a glass substrate and a color filter formed on the glass substrate and having a plurality of colored layers.
  • a red (R), green (G), or blue (B) colored layer is disposed.
  • a light shielding layer called a black matrix is provided.
  • the black matrix plays a major role in reducing the TFT's off-leakage current by clarifying the outline of each pixel and suppressing the color mixture of light emitted from each pixel and suppressing the incidence of unnecessary external light on the TFT. Fulfill.
  • the black matrix can be formed by an organic material film colored black, for example.
  • the organic material film has a lower light shielding property than the metal film, it is necessary to make the film thickness relatively large.
  • it is difficult to form an organic material film with a large thickness in a highly accurate dimensional shape when the black matrix is formed of an organic material film, the intended purpose of clarifying the pixel outline is achieved. Is difficult.
  • the black matrix is preferably formed of a metal film having a relatively high light shielding property even if the film thickness is thinner than the organic material film.
  • the black matrix can be formed as a stacked structure in which, for example, a metal film and a metal oxide film that is an antireflection film are stacked. According to this configuration, since the reflectance of external light in the metal oxide film is lower than that in the metal film, it is possible to reduce the incidence of light on the TFT and to suppress the reduction in display contrast.
  • Patent Document 1 discloses that a black matrix antireflection film is formed of amorphous silicon instead of a metal oxide film.
  • a black matrix antireflection film is formed of amorphous silicon instead of a metal oxide film.
  • the refractive index of amorphous silicon changes according to the wavelength of incident light, it is not possible to form an antireflection film having a certain antireflection performance with amorphous silicon. Have difficulty. Therefore, it is preferable to form a black matrix with a metal film and a metal oxide film.
  • the metal oxide film has low adhesion to the glass substrate which is a transparent substrate, if the metal oxide film is directly formed on the glass substrate, the counter substrate on which the black matrix is formed may be structurally unstable. There is. Further, it is desired to further improve the light blocking property and antireflection property of the black matrix.
  • the present invention has been made in view of such a point, and the main object of the present invention is to prevent the black matrix from having a light shielding property while avoiding a decrease in adhesion between the black matrix having a metal oxide film and the transparent substrate.
  • the purpose is to improve the antireflection property.
  • a method of manufacturing a display device includes a step of forming a metal film and a transparent film on a first transparent substrate so as to be laminated with each other, and reducing the transparent film.
  • the metal film and the transparent film are formed on the entire surface of the first transparent substrate, and the black matrix is formed in the step of forming the black matrix.
  • the black matrix is formed in the step of forming the black matrix by etching the dark color film, the metal oxide layer, and the metal layer formed from a transparent film, and forming the colored layer.
  • the colored layer may be formed on the transparent substrate.
  • a step of forming a transparent electrode so as to cover the black matrix and the colored layer may be provided.
  • the transparent film made of a transparent conductive film is formed on the entire surface of one surface of the first transparent substrate, and the metal film is overlapped with a part of the transparent film.
  • the dark film is formed in a region of the transparent film that is in contact with the metal film, while the region that is not in contact with the metal film is defined as a transparent electrode. You may make it do.
  • the metal film and the transparent film may be formed on the surface of the colored layer formed on the first transparent substrate.
  • the metal film is formed so as to overlap a part of the first transparent substrate, and then the step of forming the colored layer is performed so as to be adjacent to the metal film.
  • a colored layer may be formed on the transparent film, and the transparent film made of a transparent conductive film may be formed so as to cover the colored layer and the metal film.
  • the transparent film is preferably heat-treated when the transparent film is reduced.
  • a display device includes a first transparent substrate on which a plurality of colored layers and a black matrix are formed, and a second transparent substrate on which the plurality of switching elements are formed so as to face the first transparent substrate.
  • the black matrix includes a dark color film, a metal layer, and a metal oxide layer interposed between the metal layer and the dark color film.
  • the first transparent substrate is provided with a transparent electrode formed in the same layer as the dark color film of the black matrix, and the dark color film is formed by reducing a transparent film made of the same material as the transparent electrode. May be.
  • the dark color film and the metal oxide layer may be formed on at least one of the first transparent substrate side and the second transparent substrate side in the metal layer.
  • the transparent film and the transparent film are stacked on each other and formed on the first transparent substrate, the transparent film is reduced, so that a dark color film in which the transparent film is darkened can be formed, and the metal film Among them, a dark oxide film side portion can form a metal oxide layer oxidized by oxygen ions supplied from a transparent film to be reduced. Further, the remaining part of the metal film where the metal oxide layer is not formed can be formed as a metal layer. As a result, a black matrix in which the metal oxide layer is disposed between the dark color film and the metal layer can be formed.
  • the metal oxide layer is in contact with the dark color film and the metal layer, but is not in direct contact with the first transparent substrate, thereby avoiding the problem of reduced adhesion between the metal oxide film and the first transparent substrate. it can. Moreover, since not only the metal oxide layer and the metal layer but also the dark color film is provided, the antireflection property and the light shielding property of the black matrix can be further improved. Furthermore, since both the dark color film and the metal oxide layer can be formed simultaneously by the reducing action of the transparent film, an increase in the manufacturing process can be suppressed.
  • FIG. 1 is an enlarged sectional view showing the structure of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the first transparent substrate.
  • FIG. 3 is a cross-sectional view showing a transparent film and a metal film laminated on the first transparent substrate.
  • FIG. 4 is a cross-sectional view showing a dark color film, a metal oxide layer, and a metal layer.
  • FIG. 5 is a cross-sectional view showing a metal oxide layer and a metal layer patterned into a predetermined shape.
  • FIG. 6 is a cross-sectional view showing a patterned dark color film.
  • FIG. 7 is a cross-sectional view showing a colored layer formed between black matrices.
  • FIG. 1 is an enlarged sectional view showing the structure of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the first transparent substrate.
  • FIG. 3 is a cross-sectional view showing a transparent film and
  • FIG. 8 is a cross-sectional view showing a common electrode covering the black matrix and the colored layer.
  • FIG. 9 is a graph showing the relationship between the wavelength of incident light and the reflectance with respect to the black matrix.
  • FIG. 10 is an enlarged cross-sectional view showing the structure of the liquid crystal display device according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing a colored layer formed on the first transparent substrate.
  • FIG. 12 is a cross-sectional view showing a transparent film and a metal film laminated on the surface of the colored layer.
  • FIG. 13 is a cross-sectional view showing a metal layer patterned into a predetermined shape on a transparent film.
  • FIG. 14 is a cross-sectional view showing a transparent electrode, a dark color film, a metal oxide layer, and a metal layer.
  • FIG. 15 is an enlarged sectional view showing the structure of the liquid crystal display device according to the third embodiment.
  • FIG. 16 is a cross-sectional view showing a metal film formed on the first transparent substrate.
  • FIG. 17 is a cross-sectional view showing a metal film patterned into a predetermined shape on the first transparent substrate.
  • FIG. 18 is a cross-sectional view showing a colored layer formed on the first transparent substrate.
  • FIG. 19 is a cross-sectional view showing a transparent film covering the colored layer and the metal film.
  • FIG. 20 is a cross-sectional view showing a transparent electrode, a dark color film, a metal oxide layer, and a metal layer.
  • FIG. 21 is an enlarged sectional view showing the structure of the liquid crystal display device according to the fourth embodiment.
  • FIG. 22 is a cross-sectional view showing a transparent film and a metal film laminated on the first transparent substrate.
  • FIG. 23 is a cross-sectional view showing a dark color film, a metal oxide layer, and a metal layer.
  • FIG. 24 is a cross-sectional view showing a metal oxide layer and a metal layer patterned into a predetermined shape.
  • FIG. 25 is a cross-sectional view showing a patterned dark color film.
  • FIG. 26 is a cross-sectional view showing a colored layer formed between black matrices.
  • FIG. 27 is a cross-sectional view showing a transparent film covering the colored layer and the metal film.
  • FIG. 28 is a cross-sectional view showing the transparent electrode, the first and second dark color films, the first and second metal oxide layers, and the metal layer.
  • FIG. 29 is a table showing the relationship between the refractive index of amorphous silicon and the wavelength of incident light.
  • Embodiment 1 of the Invention 1 to 8 show Embodiment 1 of the present invention.
  • FIG. 1 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the first transparent substrate 21.
  • FIG. 3 is a cross-sectional view showing the transparent film 42 and the metal film 41 laminated on the first transparent substrate 21.
  • FIG. 4 is a cross-sectional view showing the dark color film 31, the metal oxide layer 33, and the metal layer 32.
  • FIG. 5 is a cross-sectional view showing the metal oxide layer 33 and the metal layer 32 patterned into a predetermined shape.
  • FIG. 6 is a sectional view showing the patterned dark color film 31.
  • FIG. 7 is a cross-sectional view showing the colored layer 15 formed between the black matrices 16.
  • FIG. 8 is a cross-sectional view showing the common electrode 17 that covers the black matrix 16 and the colored layer 15.
  • the liquid crystal display device 1 includes a TFT substrate 11 that is an active matrix substrate, and a counter substrate 12 that faces the TFT substrate 11.
  • a liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12.
  • a backlight unit 14 that is a lighting device is disposed on the opposite side of the TFT substrate 11 from the counter substrate 12.
  • the liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix.
  • the counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21.
  • the TFT substrate 11 has a second transparent substrate 22 made of, for example, a glass substrate, opposite to the first transparent substrate 21, and a TFT 24 and a pixel electrode 25 as switching elements formed on the second transparent substrate 22. is doing.
  • the TFT 24 and the pixel electrode 25 are provided in each pixel 20 and connected to each other.
  • the TFT substrate 11 includes a gate electrode 26 formed on the second transparent substrate 22, a gate insulating film 27 covering the gate electrode 26, and a semiconductor layer 28 formed on the surface of the gate insulating film. And an interlayer insulating film 29 covering the semiconductor layer 28.
  • the gate electrode 26 and the semiconductor layer 28 constitute a TFT 24.
  • the pixel electrode 25 is formed on the surface of the interlayer insulating film 29 and connected to the semiconductor layer 28 through a contact hole 30 penetratingly formed in the interlayer insulating film 29.
  • the pixel electrode 25 is formed of a transparent conductive film such as ITO (Indium Tin Oxide).
  • a black matrix 16 formed in a lattice shape when viewed from the normal direction of the surface of the first transparent substrate 21 is formed on the surface of the first transparent substrate 21.
  • the region surrounded by the black matrix 16 is filled with a colored layer 15.
  • the black matrix 16 is disposed between the colored layers 15 adjacent to each other.
  • the colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B). Pixels 20 are formed in regions where the colored layers 15 are arranged.
  • the thickness of the colored layer 15 is the same as the thickness of the black matrix 16.
  • a common electrode 17 made of a transparent conductive film such as ITO is formed on the surface of the colored layer 15 and the black matrix 16 over substantially the entire first transparent substrate 21.
  • the common electrode 17 is an electrode provided in common to the plurality of pixel electrodes 25 of the TFT substrate 11, and regulates the alignment state of the liquid crystal molecules of the liquid crystal layer 13 by controlling the potential difference between each pixel electrode 25. It is supposed to be.
  • the black matrix 16 includes a dark color film 31, a metal layer 32, and a metal oxide layer 33 interposed between the metal layer 32 and the dark color film 31.
  • the dark color film 31 is a film darkened by reduction of IGZO (In—Ga—Zn—O), which is an oxide semiconductor, and is formed on the surface of the first transparent substrate 21.
  • a metal oxide layer 33 made of titanium oxide is formed on the opposite side of the dark color film 31 from the first transparent substrate 21 .
  • a metal layer 32 made of titanium is formed on the opposite side of the metal oxide layer 33 from the dark color film 31, a metal layer 32 made of titanium is formed. That is, the metal oxide layer 33 is an oxide of the metal layer 32.
  • the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  • the liquid crystal display device 1 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
  • a first transparent substrate 21 made of, for example, a glass substrate is prepared.
  • a metal film 41 and a transparent film 42 are formed on the first transparent substrate 21 so as to be laminated with each other.
  • a transparent film 42 made of an oxide semiconductor layer such as IGZO is formed on the surface of the first transparent substrate 21.
  • the transparent film 42 is formed on the entire surface of one surface of the first transparent substrate 21.
  • the thickness of the transparent film 42 is about 50 nm, for example.
  • the transparent film 42 can be formed of a transparent film such as ITO or IZO (IndiumInZinc Oxide) in addition to IGZO.
  • a metal film 41 made of, for example, titanium (Ti) is formed on the surface of the transparent film 42. Similar to the transparent film 42, the metal film 41 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the metal film 41 is about 100 nm, for example. Further, the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
  • a step of forming a black matrix is performed.
  • the transparent film 42 is reduced to darken (blacken) the transparent film 42, and the metal film 41 on the dark film 31 side (transparent film 42 side).
  • a metal oxide layer 33 that is partially oxidized and a metal layer 32 that is a layer other than the metal oxide layer 33 in the metal film 41 are formed.
  • the transparent film 42 is heat-treated at 220 ° C. for 1 hour (annealing process), for example. Thereby, the reduction treatment of the transparent film 42 made of IGZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the transparent film 42.
  • the dark color film 31 is etched using the etched metal layer 32 and metal oxide layer 33 as a mask.
  • oxalic acid is used as the etchant.
  • the dark color film 31 is formed with the same width as the metal layer 32 and the metal oxide layer 33 used as a mask. In this way, the black matrix 16 having the metal layer 32, the metal oxide layer 33, and the dark color film 31 is formed in a lattice pattern when viewed from the normal direction of the surface of the first transparent substrate 21.
  • the plurality of colored layers 15 are formed on the first transparent substrate 21. That is, as shown in FIG. 7, by applying a resin material containing a dye or a pigment to the first transparent substrate 21 on which the black matrix 16 is formed, and patterning the resin material by photolithography, a plurality of materials are obtained.
  • the colored layer 15 is filled in the frame of the black matrix 16 and formed. It is also possible to form the colored layer 15 in a predetermined region by an ink jet method.
  • the colored layer 15 is formed to the same thickness as the black matrix 16. Thus, a color filter having a plurality of colored layers 15 is formed.
  • a common electrode 17 that is a transparent electrode is formed so as to cover the black matrix 16 and the colored layer 15. That is, as shown in FIG. 8, the common electrode 17 is formed by forming a transparent conductive film such as ITO on the entire surface of the black matrix 16 and the colored layer 15 to a thickness of about 100 nm.
  • the common electrode 17 may be formed of, for example, IZO or a conductive film obtained by plasma-treating IGZO other than ITO.
  • positioning a 1st transparent substrate facing a 2nd transparent substrate> the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed.
  • the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  • the transparent film 42 is reduced, so that the transparent film 42 is darkened.
  • the film 31 can be formed, and the metal oxide layer 33 in which the portion of the metal film 41 on the dark color film 31 side is oxidized by oxygen ions supplied from the transparent film 42 to be reduced can be formed. Further, the remaining portion of the metal film 41 where the metal oxide layer 33 is not formed can be formed as the metal layer 32. As a result, the black matrix 16 in which the metal oxide layer 33 is disposed between the dark color film 31 and the metal layer 32 can be formed.
  • the metal oxide layer 33 is in contact with the dark color film 31 and the metal layer 32, but is not in direct contact with the first transparent substrate 21, so that the adhesion between the metal oxide layer 33 and the first transparent substrate 21 is reduced. The problem can be avoided.
  • the antireflection property and light shielding property of the black matrix 16 can be further improved. Therefore, it is possible to reduce the thickness of the black matrix 16 while maintaining the antireflection property and the light shielding property.
  • both the dark color film 31 and the metal oxide layer 33 can be formed simultaneously by the reducing action of the transparent film 42, an increase in the manufacturing process can be suppressed.
  • FIG. 9 is a graph showing the results of actual measurement of the relationship between the wavelength of incident light and the reflectance with respect to the black matrix.
  • FIG. 9 shows a change in reflectance with respect to the wavelength of incident light in a configuration in which a Ti film that is a metal layer is formed on a glass substrate.
  • the graph shown by the solid line in FIG. 9 shows the change in reflectance with respect to the wavelength of incident light in a configuration in which an IGZO film as a dark color film 31 and a Ti film as a metal layer 32 are laminated in this order on a glass substrate. Yes.
  • FIG. 9 it was found that the reflectance of incident light can be greatly reduced by laminating the IGZO film on the metal layer.
  • Embodiment 2 of the Invention >> 10 to 14 show Embodiment 2 of the present invention.
  • the same portions as those in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 10 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing the colored layer 15 formed on the first transparent substrate 21.
  • FIG. 12 is a cross-sectional view showing the transparent film 42 and the metal film 41 laminated on the surface of the colored layer 15.
  • FIG. 13 is a cross-sectional view showing the metal layer 32 patterned into a predetermined shape on the transparent film 42.
  • FIG. 14 is a cross-sectional view showing the transparent electrode 17, the dark color film 31, the metal oxide layer 33, and the metal layer 32.
  • the liquid crystal display device 1 includes a TFT substrate 11 that is an active matrix substrate and a counter substrate 12 that faces the TFT substrate 11.
  • a liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12.
  • a backlight unit 14 that is a lighting device is disposed on the opposite side of the TFT substrate 11 from the counter substrate 12.
  • the liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix.
  • the counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21.
  • the TFT substrate 11 has the same configuration as that in the first embodiment, and is formed on the second transparent substrate 22 and the second transparent substrate 22 which are opposed to the first transparent substrate 21 and are made of, for example, a glass substrate.
  • the TFT 24 and the pixel electrode 25 are used as the switching elements.
  • a plurality of colored layers 15 arranged in a matrix corresponding to the plurality of pixels 20 are formed on the counter substrate 12.
  • the colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B).
  • the colored layers 15 of the respective colors in the present embodiment are arranged adjacent to each other and are formed to have the same thickness.
  • a grid-like black matrix 16 viewed from the normal direction of the surface of the first transparent substrate 21 and a transparent electrode 17 made of a transparent conductive film such as IZO are formed on the surface of the plurality of colored layers 15.
  • a transparent electrode 17 made of a transparent conductive film such as IZO are formed on the surface of the plurality of colored layers 15.
  • the black matrix 16 it is possible to clarify the outline of each pixel 20 and suppress the color mixture of light emitted from each pixel 20, and to suppress the incidence of unnecessary external light to the TFT 24, thereby reducing the off-leak current of the TFT 24. Can be reduced.
