JPH10226981A - ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤 - Google Patents

ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤

Info

Publication number
JPH10226981A
JPH10226981A JP4695297A JP4695297A JPH10226981A JP H10226981 A JPH10226981 A JP H10226981A JP 4695297 A JP4695297 A JP 4695297A JP 4695297 A JP4695297 A JP 4695297A JP H10226981 A JPH10226981 A JP H10226981A
Authority
JP
Japan
Prior art keywords
rosin
aqueous emulsion
emulsifying
based substance
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4695297A
Other languages
English (en)
Other versions
JP3255072B2 (ja
Inventor
Shigeru Miyazaki
茂 宮崎
Makoto Shiraishi
誠 白石
Toshiharu Okinaga
俊治 沖永
Katsunori Nakamura
勝則 中村
Koji Ota
浩二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON P M C KK
Japan PMC Corp
Original Assignee
NIPPON P M C KK
Japan PMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12761635&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10226981(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NIPPON P M C KK, Japan PMC Corp filed Critical NIPPON P M C KK
Priority to JP04695297A priority Critical patent/JP3255072B2/ja
Publication of JPH10226981A publication Critical patent/JPH10226981A/ja
Application granted granted Critical
Publication of JP3255072B2 publication Critical patent/JP3255072B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Colloid Chemistry (AREA)

Abstract

(57)【要約】 【目的】 溶剤を用いる溶剤法、高温・高圧を用いる高
温高圧法、乳化分散剤を多く用いる転相乳化法のような
問題がなく、従来困難とされたロジン系物質と乳化分散
剤の組み合わせも可能であり、しかも、保存安定性、機
械的安定性に優れるロジン系物質の水性エマルションの
製造方法、その水性エマルション及びこれを用いたサイ
ズ性能の良いサイズ剤を得ること。 【構成】 固形分濃度60〜90重量%、全固形分中の
乳化剤固形分濃度0.5〜20重量%の高濃度混合物を
高剪断型回転式乳化分散機を用いて得た後、全固形分濃
度を60重量%未満に調整する工程を設けたロジン系物
質の水性エマルションの製造方法、その水性エマルショ
ン及びこれを含有するサイズ剤。 【効果】 上記目的を達成することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、高剪断型回転式乳化機
を用いることにより、従来の方法では得られない保存安
定性、機械的安定性に優れたロジン系物質の水性エマル
ションの製造方法、そのロジン系物質の水性エマルショ
ン組成物及びこれを用いた優れたサイズ性能を示す製紙
用サイズ剤に関する。
【0002】
【従来の技術】水性エマルションは、水に不溶な疎水性
物質を水性液として低粘度かつ高濃度で供給できること
から、多くの産業分野で利用されており、特に疎水性物
質としてロジン系物質を用いた水性エマルションは、製
紙用サイズ剤、塗料・インキ用改質剤として使用されて
いる。ロジン系物質の水性エマルションの製造方法とし
ては、 溶剤を使用した高圧吐出型乳化法、 溶剤
を使用しない高温高圧吐出型乳化法、 転相乳化法等
が知られている。上記 溶剤を使用した高圧吐出型乳
化法(溶剤法)は、特公昭54−36242号公報に記
載されているように、ロジン系物質をトルエン等の水不
溶性の揮発性有機溶剤に溶解し、溶液状態にした後、乳
化分散剤及び水と予備混合して粒子の粗い水性エマルシ
ョンを調製し、その混合液をホモジナイザー等の高圧吐
出型乳化機で乳化して微細な粒子のエマルションにした
後、さらに有機溶剤を留去することにより、水性エマル
ションを得る方法である。この方法は、ロジン系物質が
室温でも溶液状態になっているため、乳化時に高温する
必要がないという利点がある。また、上記 溶剤を使
用しない高温高圧吐出型乳化法(高温高圧法)は、特開
昭50−156564号公報等に記載されているよう
に、ロジン系物質を軟化点以上に加熱し、熔融状態にし
た後、乳化分散剤及び水と予備混合して粒子の粗い水性
エマルションを調製し、その混合液を高圧吐出型乳化機
で乳化し微細な粒子の水性エマルションを得る乳化方法
である。また、転相乳化法は、特開昭52−77206
号公報等に記載されているように、加熱熔融したロジン
系物質に適当な乳化分散剤及び水を攪拌下に添加しなが
ら、油中水型エマルションから水中油型エマルションへ
転相させて水性エマルションを得る方法である。
【0003】
【発明が解決しようとする課題】しかしながら、上記
の溶剤法は、乳化終了後に脱溶剤工程が必要であるため
生産性は低く、さらには有機溶剤の使用により環境に与
える悪影響や製造等の作業を行う上での労働安全衛生上
の問題がある。また、上記の高温高圧法は、ロジン系
物質の熔融粘度を低くするために、ロジン系物質を例え
ば180℃の高温に加熱し、さらには560Kg/cm
2 といった高圧下で乳化する必要があり、高圧吐出型乳
化機のシール材などの劣化が激しく、長時間の連続運転
が困難であり、生産性に劣るプロセスであるのみなら
ず、特にロジン系物質の軟化点が高くなると均一に微細
化されたエマルションを得ることが困難である等の問題
がある。その改良方法として、特開平8−117578
号公報では高圧吐出型乳化機に代えて高剪断型回転式乳
化機(キャビトロン(CAVITRON社製))を使用
した方法や、特開平7−155576号公報では高圧吐
出型乳化機に代えて高圧衝突型乳化機(マイクロフルイ
ダイザー)を用いた方法が提案されている。しかし、そ
の改善前のものはもとより改善後のいずれの方法でも、
ロジン系物質の軟化点が高い場合には、乳化時の温度を
高くし、より高回転あるいはより高圧で溶解する必要が
あり、微細で均一な粒子のエマルションを得ることが難
しいのみならず、乳化機の耐久性にも問題があり、安定
した連続生産が困難であるといった問題、さらにはロジ
ン系物質の熔融温度で劣化する乳化分散剤は使用できな
い等の問題がある。また、上記の方法は、その転相乳
化法においては大きな剪断力を必要しない反面、微細で
安定な水性エマルションを得るためには多量の乳化分散
剤を使用する必要があるため、得られた水性エマルショ
ンを用いて製品の使用時に発泡性が問題となったり、ま
た、転相乳化法に使用できる乳化分散剤にはロジン系物
質の熔融温度で劣化するものは使用できない等の問題が
ある。
【0004】本発明の第1の目的は、溶剤法のように環
境に悪影響を及ぼしたり、労働安全衛生上の問題がある
ということのないロジン系物質の水性エマルションの製
造方法、そのロジン系物質の水性エマルション組成物及
びサイズ剤を提供することにある。本発明の第2の目的
は、高温高圧法のように特に軟化点の高いロジン系物質
を使用した場合には微細で均一な粒子のエマルションを
得ることが難しく、乳化機の耐久性に問題があり、連続
した生産を行うことに支障があったりすることがないよ
うなロジン系物質の水性エマルションの製造方法、その
ロジン系物質の水性エマルション組成物及びサイズ剤を
提供することにある。本発明の第3の目的は、転相乳化
法のように多量の乳化分散剤を用いることなく得られる
ロジン系物質の水性エマルションの製造方法、そのロジ
ン系物質の水性エマルション組成物及びサイズ剤を提供
することにある。本発明の第4の目的は、高温高圧法や
転相乳化法のように高温処理のために高温で劣化する乳
化分散剤が使用できないというようなことがないような
ロジン系物質の水性エマルションの製造方法、そのロジ
ン系物質の水性エマルション組成物及びサイズ剤を提供
することにある。本発明の第5の目的は、従来乳化が困
難であったロジン系物質と乳化分散剤の組み合わせによ
ってもその乳化が可能になるロジン系物質の水性エマル
ションの製造方法、そのロジン系物質の水性エマルショ
ン組成物及びサイズ剤を提供することにある。本発明の
第6の目的は、上記のそれぞれの目的を達成し、かつ保
存安定性、機械的安定性に優れたロジン系物質の水性エ
マルションの製造方法、そのロジン系物質の水性エマル
ション組成物及びこれを用いた優れたサイズ性能を示す
製紙用サイズ剤を提供することにある。本発明の第7の
目的は、上記の目的を高効率、簡単、低コストで実現す
ることにある。
【0005】
【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意研究を行った結果、高剪断型回転
式乳化機を用いて、乳化分散剤と加熱溶融したロジン系
物質の混合を行う場合に、その固形分濃度、乳化剤含有
量及び混合方法に選択的効果があること、及びその混合
物を希釈する工程を併設することにより微細で均一な粒
子のエマルションが得られることを見い出し、本発明を
するに到った。本発明は、(1)、乳化分散剤水溶液と
加熱熔融したロジン系物質を高剪断型回転式乳化分散機
を用いて高剪断下で混合し、固形分濃度が60〜90重
量%、全固形分中の乳化分散剤固形分含有率が0.5〜
20重量%である高濃度混合物を得る高濃度混合物生成
工程と、該高濃度混合物生成工程を経て得られた高濃度
混合物に希釈水を混合して全固形分を60重量%未満に
濃度調整した水性エマルションを得る水性エマルション
生成工程を有するロジン系物質の水性エマルションの製
造方法であって、上記高剪断型回転式乳化分散機は乳化
機本体に固定されたステータと該ステータと対をなして
対向して配置された回転するロータを有し、上記乳化分
散剤水溶液と加熱熔融したロジン系物質を高剪断型回転
式乳化分散機を用いて高剪断下で混合することは該高剪
断型回転式乳化分散機に上記乳化分散剤水溶液と加熱熔
融したロジン系物質を連続的に供給し、該ロータのステ
ータに対する回転により生じる高剪断力によって両者を
混合することであるロジン系物質の水性エマルションの
製造方法を提供するものである。また、本発明は、
(2)、乳化分散剤水溶液と加熱熔融したロジン系物質
を高剪断型回転式乳化分散機を用いて高剪断下で混合
し、固形分濃度が60〜90重量%、全固形分中の乳化
分散剤固形分含有率が0.5〜20重量%である高濃度
混合物を得る高濃度混合物生成工程と、該高濃度混合物
生成工程で得られた高濃度混合物に希釈水を混合して全
固形分を60重量%未満に濃度調整した水性エマルショ
ンを得る水性エマルション生成工程を有するロジン系物
質の水性エマルションの製造方法であって、上記高剪断
型回転式乳化分散機は乳化機本体に固定されかつ離間し
て配置された複数のリングを有するステータと、該ステ
ータのリングのそれぞれと対をなして対向して配置され
た複数の回転するリングを有するロータを有し、各対を
なすリングを順次配置し、かつ該ステータ及びロータの
それぞれのリングは細長孔及び/又は細孔を有し、上記
乳化分散剤水溶液と加熱熔融したロジン系物質を高剪断
型回転式乳化分散機を用いて高剪断下で混合することは
上記乳化分散剤水溶液と加熱熔融したロジン系物質を該
ステータ及びロータの中心側より供給して該ステータ及
びロータの順次対をなすそれぞれのリングの該細長孔及
び/又は細孔より流出させながらそれぞれのリングの間
隙にこれらの乳化分散剤水溶液と加熱溶融したロジン系
物質を供給し、該ロータのそれぞれのリングの該ステー
タのそれぞれのリングに対する回転により高剪断力を加
えて両者を混合し、その混合物を順次配置した外側のリ
ング側より順次取り出すロジン系物質の水性エマルショ
ンの製造方法、(3)、ステータの複数のリングは同心
円状に離間して配置され、ロータの複数のリングは該ス
テータのそれぞれのリングと順次互い違いに対向して配
置されている上記(2)のロジン系物質の水性エマルシ
ョンの製造方法、(4)、乳化分散剤水溶液と加熱溶融
したロジン系物質を混合することなくそれぞれ別々のラ
インで高剪断型回転式乳化機に供給する上記(1)ない
し(3)のいずれかのロジン系物質の水性エマルション
の製造方法、(5)、高剪断型回転式乳化機のロータの
回転数が毎分1000〜25000回であり、ロータの
最外側のリングの周速が3〜100m/秒である上記
(1)ないし(4)のいずれかのロジン系物質の水性エ
マルションの製造方法、(6)、水性エマルション生成
工程は高濃度混合物生成工程における高剪断型回転式乳
化機より乳化分散剤水溶液と加熱溶融したロジン系物質
の混合物を順次取り出しながら希釈水で希釈する連続希
釈工程である上記(1)ないし(5)のいずれかのロジ
ン系物質の水性エマルションの製造方法、(7)、水性
エマルション生成工程は高剪断型回転式乳化機を使用す
る上記(6)のロジン系物質の水性エマルションの製造
方法、(8)、細長孔は0.1〜5mm幅のスリットで
あり、細孔は0.1〜5mm直径のノズルである上記
(2)ないし(7)のいずれかのロジン系物質の水性エ
マルションの製造方法、(9)、乳化分散剤が高分子系
乳化分散剤である上記(1)ないし(8)のいずれかの
ロジン系物質の水性エマルションの製造方法、(1
0)、水性エマルション生成工程を経て得られる水性エ
マルションの分散粒子の平均粒径が0.6μmより大き
くなく、1μmより小さくない粒子が1重量%より多く
ない上記(1)ないし(9)のいずれかのロジン系物質
の水性エマルションの製造方法により製造されたロジン
系物質の水性エマルション組成物、(11)、上記(1
0)の水性エマルション組成物を含有する製紙用サイズ
剤を提供するものである。
【0006】以下に本発明を詳細に説明する。本発明に
おいて、ロジン系物質としては、(A)ロジン類、
(B)ロジン類とα,β−不飽和カルボン酸誘導体との
反応生成物であるα,β−不飽和カルボン酸変性ロジン
類、(C)ロジン類と、アルコール類、フェノール類、
エポキシ化合物等からなる群の少なくとも1種とのエス
テル化反応により得られるロジンエステル類、(D)前
記ロジンエステル類とα,β−不飽和カルボン酸誘導体
との反応生成物であるα,β−不飽和カルボン酸変性ロ
ジンエステル類、さらにはこれらのロジン系物質の混合
物等を例示することができる。上記(A)ロジン類とし
て代表的なものは、ガムロジン、トール油ロジン及びウ
ッドロジンが挙げられ、これらは単独で、あるいは2種
以上の混合物として用いられ、上記ロジン類に不均化、
水素添加、アルデヒド変性及び重合などの処理を単独あ
るいは2種以上施したものもロジン類に含まれる。ま
た、上記(B)のα,β−不飽和カルボン酸変性ロジン
類としては、ロジン類に−C=C−C=O基含有酸性化
合物を1〜20重量%、好ましくは3〜18重量%付加
反応させたものである。上記酸性化合物の代表的な例と
しては、α,β−不飽和カルボン酸、その酸無水物等が
挙げられるが、具体的にはフマル酸、マレイン酸、無水
マレイン酸、イタコン酸、シトラコン酸、無水シトラコ
ン酸、アクリル酸及びメタクリル酸等が挙げられ、反応
方法は公知の方法で行うことができる。
【0007】上記(C)のロジンエステル類は、ロジン
類と、アルコール類、フェノール類、エポキシ化合物等
からなる群の少なくとも1種とのエステル化反応により
得られる化合物であり、完全又は部分エステル化物のい
ずれでも良く、その混合物でもよい。アルコール類とし
ては、1価のアルコール及び2価以上の多価アルコール
のいずれも使用でき、特に3価及び/又は4価のアルコ
ールが好ましく、これらアルコールとしては、例えばグ
リセリン、トリメチロールエタン、トリメチロールプロ
パン、3−メチルペンタン−1,3,5−トリオール、
ペンタエリスリトールエステル、ジグリセリン等を例示
することができる。また、アルコール類は、1価のアル
コール類及び2価以上の多価アルコール類を2種以上併
用することができる。フェノール類としては、1価及び
2価以上の多価フェノール類のいずれも使用でき、特に
多価フェノール類が好ましく、例えばヒドロキノン、ピ
ロガロール、ビスフェノールA等を例示できる。エポキ
シ化合物はオキシラン環を有する化合物であり、例えば
グリシジルエーテル型エポキシ樹脂等のエポキシ樹脂を
使用できる。ロジン類と上記化合物とのエステル化反応
は公知の方法で行うことができる。
【0008】ロジン系物質の乳化分散に使用する乳化分
散剤は、保護コロイドを形成するものもその中に含まれ
るが、各種低分子界面活性剤、高分子系乳化分散剤、カ
ゼイン、ポリビニルアルコール、変性澱粉などを使用す
ることができる。本発明による高剪断型回転式乳化機を
用いた水性エマルションの製造方法では、いずれの乳化
分散剤でも良好な乳化性が得られるが、特に高分子系乳
化分散剤の使用が乳化性、水性エマルションの安定性の
点で好ましく、この水性エマルションを含有するサイズ
剤のサイズ性能の点でも好ましい。高分子系乳化分散剤
としては、アニオン性、カチオン性、あるいはノニオン
性の親水性モノマーと疎水性モノマーを共重合したいわ
ゆる両親媒性ポリマーが挙げられる。例えばスチレン−
(メタ)アクリル酸系共重合体の部分あるいは完全ケン
化物、アニオンあるいはカチオン性モノマーと(メタ)
アクリル酸エステルとの共重合体及びアクリルアミド系
共重合体等を例示することができる。また、カチオン性
のポリアミノポリアミド−エピクロルシドリン樹脂、ア
ルキレンポリアミン−エピクロルヒドリン樹脂、ポリ
(ジアリルアミン)−エピクロルヒドリン樹脂等を例示
することができる。また、これらは単独あるいは2種以
上を組み併せて使用してもよい。
【0009】本発明のロジン系エマルションの製造方法
においては、高濃度混合物生成工程と、水性エマルショ
ン生成工程を有する。まず、高濃度混合物生成工程にお
いては、乳化分散剤水溶液と加熱熔融したロジン系物質
をロータとステータを有する高剪断型回転式乳化分散機
を用いて高剪断下で混合し、固形分濃度が60〜90重
量%、全固形分中の乳化分散剤固形分含有率が0.5〜
20重量%である高濃度混合物を得る。このようなロー
タとステータを有する高剪断型回転乳化分散機として、
乳化分散剤水溶液と加熱熔融したロジン系物質を高濃度
で均質に混合するために実際に使用される具体的なもの
としては、例えば、“分散系レオロジーと分散化技術”
(358頁、信山社サイテック刊、1991年5月20
日発行)に説明されている高速回転高剪断型攪拌分散機
やコロイドミル等が挙げられる。さらに本発明では乳化
分散剤水溶液と加熱熔融したロジン系物質を連続的に混
合することが好ましく、高剪断型回転式乳化分散機はイ
ンライン型であることが好ましい。実際に好ましく使用
できる高剪断型回転式乳化分散機としては、攪拌翼(ロ
ータ)の外周部に近接させた固定環(ステータ)の中で
ロータの高速回転(数千〜数万rpm)を行い、その狭
い間隙に流体を供給することにより剪断力を流体に与え
ることができる構造を有するものであって、ロータはス
テータと数十μm〜数十mmの一定間隔を保ちつつ回転
できる構造となっており、また、ロータ及びステータが
互いに接近する面にはロータ及び/又はステータに溝、
細孔、長細孔又は櫛歯が設けてあり、ロータの回転によ
ってキャビテーションや圧力波等の衝撃力を発生させ、
より効果的にロータ及びステータの間の限定された領域
に存在する流体に強力な剪断力を与えることができる構
造となっているものが挙げられる。上記ロータ/ステー
タの対は乳化分散機内部に複数存在してもよく、例えば
同一回転軸上に、複数のロータ/ステータの対が平面状
あるいは垂直状に存在し、それぞれのロータ/ステータ
の対に順次流体を通過させる多段型の構造のものはその
対が単独のものよりはより強力な剪断力が得られる。高
剪断型回転式乳化分散機としてさらに好ましい構造は、
貫通する細孔、長細孔又は櫛歯が複数個設けてある複数
の径の異なるリングを、間隔を設けて同一平面上にかつ
同心円状に配置したステータと、これらステータのリン
グ間の環状の溝に対応してステータと同様のリングが円
盤状の基板に同心円状に配置され、ステータに噛み合わ
されて回転するロータによって構成され、流体を中央部
から外周方向へロータ及びステータのリングを貫通する
細孔等を通して通過させ、順次剪断力を流体に与える多
段型のものである。
【0010】これを模式的に示すと、例えば図1に示す
ように、1はステータであり、有底円筒体状の枠体2の
底部内側に順次径大のリング3、4、5が離間して配置
されかつ固定して設けられ、枠体2の底部を貫通して最
内側のリング3内に連通する一方の導入管部6が設けら
れ、リング3と4の間の枠体2の底部を貫通してこれら
リングの間に連通する他方の導入管部7が設けられ(リ
ング3内に連通する一方の導入管部6と他方の導入管部
7を設けてもよい)、さらに枠体2の円筒状部には導出
管部8が枠体2の内壁とリング5の間の空隙に連通して
設けられている。また、11はロータであり、基板12
の内面に順次径大のリング13、14、15が上記リン
グ3と4の間、リング4と5の間、リング5と枠体2の
内壁の間に嵌合するように離間して配置されかつ固定し
て設けられ、基板12の外面中央には回転軸16が固着
され、この回転軸16は枠板17の中央部の軸孔(図示
省略)に回転自在に嵌挿されている。上記ステータ1の
リング3、4、5及び上記ロータ11のリング13、1
4、15は図2に示すように、混合物を得る際の温度、
衝撃に耐える材質からなるリング本体18に、その中心
に向かうその高さ方向の細長孔19、19・・・を離間
してその全周又はその一部に有するか、図3に示すよう
にリング本体18の全周又はその一部にその中心に向か
う細孔20、20・・・を有する。この場合、ステータ
1の各リング、ロータ11の各リングは共に細長孔又は
細孔であってもよく、一方が細長孔、他方が細孔であっ
てもよく、その逆でもよく、また、細長孔の幅及び/又
は細孔の径は同一又は異なっていてもよく、さらにステ
ータ1の各リング、ロータ11の各リングそのものも各
別あるいは同一リングにおいて両者を併用したものでも
よい。なお、細長孔はリング本体の高さ寸法の全部を切
り欠いた切り溝でもよい。
【0011】このようなステータ1とロータ11は、そ
れぞれのリングが互いに他のリングの間に嵌合されて噛
み合わされ、枠体2の開口部が枠板17により適宜手段
で密閉された状態で、回転軸16が回転されることによ
り、ロータ11のそれぞれのリングがステータ1のそれ
ぞれの噛み合わされたリングに対して回転し、一方の導
入管部6から例えば加熱熔融したロジン系物質を導入
し、他方の導入管部7から分散剤水溶液を導入すると、
それぞれのリングは図2、3のように細長孔、細孔を有
するのでこれらはその細長孔、細孔を通して噛み合わさ
れたリングの間隙に流出し、回転方向の剪断力を受けて
混合され、これが順次外側の噛み合わされたリングの間
でも行われ、その混合物が導出管部8から導出される。
図2に示す細長孔は幅0.1〜5mmのスリット、図3
に示す細孔は0.1〜5mmであることが好ましい。な
お、上記した高剪断型回転乳化分散機は、ステータ及び
ロータの各対をなすリングは平面状に順次配置された
が、垂直状に順次配置されてもよく、その際各リング対
は同一径でもよいが、いずれの場合も上述のことを準用
することができる。市販されている高剪断型回転式乳化
分散機としては、インラインディスパージングミキサー
(YSTRAL社製)、ボックボルトホモジナイザー
(ボックボルト社製)、マイルダー((株)荏原製作所
製)、ONLATOR((株)櫻製作所製)、ペンタッ
クスミキサー(アルファ・ラバル社製)、SUPRAT
ON(KRUPP社製)、キャビトロン(CAVITR
ON社製)等が例示できる。
【0012】上述の高剪断型回転式乳化分散機を用いて
得られる混合物は60〜90重量%の固形分濃度にする
ことにより、乳化分散剤の混合物系内の濃度が高くな
り、よりロジン系物質と乳化分散剤成分が均質化され易
くなる効果が得られる。また、ロジン系物質と乳化分散
剤水溶液の混合物は高粘度で、不均一な混合になり易い
ため、乳化分散機が高剪断型である必要があるが、過剰
の剪断は混合物の発熱の原因となるため、均一に混合さ
れる程度の剪断力が必要とされる。この点から、ロータ
の回転数は毎分1000〜25000回転(rpm)、
ロータの最外側の周速は3〜100m/秒の範囲内であ
ることが好ましく、ステータとロータの間隔は0.05
〜10mmであることが好ましい。その間隔が0.05
mm未満の場合は、間隔が狭いため両者が接触したり、
また、その間隙に混合物を介在させてロータを回転させ
るその抵抗が高くなり過ぎ、発熱し過ぎ等の不都合を起
こすことがあり、一方その間隙が10mmを越えると均
一な混合物が得られず、その結果微細な粒径のエマルシ
ョンが得られない場合がある。
【0013】従来の高圧吐出型乳化機あるいは高剪断型
回転乳化分散機を用いた水性エマルションの製造方法の
場合には、ロジン系物質と乳化剤水溶液の混合時は、固
形分濃度は製品濃度と等しく、例えば多くても50重量
%であり、既に水中油滴型エマルションが形成されてい
るのに対し、本発明の方法では、高濃度混合物生成工程
ではロジン系物質と乳化分散剤と少量の水が均一に混合
され均質化されており、この時点では少なくとも安定な
水中油滴型エマルションは生成されておらず、高剪断下
での混合であるために均一な混合物を得るためには高温
を必ずしも必要とせず、熱劣化し易かったり通常の水性
媒体ではロジン系物質と組み合わせて使用できない乳化
分散剤も使用でき、そして水性エマルション生成工程に
おいて希釈水と混合されて60重量%未満の濃度に希釈
されることにより、初めて微細で安定な水中油滴型のエ
マルションが生成される。高剪断型回転乳化分散機を用
いる高濃度混合物生成工程において、全固形分濃度が6
0重量%未満の場合には、ロジン系物質と乳化剤水溶液
の混合が不均一になり、また粗大な粒子径の水中油滴型
エマルションが形成されるため、均一で微細な粒子のエ
マルションが得られず、一方、90重量%を越える場合
には乳化分散剤水溶液が高濃度、高粘度になり過ぎ、ロ
ジン系物質との混合が不均一になる場合があり実用的で
はない。高濃度混合物生成工程で使用される高剪断型回
転乳化分散機は、複数台を直列に接続することも可能で
あり、それぞれの高剪断型回転乳化分散機における混合
物の固形分濃度は同一でも、60〜90重量%の範囲で
変えることも可能である。
【0014】高濃度混合物生成工程の前工程としては、
ロジン系物質は加熱装置を備えたタンク内で加熱されて
熔融され、数百〜数千センチポイズ(cps)の粘度
で、定量ポンプで高濃度混合物生成工程の高剪断型回転
乳化分散機に送られる。乳化分散剤水溶液は、高濃度混
合物生成工程で得られる混合物においてその乳化分散剤
固形分含有率が全固形分中0.5〜20重量及び混合物
固形分濃度が60〜90重量%になるように乳化分散剤
濃度を調整した後、必要に応じて熱交換器によって10
〜130℃に温度調節され、所定量が定量ポンプで高剪
断型回転乳化分散機に供給され、上記の熔融したロジン
系物質と混合させる。乳化分散剤水溶液の温度が10℃
未満の低温度であると、高剪断型回転乳化分散機内にお
いて混ぜ合わされる熔融したロジン系物質の急激な温度
低下を起こし、ロジン系物質の急激な粘度増加あるいは
固化により、ロジン系物質と分散剤水溶液の均一な混合
が困難となる場合がある。また、乳化分散剤水溶液の温
度が130℃を越えて高過ぎると、乳化分散剤成分の熱
分解等の劣化を生じることがある。乳化分散剤水溶液の
温度は好ましくは20〜90℃であり、ロジン系物質の
熔融温度まで加熱する必要はなく、乳化分散剤の熱劣化
を生じない比較的低温が好ましい。ロジン系物質と分散
剤水溶液の混合後の温度はロジン系物質と分散剤水溶液
の各々の温度、比熱、混合比率及び高剪断型回転乳化分
散機より受ける混合エネルギーによって決まるものであ
り、混合物としての温度は70〜180℃が好ましく、
70℃未満では水性エマルション生成工程での分散が不
十分となり、粗大粒子を生成する場合があり、180℃
より高いと分散剤成分やロジン系物質の熱劣化が生じる
場合がある。乳化分散剤固形分含有率が全固形分中0.
5重量%より少ないと、微細な粒子径のエマルションが
得られず、また、これが20重量%より多いとエマルシ
ョンの発泡性が高くなったり、コスト的にも不利にな
る。
【0015】本発明において、定量ポンプから供給され
る乳化分散剤水溶液と熔融状態にあるロジン系物質は、
特に乳化分散剤水溶液の温度が低い場合には、それぞれ
独立した別の供給管(別々のライン)によって高剪断型
回転乳化分散機内に供給されることが好ましい。特開平
8−117578号公報に記載されているように、高速
回転型乳化機で処理される前に、乳化分散剤水溶液と熔
融状態にあるロジン系物質を合流させるような方法で
は、ロジン系物質と乳化分散剤水溶液の温度の差が大き
いとロジン系物質が急激に冷やされ固化するため、合流
時に不均一な混合となり、乳化性が悪化し、微細な粒子
径の水性エマルションが得られないという問題が生じ
る。実際の乳化に際しては、ロジン系物質や乳化剤の種
類、その組み合わせによってロジン系物質、乳化剤水溶
液の供給温度、これらの混合濃度、その混合の際の剪断
力に最適条件が存在する。
【0016】本発明において、水性エマルション生成工
程では、高濃度混合物生成工程で得られた乳化分散剤と
ロジン系物の合計である固形分濃度が60〜90重量%
の高濃度混合物の全固形分が60%未満になるように希
釈される。この希釈に用いる希釈水(塩や酸、アルカリ
等のpH調節剤その他エマルションの安定化に寄与する
高分子物質等の少なくとも1種を含んでいてもよい)は
熱交換器よって温度調整を行い、20〜130℃で供給
することが好ましい。希釈水の温度が低過ぎると、ロジ
ン系物質と乳化剤水溶液の組成によっては高濃度の両者
の混合物が温度ショックにより部分的に固化したり、未
分散物を発生するという問題が生じる。希釈水を混合す
る方法は、バッチ式あるいは連続式のいずれでもよい。
バッチ式の場合には高濃度エマルション生成工程の高剪
断型回転乳化分散機内の温度、圧力と等しい条件の希釈
槽に高剪断型回転乳化分散機より導出した混合物を溜
め、所定量の希釈水を加え攪拌混合する。連続式の場合
は、希釈に用いる水は定量ポンプによって供給し、静止
型のインラインミキサー(「スタテックミキサー」(ノ
リタケ・カンパニーリミテッド社製品の商品名)、「H
i−Mixier(Toray社製品の商品名)、「ス
ケヤミキサー(櫻製作所社製品の商品名)))、回転型
乳化分散機(プロペラミキサー、タービンミキサー、デ
ゾルバー)、高剪断型回転乳化分散機等を用いて、高濃
度混合物生成工程の高剪断型回転乳化分散機より順次導
出した混合物と順次混合を行うが、高濃度混合物生成工
程に使用したのと同様な高剪断型回転乳化分散機を用い
ることが好ましい。水性エマルション生成工程で希釈を
行って得られたエマルションは、冷却機により室温まで
冷却され、取り出される。
【0017】このような方法によって得られるロジン系
物質の水性エマルションは、平均粒子径が0.6μm以
下(0.6μmより大きくない)の微細な粒子であり、
さらには1μm以上(1μmより小さくない)の粗大な
粒子が1重量%以下(多くて1重量%)あるいは含まれ
ないという特徴を有する。これは、本発明が高濃度混合
物生成工程と水性エマルション生成工程を有し、さらに
少なくとも高濃度混合物生成工程において高剪断型回転
乳化分散機を使用したことにより、均質な混合物が得ら
れたためと考えられる。従来の公知の乳化方法でも微細
の粒子径のエマルションは得られる場合があるが、エマ
ルション中には1μm以上の粗大な粒子を含むことが多
く、この粗大粒子は得られた水性エマルションを濾過し
て製品とする際に目詰まりの原因となったり、製品中で
沈降物となったりし、この粗大粒子を含有するサイズ剤
が抄紙工程で使用された場合、抄紙機の汚れ問題の原因
となる可能性がある。本発明によって得られた水性エマ
ルションを含有する製紙用ロジン系エマルションサイズ
剤は、抄紙系での汚れが低減するとともに、サイズ性能
にも優れ、また、製品中の沈殿物が少なく、機械的安定
性が優れると言った特徴を有する。
【0018】
【発明の実施の形態】図4に示すように、加熱装置を備
えた釜で熔融したロジン系物質を定量ポンプにより一定
流量で供給できるロジン系物質供給部21と、乳化剤と
水を混合し、任意の乳化剤濃度に調整し、さらに熱交換
器により任意の温度に調整した乳化剤水溶液を定量ポン
プにより一定流量で供給できる乳化剤水溶液供給部22
とを設け、各々の供給部より熔融したロジン系物質と乳
化剤水溶液を高濃度混合物生成工程23に供給し、ここ
で図1〜3で模式的に示され、具体的には例えば図5で
示される主要部の構造を有する高剪断型回転式乳化分散
機にて混合する。図5に示す装置は、ステータ31は全
周壁にノズル(直径0.6〜1.5mm)を有する順次
径大のリング32、33、34、35が図示省略した枠
体に例えば図1の枠体2に対するように固定され、一方
ロータ41は全周に等間隔に切り溝(スリット)(幅
0.6mm)を設けた順次径大で上記リング32と33
の間、リング33と34の間に嵌合されるリング43、
44と、上記リング34と35の間に嵌合される全周壁
にノズル(直径0.6〜1.5mm)を有するリング4
5を有し、さらに図示省略したが図1に示すように回転
軸及び枠板が設けられ、ステータ31とロータ41は図
1に示すように密閉される。この状態で、リング43〜
45がリング32〜35と互い違いに対向しているが、
ロータ41が回転される(回転数1000〜10000
rpm、ロータのリングの平均周速3.9〜40m/
秒)ことによりこれらリング43〜45がリング32〜
35に対して回転し、ステータ31の導入口36、37
からそれぞれ供給された熔融したロジン系物質、乳化分
散剤水溶液が上記各リングのノズル、スリットを通して
流出される毎に両者は回転による剪断力を受けて混合さ
れ、図示省略したが図1の導出管部8に相当する導出部
からその混合物は取り出される。この高剪断型回転式乳
化分散機は1台でもよいが、複数台を用い、前段の高剪
断型回転式乳化分散機で得られた混合物を後段の高剪断
型回転式乳化分散機にそのまま例えば導入口36のみか
ら再度通すか、あるいは導入口36から混合物を再度通
すとともに、同時に乳化剤水溶液あるいは希釈水等を導
入口37から通してもよい。高濃度混合物生成工程で得
られる混合物は、60〜90重量%の固形分濃度(ロジ
ン系物質と乳化剤の固形分)とし、乳化分散剤固形分の
全固形分に対する濃度を3〜6重量%とし、その混合を
行う温度は熔融したロジン系物質の温度が130〜16
0℃、乳化剤水溶液の温度が20〜90℃とし、これら
の条件で熔融したロジン系物質と乳化剤水溶液が連続的
に混合される。
【0019】高濃度混合物生成工程で得られた温度11
0〜150℃の混合物は、水性エマルション生成工程2
4に供給され、ここで温度調節装置により温度調節され
た希釈水を供給できる希釈水供給部25から供給された
温度20〜90℃の希釈水とともに混合され、固形分3
0〜60重量%に希釈される。この際、連続的に希釈を
行う場合と非連続的に希釈を行う場合ではその構成は異
なるが、連続的に希釈を行う場合には、高濃度混合物生
成工程23及び希釈水供給部25より定量ポンプで一定
流量供給される混合物及び希釈水を連続的に混合できる
混合機、例えば高濃度混合物生成工程で用いた高剪断型
回転式乳化分散機を用い、図5において導入口36に混
合物、導入口37に希釈水を供給し、両者を混合して希
釈する。また、静止型インラインミキサーを用いてこれ
に準じて連続的に混合する。非連続的に希釈を行う場合
には、攪拌機付希釈タンクに高濃度混合物生成工程で得
られた混合物と希釈水を供給して攪拌混合する。
【0020】上記の高濃度混合物生成工程23、水性エ
マルション生成工程24、及び乳化剤水溶液供給部22
と希釈水供給部25の加熱される工程は、それぞれの工
程を実施する際に水が激しく沸騰しないように加圧下の
もとで行う。水性エマルション生成工程24で得られた
水性エマルションは、図4に示すように、冷却・減圧部
26で室温、常圧まで冷却、減圧されて取り出し部27
より製品の水性エマルションが得られる。この水性エマ
ルションはそのままサイズ剤として用いられるが、添加
剤を加えてもよい。
【0021】ロジン系物質としては、熔融温度130〜
170℃のフマル酸強化ロジン、ロジンの多価アルコー
ルエステル、無水マレイン酸強化ロジンとロジンの多価
アルコールエステルの混合物又は無水マレイン酸の強化
ロジンエステルをそれぞれ用い、乳化分散剤としては、
スチレン−(メタ)アクリル酸系(スチレンと(メタ)
アクリル酸を必須成分とし、その他のビニル系モノマー
を共重合させてもよい共重合体)アニオン性高分子系乳
化剤、アクリルアミド系((メタ)アクリルアミドとア
ニオン性モノマーを必須成分とし、その他のビニル系モ
ノマーを共重合させてもよい共重合体)アニオン性高分
子系乳化剤、又はアクリルアミド系カチオン性高分子系
乳化剤((メタ)アクリルアミドとカチオン性モノマー
を必須成分とし、その他のビニル系モノマーを共重合さ
せてもよい共重合体)を用いる。
【0022】図5の装置についてその作用は、例えばロ
ータ41のリング43、44とステータ31のリング3
3について導入口36側から見た図6に示すように、
リング43、44のスリット51、リング33のノズル
50内には遠心力による流動があり、ロータとステータ
のリングの間隙のチャンバー52において処理液(例え
ば高濃度混合物生成工程の熔融したロジン系物質及び乳
化分散剤水溶液)はロータが高速回転することにより遠
心力を受け、このチャンバー内を通り径方向外側に流
れ、一方、チャンバーはロータとステータのリングのス
リット、ノズルのずれにより処理液の遠心流れの封じ込
めと開放を繰り返し、この時差圧ΔPが発生する。さら
に、ロータとステータの微小隙間53では処理液に対
して剪断力が働く。これら、の流れの衝突による衝
撃力が強力な攪拌・破砕効果を発生する(「キャビトロ
ン」のカタログより一部引用)。その他のリングについ
もこれに準ずる。この際、高濃度混合物生成工程では、
ロジン系物質と乳化分散剤水溶液を各別に高剪断型回転
式乳化機に供給することにより、両者の接触が高剪断力
場で行われるため混合が均一に行われ、また、混合液の
固形分濃度を60〜90重量%の範囲内とし、しかも乳
化分散剤固形分の全固形分中の濃度を0.5〜20重量
%の範囲内とすることにより、より均質な両者の混合が
行われ(粗大粒子が少ない微細粒子が圧倒的に多いその
分布の狭いエマルションにすることができる)、水分が
少ないためロジン系物質と乳化分散剤固形分の量比の限
定により両者の均質な混合が行なわれ易く、そのため温
度を上げる必要の度合いも少なく、これらにより熱劣化
し易かったり、通常の水性媒体では組み合わせが困難な
ロジン系物質と乳化分散剤の併用もできる。そしてこの
ような均一な高濃度混合物を得た後、水性エマルション
生成工程を設け、ここで希釈して固形分濃度60重量%
未満の範囲内とすることにより、粒子径が小さく、その
分布の狭い製品の水性エマルションを得ることができ
る。なお、図1〜3の装置その他の上述したその変形し
た装置についても図5の装置について言えることは準用
できる。
【0023】
【実施例】以下に実施例によって本発明をさらに詳細に
説明するが、本発明はこれらに限定されるものではな
い。また、各実施例における部及び%はいずれも重量基
準である。先ずはじめに実施例、比較例に使用する材料
を以下のように製造する。 製造例1(フマル酸強化ロジン系物質の製造) 200℃で熔融状態にあるガムロジン440部にフマル
酸90部を徐々に加え、200℃で2時間攪拌保温した
後、さらにホルムアルデヒド処理(変成率1%)トール
油ロジンを470部加え、熔融攪拌して均質に混合し、
その後に得られた反応生成物を室温に冷却した。この反
応生成物はフマル酸が9%付加されたフマル酸強化ロジ
ンである。
【0024】製造例2(ロジン物質の多価アルコールエ
ステルの製造) 攪拌機、温度計、窒素導入管、分水器及び冷却器を備え
た1リットル容積のフラスコに、酸価170のガムロジ
ン600部とグリセリン55部を仕込み、270℃で1
5時間エステル化反応させてロジン物質の多価アルコー
ルエステルの反応生成物を得た。
【0025】製造例3(無水マレイン酸強化ロジンとロ
ジンエステル混合物の製造) 200℃で熔融状態にあるガムロジン43部に無水マレ
イン酸7部を加え、200℃で2時間攪拌保温した後、
製造例2のロジンエステル50部を加え熔融状態で攪拌
混合し、無水マレイン酸強化ロジンとロジンエスルの
1:1重量比の混合物を得た。
【0026】製造例4(無水マレイン酸強化ロジンエス
テルの製造) 製造例2で得られたロジンエステルグリセリンエステル
93部を200℃まで加熱、熔融し、無水マレイン酸7
部を加え200℃で3時間加熱保温し、無水マレイン酸
反応生成物である無水マレイン酸強化ロジンエステルを
得た。
【0027】製造例5(スチレン−メタクリル酸系アニ
オン性高分子系乳化分散剤の製造) 攪拌機、温度計及び窒素ガス導入管を備えた1リットル
容積の耐圧フラスコにスチレン50部、メタクリル酸3
0部、アクリル酸10部、アクリル酸ラウリル10部、
過硫酸アンモニウム1部及び水225部を攪拌混合し、
150℃で2時間加熱した。ついで60℃まで冷却し、
48.5%水酸化ナトリウム35.5部を徐々に滴下
し、30分間攪拌した後室温まで冷却することにより、
固形分30%のポリマー分散液であるスチレン−メタク
リル酸系アニオン性高分子系乳化分散剤を得た。
【0028】製造例6(実施例用カチオン性高分子系乳
化分散剤の製造) 特開平3−227481号公報の実施例の疎水性基を有
するカチオン性ポリ(メタ)アクリルアミドの製造方法
に従い、以下のようにして高分子系乳化分散剤を製造し
た。攪拌機、温度計、還流冷却管及び窒素ガス導入管を
備えた1リットル容積の四つ口フラスコに、ジメチルア
ミノエチルメタクリレート31.4部、50%アクリル
アミド水溶液85.3部、スチレン20.8部、イオン
交換水100.6部、イソプロピルアルコール143.
3部、n−ドデシルメルカプタン0.6部を仕込み、2
0%酢酸水溶液にてpH4.5に調節した。この混合液
を攪拌しながら窒素ガス雰囲気下で、60℃まで昇温し
た。重合開始剤として過硫酸アンモニウムの5%水溶液
2.3部を加え、80℃まで昇温し、1.5時間保持し
た後、過硫酸アンモニウムの5%水溶液0.7部を追加
した。さらに1時間同温度に保持した後、イソプロピル
アルコールを留去し、さらに水を加え、固形分濃度30
%のポリマー溶液であるカチオン性高分子系乳化分散剤
を得た。
【0029】製造例7(実施例用アニオン性高分子系乳
化分散剤の製造) 攪拌機、温度計、還流冷却管及び窒素ガス導入管を備え
た1リットル容積の四つ口フラスコに、ノルマルブチル
メタクリレート19部、50%アクリルアミド水溶液9
6部、80%アクリル酸水溶液8部、イオン交換水83
部、イソプロピルアルコール88部、n−ドデシルメル
カプタン0.9部を仕込み、この混合液を攪拌混合しな
がら窒素ガス雰囲気下で、60℃まで昇温した。重合開
始剤としてアゾビスイソブチロニトリル0.14部を加
え、80℃まで昇温し、2時間保持した後、イオン交換
水を加え、次いでイソプロピルアルコールを留去し、固
形分濃度35%のポリマー溶液であるアニオン性高分子
系乳化分散剤を得た。
【0030】実施例1 図4に示す工程に従って、ロジン系物質供給部21にお
いては製造例1で得たフマル酸強化ロジンを150℃で
熔融し、その熔融したフマル酸強化ロジンを150℃に
保持する。また、乳化剤水溶液供給部22においては製
造例5で得たアニオン性高分子系乳化分散剤をライン中
で連続的に水で希釈して高濃度混合物生成工程での乳化
分散剤量及び混合物の固形分濃度が所定の値となるよう
に固形分濃度を調整した後、加熱装置によりその温度が
80℃になるように加熱する。ついで、高濃度混合物生
成工程23において、高剪断型回転式乳化機としてキャ
ビトロンCD−1010を使用するが、キャビトロンC
D−1010は、そのステータとロータが図5に示すス
テータとロータのいずれのリングも同図のスリットと同
形状で幅が0.6mmのスリットを形成したものであ
り、ロータの最外リングの周速3.9m/秒、ロータの
回転数1000rpmで運転する。このような運転状況
下において図5に示す導入口36及び導入口37に相当
するそれぞれの導入口に、ロジン系物質供給部21から
定量ポンプにより上記の150℃に保持した熔融状態の
フマル酸強化ロジンを供給するとともに、乳化剤水溶液
供給部22から高濃度混合物生成工程での乳化分散剤が
5%及び混合物の固形分濃度が76%となるように所定
の濃度に調整し、80℃に加熱した乳化剤水溶液を定量
ポンプにより供給し、両者を上述した作用に基づいてこ
の乳化機内で混合し、図1の導入管部8に相当する導出
口からフマル酸強化ロジンと乳化剤水溶液の混合物を順
次取り出す。このようにして得た混合物は、固形分濃度
(乳化分散剤の固形分とフマル酸強化ロジンの合計)7
6%、温度は110℃であった。次に、水性エマルショ
ン生成工程25でこの混合物を希釈するが、ここでは非
連続式混合を行うように、攪拌装置付希釈タンクに高濃
度混合物生成工程23で得られた上記の混合物(温度1
10℃)を500g収容するとともに、予め希釈水供給
部24において用意しておいた90℃の水を585g供
給し、30分攪拌混合する。そして、攪拌下、冷却し、
製品としてのロジン系物質の水性エマルションを得た。
得られた水性エマルションは固形分濃度が35%、全固
形分中の乳化分散剤の固形分が5%、平均粒子径が0.
45μmであった。
【0031】実施例2 実施例1において、乳化分散剤の固形分を全固形分中4
%、高濃度混合物生成工程を経て得られた混合物の固形
分濃度を72%、水性エマルション生成工程を経て得ら
れたエマルションの固形分濃度を40%とし、キャビト
ロンCD−1010のロータの最外リングの周速を23
m/秒、ロータの回転数を6000rpmとなるように
し、さらに水性エマルション生成工程においてスタティ
ックミキサー(混合する2液のそれぞれを一定流量供給
してライン中で混合される混合機)を用い、高濃度混合
物生成工程において順次取り出される混合物と、90℃
の水を一定流量供給しながら混合分散する連続式混合を
行った以外は同様にして平均粒子径0.40μmのロジ
ン系物質の水性エマルションを得た。
【0032】実施例3 実施例2において、乳化分散剤の固形分を全固形分中3
%、高濃度混合物生成工程を経て得られた混合物の固形
分濃度を67%、水性エマルション生成工程を経て得ら
れたエマルションの固形分濃度を50%とし、キャビト
ロンCD−1010のステータ及びロータをそれぞれの
リングが直径0.6mmの細孔を全周に有するノズルタ
イプに変更し、ロータの最外リングの周速を39m/
秒、ロータの回転数を10000rpmとなるように
し、さらに水性エマルション生成工程において実施例1
で用いたと同じ構成のキャビトロンCD−1010を用
いてロータの最外リングの周速を23m/秒、ロータの
回転数を6000rpmとした連続混合を行い、その他
は実施例2の高濃度混合物生成工程における条件と同様
にして平均粒子系0.25μmのロジン系物質の水性エ
マルションを得た。
【0033】実施例4 実施例3において、高濃度混合物生成工程での乳化剤水
溶液の温度を120℃とし、乳化剤水溶液と熔融したロ
ジン系物質の2液を同一管中で1液に混合し、この混合
液をキャビトロンCD−1010に供給した以外は同様
にして平均粒子径0.40μmのロジン系物質の水性エ
マルションを得た。
【0034】実施例5 実施例3において、高濃度混合物生成工程において使用
するキャビトロンCD−1010のステータ及びロータ
としてそれぞれのリングの細孔の直径が1.5mmであ
るノズルタイプを使用した以外は同様にして平均粒子径
0.35μmのロジン系物質の水性エマルションを得
た。
【0035】実施例6 実施例3において、高濃度エマルション生成工程におい
てキャビトロンCD−1010を2台直列に連結し、1
台目から順次得られた混合液を2台目の図5の導入口3
6に相当する導入口から導入し、その2台目から得られ
た混合液の固形分濃度を61%、乳化分散剤水溶液の供
給時の温度を40℃、2台ともロータの最外リングの周
速を31m/秒、ロータの回転数を8000rpmとし
た以外は同様にして平均粒子径0.20μmのロジン系
物質の水性エマルションを得た。
【0036】実施例7 実施例3において、ロジン系物質として製造例3で得ら
れた無水マレイン酸強化ロジンとロジンエステル混合物
を使用し、乳化分散剤として製造例6で得られたカチオ
ン性高分子乳化分散剤を使用し、ロジン系物質の供給時
の温度を140℃、乳化分散剤水溶液の供給時の温度を
30℃、希釈水の供給時の温度を25℃とし、乳化分散
剤の固形分を全固形分中4%、高濃度混合物生成工程を
経て得られた混合物の固形分濃度を82%、水性エマル
ション生成工程を経て得られたエマルションの固形分濃
度を45%とした以外は同様にして平均粒子径0.28
μmのロジン系物質の水性エマルションを得た。
【0037】実施例8 実施例3において、ロジン系物質として製造例3で得ら
れた無水マレイン酸強化ロジンとロジンエステル混合物
を使用し、乳化分散剤として製造例7で得られたアニオ
ン性高分子乳化分散剤を使用し、ロジン系物質の供給時
の温度を140℃、乳化分散剤水溶液の供給時の温度を
40℃、希釈水の供給時の温度を60℃とし、乳化分散
剤の固形分を全固形分中5%、高濃度混合物生成工程を
経て得られた混合物の固形分濃度を89%、同工程のキ
ャビトロンCD−1010のロータの最外リングの周速
を31m/秒、ロータの回転数を8000rpmとし、
水性エマルション生成工程を経て得られた混合液の固形
分濃度を45%とした以外は同様にして平均粒子系0.
25μmのロジン系物質の水性エマルションを得た。
【0038】実施例9 実施例3において、ロジン系物質として製造例4で得ら
れた無水マレイン酸強化ロジンエステルを使用し、乳化
分散剤として製造例5で得られたアニオン性高分子乳化
分散剤を使用し、ロジン系物質の供給時の温度を160
℃、乳化分散剤水溶液の供給時の温度を60℃、希釈水
の供給時の温度を80℃とし、乳化分散剤の固形分を全
固形分中6%、高濃度混合物生成工程を経て得られた混
合液の固形分濃度を85%、水性エマルション生成工程
を経て得られた混合液の固形分濃度を50%とした以外
は同様にして平均粒子径0.23μmのロジン系物質の
水性エマルションを得た。
【0039】実施例10 実施例4において、高濃度混合物生成工程で使用する高
剪断型回転式乳化機をポックボルト100型(ボックボ
ルト社製)に代え、ロータの周速を19m/秒、ロータ
ーの回転数を3000rpmとし、高濃度混合物生成工
程で得られた混合物の固形分濃度を72%とした以外は
同様にして平均粒子径0.42μmのロジン系物質の水
性エマルションを得た。
【0040】比較例1 実施例3において、高濃度混合物生成工程での固形分濃
度を50%とすることにより、高濃度混合物生成工程を
経た水性分散物を得、水性エマルション生成工程は行わ
なかった以外は同様にして平均粒子径1.8μmのロジ
ン系物質の水性エマルションを得た。
【0041】比較例2 実施例3において、水性エマルション生成工程でのエマ
ルションの固形分濃度を62%とした以外は同様に操作
したが、冷却・減圧部においてエマルションが固化し、
製造ラインを閉塞したためロジン系物質の水性エマルシ
ョンは得られなかった。
【0042】比較例3 実施例3において、高濃度混合物生成工程での混合物の
固形分濃度を55%とし、水性エマルション生成工程を
経て得られたエマルションの固形分濃度を50%とした
以外は同様にして平均粒子径1.5μmのロジン系物質
の水性エマルションを得た。
【0043】比較例4 実施例7において、ロジン系物質の供給時の温度を16
0℃、乳化分散剤水溶液の供給時の温度を150℃、乳
化分散剤の固形分を全固形分中5%、高濃度混合物生成
工程での分散液の固形分濃度を45%とし、水性エマル
ション生成工程において高圧吐出型乳化機であるゴーリ
ンホモジナイザーを使用し、高濃度混合物生成工程にお
ける固形分濃度と同じ固形分濃度45%で400Kgf
/cm2の圧をかけて処理した以外は同様にして平均粒
子径0.45μm、粒子径1μm以上が1.3%含まれ
るれロジン系物質の分散液を得た。
【0044】比較例5 実施例9において、ロジン系物質の供給時の温度を18
0℃、乳化分散剤水溶液の供給時の温度を160℃、水
性エマルション生成工程において高圧吐出型乳化機であ
るゴーリンホモジナイザーを使用し、高濃度混合物(予
備分散液)生成工程における固形分濃度と同じ固形分濃
度50%で600Kgf/cm2 の圧をかけて処理した
以外は同様に操作したところ、初期には平均粒子径0.
40μm、粒子径1μm以上が1.1%含まれるれロジ
ン系物質の水性エマルションが得られたが、処理を行う
時間の経過につれてゴーリンホモジナイザーのシール部
の劣化の影響のため、粒子径が大きくなり、処理開始2
時間後には平均粒子径0.65μm、粒子径1μm以上
が7%含まれるロジン系物質の水性エマルションが得ら
れた。
【0045】比較例6 加熱及び冷却が可能な攪拌羽根付きの耐圧フラスコを用
いて、製造例3で得られたロジン系物質を約150℃に
加熱熔融し、攪拌しながら、製造例6で得られたカチオ
ン性高分子乳化分散剤を全固形分中7%になるように添
加して混合し、油中水型のエマルションとした。これに
攪拌下、熱水を徐々に加えて転相させ水中油型のエマル
ションとし、これにさらに熱水を素早く添加して混合
し、安定な水中油型エマルションとした後、室温まで冷
却した。このようにして、平均粒子径0.48μm、粒
子径1μm以上が1.5%含まれるロジン系物質の水性
エマルを得た。
【0046】比較例7 加熱及び冷却が可能な攪拌羽根付きの耐圧フラスコを用
いて、製造例4で得られたロジン系物質を約160℃に
加熱熔融し、攪拌しながら、製造例5で得られたアニオ
ン性高分子乳化分散剤を全固形分中10%になるように
添加して混合し、油中水型のエマルションとした。これ
に攪拌下、熱水を徐々に加えて転相させ水中油型のエマ
ルションとし、これにさらに熱水を素早く添加して混合
し、安定な水中油型エマルションとした後、室温まで冷
却した。このようにして、平均粒子径0.73μm、粒
子径1μm以上が10%含まれるロジン系物質の水性エ
マルを得た。上記実施例、比較例の主要な製造条件を表
1、2に簡単にまとめて示すとともに、これら実施例、
比較例のそれぞれにおいて述べた得られた水性エマルシ
ョンの粒子径を表1、2にまとめて示す。
【0047】
【表1】
【0048】
【表2】
【0049】実施例及び比較例の結果より、実施例では
粒子径を0.2〜0.45μm、1μm以上(小さくて
も1μm)の割合を0にすることができ、これを同効の
範囲まで拡大すると前者は0.2〜0.5μmとするこ
とがてきるのに対し、比較例1では、「高濃度混合物生
成工程」における固形分濃度が低過ぎるため、この工程
で水性分散液が生成してしまい、実質的には「高濃度混
合物生成工程」を経ずにこの工程が「水性エマルション
生成工程」となっており、ロジン系物質と乳化剤水溶液
の均一な混合が行われず、微細な分散粒子が得られない
ことを示し、比較例2では、「水性エマルション生成工
程」における固形分濃度が高過ぎるため固形化し、比較
例3では、「水性エマルション生成工程」における固形
分濃度が適当でも「高濃度混合物生成工程」における固
形分濃度が低過ぎるため比較例1と同様な結果になり、
比較例4では、実施例7のものを高温高圧乳化法で乳化
した場合に相当し、「高濃度混合物生成工程」を「予備
分散生成工程」として、また、「水性エマルション生成
工程」を高圧吐出型乳化機を用いた「微粒子化工程」と
して乳化を行ったが、実施例7よりも粒子径の大きなエ
マルションしか得られないことを示す。また、比較例5
では実施例9を比較例4と同様の高温高圧乳化法で乳化
を行ったが、実施例9に比較し、粒子径が大きいものし
か得られないのみならず、乳化温度が高過ぎるため乳化
機のシール部分の劣化が起こり、安定した製造が困難で
あることを示す。比較例6及び7はそれぞれ実施例7及
び9のロジン系物質及び乳化分散剤の組み合わせで、乳
化分散剤量を多く使用して転相乳化方法で乳化を行った
が、乳化剤使用量を多くしてもそれぞれの実施例より粒
子系の大きなエマルションしか得られず、特に比較例7
の場合その傾向が顕著であった。実施例のロジン系物質
の水性エマルションは、乳化分散剤の種類、ロジン系物
質の種類の如何にかかわらず使用でき、例えば乳化分散
剤は室温で供給してもよいため熱劣化し易いものも使用
でき、これらにより従来のロジン系物質の水性エマルシ
ョンを得る方法よりも生産性に優れ、しかも微細な粒子
径の分散体を有するロジン系物質の水性エマルションが
得られる。上記実施例及び比較例で得られた各ロジン系
物質の水性エマルション組成物を用いて、サイズ効果試
験、機械的安定性試験、静置安定性試験を行った結果を
表2に示す。なお、試験条件は次のとおりである。
【0050】(サイズ効果試験1)晒クラフトパルプ
(針葉樹体広葉樹のパルプ比が1対9である混合パル
プ)をパルプ濃度が2.5%になるように硬度100p
pmの希釈用水で希釈し、ビーターを用いて400ml
カナディアンスタンダードフリーネスまで叩解した。次
いで得られたパルプスラリー1.2リットルを離解機に
秤取し、攪拌下、硫酸バン土を対パルプ1.5%加えた
後、上記実施例、比較例のそれぞれから得られたロジン
系物質の水性エマルションを各別に対パルプ0.2%添
加した。それからpH4.5の希釈水でこの得られたパ
ルプスラリーを濃度0.25%まで希釈し、定着剤とし
てカチオン性ポリアクリルアミド(日本ピー・エム・シ
ー(株)製紙力増強剤DS410)を対パルプ0.05
%添加し、ノーブルアンドウッド抄紙機で抄紙pH4.
5で抄紙し、得られた湿紙の乾燥はドラムドライヤーを
用いて100℃、100秒の条件で行い、坪量65g/
2 の上記実施例、比較例のそれぞれの試験紙を得た。
得られたそれぞれの試験紙を恒温恒湿(20℃、相対湿
度65%)環境下で24時間調湿した後、サイズ度をス
テキヒト法で測定した。このサイズ度測定法は製造例1
で得られたロジン系物質を使用したロジン系物質の水性
エマルション(実施例1〜6、10、比較例1〜3)つ
いてのみ行った。
【0051】(サイズ効果試験2)上記のサイズ効果試
験1と同一条件で叩解して得たパルプスラリー1.2リ
ットルを離解機に秤取し、攪拌下、軽質炭酸カルシウム
(奥多摩工業(株)製タマパール121S)を対パルプ
3.0%加え、硫酸パン土を対パルプ1.0%、上記紙
力増強剤DS410を対パルプ0.2%添加した後、上
記実施例、比較例のそれぞれから得られたロジン系物質
の水性エマルションを各別に対パルプ0.4%添加し
た。それからpH8の希釈水でこの得られたパルプスラ
リーを濃度0.25%まで希釈し、上記軽質炭酸カルシ
ウムをさらに対パルプ5%、歩留まり剤として高分子量
カチオン性ポリアクリルアバドを対パルプ0.01%添
加し、ノーブルアンドウッド抄紙機で抄紙pH8で抄紙
し、得られた湿紙の乾燥はドラムドライヤーを用いて1
00℃、80秒の条件で行い、坪量65g/m2 の上記
実施例、比較例のそれぞれの試験紙を得た。得られたそ
れぞれの試験紙を恒温恒湿(20℃、相対湿度65%)
環境下で24時間調湿した後、サイズ度をステキヒト法
で測定した。このサイズ度測定法は製造例3、4で得ら
れたロジン系物質を使用したロジン系物質の水性エマル
ション(実施例7〜9、比較例4〜7)ついてのみ行っ
た。
【0052】(静置安定性試験)長さ30cm、内径
2.1cmの試験管に100mlの上記実施例、比較例
の各ロジン系物質のエマルション組成物を各別に入れ、
2ケ月静置後、底部に沈殿した沈殿物の高さ(mm)を
測定した。
【0053】(機械的安定性試験)上記実施例、比較例
の各ロジン系物質のエマルション組成物50gを各別に
カップに入れ、温度25℃、荷重25Kg、回転数80
0rpmにて10分間マーロン式安定性試験を行った。
各カップ毎の生成した凝集物を325メッシュ金網にて
濾過して各カップ毎の全固形分に対する析出量を測定し
百分率で表した。
【0054】
【表3】
【0055】上記結果から、実施例のロジン系物質の水
性エマルション組成物をサイズ剤として用いた場合に
は、比較例のものに比べ、サイズ効果試験、サイズ剤の
安定性試験のいずれも優れ、乳化性に優れていることが
分かる。
【0056】
【発明の効果】本発明によれば、溶剤法のように環境に
悪影響を及ぼしたり、労働安全衛生上の問題があるよう
なことがなく、高温高圧法のように特に軟化点の高いロ
ジン系物質を使用した場合には微細で均一な粒子のエマ
ルションを得ることが難しく、乳化機の耐久性に問題が
あり、連続した生産を行うことに支障があったりするこ
とがなく、転相乳化法のように多量の乳化分散剤を用い
ることなく、高温高圧法や転相乳化法のように高温処理
のために 高温で劣化する乳化分散剤が使用できないと
いうようなことがなく、従来乳化が困難であったロジン
系物質と乳化分散剤の組み合わせによってもその乳化が
可能になり、しかも保存安定性、機械的安定性に優れ、
高効率、簡単、低コストで実現することができるロジン
系物質の水性エマルションの製造方法、そのロジン系物
質の水性エマルション組成物及びこれを用いた優れたサ
イズ性能を示す製紙用サイズ剤を提供することができ
る。
【図面の簡単な説明】
【図1】本発明に係わる高剪断型回転式乳化分散機の一
例の模式図の一部を切り欠いた分解説明図である。
【図2】そのロータ、ステータの一例の主要部の斜視図
である。
【図3】そのロータ、ステータの他の一例の主要部の斜
視図である。
【図4】本発明の製造方法の一実施例の工程説明図であ
る。
【図5】その一工程で使用される高剪断型回転式乳化分
散機の主要部の一部を切り欠いた分解斜視図である。
【図6】その原理説明図である。
【符号の説明】
1、31 ステータ 11、41 ロータ 3〜5、32〜35 ステータのリング 13〜15、42〜45 ロータのリング 19、51 スリット 20、50 細孔、ノズル 21 ロジン系物質供給部 22 乳化剤水溶液供給部 23 高濃度混合物生成工程 24 水性エマルション生成工程 25 希釈水供給部
フロントページの続き (72)発明者 中村 勝則 千葉県市原市八幡海岸通17番地2 日本ピ ー・エム・シー株式会社内 (72)発明者 太田 浩二 千葉県市原市八幡海岸通17番地2 日本ピ ー・エム・シー株式会社内

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 乳化分散剤水溶液と加熱熔融したロジン
    系物質を高剪断型回転式乳化分散機を用いて高剪断下で
    混合し、固形分濃度が60〜90重量%、全固形分中の
    乳化分散剤固形分含有率が0.5〜20重量%である高
    濃度混合物を得る高濃度混合物生成工程と、該高濃度混
    合物生成工程を経て得られた高濃度混合物に希釈水を混
    合して全固形分を60重量%未満に濃度調整した水性エ
    マルションを得る水性エマルション生成工程を有するロ
    ジン系物質の水性エマルションの製造方法であって、上
    記高剪断型回転式乳化分散機は乳化機本体に固定された
    ステータと該ステータと対をなして対向して配置された
    回転するロータを有し、上記乳化分散剤水溶液と加熱熔
    融したロジン系物質を高剪断型回転式乳化分散機を用い
    て高剪断下で混合することは該高剪断型回転式乳化分散
    機に上記乳化分散剤水溶液と加熱熔融したロジン系物質
    を連続的に供給し、該ロータのステータに対する回転に
    より生じる高剪断力によって両者を混合することである
    ロジン系物質の水性エマルションの製造方法。
  2. 【請求項2】 乳化分散剤水溶液と加熱熔融したロジン
    系物質を高剪断型回転式乳化分散機を用いて高剪断下で
    混合し、固形分濃度が60〜90重量%、全固形分中の
    乳化分散剤固形分含有率が0.5〜20重量%である高
    濃度混合物を得る高濃度混合物生成工程と、該高濃度混
    合物生成工程で得られた高濃度混合物に水を混合して全
    固形分を60重量%未満に濃度調整した水性エマルショ
    ンを得る水性エマルション生成工程を有するロジン系物
    質の水性エマルションの製造方法であって、上記高剪断
    型回転式乳化分散機は乳化機本体に固定されかつ離間し
    て配置された複数のリングを有するステータと、該ステ
    ータのリングのそれぞれと対をなして対向して配置され
    た複数の回転するリングを有するロータを有し、各対を
    なすリングを順次配置し、かつ該ステータ及びロータの
    それぞれのリングは細長孔及び/又は細孔を有し、上記
    乳化分散剤水溶液と加熱熔融したロジン系物質を高剪断
    型回転式乳化分散機を用いて高剪断下で混合することは
    上記乳化分散剤水溶液と加熱熔融したロジン系物質を該
    ステータ及びロータの中心側より供給して該ステータ及
    びロータの順次対をなすそれぞれのリングの該細長孔及
    び/又は細孔より流出させながらそれぞれのリングの間
    隙にこれらの乳化分散剤水溶液と加熱溶融したロジン系
    物質を供給し、該ロータのそれぞれのリングの該ステー
    タのそれぞれのリングに対する回転により高剪断力を加
    えて両者を混合し、その混合物を順次配置した外側のリ
    ング側より順次取り出すロジン系物質の水性エマルショ
    ンの製造方法。
  3. 【請求項3】 ステータの複数のリングは同心円状に離
    間して配置され、ロータの複数のリングは該ステータの
    それぞれのリングと順次互い違いに対向して配置されて
    いる請求項2に記載のロジン系物質の水性エマルション
    の製造方法。
  4. 【請求項4】 乳化分散剤水溶液と加熱溶融したロジン
    系物質を混合することなくそれぞれ別々のラインで高剪
    断型回転式乳化機に供給する請求項1ないし3のいずれ
    かに記載のロジン系物質の水性エマルションの製造方
    法。
  5. 【請求項5】 高剪断型回転式乳化機のロータの回転数
    が毎分1000〜25000回であり、ロータの最外側
    のリングの周速が3〜100m/秒である請求項1ない
    し4のいずれかに記載のロジン系物質の水性エマルショ
    ンの製造方法。
  6. 【請求項6】 水性エマルション生成工程は高濃度混合
    物生成工程における高剪断型回転式乳化機より乳化分散
    剤水溶液と加熱溶融したロジン系物質の混合物を順次取
    り出しながら希釈水で希釈する連続希釈工程である請求
    項1ないし5のいずれかに記載のロジン系物質の水性エ
    マルションの製造方法。
  7. 【請求項7】 水性エマルション生成工程は高剪断型回
    転式乳化機を使用する請求項6記載のロジン系物質の水
    性エマルションの製造方法。
  8. 【請求項8】 細長孔は0.1〜5mm幅のスリットで
    あり、細孔は0.1〜5mm直径のノズルである請求項
    2ないし7のいずれかに記載のロジン系物質の水性エマ
    ルションの製造方法。
  9. 【請求項9】 乳化分散剤が高分子系乳化分散剤である
    請求項1ないし8のいずれかに記載のロジン系物質の水
    性エマルションの製造方法。
  10. 【請求項10】 水性エマルション生成工程を経て得ら
    れる水性エマルションの分散粒子の平均粒径が0.6μ
    mより大きくなく、1μmより小さくない粒子が1重量
    %より多くない請求項1ないし9のいずれかに記載のロ
    ジン系物質の水性エマルションの製造方法により製造さ
    れたロジン系物質の水性エマルション組成物。
  11. 【請求項11】 請求項10の水性エマルション組成物
    を含有する製紙用サイズ剤。
JP04695297A 1997-02-17 1997-02-17 ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤 Expired - Fee Related JP3255072B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04695297A JP3255072B2 (ja) 1997-02-17 1997-02-17 ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04695297A JP3255072B2 (ja) 1997-02-17 1997-02-17 ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤

Publications (2)

Publication Number Publication Date
JPH10226981A true JPH10226981A (ja) 1998-08-25
JP3255072B2 JP3255072B2 (ja) 2002-02-12

Family

ID=12761635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04695297A Expired - Fee Related JP3255072B2 (ja) 1997-02-17 1997-02-17 ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤

Country Status (1)

Country Link
JP (1) JP3255072B2 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210546A (ja) * 1999-01-21 2000-08-02 Harima Chem Inc ロジン系化合物の水性エマルジョンの製造方法
JP2001140190A (ja) * 1999-11-04 2001-05-22 Harima Chem Inc アルケニルコハク酸無水物系エマルションサイズ剤、並びに当該サイズ剤を含有する紙
JP2004513759A (ja) * 2000-06-08 2004-05-13 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン ナノ粒子懸濁液の製造方法
JP2006182827A (ja) * 2004-12-27 2006-07-13 Arakawa Chem Ind Co Ltd 粘着付与樹脂エマルジョン、接着剤組成物および床材用接着剤組成物
WO2005108481A3 (en) * 2004-05-05 2006-10-26 Cognis Ip Man Gmbh Processes for preparing energy-curable emulsions and coated substrates
JP2007507339A (ja) * 2003-10-01 2007-03-29 デビオ ルシェルシュ ファルマシュティーク ソシエテ アノニム 粒子製造装置及び方法
JP2007508133A (ja) * 2003-10-16 2007-04-05 バセル ポリオレフィン イタリア エス.アール.エル. エマルジョンの連続製造方法
JP2011526829A (ja) * 2008-06-30 2011-10-20 ダウ グローバル テクノロジーズ エルエルシー モノマーエマルジョンを連続的に製造するための混合装置
WO2012023218A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置及びその性能評価方法とスケールアップ方法
WO2012023609A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置
WO2012023217A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置及びその性能評価方法とスケールアップ方法
WO2012023608A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置の性能評価方法及びスケールアップ方法
JP2012250228A (ja) * 2011-06-01 2012-12-20 Vakumix Ruehr- & Homogenisiertechnik Ag 流動性媒体を均質化するための分散ロータ
WO2013027650A1 (ja) * 2011-08-19 2013-02-28 株式会社明治 微粒化装置
JP2013509299A (ja) * 2009-11-02 2013-03-14 マンカインド コーポレ−ション 析出プロセスにおいて医薬粒子を生成するための反応器
JP2016158826A (ja) * 2015-02-27 2016-09-05 株式会社イズミフードマシナリ 連続抽出装置及び連続抽出システム
WO2019065986A1 (ja) * 2017-09-29 2019-04-04 株式会社明治 微粒化装置
JP2019063713A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置
JP2020011080A (ja) * 2019-09-04 2020-01-23 株式会社イズミフードマシナリ 連続抽出装置及び連続抽出システム
CN117920022A (zh) * 2024-03-22 2024-04-26 山东轩友新材料科技有限公司 硅酮胶制备用静态混合机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548872A1 (de) 1995-12-27 1997-07-03 Bayer Ag Synergistische insektizide Mischungen
US6828275B2 (en) 1998-06-23 2004-12-07 Bayer Aktiengesellschaft Synergistic insecticide mixtures
DE19913174A1 (de) 1999-03-24 2000-09-28 Bayer Ag Synergistische insektizide Mischungen
US8232261B2 (en) 2003-07-18 2012-07-31 Bayer Cropscience Lp Method of minimizing herbicidal injury
DE102004006075A1 (de) 2003-11-14 2005-06-16 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden Eigenschaften

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210546A (ja) * 1999-01-21 2000-08-02 Harima Chem Inc ロジン系化合物の水性エマルジョンの製造方法
JP2001140190A (ja) * 1999-11-04 2001-05-22 Harima Chem Inc アルケニルコハク酸無水物系エマルションサイズ剤、並びに当該サイズ剤を含有する紙
JP2004513759A (ja) * 2000-06-08 2004-05-13 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン ナノ粒子懸濁液の製造方法
JP2007507339A (ja) * 2003-10-01 2007-03-29 デビオ ルシェルシュ ファルマシュティーク ソシエテ アノニム 粒子製造装置及び方法
JP2007508133A (ja) * 2003-10-16 2007-04-05 バセル ポリオレフィン イタリア エス.アール.エル. エマルジョンの連続製造方法
WO2005108481A3 (en) * 2004-05-05 2006-10-26 Cognis Ip Man Gmbh Processes for preparing energy-curable emulsions and coated substrates
JP2006182827A (ja) * 2004-12-27 2006-07-13 Arakawa Chem Ind Co Ltd 粘着付与樹脂エマルジョン、接着剤組成物および床材用接着剤組成物
JP2011526829A (ja) * 2008-06-30 2011-10-20 ダウ グローバル テクノロジーズ エルエルシー モノマーエマルジョンを連続的に製造するための混合装置
JP2013509299A (ja) * 2009-11-02 2013-03-14 マンカインド コーポレ−ション 析出プロセスにおいて医薬粒子を生成するための反応器
US11103847B2 (en) 2009-11-02 2021-08-31 Mannkind Corporation Reactor for producing pharmaceutical particles in a precipitation process
JP5652793B2 (ja) * 2010-08-19 2015-01-14 株式会社明治 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法
US9358509B2 (en) 2010-08-19 2016-06-07 Meiji Co., Ltd. Particle size breakup apparatus having a rotor and a stator
WO2012023218A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置及びその性能評価方法とスケールアップ方法
US9492800B2 (en) 2010-08-19 2016-11-15 Meiji Co., Ltd. Particle size breakup device and its performance estimation method and scale up method
WO2012023217A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置及びその性能評価方法とスケールアップ方法
CN103180036A (zh) * 2010-08-19 2013-06-26 株式会社明治 微粒化装置的性能评价方法以及尺度上推方法
CN103221120A (zh) * 2010-08-19 2013-07-24 株式会社明治 微粒化装置
JP2016120495A (ja) * 2010-08-19 2016-07-07 株式会社明治 微粒化装置
WO2012023609A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置
JP5652794B2 (ja) * 2010-08-19 2015-01-14 株式会社明治 微粒化装置及びその製造方法と性能評価方法、スケールアップ方法あるいはスケールダウン方法、並びに、食品、医薬品あるいは化学品とその製造方法
WO2012023608A1 (ja) * 2010-08-19 2012-02-23 株式会社明治 微粒化装置の性能評価方法及びスケールアップ方法
US9261430B2 (en) 2010-08-19 2016-02-16 Meiji Co., Ltd. Performance estimation method and scale-up method for particle size breakup apparatus of a rotor-stator type
US9278322B2 (en) 2010-08-19 2016-03-08 Meiji Co., Ltd. Mixer of a rotor-stator type, performance estimation method thereof, and scale up method thereof
JP5897466B2 (ja) * 2010-08-19 2016-03-30 株式会社明治 微粒化装置
JP5913101B2 (ja) * 2010-08-19 2016-04-27 株式会社明治 微粒化装置の性能評価方法及びスケールアップ方法
JP2012250228A (ja) * 2011-06-01 2012-12-20 Vakumix Ruehr- & Homogenisiertechnik Ag 流動性媒体を均質化するための分散ロータ
US9370755B2 (en) 2011-08-19 2016-06-21 Meiji Co., Ltd. Particle size breakup apparatus having blade-supported rotor
CN103842063A (zh) * 2011-08-19 2014-06-04 株式会社明治 微粒化装置
JPWO2013027650A1 (ja) * 2011-08-19 2015-03-19 株式会社明治 微粒化装置
WO2013027650A1 (ja) * 2011-08-19 2013-02-28 株式会社明治 微粒化装置
TWI604885B (zh) * 2011-08-19 2017-11-11 明治股份有限公司 Microprocessing equipment
JP2018065128A (ja) * 2011-08-19 2018-04-26 株式会社明治 微粒化装置
JP2016158826A (ja) * 2015-02-27 2016-09-05 株式会社イズミフードマシナリ 連続抽出装置及び連続抽出システム
JP2019063713A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置
JP2019063731A (ja) * 2017-09-29 2019-04-25 株式会社明治 微粒化装置
WO2019065986A1 (ja) * 2017-09-29 2019-04-04 株式会社明治 微粒化装置
US11318433B2 (en) 2017-09-29 2022-05-03 Meiji Co., Ltd. Atomization device
JP2020011080A (ja) * 2019-09-04 2020-01-23 株式会社イズミフードマシナリ 連続抽出装置及び連続抽出システム
CN117920022A (zh) * 2024-03-22 2024-04-26 山东轩友新材料科技有限公司 硅酮胶制备用静态混合机

Also Published As

Publication number Publication date
JP3255072B2 (ja) 2002-02-12

Similar Documents

Publication Publication Date Title
JP3255072B2 (ja) ロジン系物質の水性エマルションの製造方法、その水性エマルション組成物及びサイズ剤
EP2203245B1 (en) Device for preparing a dispersion of water-soluble polymers in water, and method implementing the device
EP1160201B1 (en) Processes for preparing precipitated calcium carbonate compositions
EP0469725B1 (en) Spray drying
KR101954110B1 (ko) 교반기
US8267574B2 (en) Method for preparing a calibrated emulsion
JPH0598589A (ja) セルロース粒子微細繊維状粉砕物の製造方法
JPS6040887B2 (ja) マイクロカプセルの製法
JPH01162A (ja) ビチューメンエマルジョン
EP2057306A1 (en) Process for producing nanofibers
KR20050019074A (ko) 교반장치 및 이 교반장치를 사용한 분산장치
DE19711022A1 (de) Verwendung eines Mehrstufenrührers zur Herstellung von Polymerisaten
JP6783309B2 (ja) ナノセルロースを製造する際の全体のエネルギー消費を低減する方法
US11498980B2 (en) Method for producing cellulose nanofiber and apparatus for producing cellulose nanofiber
US20110275738A1 (en) Process for producing finely divided suspensions by melt emulsification
JP2004189765A (ja) 超微粒子樹脂エマルジョン及びその製造方法並びに製造装置
JP2000210546A (ja) ロジン系化合物の水性エマルジョンの製造方法
JPH11106403A (ja) 微細フィブリル化セルロースの製造方法
US20140305607A1 (en) Akd composition and manufacture of paper and paperboard
JP5918219B2 (ja) 溶融乳化による微分散懸濁液の製造方法
DK142653B (da) Fremgangsmåde til fremstilling af vandige dispersioner af surt, polymert materiale til brug i trykfølsomme kopieringssystemer.
EP0868436A1 (en) Process for preparing readily dispersible water-soluble cellulosic polymers
JPS6230220B2 (ja)
JPH04178401A (ja) 懸濁重合法
Tong et al. Process intensification in particle technology: flow induced phase inversion in the intensive emulsification of epoxy polymer melts in water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees