WO2013027650A1 - 微粒化装置 - Google Patents

微粒化装置 Download PDF

Info

Publication number
WO2013027650A1
WO2013027650A1 PCT/JP2012/070841 JP2012070841W WO2013027650A1 WO 2013027650 A1 WO2013027650 A1 WO 2013027650A1 JP 2012070841 W JP2012070841 W JP 2012070841W WO 2013027650 A1 WO2013027650 A1 WO 2013027650A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
mixer
gap
shape
Prior art date
Application number
PCT/JP2012/070841
Other languages
English (en)
French (fr)
Inventor
神谷哲
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to US14/239,565 priority Critical patent/US9370755B2/en
Priority to CA2844754A priority patent/CA2844754A1/en
Priority to NZ620393A priority patent/NZ620393B2/en
Priority to DK12826426.4T priority patent/DK2745920T3/da
Priority to CN201280040347.8A priority patent/CN103842063B/zh
Priority to JP2013529985A priority patent/JP6258702B2/ja
Priority to SG2014004741A priority patent/SG2014004741A/en
Priority to AU2012297824A priority patent/AU2012297824B2/en
Priority to EP12826426.4A priority patent/EP2745920B1/en
Publication of WO2013027650A1 publication Critical patent/WO2013027650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2724Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/808Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/812Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow the stirrers co-operating with surrounding stators, or with intermeshing stators, e.g. comprising slits, orifices or screens

Definitions

  • the present invention relates to a mixer having a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator, a so-called rotor-stator type mixer.
  • a so-called rotor / stator type mixer generally includes a stator 2 having a plurality of openings 1 and a rotor arranged with a predetermined gap ⁇ inside the stator 2. 3 is provided.
  • Such a rotor-stator type mixer utilizes a fact that high shear stress is generated in the vicinity of the gap between the rotor 3 rotating at high speed and the stator 2 fixed to the fluid, etc. , Emulsification, dispersion, atomization, mixing, and the like, and are widely used in applications such as preparation and preparation of treatment liquids in the fields of foods, pharmaceuticals, and chemicals.
  • the rotor-stator type mixer is an external circulation mixer in which the treatment liquid circulates as shown by the arrow 5a in FIG. 2 according to the circulation system of the fluid to be treated, and the treatment liquid as shown by the arrow 5b in FIG. Sometimes classified as a circulating internal circulation mixer.
  • Patent Document 1 a rotor stator apparatus and method for particle formation
  • a stator having a plurality of openings, and a rotor arranged with a predetermined gap inside the stator.
  • An apparatus and a method for producing fine particles are proposed, which are used in a wide range of fields such as pharmaceuticals, dietary supplements, foods, chemicals, and cosmetics. According to this, it is said that it is efficient, simple, and can be easily scaled up.
  • Non-Patent Documents 1 and 2 the calculation method of the average energy dissipation rate is hardly clarified.
  • Non-Patent Documents 3 to 6 Some examples of research that can be applied to individual mixers and organize the experimental results have been reported (Non-Patent Documents 3 to 6). However, in these research examples (Non-Patent Documents 3 to 6), the effects of only the gap between the rotor and the stator and the influence of only the opening (hole) of the stator are affected by the atomization effect of the mixer. Only different content is reported for each mixer.
  • Non-Patent Documents 7 and 8 Several research examples have been reported in which the atomization mechanism (mechanism) of a rotor-stator type mixer is considered (Non-Patent Documents 7 and 8). These suggest that the energy dissipation rate of turbulent flow contributes to the atomization effect of the droplets, and that the frequency of receiving the shear stress of the treatment liquid (shear frequency) influences the atomization effect. ing.
  • Non-patent Document 9 In the soot scale-up method of a rotor / stator type mixer, several reports have been made on the final droplet size (maximum stable droplet size) obtained by operating for a long time (Non-patent Document 9). However, it is not practical and not very useful in an actual manufacturing site. That is, there have been few reports on useful studies in which the droplet diameter obtained by operating for a predetermined time in consideration of the processing (stirring and mixing) time of the mixer is estimated. Even if the droplet size is estimated in consideration of the processing time of the mixer, it only reports a phenomenon (facts) based on a measured value (experimental value), and is a theoretically analyzed study. No examples have been reported.
  • Patent Document 1 described above describes the superiority (performance) of a predetermined mixer and the numerical range of the design, but does not describe the theoretical basis for the numerical range of the design of a high-performance mixer. It does not describe the type and shape of high-performance mixers.
  • the conventional technology can obtain (1) each individual mixer, (2) use a small device, and (3) operate for a long time. In most cases, the final droplet diameter (maximum stable droplet diameter) is evaluated. That is, in the prior art, (A) a large-scale (actual production scale) apparatus is applied to (A) a wide variety of mixers, and (C) a droplet diameter obtained by operating in a predetermined time, The processing (stirring) time until the droplet diameter was obtained was not evaluated or estimated.
  • the present invention relates to a fluid to be processed in a rotor-stator type mixer including a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator. Proposing a mixer that can improve the shear stress and exhibit higher performance, and a mixer that can change and adjust the shear stress applied to the fluid to be processed, and change and adjust the flow of the fluid to be processed. It is aimed.
  • a rotor-stator type mixer capable of exhibiting such high performance was considered in consideration of a comprehensive performance evaluation method that can be applied to mixers of various shapes and circulation methods, and the operating conditions (processing time) of the mixer.
  • the purpose is to design using the design method.
  • a rotor-stator type mixer having a mixer unit, comprising a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator, A rotor arranged with a predetermined gap inside the stator is arranged inside the peripheral wall of the stator with a predetermined gap on a radial inner side of the peripheral wall of the stator in which the plurality of openings are formed.
  • a mixer characterized in that it has opposing rotor peripheral walls and has a plurality of rotor openings formed in the rotor peripheral walls.
  • the stator is composed of a plurality of stators having different peripheral diameters, and the rotor peripheral walls of the rotor are arranged with a predetermined gap on the radially inner side of the peripheral walls of the respective stators. It is a mixer.
  • the invention according to claim 4 4.
  • the invention according to claim 9 The structure of the mixer according to any one of claims 1 to 8, When a process of emulsification, dispersion, atomization or mixing is performed on the fluid to be processed by the mixer, a predetermined droplet diameter of the fluid to be processed can be obtained in a predetermined operation time.
  • ⁇ a Overall energy dissipation rate [m 2 / s 3 ] ⁇ g : Local shear stress [m 2 / s 3 ] in the gap between the rotor and stator ⁇ s : local energy dissipation rate of stator [m 2 / s 3 ] N p : Power number [-] N qd : Flow rate [-] n r : Number of rotor blades [-] D: Diameter of rotor [m] b: Rotor blade tip thickness [m] ⁇ : Clearance between rotor and stator [m] n s : number of holes in the stator [-] d: Stator hole diameter [m] l: Stator thickness [m] N: Speed [1 / s] t m : mixing time [s] V: Liquid volume [m 3 ] K g : Shape-dependent term in the gap [m 2 ] K s : Shape-dependent term
  • the invention according to claim 10 is:
  • the mixer can be scaled down or scaled up by calculating using Equation 1 and estimating the operation time of the mixer and the droplet diameter of the fluid to be processed obtained thereby.
  • the mixer according to any one of claims 1 to 8.
  • ⁇ a Overall energy dissipation rate [m 2 / s 3 ] ⁇ g : Local shear stress [m 2 / s 3 ] in the gap between the rotor and stator ⁇ s : local energy dissipation rate of stator [m 2 / s 3 ] N p : Power number [-] N qd : Flow rate [-] n r : Number of rotor blades [-] D: Diameter of rotor [m] b: Rotor blade tip thickness [m] ⁇ : Clearance between rotor and stator [m] n s : number of holes in the stator [-] d: Stator hole diameter [m] l: Stator thickness [m] N: Speed [1 / s] t m : mixing time [s] V: Liquid volume [m 3 ] K g : Shape-dependent term in the gap [m 2 ] K s : Shape-dependent term
  • the invention according to claim 11 A method for producing food, pharmaceuticals or chemicals by subjecting a fluid to be treated to emulsification, dispersion, atomization or mixing with the mixer according to any one of claims 1 to 8.
  • a method for producing a food, medicine or chemical by estimating the operation time of the mixer and the droplet diameter of the fluid to be treated obtained by calculating using the formula 1
  • ⁇ a Overall energy dissipation rate [m 2 / s 3 ] ⁇ g : Local shear stress [m 2 / s 3 ] in the gap between the rotor and stator ⁇ s : local energy dissipation rate of stator [m 2 / s 3 ] N p : Power number [-] N qd : Flow rate [-] n r : Number of rotor blades [-] D: Diameter of rotor [m] b: Rotor blade tip thickness [m] ⁇ : Clearance between rotor and stator [m] n s : number of holes in the stator [-] d: Stator hole diameter [m] l: Stator thickness [m] N: Speed [1 / s] t m : mixing time [s] V: Liquid volume [m 3 ] K g : Shape-dependent term in the gap [m 2 ] K s : Shape-dependent term
  • the invention according to claim 12 A food, pharmaceutical or chemical produced by the production method according to claim 11.
  • a fluid to be processed in a rotor-stator type mixer including a stator having a plurality of openings and a rotor disposed with a predetermined gap inside the stator.
  • a mixer capable of improving the shear stress applied to the fluid and exhibiting higher performance, and further providing a mixer capable of changing / adjusting the shear stress applied to the fluid to be processed and changing / adjusting the flow of the fluid to be processed. be able to.
  • a rotor-stator type mixer capable of exhibiting such high performance was considered in consideration of a comprehensive performance evaluation method that can be applied to mixers of various shapes and circulation methods, and the operating conditions (processing time) of the mixer. It is possible to design using a design method.
  • a production method for foods, pharmaceuticals, chemicals, etc. can be established by using a high-performance rotor / stator type mixer utilizing the above-described performance evaluation method and design method.
  • an index of overall energy dissipation rate ⁇ a is applied.
  • each mixer should be designed by using the calculated energy dissipation rate: ⁇ a that combines the shape-dependent terms and the operating condition-dependent terms, and matching the calculated values. Can do.
  • the range of high performance is designated by the numerical value of the shape dependence term (coefficient) applicable to the performance evaluation method of each mixer.
  • the overall energy dissipation rate the value of the shape-dependent term (coefficient) in the index ⁇ a can be set to a range that does not include the conventional mixer (conventional product), or the conventional index (theory) is easy It is possible to set a range that cannot be calculated (it is difficult unless it is actually measured).
  • the process of emulsifying, dispersing, atomizing or mixing the processed fluid to produce a food, pharmaceutical or chemical product is estimated, and foods having a desired droplet size (including dairy products and beverages) ), Pharmaceuticals (including quasi-drugs, etc.) or chemicals (including cosmetics).
  • the present invention is preferably applied to foods and pharmaceuticals, more preferably applied to foods, and more preferably applied to nutritional compositions and dairy products. It is particularly preferred to apply it to a nutritive composition or dairy product.
  • FIG. 6 is a diagram showing a relationship (total atomization tendency) between the overall energy dissipation rate: ⁇ a and the droplet diameter under the operating conditions of Table 5 in a large mixer.
  • FIG. 16 is an exploded perspective view illustrating a rotor and a stator of the mixer unit illustrated in FIG. 15.
  • FIG. 21 is a perspective view of a mixer unit of the type shown in FIGS. It is a figure showing the result of the comparative test of the conventional mixer and the mixer of this invention, Comprising: The figure showing the relationship between mixing time and an average droplet diameter.
  • ⁇ a Overall energy dissipation rate [m 2 / s 3 ] ⁇ g : Local shear stress [m 2 / s 3 ] in the gap between the rotor and stator ⁇ s : local energy dissipation rate of stator [m 2 / s 3 ] N p : Power number [-] N qd : Flow rate [-] n r : Number of rotor blades [-] D: Diameter of rotor [m] b: Rotor blade tip thickness [m] ⁇ : Clearance between rotor and stator [m] n s : number of holes in the stator [-] d: Stator hole diameter [m] l: Stator thickness [m] N: Speed [1 / s] t m : mixing time [s] V: Liquid volume [m 3 ] K g : Shape-dependent term in the gap [m 2 ] K s : Shape-dependent term
  • the overall energy dissipation rate: ⁇ a can be expressed as the sum (sum) of the local shear stress: ⁇ g in the gap (gap) between the rotor and the stator and the local energy dissipation rate: ⁇ s of the stator.
  • overall energy dissipation rate epsilon derive a included in the calculation formula is obtained by measuring the power-flow during operation and dimensions of the rotor-stator, the entire mixer is a number unique to each mixer
  • the shape-dependent term The performance of the mixer is evaluated by evaluating the number of K c values.
  • K s [m 2 ] is the flow rate: N qd [-], the number of holes in the stator: n s [-], the hole diameter of the stator: d [m], the thickness of the stator: l [m], clearance between rotor and stator: ⁇ [m], rotor diameter: D [m]
  • K c [m 5 ] is the number of powers: N p [-], the number of flow rates: N qd [-], the number of rotor blades: n r [-], the diameter of the rotor: It is a numerical value unique to each mixer based on D [m] and the shape-dependent term in the gap: K g [m 2 ] and the shape-dependent term K s [m 2 ] in the stator.
  • the power number: N p [-] and the flow rate number: N qd [-] are dimensionless numbers generally used in the field of chemical engineering and are defined as follows.
  • K c of the entire mixer is a value unique to each mixer, which is obtained by measuring the dimensions of the rotor / stator and the power / flow rate during operation.
  • the mixer is designed based on the above-described calculation formula for deriving the overall energy dissipation rate: ⁇ a .
  • ⁇ Summary energy dissipation rate ⁇ a and the droplet diameter change of (atomization tendency of droplets)>
  • a simulated liquid assuming a dairy product was prepared.
  • This emulsified product simulated liquid is composed of milk protein concentrate (MPC, TMP (total milk protein)), rapeseed oil, and water.
  • MPC milk protein concentrate
  • TMP total milk protein
  • rapeseed oil rapeseed oil
  • the performance of the mixer was evaluated by experimentally examining the tendency of atomization of the droplet diameter. As shown in FIG. 3, an external circulation type unit was prepared, and the droplet diameter was measured with a laser diffraction particle size distribution analyzer (Shimadzu Corporation: SALD-2000) in the middle of the flow path.
  • SALD-2000 laser diffraction particle size distribution analyzer
  • both the internal circulation mixer and the external circulation mixer are arranged with a stator 2 having a plurality of openings 1 and a predetermined gap ⁇ inside the stator 2, as shown in FIG.
  • a mixer unit 4 including the rotor 3 is provided. Therefore, when evaluating an internal circulation mixer, as shown in FIG. 4, a mixer comprising a rotor and a stator having the same dimensions (size), shape and structure as the mixer unit provided in the external circulation mixer. Considering that the unit was installed in the internal circulation mixer, the results of the test evaluating the external circulation mixer were used for the evaluation of the internal circulation mixer.
  • the mixers A-1 and A-2 both have a capacity of 1.5 liters and are the same manufacturer, but have different sizes.
  • the gap volume ⁇ g is the volume of the gap ⁇ portion in FIG.
  • the number of stirring blades of the rotor 3 provided in the mixers A-1 and A-2 (both accommodated: 1.5 liters) and B (accommodated: 9 liters) is 4 mixers A-1 A-2: 4 sheets, mixer B: 4 sheets.
  • ⁇ a is an index that can evaluate the performance of a rotor-stator type mixer, comprehensively considering differences in operating conditions and shapes.
  • ⁇ Summary energy dissipation rate mixer evaluation of using the ⁇ a>
  • the evaluation of the rotor / stator type mixer using the calculation formula of the present invention for deriving the overall energy dissipation rate: ⁇ a , particularly the evaluation of the mixer using the atomization effect (atomization tendency) as an index will be described.
  • a company (the rotor diameter D: 350 mm) in the case of the mixer reduces the clearance ⁇ of the rotor and stator from 0.7mm to 0.5 mm, the stator hole number (aperture area ratio) n s 25
  • the atomization effect and the emulsification effect (performance) are considered to be improved by about 2.0 times. This means that the processing time can be greatly reduced to about half of the current processing time.
  • the high-performance mixer proposed by the present invention is such that a rotor provided with a predetermined gap inside the stator has the predetermined gap on the radially inner side of the peripheral wall of the stator in which the plurality of openings are formed.
  • the rotor is provided with a rotor peripheral wall facing the inside of the stator peripheral wall, and a plurality of rotor openings are formed in the rotor peripheral wall.
  • the rotor when the rotor rotates, it has a structure in which a multi-stage mixing section (at least two stages or more) including a mixing section on the inner side in the radial direction and a mixing section on the outer side in the radial direction is formed.
  • a multi-stage mixing section at least two stages or more
  • the shear stress applied to the fluid to be processed can be improved, and high performance can be realized.
  • the stator and the rotor can be moved in the direction in which the rotation axis of the rotor extends, and the interval between the two can be increased during the rotation of the rotor. It can be adjusted and controlled. Thereby, the shear stress applied to the fluid to be processed can be changed / adjusted, and the flow of the fluid to be processed can be changed / adjusted.
  • the shape and structure of such a high-performance mixer proposed by the present invention is the performance evaluation of the mixer using the overall energy dissipation rate: ⁇ a as an index derived from the above-described calculation formula of the present invention, and its verification results Defined with reference to. Based on the definition, a high-performance mixer was designed, and an outline of the mixer was shown in FIGS.
  • the powder raw material is quickly dispersed in the preparation liquid without dissipating high energy by separating the stator from the rotor. And the procedure which moves a stator to the vicinity of a rotor after that and melt
  • Multi-stage homogenizer multi-stage emulsification mechanism
  • the performance (effect) of atomization and emulsification is better as the value of the overall energy dissipation rate: ⁇ a derived based on the calculation formula of the present invention is larger.
  • the value of overall energy dissipation rate: ⁇ a can be expressed as a product of local energy dissipation rate: ⁇ l and shear frequency: f s, h .
  • shearing frequency f s, h
  • the local energy dissipation rate: ⁇ l and the shear frequency: f s, h are as follows.
  • the stator is moved along the direction in which the rotating shaft of the rotor extends during the operation of the mixer, so that the clearance (clearance) is 0.5 to 1 mm.
  • the degree is sufficient. That is, from the viewpoint of avoiding risks such as biting, a gap of 0.5 mm or less is unnecessary.
  • the hole diameter of the stator is 2 mm or less, there was a risk that the powder raw material would be clogged. Therefore, when the powder raw material is dissolved and emulsified at the same time, the hole diameter of the stator is preferably about 2 to 4 mm.
  • an opening area ratio of 18 to 36% is generally adopted, but in this verification experiment, the opening area ratio is 15% or more, preferably 20% or more, more preferably 30%. From the above, it has been found that 40% or more, more preferably 40 to 50% is more preferable.
  • the shape of the hole of the stator is not a comb-like shape but a circular shape. It has been found that the local energy dissipation rate: ⁇ l is directly proportional to the shear area: S s . Therefore, if the cross-sectional area is the same, the circular shape and the shear area: S s are maximized, and thus the circular shape is considered to be superior to the comb-like shape as the performance (effect) of atomization and emulsification.
  • Table 5 shows the overall energy dissipation rate: ⁇ a calculated with a mixer in which only the shape of the opening formed in the stator (circular, square, rectangular) is changed and the other conditions are the same.
  • the number of holes is larger in a circular or square shape than the comb teeth (rectangular cross section), and the shear cross sectional area is also increased. Therefore, the overall energy dissipation rate: ⁇ a is also increased, the shape of the opening is circular or square, and the performance of atomization and emulsification of the mixer is improved.
  • Table 6 shows the result of comparing the characteristics of the existing representative mixer and the novel mixer proposed in the present invention.
  • an external circulation type unit is prepared as shown in FIG.
  • the droplet diameter was measured with a laser diffraction particle size distribution meter (Shimadzu: SALD-2000), and the tendency of atomization of the droplet diameter was investigated and evaluated.
  • Table 7 shows an overview of the mixers C (capacity: 100 liters), D (capacity: 500 liters), and E (capacity: 10 kiloliters) used here. These three types of mixers are manufactured by the same manufacturer and are provided on the market. Regarding the mixer C, five types of mixers (stator No. 1 to stator No. 5) having different sizes (sizes) of the gap (gap) ⁇ and the number of openings 1 were examined.
  • the opening area ratio is 0.15 (15%) or more, preferably 0.2 (20%) or more, more preferably 0.3 (30 %) Or more, more preferably 0.4 (40%) or more, and particularly preferably 0.4 to 0.5 (40 to 50%). At this time, it is preferable to consider the strength of the opening of the stator.
  • stator No. having the same value of K c / K c _std . 3 and no. 4 shows almost the same atomization tendency. Therefore, when the performance of the mixer is predicted by K c / K c _std and the overall energy dissipation rate ⁇ a calculated by the calculation formula of the present invention, a qualitative tendency It was found that it can explain (evaluate) quantitative trends.
  • the overall energy dissipation rate ⁇ a obtained by the calculation formula of the present invention is an index that can evaluate the performance of a rotor-stator type mixer, comprehensively considering differences in operating conditions and shapes. Was confirmed.
  • FIG. 14 shows the relationship between the overall energy dissipation rate ( ⁇ a) determined by the calculation formula of the present invention: ⁇ a and the droplet diameter (atomization tendency). Also mixer scale (size) is different from the 200 to 700 liters in volume, droplet size was found to be dependent on the value of epsilon a (size). Moreover, it turned out that the same atomization tendency is shown even if the scale of a mixer differs.
  • a value (size) It was considered that the scale could be increased by comprehensively considering the difference in operating conditions and shapes.
  • the overall energy dissipation ratio ⁇ a obtained by the calculation formula of the present invention has a substantially linear relationship with the droplet diameter.
  • the droplet diameter is estimated by calculating the droplet diameter obtained from the experiment and the overall energy dissipation rate obtained by the calculation formula of the present invention: ⁇ a It was decided to use this relationship.
  • the overall energy dissipation rate ⁇ a obtained by the calculation formula of the present invention is divided into a shape-dependent term and other manufacturing condition terms (including time). Therefore, if the manufacturing condition term (time) is fixed and the shape-dependent term increases, the overall energy dissipation rate: ⁇ a increases, and as a result, the droplet diameter also decreases under the same manufacturing condition (time).
  • the particle diameter obtained under a certain production condition is actually measured, and ⁇ a at that time is calculated. From this experiment, ⁇ a necessary for obtaining a predetermined droplet diameter is known.
  • the rotor-stator type mixer proposed by the present invention is characterized by a mixer unit 14 including a stator having a plurality of openings and a rotor arranged with a predetermined gap inside the stator.
  • the other structure is the same as that of the conventional rotor / stator type mixer described with reference to FIG. Therefore, only an example of the mixer unit 14 having the characteristic structure and mechanism in the mixer of the present invention will be described with reference to the drawings.
  • the mixer unit 14 in the rotor-stator type mixer of the present invention is composed of a rotor 13 having a structure shown in FIG.
  • the stator 22 includes a plurality of circular openings 11b as in the stator 2 in the conventional mixer unit 4 illustrated in FIG.
  • the rotor 13 disposed inside the stator 22 with a predetermined gap ⁇ is provided with a plurality of stirring blades extending radially from the rotation shaft 17 serving as the rotation center.
  • FIG. 15 illustrates a configuration in which twelve stirring blades 13a to 13l are provided
  • FIG. 16 illustrates a configuration in which eight stirring blades 13a to 13h are provided.
  • the stirring blades 13a to 13l may be collectively referred to as “stirring blade 13”.
  • a rotor peripheral wall 40 is provided at the tip of each stirring blade 13.
  • the outer periphery of the rotor peripheral wall 40 faces the inner peripheral wall surface 22a of the stator 22, and a gap ⁇ is formed between the outer periphery of the rotor peripheral wall 40 and the inner peripheral wall surface 22a of the stator 22 as shown in FIG.
  • the gap ⁇ is formed between the outer periphery of the rotor peripheral wall 40 and the inner peripheral wall surface 22a of the stator 22 as shown in FIG.
  • a plurality of rotor openings 41 are formed in the rotor peripheral wall 40.
  • size (diameter) of the rotor opening 41 can be made the same as the magnitude
  • the rotor peripheral wall 40 in which the plurality of rotor openings 41 are formed and the stator 22 in which the plurality of openings 11b are formed have a diameter.
  • the rotor peripheral wall 40 rotates with the rotation of the rotor 13 while facing each other at a distance ⁇ in the direction. Therefore, an effective mixing portion is formed here. Thereby, the shear stress applied to the fluid to be processed can be improved.
  • stator 22 and the rotor 13 can approach and separate from each other in the direction in which the rotating shaft 17 of the rotor 13 extends.
  • the rotor 13 is movable in the direction in which the rotary shaft 17 extends as shown by arrows 23a and 23b in FIG.
  • the rotor 13 In the initial stage of melting the powder raw material by the mixer, the rotor 13 is separated from the stator 22 as shown by the arrow 23b in FIG. 15A, so that the powder raw material can be converted into the preparation liquid without dissipating high energy. Can be dispersed quickly.
  • the rotor 13 is moved as shown by the arrow 23a in FIG. 15A, and the entire region of the rotor peripheral wall 40 in which the plurality of rotor openings 41 are formed and the plurality of openings 11b are formed.
  • the above-described mixing portion is formed by facing the entire region of the stator 22. Then, it is preferable to rotate the rotor 13 in the direction of the arrow 20 in FIG.
  • the stator 22 and the rotor 13 are movable in the direction in which the rotation shaft 17 of the rotor 13 extends, the interval between the two is adjusted and controlled while the rotor 13 is rotating. be able to. Thereby, the shear stress applied to the fluid to be processed can be changed / adjusted, and the flow of the fluid to be processed can be changed / adjusted.
  • the nozzle 18 extends in the radial direction toward the center along the upper end of the stator 22 constituting the mixer unit 14.
  • the fluid to be treated is directly fed from the nozzle opening 19 through the nozzle 18 to the mixing portion (mixer portion) as indicated by an arrow 21 in FIG.
  • the fluid to be treated is directly injected from the nozzle opening 19 as indicated by the arrow 21 in the vicinity of the radially inner side of the rotor peripheral wall 40 in which the plurality of rotor openings 41 are formed. Then, through the plurality of rotor openings 41 of the rotor peripheral wall 40 rotating in the direction of the arrow 20, the rotor peripheral wall 40 and the stator 22 flow into the mixing portion that is opposed to each other at the interval ⁇ in the radial direction. Mixed.
  • FIGS. 17, 18A, and 18B show another embodiment of the present invention described with reference to FIGS. 15A to 15C and FIG.
  • the point that the stator 22 includes an annular lid portion 30 extending radially inward from the upper end edge is different from the above-described embodiment shown in FIGS. 15A to 15C and FIG.
  • this difference will be mainly described.
  • annular lid 30 extending radially inward from the upper edge of the stator 22 is provided for processing.
  • the fluid can be prevented from leaking upward in FIG. 15A from the gap between the rotor 13 and the stator 22.
  • An inflow conduit 31 extending in the direction in which the rotating shaft 17 extends is disposed on the outer periphery of the stator 22, and a conduit 32 communicating with the upper end of the inflow conduit 31 extends inward in the lid portion 30.
  • an introduction hole 33 that introduces a fluid to be processed toward the lower side in FIG. 18B is formed in the annular lid portion 30 in the radially inner portion from the rotor peripheral wall 40.
  • a conduit 32 extending radially inward in the lid 30 is connected to the introduction hole 33.
  • the fluid does not leak upward from the gap between the rotor 13 and the stator 22 in FIG. 14, and the rotor opening 41 of the rotor peripheral wall 40, the opening of the stator 22. 11b passes from the inside in the radial direction toward the outside. Thereby, the fluid to be treated is subjected to a high shear breaking stress.
  • the stator 13 is being rotated.
  • the distance between the rotor 22 and the rotor 13 can be adjusted and controlled, whereby the shear stress applied to the fluid to be processed can be changed and adjusted, and the flow of the fluid to be processed can be changed and adjusted. it can.
  • FIG. 19 to FIG. 21 show still another embodiment of the present invention described with reference to FIG. 15 and FIG.
  • a plurality of mixing portions that is, a radially inner mixed portion and a radially outer mixed portion, are formed. This is different from the embodiment shown in FIGS. 15A to 15C and FIG. Hereinafter, this difference will be mainly described.
  • FIGS. 19 and 21 eight stirring blades (stirring blades 13a to 13h) are adopted. In the embodiment shown in FIG. 20, twelve stirring blades (stirring blades 13a) are used. Will be described.
  • stator 12 having a diameter smaller than the diameter of the stator 22 is disposed concentrically on the mixer unit 14 as shown in FIG.
  • the stator 22 is provided on the lower surface of an annular lid 30 extending radially inward from the upper end edge of the stator 22.
  • a structure in which the upper end edge of the stator 12 having a smaller diameter is attached can be employed.
  • the rotor 13 disposed with a predetermined gap ⁇ inside the stator 22 includes a plurality of stirring blades 13 extending radially from the rotating shaft 17 serving as a rotation center.
  • the tip of the stirring blade 13 is provided with a plurality of rotor openings 41 so as to face the inner peripheral wall surface 22a of the stator 22.
  • a rotor peripheral wall 40 is provided.
  • the rotor peripheral wall 42 provided with the several rotor opening 43 and facing the inner peripheral wall surface 12a of the inner side stator 12 is arrange
  • Vertical grooves 15a, 15b, 15c, 15d,..., 15l are formed at the same diameter position between the radial center of each stirring blade 13 and the radial outer end.
  • the vertical grooves 15a, 15b, 15c, 15d,..., 15l may be collectively referred to as “vertical grooves 15”.
  • the rotor peripheral wall 42 having a smaller diameter than the rotor peripheral wall 40 corresponding to the rotor peripheral wall 40 is formed on the radially inner side of the position where the longitudinal groove 15 of the stirring blade 13 is formed. Is supported by.
  • the rotor peripheral wall 42 is provided with a plurality of rotor openings 43.
  • size (diameter) of the rotor opening 43 can be made the same as the magnitude
  • stator 12 when the mixer unit 14 is formed, the stator 12 is inserted into the vertical groove 15 formed in each stirring blade 13.
  • a gap ⁇ is formed between the circumferential wall surface of the rotor circumferential wall 42 and the inner circumferential wall surface 12 a of the stator 12, and the gap ⁇ is formed between the radially inner surface of the vertical groove 15 and the outer circumferential wall surface 12 b of the stator 12. Is formed, and a gap ⁇ is formed between the peripheral wall surface of the rotor peripheral wall 40 and the inner peripheral wall surface 22a of the stator 22.
  • the mixer unit 14 of the rotor / stator type mixer shown in FIGS. 19 to 21 has a structure in which the rotors are arranged inside the plurality of stators 12 and 22 having different diameters with a predetermined gap therebetween. Become.
  • a two-stage mixing portion is formed, that is, a radially inner mixed portion and a radially outer mixed portion.
  • High performance can be realized by such multi-stage mixing. That is, by using such a multistage system, the shear stress applied to the fluid to be processed can be improved.
  • the radially inner mixed portion is between the peripheral wall surface of the rotor peripheral wall 42 and the inner peripheral wall surface 12 a of the stator 12, the radially inner surface of the longitudinal groove 15, and the outer peripheral wall surface of the stator 12. 12b.
  • the radially outer mixed portion is formed between the circumferential wall surface of the rotor circumferential wall 40 and the inner circumferential wall surface 22 a of the stator 22.
  • the stators 12 and 22 and the rotor 13 are structured such that they can approach and separate from each other in the direction in which the rotation shaft 17 of the rotor 13 extends. Yes. That is, the stators 12 and 22 and the rotor 13 are movable in the direction in which the rotating shaft 17 of the rotor 13 extends, and the interval between the two is adjusted and controlled while the rotor 13 is rotating. can do. Thereby, the shear stress applied to the fluid to be processed can be changed / adjusted, and the flow of the fluid to be processed can be changed / adjusted.
  • FIG. 19 in order to explain the relationship between the stators 12 and 22 and the rotor 13, the explanation is made in a state where the annular lid 30 is not provided.
  • FIGS. It can be set as the structure provided with the cover part 30 of this.
  • FIG. 20 shows a state in which the mixer including the annular lid 30 is viewed from below.
  • the direct input (addition) mechanism described with reference to FIGS. 15B and 15C has the structure using the lid 30 described with reference to FIG. 20. It has become.
  • a conduit 32 extending inward in the radial direction in the lid portion 30 is connected, and the introduction hole 33 for introducing the fluid to be processed downward in FIG. 21 is most supported by the stirring blade 13. It will be formed on the lower surface of the lid 30 on the radially inner side of the position where the small-diameter rotor peripheral wall is provided.
  • the diameter of the stator 2 of the conventional mixer used for the test and the diameter of the stator 22 of the mixer of the present invention are both 197 mm.
  • the test was performed using a butter emulsion having the composition shown in Table 9 below.
  • the test results were as shown in Table 10, Table 11, and FIGS. From FIG. 20, it was confirmed that according to the mixer of the present invention, the same atomization tendency was obtained in a shorter time than the conventional machine. Further, from FIG. 21, according to the mixer of the present invention, there is less variation in droplet diameter than the conventional machine, and from FIG. 24C, according to the mixer of the present invention, the rotor is compared with the conventional mixer. It was confirmed that the rotation of was contributing to the emulsification power.
  • FIG. 28 shows an estimation result obtained by numerically analyzing the energy dissipation rate. It can be seen that the mixer of the present invention has higher energy dissipation than the conventional machine, that is, the mixer of the present invention has higher capacity than the conventional machine. From this, it is estimated that according to the mixer of the present invention, the same atomization effect is exhibited in a shorter time than the conventional machine. And the actual atomization tendency shown by FIG. 20 was the same tendency as this numerical analysis result.
  • FIG. 27 shows the direct introduction (addition) of the fluid to be treated explained with reference to FIG. 18B in the mixer of the present invention explained with reference to FIG. 21 (the mixer having a structure in which the annular lid 30 is provided). ) And a comparison result when the fluid to be treated is naturally introduced through the hole formed in the annular lid portion 30 shown in FIG. Is expressed.
  • the other operating conditions were the same, and the comparative study was performed only by changing the condition of whether the fluid to be treated was directly charged (added) or whether the fluid to be naturally flowed from the hole 30a.
  • the present invention can exhibit the excellent effects and functions described below, it can be used in various industrial fields in which emulsification, dispersion, and micronization processes are performed, for example, in the manufacturing field of foods, pharmaceuticals, chemicals, and the like. It is.
  • the rotor-stator type mixer according to the present invention has a high atomization effect and an emulsification effect, and can produce a product having the same or higher quality as a conventional product in a shorter time than before.
  • the necessary processing (stirring) time can be estimated, and the operation (processing) should be performed at the minimum necessary time.
  • the operating time of the rotor-stator type Kimisa can be shortened and energy saving can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Dairy Products (AREA)

Abstract

 複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているローター・ステータータイプのミキサーにおいて、処理される流体に掛かる剪断応力を向上させ、より高い性能を発揮できるミキサー、更には、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整できるミキサーを提案する。 複数個の開口部を備えているステーターの内側に所定の隙間を空けて配備されるローターは、前記複数の開口部が形成されている前記ステーターの周壁の径方向内側において前記所定の隙間を空けて当該ステーターの周壁の内側に対向するローター周壁を備えていると共に、当該ローター周壁に複数個のローター開口が形成されている。

Description

微粒化装置
 この発明は、複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているミキサー、いわゆるローター・ステータータイプのミキサーに関する。
 いわゆるローター・ステータータイプのミキサーは、一般的に、図1に示すように、複数個の開口部1を備えているステーター2と、ステーター2の内側に所定の隙間δを空けて配置されるローター3とからなるミキサーユニット4を備えている。このようなローター・ステータータイプのミキサーは、高速で回転するローター3と、固定されているステーター2との間の隙間近傍で、高い剪断応力が発生することを利用して、流体などに対して、乳化、分散、微粒化、混合などの処理を行うものであり、食品、医薬品、化学品などの分野において、処理液の調合、調製などの用途で広く使用されている。
 ローター・ステータータイプのミキサーは、処理される流体の循環方式に応じて、図2の矢印5aで示すように処理液が循環する外部循環式ミキサー、図2の矢印5bで示すように処理液が循環する内部循環式ミキサーに分類されることがある。
 このようなローター・ステータータイプのミキサーに関して多種多様な形状や循環方式が提供されている。例えば、特許文献1(粒子形成のための回転子固定子装置および方法)には、複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているミキサーを薬剤、栄養補助食品、食品、化学品、化粧品などの幅広い分野で利用される、粒子の形成に適用する微細粒子の生成のための装置、方法が提案されている。これによれば、効率的で、簡単で、容易にスケールアップすることができるとされている。
 また、以前から種々の形状のミキサーの性能評価方法として、幾つかの指標(理論)が報告されている。
 例えば、前述したローター・ステータータイプのミキサーに限らず、液-液分散操作に着目してみると、液滴径の寸法は、平均的なエネルギー消散率の計算値(大小)で議論できることが報告されている(非特許文献1、2)。ただし、非特許文献1、2では、平均的なエネルギー消散率の計算方法は殆ど明らかにされていない。
 個別のミキサーに適用でき、その実験結果を整理した研究例は幾つか報告されている(非特許文献3~6)。ただし、これらの研究例(非特許文献3~6)では、ミキサーの微粒化効果に対して、ローターとステーターの隙間(ギャップ)のみの影響や、ステーターの開口部(ホール)のみの影響などを考察しており、各ミキサーで異なる内容しか報告されていない。
 ローター・ステータータイプのミキサーの微粒化機構(メカニズム)を考察した研究例は幾つか報告されている(非特許文献7、8)。これらでは、液滴の微粒化効果には、乱流のエネルギー消散率が寄与することや、その微粒化効果には、処理液の剪断応力を受ける頻度(剪断頻度)が影響することが示唆されている。
 ローター・ステータータイプのミキサーの スケールアップ方法では、長時間で運転して得られる最終的な液滴径(最大安定の液滴径)に関して幾つか報告されている(非特許文献9)。しかし、実際の製造現場では実用的ではなく、あまり有用ではない。つまり、ミキサーの処理(撹拌、混合)時間を考慮し、所定の時間で運転して得られる液滴径を推定した有用な研究例は殆ど報告されていない。仮に、ミキサーの処理時間を考慮して、液滴径を推定していても、それは単なる実測値(実験値)に基づく現象(事実)を報告しているのみであり、理論的に解析した研究例は報告されていない。
 前述した特許文献1には所定のミキサーの優位性(性能)や設計の数値範囲などが記載されているが、高性能なミキサーの設計の数値範囲などに関して理論的な根拠が記載されておらず、高性能なミキサーの種類や形状などに関して記載されていない。
 前述したように、以前から種々の形状のミキサーの性能評価方法として、幾つかの指標(理論)が報告されているが、これらの指標は、あくまでも形状の同じ個別のミキサーにしか適用できない場合が多く、実際には形状の異なる多種多様なミキサーには適用できない場合が殆どである。例えば、ローターとステーターの隙間(ギャップ)が微粒化効果に大きく影響するミキサーのみに適用できる指標や、ステーターの開口部(ホール)が微粒化効果に大きく影響するミキサーのみに適用できる指標などは存在するものの、あらゆる形状のミキサーに適用できる包括的な指標は議論されておらず、それらを考慮した指標は殆ど存在していない。
 このように、ローター・ステータータイプのミキサーの性能評価方法やスケールアップ方法に関する研究例は殆ど存在せず、形状の異なる多種多様なミキサーに適用でき、その実験結果を包括的に整理した研究例も殆ど存在していない。
 ローター・ステータータイプのミキサーの 性能評価方法やスケールアップ方法に関して、従来技術では、(1)個別のミキサー毎に、(2)小規模の装置を使用し、(3)長時間で運転して得られる最終的な液滴径(最大安定の液滴径)を評価している場合が殆どであった。つまり、従来技術では、(A)多種多様なミキサーに、(B)大規模(実製造規模)の装置を適用し、(C)所定の時間で運転して得られる液滴径や、所定の液滴径が得られるまでの処理(撹拌)時間を評価や推定していなかった。
 例えば、ローターとステーターの隙間(ギャップ)の寸法が微粒化効果や乳化効果に大きく影響するミキサーのみに適用できる指標や、ステーターの開口部(ホール)の寸法や形状が微粒化効果や乳化効果に大きく影響するミキサーのみに適用できる指標などは存在するものの、あらゆる形状のミキサーに適用できる包括的な指標(多種多様なミキサーを統一して比較や評価できる理論)は議論されておらず、それらを考慮した指標は存在していなかった。
 そのため、現実的には、実際の処理液を使用して試行錯誤しながら、ミキサーを性能評価し、設計(開発、作製)していた。
特表2005-506174号公報
Davies, J. T.; "Drop Sizes of Emulsions Related to Turbulent Energy Dissipation Rates," Chem. Eng. Sci., 40, 839-842 (1985) Davies, J. T.; "A Physical Interpretation of Drop Sizes in Homogenizers and Agitated Tanks, Including the Dispersion of Viscous Oils," Chem. Eng. Sci., 42, 1671-1676 (1987) Calabrese, R. V., M. K. Francis, V. P. Mishra and S. Phongikaroon; "Measurement and Analysis of Drop Size in Batch Rotor-Stator Mixer," Proc. 10th European Conference on Mixing, pp. 149-156, Delft, the Netherlands (2000) Calabrese, R. V., M. K. Francis, V. P. Mishra, G. A. Padron and S. Phongikaroon; "Fluid Dynamics and Emulsification in High Shear Mixers," Proc. 3rd World Congress on Emulsions, pp. 1-10, Lyon, France (2002) Maa, Y. F., and C. Hsu; "Liquid-Liquid Emulsification by Rotor/Stator Homogenization," J. Controlled. Release, 38, 219-228 (1996) Barailler, F., M. Heniche and P. A. Tanguy; "CFD Analysis of a Rotor-Stator Mixer with Viscous Fluids," Chem. Eng. Sci., 61, 2888-2894 (2006) Utomo, A. T., M. Baker and A. W. Pacek; "Flow Pattern, Periodicity and Energy Dissipation in a Batch Rotor-Stator Mixer," Chem. Eng. Res. Des., 86, 1397-1409 (2008) Porcelli, J.; "The Science of Rotor/Stator Mixers," Food Process, 63, 60-66 (2002) Urban K.; "Rotor-Stator and Disc System for Emulsification Processes," Chem. Eng. Technol., 29, 24-31 (2006)
 本発明は、複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているローター・ステータータイプのミキサーにおいて、処理される流体に掛かる剪断応力を向上させ、より高い性能を発揮できるミキサー、更には、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整できるミキサーを提案することを目的にしている。
 また、このような高い性能を発揮できるローター・ステータータイプのミキサーを、多種多様な形状や循環方式のミキサーに適用できる包括的な性能評価方法や、そのミキサーの運転条件(処理時間)を考慮した設計方法を利用して設計することを目的にしている。
 更に、前記の性能評価方法や設計方法を利用した高性能のローター・ステータータイプのミキサーを用いて、食品、医薬品、化学品などの製造方法(微粒化方法)を確立することを課題にしている。
 請求項1記載の発明は、
 複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーであって、
 前記ステーターの内側に所定の隙間を空けて配備されるローターは、前記複数の開口部が形成されている前記ステーターの周壁の径方向内側において前記所定の隙間を空けて当該ステーターの周壁の内側に対向するローター周壁を備えていると共に、当該ローター周壁に複数個のローター開口が形成されている
 ことを特徴とするミキサー
 である。
 請求項2記載の発明は、
 前記ステーターは、周径の異なる複数のステーターからなり、各ステーターの周壁の径方向内側に前記ローターの前記ローター周壁がそれぞれ所定の隙間を空けて配置されている
 ことを特徴とする請求項1記載のミキサー
 である。
 請求項3記載の発明は、
 前記ステーターと、前記ローターとが、前記ローターの回転軸が延びている方向で相互に近付く、又は離れることができるように構成されている
 ことを特徴とする請求項1又は2記載のミキサー
 である。
 請求項4記載の発明は、
 前記ステーターは、上端縁から径方向内側に伸びている環状の蓋部を備えていることを特徴とする請求項1乃至3のいずれか一項記載のミキサー
 である。
 請求項5記載の発明は、
 前記環状の蓋部に、下側に向けて被処理流体を導入する導入孔が形成されていることを特徴とする請求項4記載のミキサー
 である。
 請求項6記載の発明は、
 前記ステーターが備えている開口部は円形状であることを特徴とする請求項1乃至5のいずれか一項記載のミキサー
 である。
 請求項7記載の発明は、
 前記ステーターが備えている開口部は前記ステーターの周壁に全体の開口面積比率として20%以上で穿設されていることを特徴とする請求項1乃至6のいずれか一項記載のミキサー
 である。
 請求項8記載の発明は、
 前記ローターは、回転中心から放射状に延びる複数枚の攪拌翼を供えていることを特徴とする請求項1乃至7のいずれか一項記載のミキサー
 である。
 請求項9記載の発明は、
 請求項1乃至8のいずれか一項記載のミキサーの構造が、
 当該ミキサーにより被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すときに、所定の運転時間で、被処理流体の所定の液滴径を得ることができるように、
 式1を用いて計算して、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定することにより設計されていることを特徴とするミキサー
Figure JPOXMLDOC01-appb-M000004

 ここで、式1中、
 εa :総括エネルギー消散率 [m2/s3
 εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
 εs:ステーターの局所エネルギー消散率[m2/s3]
 Np :動力数 [-]
 Nqd :流量数 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 b :ローターの翼先端の厚み [m]
 δ :ローターとステーターの隙間 [m]
 ns :ステーターの孔数 [-]
 d :ステーターの孔径 [m]
 l :ステーターの厚み [m]
 N :回転数 [1/s]
 tm :混合時間 [s]
 V :液量 [m3]
 Kg :隙間における形状依存項 [m2]
 Ks :ステーターにおける形状依存項 [m2]
 Kc :ミキサー全体の形状依存項 [m5]
 である。
 請求項10記載の発明は、
 前記ミキサーは、式1を用いて計算して、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定することにより、スケールダウンあるいはスケールアップ可能であることを特徴とする請求項1乃至8のいずれか一項記載のミキサー
Figure JPOXMLDOC01-appb-M000005

 ここで、式1中、
 εa :総括エネルギー消散率 [m2/s3
 εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
 εs:ステーターの局所エネルギー消散率[m2/s3]
 Np :動力数 [-]
 Nqd :流量数 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 b :ローターの翼先端の厚み [m]
 δ :ローターとステーターの隙間 [m]
 ns :ステーターの孔数 [-]
 d :ステーターの孔径 [m]
 l :ステーターの厚み [m]
 N :回転数 [1/s]
 tm :混合時間 [s]
 V :液量 [m3]
 Kg :隙間における形状依存項 [m2]
 Ks :ステーターにおける形状依存項 [m2]
 Kc :ミキサー全体の形状依存項 [m5]
 である。
 請求項11記載の発明は、
 請求項1乃至8のいずれか一項記載のミキサーを用いて、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品、医薬品あるいは化学品を製造する方法であって、式1を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、食品、医薬品あるいは化学品を製造する方法
Figure JPOXMLDOC01-appb-M000006

 ここで、式1中、
 εa :総括エネルギー消散率 [m2/s3
 εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
 εs:ステーターの局所エネルギー消散率[m2/s3]
 Np :動力数 [-]
 Nqd :流量数 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 b :ローターの翼先端の厚み [m]
 δ :ローターとステーターの隙間 [m]
 ns :ステーターの孔数 [-]
 d :ステーターの孔径 [m]
 l :ステーターの厚み [m]
 N :回転数 [1/s]
 tm :混合時間 [s]
 V :液量 [m3]
 Kg :隙間における形状依存項 [m2]
 Ks :ステーターにおける形状依存項 [m2]
 Kc :ミキサー全体の形状依存項 [m5]
 である。
 請求項12記載の発明は、
 請求項11記載の製造方法によって製造した食品、医薬品あるいは化学品
 である。
 本発明によれば、複数個の開口部を備えているステーターと、当該ステーターの内側に所定の隙間を空けて配置されるローターとを備えているローター・ステータータイプのミキサーにおいて、処理される流体に掛かる剪断応力を向上させ、より高い性能を発揮できるミキサー、更には、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整できるミキサーを提供することができる。
 また、このような高い性能を発揮できるローター・ステータータイプのミキサーを、多種多様な形状や循環方式のミキサーに適用できる包括的な性能評価方法や、そのミキサーの運転条件(処理時間)を考慮した設計方法を利用して設計することができる。
 更に、前記の性能評価方法や設計方法を利用した高性能のローター・ステータータイプのミキサーを用いて、食品、医薬品、化学品などの製造方法(微粒化方法)を確立することができる。
 本発明においては、総括エネルギー消散率:εa という指標を適用している。各社から提供される多種多様な形状や循環方式のミキサーの総括エネルギー消散率:εa は、ローター(回転子)とステーター(固定子)の幾何学的な寸法、運転の動力と流量の測定値から個別に計算される。そして、この総括エネルギー消散率:εa は、各ミキサーの形状依存項と運転条件依存項とに分離して表現される。
 総括エネルギー消散率:εa という指標を用いることにより、各ミキサーの性能を評価する場合、例えば、液滴径の微粒化傾向によって性能を評価するときには、形状依存項の計算値(大小)を使用することができる。
 また、各ミキサーのスケールアップ・スケールダウンにおいては、形状依存項と運転条件依存項とを併せた総括エネルギー消散率:εaの計算値を使用し、その計算値を一致させることで設計することができる。
 これらの知見によって、理論的かつ実験的に従来品よりも微粒化効果や乳化効果の高いミキサー(高性能のミキサー)を開発(設計)するようにしたものである。
 すなわち、本発明においては、各ミキサーの性能評価方法へ適用できる形状依存項(係数)の数値で、高性能の範囲を指定する。具体的には、総括エネルギー消散率:εa という指標における形状依存項(係数)の数値で、従来のミキサー(従来品)を含まない範囲を設定したり、従来の指標(理論)では容易に計算できない(実測しないと困難な)範囲を設定することができる。
 そして、ローター・ステータータイプのミキサーを利用し、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品、医薬品あるいは化学品を製造する方法において、総括エネルギー消散率:εaを計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、望ましい液滴径を有している食品(乳製品・飲料などを含む)、医薬品(医薬部外品などを含む)あるいは化学品(化粧品などを含む)を製造することができる。
 なお、本発明に基づいて、栄養組成物(流動食、乳幼児用調製粉乳などの組成に相当する)を製造すると、風味、食感、物性、品質などが良好であり、衛生面や作業性などにも優れていたことから、本発明は、食品や医薬品へ適用することが好ましく、食品へ適用することがより好ましく、栄養組成物や乳製品へ適用することが更に好ましく、高濃度で配合された栄養組成物や乳製品へ適用することが特に好ましい。
ローター・ステータータイプのミキサーが備えているミキサーユニットを説明する斜視図。 外部循環式のローター・ステータータイプのミキサー(外部循環式ミキサー)及び内部循環式のローター・ステータータイプのミキサー(内部循環式ミキサー)を説明する図。 液滴径の微粒化傾向を調査する方式を説明する図。 外部循環式のローター・ステータータイプのミキサー(外部循環式ミキサー)の評価試験結果を、内部循環式のローター・ステータータイプのミキサー(内部循環式ミキサー)の評価に用いる方式を説明する図。 ローター・ステータータイプのミキサーにおける処理(混合)時間と液滴径の関係(微粒化傾向)を表す図。 図5に処理(混合)時間と液滴径の関係(微粒化傾向)とが表されているローター・ステータータイプのミキサーにおける総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)を表す図。 図5に処理(混合)時間と液滴径の関係(微粒化傾向)とが表されているローター・ステータータイプのミキサーとは規模(寸法)が異なっているローター・ステータータイプのミキサーにおける総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)を表す図。 ローターとステーターの隙間(ギャップ)の影響に関する結果を表す図。 ステーターの開口部(ホール)の孔径の影響に関する結果を表す図。 ステーターの開口部(ホール)の孔数(開口面積比)の影響に関する結果を表す図。 従来のミキサーの性能改善効果の結果を表す図。 小型のミキサーにおける表5の運転条件での処理(混合)時間と液滴径の関係(微粒化傾向)を表す図。 大型のミキサーにおける表5の運転条件での総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)を表す図。 他の大型のミキサーにおける総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)を表す図。 本発明のローター・ステータータイプのミキサーに採用されるミキサーユニットの一例を説明する図であって、(a)は斜視図、(b)は平面図、(c)は側面図。 図15図示のミキサーユニットのローターとステーターとを分解して表した斜視図。 本発明のローター・ステータータイプのミキサーに採用される他のミキサーユニットを説明する斜視図。 図17図示のミキサーユニットを説明する図であって、(a)は底面図、(b)は斜め下方向から表した一部を省略した斜視図。 本発明のローター・ステータータイプのミキサーに採用される更に他のミキサーユニットにおけるローターとステーターとを分解して表した斜視図。 図19で説明したタイプのミキサーユニットの他の実施形態を説明する底面図。 図19、図20図示のタイプのミキサーユニット斜め下方向から表した斜視図。 従来のミキサーと本発明のミキサーとの比較試験の結果を表す図であって、混合時間と平均液滴径との関係を表す図。 従来のミキサーと本発明のミキサーとの比較試験の結果を表す図であって、混合時間と標準偏差との関係を表す図。 従来のミキサーと本発明のミキサーとの比較試験の結果を表す図であって、ローターの回転数と平均液滴径との関係を表す図。 従来のミキサーと本発明のミキサーとの比較試験の結果を表す図であって、ローターの回転数と標準偏差との関係を表す図。 従来のミキサーと本発明のミキサーとの比較試験の結果を表す図であって、(a)はローターの回転数と流量との関係、(b)はローターの回転数と同僚との関係、(c)はローターの回転数と乳化に寄与する動力との関係を表す図。 本発明のミキサーにおいて混合部に被処理流体の直接投入(添加)を行った場合と行わなかった場合の比較試験結果を表す図。 従来のミキサーと本発明のミキサーについて行ったエネルギー消散率の数値解析結果を表す図。
 本発明においては、ローター・ステータータイプのミキサーにおける微粒化効果(微粒化傾向)を議論(比較や評価)する目的で、下記の式1によって導き出される総括エネルギー消散率:εa を用いている。
Figure JPOXMLDOC01-appb-M000007

 ここで、式1中、
 εa :総括エネルギー消散率 [m2/s3
 εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
 εs:ステーターの局所エネルギー消散率[m2/s3]
 Np :動力数 [-]
 Nqd :流量数 [-]
 nr :ローターブレードの枚数 [-]
 D :ローターの直径 [m]
 b :ローターの翼先端の厚み [m]
 δ :ローターとステーターの隙間 [m]
 ns :ステーターの孔数 [-]
 d :ステーターの孔径 [m]
 l :ステーターの厚み [m]
 N :回転数 [1/s]
 tm :混合時間 [s]
 V :液量 [m3]
 Kg :隙間における形状依存項 [m2]
 Ks :ステーターにおける形状依存項 [m2]
 Kc :ミキサー全体の形状依存項 [m5]
 である。
 この総括エネルギー消散率:εa を用いることにより、ミキサーの形状、ステーターの形状、その運転条件(処理時間など)、そのスケール(規模、寸法)などが異なる場合においても、一括(統一)してローター・ステータータイプのミキサーにおける微粒化効果(微粒化傾向)を議論(比較や評価)できる。
 上記の通り、総括エネルギー消散率:εa は、ローターとステーターの隙間(ギャップ)における局所剪断応力:εg と、ステーターの局所エネルギー消散率:εs の合計(和)として表現できる。
 本発明においては、総括エネルギー消散率:εa を導き出す計算式に含まれる、ローター・ステーターの寸法と運転時の動力・流量を測定することにより得られる、各ミキサーに固有の数値であるミキサー全体の形状依存項:Kcの値の多寡を評価することにより、ミキサーの性能を評価している。
 総括エネルギー消散率:εa を導き出す計算式に明らかなように、隙間における形状依存項:Kg [m2]は、ローターとステーターの隙間:δ [m]、ローターの直径:D [m]、ローターの翼先端の厚み:b [m]に基づく各ミキサーに固有の数値である。
 また、ステーターにおける形状依存項:Ks [m2]は、流量数:Nqd [-]、ステーターの孔数:ns [-]、ステーターの孔径:d [m]、ステーターの厚み:l [m]、ローターとステーターの隙間:δ [m]、ローターの直径:D [m] に基づく各ミキサーに固有の数値である。
 そして、ミキサー全体の形状依存項:Kc [m5] は、動力数:Np [-]、流量数:Nqd [-]、ローターブレードの枚数:nr [-]、ローターの直径:D [m]及び、隙間における形状依存項:Kg [m2]と、ステーターにおける形状依存項Ks [m2]とに基づく各ミキサーに固有の数値である。
 なお、動力数:Np [-]、流量数:Nqd [-]は化学工学の分野では一般的に使われる無次元数で以下のように定義される。
 Q=Nqd・N・D3 (Q:流量、N:回転数、Dミキサー直径)
 P=Np・ρ・N3・D(ρ:密度、N:回転数、Dミキサー直径)
 つまり、流量数と動力数は、実験で測定した流量、ならびに動力から導き出せる無次元数である。
 すなわち、ミキサー全体の形状依存項:Kc は、ローター・ステーターの寸法と、運転時の動力・流量を測定することにより得られる、各ミキサーに固有の値である。
 そこで、この値の大きさを比較(評価)することで、多種多様なミキサーの性能を評価できると共に、高性能のミキサーを設計(開発、作製)できる。
 本発明においては、上述した総括エネルギー消散率:εa を導き出す計算式に基づいてミキサーを設計している。
<総括エネルギー消散率:εaと液滴径の変化(液滴の微粒化傾向)>
 微粒子化の評価を行う対象として、乳製品を想定した模擬液を準備した。この乳化製品疑似液は、ミルクタンパク質濃縮物(MPC、TMP(トータルミルクプロテイン))、ナタネ油、水から構成されている。その配合や比率などを表1に示した。
Figure JPOXMLDOC01-appb-T000008

 ミキサーの性能は、液滴径の微粒化傾向を実験的に検討して評価した。図3に示すように、外部循環式のユニットを準備し、流路の途中で液滴径を、レーザー回折式粒度分布計(島津製作所:SALD-2000)により計測した。
 なお、本発明において、液滴径の微粒化傾向を実験的に検討して、ミキサーの性能を評価するにあたり、内部循環式ミキサーに関しては、液滴径の微粒化傾向を把握することが難しい。しかし、内部循環式ミキサーも、外部循環式ミキサーも、図1に示すように、複数個の開口部1を備えているステーター2と、ステーター2の内側に所定の隙間δを空けて配置されるローター3とからなるミキサーユニット4を備えている点で共通している。そこで、内部循環式ミキサーについて評価する場合には、図4に示すように、外部循環式ミキサーに備えられているミキサーユニットと同一の寸法(サイズ)、形状、構造を有するローター、ステーターからなるミキサーユニットが内部循環式ミキサーに配備されていると考えて、当該外部循環式ミキサーを評価した試験の結果を内部循環式ミキサーの評価に用いた。
 ここでは、3種類のミキサーに関して、その性能を比較した。なお、ここで使用したミキサーの概要を表2に示した。
Figure JPOXMLDOC01-appb-T000009

 ミキサーA-1、A-2は、いずれも収容量が1.5リットルで、同一のメーカー品であるが、そのサイズに相違があるものである。
 表2中、隙間容積:νgは、図1におけるギャップδの部分の容積である。
 ミキサーA-1、A-2(いずれも収容量:1.5リットル)、B(収容量:9リットル)が備えているローター3の攪拌羽根の数は、ミキサーA-1:4枚、ミキサーA-2:4枚、ミキサーB:4枚である。
 実験条件と総括エネルギー消散率:εaの計算値は、表3の通りであった。
Figure JPOXMLDOC01-appb-T000010

 表3において、Kg /(Kg+Ks)の値が0.5以上であることから、ステーターにおける形状依存項であるKsよりも、隙間における形状依存項であるKgが大きいこととなり、ミキサーA-1、A-2では、その隙間とステーター2の開口(孔)部1の微粒化効果を比較した場合、ミキサーの隙間δの微粒化効果が大きくて支配的であることが分かった。
 また、表3において、εa の値から、ミキサーの隙間δが狭い程に、また、ローター3の回転数が大きい程に、微粒化効果が高くなることが推定された。
 表2のミキサーA-1、A-2について、表3の運転条件における処理(混合)時間と、液滴径の関係(微粒化傾向)を図5に示した。
 表3の εa による推定値(理論値)と同様な傾向を示し、あらゆる回転数において、ミキサーの隙間δが小さい場合に、微粒化効果(微粒化の性能)の高いことが分かった。
 なお、処理(混合)時間を横軸にして、実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できないことが分かった。
 次に、表2のミキサーA-1、A-2について、本発明で提案している総括エネルギー消散率:εa と、液滴径の関係(微粒化傾向)を図6に示した。総括エネルギー消散率:εaを横軸にして実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できることが分かった。
 具体的には、運転条件(回転数、混合時間)と、ミキサーの形状(隙間δ、ローター3の直径)が異なっても、液滴径は同じように減少する傾向を辿ることが分かった。
 すなわち、総括エネルギー消散率:εaは、ローター・ステータータイプのミキサーにおいて、運転条件や形状の違いを包括的に考慮して、その性能を評価できる指標であることを確認できた。
 次に、表2のミキサーBについて、本発明で提案している総括エネルギー消散率:εa と、液滴径の関係(微粒化傾向)を図7に示した。ミキサーの規模(寸法)が異なっても、液滴径は総括エネルギー消散率:εa の値(大きさ)に依存していることが分かった。
 また、図6、図7より、ミキサーの規模が異なっても、同様の微粒化傾向を示すことが分かった。
<総括エネルギー消散率:εaを用いたミキサーの評価>
 総括エネルギー消散率:εaを導き出す本発明の計算式を用いたローター・ステータータイプのミキサーの評価、特に、微粒化効果(微粒化傾向)を指標としたミキサーの評価について説明する。
 ローターとステーターの隙間(ギャップ)の寸法や、ステーターの開口部(ホール)の寸法(孔径)や形状(孔数)などが異なる場合において、それぞれの因子(各項目)がミキサーのステーターの性能へ及ぼす影響を検証(評価)した。この検証に使用したステーターに関する情報の概要を表4に示した。
 なお、実際のミキサーの性能評価には、各ミキサー全体の形状依存項Kc を、ステーター番号3(標準のステーター)の Kc で正規化した Kc / Kc _std の値を使用した。このKc / Kc _std の値が大きくなるに従い、微粒化効果が高くなる(高性能のミキサーである)ことを意味している。
Figure JPOXMLDOC01-appb-T000011

(ローターとステーターの隙間(ギャップ)の影響)
 ローターとステーターの隙間の影響について検証した結果を図8に示した。
 総括エネルギー消散率:εaを導き出す本発明の計算式に基づいて、ミキサーの微粒化効果(微粒化傾向)を計算したところ、ローターとステーターの隙間が小さい程、Kc / Kc _std の値(理論値)が大きくなることが推定された。
 一方、実際の実験結果に基づいて、ミキサーの 微粒化効果を計算したところ、その隙間が小さい程、Kc / Kc _std の値(実測値)は大きくなった。
 ここで、ローターとステーターの隙間と微粒化効果の関係について、実測値と理論値では同様の傾向を示すことが確認できた。そして、その隙間が小さい程、ミキサーの性能が高くなることが理論的かつ実験的に実証できた。
(ステーターの開口部(ホール)の孔径の影響)
 ステーターの孔径の影響について検証した結果を図9に示した。
 総括エネルギー消散率:εaを導き出す本発明の計算式に基づいて、ミキサーの微粒化効果(微粒化傾向)を計算したところ、ステーターの孔径が小さい程、Kc / Kc _std の値(理論値)が大きくなることが推定された。
 一方、実際の実験結果に基づいて、ミキサーの微粒化効果を計算したところ、ステーターの孔径が小さい程、Kc / Kc _std の値(実測値)は大きくなった。
 ここで、ステーターの孔径と微粒化効果の関係について、実測値と理論値では同様の傾向を示すことが確認できた。そして、ステーターの孔径(ホール)が小さい程、ミキサーの性能が高くなることが理論的かつ実験的に実証できた。
 なお、ステーターの孔径の影響は、ローターとステーター隙間の影響よりも大きかった。
(ステーターの開口部(ホール)の孔数(開口面積比)の影響)
 ステーターの孔数(開口面積比)の影響について検証した結果を図10に示した。
 総括エネルギー消散率:εaを導き出す本発明の計算式に基づいて、ミキサーの微粒化効果(微粒化傾向)を計算したところ、ステーターの孔数が多い程、Kc / Kc _std の値(理論値)が大きくなることが推定された。
 一方、実際の実験結果に基づいて、ミキサーの微粒化効果を計算したところ、ステーターの孔数が多い程、Kc / Kc _std の値(実測値)は大きくなった。
 ここで、ステーターの孔数と微粒化効果の関係について、実測値と理論値では同様の傾向を示すことが確認できた。そして、ステーターの孔数(開口面積)が多い程、ミキサーの性能が高くなることが理論的かつ実験的に実証できた。
 なお、ステーターの孔数の影響は、ローターとステーター隙間の影響よりも大きかった。
(既存の(市販の)ミキサーの性能改善効果)
 総括エネルギー消散率:εaを導き出す本発明の計算式に基づいて、市販されているS社とA社のミキサーの性能を比較した結果を図11に示した。そして、本発明のミキサーの設計方法(設計思想)に基づいて、その形状を変更した場合における性能の改善(改良)効果の推定値の結果も併せて図11に示した。S社とA社のミキサーでは、ローターやステーターの直径が異なるが、それらの異なる機種に対して、同じ指標を適用して性能を評価できることが分かった。
 例えば、S社(ローターの直径D:400mm)のミキサーの場合には、ローターとステーターの隙間δを2mmから0.5mmへ減少させる 、ステーターの孔数(開口面積比)nを12%から40%へ増加させる 、ステーターの孔径dを4mmから3mmへ減少させることで、微粒化効果や乳化効果(性能)が約3.5倍に改善されると考えられる。これは処理(運転)時間を現行の30%程度にまで、大幅に短縮できることを意味している。
 一方、A社(ローターの直径D:350mm)のミキサーの場合には、ローターとステーターの隙間δを0.7mmから0.5mmへ減少させる 、ステーターの孔数(開口面積比)nを25%から40%へ増加させる 、ステーターの孔径dを4mmから3mmへ減少させることで、微粒化効果や乳化効果(性能)が約2.0倍に改善されると考えられる。これは処理時間を現行の半分程度にまで、大幅に短縮できることを意味している。
(高性能ミキサーの形状と設計)
 本発明が提案する高性能ミキサーは、ステーターの内側に所定の隙間を空けて配備されるローターが、前記複数の開口部が形成されている前記ステーターの周壁の径方向内側において前記所定の隙間を空けて当該ステーターの周壁の内側に対向するローター周壁を備えていると共に、当該ローター周壁に複数個のローター開口が形成されている構造になっている。これによって、処理される流体に掛かる剪断応力を向上させることができ、高性能を実現できる。
 また、ローターが回転すると、径方向内側の混合部分と、径方向外側の混合部分という複数段(少なくても二段階以上)の混合部が形成される構造になっている。このような多段式(マルチステージ)での混合により、処理される流体に掛かる剪断応力を向上させることができ、高性能を実現できる。
 更に、本発明が提案する高性能ミキサーでは、ステーターと、ローターとが、ローターの回転軸が延びている方向で移動可能になっていて、ローターを回転させている途中で両者の間の間隔を調整・制御することができる。これによって、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整することができる。
 そして、本発明が提案する高性能ミキサーでは、処理される流体を、混合部分(ミキサー部)へ直接で投入(添加)する機構が採用されている。これによって、前述した多段式(マルチステージ)での混合と合わせて、高性能を実現できる。
 このような本発明が提案する高性能ミキサーの形状、構造は、上述した、本発明の計算式に基づいて導き出される総括エネルギー消散率:εa を指標としたミキサーの性能評価と、その検証結果を参考にして定義されている。そして、その定義に基づいて、高性能のミキサーを設計し、そのミキサーの概要を図12~図18に示した。
(ムービングステーター(可動式の固定子))
 ローター・ステータータイプのミキサーを使用し、粉体原料や液体原料を溶解(調合)して、乳化状製品を製造する場合、粉体原料と共に持ち込まれた気体(空気)を分離しないままで、ミキサーにより処理すると、調合液に微細な気泡が混入(発生)した状態となる。この微細な気泡が混入した調合液をそのまま乳化処理した場合、気泡が混入していない調合液を乳化処理した場合と比較して、微粒化や乳化の性能(効果)が劣ってしまうことが以前から知られている。
 そこで、粉体原料を溶解する初期段階において、微細な気泡の発生を抑制するためには、ミキサーにムービング・ステーターの機構を持たせることが望ましい。特に、泡立ちしやすい乳化状製品を処理する場合、ムービング・ステーターの機構を持たせることが望ましい。粉体原料を溶解する初期段階では、ステーターをローターから離すことで、高いエネルギーを消散させることなく、粉体原料を調合液へ素早く分散させる。そして、その後にステーターをローターの近傍まで移動させ、本格的に溶解・微粒化・乳化する手順が良い。
(マルチ・ステージ・ホモゲナイザー(多段階式の乳化機構))
 上述したように、本発明の計算式に基づいて導き出される総括エネルギー消散率:εa の値が大きい程、微粒化や乳化の性能(効果)が優れていることを確認できている。
 ここで、総括エネルギー消散率:εa の値は、局所エネルギー消散率:εl と、剪断頻度:f s,h の積として表現できる。そして、剪断頻度:f s,h を高めるには、微粒化や乳化するステーターを多段階式にすることが有効であると考えられる。すなわち、ミキサーにおいて2段や複数段のマルチ・ステージの形状が高性能を実現するためには有効である。
 ここで、局所エネルギー消散率:εlと剪断頻度:f s,hは、以下の通りである。
 局所エネルギー消散率:εl[m2/s3]=Fa U/ρ v
  Fa:平均力[N]
  U:翼先端速度[m/s]
  ρ:密度[kg/m2
  vs:乳化寄与体積[m3
 平均力:Fa[N]=τa Ss
  τa:平均せん断力[N/m2
  Ss:剪断面積[m2
 平均せん断力:τa=Ph/Q
  Ph:乳化寄与動力[kW]
  Q:流量[m3/h]
 乳化動力消散:Ph[kW]=Pn-Pp
  Pn:正味動力[kW]
  pp:ポンプ動力[kW]
 剪断頻度:f s,h[1/s]=ns nr N/nv
  ns:ステーターの孔数[個]
  nr:ローターブレードの枚数[枚]
  N:回転数[1/s]
  nv:ステーター孔部体積[m3
 剪断面積:Ss[m2]=Sd+Sl
  Sd:孔断面積[m2
  Sl:孔側面積[m2
 孔断面積:Sd[m2]=π/4 d2
  d:ステーター孔径[m]
 孔側面積:Sl[m2]=πd l
  l:ステーター厚み[m]
(ダイレクト・インジェクション(直接注入式の添加機構))
 本発明の計算式に基づいて導き出される総括エネルギー消散率:εa を指標としたミキサーの性能評価と、その検証結果により、微粒化や乳化の性能(効果)はステーターの開口部(ホール)の孔径や孔数(開口面積比)により主に影響されることが分かった。
 よって、油脂、不溶成分、微量成分などを混合部分(ミキサー部)へ直接で投入(添加)することで、より効果的に乳化や分散される。特に一段目のステーター(径方向で内側のステーター)部分へ直接で投入(注入)すれば、一段目のステーターで予備乳化してから、さらに二段目のステーター(径方向で外側のステーター)で本格的に乳化・分散できる。
(高性能のステーターの形状)
 本発明の計算式に基づいて導き出される総括エネルギー消散率:εa を指標としたミキサーの性能評価と、その検証結果により、ステーターの開口部(ホール)の孔径は極力小さく、その孔数は極力多く、ローターとステーターの隙間は極力小さい場合において、ミキサーの性能が高くなることが分かった。また、ローターの翼の枚数が多い程、剪断頻度は高くなる。
 ローターとステーターの隙間が小さい程、微粒化や乳化の性能(効果)は向上するが、今回の検証実験では、ステーターの孔径や孔数よりも、微粒化や乳化の性能(効果)への影響が小さいことが分かった。
 そして、むしろ隙間が狭くなると、ローターとステーターの噛み混みなどのリスクが発生してしまう。また、ムービング・ステーターの機構を採用する場合、ミキサーの運転(稼働)中に、ステーターをローターの回転軸が延びている方向に沿って移動させることから、隙間(クリアランス)として0.5~1mm程度で十分である。すなわち、噛み混みなどのリスクを避ける観点から、隙間として0.5mm以下までは不要である。
 今回の検証実験では、ステーターの孔径が2mm以下になると、粉体原料などが閉塞するリスクがあることが分かった。したがって、粉体原料の溶解と乳化処理を同時に達成しようとする場合、ステーターの孔径として2~4mm程度が良い。
 一方、ステーターの孔数(開口面積比)が多い程、剪断頻度が高くなるが、ステーターの開口部の強度の問題がある。従来では一般的には、開口面積比として18~36%を採用している場合が多いが、今回の検証実験では、開口面積比として15%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは40~50%が良いことが分かった。
(同一孔径、同一開口面積比で比較した場合の最適なステーター孔形状について)
 ステーターの孔の形状は、くし歯状ではなく、円形状が良い。局所エネルギー消散率:εl は、剪断面積:Ss に正比例することが分かっている。よって、同一の断面積であれば、円形状で剪断面積:Ss が最大となるため、くし歯状よりも円形状が微粒化や乳化の性能(効果)として優れていると考えられる。
 ステーターに形成されている開口の形状(円形、正方形、長方形)のみを変更し、その他の条件は同一にしたミキサーで総括エネルギー消散率:εa を算出すると表5の通りになる。
Figure JPOXMLDOC01-appb-T000012

 すなわち、同一孔径、同一開口面積の場合、櫛歯(長方形断面)より、円形や正方形で孔数が多くなり、剪断断面積も大きくなる。よって、総括エネルギー消散率:εaも高くなり、開口の形状が円形や正方形で、ミキサーの微粒化や乳化の性能が良くなることとなる。
 表5における形状係数の比較から、正方形と円形では性能は同等と考えられる。ただし、正方形の加工には手間を要するため、ミキサーの微粒化や乳化の性能と加工性の面から、円形断面が最適であると考えられる。
(ローターの攪拌羽根の枚数)
 剪断頻度を高くする観点では、ローターの攪拌羽根(翼)の枚数は多いと良いこととなる。ただし、吐出流量が落ちると、タンク槽内の循環回数が減るため、微粒化や乳化の性能(効果)が低下する場合がある。前記で定義した理論式によると、ローターの翼の枚数が多いと、総括エネルギー消散率:εaが高くなることが分かる。一般的にはローターの翼の枚数として6枚を採用しているが、それを8枚にするだけで、微粒化や乳化の性能(効果)が約1.3倍に向上すると考えられる。
(ミキサーのスケールアップ)
 本発明で提案した指標(理論)を適用しながら検証実験することで、スケールアップ方法として利用できる。特に処理(製造)時間を考慮したスケールアップ方法として有用である。
(既存のミキサーと新規のミキサーとの比較)
 既存の代表的なミキサーと、本発明で提案した新規のミキサーの特徴を比較した結果を表6に示した。
Figure JPOXMLDOC01-appb-T000013

  本発明で提案した「ムービング・ステーター」、「マルチ・ステージ・ホモゲナイザー」、「ダイレクト・インジェクション」の機能を有しているミキサーは、現在のところ見あたらない。さらに、本発明の基になるεaに基づいた最適なステーター形状の設定(隙間、孔径、開口面積比、孔形状)ならびにローター形状(翼枚数、翼幅)のミキサーは、さらに高い乳化・微粒化効果を持つと考えられる。
  本発明の上述した計算式で求められる総括エネルギー消散率:εaと液滴径の微粒化傾向の関係を検討したところ、以下のようになった。
  この検討では、ローター3とステーター2の隙間(ギャップ)δが大きく(δ> 1mm、例えば、δ = 2~10mm)、ステーター2の開口部(ホール、孔)1の数が多い(開口部1の数:例えば、ns > 20個、例えば、ns = 50~5000個)3種類のミキサーに関して、その性能を比較した。
  なお、上述したように、微粒子化の評価を行う対象として乳製品を想定した表1の配合比率の模擬液を用い、図3に図示したように、外部循環式のユニットを準備し、流路の途中で液滴径を、レーザー回折式粒度分布計(島津製作所:SALD-2000)により計測し、液滴径の微粒化傾向を調査して評価した。
  なお、ここで使用したミキサーC(収容量:100リットル)、D(収容量:500リットル)、E(収容量:10キロリットル)の概要を表7に示した。これら3種類のミキサーは、同一のメーカー品であり、市場に提供されているものである。そして、ミキサーCに関しては、隙間(ギャップ)δの寸法(大きさ)、開口部1の数が相違する5種類のミキサー(ステーターNo.1~ステーターNo.5)について検討した。
Figure JPOXMLDOC01-appb-T000014


 なお、表7中、開口面積比Aは、「すべての開口部面積(=1孔面積×個数)/ステーターの表面積」で計算される無次元数である。
 実験条件と総括エネルギー消散率:εaの計算値は表8の通りであった。
Figure JPOXMLDOC01-appb-T000015

 表8において、Kg /(Kg+Ks)の値が0.1~0.3であることから、隙間における形状依存項であるKgよりも、ステーターにおける形状依存項であるKsが大きいこととなり、表7のミキサーCでは、その隙間とステーター2の開口(孔)部1の微粒化効果を比較した場合、ステーター2の開口部1の微粒化効果が大きくて支配的であることが分かった。
 また、表8において、ステーター番号4のKcで正規化したKc / Kc _stdの値から、ステーター番号が大きくなるに従い、微粒化効果が高くなることが推定された。
 表7のミキサーC(ステーターNo.1~ステーターNo.5)について、表8の運転条件における処理(混合)時間と、液滴径の関係(微粒化傾向)を図12に示した。
 表8の Kc / Kc _stdによる推定値(理論値)と同様な傾向を示し、ステーターNo.1~ステーターNo.5のいずれにおいても、Kc / Kc _std の値が大きい場合に、微粒化効果(微粒化の性能)の高いことが分かった。一方、運転条件における処理(混合)時間の妥当性などを考えると、開口面積比として0.15(15%)以上、好ましくは0.2(20%)以上、より好ましくは0.3(30%)以上、さらに好ましくは0.4(40%)以上、特に好ましくは0.4~0.5(40~50%)が良いことが分かった。このとき、ステーターの開口部の強度を勘案すると良い。
 また、同程度のKc / Kc _stdの値であるステーターNo.3とNo.4では、ほぼ同等の微粒化傾向を示していることから、Kc / Kc _std と本発明の計算式で求められる総括エネルギー消散率:εaによりミキサーの性能を予測すると、定性的な傾向を捉えるだけでなく、定量的な傾向を説明(評価)できることが分かった。
 なお、処理(混合)時間を横軸にして、実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できないことが分かった。
 次に、表7のミキサーC(ステーターNo.1~ステーターNo.5)について、本発明の計算式で求められる総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)を図13に示した。
 本発明の計算式で求められる総括エネルギー消散率:εaを横軸にして、実験結果を整理すると、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できることが分かった。具体的には、運転条件(回転数、混合時間)と、ミキサーの形状(隙間、ステーターの孔径、ステーターの開口面積比)が異なっても、液滴径は同じように減少する傾向を辿ることが分かった。
 すなわち、本発明の計算式で求められる総括エネルギー消散率:εaは、ローター・ステータータイプのミキサーにおいて、運転条件や形状の違いを包括的に考慮して、その性能を評価できる指標であることを確認できた。
 次に、表7のミキサーD、Eについて、本発明の計算式で求められる総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)を図14に示した。 ミキサーの規模(寸法)が容量で200~700リットルと異なっても、液滴径は εa の値(大きさ)に依存していることが分かった。また、ミキサーの規模が異なっても、同様の微粒化傾向を示すことが分かった。
 以上より、ローター3とステーター2の隙間(ギャップ)δが大きく(δ > 1mm、例えば、δ = 2~10mm)、ステーターの開口部(ホール、孔)1の数が多い(開口部1の数:ns > 20個、例えば、ns = 50~5000個)ローター・ステータータイプのミキサーでは、本発明で提案している計算式で求められる総括エネルギー消散率:εa の値(大きさ)を一致させることで、運転条件や形状の違いを包括的に考慮して、スケールアップできると考えられた。
 このように、本発明の計算式で求められる総括エネルギー消散率:εaと、液滴径の関係(微粒化傾向)は、添付の図13に示されるように、本発明の計算式で求められる総括エネルギー消散率:εaを横軸にして、液滴径の変化(液滴の微粒化傾向)を一括して表現(評価)できる。
 このように本発明の計算式で求められる総括エネルギー消散率:εaと、液滴径はほぼ直線的な関係があることが発明者の検討によって認められている。
 ただし、統計的に信頼できる実験式を導きだすことは困難であるため、液滴径の推定は、実験から得られた液滴径と本発明の計算式で求められる総括エネルギー消散率:εaの関係を用いて行うこととした。
 上述したように、本発明の計算式で求められる総括エネルギー消散率:εaは形状依存項とそれ以外の製造条件項(時間を含む)とに分けられる。よって製造条件項(時間)を固定して形状依存項が大きくなれば、総括エネルギー消散率:εaは大きくなり、結果的に同じ製造条件(時間)においても液滴径は小さくなる。
 具体的には、ある製造条件下で得られる粒子径を実際に測定し、そのときのεaを計算する。この実験によって所定の液滴径を得るために必要なεaがわかる。
 次にミキサー形状を変更した際に計算されるεaと変更する前のεaの大きさを比較することによって、変更後の液滴径の減少傾向を推定する。
 つまり、前述した計算式と液滴径を推定する統計的信頼性が高い実験式はないものの、実験結果を利用することによって、ミキサー形状の影響を考慮した液滴径の減少傾向の推定が可能である。
 以下では、添付図面を参照して、本発明の好ましい実施形態について幾つかの実施例を説明するが、本発明は、これらの実施形態、実施例に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の形態に変更可能である。
 本発明が提案する計算式に基づいて導き出される総括エネルギー消散率:εa を指標としたミキサーの性能評価と、その検証結果を参考にして定義した高性能のミキサーの形状および、その定義に基づいて設計した高性能のミキサーの概要を図15~図21を用いて説明する。
 本発明の提案するローター・ステータータイプのミキサーは、複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなるミキサーユニット14の部分に特徴を有するものであり、その他の構造は図1を用いて説明した従来のローター・ステータータイプのミキサーと同一である。そこで、本発明のミキサーにおいてその特徴的構造、機構になっているミキサーユニット14のみについてその一例を図示して説明する。
 本発明のローター・ステータータイプのミキサーにおけるミキサーユニット14は、図16に図示した構造のローター13と、ステーター22とからで構成される。
 ステーター22は図1に例示した従来のミキサーユニット4におけるステーター2と同じく、円形状の複数個の開口部11bを備えている。
 ステーター22の内側に所定の隙間δを空けて配置されるローター13は、回転中心になる回転軸17から放射状に延びる複数枚の攪拌翼を備えている。なお、図15では12枚の攪拌翼13a~13lが配備されている形態を、図16では、8枚の攪拌翼13a~13hが配備されている形態で説明している。以下、撹拌翼13a~13lを総称して「撹拌翼13」と表すことがある。
 各攪拌翼13の先端にはローター周壁40が配備されている。ローター周壁40の外周がステーター22の内周壁面22aに対向し、ローター周壁40の外周とステーター22の内周壁面22aとの間に、図15(b)図示のように、隙間δが形成される。
 ローター周壁40には複数個のローター開口41が形成されている。ローター開口41の大きさ(直径)は、ステーター22が備えている開口部11bの大きさ(直径)と同一にすることができる。また、ローター周壁40にローター開口41が形成されている頻度は、ステーター22に開口部11bが形成されている頻度と同程度にすることができる。
 ローター13が回転軸17を回転中心にして矢印20で示すように回転すると、複数のローター開口41が形成されているローター周壁40と、複数の開口部11bが形成されているステーター22とが径方向において間隔δで対向している状態で、ローター周壁40がローター13の回転につれて回転する。そこで、ここに効果的な混合部が形成される。これによって、処理される流体に掛かる剪断応力を向上させることができる。
 本発明のミキサーでは、ステーター22と、ローター13とは、ローター13の回転軸17が延びている方向で相互に接近する、又、離れることができるようになっている。図示の実施形態では、ローター13において回転軸17が延びている方向で、図15(a)の矢印23a、23bで示すように移動可能になっている。
 ミキサーによって粉体原料を溶解する初期段階では、ローター13を図15(a)の矢印23bで示すようにしてステーター22から離すことで、高いエネルギーを消散させることなく、粉体原料を調合液へ素早く分散させることができる。
 そして、その後にローター13を図15(a)の矢印23aで示すように移動させて、複数のローター開口41が形成されているローター周壁40の全領域と、複数の開口部11bが形成されているステーター22の全領域とを対向させて、上述した混合部を形成する。そして、ローター13を図15(b)の矢印20方向に回転させて、本格的に溶解・微粒化・乳化する手順が良い。
 前述したようにステーター22と、ローター13とが、ローター13の回転軸17が延びている方向で移動可能であるので、ローター13を回転させている途中で両者の間の間隔を調整・制御することができる。これによって、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整することができる。
 図15(a)~(c)図示の本発明のミキサーでは、ミキサーユニット14を構成するステーター22の上端に沿って、ノズル18が径方向で中心側に向かって延びている。処理される流体は、ノズル18を介してノズル開口19から図15(c)の矢印21で示すように混合部分(ミキサー部)へ直接で投入される。
 すなわち、処理される流体は、複数のローター開口41が形成されているローター周壁40の径方向内側近傍に、ノズル開口19から矢印21のように、直接で投入される。そして、矢印20方向に回転しているローター周壁40の複数のローター開口41を介して、ローター周壁40とステーター22とが径方向において間隔δで対向している混合部に流入し、本格的に混合される。
 このように、処理すべき流体を混合部分(ミキサー部)へ直接で投入(添加)することによって、より効果的に乳化や分散を行うことが可能になる。
 図17、図18(a)、(b)は、図15(a)~(c)、図16を用いて説明した本発明の他の実施形態を表すものである。ステーター22が、上端縁から径方向内側に伸びている環状の蓋部30を備えている点が、上述した図15(a)~(c)、図16図示の実施形態と相違している。以下、この相違点を中心に説明する。
 なお、図17、図18(a)、(b)図示の実施形態では、回転軸17から放射状に延びる撹拌翼は13a~13lの12枚配備されている。
 図17、図18(a)、(b)図示の実施形態によれば、ステーター22の上端縁から径方向内側に伸びている環状の蓋部30が配備されていることにより、処理されるべき流体が、ローター13とステーター22の隙間から図15(a)中、上側方向に漏れ出てしまうことを防止できる。
 なお、図17、図18(a)、(b)図示のように蓋部30が備えられている実施形態の場合、図15(b)、(c)を用いて説明した直接投入(添加)機構は、蓋部30を利用した構造になっている。
 ステーター22の外周に回転軸17が伸びる方向に伸びている流入導管31が配備されており、流入導管31の上端に連通する導管32が蓋部30内を径方向内側に向かって伸びている。一方、ローター周壁40より径方向内側の部分における環状の蓋部30に、図18(b)中、下側に向けて被処理流体を導入する導入孔33が形成されている。蓋部30内を径方向内側に向かって伸びる導管32が導入孔33に接続されている。これによって、処理されるべき流体は、矢印34、35、36で示すように、流入導管31、導管32、導入孔33を介して導入(添加)される。
 蓋部30が存在していることにより、流体は、ローター13とステーター22の隙間から図14中、上側方向に漏れ出てしまうことはなく、ローター周壁40のローター開口41、ステーター22の開口部11bを径方向内側から外側に向かって通過する。これにより、処理されるべき流体は、高い剪断断応力を受ける。
 図17、図18(a)、(b)図示の実施形態の本発明のミキサーでも、図15(a)~図16図示の実施形態のミキサーと同じく、ローター13を回転させている途中でステーター22とローター13との間の間隔を調整・制御することができ、これによって、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整することができる。
 図19~図21は、図15、図16を用いて説明した本発明の更に他の実施形態を表すものである。ローター13が回転軸17を回転中心にして矢印20で示すように回転すると、径方向内側の混合部分と、径方向外側の混合部分という複数段の混合部が形成されることになる点が、上述した図15(a)~(c)、図16図示の実施形態と相違している。以下、この相違点を中心に説明する。
 なお、図19、図21図示の実施形態では、8枚の撹拌翼(攪拌翼13a~13h)が採用されている形態を、図20図示の実施形態では、12枚の撹拌翼(攪拌翼13a~13l)が採用されている形態を説明する。
 図19、図21図示の実施形態では、ステーター22の径方向内側に、ステーター22の径より径が小さいステーター12が、図20図示のように、ミキサーユニット14に同心円状に配置されている。
 径の異なる複数のステーターが同心円状に配置される形態としては、例えば、図20図示のように、ステーター22の上端縁から径方向内側に向かって伸びる環状の蓋部30の下面に、ステーター22より径が小さいステーター12の上端縁が取り付けられている構造などを採用することができる。
 ステーター22の内側に所定の隙間δを空けて配置されるローター13は、回転中心になる回転軸17から放射状に延びる複数枚の攪拌翼13を備えている。
 図15(a)~(c)、図16図示の実施形態で説明したように、撹拌翼13の先端には、複数個のローター開口41を備えていて、ステーター22の内周壁面22aに対向するローター周壁40が配備されている。
 そして、複数個のローター開口43を備えていて、内側のステーター12の内周壁面12aに対向するローター周壁42が、以下のようにして、撹拌翼13の中間部分に配備されている。
 各攪拌翼13の径方向中心と、径方向外端との間の同一径の位置に縦溝15a、15b、15c、15d、・・・、15lが形成されている。以下、縦溝15a、15b、15c、15d、・・・、15lを総称して「縦溝15」と表すことがある。
 攪拌翼13の縦溝15が形成されている位置の径方向内側に、前述したように、ローター周壁40に対応する、ローター周壁40よりも小径のローター周壁42が形成されており、撹拌翼13によって支持されている。
 ローター周壁42は複数個のローター開口43を備えている。ローター開口43の大きさ(直径)は、ステーター12が備えている開口部11aの大きさ(直径)と同一にすることができる。また、ローター周壁42にローター開口43が形成されている頻度は、ステーター12に開口部11aが形成されている頻度と同程度にすることができる。
 図21図示のようにミキサーユニット14が形成されたときには、各攪拌翼13に形成されている縦溝15にステーター12が装入される。そして、ローター周壁42の周壁面と、ステーター12の内周壁面12aとの間に隙間δが形成され、縦溝15の径方向内側の面と、ステーター12の外周壁面12bとの間に隙間δが形成され、ローター周壁40の周壁面と、ステーター22の内周壁面22aとの間に隙間δが形成される。
 このように、図19~図21図示のローター・ステータータイプのミキサーのミキサーユニット14においては、径の異なる複数のステーター12、22の内側にそれぞれローターが所定の隙間を空けて配置される構造になる。
 そこで、ローター13が回転軸17を回転中心にして矢印20で示すように回転すると、径方向内側の混合部分と、径方向外側の混合部分という二段階の混合部が形成されることになる。このような多段式(マルチステージ)での混合により高性能を実現することが可能になる。すなわち、このような多段式(マルチステージ)にすることにより、処理される流体に掛かる剪断応力を向上させることができる。
 図示の実施形態では、径方向内側の混合部分は、ローター周壁42の周壁面と、ステーター12の内周壁面12aとの間及び、縦溝15の径方向内側の面と、ステーター12の外周壁面12bとの間に形成される。また、径方向外側の混合部分は、ローター周壁40の周壁面と、ステーター22の内周壁面22aとの間に形成される。
 この図19~図21図示の実施形態でも、ステーター12、22と、ローター13とは、ローター13の回転軸17が延びている方向で相互に接近する、又、離れることができる構造になっている。すなわち、ステーター12、22と、ローター13とが、ローター13の回転軸17が延びている方向で移動可能になっていて、ローター13を回転させている途中で両者の間の間隔を調整・制御することができる。これによって、処理される流体に掛かる剪断応力を変更・調整したり、処理される流体の流れ方を変更・調整することができる。
 図19では、ステーター12、22と、ローター13との関係を説明するため、環状の蓋部30が備えられていない状態で説明しているが、図19~図21図示の実施形態でも、環状の蓋部30を備えている構造にすることができる。図20は、環状の蓋部30を備えているミキサーを下側から見た状態を表している。環状の蓋部30を備えている構造にすることによって、処理されるべき流体が、ローター13とステーター12、22の隙間から図21中、上側方向に漏れ出てしまうことを防止できる。
 蓋部30が備えられている構造の場合、図15(b)、(c)を用いて説明した直接投入(添加)機構は、図20を用いて説明した、蓋部30を利用した構造になっている。この場合、蓋部30内を径方向内側に向かって伸びる導管32が接続され、図21中、下側に向けて被処理流体を導入する導入孔33は、攪拌翼13に支持されている最も小径のローター周壁が配備されている位置よりも径方向内側における蓋部30の下側面に形成されることになる。
(比較検討試験)
 図1を用いて説明した従来のミキサーと、図21を用いて説明した本発明のミキサー(環状の蓋部30が配備されている構造のミキサーを用いた)とについて比較試験を行った。比較試験は、図3に示すように、外部循環式のユニットを準備し、流路の途中で液滴径を、レーザー回折式粒度分布計(島津製作所:SALD-2000)により計測し、液滴径の微粒化傾向を検討することによって行った。
 試験に用いた従来のミキサーのステーター2の直径及び、本発明のミキサーのステーター22の直径はいずれも197mmである。以下の表9に示した配合のバター乳化液を用いて試験を行った。
Figure JPOXMLDOC01-appb-T000016

 試験結果は表10、表11及び、図20~図28の通りであった。図20より、本発明のミキサーによれば従来機よりも少ない時間で同等の微粒化傾向になることを確認できた。また、図21より、本発明のミキサーによれば従来機よりも液滴径のばらつきが少ないこと、図24(c)より、本発明のミキサーによれば、従来のミキサーに比較して、ローターの回転が乳化動力に寄与していることを確認できた。
Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018

 図28は、エネルギー消散率を数値解析した推定結果を表すものである。本発明のミキサーの方が、従来機よりもエネルギー消散が高いこと、すなわち、本発明のミキサーの方が従来機と比較して能力が高いことがわかる。これより、本発明のミキサーによれば従来機よりも少ない時間で同等の微粒化効果が発揮されることが推定される。そして、図20に示されている実際の微粒化傾向はこの数値解析結果と同様の傾向であった。
 図27は、図21を用いて説明した本発明のミキサー(環状の蓋部30が配備されている構造のミキサー)において、図18(b)を用いて説明した被処理流体の直接投入(添加)を行った場合と、直接投入を行わずに、図17に符号30aで示した環状の蓋部30に形成される孔部を介して、自然に被処理流体が流入される場合の比較結果を表すものである。被処理流体の直接投入(添加)を行うか、孔部30aからの自然な流入にするかという条件を変えただけで、その他の運転条件は同一にして比較検討した。
 その結果、図18(b)を用いて説明した被処理流体の直接投入(添加)を行った方が微粒化効果が大きいことを確認できた。
 本発明は、以下に述べる優れた効果・機能を発揮できることから、乳化、分散、微粒子化工程が行われる種々の産業分野、例えば、食品、医薬品、化学品などの製造分野で利用することが可能である。
(1)従来の典型的な高性能(高剪断式)のローター・ステータータイプのミキサーよりも、微粒化効果や乳化効果が高く、高品質な製品を製造できるローター・ステータータイプのミキサーを提供することができる。
(2)本発明によるローター・ステータータイプのミキサーは、微粒化効果や乳化効果が高く、従来の同等以上の品質の製品を従来よりも短時間で製造できる。
(3)小型から大型まで多種多様なローター・ステータータイプのミキサーに対して、その処理(製造)時間を考慮した上で、スケールアップやスケールダウンできる。
(4)各ユーザーの目的に合った微粒化効果(液滴径)を得るために、その必要な処理(撹拌)時間を推定でき、その必要な最低時間で運転(処理)すれば良いこととなる。ローター・ステータータイプのキミサーの運転時間を短縮でき、省エネルギーを達成できる。
1 開口部(ホール)
2 ステーター
3 ローター
4 ミキサーユニット
11a、11b 開口部
12、22 ステーター
13 ローター
13a、13b、13c、13d、13e、13f、13g、13h、・・、13j、13k 攪拌翼
14 ミキサーユニット
15 縦溝
17 回転軸
18 ノズル
19 ノズル開口
30 環状の蓋部
31 流入導管
33 導入孔

Claims (12)

  1.  複数個の開口部を備えているステーターと、ステーターの内側に所定の隙間を空けて配置されるローターとからなる、ミキサーユニットを備えているローター・ステータータイプのミキサーであって、
     前記ステーターの内側に所定の隙間を空けて配備されるローターは、前記複数の開口部が形成されている前記ステーターの周壁の径方向内側において前記所定の隙間を空けて当該ステーターの周壁の内側に対向するローター周壁を備えていると共に、当該ローター周壁に複数個のローター開口が形成されている
     ことを特徴とするミキサー。
  2.  前記ステーターは、周径の異なる複数のステーターからなり、各ステーターの周壁の径方向内側に前記ローターの前記ローター周壁がそれぞれ所定の隙間を空けて配置されている
     ことを特徴とする請求項1記載のミキサー。
  3.  前記ステーターと、前記ローターとが、前記ローターの回転軸が延びている方向で相互に近付く、又は離れることができるように構成されている
     ことを特徴とする請求項1又は2記載のミキサー。
  4.  前記ステーターは、上端縁から径方向内側に伸びている環状の蓋部を備えていることを特徴とする請求項1乃至3のいずれか一項記載のミキサー。
  5.  前記環状の蓋部に、下側に向けて被処理流体を導入する導入孔が形成されていることを特徴とする請求項4記載のミキサー。
  6.  前記ステーターが備えている開口部は円形状であることを特徴とする請求項1乃至5のいずれか一項記載のミキサー。
  7.  前記ステーターが備えている開口部は前記ステーターの周壁に全体の開口面積比率として20%以上で穿設されていることを特徴とする請求項1乃至6のいずれか一項記載のミキサー。
  8.  前記ローターは、回転中心から放射状に延びる複数枚の攪拌翼を供えていることを特徴とする請求項1乃至7のいずれか一項記載のミキサー。
  9.  請求項1乃至8のいずれか一項記載のミキサーの構造が、
     当該ミキサーにより被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すときに、所定の運転時間で、被処理流体の所定の液滴径を得ることができるように、
     式1を用いて計算して、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定することにより設計されていることを特徴とするミキサー。
    Figure JPOXMLDOC01-appb-M000001

     ここで、式1中、
     εa :総括エネルギー消散率 [m2/s3
     εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
     εs:ステーターの局所エネルギー消散率[m2/s3]
     Np :動力数 [-]
     Nqd :流量数 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     b :ローターの翼先端の厚み [m]
     δ :ローターとステーターの隙間 [m]
     ns :ステーターの孔数 [-]
     d :ステーターの孔径 [m]
     l :ステーターの厚み [m]
     N :回転数 [1/s]
     tm :混合時間 [s]
     V :液量 [m3]
     Kg :隙間における形状依存項 [m2]
     Ks :ステーターにおける形状依存項 [m2]
     Kc :ミキサー全体の形状依存項 [m5]
     である。
  10.  前記ミキサーは、式1を用いて計算して、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定することにより、スケールダウンあるいはスケールアップ可能であることを特徴とする請求項1乃至8のいずれか一項記載のミキサー。
    Figure JPOXMLDOC01-appb-M000002

     ここで、式1中、
     εa :総括エネルギー消散率 [m2/s3
     εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
     εs:ステーターの局所エネルギー消散率[m2/s3]
     Np :動力数 [-]
     Nqd :流量数 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     b :ローターの翼先端の厚み [m]
     δ :ローターとステーターの隙間 [m]
     ns :ステーターの孔数 [-]
     d :ステーターの孔径 [m]
     l :ステーターの厚み [m]
     N :回転数 [1/s]
     tm :混合時間 [s]
     V :液量 [m3]
     Kg :隙間における形状依存項 [m2]
     Ks :ステーターにおける形状依存項 [m2]
     Kc :ミキサー全体の形状依存項 [m5]
     である。
  11.  請求項1乃至8のいずれか一項記載のミキサーを用いて、被処理流体に対して、乳化、分散、微粒化あるいは混合の処理を施すことにより、食品、医薬品あるいは化学品を製造する方法であって、式1を用いて計算することにより、当該ミキサーの運転時間と、これによって得られる被処理流体の液滴径を推定して、食品、医薬品あるいは化学品を製造する方法。
    Figure JPOXMLDOC01-appb-M000003

     ここで、式1中、
     εa :総括エネルギー消散率 [m2/s3
     εg:ローターとステーターの隙間における局所剪断応力[m2/s3]
     εs:ステーターの局所エネルギー消散率[m2/s3]
     Np :動力数 [-]
     Nqd :流量数 [-]
     nr :ローターブレードの枚数 [-]
     D :ローターの直径 [m]
     b :ローターの翼先端の厚み [m]
     δ :ローターとステーターの隙間 [m]
     ns :ステーターの孔数 [-]
     d :ステーターの孔径 [m]
     l :ステーターの厚み [m]
     N :回転数 [1/s]
     tm :混合時間 [s]
     V :液量 [m3]
     Kg :隙間における形状依存項 [m2]
     Ks :ステーターにおける形状依存項 [m2]
     Kc :ミキサー全体の形状依存項 [m5]
     である。
  12.  請求項11記載の製造方法によって製造した食品、医薬品あるいは化学品。
PCT/JP2012/070841 2011-08-19 2012-08-16 微粒化装置 WO2013027650A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/239,565 US9370755B2 (en) 2011-08-19 2012-08-16 Particle size breakup apparatus having blade-supported rotor
CA2844754A CA2844754A1 (en) 2011-08-19 2012-08-16 Particle size breakup apparatus
NZ620393A NZ620393B2 (en) 2011-08-19 2012-08-16 Particle Size Breakup Apparatus
DK12826426.4T DK2745920T3 (da) 2011-08-19 2012-08-16 Forstøvelsesanordning
CN201280040347.8A CN103842063B (zh) 2011-08-19 2012-08-16 微粒化装置
JP2013529985A JP6258702B2 (ja) 2011-08-19 2012-08-16 微粒化装置
SG2014004741A SG2014004741A (en) 2011-08-19 2012-08-16 Particle breakup size apparatus
AU2012297824A AU2012297824B2 (en) 2011-08-19 2012-08-16 Atomizing device
EP12826426.4A EP2745920B1 (en) 2011-08-19 2012-08-16 Atomizing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011179734 2011-08-19
JP2011-179734 2011-08-19

Publications (1)

Publication Number Publication Date
WO2013027650A1 true WO2013027650A1 (ja) 2013-02-28

Family

ID=47746394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070841 WO2013027650A1 (ja) 2011-08-19 2012-08-16 微粒化装置

Country Status (10)

Country Link
US (1) US9370755B2 (ja)
EP (1) EP2745920B1 (ja)
JP (2) JP6258702B2 (ja)
CN (1) CN103842063B (ja)
AU (1) AU2012297824B2 (ja)
CA (1) CA2844754A1 (ja)
DK (1) DK2745920T3 (ja)
SG (1) SG2014004741A (ja)
TW (1) TWI604885B (ja)
WO (1) WO2013027650A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063713A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置
JP2019063731A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG187906A1 (en) * 2010-08-19 2013-03-28 Meiji Co Ltd Particle size breakup apparatus
SG10201505789UA (en) * 2010-08-19 2015-09-29 Meiji Co Ltd Performance estimation method and scale-up method for particle size breakup apparatus
WO2012023217A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置及びその性能評価方法とスケールアップ方法
TWI604885B (zh) * 2011-08-19 2017-11-11 明治股份有限公司 Microprocessing equipment
JP5768946B1 (ja) * 2013-12-27 2015-08-26 新東工業株式会社 分散装置、分散処理システム及び分散方法
FI20146087A (fi) * 2014-12-12 2016-06-13 Outotec Finland Oy Sekoitus- ja syöttömenetelmä, järjestely ja pumppu nesteessä olevien pienten partikkeleiden toimittamiseksi lietteen muodostamiseksi syöttämistä varten
EP3275534B1 (en) * 2015-03-24 2020-04-22 M. Technique Co., Ltd. Stirrer
CN108465388A (zh) * 2017-07-25 2018-08-31 深圳市尚水智能设备有限公司 一种固液混合设备及利用该设备的混合方法
CN107638855A (zh) * 2017-09-08 2018-01-30 内蒙古蒙肽生物工程有限公司 植物微粉悬浮强化稳定机
EP3957393A4 (en) * 2019-04-15 2023-07-19 M. Technique Co., Ltd. STIRRER
CN110215857B (zh) * 2019-05-20 2021-07-20 深圳市尚水智能设备有限公司 一种叶轮组件及使用该组件的固体和液体混合设备
CN110394082B (zh) * 2019-07-31 2021-08-13 深圳市尚水智能设备有限公司 一种叶轮组件及使用该组件的固体和液体混合设备
US11534729B2 (en) * 2019-12-31 2022-12-27 Industrial Technology Research Institute Dispersion device and slurry dispersion system
CN112169642A (zh) * 2020-10-05 2021-01-05 新昌县奔力机械有限公司 一种应用于化工行业制备石墨烯的均质剪切机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526138U (ja) * 1991-09-02 1993-04-06 三井三池化工機株式会社 分散機の構造
JPH08504663A (ja) * 1992-12-16 1996-05-21 ニロ・ホールディング・アー/エス 第1流体を第2流体に注入するための方法及びこの方法を実施するための装置
JPH10226981A (ja) * 1997-02-17 1998-08-25 Nippon P M C Kk ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤
JP2000218153A (ja) * 1999-01-29 2000-08-08 Oji Paper Co Ltd マイクロカプセルの製造方法及び装置
JP2004002732A (ja) * 2002-03-28 2004-01-08 Dainippon Ink & Chem Inc ポリウレタンエマルジョンの製造法
JP2004008898A (ja) * 2002-06-05 2004-01-15 Mitsuru Nakano 撹拌装置及び該撹拌装置を用いた分散装置
JP2005506174A (ja) 2001-10-17 2005-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 粒子形成のための回転子固定子装置および方法
WO2012023609A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1757065A (en) * 1928-02-18 1930-05-06 Warsop Henry Ernest Machine for emulsifying bitumen, other materials, and the like
US1997032A (en) * 1930-02-15 1935-04-09 Doering Res & Dev Corp Pasteurizing machine
US1873199A (en) * 1931-10-16 1932-08-23 Dilts Machine Works Inc Jordan engine
US2169339A (en) * 1938-07-12 1939-08-15 Gas Fuel Corp Mill for dispersion and mixing
US2591966A (en) * 1948-07-31 1952-04-08 George H Rider Drive shaft means for colloid mills
US3194540A (en) * 1961-07-28 1965-07-13 Liberty Nat Bank And Trust Com Homogenizing apparatus
US3195867A (en) * 1962-01-23 1965-07-20 Liberty Nat Bank And Trust Com Homogenizing apparatus
US3224689A (en) * 1962-05-25 1965-12-21 Chemicolloid Lab Inc Colloid mills
US3285331A (en) * 1964-05-21 1966-11-15 Bratland Arthur Combined mixing and homogenising apparatus
US3514079A (en) * 1968-01-04 1970-05-26 Waukesha Foundry Co Food emulsifying mill
US3658266A (en) * 1970-10-01 1972-04-25 David F O Keefe Colloid injection mill
GB1483754A (en) * 1974-04-03 1977-08-24 Silverson Mach Ltd Mixing devices
DE3029423A1 (de) * 1980-08-02 1982-03-18 Kaspar 6800 Mannheim Engels Mischverfahren und schnellruehrer zur durchfuehrung des verfahrens
DE3519854C1 (de) * 1985-06-03 1987-02-05 Waldner Gmbh & Co Hermann Vorrichtung zum Mischen und/oder Homogenisieren eines fliessfaehigen Gutes,insbesondere einer Creme
US5088831A (en) * 1988-02-09 1992-02-18 Sunds Defibrator Industries Aktiebolag Device for treating material mixtures
DE3808154A1 (de) * 1988-03-11 1989-09-21 Voith Gmbh J M Injektor mit blasenzerteiler
JPH1029213A (ja) * 1996-07-15 1998-02-03 Toray Dow Corning Silicone Co Ltd 液状材料連続混合装置
US6000840A (en) * 1997-12-17 1999-12-14 Charles Ross & Son Company Rotors and stators for mixers and emulsifiers
DE29822149U1 (de) * 1998-08-25 1999-04-08 VAKUMIX Rühr- und Homogenisiertechnik Aktiengesellschaft, 28844 Weyhe Homogenisator mit Schutzverzahnung
JP2002018153A (ja) * 2000-07-03 2002-01-22 Shinichiro Ito リングを連ねた遊戯用おもちゃ
JP2002066284A (ja) 2000-08-24 2002-03-05 Kanegafuchi Chem Ind Co Ltd 変更した装置スケールで所定の大きさの懸濁液滴を製造する方法
KR100874695B1 (ko) 2002-03-28 2008-12-18 디아이씨 가부시끼가이샤 폴리우레탄 에멀젼의 제조법
JP2005050617A (ja) 2003-07-31 2005-02-24 Toshiba Corp イオン注入装置
JP2006239593A (ja) * 2005-03-03 2006-09-14 Ricoh Co Ltd 乳化装置、乳化方法及び微小粒子の製造方法
DE102006036303A1 (de) * 2006-08-03 2008-02-07 Wacker Chemie Ag Kontinuierliches Verfahren zur Herstellung von vernetzbaren Organopolysiloxanmassen
FR2929133B1 (fr) * 2008-03-31 2010-12-10 Vmi Dispositif de melange comprenant un conduit d'amenee de particules debouchant dans la zone de turbulences
US8851741B2 (en) * 2009-04-28 2014-10-07 Shmuel Ganmor Emulsifier with two shear stages
CA2808575C (en) * 2010-08-19 2017-11-21 Meiji Co., Ltd. Particle size breakup device and its performance estimation method and scale up method
WO2012023217A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置及びその性能評価方法とスケールアップ方法
SG10201505789UA (en) * 2010-08-19 2015-09-29 Meiji Co Ltd Performance estimation method and scale-up method for particle size breakup apparatus
FR2970879B1 (fr) * 2011-01-31 2013-02-15 Vmi Dispositif de melange
TWI604885B (zh) * 2011-08-19 2017-11-11 明治股份有限公司 Microprocessing equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526138U (ja) * 1991-09-02 1993-04-06 三井三池化工機株式会社 分散機の構造
JPH08504663A (ja) * 1992-12-16 1996-05-21 ニロ・ホールディング・アー/エス 第1流体を第2流体に注入するための方法及びこの方法を実施するための装置
JPH10226981A (ja) * 1997-02-17 1998-08-25 Nippon P M C Kk ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤
JP2000218153A (ja) * 1999-01-29 2000-08-08 Oji Paper Co Ltd マイクロカプセルの製造方法及び装置
JP2005506174A (ja) 2001-10-17 2005-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 粒子形成のための回転子固定子装置および方法
JP2004002732A (ja) * 2002-03-28 2004-01-08 Dainippon Ink & Chem Inc ポリウレタンエマルジョンの製造法
JP2004008898A (ja) * 2002-06-05 2004-01-15 Mitsuru Nakano 撹拌装置及び該撹拌装置を用いた分散装置
WO2012023609A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BARAILLER, F. M. HENICHE; P. A. TANGUY: "CFD Analysis of a Rotor-Stator Mixer with Viscous Fluids", CHEM. ENG. SCI., vol. 61, 2006, pages 2888 - 2894
CALABRESE, R. V.; M. K. FRANCIS; V. P. MISHRA; G. A. PADRON; S. PHONGIKAROON: "Fluid Dynamics and Emulsification in High Shear Mixers", PROC. 3RD WORLD CONGRESS ON EMULSIONS, 2002, pages 1 - 10
CALABRESE, R. V.; M. K. FRANCIS; V. P. MISHRA; S. PHONGIKAROON: "Measurement and Analysis of Drop Size in Batch Rotor-Stator Mixer", PROC. 10TH EUROPEAN CONFERENCE ON MIXING, 2000, pages 149 - 156
DAVIES, J.T.: "A Physical Interpretation of Drop Sizes in Homogenizers and Agitated Tanks, Including the Dispersion of Viscous Oils", CHEM. ENG. SCI., vol. 42, 1987, pages 1671 - 1676
DAVIES, J.T.: "Drop Sizes of Emulsions Related to Turbulent Energy Dissipation Rates", CHEM. ENG. SCI., vol. 40, 1985, pages 839 - 842
MAA, Y. F.; C. HSU: "Liquid-Liquid Emulsification by Rotor/Stator Homogenization", J. CONTROLLED. RELEASE, vol. 38, 1996, pages 219 - 228
PORCELLI, J.: "The Science of Rotor/Stator Mixers", FOOD PROCESS, vol. 63, 2002, pages 60 - 66
See also references of EP2745920A4
URBAN K.: "Rotor-Stator and Disc System for Emulsification Processes", CHEM. ENG. TECHNOL., vol. 29, 2006, pages 24 - 31
UTOMO, A. T.; M. BAKER; A. W. PACEK: "Flow Pattern, Periodicity and Energy Dissipation in a Batch Rotor-Stator Mixer", CHEM. ENG. RES. DES., vol. 86, 2008, pages 1397 - 1409

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063713A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置
JP2019063731A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置
JP7049793B2 (ja) 2017-09-29 2022-04-07 株式会社明治 微粒化装置
JP7049798B2 (ja) 2017-09-29 2022-04-07 株式会社明治 微粒化装置
US11318433B2 (en) 2017-09-29 2022-05-03 Meiji Co., Ltd. Atomization device

Also Published As

Publication number Publication date
SG2014004741A (en) 2014-09-26
CN103842063B (zh) 2016-05-25
EP2745920A4 (en) 2015-07-29
DK2745920T3 (da) 2020-06-15
CA2844754A1 (en) 2013-02-28
AU2012297824B2 (en) 2017-08-31
TW201325705A (zh) 2013-07-01
NZ620393A (en) 2016-06-24
CN103842063A (zh) 2014-06-04
EP2745920A1 (en) 2014-06-25
US20140192614A1 (en) 2014-07-10
US9370755B2 (en) 2016-06-21
JP2018065128A (ja) 2018-04-26
TWI604885B (zh) 2017-11-11
JP6258702B2 (ja) 2018-01-10
EP2745920B1 (en) 2020-05-27
AU2012297824A1 (en) 2014-02-20
JPWO2013027650A1 (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6258702B2 (ja) 微粒化装置
JP5897466B2 (ja) 微粒化装置
JP5652793B2 (ja) 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法
JP6427135B2 (ja) ミキサー
JP5652794B2 (ja) 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012826426

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2844754

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013529985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012297824

Country of ref document: AU

Date of ref document: 20120816

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239565

Country of ref document: US