  • the transparent electrode 17 is formed in a region surrounded by the black matrix 16.
  • the black matrix 16 includes a dark color film 31, a metal layer 32, and a metal oxide layer 33 interposed between the metal layer 32 and the dark color film 31.
  • the dark color film 31 is formed by reducing the transparent film 42 made of IZO, which is the same material as the transparent electrode 17. That is, the transparent electrode 17 is formed in the same layer as the dark color film 31 with the same thickness.
  • the transparent electrode 17 regulates the alignment state of the liquid crystal molecules in the liquid crystal layer 13 by controlling the potential difference between the transparent electrode 17 and the pixel electrode 25 of the TFT substrate 11.
  • a metal oxide layer 33 made of titanium oxide is formed on the opposite side of the dark color film 31 from the first transparent substrate 21 .
  • a metal layer 32 made of titanium is formed on the opposite side of the metal oxide layer 33 from the dark color film 31 .
  • the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  • the liquid crystal display device 1 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
  • the plurality of colored layers 15 are formed on the first transparent substrate 21. That is, as shown in FIG. 11, a resin material containing a dye or a pigment is applied to the first transparent substrate 21 made of, for example, a glass substrate, and the resin material is patterned by photolithography, so that a plurality of colors are obtained. Layers 15 are formed in contact with each other and arranged in a matrix. It is also possible to form the plurality of colored layers 15 by an ink jet method. The colored layers 15 are formed to have the same thickness.
  • a metal film 41 and a transparent film 42 are formed on the surface of the colored layer 15 so as to be laminated with each other.
  • a transparent film 42 made of a transparent conductive film such as IZO is formed on the surface of the colored layer 15.
  • the transparent film 42 is formed on the entire surface of one surface of the first transparent substrate 21.
  • the thickness of the transparent film 42 is about 100 nm, for example.
  • the transparent film 42 can be formed of a transparent film such as ITO or IGZO in addition to IZO.
  • a metal film 41 made of, for example, titanium (Ti) is formed on the surface of the transparent film 42. Similar to the transparent film 42, the metal film 41 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the metal film 41 is about 100 nm, for example. Further, the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
  • the transparent film 42 made of a transparent conductive film is formed on the entire surface of the first transparent substrate 21 and the metal film 41 is formed so as to overlap a part of the transparent film 42.
  • a step of forming a black matrix is performed. That is, as shown in FIG. 14, by reducing the transparent film 42, the dark film 31 in which the transparent film 42 is darkened (blackened) is formed in a region of the transparent film 42 that is in contact with the metal film 41. On the other hand, a region of the transparent film 42 that is not in contact with the metal film 41 is referred to as a transparent electrode 17. Furthermore, a metal oxide layer 33 in which the dark film 31 side (transparent film 42 side) portion of the metal film 41 is oxidized and a metal layer 32 that is a layer other than the metal oxide layer 33 in the metal film 41 are formed. To do.
  • the transparent film 42 is heat-treated at 250 ° C. for 1 hour (annealing process), for example. Thereby, the reduction treatment of the transparent film 42 made of IZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the transparent film 42.
  • the black matrix 16 having the metal layer 32, the metal oxide layer 33, and the dark color film 31 is formed in a lattice-like pattern when viewed from the normal direction of the surface of the first transparent substrate 21. Further, the transparent electrode 17 is formed simultaneously with the black matrix 16.
  • positioning a 1st transparent substrate facing a 2nd transparent substrate> the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed.
  • the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  • the metal film 41 and the transparent film 42 are stacked on each other and formed on the first transparent substrate 21, and then the transparent film 42 is reduced.
  • the film 42 can form a dark color film 31 that is darkened, and a portion of the metal film 41 on the dark film 31 side forms a metal oxide layer 33 that is oxidized by oxygen ions supplied from the transparent film 42 to be reduced. Can do. Further, the remaining portion of the metal film 41 where the metal oxide layer 33 is not formed can be formed as the metal layer 32. As a result, the black matrix 16 in which the metal oxide layer 33 is disposed between the dark color film 31 and the metal layer 32 can be formed.
  • the metal oxide layer 33 is not in direct contact with the first transparent substrate 21, the problem of reduced adhesion between the metal oxide layer 33 and the first transparent substrate 21 can be avoided. Moreover, since not only the metal oxide layer 33 and the metal layer 32 but also the dark color film 31 is provided, the antireflection property and the light shielding property of the black matrix 16 can be further improved.
  • both the dark color film 31 and the metal oxide layer 33 can be formed simultaneously by the reducing action of the transparent film 42, an increase in the manufacturing process can be suppressed.
  • the dark color film 31 can be simultaneously formed in the same layer as the transparent electrode 17, and the number of manufacturing steps is greatly reduced. be able to.
  • Embodiment 3 of the Invention >> 15 to 20 show Embodiment 3 of the present invention.
  • FIG. 15 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the third embodiment.
  • FIG. 16 is a cross-sectional view showing the metal film 41 formed on the first transparent substrate 21.
  • FIG. 17 is a cross-sectional view showing the metal film 41 patterned in a predetermined shape on the first transparent substrate 21.
  • FIG. 18 is a cross-sectional view showing the colored layer 15 formed on the first transparent substrate 21.
  • FIG. 19 is a cross-sectional view showing a transparent film 42 that covers the colored layer 15 and the metal film 41.
  • FIG. 20 is a cross-sectional view showing the transparent electrode 17, the dark color film 31, the metal oxide layer 33, and the metal layer 32.
  • the liquid crystal display device 1 includes a TFT substrate 11 that is an active matrix substrate, and a counter substrate 12 that faces the TFT substrate 11.
  • a liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12.
  • a backlight unit 14 that is a lighting device is disposed on the opposite side of the TFT substrate 11 from the counter substrate 12.
  • the liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix.
  • the counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21.
  • the TFT substrate 11 has the same configuration as that in the first embodiment, and is formed on the second transparent substrate 22 and the second transparent substrate 22 which are opposed to the first transparent substrate 21 and are made of, for example, a glass substrate.
  • the TFT 24 and the pixel electrode 25 are used as the switching elements.
  • a black matrix 16 formed in a lattice shape when viewed from the normal direction of the surface of the first transparent substrate 21 is formed on the surface of the first transparent substrate 21.
  • a region surrounded by the black matrix 16 is filled with a colored layer 15.
  • the black matrix 16 is disposed between the colored layers 15 adjacent to each other.
  • the colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B).
  • Pixels 20 are formed in regions where the colored layers 15 are arranged.
  • a transparent electrode 17 made of a transparent conductive film such as IZO is formed on the surface of each colored layer 15. The transparent electrode 17 is formed in a region surrounded by the black matrix 16.
  • the black matrix 16 includes a dark color film 31, a metal layer 32, and a metal oxide layer 33 interposed between the metal layer 32 and the dark color film 31.
  • the dark color film 31 is formed by reducing the transparent film 42 made of IZO, which is the same material as the transparent electrode 17. That is, the transparent electrode 17 is formed in the same layer as the dark color film 31 with the same thickness.
  • the transparent electrode 17 regulates the alignment state of the liquid crystal molecules in the liquid crystal layer 13 by controlling the potential difference between the transparent electrode 17 and the pixel electrode 25 of the TFT substrate 11.
  • a metal oxide layer 33 made of titanium oxide is formed on the dark film 31 on the first transparent substrate 21 side.
  • a metal layer 32 made of titanium is formed on the first transparent substrate 21 side of the metal oxide layer 33.
  • the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  • the liquid crystal display device 1 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
  • the colored layer is formed in the step of forming the metal film and the transparent film.
  • a metal film 41 made of, for example, titanium (Ti) is formed on the entire surface of one surface of the first transparent substrate 21 on the surface of the first transparent substrate 21 made of, for example, a glass substrate.
  • the thickness of the metal film 41 is about 100 nm, for example.
  • the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
  • the metal film 41 is formed so as to overlap a part of the first transparent substrate 21.
  • the colored layer 15 is formed, and a resin material containing a dye or a pigment is applied to the metal film 41 formed in the lattice pattern, and the resin material Is patterned by photolithography to fill the frame of the metal film 41 with the plurality of colored layers 15. It is also possible to form the colored layer 15 in a predetermined region by an ink jet method.
  • the colored layer 15 is formed with the same thickness as the metal film 41. Thus, the colored layer 15 is formed so as to be adjacent to the metal film 41.
  • a transparent film 42 made of a transparent conductive film such as IZO is formed so as to cover the colored layer 15 and the metal film 41.
  • the transparent film 42 is formed on the entire surface of one surface of the first transparent substrate 21.
  • the thickness of the transparent film 42 is about 100 nm, for example.
  • the transparent film 42 can be formed of a transparent film such as ITO or IGZO in addition to IZO.
  • a step of forming a black matrix is performed. That is, as shown in FIG. 20, by reducing the transparent film 42, the dark film 31 in which the transparent film 42 is darkened (blackened) is formed in a region of the transparent film 42 that is in contact with the metal film 41. On the other hand, a region of the transparent film 42 that is not in contact with the metal film 41 is referred to as a transparent electrode 17. Furthermore, a metal oxide layer 33 in which the dark film 31 side (transparent film 42 side) portion of the metal film 41 is oxidized and a metal layer 32 that is a layer other than the metal oxide layer 33 in the metal film 41 are formed. To do.
  • the transparent film 42 is heat-treated at 250 ° C. for 1 hour (annealing process), for example. Thereby, the reduction treatment of the transparent film 42 made of IZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the transparent film 42.
  • the black matrix 16 having the metal layer 32, the metal oxide layer 33, and the dark color film 31 is formed in a lattice-like pattern when viewed from the normal direction of the surface of the first transparent substrate 21. Further, the transparent electrode 17 is formed simultaneously with the black matrix 16.
  • positioning a 1st transparent substrate facing a 2nd transparent substrate> the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed.
  • the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  • the transparent film 42 is reduced.
  • the film 42 can form a dark color film 31 that is darkened, and a portion of the metal film 41 on the dark film 31 side forms a metal oxide layer 33 that is oxidized by oxygen ions supplied from the transparent film 42 to be reduced. Can do. Further, the remaining portion of the metal film 41 where the metal oxide layer 33 is not formed can be formed as the metal layer 32. As a result, the black matrix 16 in which the metal oxide layer 33 is disposed between the dark color film 31 and the metal layer 32 can be formed.
  • the metal oxide layer 33 is not in direct contact with the first transparent substrate 21, the problem of reduced adhesion between the metal oxide layer 33 and the first transparent substrate 21 can be avoided. Moreover, since not only the metal oxide layer 33 and the metal layer 32 but also the dark color film 31 is provided, the antireflection property and the light shielding property of the black matrix 16 can be further improved.
  • both the dark color film 31 and the metal oxide layer 33 can be formed simultaneously by the reducing action of the transparent film 42, an increase in the manufacturing process can be suppressed.
  • the dark color film 31 can be simultaneously formed in the same layer as the transparent electrode 17, and the number of manufacturing steps is greatly reduced. be able to.
  • Embodiment 4 of the Invention >> 21 to 28 show Embodiment 4 of the present invention.
  • FIG. 21 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the fourth embodiment.
  • FIG. 22 is a cross-sectional view showing the transparent film 42 and the metal film 41 laminated on the first transparent substrate 21.
  • FIG. 23 is a cross-sectional view showing the dark color film 31, the metal oxide layer 33, and the metal layer 32.
  • FIG. 24 is a cross-sectional view showing the metal oxide layer 33 and the metal layer 32 patterned into a predetermined shape.
  • FIG. 25 is a cross-sectional view showing the patterned dark color film 31.
  • FIG. 26 is a cross-sectional view showing the colored layer 15 formed between the black matrices 16.
  • FIG. 27 is a cross-sectional view showing a transparent film 42 that covers the colored layer 15 and the metal layer 32.
  • FIG. 28 is a cross-sectional view showing the transparent electrode 17, the first and second dark color films 31 a and 31 b, the first and second metal oxide layers 33 a and 33 b, and the metal layer 32.
  • the liquid crystal display device 1 includes a TFT substrate 11 that is an active matrix substrate and a counter substrate 12 that faces the TFT substrate 11.
  • a liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12.
  • a backlight unit 14 that is a lighting device is disposed on the opposite side of the TFT substrate 11 from the counter substrate 12.
  • the liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix.
  • the counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21.
  • the TFT substrate 11 has the same configuration as that in the first embodiment, and is formed on the second transparent substrate 22 and the second transparent substrate 22 which are opposed to the first transparent substrate 21 and are made of, for example, a glass substrate.
  • the TFT 24 and the pixel electrode 25 are used as the switching elements.
  • a black matrix 16 formed in a lattice shape when viewed from the normal direction of the surface of the first transparent substrate 21 is formed on the surface of the first transparent substrate 21.
  • a region surrounded by the black matrix 16 is filled with a colored layer 15.
  • the black matrix 16 is disposed between the colored layers 15 adjacent to each other.
  • the colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B).
  • Pixels 20 are formed in regions where the colored layers 15 are arranged.
  • a transparent electrode 17 made of a transparent conductive film such as IZO is formed on the surface of each colored layer 15. The transparent electrode 17 is formed in a region surrounded by the black matrix 16.
  • the black matrix 16 includes a first dark color film 31a formed on the surface of the first transparent substrate 21, a first metal oxide layer 33a stacked on the first dark color film 31a, and a first oxidation film.
  • the metal layer 32 is interposed between the first and second metal oxide layers 33a and 33b between the first and second dark color films 31a and 31b.
  • the first dark color film 31a is formed by reducing a transparent film such as IGZO, for example.
  • the second dark color film 31 b is formed by reducing a transparent film made of IZO, which is the same material as the transparent electrode 17.
  • the transparent electrode 17 is formed in the same layer as the second dark color film 31b with the same thickness.
  • the transparent electrode 17 regulates the alignment state of the liquid crystal molecules in the liquid crystal layer 13 by controlling the potential difference between the transparent electrode 17 and the pixel electrode 25 of the TFT substrate 11.
  • the first and second metal oxide layers 33a and 33b are made of, for example, titanium oxide.
  • the metal layer 32 is made of, for example, titanium. That is, the first and second metal oxide layers 33 a and 33 b are oxides of the metal layer 32.
  • the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  • the liquid crystal display device 1 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
  • a first transparent film 42a made of an oxide semiconductor layer such as IGZO is formed on the surface of the first transparent substrate 21 as shown in FIG.
  • the first transparent film 42 a is formed on the entire surface of one surface of the first transparent substrate 21.
  • the thickness of the first transparent film 42a is about 50 nm, for example.
  • the first transparent film 42a can be formed of a transparent film such as ITO or IZO (Indium Zinc Oxide) in addition to IGZO.
  • a metal film 41 made of, for example, titanium (Ti) is formed on the surface of the first transparent film 42a.
  • the metal film 41 is formed on the entire surface of one surface of the first transparent substrate 21 in the same manner as the first transparent film 42a.
  • the thickness of the metal film 41 is about 150 nm, for example.
  • the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
  • a step of forming a black matrix is performed.
  • the first transparent film 42a is darkened (blackened) by reducing the first transparent film 42a.
  • 31a a first metal oxide layer 33a in which a portion of the metal film 41 on the first dark color film 31a side (first transparent film 42a side) is oxidized, and a layer other than the first metal oxide layer 33a in the metal film 41
  • the metal layer 32 is formed.
  • the first transparent film 42a When the first transparent film 42a is reduced, the first transparent film 42a is heat-treated at 220 ° C. for 1 hour (annealing process), for example. Thereby, the reduction process of the first transparent film 42a made of IGZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the first transparent film 42a.
  • the first dark color film 31a is etched using the etched metal layer 32 and first metal oxide layer 33a as a mask.
  • oxalic acid is used as the etchant.
  • the first dark color film 31a is formed to have the same width as the metal layer 32 and the first metal oxide layer 33a used as a mask.
  • the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32 are formed in a lattice pattern as viewed from the normal direction of the surface of the first transparent substrate 21.
  • Step of forming a colored layer in the step of forming the black matrix 16, the step of forming the colored layer 15 is performed. That is, as a second step, as shown in FIG. 26, a resin containing a dye or pigment or the like for the first transparent substrate 21 on which the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32 are formed.
  • the plurality of colored layers 15 are filled in a lattice-shaped frame composed of the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32.
  • the colored layer 15 is formed to have the same thickness as the stacked body 45 of the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32. It is also possible to form the colored layer 15 in a predetermined region by an ink jet method.
  • a second transparent film 42b covering the metal layer 32 and the plurality of colored layers 15 is formed.
  • the second transparent film 42b is formed of a transparent conductive film such as IZO.
  • the second transparent film 42 b is formed on the entire surface of one surface of the first transparent substrate 21.
  • the thickness of the second transparent film 42b is about 100 nm, for example.
  • the second transparent film 42b can be formed of a transparent film such as ITO or IGZO in addition to IZO.
  • the second transparent film 42b is brought into contact with the metal layer 32.
  • the second transparent film 42b forms a darkened (blackened) second dark color film 31b, while a region of the first transparent film 42a that is not in contact with the metal film 41 is referred to as a transparent electrode 17.
  • a second metal oxide layer 33b is formed in which the portion of the metal layer 32 on the second dark color film 31b side (second transparent film 42b side) is oxidized. At this time, the metal layer 32 remains with a predetermined thickness between the first metal oxide layer 33a and the second metal oxide layer 33b.
  • the second transparent film 42b is heat-treated at 250 ° C. for 1 hour (annealing process), for example. Thereby, the reduction process of the second transparent film 42b made of IZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the second transparent film 42b.
  • the black matrix 16 having the metal layer 32, the first and second metal oxide layers 33 a and 33 b, and the first and second dark color films 31 a and 31 b is a lattice as viewed from the normal direction of the surface of the first transparent substrate 21. It is formed into a pattern. Further, the transparent electrode 17 is formed simultaneously with the black matrix 16.
  • positioning a 1st transparent substrate facing a 2nd transparent substrate> the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed.
  • the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  • the fourth embodiment since the metal film 41 and the first transparent film 42a are stacked on each other and formed on the first transparent substrate 21, the first transparent film 42a is reduced. 31a can be formed, and the first metal oxide layer 33a in which a portion of the metal film 41 on the first dark color film 31a side is oxidized by oxygen ions supplied from the reduced first transparent film 42a can be formed. Further, since the second transparent film 42b is reduced after the second transparent film 42b is laminated on the metal layer 32, the second dark color film 31b can be formed, and the second dark color film 31b side of the metal layer 32 can be formed.
  • This portion can form the second metal oxide layer 33b oxidized by oxygen ions supplied from the second transparent film 42b to be reduced. Further, the remaining portion of the metal film 41 where the first and second metal oxide layers 33 a and 33 b are not formed can be formed as the metal layer 32. As a result, the first metal oxide layer 33a is disposed between the first dark color film 31a and the metal layer 32, and the second metal oxide layer 33b is disposed between the second dark color film 31b and the metal layer 32. A black matrix 16 can be formed.
  • first and second metal oxide layers 33a and 33b do not directly contact the first transparent substrate 21, respectively, the adhesion between the first and second metal oxide layers 33a and 33b and the first transparent substrate 21 is reduced. The problem can be avoided.
  • first and second dark color films 31a and 31b are provided in addition to the first and second metal oxide layers 33a and 33b and the metal layer 32, the antireflection property and the light shielding property of the black matrix 16 are further improved. Can be increased.
  • light incident on the black matrix 16 from the first transparent substrate 21 side and from the liquid crystal layer 13 side can be shielded by the entire black matrix 16 including the first and second dark color films 31a and 31b. Further, the light incident on the black matrix 16 from the first transparent substrate 21 side can be suitably suppressed from reflection by the first dark color film 31a and the first metal oxide layer 33a. On the other hand, the reflection of light incident on the black matrix 16 from the liquid crystal layer 13 side can be suitably suppressed by the second dark color film 31b and the second metal oxide layer 33b.
  • both the first dark color film 31a and the first metal oxide layer 33a can be formed simultaneously by the reducing action of the first transparent film 42a, an increase in manufacturing steps can be suppressed.
  • the second dark color film 31b and the second metal oxide layer 33b can be simultaneously formed by the reducing action of the second transparent film 42b.
  • part of the second transparent film 42b made of IZO, which is the same material as the transparent electrode 17, is reduced, the second dark color film 31b can be simultaneously formed on the same layer as the transparent electrode 17, and the number of manufacturing steps can be reduced. It can be greatly reduced.
  • the liquid crystal display device has been described as an example of the display device.
  • the present invention is not limited to this, and can be similarly applied to other display devices such as an organic EL display device.
  • the dark color film 31 and the metal oxide layer 33 may be formed on at least one of the metal layer 32 on the first transparent substrate 21 side and the second transparent substrate 22 side.
  • the present invention is not limited to the above-described first to fourth embodiments, and the present invention includes a configuration in which these first to fourth embodiments are appropriately combined.
  • the present invention is useful for a display device such as a liquid crystal display device and a method for manufacturing the same.
  • Liquid crystal display device 15 Colored layer 16 Black matrix 17 Common electrode, transparent electrode 21 First transparent substrate 22 Second transparent substrate 24 TFT (switching element) 31 Dark film 31a First dark film 31b Second dark film 32 metal layers 33 Metal oxide layer 33a First metal oxide layer 33b Second metal oxide layer 41 Metal film 42 Transparent film 42a First transparent film 42b Second transparent film 45 Laminate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

A production method for a display device comprises: a step for layering a metal film and a transparent film on each other on a first transparent substrate; a step for forming a dark film, a metal oxide layer, and a metal layer through reduction of the transparent film, and forming a black matrix having at least a part of each of the dark film, the metal oxide layer, and the metal layer; a step for forming a plurality of colored layers on the first transparent substrate; and a step for disposing the first transparent substrate, on which the colored layers and the black matrix have been formed, so as to face a second transparent substrate on which a plurality of switching elements have been formed.

Description

表示装置及びその製造方法Display device and manufacturing method thereof
 本発明は、例えば液晶表示装置等の表示装置及びその製造方法に関するものである。 The present invention relates to a display device such as a liquid crystal display device and a manufacturing method thereof.
 例えば液晶表示装置等の薄型の表示装置は、アクティブマトリクス基板と、このアクティブマトリクス基板に対向する対向基板とを備えている。また、表示装置には、マトリクス状に配置された複数の画素が形成されている。アクティブマトリクス基板は、例えばガラス基板と、ガラス基板に形成されて各画素毎に設けられたTFT(Thin Film Transistor)及び画素電極とを有している。 For example, a thin display device such as a liquid crystal display device includes an active matrix substrate and a counter substrate facing the active matrix substrate. In the display device, a plurality of pixels arranged in a matrix are formed. The active matrix substrate includes, for example, a glass substrate, a TFT (Thin Film Transistor) formed on the glass substrate and provided for each pixel, and a pixel electrode.
 一方、対向基板は、例えばガラス基板と、ガラス基板に形成されて複数色の着色層を有するカラーフィルタとを有している。各画素には、例えば赤色(R)、緑色(G)又は青色(B)の着色層が配置されている。 On the other hand, the counter substrate includes, for example, a glass substrate and a color filter formed on the glass substrate and having a plurality of colored layers. In each pixel, for example, a red (R), green (G), or blue (B) colored layer is disposed.
 互いに隣り合う着色層同士の間には、ブラックマトリクスと呼ばれる遮光層が設けられている。ブラックマトリクスは、各画素の輪郭を明瞭にして各画素から出射される光の混色を抑制すると共に、TFTへの不要な外光の入射を抑制してTFTのオフリーク電流を低減するのに大きな役割を果たす。 Between the colored layers adjacent to each other, a light shielding layer called a black matrix is provided. The black matrix plays a major role in reducing the TFT's off-leakage current by clarifying the outline of each pixel and suppressing the color mixture of light emitted from each pixel and suppressing the incidence of unnecessary external light on the TFT. Fulfill.
 ブラックマトリクスは、例えば、黒色に着色された有機材料膜によって形成することが可能である。ただし、有機材料膜は金属膜に比べて遮光性が低いので、その膜厚を比較的大きくする必要がある。しかし、厚みが大きい有機材料膜を高精度の寸法形状に形成することは困難であるため、ブラックマトリクスを有機材料膜によって形成する場合、画素の輪郭を明瞭にするという所期の目的を果たすことは難しい。 The black matrix can be formed by an organic material film colored black, for example. However, since the organic material film has a lower light shielding property than the metal film, it is necessary to make the film thickness relatively large. However, since it is difficult to form an organic material film with a large thickness in a highly accurate dimensional shape, when the black matrix is formed of an organic material film, the intended purpose of clarifying the pixel outline is achieved. Is difficult.
 そのため、ブラックマトリクスは、膜厚が有機材料膜よりも薄くても比較的高い遮光性を有する金属膜によって形成することが好ましい。かかる場合、ブラックマトリクスは、例えば金属膜と反射防止膜である酸化金属膜とが積層された積層構造として形成することが可能である。この構成によれば、酸化金属膜における外光の反射率が金属膜よりも低くなるため、TFTへの光の入射を低減したり、表示のコントラスト低下を抑制することが可能になる。 Therefore, the black matrix is preferably formed of a metal film having a relatively high light shielding property even if the film thickness is thinner than the organic material film. In such a case, the black matrix can be formed as a stacked structure in which, for example, a metal film and a metal oxide film that is an antireflection film are stacked. According to this configuration, since the reflectance of external light in the metal oxide film is lower than that in the metal film, it is possible to reduce the incidence of light on the TFT and to suppress the reduction in display contrast.
 一方、特許文献1には、ブラックマトリクスの反射防止膜を、酸化金属膜ではなくアモルファスシリコンによって形成することが開示されている。しかし、実際には、図29の表に示すように、アモルファスシリコンの屈折率は入射光の波長に応じて変化するため、アモルファスシリコンによって一定の反射防止性能を有する反射防止膜を形成することは困難である。したがって、金属膜及び酸化金属膜によってブラックマトリクスを形成することが好ましい。 On the other hand, Patent Document 1 discloses that a black matrix antireflection film is formed of amorphous silicon instead of a metal oxide film. However, in practice, as shown in the table of FIG. 29, since the refractive index of amorphous silicon changes according to the wavelength of incident light, it is not possible to form an antireflection film having a certain antireflection performance with amorphous silicon. Have difficulty. Therefore, it is preferable to form a black matrix with a metal film and a metal oxide film.
特開平10-177185号公報Japanese Patent Laid-Open No. 10-177185
 しかし、酸化金属膜は、透明基板であるガラス基板との密着性が低いため、酸化金属膜をガラス基板に直接に成膜するとブラックマトリクスが形成された対向基板が構造的に不安定となる虞がある。さらに、ブラックマトリクスの遮光性及び反射防止性については、より高めることが望まれる。 However, since the metal oxide film has low adhesion to the glass substrate which is a transparent substrate, if the metal oxide film is directly formed on the glass substrate, the counter substrate on which the black matrix is formed may be structurally unstable. There is. Further, it is desired to further improve the light blocking property and antireflection property of the black matrix.
 本発明は、斯かる点に鑑みてなされたものであり、その主たる目的とするところは、酸化金属膜を有するブラックマトリクスと透明基板との密着性低下を回避しつつ、ブラックマトリクスの遮光性及び反射防止性の向上を図ることにある。 The present invention has been made in view of such a point, and the main object of the present invention is to prevent the black matrix from having a light shielding property while avoiding a decrease in adhesion between the black matrix having a metal oxide film and the transparent substrate. The purpose is to improve the antireflection property.
 上記の目的を達成するために、本発明に係る表示装置の製造方法は、第1透明基板に金属膜及び透明膜を互いに積層されるように形成する工程と、上記透明膜を還元することによって、該透明膜が暗色化した暗色膜と、上記金属膜のうち上記暗色膜側の部分が酸化された酸化金属層と、上記金属膜のうち上記酸化金属層以外の金属層とをそれぞれ形成し、上記暗色膜、上記酸化金属層及び上記金属層の各少なくとも一部を有するブラックマトリクスを形成する工程と、複数の着色層を上記第1透明基板に形成する工程と、上記着色層及び上記ブラックマトリクスが形成された上記第1透明基板を、複数のスイッチング素子を形成した第2透明基板に対向配置させる工程とを有する。 In order to achieve the above object, a method of manufacturing a display device according to the present invention includes a step of forming a metal film and a transparent film on a first transparent substrate so as to be laminated with each other, and reducing the transparent film. A dark color film in which the transparent film is darkened; a metal oxide layer in which a portion of the metal film on the dark color film side is oxidized; and a metal layer other than the metal oxide layer in the metal film. , A step of forming a black matrix having at least a part of each of the dark film, the metal oxide layer, and the metal layer, a step of forming a plurality of colored layers on the first transparent substrate, the colored layer, and the black And disposing the first transparent substrate on which the matrix is formed facing the second transparent substrate on which a plurality of switching elements are formed.
 上記金属膜及び上記透明膜を形成する工程では、上記第1透明基板の一方の表面側全体に上記金属膜及び上記透明膜を形成し、上記ブラックマトリクスを形成する工程では、上記金属膜及び上記透明膜から形成された上記暗色膜、上記酸化金属層及び上記金属層をそれぞれエッチングすることによって上記ブラックマトリクスを形成し、上記着色層を形成する工程では、上記ブラックマトリクスが形成された上記第1透明基板に対し、上記着色層を形成するようにしてもよい。 In the step of forming the metal film and the transparent film, the metal film and the transparent film are formed on the entire surface of the first transparent substrate, and the black matrix is formed in the step of forming the black matrix. In the step of forming the black matrix by etching the dark color film, the metal oxide layer, and the metal layer formed from a transparent film, and forming the colored layer, the first matrix in which the black matrix is formed is formed. The colored layer may be formed on the transparent substrate.
 上記ブラックマトリクス及び上記着色層を覆うように透明電極を形成する工程を有するようにしてもよい。 A step of forming a transparent electrode so as to cover the black matrix and the colored layer may be provided.
 上記金属膜及び上記透明膜を形成する工程では、透明導電膜からなる上記透明膜を上記第1透明基板の一方の表面側全体に形成すると共に、上記金属膜を上記透明膜の一部に重なるように形成し、上記ブラックマトリクスを形成する工程では、上記透明膜のうち上記金属膜に接触している領域に上記暗色膜を形成する一方、上記金属膜に接触していない領域を透明電極とするようにしてもよい。 In the step of forming the metal film and the transparent film, the transparent film made of a transparent conductive film is formed on the entire surface of one surface of the first transparent substrate, and the metal film is overlapped with a part of the transparent film. In the step of forming the black matrix, the dark film is formed in a region of the transparent film that is in contact with the metal film, while the region that is not in contact with the metal film is defined as a transparent electrode. You may make it do.
 上記金属膜及び上記透明膜を形成する工程では、上記第1透明基板に形成した上記着色層の表面に上記金属膜及び上記透明膜を形成するようにしてもよい。 In the step of forming the metal film and the transparent film, the metal film and the transparent film may be formed on the surface of the colored layer formed on the first transparent substrate.
 上記金属膜及び上記透明膜を形成する工程では、上記金属膜を上記第1透明基板の一部に重なるように形成した後に、上記着色層を形成する工程を行って上記金属膜に隣接するように着色層を形成し、さらに上記着色層及び上記金属膜を覆うように透明導電膜からなる上記透明膜を形成するようにしてもよい。 In the step of forming the metal film and the transparent film, the metal film is formed so as to overlap a part of the first transparent substrate, and then the step of forming the colored layer is performed so as to be adjacent to the metal film. A colored layer may be formed on the transparent film, and the transparent film made of a transparent conductive film may be formed so as to cover the colored layer and the metal film.
 上記ブラックマトリクスを形成する工程では、上記透明膜を還元する際に該透明膜を加熱処理することが好ましい。 In the step of forming the black matrix, the transparent film is preferably heat-treated when the transparent film is reduced.
 また、本発明に係る表示装置は、複数の着色層とブラックマトリクスとが形成された第1透明基板と、上記第1透明基板に対向して配置され、複数のスイッチング素子が形成された第2透明基板とを備え、上記ブラックマトリクスは、暗色膜と、金属層と、該金属層及び上記暗色膜の間に介在された酸化金属層とを有している。 In addition, a display device according to the present invention includes a first transparent substrate on which a plurality of colored layers and a black matrix are formed, and a second transparent substrate on which the plurality of switching elements are formed so as to face the first transparent substrate. The black matrix includes a dark color film, a metal layer, and a metal oxide layer interposed between the metal layer and the dark color film.
 上記第1透明基板には、上記ブラックマトリクスの暗色膜と同じ層に形成された透明電極が設けられ、上記暗色膜は、上記透明電極と同じ材料からなる透明膜が還元することにより形成されていてもよい。 The first transparent substrate is provided with a transparent electrode formed in the same layer as the dark color film of the black matrix, and the dark color film is formed by reducing a transparent film made of the same material as the transparent electrode. May be.
 上記暗色膜及び上記酸化金属層は、上記金属層における上記第1透明基板側及び上記第2透明基板側の少なくとも一方に形成されていてもよい。 The dark color film and the metal oxide layer may be formed on at least one of the first transparent substrate side and the second transparent substrate side in the metal layer.
 本発明によれば、金属膜及び透明膜を互いに積層して第1透明基板に形成した後に、透明膜を還元するようにしたので、透明膜が暗色化した暗色膜を形成できると共に、金属膜のうち暗色膜側の部分が、還元される透明膜から供給される酸素イオンによって酸化した酸化金属層を形成することができる。また、金属膜のうち酸化金属層が形成されなかった残りの部分を金属層として形成することができる。その結果、酸化金属層が暗色膜と金属層との間に配置されたブラックマトリクスを形成することができる。 According to the present invention, since the metal film and the transparent film are stacked on each other and formed on the first transparent substrate, the transparent film is reduced, so that a dark color film in which the transparent film is darkened can be formed, and the metal film Among them, a dark oxide film side portion can form a metal oxide layer oxidized by oxygen ions supplied from a transparent film to be reduced. Further, the remaining part of the metal film where the metal oxide layer is not formed can be formed as a metal layer. As a result, a black matrix in which the metal oxide layer is disposed between the dark color film and the metal layer can be formed.
 よって、酸化金属層は、暗色膜及び金属層に接触する一方、第1透明基板には直接に接触しないため、その酸化金属膜と第1透明基板との密着性低下の問題を回避することができる。しかも、酸化金属層及び金属層だけでなく暗色膜を設けるようにしたので、当該ブラックマトリクスの反射防止性及び遮光性をより高めることができる。さらに、透明膜の還元作用によって、暗色膜及び酸化金属層の双方を同時に形成できるので、製造工程の増加を抑制することができる。 Therefore, the metal oxide layer is in contact with the dark color film and the metal layer, but is not in direct contact with the first transparent substrate, thereby avoiding the problem of reduced adhesion between the metal oxide film and the first transparent substrate. it can. Moreover, since not only the metal oxide layer and the metal layer but also the dark color film is provided, the antireflection property and the light shielding property of the black matrix can be further improved. Furthermore, since both the dark color film and the metal oxide layer can be formed simultaneously by the reducing action of the transparent film, an increase in the manufacturing process can be suppressed.
図1は、本実施形態1における液晶表示装置の構造を拡大して示す断面図である。FIG. 1 is an enlarged sectional view showing the structure of the liquid crystal display device according to the first embodiment. 図2は、第1透明基板を示す断面図である。FIG. 2 is a cross-sectional view showing the first transparent substrate. 図3は、第1透明基板に積層された透明膜及び金属膜を示す断面図である。FIG. 3 is a cross-sectional view showing a transparent film and a metal film laminated on the first transparent substrate. 図4は、暗色膜、酸化金属層及び金属層を示す断面図である。FIG. 4 is a cross-sectional view showing a dark color film, a metal oxide layer, and a metal layer. 図5は、所定形状にパターニングされた酸化金属層及び金属層を示す断面図である。FIG. 5 is a cross-sectional view showing a metal oxide layer and a metal layer patterned into a predetermined shape. 図6は、パターニングされた暗色膜を示す断面図である。FIG. 6 is a cross-sectional view showing a patterned dark color film. 図7は、ブラックマトリクスの間に形成された着色層を示す断面図である。FIG. 7 is a cross-sectional view showing a colored layer formed between black matrices. 図8は、ブラックマトリクス及び着色層を覆う共通電極を示す断面図である。FIG. 8 is a cross-sectional view showing a common electrode covering the black matrix and the colored layer. 図9は、ブラックマトリクスに対する入射光の波長と反射率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the wavelength of incident light and the reflectance with respect to the black matrix. 図10は、本実施形態2における液晶表示装置の構造を拡大して示す断面図である。FIG. 10 is an enlarged cross-sectional view showing the structure of the liquid crystal display device according to the second embodiment. 図11は、第1透明基板に形成された着色層を示す断面図である。FIG. 11 is a cross-sectional view showing a colored layer formed on the first transparent substrate. 図12は、着色層の表面に積層された透明膜及び金属膜を示す断面図である。FIG. 12 is a cross-sectional view showing a transparent film and a metal film laminated on the surface of the colored layer. 図13は、透明膜上で所定形状にパターニングされた金属層を示す断面図である。FIG. 13 is a cross-sectional view showing a metal layer patterned into a predetermined shape on a transparent film. 図14は、透明電極、暗色膜、酸化金属層及び金属層を示す断面図である。FIG. 14 is a cross-sectional view showing a transparent electrode, a dark color film, a metal oxide layer, and a metal layer. 図15は、本実施形態3における液晶表示装置の構造を拡大して示す断面図である。FIG. 15 is an enlarged sectional view showing the structure of the liquid crystal display device according to the third embodiment. 図16は、第1透明基板に形成された金属膜を示す断面図である。FIG. 16 is a cross-sectional view showing a metal film formed on the first transparent substrate. 図17は、第1透明基板上で所定形状にパターニングされた金属膜を示す断面図である。FIG. 17 is a cross-sectional view showing a metal film patterned into a predetermined shape on the first transparent substrate. 図18は、第1透明基板上に形成された着色層を示す断面図である。FIG. 18 is a cross-sectional view showing a colored layer formed on the first transparent substrate. 図19は、着色層及び金属膜を覆う透明膜を示す断面図である。FIG. 19 is a cross-sectional view showing a transparent film covering the colored layer and the metal film. 図20は、透明電極、暗色膜、酸化金属層及び金属層を示す断面図である。FIG. 20 is a cross-sectional view showing a transparent electrode, a dark color film, a metal oxide layer, and a metal layer. 図21は、本実施形態4における液晶表示装置の構造を拡大して示す断面図である。FIG. 21 is an enlarged sectional view showing the structure of the liquid crystal display device according to the fourth embodiment. 図22は、第1透明基板に積層された透明膜及び金属膜を示す断面図である。FIG. 22 is a cross-sectional view showing a transparent film and a metal film laminated on the first transparent substrate. 図23は、暗色膜、酸化金属層及び金属層を示す断面図である。FIG. 23 is a cross-sectional view showing a dark color film, a metal oxide layer, and a metal layer. 図24は、所定形状にパターニングされた酸化金属層及び金属層を示す断面図である。FIG. 24 is a cross-sectional view showing a metal oxide layer and a metal layer patterned into a predetermined shape. 図25は、パターニングされた暗色膜を示す断面図である。FIG. 25 is a cross-sectional view showing a patterned dark color film. 図26は、ブラックマトリクスの間に形成された着色層を示す断面図である。FIG. 26 is a cross-sectional view showing a colored layer formed between black matrices. 図27は、着色層及び金属膜を覆う透明膜を示す断面図である。FIG. 27 is a cross-sectional view showing a transparent film covering the colored layer and the metal film. 図28は、透明電極、第1及び第2暗色膜、第1及び第2酸化金属層及び金属層を示す断面図である。FIG. 28 is a cross-sectional view showing the transparent electrode, the first and second dark color films, the first and second metal oxide layers, and the metal layer. 図29は、アモルファスシリコンの屈折率と入射光の波長との関係を示す表である。FIG. 29 is a table showing the relationship between the refractive index of amorphous silicon and the wavelength of incident light.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
 《発明の実施形態1》
 図1~図8は、本発明の実施形態1を示している。
Embodiment 1 of the Invention
1 to 8 show Embodiment 1 of the present invention.
 図1は、本実施形態1における液晶表示装置1の構造を拡大して示す断面図である。図2は、第1透明基板21を示す断面図である。図3は、第1透明基板21に積層された透明膜42及び金属膜41を示す断面図である。図4は、暗色膜31、酸化金属層33及び金属層32を示す断面図である。 FIG. 1 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the first embodiment. FIG. 2 is a cross-sectional view showing the first transparent substrate 21. FIG. 3 is a cross-sectional view showing the transparent film 42 and the metal film 41 laminated on the first transparent substrate 21. FIG. 4 is a cross-sectional view showing the dark color film 31, the metal oxide layer 33, and the metal layer 32.
 図5は、所定形状にパターニングされた酸化金属層33及び金属層32を示す断面図である。図6は、パターニングされた暗色膜31を示す断面図である。図7は、ブラックマトリクス16の間に形成された着色層15を示す断面図である。図8は、ブラックマトリクス16及び着色層15を覆う共通電極17を示す断面図である。 FIG. 5 is a cross-sectional view showing the metal oxide layer 33 and the metal layer 32 patterned into a predetermined shape. FIG. 6 is a sectional view showing the patterned dark color film 31. FIG. 7 is a cross-sectional view showing the colored layer 15 formed between the black matrices 16. FIG. 8 is a cross-sectional view showing the common electrode 17 that covers the black matrix 16 and the colored layer 15.
 本実施形態では、本発明に係る表示装置として液晶表示装置を例に挙げて説明する。液晶表示装置1は、図1に示すように、アクティブマトリクス基板であるTFT基板11と、TFT基板11に対向する対向基板12とを備えている。TFT基板11と対向基板12との間には液晶層13が封入されている。TFT基板11の対向基板12と反対側には、照明装置であるバックライトユニット14が配置されている。 In the present embodiment, a liquid crystal display device will be described as an example of the display device according to the present invention. As shown in FIG. 1, the liquid crystal display device 1 includes a TFT substrate 11 that is an active matrix substrate, and a counter substrate 12 that faces the TFT substrate 11. A liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. On the opposite side of the TFT substrate 11 from the counter substrate 12, a backlight unit 14 that is a lighting device is disposed.
 液晶表示装置1には、マトリクス状に配置された複数の画素20が形成されている。対向基板12は、例えばガラス基板等からなる第1透明基板21と、第1透明基板21に形成された複数の着色層15及びブラックマトリクス16とを有している。また、TFT基板11は、第1透明基板21に対向すると共に例えばガラス基板等からなる第2透明基板22と、第2透明基板22に形成されたスイッチング素子としてのTFT24及び画素電極25とを有している。 The liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix. The counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21. The TFT substrate 11 has a second transparent substrate 22 made of, for example, a glass substrate, opposite to the first transparent substrate 21, and a TFT 24 and a pixel electrode 25 as switching elements formed on the second transparent substrate 22. is doing.
 TFT24及び画素電極25は、各画素20にそれぞれ設けられて互いに接続されている。TFT基板11は、図1に示すように、第2透明基板22に形成されたゲート電極26と、ゲート電極26を覆うゲート絶縁膜27と、ゲート絶縁膜の表面に形成された半導体層28と、半導体層28を覆う層間絶縁膜29とを有している。上記ゲート電極26及び半導体層28はTFT24を構成している。 The TFT 24 and the pixel electrode 25 are provided in each pixel 20 and connected to each other. As shown in FIG. 1, the TFT substrate 11 includes a gate electrode 26 formed on the second transparent substrate 22, a gate insulating film 27 covering the gate electrode 26, and a semiconductor layer 28 formed on the surface of the gate insulating film. And an interlayer insulating film 29 covering the semiconductor layer 28. The gate electrode 26 and the semiconductor layer 28 constitute a TFT 24.
 画素電極25は、層間絶縁膜29の表面に形成されると共に、層間絶縁膜29に貫通形成されたコンタクトホール30を介して半導体層28に接続されている。画素電極25は、例えばITO(Indium Tin Oxide)等の透明導電膜によって形成されている。 The pixel electrode 25 is formed on the surface of the interlayer insulating film 29 and connected to the semiconductor layer 28 through a contact hole 30 penetratingly formed in the interlayer insulating film 29. The pixel electrode 25 is formed of a transparent conductive film such as ITO (Indium Tin Oxide).
 対向基板12には、第1透明基板21の表面の法線方向から見て格子状に形成されたブラックマトリクス16が第1透明基板21の表面に形成されている。ブラックマトリクス16を設けることによって、各画素20の輪郭を明瞭にして各画素20から出射される光の混色を抑制できると共に、TFT24への不要な外光の入射を抑制してTFT24のオフリーク電流を低減することができる。 On the counter substrate 12, a black matrix 16 formed in a lattice shape when viewed from the normal direction of the surface of the first transparent substrate 21 is formed on the surface of the first transparent substrate 21. By providing the black matrix 16, it is possible to clarify the outline of each pixel 20 and suppress the color mixture of light emitted from each pixel 20, and to suppress the incidence of unnecessary external light to the TFT 24, thereby reducing the off-leak current of the TFT 24. Can be reduced.
 ブラックマトリクス16により囲まれた領域には、着色層15が充填して形成されている。そのことにより、ブラックマトリクス16は、互いに隣り合う着色層15同士の間に配置されることとなる。着色層15は、例えば赤(R)、緑(G)又は青(B)の三原色の染料又は顔料等を含有した樹脂材料によって構成されている。各着色層15が配置されている領域に画素20が形成されている。着色層15の厚みは、ブラックマトリクス16の厚みと同じである。 The region surrounded by the black matrix 16 is filled with a colored layer 15. As a result, the black matrix 16 is disposed between the colored layers 15 adjacent to each other. The colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B). Pixels 20 are formed in regions where the colored layers 15 are arranged. The thickness of the colored layer 15 is the same as the thickness of the black matrix 16.
 着色層15及びブラックマトリクス16の表面には、ITO等の透明導電膜からなる共通電極17が第1透明基板21の略全体に亘って形成されている。共通電極17は、TFT基板11の複数の画素電極25に共通して設けられた電極であり、各画素電極25との間の電位差を制御することによって液晶層13の液晶分子の配向状態を規制するようになっている。 A common electrode 17 made of a transparent conductive film such as ITO is formed on the surface of the colored layer 15 and the black matrix 16 over substantially the entire first transparent substrate 21. The common electrode 17 is an electrode provided in common to the plurality of pixel electrodes 25 of the TFT substrate 11, and regulates the alignment state of the liquid crystal molecules of the liquid crystal layer 13 by controlling the potential difference between each pixel electrode 25. It is supposed to be.
 そして、図1に示すように、ブラックマトリクス16は、暗色膜31と、金属層32と、金属層32及び暗色膜31の間に介在された酸化金属層33とを有している。暗色膜31は、酸化物半導体であるIGZO(In-Ga-Zn-O)が還元することによって暗色化した膜であり、第1透明基板21の表面に形成されている。 As shown in FIG. 1, the black matrix 16 includes a dark color film 31, a metal layer 32, and a metal oxide layer 33 interposed between the metal layer 32 and the dark color film 31. The dark color film 31 is a film darkened by reduction of IGZO (In—Ga—Zn—O), which is an oxide semiconductor, and is formed on the surface of the first transparent substrate 21.
 暗色膜31の第1透明基板21と反対側には、酸化チタンからなる酸化金属層33が形成されている。酸化金属層33の暗色膜31と反対側には、チタンからなる金属層32が形成されている。すなわち、酸化金属層33は、金属層32の酸化物である。 On the opposite side of the dark color film 31 from the first transparent substrate 21, a metal oxide layer 33 made of titanium oxide is formed. On the opposite side of the metal oxide layer 33 from the dark color film 31, a metal layer 32 made of titanium is formed. That is, the metal oxide layer 33 is an oxide of the metal layer 32.
 こうして、ブラックマトリクス16に入射する光を、ブラックマトリクス16によって遮光すると共に当該ブラックマトリクス16の酸化金属層33及び暗色膜31によって反射し難くしている。 Thus, the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  -製造方法-
 次に、上記液晶表示装置1の製造方法について説明する。
-Production method-
Next, a method for manufacturing the liquid crystal display device 1 will be described.
 液晶表示装置1を製造する場合には、まずTFT基板11及び対向基板12をそれぞれ形成した後に、そのTFT基板と対向基板12とを液晶層13及びシール材(図示省略)を介して貼り合わせる。そして、TFT基板11の対向基板12と反対側にバックライトユニット14を配置させることにより、液晶表示装置1を製造する。以下の説明では、対向基板12の製造工程について詳しく説明する。 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
 <金属膜及び透明膜を形成する工程>
 まず、図2に示すように、例えばガラス基板からなる第1透明基板21を用意する。次に、図3に示すように、第1透明基板21に金属膜41及び透明膜42を互いに積層されるように形成する。
<Process for forming metal film and transparent film>
First, as shown in FIG. 2, a first transparent substrate 21 made of, for example, a glass substrate is prepared. Next, as shown in FIG. 3, a metal film 41 and a transparent film 42 are formed on the first transparent substrate 21 so as to be laminated with each other.
 すなわち、第1透明基板21の表面に例えばIGZO等の酸化物半導体層からなる透明膜42を成膜する。透明膜42は、第1透明基板21の一方の表面側全体に形成する。透明膜42の厚みは、例えば50nm程度とする。また、透明膜42は、IGZOの他にITO又はIZO(Indium Zinc Oxide)等の透明膜によって形成することが可能である。 That is, a transparent film 42 made of an oxide semiconductor layer such as IGZO is formed on the surface of the first transparent substrate 21. The transparent film 42 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the transparent film 42 is about 50 nm, for example. The transparent film 42 can be formed of a transparent film such as ITO or IZO (IndiumInZinc Oxide) in addition to IGZO.
 続いて、透明膜42の表面に例えばチタン(Ti)からなる金属膜41を成膜する。金属膜41は、透明膜42と同様に第1透明基板21の一方の表面側全体に形成する。金属膜41の厚みは、例えば100nm程度とする。また、金属膜41は、チタン(Ti)の他にチタンを表層とした複数の膜の積層構造(Mo/Ti、Ti/Al/Ti等)や、タングステン(W)、タンタル(Ta)又はクロム(Cr)等の金属膜によって形成することが可能である。 Subsequently, a metal film 41 made of, for example, titanium (Ti) is formed on the surface of the transparent film 42. Similar to the transparent film 42, the metal film 41 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the metal film 41 is about 100 nm, for example. Further, the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
 <ブラックマトリクスを形成する工程>
 次に、ブラックマトリクスを形成する工程を行う。まず、図4に示すように、透明膜42を還元することによって、透明膜42が暗色化(黒色化)した暗色膜31と、金属膜41のうち暗色膜31側(透明膜42側)の部分が酸化された酸化金属層33と、金属膜41のうち酸化金属層33以外の層である金属層32とをそれぞれ形成する。
<Step of forming a black matrix>
Next, a step of forming a black matrix is performed. First, as shown in FIG. 4, the transparent film 42 is reduced to darken (blacken) the transparent film 42, and the metal film 41 on the dark film 31 side (transparent film 42 side). A metal oxide layer 33 that is partially oxidized and a metal layer 32 that is a layer other than the metal oxide layer 33 in the metal film 41 are formed.
 透明膜42を還元する際には、当該透明膜42を例えば220℃で1時間の加熱処理する(アニール処理)。そのことにより、IGZOからなる透明膜42の還元処理を促進させることができる。また、この際、透明膜42の周囲にNの雰囲気を導入することが好ましい。 When the transparent film 42 is reduced, the transparent film 42 is heat-treated at 220 ° C. for 1 hour (annealing process), for example. Thereby, the reduction treatment of the transparent film 42 made of IGZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the transparent film 42.
 次に、図5に示すように、画素20となる領域が開口するように、金属層32及び酸化金属層33に対してフォトリソグラフィ及びエッチングを行う。続いて、図6に示すように、エッチングされた上記金属層32及び酸化金属層33をマスクとして、暗色膜31をエッチングする。エッチャントには例えばシュウ酸等を用いる。そのことにより、暗色膜31は、マスクとした上記金属層32及び酸化金属層33と同じ幅に形成される。こうして、金属層32、酸化金属層33及び暗色膜31を有するブラックマトリクス16が、第1透明基板21の表面の法線方向から見て格子状のパターンに形成される。 Next, as shown in FIG. 5, photolithography and etching are performed on the metal layer 32 and the metal oxide layer 33 so that the region to be the pixel 20 is opened. Subsequently, as shown in FIG. 6, the dark color film 31 is etched using the etched metal layer 32 and metal oxide layer 33 as a mask. For example, oxalic acid is used as the etchant. As a result, the dark color film 31 is formed with the same width as the metal layer 32 and the metal oxide layer 33 used as a mask. In this way, the black matrix 16 having the metal layer 32, the metal oxide layer 33, and the dark color film 31 is formed in a lattice pattern when viewed from the normal direction of the surface of the first transparent substrate 21.
 <着色層を形成する工程>
 次に、複数の着色層15を第1透明基板21に形成する。すなわち、図7に示すように、ブラックマトリクス16が形成された第1透明基板21に対し、染料又は顔料等を含有した樹脂材を塗布し、その樹脂材をフォトリソグラフィによってパターニングすることにより、複数の着色層15をブラックマトリクス16の枠内に充填して形成する。また、インクジェット法によって所定の領域に着色層15を形成することも可能である。着色層15は、ブラックマトリクス16と同じ厚みに形成する。こうして、複数の着色層15を有するカラーフィルタが形成される。
<Step of forming a colored layer>
Next, the plurality of colored layers 15 are formed on the first transparent substrate 21. That is, as shown in FIG. 7, by applying a resin material containing a dye or a pigment to the first transparent substrate 21 on which the black matrix 16 is formed, and patterning the resin material by photolithography, a plurality of materials are obtained. The colored layer 15 is filled in the frame of the black matrix 16 and formed. It is also possible to form the colored layer 15 in a predetermined region by an ink jet method. The colored layer 15 is formed to the same thickness as the black matrix 16. Thus, a color filter having a plurality of colored layers 15 is formed.
 <共通電極を形成する工程>
 次に、ブラックマトリクス16及び着色層15を覆うように透明電極である共通電極17を形成する。すなわち、図8に示すように、ブラックマトリクス16及び着色層15の表面全体に、例えばITO等の透明導電膜を100nm程度の厚みに成膜することにより、共通電極17を形成する。共通電極17は、ITO以外にも例えばIZOや、IGZOをプラズマ処理等した導電膜によって形成してもよい。
<Process for forming a common electrode>
Next, a common electrode 17 that is a transparent electrode is formed so as to cover the black matrix 16 and the colored layer 15. That is, as shown in FIG. 8, the common electrode 17 is formed by forming a transparent conductive film such as ITO on the entire surface of the black matrix 16 and the colored layer 15 to a thickness of about 100 nm. The common electrode 17 may be formed of, for example, IZO or a conductive film obtained by plasma-treating IGZO other than ITO.
 <第1透明基板を第2透明基板に対向配置させる工程>
 次に、着色層15及びブラックマトリクス16が形成された第1透明基板21を、複数のTFT24を形成した第2透明基板22に対向配置させる。そのことにより、液晶層13をTFT基板11と対向基板12との間に封入する。さらに、バックライトユニット14をTFT基板11に対向配置させることによって、液晶表示装置1を製造する。
<The process of arrange | positioning a 1st transparent substrate facing a 2nd transparent substrate>
Next, the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed. As a result, the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  -実施形態1の効果-
 したがって、この実施形態1によると、金属膜41及び透明膜42を互いに積層して第1透明基板21に形成した後に、透明膜42を還元するようにしたので、透明膜42が暗色化した暗色膜31を形成できると共に、金属膜41のうち暗色膜31側の部分が、還元される透明膜42から供給される酸素イオンによって酸化した酸化金属層33を形成することができる。また、金属膜41のうち酸化金属層33が形成されなかった残りの部分を金属層32として形成することができる。その結果、酸化金属層33が暗色膜31と金属層32との間に配置されたブラックマトリクス16を形成することができる。
-Effect of Embodiment 1-
Therefore, according to the first embodiment, after the metal film 41 and the transparent film 42 are laminated and formed on the first transparent substrate 21, the transparent film 42 is reduced, so that the transparent film 42 is darkened. The film 31 can be formed, and the metal oxide layer 33 in which the portion of the metal film 41 on the dark color film 31 side is oxidized by oxygen ions supplied from the transparent film 42 to be reduced can be formed. Further, the remaining portion of the metal film 41 where the metal oxide layer 33 is not formed can be formed as the metal layer 32. As a result, the black matrix 16 in which the metal oxide layer 33 is disposed between the dark color film 31 and the metal layer 32 can be formed.
 よって、酸化金属層33は、暗色膜31及び金属層32に接触する一方、第1透明基板21には直接に接触しないため、その酸化金属層33と第1透明基板21との密着性低下の問題を回避することができる。 Therefore, the metal oxide layer 33 is in contact with the dark color film 31 and the metal layer 32, but is not in direct contact with the first transparent substrate 21, so that the adhesion between the metal oxide layer 33 and the first transparent substrate 21 is reduced. The problem can be avoided.
 しかも、酸化金属層33及び金属層32だけでなく暗色膜31を設けるようにしたので、当該ブラックマトリクス16の反射防止性及び遮光性をより高めることができる。したがって、ブラックマトリクス16の反射防止性及び遮光性を維持しつつ、その厚みを薄くすることも可能になる。 Moreover, since not only the metal oxide layer 33 and the metal layer 32 but also the dark color film 31 is provided, the antireflection property and light shielding property of the black matrix 16 can be further improved. Therefore, it is possible to reduce the thickness of the black matrix 16 while maintaining the antireflection property and the light shielding property.
 さらに、透明膜42の還元作用によって、暗色膜31及び酸化金属層33の双方を同時に形成できるので、製造工程の増加を抑制することができる。 Furthermore, since both the dark color film 31 and the metal oxide layer 33 can be formed simultaneously by the reducing action of the transparent film 42, an increase in the manufacturing process can be suppressed.
 ここで、図9は、ブラックマトリクスに対する入射光の波長と反射率との関係を実際に測定した結果を示すグラフである。 Here, FIG. 9 is a graph showing the results of actual measurement of the relationship between the wavelength of incident light and the reflectance with respect to the black matrix.
 図9において破線で示すグラフは、ガラス基板に金属層であるTi膜を形成した構成について、入射光の波長に対する反射率の変化を示している。一方、図9において実線で示すグラフは、ガラス基板に暗色膜31であるIGZO膜と金属層32であるTi膜とをこの順に積層した構成について、入射光の波長に対する反射率の変化を示している。この図9に示すように、金属層にIGZO膜を積層することによって、入射光の反射率を大きく低減できることがわかった。 9 shows a change in reflectance with respect to the wavelength of incident light in a configuration in which a Ti film that is a metal layer is formed on a glass substrate. On the other hand, the graph shown by the solid line in FIG. 9 shows the change in reflectance with respect to the wavelength of incident light in a configuration in which an IGZO film as a dark color film 31 and a Ti film as a metal layer 32 are laminated in this order on a glass substrate. Yes. As shown in FIG. 9, it was found that the reflectance of incident light can be greatly reduced by laminating the IGZO film on the metal layer.
 尚、本実施形態では、対向基板12に共通電極17を形成した例について説明したが、液晶表示装置1が所謂IPS方式の構成である場合には、共通電極17を形成する必要がない。 In the present embodiment, an example in which the common electrode 17 is formed on the counter substrate 12 has been described. However, when the liquid crystal display device 1 has a so-called IPS configuration, it is not necessary to form the common electrode 17.
 《発明の実施形態2》
 図10~図14は、本発明の実施形態2を示している。尚、以降の各実施形態では、図1~図9と同じ部分については同じ符号を付して、その詳細な説明を省略する。
<< Embodiment 2 of the Invention >>
10 to 14 show Embodiment 2 of the present invention. In the following embodiments, the same portions as those in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10は、本実施形態2における液晶表示装置1の構造を拡大して示す断面図である。図11は、第1透明基板21に形成された着色層15を示す断面図である。図12は、着色層15の表面に積層された透明膜42及び金属膜41を示す断面図である。図13は、透明膜42上で所定形状にパターニングされた金属層32を示す断面図である。図14は、透明電極17、暗色膜31、酸化金属層33及び金属層32を示す断面図である。 FIG. 10 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the second embodiment. FIG. 11 is a cross-sectional view showing the colored layer 15 formed on the first transparent substrate 21. FIG. 12 is a cross-sectional view showing the transparent film 42 and the metal film 41 laminated on the surface of the colored layer 15. FIG. 13 is a cross-sectional view showing the metal layer 32 patterned into a predetermined shape on the transparent film 42. FIG. 14 is a cross-sectional view showing the transparent electrode 17, the dark color film 31, the metal oxide layer 33, and the metal layer 32.
 本実施形態2における液晶表示装置1は、図10に示すように、アクティブマトリクス基板であるTFT基板11と、TFT基板11に対向する対向基板12とを備えている。TFT基板11と対向基板12との間には液晶層13が封入されている。TFT基板11の対向基板12と反対側には、照明装置であるバックライトユニット14が配置されている。 As shown in FIG. 10, the liquid crystal display device 1 according to Embodiment 2 includes a TFT substrate 11 that is an active matrix substrate and a counter substrate 12 that faces the TFT substrate 11. A liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. On the opposite side of the TFT substrate 11 from the counter substrate 12, a backlight unit 14 that is a lighting device is disposed.
 液晶表示装置1には、マトリクス状に配置された複数の画素20が形成されている。対向基板12は、例えばガラス基板等からなる第1透明基板21と、第1透明基板21に形成された複数の着色層15及びブラックマトリクス16とを有している。また、TFT基板11は、上記実施形態1におけるものと同様の構成を有し、第1透明基板21に対向すると共に例えばガラス基板等からなる第2透明基板22と、第2透明基板22に形成されたスイッチング素子としてのTFT24及び画素電極25とを有している。 The liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix. The counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21. Further, the TFT substrate 11 has the same configuration as that in the first embodiment, and is formed on the second transparent substrate 22 and the second transparent substrate 22 which are opposed to the first transparent substrate 21 and are made of, for example, a glass substrate. The TFT 24 and the pixel electrode 25 are used as the switching elements.
 対向基板12には、複数の画素20に対応してマトリクス状に配置された複数の着色層15が形成されている。着色層15は、例えば赤(R)、緑(G)又は青(B)の三原色の染料又は顔料等を含有した樹脂材料によって構成されている。本実施形態における各色の着色層15は互いに隣接して配置されると共に、互いに同じ厚みに形成されている。 A plurality of colored layers 15 arranged in a matrix corresponding to the plurality of pixels 20 are formed on the counter substrate 12. The colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B). The colored layers 15 of the respective colors in the present embodiment are arranged adjacent to each other and are formed to have the same thickness.
 複数の着色層15の表面には、第1透明基板21の表面の法線方向から見て格子状のブラックマトリクス16と、IZO等の透明導電膜からなる透明電極17とが形成されている。ブラックマトリクス16を設けることによって、各画素20の輪郭を明瞭にして各画素20から出射される光の混色を抑制できると共に、TFT24への不要な外光の入射を抑制してTFT24のオフリーク電流を低減することができる。透明電極17は、ブラックマトリクス16により囲まれた領域に形成されている。 On the surface of the plurality of colored layers 15, a grid-like black matrix 16 viewed from the normal direction of the surface of the first transparent substrate 21 and a transparent electrode 17 made of a transparent conductive film such as IZO are formed. By providing the black matrix 16, it is possible to clarify the outline of each pixel 20 and suppress the color mixture of light emitted from each pixel 20, and to suppress the incidence of unnecessary external light to the TFT 24, thereby reducing the off-leak current of the TFT 24. Can be reduced. The transparent electrode 17 is formed in a region surrounded by the black matrix 16.
 図10に示すように、ブラックマトリクス16は、暗色膜31と、金属層32と、金属層32及び暗色膜31の間に介在された酸化金属層33とを有している。暗色膜31は、透明電極17と同じ材料であるIZOからなる透明膜42が還元することにより形成されている。すなわち、透明電極17は、暗色膜31と同じ層に同じ厚みで形成されている。そして、透明電極17は、TFT基板11の画素電極25との間の電位差を制御することによって液晶層13の液晶分子の配向状態を規制するようになっている。 As shown in FIG. 10, the black matrix 16 includes a dark color film 31, a metal layer 32, and a metal oxide layer 33 interposed between the metal layer 32 and the dark color film 31. The dark color film 31 is formed by reducing the transparent film 42 made of IZO, which is the same material as the transparent electrode 17. That is, the transparent electrode 17 is formed in the same layer as the dark color film 31 with the same thickness. The transparent electrode 17 regulates the alignment state of the liquid crystal molecules in the liquid crystal layer 13 by controlling the potential difference between the transparent electrode 17 and the pixel electrode 25 of the TFT substrate 11.
 暗色膜31の第1透明基板21と反対側には、酸化チタンからなる酸化金属層33が形成されている。酸化金属層33の暗色膜31と反対側には、チタンからなる金属層32が形成されている。 On the opposite side of the dark color film 31 from the first transparent substrate 21, a metal oxide layer 33 made of titanium oxide is formed. On the opposite side of the metal oxide layer 33 from the dark color film 31, a metal layer 32 made of titanium is formed.
 こうして、ブラックマトリクス16に入射する光を、ブラックマトリクス16によって遮光すると共に当該ブラックマトリクス16の酸化金属層33及び暗色膜31によって反射し難くしている。 Thus, the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  -製造方法-
 次に、上記液晶表示装置1の製造方法について説明する。
-Production method-
Next, a method for manufacturing the liquid crystal display device 1 will be described.
 液晶表示装置1を製造する場合には、まずTFT基板11及び対向基板12をそれぞれ形成した後に、そのTFT基板と対向基板12とを液晶層13及びシール材(図示省略)を介して貼り合わせる。そして、TFT基板11の対向基板12と反対側にバックライトユニット14を配置させることにより、液晶表示装置1を製造する。以下の説明では、対向基板12の製造工程について詳しく説明する。 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
 <着色層を形成する工程>
 まず、複数の着色層15を第1透明基板21に形成する。すなわち、図11に示すように、例えばガラス基板からなる第1透明基板21に対し、染料又は顔料等を含有した樹脂材を塗布し、その樹脂材をフォトリソグラフィによってパターニングすることにより、複数の着色層15を互いに接触してマトリクス状に配置されるように形成する。また、インクジェット法によって上記複数の着色層15を形成することも可能である。着色層15は、互いに同じ厚みに形成する。
<Step of forming a colored layer>
First, the plurality of colored layers 15 are formed on the first transparent substrate 21. That is, as shown in FIG. 11, a resin material containing a dye or a pigment is applied to the first transparent substrate 21 made of, for example, a glass substrate, and the resin material is patterned by photolithography, so that a plurality of colors are obtained. Layers 15 are formed in contact with each other and arranged in a matrix. It is also possible to form the plurality of colored layers 15 by an ink jet method. The colored layers 15 are formed to have the same thickness.
 <金属膜及び透明膜を形成する工程>
 次に、図12に示すように、着色層15の表面に金属膜41及び透明膜42を互いに積層されるように形成する。
<Process for forming metal film and transparent film>
Next, as shown in FIG. 12, a metal film 41 and a transparent film 42 are formed on the surface of the colored layer 15 so as to be laminated with each other.
 すなわち、着色層15の表面に例えばIZO等の透明導電膜からなる透明膜42を成膜する。透明膜42は、第1透明基板21の一方の表面側全体に形成する。透明膜42の厚みは、例えば100nm程度とする。また、透明膜42は、IZOの他にITO又はIGZO等の透明膜によって形成することが可能である。 That is, a transparent film 42 made of a transparent conductive film such as IZO is formed on the surface of the colored layer 15. The transparent film 42 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the transparent film 42 is about 100 nm, for example. The transparent film 42 can be formed of a transparent film such as ITO or IGZO in addition to IZO.
 続いて、透明膜42の表面に例えばチタン(Ti)からなる金属膜41を成膜する。金属膜41は、透明膜42と同様に第1透明基板21の一方の表面側全体に形成する。金属膜41の厚みは、例えば100nm程度とする。また、金属膜41は、チタン(Ti)の他にチタンを表層とした複数の膜の積層構造(Mo/Ti、Ti/Al/Ti等)や、タングステン(W)、タンタル(Ta)又はクロム(Cr)等の金属膜によって形成することが可能である。 Subsequently, a metal film 41 made of, for example, titanium (Ti) is formed on the surface of the transparent film 42. Similar to the transparent film 42, the metal film 41 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the metal film 41 is about 100 nm, for example. Further, the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
 次に、図13に示すように、画素20となる領域が開口するように、金属膜41に対してフォトリソグラフィ及びエッチングを行う。こうして、透明導電膜からなる透明膜42を第1透明基板21の一方の表面側全体に形成すると共に、金属膜41を透明膜42の一部に重なるように形成する。 Next, as shown in FIG. 13, photolithography and etching are performed on the metal film 41 so that the region to be the pixel 20 is opened. Thus, the transparent film 42 made of a transparent conductive film is formed on the entire surface of the first transparent substrate 21 and the metal film 41 is formed so as to overlap a part of the transparent film 42.
 <ブラックマトリクス及び透明電極を形成する工程>
 次に、ブラックマトリクスを形成する工程を行う。すなわち、図14に示すように、透明膜42を還元することによって、透明膜42のうち金属膜41に接触している領域に当該透明膜42が暗色化(黒色化)した暗色膜31を形成する一方、透明膜42のうち金属膜41に接触していない領域を透明電極17とする。さらに、金属膜41のうち暗色膜31側(透明膜42側)の部分が酸化された酸化金属層33と、金属膜41のうち酸化金属層33以外の層である金属層32とをそれぞれ形成する。
<Process for forming black matrix and transparent electrode>
Next, a step of forming a black matrix is performed. That is, as shown in FIG. 14, by reducing the transparent film 42, the dark film 31 in which the transparent film 42 is darkened (blackened) is formed in a region of the transparent film 42 that is in contact with the metal film 41. On the other hand, a region of the transparent film 42 that is not in contact with the metal film 41 is referred to as a transparent electrode 17. Furthermore, a metal oxide layer 33 in which the dark film 31 side (transparent film 42 side) portion of the metal film 41 is oxidized and a metal layer 32 that is a layer other than the metal oxide layer 33 in the metal film 41 are formed. To do.
 透明膜42を還元する際には、当該透明膜42を例えば250℃で1時間の加熱処理する(アニール処理)。そのことにより、IZOからなる透明膜42の還元処理を促進させることができる。また、この際、透明膜42の周囲にNの雰囲気を導入することが好ましい。 When the transparent film 42 is reduced, the transparent film 42 is heat-treated at 250 ° C. for 1 hour (annealing process), for example. Thereby, the reduction treatment of the transparent film 42 made of IZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the transparent film 42.
 こうして、金属層32、酸化金属層33及び暗色膜31を有するブラックマトリクス16が、第1透明基板21の表面の法線方向から見て格子状のパターンに形成される。さらに、透明電極17がブラックマトリクス16と同時に形成される。 Thus, the black matrix 16 having the metal layer 32, the metal oxide layer 33, and the dark color film 31 is formed in a lattice-like pattern when viewed from the normal direction of the surface of the first transparent substrate 21. Further, the transparent electrode 17 is formed simultaneously with the black matrix 16.
 <第1透明基板を第2透明基板に対向配置させる工程>
 次に、着色層15及びブラックマトリクス16が形成された第1透明基板21を、複数のTFT24を形成した第2透明基板22に対向配置させる。そのことにより、液晶層13をTFT基板11と対向基板12との間に封入する。さらに、バックライトユニット14をTFT基板11に対向配置させることによって、液晶表示装置1を製造する。
<The process of arrange | positioning a 1st transparent substrate facing a 2nd transparent substrate>
Next, the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed. As a result, the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  -実施形態2の効果-
 したがって、この実施形態2によると、実施形態1と同様に、金属膜41及び透明膜42を互いに積層して第1透明基板21に形成した後に、透明膜42を還元するようにしたので、透明膜42が暗色化した暗色膜31を形成できると共に、金属膜41のうち暗色膜31側の部分が、還元される透明膜42から供給される酸素イオンによって酸化した酸化金属層33を形成することができる。また、金属膜41のうち酸化金属層33が形成されなかった残りの部分を金属層32として形成することができる。その結果、酸化金属層33が暗色膜31と金属層32との間に配置されたブラックマトリクス16を形成することができる。
-Effect of Embodiment 2-
Therefore, according to the second embodiment, as in the first embodiment, the metal film 41 and the transparent film 42 are stacked on each other and formed on the first transparent substrate 21, and then the transparent film 42 is reduced. The film 42 can form a dark color film 31 that is darkened, and a portion of the metal film 41 on the dark film 31 side forms a metal oxide layer 33 that is oxidized by oxygen ions supplied from the transparent film 42 to be reduced. Can do. Further, the remaining portion of the metal film 41 where the metal oxide layer 33 is not formed can be formed as the metal layer 32. As a result, the black matrix 16 in which the metal oxide layer 33 is disposed between the dark color film 31 and the metal layer 32 can be formed.
 よって、酸化金属層33が第1透明基板21には直接に接触しないため、酸化金属層33と第1透明基板21との密着性低下の問題を回避できる。しかも、酸化金属層33及び金属層32だけでなく暗色膜31を設けるようにしたので、当該ブラックマトリクス16の反射防止性及び遮光性をより高めることができる。 Therefore, since the metal oxide layer 33 is not in direct contact with the first transparent substrate 21, the problem of reduced adhesion between the metal oxide layer 33 and the first transparent substrate 21 can be avoided. Moreover, since not only the metal oxide layer 33 and the metal layer 32 but also the dark color film 31 is provided, the antireflection property and the light shielding property of the black matrix 16 can be further improved.
 さらに、透明膜42の還元作用によって、暗色膜31及び酸化金属層33の双方を同時に形成できるので、製造工程の増加を抑制することができる。しかも、透明電極17と同じ材料であるIZOからなる透明膜42の一部を還元するようにしたので、暗色膜31を透明電極17と同じ層に同時に形成でき、製造工程数を大幅に削減することができる。 Furthermore, since both the dark color film 31 and the metal oxide layer 33 can be formed simultaneously by the reducing action of the transparent film 42, an increase in the manufacturing process can be suppressed. In addition, since a part of the transparent film 42 made of IZO, which is the same material as the transparent electrode 17, is reduced, the dark color film 31 can be simultaneously formed in the same layer as the transparent electrode 17, and the number of manufacturing steps is greatly reduced. be able to.
 《発明の実施形態3》
 図15~図20は、本発明の実施形態3を示している。
<< Embodiment 3 of the Invention >>
15 to 20 show Embodiment 3 of the present invention.
 図15は、本実施形態3における液晶表示装置1の構造を拡大して示す断面図である。図16は、第1透明基板21に形成された金属膜41を示す断面図である。図17は、第1透明基板21上で所定形状にパターニングされた金属膜41を示す断面図である。図18は、第1透明基板21上に形成された着色層15を示す断面図である。図19は、着色層15及び金属膜41を覆う透明膜42を示す断面図である。図20は、透明電極17、暗色膜31、酸化金属層33及び金属層32を示す断面図である。 FIG. 15 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the third embodiment. FIG. 16 is a cross-sectional view showing the metal film 41 formed on the first transparent substrate 21. FIG. 17 is a cross-sectional view showing the metal film 41 patterned in a predetermined shape on the first transparent substrate 21. FIG. 18 is a cross-sectional view showing the colored layer 15 formed on the first transparent substrate 21. FIG. 19 is a cross-sectional view showing a transparent film 42 that covers the colored layer 15 and the metal film 41. FIG. 20 is a cross-sectional view showing the transparent electrode 17, the dark color film 31, the metal oxide layer 33, and the metal layer 32.
 本実施形態3における液晶表示装置1は、図15に示すように、アクティブマトリクス基板であるTFT基板11と、TFT基板11に対向する対向基板12とを備えている。TFT基板11と対向基板12との間には液晶層13が封入されている。TFT基板11の対向基板12と反対側には、照明装置であるバックライトユニット14が配置されている。 As shown in FIG. 15, the liquid crystal display device 1 according to Embodiment 3 includes a TFT substrate 11 that is an active matrix substrate, and a counter substrate 12 that faces the TFT substrate 11. A liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. On the opposite side of the TFT substrate 11 from the counter substrate 12, a backlight unit 14 that is a lighting device is disposed.
 液晶表示装置1には、マトリクス状に配置された複数の画素20が形成されている。対向基板12は、例えばガラス基板等からなる第1透明基板21と、第1透明基板21に形成された複数の着色層15及びブラックマトリクス16とを有している。また、TFT基板11は、上記実施形態1におけるものと同様の構成を有し、第1透明基板21に対向すると共に例えばガラス基板等からなる第2透明基板22と、第2透明基板22に形成されたスイッチング素子としてのTFT24及び画素電極25とを有している。 The liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix. The counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21. Further, the TFT substrate 11 has the same configuration as that in the first embodiment, and is formed on the second transparent substrate 22 and the second transparent substrate 22 which are opposed to the first transparent substrate 21 and are made of, for example, a glass substrate. The TFT 24 and the pixel electrode 25 are used as the switching elements.
 対向基板12には、第1透明基板21の表面の法線方向から見て格子状に形成されたブラックマトリクス16が第1透明基板21の表面に形成されている。ブラックマトリクス16により囲まれた領域には、着色層15が充填して形成されている。そのことにより、ブラックマトリクス16は、互いに隣り合う着色層15同士の間に配置されることとなる。着色層15は、例えば赤(R)、緑(G)又は青(B)の三原色の染料又は顔料等を含有した樹脂材料によって構成されている。各着色層15が配置されている領域に画素20が形成されている。各着色層15の表面には、IZO等の透明導電膜からなる透明電極17が形成されている。透明電極17は、ブラックマトリクス16により囲まれた領域に形成されている。 On the counter substrate 12, a black matrix 16 formed in a lattice shape when viewed from the normal direction of the surface of the first transparent substrate 21 is formed on the surface of the first transparent substrate 21. A region surrounded by the black matrix 16 is filled with a colored layer 15. As a result, the black matrix 16 is disposed between the colored layers 15 adjacent to each other. The colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B). Pixels 20 are formed in regions where the colored layers 15 are arranged. A transparent electrode 17 made of a transparent conductive film such as IZO is formed on the surface of each colored layer 15. The transparent electrode 17 is formed in a region surrounded by the black matrix 16.
 図15に示すように、ブラックマトリクス16は、暗色膜31と、金属層32と、金属層32及び暗色膜31の間に介在された酸化金属層33とを有している。暗色膜31は、透明電極17と同じ材料であるIZOからなる透明膜42が還元することにより形成されている。すなわち、透明電極17は、暗色膜31と同じ層に同じ厚みで形成されている。そして、透明電極17は、TFT基板11の画素電極25との間の電位差を制御することによって液晶層13の液晶分子の配向状態を規制するようになっている。 As shown in FIG. 15, the black matrix 16 includes a dark color film 31, a metal layer 32, and a metal oxide layer 33 interposed between the metal layer 32 and the dark color film 31. The dark color film 31 is formed by reducing the transparent film 42 made of IZO, which is the same material as the transparent electrode 17. That is, the transparent electrode 17 is formed in the same layer as the dark color film 31 with the same thickness. The transparent electrode 17 regulates the alignment state of the liquid crystal molecules in the liquid crystal layer 13 by controlling the potential difference between the transparent electrode 17 and the pixel electrode 25 of the TFT substrate 11.
 暗色膜31の第1透明基板21側には、酸化チタンからなる酸化金属層33が形成されている。酸化金属層33の第1透明基板21側には、チタンからなる金属層32が形成されている。 A metal oxide layer 33 made of titanium oxide is formed on the dark film 31 on the first transparent substrate 21 side. A metal layer 32 made of titanium is formed on the first transparent substrate 21 side of the metal oxide layer 33.
 こうして、ブラックマトリクス16に入射する光を、ブラックマトリクス16によって遮光すると共に当該ブラックマトリクス16の酸化金属層33及び暗色膜31によって反射し難くしている。 Thus, the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
  -製造方法-
 次に、上記液晶表示装置1の製造方法について説明する。
-Production method-
Next, a method for manufacturing the liquid crystal display device 1 will be described.
 液晶表示装置1を製造する場合には、まずTFT基板11及び対向基板12をそれぞれ形成した後に、そのTFT基板と対向基板12とを液晶層13及びシール材(図示省略)を介して貼り合わせる。そして、TFT基板11の対向基板12と反対側にバックライトユニット14を配置させることにより、液晶表示装置1を製造する。以下の説明では、対向基板12の製造工程について詳しく説明する。 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
 <金属膜、透明膜及び着色層を形成する工程>
 本実施形態では、金属膜及び透明膜を形成する工程において着色層を形成する。
<Process for forming metal film, transparent film and colored layer>
In the present embodiment, the colored layer is formed in the step of forming the metal film and the transparent film.
 まず、図16に示すように、例えばガラス基板からなる第1透明基板21の表面に例えばチタン(Ti)からなる金属膜41を、第1透明基板21の一方の表面側全体に形成する。金属膜41の厚みは、例えば100nm程度とする。また、金属膜41は、チタン(Ti)の他にチタンを表層とした複数の膜の積層構造(Mo/Ti、Ti/Al/Ti等)や、タングステン(W)、タンタル(Ta)又はクロム(Cr)等の金属膜によって形成することが可能である。 First, as shown in FIG. 16, a metal film 41 made of, for example, titanium (Ti) is formed on the entire surface of one surface of the first transparent substrate 21 on the surface of the first transparent substrate 21 made of, for example, a glass substrate. The thickness of the metal film 41 is about 100 nm, for example. Further, the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
 次に、図17に示すように、画素20となる領域が開口するように、金属膜41に対してフォトリソグラフィ及びエッチングを行う。こうして、金属膜41を第1透明基板21の一部に重なるように形成する。 Next, as shown in FIG. 17, photolithography and etching are performed on the metal film 41 so that a region to be the pixel 20 is opened. Thus, the metal film 41 is formed so as to overlap a part of the first transparent substrate 21.
 その後、図18に示すように、着色層15の形成工程を行って、格子状のパターンに形成されている金属膜41に対し、染料又は顔料等を含有した樹脂材を塗布し、その樹脂材をフォトリソグラフィによってパターニングすることにより、複数の着色層15を金属膜41の枠内に充填して形成する。また、インクジェット法によって所定の領域に着色層15を形成することも可能である。着色層15は、金属膜41と同じ厚みに形成する。こうして、金属膜41に隣接するように着色層15を形成する。 Thereafter, as shown in FIG. 18, the colored layer 15 is formed, and a resin material containing a dye or a pigment is applied to the metal film 41 formed in the lattice pattern, and the resin material Is patterned by photolithography to fill the frame of the metal film 41 with the plurality of colored layers 15. It is also possible to form the colored layer 15 in a predetermined region by an ink jet method. The colored layer 15 is formed with the same thickness as the metal film 41. Thus, the colored layer 15 is formed so as to be adjacent to the metal film 41.
 続いて、図19に示すように、着色層15及び金属膜41を覆うように例えばIZO等の透明導電膜からなる透明膜42を形成する。透明膜42は、第1透明基板21の一方の表面側全体に形成する。透明膜42の厚みは、例えば100nm程度とする。また、透明膜42は、IZOの他にITO又はIGZO等の透明膜によって形成することが可能である。 Subsequently, as shown in FIG. 19, a transparent film 42 made of a transparent conductive film such as IZO is formed so as to cover the colored layer 15 and the metal film 41. The transparent film 42 is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the transparent film 42 is about 100 nm, for example. The transparent film 42 can be formed of a transparent film such as ITO or IGZO in addition to IZO.
 <ブラックマトリクス及び透明電極を形成する工程>
 次に、ブラックマトリクスを形成する工程を行う。すなわち、図20に示すように、透明膜42を還元することによって、透明膜42のうち金属膜41に接触している領域に当該透明膜42が暗色化(黒色化)した暗色膜31を形成する一方、透明膜42のうち金属膜41に接触していない領域を透明電極17とする。さらに、金属膜41のうち暗色膜31側(透明膜42側)の部分が酸化された酸化金属層33と、金属膜41のうち酸化金属層33以外の層である金属層32とをそれぞれ形成する。
<Process for forming black matrix and transparent electrode>
Next, a step of forming a black matrix is performed. That is, as shown in FIG. 20, by reducing the transparent film 42, the dark film 31 in which the transparent film 42 is darkened (blackened) is formed in a region of the transparent film 42 that is in contact with the metal film 41. On the other hand, a region of the transparent film 42 that is not in contact with the metal film 41 is referred to as a transparent electrode 17. Furthermore, a metal oxide layer 33 in which the dark film 31 side (transparent film 42 side) portion of the metal film 41 is oxidized and a metal layer 32 that is a layer other than the metal oxide layer 33 in the metal film 41 are formed. To do.
 透明膜42を還元する際には、当該透明膜42を例えば250℃で1時間の加熱処理する(アニール処理)。そのことにより、IZOからなる透明膜42の還元処理を促進させることができる。また、この際、透明膜42の周囲にNの雰囲気を導入することが好ましい。 When the transparent film 42 is reduced, the transparent film 42 is heat-treated at 250 ° C. for 1 hour (annealing process), for example. Thereby, the reduction treatment of the transparent film 42 made of IZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the transparent film 42.
 こうして、金属層32、酸化金属層33及び暗色膜31を有するブラックマトリクス16が、第1透明基板21の表面の法線方向から見て格子状のパターンに形成される。さらに、透明電極17がブラックマトリクス16と同時に形成される。 Thus, the black matrix 16 having the metal layer 32, the metal oxide layer 33, and the dark color film 31 is formed in a lattice-like pattern when viewed from the normal direction of the surface of the first transparent substrate 21. Further, the transparent electrode 17 is formed simultaneously with the black matrix 16.
 <第1透明基板を第2透明基板に対向配置させる工程>
 次に、着色層15及びブラックマトリクス16が形成された第1透明基板21を、複数のTFT24を形成した第2透明基板22に対向配置させる。そのことにより、液晶層13をTFT基板11と対向基板12との間に封入する。さらに、バックライトユニット14をTFT基板11に対向配置させることによって、液晶表示装置1を製造する。
<The process of arrange | positioning a 1st transparent substrate facing a 2nd transparent substrate>
Next, the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed. As a result, the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  -実施形態3の効果-
 したがって、この実施形態3によると、実施形態1と同様に、金属膜41及び透明膜42を互いに積層して第1透明基板21に形成した後に、透明膜42を還元するようにしたので、透明膜42が暗色化した暗色膜31を形成できると共に、金属膜41のうち暗色膜31側の部分が、還元される透明膜42から供給される酸素イオンによって酸化した酸化金属層33を形成することができる。また、金属膜41のうち酸化金属層33が形成されなかった残りの部分を金属層32として形成することができる。その結果、酸化金属層33が暗色膜31と金属層32との間に配置されたブラックマトリクス16を形成することができる。
-Effect of Embodiment 3-
Therefore, according to the third embodiment, as in the first embodiment, after the metal film 41 and the transparent film 42 are stacked on each other and formed on the first transparent substrate 21, the transparent film 42 is reduced. The film 42 can form a dark color film 31 that is darkened, and a portion of the metal film 41 on the dark film 31 side forms a metal oxide layer 33 that is oxidized by oxygen ions supplied from the transparent film 42 to be reduced. Can do. Further, the remaining portion of the metal film 41 where the metal oxide layer 33 is not formed can be formed as the metal layer 32. As a result, the black matrix 16 in which the metal oxide layer 33 is disposed between the dark color film 31 and the metal layer 32 can be formed.
 よって、酸化金属層33が第1透明基板21には直接に接触しないため、酸化金属層33と第1透明基板21との密着性低下の問題を回避できる。しかも、酸化金属層33及び金属層32だけでなく暗色膜31を設けるようにしたので、当該ブラックマトリクス16の反射防止性及び遮光性をより高めることができる。 Therefore, since the metal oxide layer 33 is not in direct contact with the first transparent substrate 21, the problem of reduced adhesion between the metal oxide layer 33 and the first transparent substrate 21 can be avoided. Moreover, since not only the metal oxide layer 33 and the metal layer 32 but also the dark color film 31 is provided, the antireflection property and the light shielding property of the black matrix 16 can be further improved.
 さらに、透明膜42の還元作用によって、暗色膜31及び酸化金属層33の双方を同時に形成できるので、製造工程の増加を抑制することができる。しかも、透明電極17と同じ材料であるIZOからなる透明膜42の一部を還元するようにしたので、暗色膜31を透明電極17と同じ層に同時に形成でき、製造工程数を大幅に削減することができる。 Furthermore, since both the dark color film 31 and the metal oxide layer 33 can be formed simultaneously by the reducing action of the transparent film 42, an increase in the manufacturing process can be suppressed. In addition, since a part of the transparent film 42 made of IZO, which is the same material as the transparent electrode 17, is reduced, the dark color film 31 can be simultaneously formed in the same layer as the transparent electrode 17, and the number of manufacturing steps is greatly reduced. be able to.
 《発明の実施形態4》
 図21~図28は、本発明の実施形態4を示している。
<< Embodiment 4 of the Invention >>
21 to 28 show Embodiment 4 of the present invention.
 図21は、本実施形態4における液晶表示装置1の構造を拡大して示す断面図である。図22は、第1透明基板21に積層された透明膜42及び金属膜41を示す断面図である。図23は、暗色膜31、酸化金属層33及び金属層32を示す断面図である。図24は、所定形状にパターニングされた酸化金属層33及び金属層32を示す断面図である。 FIG. 21 is an enlarged sectional view showing the structure of the liquid crystal display device 1 according to the fourth embodiment. FIG. 22 is a cross-sectional view showing the transparent film 42 and the metal film 41 laminated on the first transparent substrate 21. FIG. 23 is a cross-sectional view showing the dark color film 31, the metal oxide layer 33, and the metal layer 32. FIG. 24 is a cross-sectional view showing the metal oxide layer 33 and the metal layer 32 patterned into a predetermined shape.
 図25は、パターニングされた暗色膜31を示す断面図である。図26は、ブラックマトリクス16の間に形成された着色層15を示す断面図である。図27は、着色層15及び金属層32を覆う透明膜42を示す断面図である。図28は、透明電極17、第1及び第2暗色膜31a,31b、第1及び第2酸化金属層33a,33b及び金属層32を示す断面図である。 FIG. 25 is a cross-sectional view showing the patterned dark color film 31. FIG. 26 is a cross-sectional view showing the colored layer 15 formed between the black matrices 16. FIG. 27 is a cross-sectional view showing a transparent film 42 that covers the colored layer 15 and the metal layer 32. FIG. 28 is a cross-sectional view showing the transparent electrode 17, the first and second dark color films 31 a and 31 b, the first and second metal oxide layers 33 a and 33 b, and the metal layer 32.
 本実施形態4における液晶表示装置1は、図21に示すように、アクティブマトリクス基板であるTFT基板11と、TFT基板11に対向する対向基板12とを備えている。TFT基板11と対向基板12との間には液晶層13が封入されている。TFT基板11の対向基板12と反対側には、照明装置であるバックライトユニット14が配置されている。 As shown in FIG. 21, the liquid crystal display device 1 according to the fourth embodiment includes a TFT substrate 11 that is an active matrix substrate and a counter substrate 12 that faces the TFT substrate 11. A liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. On the opposite side of the TFT substrate 11 from the counter substrate 12, a backlight unit 14 that is a lighting device is disposed.
 液晶表示装置1には、マトリクス状に配置された複数の画素20が形成されている。対向基板12は、例えばガラス基板等からなる第1透明基板21と、第1透明基板21に形成された複数の着色層15及びブラックマトリクス16とを有している。また、TFT基板11は、上記実施形態1におけるものと同様の構成を有し、第1透明基板21に対向すると共に例えばガラス基板等からなる第2透明基板22と、第2透明基板22に形成されたスイッチング素子としてのTFT24及び画素電極25とを有している。 The liquid crystal display device 1 has a plurality of pixels 20 arranged in a matrix. The counter substrate 12 has a first transparent substrate 21 made of, for example, a glass substrate, and a plurality of colored layers 15 and a black matrix 16 formed on the first transparent substrate 21. Further, the TFT substrate 11 has the same configuration as that in the first embodiment, and is formed on the second transparent substrate 22 and the second transparent substrate 22 which are opposed to the first transparent substrate 21 and are made of, for example, a glass substrate. The TFT 24 and the pixel electrode 25 are used as the switching elements.
 対向基板12には、第1透明基板21の表面の法線方向から見て格子状に形成されたブラックマトリクス16が第1透明基板21の表面に形成されている。ブラックマトリクス16により囲まれた領域には、着色層15が充填して形成されている。そのことにより、ブラックマトリクス16は、互いに隣り合う着色層15同士の間に配置されることとなる。着色層15は、例えば赤(R)、緑(G)又は青(B)の三原色の染料又は顔料等を含有した樹脂材料によって構成されている。各着色層15が配置されている領域に画素20が形成されている。各着色層15の表面には、IZO等の透明導電膜からなる透明電極17が形成されている。透明電極17は、ブラックマトリクス16により囲まれた領域に形成されている。 On the counter substrate 12, a black matrix 16 formed in a lattice shape when viewed from the normal direction of the surface of the first transparent substrate 21 is formed on the surface of the first transparent substrate 21. A region surrounded by the black matrix 16 is filled with a colored layer 15. As a result, the black matrix 16 is disposed between the colored layers 15 adjacent to each other. The colored layer 15 is made of a resin material containing, for example, three primary color dyes or pigments of red (R), green (G), and blue (B). Pixels 20 are formed in regions where the colored layers 15 are arranged. A transparent electrode 17 made of a transparent conductive film such as IZO is formed on the surface of each colored layer 15. The transparent electrode 17 is formed in a region surrounded by the black matrix 16.
 図21に示すように、ブラックマトリクス16は、第1透明基板21の表面に形成された第1暗色膜31aと、第1暗色膜31aに積層された第1酸化金属層33aと、第1酸化金属層33aの表面に積層された金属層32と、金属層32の表面に積層された第2酸化金属層33bと、第2酸化金属層33bの表面に積層された第2暗色膜31bとを有している。したがって、金属層32は、第1及び第2暗色膜31a,31bの間において、第1及び第2酸化金属層33a,33bの間に介在されている。 As shown in FIG. 21, the black matrix 16 includes a first dark color film 31a formed on the surface of the first transparent substrate 21, a first metal oxide layer 33a stacked on the first dark color film 31a, and a first oxidation film. A metal layer 32 laminated on the surface of the metal layer 33a, a second metal oxide layer 33b laminated on the surface of the metal layer 32, and a second dark color film 31b laminated on the surface of the second metal oxide layer 33b. Have. Accordingly, the metal layer 32 is interposed between the first and second metal oxide layers 33a and 33b between the first and second dark color films 31a and 31b.
 第1暗色膜31aは、例えばIGZO等の透明膜が還元することにより形成されている。一方、第2暗色膜31bは、透明電極17と同じ材料であるIZOからなる透明膜が還元することにより形成されている。透明電極17は、第2暗色膜31bと同じ層に同じ厚みで形成されている。そして、透明電極17は、TFT基板11の画素電極25との間の電位差を制御することによって液晶層13の液晶分子の配向状態を規制するようになっている。 The first dark color film 31a is formed by reducing a transparent film such as IGZO, for example. On the other hand, the second dark color film 31 b is formed by reducing a transparent film made of IZO, which is the same material as the transparent electrode 17. The transparent electrode 17 is formed in the same layer as the second dark color film 31b with the same thickness. The transparent electrode 17 regulates the alignment state of the liquid crystal molecules in the liquid crystal layer 13 by controlling the potential difference between the transparent electrode 17 and the pixel electrode 25 of the TFT substrate 11.
 第1及び第2酸化金属層33a,33bは、例えば酸化チタンによって形成されている。金属層32は、例えばチタンによって形成されている。すなわち、第1及び第2酸化金属層33a,33bは、金属層32の酸化物である。 The first and second metal oxide layers 33a and 33b are made of, for example, titanium oxide. The metal layer 32 is made of, for example, titanium. That is, the first and second metal oxide layers 33 a and 33 b are oxides of the metal layer 32.
 こうして、ブラックマトリクス16に入射する光を、ブラックマトリクス16によって遮光すると共に当該ブラックマトリクス16の酸化金属層33及び暗色膜31によって反射し難くしている。 Thus, the light incident on the black matrix 16 is shielded by the black matrix 16 and hardly reflected by the metal oxide layer 33 and the dark color film 31 of the black matrix 16.
 すなわち、第1透明基板21側から及び液晶層13側からブラックマトリクス16に入射する光は、ブラックマトリクス16の全体で遮光される。第1透明基板21側からブラックマトリクス16に入射する光は、第1暗色膜31a及び第1酸化金属層33aによってその反射が抑制される。一方、液晶層13側からブラックマトリクス16に入射する光は、第2暗色膜31b及び第2酸化金属層33bによってその反射が抑制される。 That is, light incident on the black matrix 16 from the first transparent substrate 21 side and from the liquid crystal layer 13 side is blocked by the entire black matrix 16. Reflection of light incident on the black matrix 16 from the first transparent substrate 21 side is suppressed by the first dark color film 31a and the first metal oxide layer 33a. On the other hand, the reflection of light incident on the black matrix 16 from the liquid crystal layer 13 side is suppressed by the second dark color film 31b and the second metal oxide layer 33b.
  -製造方法-
 次に、上記液晶表示装置1の製造方法について説明する。
-Production method-
Next, a method for manufacturing the liquid crystal display device 1 will be described.
 液晶表示装置1を製造する場合には、まずTFT基板11及び対向基板12をそれぞれ形成した後に、そのTFT基板と対向基板12とを液晶層13及びシール材(図示省略)を介して貼り合わせる。そして、TFT基板11の対向基板12と反対側にバックライトユニット14を配置させることにより、液晶表示装置1を製造する。以下の説明では、対向基板12の製造工程について詳しく説明する。 When the liquid crystal display device 1 is manufactured, first, the TFT substrate 11 and the counter substrate 12 are respectively formed, and then the TFT substrate and the counter substrate 12 are bonded together via a liquid crystal layer 13 and a sealant (not shown). Then, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 on the opposite side of the TFT substrate 11 from the counter substrate 12. In the following description, the manufacturing process of the counter substrate 12 will be described in detail.
 <金属膜及び透明膜を形成する工程>
 金属膜及び透明膜を形成する工程では、図22に示すように、まず、第1透明基板21の表面に例えばIGZO等の酸化物半導体層からなる第1透明膜42aを成膜する。第1透明膜42aは、第1透明基板21の一方の表面側全体に形成する。第1透明膜42aの厚みは、例えば50nm程度とする。また、第1透明膜42aは、IGZOの他にITO又はIZO(Indium Zinc Oxide)等の透明膜によって形成することが可能である。
<Process for forming metal film and transparent film>
In the step of forming the metal film and the transparent film, first, a first transparent film 42a made of an oxide semiconductor layer such as IGZO is formed on the surface of the first transparent substrate 21 as shown in FIG. The first transparent film 42 a is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the first transparent film 42a is about 50 nm, for example. The first transparent film 42a can be formed of a transparent film such as ITO or IZO (Indium Zinc Oxide) in addition to IGZO.
 続いて、第1透明膜42aの表面に例えばチタン(Ti)からなる金属膜41を成膜する。金属膜41は、第1透明膜42aと同様に第1透明基板21の一方の表面側全体に形成する。金属膜41の厚みは、例えば150nm程度とする。また、金属膜41は、チタン(Ti)の他にチタンを表層とした複数の膜の積層構造(Mo/Ti、Ti/Al/Ti等)や、タングステン(W)、タンタル(Ta)又はクロム(Cr)等の金属膜によって形成することが可能である。 Subsequently, a metal film 41 made of, for example, titanium (Ti) is formed on the surface of the first transparent film 42a. The metal film 41 is formed on the entire surface of one surface of the first transparent substrate 21 in the same manner as the first transparent film 42a. The thickness of the metal film 41 is about 150 nm, for example. Further, the metal film 41 includes a laminated structure (Mo / Ti, Ti / Al / Ti, etc.) of a plurality of films having titanium as a surface layer in addition to titanium (Ti), tungsten (W), tantalum (Ta), or chromium. It can be formed of a metal film such as (Cr).
 <ブラックマトリクスを形成する工程>
 次に、ブラックマトリクスを形成する工程を行う。ブラックマトリクスを形成する工程では、まず、第1工程において、図23に示すように、第1透明膜42aを還元することによって、第1透明膜42aが暗色化(黒色化)した第1暗色膜31aと、金属膜41のうち第1暗色膜31a側(第1透明膜42a側)の部分が酸化された第1酸化金属層33aと、金属膜41のうち第1酸化金属層33a以外の層である金属層32とをそれぞれ形成する。
<Step of forming a black matrix>
Next, a step of forming a black matrix is performed. In the step of forming the black matrix, first, in the first step, as shown in FIG. 23, the first transparent film 42a is darkened (blackened) by reducing the first transparent film 42a. 31a, a first metal oxide layer 33a in which a portion of the metal film 41 on the first dark color film 31a side (first transparent film 42a side) is oxidized, and a layer other than the first metal oxide layer 33a in the metal film 41 The metal layer 32 is formed.
 第1透明膜42aを還元する際には、当該第1透明膜42aを例えば220℃で1時間の加熱処理する(アニール処理)。そのことにより、IGZOからなる第1透明膜42aの還元処理を促進させることができる。また、この際、第1透明膜42aの周囲にNの雰囲気を導入することが好ましい。 When the first transparent film 42a is reduced, the first transparent film 42a is heat-treated at 220 ° C. for 1 hour (annealing process), for example. Thereby, the reduction process of the first transparent film 42a made of IGZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the first transparent film 42a.
 次に、図24に示すように、画素20となる領域が開口するように、金属層32及び第1酸化金属層33aに対してフォトリソグラフィ及びエッチングを行う。続いて、図25に示すように、エッチングされた上記金属層32及び第1酸化金属層33aをマスクとして、第1暗色膜31aをエッチングする。エッチャントには例えばシュウ酸等を用いる。そのことにより、第1暗色膜31aは、マスクとした上記金属層32及び第1酸化金属層33aと同じ幅に形成される。こうして、第1暗色膜31a、第1酸化金属層33a及び金属層32は、第1透明基板21の表面の法線方向から見て格子状のパターンに形成される。 Next, as shown in FIG. 24, photolithography and etching are performed on the metal layer 32 and the first metal oxide layer 33a so that the region to be the pixel 20 is opened. Subsequently, as shown in FIG. 25, the first dark color film 31a is etched using the etched metal layer 32 and first metal oxide layer 33a as a mask. For example, oxalic acid is used as the etchant. Thus, the first dark color film 31a is formed to have the same width as the metal layer 32 and the first metal oxide layer 33a used as a mask. Thus, the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32 are formed in a lattice pattern as viewed from the normal direction of the surface of the first transparent substrate 21.
  (着色層を形成する工程)
 本実施形態では、ブラックマトリクス16を形成する工程において、着色層15を形成する工程を行う。すなわち、第2工程として、図26に示すように、第1暗色膜31a、第1酸化金属層33a及び金属層32が形成された第1透明基板21に対し、染料又は顔料等を含有した樹脂材を塗布し、その樹脂材をフォトリソグラフィによってパターニングすることにより、複数の着色層15を上記第1暗色膜31a、第1酸化金属層33a及び金属層32からなる格子状の枠内に充填して形成する。着色層15は、上記第1暗色膜31a、第1酸化金属層33a及び金属層32の積層体45と同じ厚みに形成する。また、インクジェット法によって所定の領域に着色層15を形成することも可能である。
(Step of forming a colored layer)
In the present embodiment, in the step of forming the black matrix 16, the step of forming the colored layer 15 is performed. That is, as a second step, as shown in FIG. 26, a resin containing a dye or pigment or the like for the first transparent substrate 21 on which the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32 are formed. By applying a material and patterning the resin material by photolithography, the plurality of colored layers 15 are filled in a lattice-shaped frame composed of the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32. Form. The colored layer 15 is formed to have the same thickness as the stacked body 45 of the first dark color film 31a, the first metal oxide layer 33a, and the metal layer 32. It is also possible to form the colored layer 15 in a predetermined region by an ink jet method.
 次に、ブラックマトリクスを形成する工程の第3工程として、図27に示すように、金属層32及び複数の着色層15を覆う第2透明膜42bを形成する。第2透明膜42bは、例えばIZO等の透明導電膜によって形成する。第2透明膜42bは、第1透明基板21の一方の表面側全体に形成する。第2透明膜42bの厚みは、例えば100nm程度とする。また、第2透明膜42bは、IZOの他にITO又はIGZO等の透明膜によって形成することが可能である。 Next, as a third step of forming the black matrix, as shown in FIG. 27, a second transparent film 42b covering the metal layer 32 and the plurality of colored layers 15 is formed. The second transparent film 42b is formed of a transparent conductive film such as IZO. The second transparent film 42 b is formed on the entire surface of one surface of the first transparent substrate 21. The thickness of the second transparent film 42b is about 100 nm, for example. The second transparent film 42b can be formed of a transparent film such as ITO or IGZO in addition to IZO.
 次に、ブラックマトリクスを形成する工程の第4工程として、図28に示すように、第2透明膜42bを還元することによって、第2透明膜42bのうち金属層32に接触している領域に当該第2透明膜42bが暗色化(黒色化)した第2暗色膜31bを形成する一方、第1透明膜42aのうち金属膜41に接触していない領域を透明電極17とする。さらに、金属層32のうち第2暗色膜31b側(第2透明膜42b側)の部分が酸化された第2酸化金属層33bとを形成する。このとき、第1酸化金属層33aと第2酸化金属層33bとの間には金属層32が所定の厚みで残っている。 Next, as a fourth step of forming the black matrix, as shown in FIG. 28, by reducing the second transparent film 42b, the second transparent film 42b is brought into contact with the metal layer 32. The second transparent film 42b forms a darkened (blackened) second dark color film 31b, while a region of the first transparent film 42a that is not in contact with the metal film 41 is referred to as a transparent electrode 17. Further, a second metal oxide layer 33b is formed in which the portion of the metal layer 32 on the second dark color film 31b side (second transparent film 42b side) is oxidized. At this time, the metal layer 32 remains with a predetermined thickness between the first metal oxide layer 33a and the second metal oxide layer 33b.
 第2透明膜42bを還元する際には、当該第2透明膜42bを例えば250℃で1時間の加熱処理する(アニール処理)。そのことにより、IZOからなる第2透明膜42bの還元処理を促進させることができる。また、この際、第2透明膜42bの周囲にNの雰囲気を導入することが好ましい。 When the second transparent film 42b is reduced, the second transparent film 42b is heat-treated at 250 ° C. for 1 hour (annealing process), for example. Thereby, the reduction process of the second transparent film 42b made of IZO can be promoted. At this time, it is preferable to introduce an N 2 atmosphere around the second transparent film 42b.
 こうして、金属層32、第1及び第2酸化金属層33a,33b及び第1及び第2暗色膜31a,31bを有するブラックマトリクス16が、第1透明基板21の表面の法線方向から見て格子状のパターンに形成される。さらに、透明電極17がブラックマトリクス16と同時に形成される。 Thus, the black matrix 16 having the metal layer 32, the first and second metal oxide layers 33 a and 33 b, and the first and second dark color films 31 a and 31 b is a lattice as viewed from the normal direction of the surface of the first transparent substrate 21. It is formed into a pattern. Further, the transparent electrode 17 is formed simultaneously with the black matrix 16.
 <第1透明基板を第2透明基板に対向配置させる工程>
 次に、着色層15及びブラックマトリクス16が形成された第1透明基板21を、複数のTFT24を形成した第2透明基板22に対向配置させる。そのことにより、液晶層13をTFT基板11と対向基板12との間に封入する。さらに、バックライトユニット14をTFT基板11に対向配置させることによって、液晶表示装置1を製造する。
<The process of arrange | positioning a 1st transparent substrate facing a 2nd transparent substrate>
Next, the first transparent substrate 21 on which the colored layer 15 and the black matrix 16 are formed is disposed opposite to the second transparent substrate 22 on which the plurality of TFTs 24 are formed. As a result, the liquid crystal layer 13 is sealed between the TFT substrate 11 and the counter substrate 12. Further, the liquid crystal display device 1 is manufactured by disposing the backlight unit 14 so as to face the TFT substrate 11.
  -実施形態4の効果-
 したがって、この実施形態4によると、金属膜41及び第1透明膜42aを互いに積層して第1透明基板21に形成した後に、第1透明膜42aを還元するようにしたので、第1暗色膜31aを形成できると共に、金属膜41のうち第1暗色膜31a側の部分が、還元される第1透明膜42aから供給される酸素イオンによって酸化した第1酸化金属層33aを形成できる。さらに、第2透明膜42bを金属層32に積層した後に、第2透明膜42bを還元するようにしたので、第2暗色膜31bを形成できると共に、金属層32のうち第2暗色膜31b側の部分が、還元される第2透明膜42bから供給される酸素イオンによって酸化した第2酸化金属層33bを形成できる。また、金属膜41のうち第1及び第2酸化金属層33a,33bが形成されなかった残りの部分を金属層32として形成することができる。その結果、第1酸化金属層33aが第1暗色膜31aと金属層32との間に配置されると共に、第2酸化金属層33bが第2暗色膜31bと金属層32との間に配置されたブラックマトリクス16を形成できる。
-Effect of Embodiment 4-
Therefore, according to the fourth embodiment, since the metal film 41 and the first transparent film 42a are stacked on each other and formed on the first transparent substrate 21, the first transparent film 42a is reduced. 31a can be formed, and the first metal oxide layer 33a in which a portion of the metal film 41 on the first dark color film 31a side is oxidized by oxygen ions supplied from the reduced first transparent film 42a can be formed. Further, since the second transparent film 42b is reduced after the second transparent film 42b is laminated on the metal layer 32, the second dark color film 31b can be formed, and the second dark color film 31b side of the metal layer 32 can be formed. This portion can form the second metal oxide layer 33b oxidized by oxygen ions supplied from the second transparent film 42b to be reduced. Further, the remaining portion of the metal film 41 where the first and second metal oxide layers 33 a and 33 b are not formed can be formed as the metal layer 32. As a result, the first metal oxide layer 33a is disposed between the first dark color film 31a and the metal layer 32, and the second metal oxide layer 33b is disposed between the second dark color film 31b and the metal layer 32. A black matrix 16 can be formed.
 よって、第1及び第2酸化金属層33a,33bが第1透明基板21にそれぞれ直接に接触しないため、第1及び第2酸化金属層33a,33bと第1透明基板21との密着性低下の問題を回避できる。しかも、第1及び第2酸化金属層33a,33b及び金属層32だけでなく第1及び第2暗色膜31a,31bを設けるようにしたので、当該ブラックマトリクス16の反射防止性及び遮光性をより高めることができる。 Therefore, since the first and second metal oxide layers 33a and 33b do not directly contact the first transparent substrate 21, respectively, the adhesion between the first and second metal oxide layers 33a and 33b and the first transparent substrate 21 is reduced. The problem can be avoided. In addition, since the first and second dark color films 31a and 31b are provided in addition to the first and second metal oxide layers 33a and 33b and the metal layer 32, the antireflection property and the light shielding property of the black matrix 16 are further improved. Can be increased.
 すなわち、第1透明基板21側から及び液晶層13側からブラックマトリクス16に入射する光は、第1及び第2暗色膜31a,31bを含むブラックマトリクス16の全体によって遮光することができる。また、第1透明基板21側からブラックマトリクス16に入射する光は、第1暗色膜31a及び第1酸化金属層33aによってその反射を好適に抑制できる。一方、液晶層13側からブラックマトリクス16に入射する光は、第2暗色膜31b及び第2酸化金属層33bによってその反射を好適に抑制することができる。 That is, light incident on the black matrix 16 from the first transparent substrate 21 side and from the liquid crystal layer 13 side can be shielded by the entire black matrix 16 including the first and second dark color films 31a and 31b. Further, the light incident on the black matrix 16 from the first transparent substrate 21 side can be suitably suppressed from reflection by the first dark color film 31a and the first metal oxide layer 33a. On the other hand, the reflection of light incident on the black matrix 16 from the liquid crystal layer 13 side can be suitably suppressed by the second dark color film 31b and the second metal oxide layer 33b.
 さらに、第1透明膜42aの還元作用によって、第1暗色膜31a及び第1酸化金属層33aの双方を同時に形成できるので、製造工程の増加を抑制することができる。加えて、第2透明膜42bの還元作用によって、第2暗色膜31b及び第2酸化金属層33bを同時に形成することができる。しかも、透明電極17と同じ材料であるIZOからなる第2透明膜42bの一部を還元するようにしたので、第2暗色膜31bを透明電極17と同じ層に同時に形成でき、製造工程数を大幅に削減することができる。 Furthermore, since both the first dark color film 31a and the first metal oxide layer 33a can be formed simultaneously by the reducing action of the first transparent film 42a, an increase in manufacturing steps can be suppressed. In addition, the second dark color film 31b and the second metal oxide layer 33b can be simultaneously formed by the reducing action of the second transparent film 42b. In addition, since part of the second transparent film 42b made of IZO, which is the same material as the transparent electrode 17, is reduced, the second dark color film 31b can be simultaneously formed on the same layer as the transparent electrode 17, and the number of manufacturing steps can be reduced. It can be greatly reduced.
 《その他の実施形態》
 上記実施形態1~4では、表示装置の一例として液晶表示装置について説明したが、本発明はこれに限らず例えば有機EL表示装置等の他の表示装置についても同様に適用することができる。
<< Other Embodiments >>
In the first to fourth embodiments, the liquid crystal display device has been described as an example of the display device. However, the present invention is not limited to this, and can be similarly applied to other display devices such as an organic EL display device.
 また、暗色膜31及び酸化金属層33は、金属層32における第1透明基板21側及び第2透明基板22側の少なくとも一方に形成されていればよい。 The dark color film 31 and the metal oxide layer 33 may be formed on at least one of the metal layer 32 on the first transparent substrate 21 side and the second transparent substrate 22 side.
 また、本発明は上記実施形態1~4に限定されるものでなく、本発明には、これらの実施形態1~4を適宜組み合わせた構成が含まれる。 Further, the present invention is not limited to the above-described first to fourth embodiments, and the present invention includes a configuration in which these first to fourth embodiments are appropriately combined.
 以上説明したように、本発明は、例えば液晶表示装置等の表示装置及びその製造方法について有用である。 As described above, the present invention is useful for a display device such as a liquid crystal display device and a method for manufacturing the same.
      1   液晶表示装置 
     15   着色層 
     16   ブラックマトリクス 
     17   共通電極、透明電極 
     21   第1透明基板 
     22   第2透明基板 
     24   TFT(スイッチング素子)
     31   暗色膜 
     31a  第1暗色膜 
     31b  第2暗色膜 
     32   金属層 
     33   酸化金属層 
     33a  第1酸化金属層 
     33b  第2酸化金属層 
     41   金属膜 
     42   透明膜 
     42a  第1透明膜 
     42b  第2透明膜 
     45   積層体  
1 Liquid crystal display device
15 Colored layer
16 Black matrix
17 Common electrode, transparent electrode
21 First transparent substrate
22 Second transparent substrate
24 TFT (switching element)
31 Dark film
31a First dark film
31b Second dark film
32 metal layers
33 Metal oxide layer
33a First metal oxide layer
33b Second metal oxide layer
41 Metal film
42 Transparent film
42a First transparent film
42b Second transparent film
45 Laminate

Claims (10)

  1.  第1透明基板に金属膜及び透明膜を互いに積層されるように形成する工程と、
     上記透明膜を還元することによって、該透明膜が暗色化した暗色膜と、上記金属膜のうち上記暗色膜側の部分が酸化された酸化金属層と、上記金属膜のうち上記酸化金属層以外の金属層とをそれぞれ形成し、上記暗色膜、上記酸化金属層及び上記金属層の各少なくとも一部を有するブラックマトリクスを形成する工程と、
     複数の着色層を上記第1透明基板に形成する工程と、
     上記着色層及び上記ブラックマトリクスが形成された上記第1透明基板を、複数のスイッチング素子を形成した第2透明基板に対向配置させる工程とを有する
    ことを特徴とする表示装置の製造方法。
    Forming a metal film and a transparent film on the first transparent substrate so as to be laminated with each other;
    By reducing the transparent film, the dark film obtained by darkening the transparent film, a metal oxide layer in which the dark film side portion of the metal film is oxidized, and the metal film other than the metal oxide layer Forming a black matrix having at least a part of each of the dark color film, the metal oxide layer, and the metal layer, respectively.
    Forming a plurality of colored layers on the first transparent substrate;
    And a step of disposing the first transparent substrate on which the colored layer and the black matrix are formed facing a second transparent substrate on which a plurality of switching elements are formed.
  2.  請求項1に記載された表示装置の製造方法において、
     上記金属膜及び上記透明膜を形成する工程では、上記第1透明基板の一方の表面側全体に上記金属膜及び上記透明膜を形成し、
     上記ブラックマトリクスを形成する工程では、上記金属膜及び上記透明膜から形成された上記暗色膜、上記酸化金属層及び上記金属層をそれぞれエッチングすることによって上記ブラックマトリクスを形成し、
     上記着色層を形成する工程では、上記ブラックマトリクスが形成された上記第1透明基板に対し、上記着色層を形成する
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 1,
    In the step of forming the metal film and the transparent film, the metal film and the transparent film are formed on the entire surface of one surface of the first transparent substrate.
    In the step of forming the black matrix, the black matrix is formed by etching the dark film, the metal oxide layer, and the metal layer formed from the metal film and the transparent film,
    In the step of forming the colored layer, the colored layer is formed on the first transparent substrate on which the black matrix is formed.
  3.  請求項2に記載された表示装置の製造方法において、
     上記ブラックマトリクス及び上記着色層を覆うように透明電極を形成する工程を有する
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 2,
    A method of manufacturing a display device, comprising: forming a transparent electrode so as to cover the black matrix and the colored layer.
  4.  請求項1に記載された表示装置の製造方法において、
     上記金属膜及び上記透明膜を形成する工程では、透明導電膜からなる上記透明膜を上記第1透明基板の一方の表面側全体に形成すると共に、上記金属膜を上記透明膜の一部に重なるように形成し、
     上記ブラックマトリクスを形成する工程では、上記透明膜のうち上記金属膜に接触している領域に上記暗色膜を形成する一方、上記金属膜に接触していない領域を透明電極とする
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 1,
    In the step of forming the metal film and the transparent film, the transparent film made of a transparent conductive film is formed on the entire surface of one surface of the first transparent substrate, and the metal film is overlapped with a part of the transparent film. Formed as
    In the step of forming the black matrix, the dark color film is formed in a region of the transparent film that is in contact with the metal film, and a region that is not in contact with the metal film is a transparent electrode. A method for manufacturing a display device.
  5.  請求項4に記載された表示装置の製造方法において、
     上記金属膜及び上記透明膜を形成する工程では、上記第1透明基板に形成した上記着色層の表面に上記金属膜及び上記透明膜を形成する
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 4,
    In the step of forming the metal film and the transparent film, the metal film and the transparent film are formed on the surface of the colored layer formed on the first transparent substrate.
  6.  請求項1に記載された表示装置の製造方法において、
     上記金属膜及び上記透明膜を形成する工程では、上記金属膜を上記第1透明基板の一部に重なるように形成した後に、上記着色層を形成する工程を行って上記金属膜に隣接するように着色層を形成し、さらに上記着色層及び上記金属膜を覆うように透明導電膜からなる上記透明膜を形成する
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 1,
    In the step of forming the metal film and the transparent film, the metal film is formed so as to overlap a part of the first transparent substrate, and then the step of forming the colored layer is performed so as to be adjacent to the metal film. And forming the transparent film made of a transparent conductive film so as to cover the colored layer and the metal film.
  7.  請求項1乃至6の何れか1つに記載された表示装置の製造方法において、
     上記ブラックマトリクスを形成する工程では、上記透明膜を還元する際に該透明膜を加熱処理する
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to any one of claims 1 to 6,
    In the step of forming the black matrix, the transparent film is subjected to heat treatment when the transparent film is reduced.
  8.  複数の着色層とブラックマトリクスとが形成された第1透明基板と、
     上記第1透明基板に対向して配置され、複数のスイッチング素子が形成された第2透明基板とを備え、
     上記ブラックマトリクスは、暗色膜と、金属層と、該金属層及び上記暗色膜の間に介在された酸化金属層とを有している
    ことを特徴とする表示装置。
    A first transparent substrate on which a plurality of colored layers and a black matrix are formed;
    A second transparent substrate disposed opposite to the first transparent substrate and having a plurality of switching elements formed thereon,
    The display device, wherein the black matrix includes a dark color film, a metal layer, and a metal oxide layer interposed between the metal layer and the dark color film.
  9.  請求項8に記載された表示装置において、
     上記第1透明基板には、上記ブラックマトリクスの暗色膜と同じ層に形成された透明電極が設けられ、
     上記暗色膜は、上記透明電極と同じ材料からなる透明膜が還元することにより形成されている
    ことを特徴とする表示装置。
    The display device according to claim 8,
    The first transparent substrate is provided with a transparent electrode formed in the same layer as the dark color film of the black matrix,
    The display device, wherein the dark color film is formed by reducing a transparent film made of the same material as the transparent electrode.
  10.  請求項8又は9に記載された表示装置において、
     上記暗色膜及び上記酸化金属層は、上記金属層における上記第1透明基板側及び上記第2透明基板側の少なくとも一方に形成されている
    ことを特徴とする表示装置。
    The display device according to claim 8 or 9,
    The display device, wherein the dark film and the metal oxide layer are formed on at least one of the first transparent substrate side and the second transparent substrate side in the metal layer.
PCT/JP2012/005361 2011-09-01 2012-08-27 Display device and production method for same WO2013031171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-190528 2011-09-01
JP2011190528 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031171A1 true WO2013031171A1 (en) 2013-03-07

Family

ID=47755701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005361 WO2013031171A1 (en) 2011-09-01 2012-08-27 Display device and production method for same

Country Status (1)

Country Link
WO (1) WO2013031171A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466376A (en) * 2016-12-01 2017-12-12 昆山龙腾光电有限公司 The changeable liquid crystal display device in visual angle and view angle switch method
US20230017110A1 (en) * 2021-07-14 2023-01-19 Japan Display Inc. Substrate with light-shielding film, manufacturing method of the substrate, and display device having the substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043121A (en) * 1990-04-13 1992-01-08 Internatl Business Mach Corp <Ibm> Liquid crystal display and manufacture thereof
JPH08160409A (en) * 1994-12-09 1996-06-21 Sanyo Electric Co Ltd Liquid crystal display device
JPH10206889A (en) * 1997-01-22 1998-08-07 Sharp Corp Active matrix type liquid crystal display device and its manufacture method
JP2003107445A (en) * 2001-07-26 2003-04-09 Matsushita Electric Ind Co Ltd Substrate for liquid crystal display device and its manufacturing method, liquid crystal display device employing it and its manufacturing method
JP2009229604A (en) * 2008-03-19 2009-10-08 Nec Lcd Technologies Ltd Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043121A (en) * 1990-04-13 1992-01-08 Internatl Business Mach Corp <Ibm> Liquid crystal display and manufacture thereof
JPH08160409A (en) * 1994-12-09 1996-06-21 Sanyo Electric Co Ltd Liquid crystal display device
JPH10206889A (en) * 1997-01-22 1998-08-07 Sharp Corp Active matrix type liquid crystal display device and its manufacture method
JP2003107445A (en) * 2001-07-26 2003-04-09 Matsushita Electric Ind Co Ltd Substrate for liquid crystal display device and its manufacturing method, liquid crystal display device employing it and its manufacturing method
JP2009229604A (en) * 2008-03-19 2009-10-08 Nec Lcd Technologies Ltd Liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466376A (en) * 2016-12-01 2017-12-12 昆山龙腾光电有限公司 The changeable liquid crystal display device in visual angle and view angle switch method
TWI627476B (en) * 2016-12-01 2018-06-21 Liquid crystal display device with switchable viewing angle and viewing angle switching method
US11269204B2 (en) 2016-12-01 2022-03-08 Infovision Optoelectronics (Kunshan) Co., Ltd. Viewing angle switchable liquid crystal display device and viewing angle switching method
US20230017110A1 (en) * 2021-07-14 2023-01-19 Japan Display Inc. Substrate with light-shielding film, manufacturing method of the substrate, and display device having the substrate
US12007641B2 (en) * 2021-07-14 2024-06-11 Japan Display Inc. Substrate with light-shielding film, manufacturing method of the substrate, and display device having the substrate

Similar Documents

Publication Publication Date Title
KR102122402B1 (en) COT Structure Liquid Crystal Display Device and method of fabricating the same
TWI524117B (en) Display device substrate for ffs liquid driving mode, display device with ffs liquid driving mode and manufacturing method of display device substrate for ffs liquid driving mode
JP3974141B2 (en) Transflective liquid crystal display device
JP4363723B2 (en) Liquid crystal display
US8507916B2 (en) Thin film transistor substrate, LCD device including the same, and method for manufacturing thin film transistor substrate
WO2012063436A1 (en) Substrate for display device, method for producing same, and display device
US8698152B2 (en) Display panel and thin film transistor substrate
KR101243824B1 (en) Liquid Crystal Display Device and method for Manufacturing the same
KR101960371B1 (en) Thin film transistor substrate and method of fabricating the same
TWI464507B (en) Active matrix substrate and display device
JP2007003778A (en) Transflective liquid crystal display device and method for manufacturing the same
KR20080002582A (en) Method for fabricating liquid crystal display device
US9383878B2 (en) Touch panel and touch panel equipped display device
KR101622184B1 (en) Method of fabricating color filter using surface plasmon and method of fabricating liquid crystal display device
JP4170110B2 (en) Liquid crystal display device and manufacturing method thereof
JP5011479B2 (en) Manufacturing method of display device
WO2013031171A1 (en) Display device and production method for same
WO2016027758A1 (en) Semiconductor device and liquid crystal display device
JP5169896B2 (en) Thin film transistor and image display device
JP4605438B2 (en) Liquid crystal display device and manufacturing method thereof
US8873000B2 (en) Color filter substrate, display panel, and method for producing color filter substrate
US20190198679A1 (en) Thin film transistor substrate, liquid crystal display device including same, and method for producing thin film transistor substrate
KR20140091397A (en) lIQUID CRYSTAL dISPLAY HAVING STRUCTURE COLOR FILTER ON TFT AND METHOD OF FABRICATING THEREOF
KR102248877B1 (en) Liquid crystal display device and method for fabricating the same
JP2007102069A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP