WO2013024783A1 - H2 burner and h2 burner combustion method - Google Patents

H2 burner and h2 burner combustion method Download PDF

Info

Publication number
WO2013024783A1
WO2013024783A1 PCT/JP2012/070334 JP2012070334W WO2013024783A1 WO 2013024783 A1 WO2013024783 A1 WO 2013024783A1 JP 2012070334 W JP2012070334 W JP 2012070334W WO 2013024783 A1 WO2013024783 A1 WO 2013024783A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion
burner
flow path
catalyst
Prior art date
Application number
PCT/JP2012/070334
Other languages
French (fr)
Japanese (ja)
Inventor
隆 折田
和信 渋谷
信昭 渡邊
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to KR1020147001810A priority Critical patent/KR101974819B1/en
Priority to CN201280035371.2A priority patent/CN103732991B/en
Priority to JP2013528993A priority patent/JP5732135B2/en
Publication of WO2013024783A1 publication Critical patent/WO2013024783A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/06Apparatus in which combustion takes place in the presence of catalytic material in which non-catalytic combustion takes place in addition to catalytic combustion, e.g. downstream of a catalytic element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/30Staged fuel supply
    • F23C2201/301Staged fuel supply with different fuels in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99006Arrangements for starting combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/40Catalytic ignition

Definitions

  • the present invention relates to an H 2 burner and a combustion method of the H 2 burner.
  • H 2 gas has a wide combustion range and a high combustion speed due to its physical properties, it is difficult to apply combustion techniques such as hydrocarbon gas, reformed gas, or city gas, which have been widely used so far. As an industrial heating source, the field of use has been limited. In addition, since H 2 gas is more easily combusted than other fuels, countermeasures against backfire and countermeasures for suppressing NO X generation have become important issues in general hydrogen combustion.
  • H 2 gas continues to burn at a relatively low temperature compared to other fuels, it is known that when H 2 gas is burned using a catalyst, it becomes a stable and efficient burner. .
  • H 2 gas is said to be an effective combustion catalyst for many metals and metal oxides compared to hydrocarbon-based gas.
  • H 2 gas is an extreme method for automatically igniting liquid hydrogen. Low temperature catalytic combustion methods have been introduced.
  • a direct ignition type pilot burner using an ignition transformer is used for ignition of an industrial combustion furnace.
  • a fuel having a combustion rate of about several tens of cm / sec such as hydrocarbon gas or city gas
  • H 2 gas as the fuel
  • the pilot burner needs to be burned for a certain period of time until it is transferred to the main burner not only when used as a continuous pilot for ignition but also when used as a timed pilot. Therefore, the inventors of the present application have intensively studied about using a burner that uses H 2 gas as fuel and burns using a catalyst. However, if combustion is continued for a certain period of time by the catalyst, the catalyst deteriorates due to sintering, oxidation, or the like. And the high temperature resistance of the support has reached its limit and the catalyst has deteriorated.
  • the invention according to claim 1 is an H 2 burner having two different gas flow paths, wherein the first flow path includes the H 2 gas and the first combustion-supporting gas.
  • the second flow path is configured to flow H 2 gas or the second combustion-supporting gas, and the tip of the second flow path is the first flow path.
  • a flame formed at the tip of the flow path is disposed at a position where the flame can be transferred, and a catalyst that can be ignited by supplying H 2 gas and a first combustion-supporting gas to the first flow path. Is a burner for H 2 .
  • the invention according to claim 2 is the H 2 burner according to claim 1, wherein the catalyst contains at least one of Pt, Pd, PdO, and PtO 2 .
  • the invention according to claim 3 is characterized in that a detection mechanism capable of detecting the formation of a flame is provided at the tip of the first flow path. 2 burner.
  • the invention according to claim 4 is a combustion method of an H 2 burner having two different gas flow paths, and a catalyst is provided in the first flow path, wherein the first flow path H 2 gas and a first combustion-supporting gas are caused to flow through and are ignited by the catalyst to form a flame at the tip of the first flow path, and H 2 in the second flow path of the H 2 burner.
  • the invention according to claim 5 is characterized in that after a flame is formed at the tip of the first flow path, H 2 gas or a second combustion-supporting gas is flowed into the second flow path. It is a combustion method of H 2 burner according to claim 4.
  • the invention according to claim 6 is characterized in that the catalyst contains at least one of Pt, Pd, PdO or PtO 2.
  • the H 2 burner of the present invention is provided with a catalyst that can be ignited by supplying H 2 gas and a combustion-supporting gas to the first flow path. Accordingly, by the first flow path flowing a combustion-supporting gas and H 2 gas, it was possible to ignite using a catalyst without using a transformer or the like. As a result, since ignition is performed without using a transformer, H 2 gas is used as fuel, but no detonation or the like occurs, and safety is ensured. Further, the tip of the second channel is formed at a position where it can be transferred from the tip of the first channel. Therefore, a fire is formed by the catalyst provided in the first flow path, and at the same time or around that time, H 2 gas or combustion-supporting gas is flowed into the second flow path.
  • the catalyst formed in the first flow path contains at least one of Pt, Pd, PdO, and PtO 2 . Thereby, it can ignite in a catalyst efficiently.
  • a detection mechanism capable of detecting the formation of flame is provided at the tip of the first flow path. As a result, it is possible to accurately detect whether or not a fire is formed at the tip of the first flow path, and it is possible to accurately stop the supply of gas to the first flow path.
  • the method of combustion H 2 burner of the present invention is ignited by supplying H 2 gas and combustion-supporting gas to the catalyst formed in the first flow path. Therefore, since no transformer is used for ignition, detonation or the like does not occur and safety is ensured. Further, in the combustion method of the H 2 burner according to the present invention, ignition is performed by the catalyst, and simultaneously with or around that time, H 2 gas or a combustion-supporting gas is caused to flow through the second flow path to transfer the seed flame. Of the gas flowing through the first flow path, the flow of the same type of gas as that flowing through the second flow path is stopped. As a result, combustion of H 2 gas in the catalyst can be stopped, and deterioration of the catalyst can be prevented. Even if the flow of one of the H 2 gas and the combustion-supporting gas flowing in the first flow path is stopped, the same gas flows in the second flow path. A flame can be formed continuously at the tip.
  • FIG. 1 is a cross-sectional view showing an example of the H 2 burner of the present embodiment.
  • FIG. 2A is a cross-sectional view showing an example of the H 2 burner of this embodiment
  • FIG. 2B is a side view of the H 2 burner as viewed from the front end side.
  • FIG. 3 is a perspective view showing a part of another example of the H 2 burner of the present embodiment.
  • FIG. 4 is a view showing a heat treatment apparatus using the H 2 burner of the present embodiment.
  • FIG. 5 is a view showing a flare stack using the H 2 burner of the present embodiment.
  • FIG. 6 is a graph showing the relationship between the H 2 concentration on the catalyst and the time until confirmation of ignition in one example of the present invention.
  • FIG. 7 is a graph showing the minimum ignition energy depending on the concentration of the hydrogen-air mixture.
  • FIG. 8 is a cross-sectional view showing a part of the H 2 burner used in one embodiment of the present invention.
  • FIG. 9 is a graph showing the relationship between the air flow rate and the maximum temperature achieved in one embodiment of the present invention.
  • H 2 burner and combustion method H 2 burner of the present invention will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view showing an H 2 burner 1 according to an embodiment of the present invention.
  • the H 2 burner 1 is a pipe-like structure having two different gas flow paths A and B inside.
  • the outer tube 2 and the inner tube 2 are arranged in the outer tube 2.
  • the tube 3, the catalyst 4 formed on the tip 3 a side of the inner tube 3, and the inner tube 5 disposed in the inner tube 3 are configured.
  • the outer tube 2 is a pipe-shaped hollow tube body, and an inner tube 3 is disposed on the inner side, and an opening 2 c is formed at the tip 2 a of the outer tube 2. Further, the downstream side of the opening 2c is a combustion portion 6, which is configured so that a flame F can be formed.
  • a combustion-supporting gas supply device 7 is connected to one end 2 b (rear end) of the outer tube 2 opposite to the tip 2 a via a pipe 8, and the outer tube 2 is connected to the combustion portion 6. It is formed so as to be able to supply a combustion-supporting gas (second combustion-supporting gas).
  • the inner tube 3 is a pipe-shaped hollow tube body, and is arranged in the outer tube 2 with the same axial direction as that of the outer tube 2, and a flame (not shown) is provided at the tip 3 a of the inner tube 3. It is configured so that it can be formed.
  • An H 2 gas supply device 9 is connected to one end 3b (rear end) side of the inner tube 3 opposite to the tip 3a via a pipe 10, and the inner tube 3 is connected to the catalyst 4 and the combustion portion 6. It is formed so that H 2 gas can be supplied.
  • the inside of the inner tube 3 on the tip 3a side is filled with a catalyst 4 (catalyst layer), and the tip 3a of the inner tube 3 is formed in a nozzle shape having a plurality of ejection holes 3c. .
  • the arrangement position of the inner tube 3 may be any position as long as the flame formed at the tip 3a of the inner tube 3 can be transferred to the tip 2a of the outer tube 2.
  • the position of the distal end 3a of the inner tube 3 can be a position retracted from the position of the distal end 2a of the outer tube 2, or can be a protruding position.
  • the flame formation region by the tip 3a of the inner tube 3 overlaps at least partly with the formation region of the flame F by the tip 2a of the outer tube 2
  • the flame formed at the tip 3a of the inner tube 3 Since it can be transferred to the tip 2a of the outer tube 2, the position of the tip 3a of the inner tube 3 can be arbitrarily adjusted with respect to the position of the tip 2a of the outer tube 2 so as to satisfy this positional relationship.
  • the catalyst 4 may be any catalyst that can be ignited by supplying H 2 gas and a combustion-supporting gas, and any one or more of Pt, Pd, PdO, and PtO 2 If a material containing is used, it becomes possible to ignite efficiently. In particular, when Pd or PdO is used as a catalyst, it is useful as an H 2 dissociation catalyst even if the flow rate of supplied combustion-supporting gas is changed, and the flow rate of H 2 gas is excessive. However, since it has sufficient ignition performance, it is more preferable.
  • the catalyst 4 reaches a temperature of 500 to 800 degrees at the maximum.
  • an inner pipe 5 is further arranged inside the inner pipe 3 on the upstream side of the catalyst 4.
  • the inner tube 5 is a pipe-shaped hollow tube body, and is arranged in the inner tube 3 with the same axial direction as the inner tube 3 and the outer tube 2.
  • a combustion-supporting gas supply device 21 is connected to one end 5b (rear end) side of the inner pipe 5 opposite to the front end 5a via a pipe 22, and the inner pipe 5 includes the catalyst 4 and the combustion portion 6. It is formed so as to be able to supply a combustion-supporting gas (first combustion-supporting gas). Further, the arrangement position of the inner tube 5 may be any position as long as the tip 5a of the inner tube 5 can spray the combustion-supporting gas to the catalyst 4.
  • the flow path A (second flow path) is formed in the space between the outer tube 2 and the inner tube 3 disposed in the outer tube 2, and the inner tube 3.
  • a flow path C is formed in the space between the inner pipe 5 and the inner pipe 5 disposed in the inner pipe 3, and a flow path D is formed in the inner pipe 5.
  • a flow path B (first flow path) formed by joining the flow path C and the flow path D is formed. That is, the flow path A is configured so that the combustion-supporting gas flows, the flow path B includes the H 2 gas and the combustion-supporting gas, the flow path C includes the H 2 gas, and the flow path D includes the combustion support gas.
  • the H 2 burner 1 detects a flame in a space located inside the outer tube 2 and downstream of the tip 3a of the inner tube 3.
  • a detection mechanism 23 may be provided. Thereby, it is possible to quickly and accurately detect whether or not a flame is formed in the inner tube 3. Examples of the detection mechanism 23 include a frame rod, a thermometer, and a UV sensor.
  • the H 2 burner 1 of the present embodiment is configured as described above.
  • the combustion-supporting gas supply device 7 is connected to the outer tube 2
  • the H 2 supply device 9 is connected to the inner tube 3
  • the combustion-supporting gas supply device 21 is connected to the inner tube 5. It is not limited to such an aspect.
  • an H 2 gas supply device may be connected to the outer tube 2.
  • a combustion-supporting gas supply device may be connected to the inner pipe 3 and an H 2 gas supply device may be connected to the inner pipe 5.
  • combustion-supporting gas is caused to flow through the flow path D in the inner tube 5 using the combustion-supporting gas supply device 21, and the space between the inner tube 3 and the inner tube 5 using the H 2 gas supply device 9.
  • H 2 gas is allowed to flow through the channel C formed in Note that the combustion-supporting gas supplied by the combustion-supporting gas supply device 21 may be air or oxygen, for example.
  • the gas flowing through the flow channel C and the gas flowing through the flow channel D merge into the flow channel B formed on the distal end 3a side of the inner tube 3 so that the H 2 gas and the combustion-supporting gas flow.
  • the H 2 gas and the combustion-supporting gas are also supplied to the catalyst 4 provided on the tip 3a side of the inner tube 3.
  • the H 2 gas starts to burn (ignites) in the catalyst 4, and a flame (not shown) is formed at the tip 3 a of the inner tube 3 that is the tip of the flow path B.
  • the flow rate of the gas flowing in the flow path C and the flow path D is any if the temperature of H 2 and the combustion-supporting gas that have passed through the catalyst 4 exceeds 530 ° C., which is the spontaneous ignition temperature of H 2. Such a flow rate may be used and may be determined appropriately.
  • a flame When a flame is formed at the tip of the flow path B, it is supported at the flow path A formed between the outer pipe 2 and the inner pipe 3 by using the support gas supply device 7 at the same time or around that time. Flow flammable gas. As a result, the flame formed at the tip of the channel B is transferred to the tip 2a of the outer tube 2 that is the tip of the channel A, and a flame F is formed at the tip of the channel A.
  • combustion-supporting gas supplied from the combustion-supporting gas supply device 7 may be air or oxygen, for example, and is necessarily the same gas as the combustion-supporting gas supplied from the combustion-supporting gas supply device 21. There is no.
  • the detection mechanism 23 when the detection mechanism 23 is provided in the outer tube 2, it is possible to accurately detect whether or not a flame is formed at the tip of the flow path B by the detection mechanism 23.
  • the supply of the combustion-supporting gas can be stopped with high accuracy.
  • stopping the supply of the same type of gas means, for example, that the combustion-supporting gas supplied to the flow path A is air and the combustion support gas supplied to the flow path B is oxygen. It also includes stopping the supply of the combustion-supporting gas (in this case, oxygen) supplied to B.
  • a catalyst 4 that can be ignited by supplying H 2 gas and combustion-supporting gas to the flow path B is provided.
  • the combustion-supporting gas and the H 2 gas to the flow path B, it becomes possible to ignite using the catalyst 4 without using a transformer or the like.
  • the tip end of the flow path A is formed at a position where it can be transferred from the front end of the flow path B.
  • the catalyst 4 provided in the flow path B forms a fire, and at the same time or around that time, the combustion supporting gas is supplied to the flow path A, and the fire is transferred to the tip of the flow path A. Then, the catalyst deterioration can be prevented by stopping the supply of the combustion-supporting gas to the flow path B. That is, after the seed fire is formed by the catalyst and it is transferred, both the H 2 gas and the combustion-supporting gas pass through the catalyst by stopping the supply of the combustion-supporting gas supplied to the catalyst. The time can be shortened, and the deterioration of the catalyst can be prevented by stopping the combustion with the catalyst. Further, even if the flow of the combustion-supporting gas to the flow path B is stopped, since the combustion support gas that is the same gas is supplied from the flow path A, the flame is continuously formed at the end of the flow path A. can do.
  • ignition is performed by supplying H 2 gas and combustion-supporting gas to the catalyst 4 formed in the flow path B. Therefore, since no transformer is used for ignition, detonation or the like does not occur and safety is ensured. Further, it is ignited by the catalyst 4 to form a seed flame at the tip of the flow path B. At the same time or around that, a combustion-supporting gas is caused to flow through the flow path A, and the seed fire is transferred to the tip of the flow path A The flow of the combustion-supporting gas to the flow path B is stopped.
  • the H 2 burner 1 described above has a configuration in which the inner tube 3 is disposed inside the outer tube 2, but two different flow paths can be formed and formed at the tip of the first flow path. As long as the fired flame can be transferred to the tip of the second flow path, the burner may have any structure, and may be composed of two separated tubes. As an example composed of two tube bodies, for example, as shown in FIG. 3, the inner tube 3 disposed inside the outer tube 2 may be disposed beside the outer tube 2.
  • both the H 2 gas and the combustion-supporting gas are provided in the inner tube 3 without providing the inner tube 5.
  • the H 2 gas and the combustion-supporting gas are supplied to the catalyst 4 without mixing the H 2 gas and the combustion-supporting gas in advance.
  • the possibility of backfire during ignition is low.
  • both the H 2 gas and the combustion-supporting gas are simply supplied into the inner pipe 3 without providing the inner pipe 5, these gases are mixed in advance, so as to appropriately prevent backfire. It is preferable to take measures.
  • the heating target gas heating device 24 using the H 2 burner according to the present embodiment is roughly composed of a main burner 25 and an H 2 burner 1 provided at the tip of the main burner 25. It is configured.
  • the main burner 25 is formed so as to surround the outer periphery of the piping 27 that supplies the target gas to the combustion portion 26 that is the space of the tip portion of the main burner 25, and the jet outlet 28 a that supplies fuel to the combustion portion 26.
  • a main burner main body 28 provided with.
  • the main burner body 28 is connected to a pipe 29 for introducing fuel into the main burner body 28.
  • the H 2 burner 1 that is a pilot burner is ignited. Then, the gas to be heated is supplied from the pipe 27 of the main burner 25 and the fuel is supplied from the main burner body 28, and the main burner 25 is ignited using the flame of the H 2 burner 1. In this way, a flame (not shown) is formed in the combustion portion 26 at the tip of the main burner 25, and the target gas is heated.
  • H 2 gas when used as the fuel for the main burner, the pilot burner is ignited in advance as described above in order to prevent explosion due to mixing of H 2 gas and combustion-supporting gas in the furnace. Fuel will be introduced.
  • a device for introducing a fuel such as a hydrocarbon-based gas different from the fuel for the main burner into the pilot burner, and A device for detecting the leakage was necessary. For this reason, there is a disadvantage that the cost required for the ignition operation of the main burner increases.
  • the H 2 burner 1 of the present embodiment if the H 2 burner 1 of the present embodiment is used, it is possible to ignite safely while using H 2 gas as a fuel. Therefore, a supply device for fuel other than H 2 and a device for detecting leakage thereof are provided. It becomes unnecessary and the expense concerning ignition of the main burner 25 can be suppressed.
  • the flare stack 41 includes a discharge tower 43 connected to a storage facility 42 for a desired gas to be burned, and a H 2 burner 1 provided at the tip of the discharge tower 43. .
  • the H 2 burner 1 When gas is burned using the flare stack 41, the H 2 burner 1 is first ignited. Then, the desired gas to be combusted from the storage facility 42 may be sent to the emission tower 43 and the desired gas may be ignited and combusted at the tip of the emission tower 43 using the flame of the H 2 burner 1.
  • the H 2 gas may be used as fuel for the H 2 burner, so the fuel for the burner and facilities for supplying it are also provided. This eliminates the need for cost reduction.
  • the flame using H 2 gas as a fuel is less likely to blow out as compared with the case where a hydrocarbon-based gas is used as a fuel like a conventional burner, when the H 2 burner 1 is used, Even when the wind speed in the discharge tower 43 is increased, it functions without blowing off.
  • the use of the H 2 burner 1 makes it possible to reduce the inner diameter of the discharge tower 43 compared to the case of using a conventional burner.
  • the flare stack 41 itself can be downsized.
  • Example 1 In Example 1, using the same H 2 burner and burner 1 for H 2 as described above, the H 2 gas in the outer tube 2 at a flow rate of 10L / min, the inner tube 5 H 2 gas 1.5 L / The time required for ignition was measured when the flow rate of air supplied to the inner tube 3 was changed at a flow rate of min.
  • the catalyst used was Pd and the ambient and initial gas temperatures were 20 ° C. The results are shown in FIG. Note that the ignition was confirmed using a thermometer installed on the distal end side in the outer tube 2.
  • Example 2 In Example 2, using the same H 2 burner with H 2 burner 1 described in the embodiment, Pd as a catalyst, Pt, for the case of using each of PdO and PtO 2, were compared in ignition performance . Specifically, the H 2 gas in the outer tube 2 at a flow rate of 10L / min, H 2 gas into the inner tube 5 was supplied at a flow rate of 2L / min, while changing the flow rate of air supplied to the inner tube 3 However, the performance was compared by measuring the maximum temperature reached 30 seconds after the ignition operation. In addition, the measurement of the maximum temperature was performed using the temperature sensor 44 installed in the outer wall of the front-end
  • H 2 and combustion-supporting gas that has passed through the catalyst is present in the range of air air volume indicating a temperature above 530 ° C. autoignition point of H 2, H 2 gas It was found that it had the performance necessary for ignition. Further, Pd or PdO is when used as a catalyst, since the H 2 and combustion-supporting gas that has passed through the catalyst over a wide range of air flow rate reaches a temperature above 530 ° C., as a very H 2 dissociation catalyst It turns out that it is useful.
  • Example 2 Although the temperature rose to 750 ° C. at the maximum, no backfire was confirmed under any conditions, and by adopting a structure in which H 2 gas and combustion-supporting gas were not mixed in advance, H 2 It was confirmed that ignition could be performed without backfire even when the temperature of the battery rose.
  • the H 2 gas is used as a fuel because it ignites without using a transformer by flowing a combustion-supporting gas and H 2 gas through the first flow path of the H 2 burner. No detonation occurs and safety is ensured. Accordingly, the present invention can be suitably used in H 2 burner and combustion method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Burners (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

The present invention provides a burner whereby stable ignition can be performed using H2 gas as the fuel, and whereby the time for H2 gas combustion using a catalyst can be reduced. This H2 burner (1) has flow channels (A, B) for two difference gases, a first flow channel (B) being configured for a flow of H2 gas and a first combustible gas, the second flow channel (A) being configured for a flow of H2 gas or a second combustible gas, the distal end of the second flow channel (A) being disposed at a position to which a flame formed at the distal end of the first flow channel (B) can spread, and the first flow channel (B) being provided with a catalyst (4) capable of inducing ignition when supplied with H2 gas and the first combustible gas.

Description

H2用バーナおよびH2用バーナの燃焼方法H2 burner and H2 burner combustion method
 本発明は、H用バーナおよびH用バーナの燃焼方法に関する。 The present invention relates to an H 2 burner and a combustion method of the H 2 burner.
 近年、深刻となっている地球温暖化を防止するため、太陽、風力、地熱、海洋、水力等の再生可能エネルギーに注目が集まっているが、それだけでなく、燃焼によって二酸化炭素を排出しないHガスも、理想的な燃料として有効な活用が期待されるようになっている。
 本願は、2011年8月17日に日本に出願された特願2011-178212号に基づき優先権を主張し、その内容をここに援用する。
Recently, in order to prevent global warming has become a serious, solar, wind, geothermal, ocean, although focused on renewable energy hydropower etc. are gathered, not only it does not emit carbon dioxide by combustion H 2 Gas is also expected to be used effectively as an ideal fuel.
This application claims priority based on Japanese Patent Application No. 2011-178212 for which it applied to Japan on August 17, 2011, and uses the content here.
 しかしながら、Hガスは、その物性から燃焼範囲が広く燃焼速度も速いため、これまで多用されてきた炭化水素系ガス、改質ガス、または都市ガス等の燃焼技術を適用することが困難であり、工業用の加熱源としては利用分野が限られていた。
 また、Hガスは、他の燃料と比べ燃焼しやすいので、一般的な水素燃焼においては、逆火に対する対策やNO発生抑制に対する対策が重要な課題となっていた。
However, since H 2 gas has a wide combustion range and a high combustion speed due to its physical properties, it is difficult to apply combustion techniques such as hydrocarbon gas, reformed gas, or city gas, which have been widely used so far. As an industrial heating source, the field of use has been limited.
In addition, since H 2 gas is more easily combusted than other fuels, countermeasures against backfire and countermeasures for suppressing NO X generation have become important issues in general hydrogen combustion.
 一方、Hガスは、他の燃料に比べ比較的低温で燃焼が継続するため、触媒を用いてHガスを燃焼させる場合は、安定して効率のよいバーナになることが知られている。
 また、Hガスは、炭化水素系ガスと比較すると、多くの金属や金属酸化物が有効な燃焼触媒になると言われており、特殊な例ではあるが、液体水素の自動着火方法として、極低温触媒燃焼方法が紹介されたことがある。
On the other hand, since H 2 gas continues to burn at a relatively low temperature compared to other fuels, it is known that when H 2 gas is burned using a catalyst, it becomes a stable and efficient burner. .
In addition, H 2 gas is said to be an effective combustion catalyst for many metals and metal oxides compared to hydrocarbon-based gas. As a special example, H 2 gas is an extreme method for automatically igniting liquid hydrogen. Low temperature catalytic combustion methods have been introduced.
 なお、国内では1970年代に通産省工業技術院サンシャイン計画が発足し、水素吸蔵合金や水素燃焼技術に関して多くの研究がなされていた。特に、大阪工業試験所においては、各種の金属や金属酸化物の特性が調査されており、H活性の高い触媒を充填した触媒層に当量比のHガスと空気を通気することによって、室温での燃焼が可能なことが確認されていた。 In Japan, the Sunshine Project of the Ministry of International Trade and Industry, Institute of Industrial Science and Technology was established in the 1970s, and many studies were conducted on hydrogen storage alloys and hydrogen combustion technology. In particular, at the Osaka Industrial Laboratory, the characteristics of various metals and metal oxides have been investigated, and by passing an equivalent ratio of H 2 gas and air through a catalyst layer filled with a catalyst having high H 2 activity, It was confirmed that combustion at room temperature was possible.
 ところで、一般に工業用燃焼炉の着火には、点火トランスを用いた直接点火式のパイロットバーナが用いられている。
 ここで、パイロットバーナの燃料として、炭化水素系ガスや都市ガスのように燃焼速度が数十cm/sec程度の燃料を用いるのであれば問題はないが、燃料としてHガスを用いる場合は、その燃焼速度が2.6m/secと速いため安全性に問題があった。
 特に、燃焼炉内のパージ不良や未着火時のように、燃料と空気の混合気体が充満した状態で再着火すると、爆轟が生じる可能性があり、危険であった。
By the way, in general, a direct ignition type pilot burner using an ignition transformer is used for ignition of an industrial combustion furnace.
Here, there is no problem if a fuel having a combustion rate of about several tens of cm / sec, such as hydrocarbon gas or city gas, is used as the fuel for the pilot burner, but when using H 2 gas as the fuel, Since the burning speed was as fast as 2.6 m / sec, there was a problem in safety.
In particular, if reignition is performed in a state in which a mixed gas of fuel and air is filled, such as in the case of poor purge in the combustion furnace or unignited, detonation may occur, which is dangerous.
 また、パイロットバーナは、点火用の連続パイロットとして使用する場合だけでなく、時限パイロットとして使用する場合であっても、メインバーナへ火移りするまで一定時間燃焼させる必要がある。
 そこで、本願発明者らは、Hガスを燃料とし、触媒を用いて燃焼させるバーナを用いることについて鋭意検討したが、触媒によって一定時間燃焼を継続させると、触媒が焼結や酸化等によって劣化したり、担体の高温耐性が限界に達して触媒が劣化したりするという問題があることを突き止めた。
Further, the pilot burner needs to be burned for a certain period of time until it is transferred to the main burner not only when used as a continuous pilot for ignition but also when used as a timed pilot.
Therefore, the inventors of the present application have intensively studied about using a burner that uses H 2 gas as fuel and burns using a catalyst. However, if combustion is continued for a certain period of time by the catalyst, the catalyst deteriorates due to sintering, oxidation, or the like. And the high temperature resistance of the support has reached its limit and the catalyst has deteriorated.
 このような背景の下、Hガスを燃料に用いながら、安全な点火を行うことができ、かつ、触媒でのHガスの燃焼時間を短くできるバーナおよびバーナの燃焼方法が要望されていたが、有効適切なものが提供されていないのが実情であった。 Under such circumstances, there has been a demand for a burner and a burner combustion method capable of performing a safe ignition while using H 2 gas as a fuel and shortening the combustion time of H 2 gas in the catalyst. However, the actual situation is that no effective and appropriate ones are provided.
 上記課題を解決するため、請求項1に係る発明は、2つの異なるガスの流路を有するH用バーナであって、第1の流路は、Hガスおよび第1の支燃性ガスが流れるように構成されており、第2の流路は、Hガスまたは第2の支燃性ガスが流れるように構成されており、前記第2の流路の先端は、前記第1の流路の先端に形成される火炎が火移り可能な位置に配置されており、前記第1の流路には、Hガスと第1の支燃性ガスを供給することで着火可能な触媒が設けられていることを特徴とするH用バーナである。 In order to solve the above-mentioned problems, the invention according to claim 1 is an H 2 burner having two different gas flow paths, wherein the first flow path includes the H 2 gas and the first combustion-supporting gas. The second flow path is configured to flow H 2 gas or the second combustion-supporting gas, and the tip of the second flow path is the first flow path. A flame formed at the tip of the flow path is disposed at a position where the flame can be transferred, and a catalyst that can be ignited by supplying H 2 gas and a first combustion-supporting gas to the first flow path. Is a burner for H 2 .
 また、請求項2に係る発明は、前記触媒が、Pt、Pd、PdOまたはPtOのいずれか一種類以上を含有することを特徴とする請求項1に記載のH用バーナである。 The invention according to claim 2 is the H 2 burner according to claim 1, wherein the catalyst contains at least one of Pt, Pd, PdO, and PtO 2 .
 また、請求項3に係る発明は、前記第1の流路の先端に、火炎の形成を検知可能な検知機構が設けられていることを特徴とする請求項1または請求項2に記載のH用バーナである。 The invention according to claim 3 is characterized in that a detection mechanism capable of detecting the formation of a flame is provided at the tip of the first flow path. 2 burner.
 また、請求項4に係る発明は、2つの異なるガスの流路を有し、第1の流路に触媒が設けられているH用バーナの燃焼方法であって、前記第1の流路にHガスおよび第1の支燃性ガスを流し、前記触媒によって着火させて第1の流路の先端に火炎を形成する工程と、前記H用バーナの第2の流路にHガスまたは第2の支燃性ガスを流す工程と、前記第1の流路の先端に形成された火炎を前記第2の流路の先端に火移りさせる工程と、Hガスおよび第1の支燃性ガスのうち、前記第2の流路に流すガスと同様の種類のガスについて、前記第1の流路に流すことを停止する工程と、を有することを特徴とするH用バーナの燃焼方法である。 The invention according to claim 4 is a combustion method of an H 2 burner having two different gas flow paths, and a catalyst is provided in the first flow path, wherein the first flow path H 2 gas and a first combustion-supporting gas are caused to flow through and are ignited by the catalyst to form a flame at the tip of the first flow path, and H 2 in the second flow path of the H 2 burner. Flowing a gas or a second combustion-supporting gas; transferring a flame formed at the tip of the first flow path to the tip of the second flow path; and H 2 gas and the first among the combustion assisting gas, wherein the second similar type gas flowing through the flow path of the gas, the first burner H 2, characterized in that it comprises a step of stopping the flow in the flow path, the This is a combustion method.
 また、請求項5に係る発明は、前記第1の流路の先端に火炎を形成した後に、前記第2の流路にHガスまたは第2の支燃性ガスを流すことを特徴とする請求項4に記載のH用バーナの燃焼方法である。 The invention according to claim 5 is characterized in that after a flame is formed at the tip of the first flow path, H 2 gas or a second combustion-supporting gas is flowed into the second flow path. it is a combustion method of H 2 burner according to claim 4.
 また、請求項6に係る発明は、前記触媒が、Pt、Pd、PdOまたはPtOのいずれか一種類以上を含有することを特徴とする請求項4または請求項5に記載のH用バーナの燃焼方法である。 The invention according to claim 6 is characterized in that the catalyst contains at least one of Pt, Pd, PdO or PtO 2. The burner for H 2 according to claim 4 or 5, This is a combustion method.
 本発明のH用バーナには、第1の流路に、Hガスと支燃性ガスを供給することで着火可能な触媒が設けられている。これにより、第1の流路に支燃性ガスとHガスを流すことで、トランス等を用いずに触媒を用いて着火させることが可能となった。その結果、トランスを用いずに着火するので、Hガスを燃料として用いてはいるが、爆轟等が生じることがなくなり、安全性が確保される。
 また、第1の流路の先端から火移り可能な位置に第2の流路の先端が形成されている。
したがって、第1の流路に設けられた触媒によって種火を形成し、それと同時にもしくはそれと前後して、第2の流路にHガスまたは支燃性ガスを流し、第2の流路の先端に種火を火移りさせ、その後に第2の流路に流すガスと同様の種類のガスを、第1の流路に流すことを停止させることで、触媒の劣化を防止することができる。すなわち、触媒によって種火が形成され、それを火移りさせた後に、触媒に供給するHガスまたは支燃性ガスの片方の供給を停止することで、触媒でのHガスの燃焼を停止させることができ、触媒の劣化を防止することができる。また、Hガスまたは支燃性ガスの片方について、第1の流路に流すことを停止しても、それと同じガスが第2の流路から供給されるので、第2の流路の先端において火炎を継続して形成することができる。
The H 2 burner of the present invention is provided with a catalyst that can be ignited by supplying H 2 gas and a combustion-supporting gas to the first flow path. Accordingly, by the first flow path flowing a combustion-supporting gas and H 2 gas, it was possible to ignite using a catalyst without using a transformer or the like. As a result, since ignition is performed without using a transformer, H 2 gas is used as fuel, but no detonation or the like occurs, and safety is ensured.
Further, the tip of the second channel is formed at a position where it can be transferred from the tip of the first channel.
Therefore, a fire is formed by the catalyst provided in the first flow path, and at the same time or around that time, H 2 gas or combustion-supporting gas is flowed into the second flow path. It is possible to prevent the catalyst from deteriorating by stopping the flow of the same kind of gas as the gas flowing through the second flow path to the first flow path after stopping the seed flame at the tip. . That, is formed pilot flame by the catalyst, after it is flame diffusion, by stopping one of the supply of H 2 gas or combustion-supporting gas supplied to the catalyst, stopping the combustion of the H 2 gas at the catalyst And the deterioration of the catalyst can be prevented. Further, even if one of the H 2 gas and the combustion-supporting gas is stopped from flowing into the first flow path, the same gas is supplied from the second flow path, so that the tip of the second flow path The flame can be continuously formed in
 また、本発明のH用バーナは、第1の流路に形成された触媒が、Pt、Pd、PdOまたはPtOのいずれか一種類以上を含有している。これにより、効率良く触媒において着火することができる。 In the H 2 burner of the present invention, the catalyst formed in the first flow path contains at least one of Pt, Pd, PdO, and PtO 2 . Thereby, it can ignite in a catalyst efficiently.
 また、本発明のH用バーナは、第1の流路の先端に、火炎の形成を検知可能な検知機構が設けられている。これにより、第1の流路の先端に種火が形成されたか否かを正確に検知することが可能となり、第1の流路へのガスの供給の停止を精度良く行うことができる。 In the H 2 burner of the present invention, a detection mechanism capable of detecting the formation of flame is provided at the tip of the first flow path. As a result, it is possible to accurately detect whether or not a fire is formed at the tip of the first flow path, and it is possible to accurately stop the supply of gas to the first flow path.
 また、本発明のH用バーナの燃焼方法は、第1の流路に形成された触媒にHガスと支燃性ガスを供給することで着火している。したがって、着火の際にトランスを用いないので、爆轟等が生じることがなく、安全性が確保される。
 また、本発明のH用バーナの燃焼方法では、触媒によって着火し、それと同時にまたはそれと前後して、第2の流路にHガスまたは支燃性ガスを流して種火を火移りさせ、第1の流路に流すガスのうち、第2の流路に流すガスと同様の種類のガスについては、流すことを停止している。この結果、触媒でのHガスの燃焼を停止することができ、触媒の劣化を防止することができる。また、第1の流路に流していたHガスまたは支燃性ガスの片方について、流すことを停止しても、それと同じガスを第2の流路に流すので、第2の流路の先端において、火炎を継続して形成することができる。
Further, the method of combustion H 2 burner of the present invention is ignited by supplying H 2 gas and combustion-supporting gas to the catalyst formed in the first flow path. Therefore, since no transformer is used for ignition, detonation or the like does not occur and safety is ensured.
Further, in the combustion method of the H 2 burner according to the present invention, ignition is performed by the catalyst, and simultaneously with or around that time, H 2 gas or a combustion-supporting gas is caused to flow through the second flow path to transfer the seed flame. Of the gas flowing through the first flow path, the flow of the same type of gas as that flowing through the second flow path is stopped. As a result, combustion of H 2 gas in the catalyst can be stopped, and deterioration of the catalyst can be prevented. Even if the flow of one of the H 2 gas and the combustion-supporting gas flowing in the first flow path is stopped, the same gas flows in the second flow path. A flame can be formed continuously at the tip.
図1は、本実施形態のH用バーナの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the H 2 burner of the present embodiment. 図2(a)は、本実施形態のH用バーナの一例を示す断面図であり、図2(b)は、H用バーナの先端側から見た側面図である。FIG. 2A is a cross-sectional view showing an example of the H 2 burner of this embodiment, and FIG. 2B is a side view of the H 2 burner as viewed from the front end side. 図3は、本実施形態のH用バーナの他の例の一部を示す斜視図である。FIG. 3 is a perspective view showing a part of another example of the H 2 burner of the present embodiment. 図4は、本実施形態のH用バーナを用いた加熱処理装置を示す図である。FIG. 4 is a view showing a heat treatment apparatus using the H 2 burner of the present embodiment. 図5は、本実施形態のH用バーナを用いたフレアースタックを示す図である。FIG. 5 is a view showing a flare stack using the H 2 burner of the present embodiment. 図6は、本発明の一実施例における触媒上のH濃度と着火確認までの時間の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the H 2 concentration on the catalyst and the time until confirmation of ignition in one example of the present invention. 図7は、水素-空気混合気の濃度による最小発火エネルギーを示すグラフである。FIG. 7 is a graph showing the minimum ignition energy depending on the concentration of the hydrogen-air mixture. 図8は、本発明の一実施例に用いられたH用バーナの一部を示す断面図である。FIG. 8 is a cross-sectional view showing a part of the H 2 burner used in one embodiment of the present invention. 図9は、本発明の一実施例における空気流量と最高到達温度の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the air flow rate and the maximum temperature achieved in one embodiment of the present invention.
 以下、本発明の一実施形態であるH用バーナおよびH用バーナの燃焼方法について、図面を参照して説明する。 Hereinafter, an embodiment in which H 2 burner and combustion method H 2 burner of the present invention will be described with reference to the drawings.
<H用バーナ>
 図1は、本発明の一実施形態であるH用バーナ1を示す断面図である。
 H用バーナ1は、内部に2つの異なるガスの流路A,Bを有するパイプ状の構造体であり、図1に示すように、外管2と、外管2内に配置された内管3と、内管3の先端3a側に形成された触媒4と、内管3内に配置された内管5と、を有した構成となっている。
<H 2 burner>
FIG. 1 is a cross-sectional view showing an H 2 burner 1 according to an embodiment of the present invention.
The H 2 burner 1 is a pipe-like structure having two different gas flow paths A and B inside. As shown in FIG. 1, the outer tube 2 and the inner tube 2 are arranged in the outer tube 2. The tube 3, the catalyst 4 formed on the tip 3 a side of the inner tube 3, and the inner tube 5 disposed in the inner tube 3 are configured.
 外管2は、パイプ状の中空管体であって、内側に内管3が配置されており、外管2の先端2aには開口部2cが形成されている。また、開口部2cの下流側が燃焼部分6となっており、火炎Fが形成可能なように構成されている。 The outer tube 2 is a pipe-shaped hollow tube body, and an inner tube 3 is disposed on the inner side, and an opening 2 c is formed at the tip 2 a of the outer tube 2. Further, the downstream side of the opening 2c is a combustion portion 6, which is configured so that a flame F can be formed.
 また、外管2の先端2aとは反対側の一端2b(後端)側には、支燃性ガス供給装置7が配管8を介して接続されており、外管2は、燃焼部分6に支燃性ガス(第2の支燃性ガス)を供給することが可能なように形成されている。 A combustion-supporting gas supply device 7 is connected to one end 2 b (rear end) of the outer tube 2 opposite to the tip 2 a via a pipe 8, and the outer tube 2 is connected to the combustion portion 6. It is formed so as to be able to supply a combustion-supporting gas (second combustion-supporting gas).
 内管3は、パイプ状の中空管体であって、外管2と軸線方向を同一にしつつ外管2内に配置されており、内管3の先端3aには火炎(図示略)が形成可能なように構成されている。
 内管3の先端3aとは反対側の一端3b(後端)側には、Hガス供給装置9が配管10を介して接続されており、内管3は、触媒4及び燃焼部分6にHガスを供給することが可能なように形成されている。
The inner tube 3 is a pipe-shaped hollow tube body, and is arranged in the outer tube 2 with the same axial direction as that of the outer tube 2, and a flame (not shown) is provided at the tip 3 a of the inner tube 3. It is configured so that it can be formed.
An H 2 gas supply device 9 is connected to one end 3b (rear end) side of the inner tube 3 opposite to the tip 3a via a pipe 10, and the inner tube 3 is connected to the catalyst 4 and the combustion portion 6. It is formed so that H 2 gas can be supplied.
 また、内管3の先端3a側の内部には、触媒4(触媒層)が充填されており、内管3の先端3aは、複数の噴出孔3cが形成されたノズル状に形成されている。なお、内管3の配置位置は、内管3の先端3aに形成された火炎が、外管2の先端2aに火移り可能な位置であれば、どのような位置であってもよい。たとえば内管3の先端3aの位置を、外管2の先端2aの位置よりも引っ込んだ位置とすることもでき、または突き出た位置とすることもできる。この場合、内管3の先端3aによる火炎の形成領域が、外管2の先端2aによる火炎Fの形成領域と少なくとも一部でも重なっていれば、内管3の先端3aに形成された火炎が外管2の先端2aに火移り可能となるため、かかる位置関係を満たすように、外管2の先端2aの位置に対して内管3の先端3aの位置を任意に調整することができる。 The inside of the inner tube 3 on the tip 3a side is filled with a catalyst 4 (catalyst layer), and the tip 3a of the inner tube 3 is formed in a nozzle shape having a plurality of ejection holes 3c. . The arrangement position of the inner tube 3 may be any position as long as the flame formed at the tip 3a of the inner tube 3 can be transferred to the tip 2a of the outer tube 2. For example, the position of the distal end 3a of the inner tube 3 can be a position retracted from the position of the distal end 2a of the outer tube 2, or can be a protruding position. In this case, if the flame formation region by the tip 3a of the inner tube 3 overlaps at least partly with the formation region of the flame F by the tip 2a of the outer tube 2, the flame formed at the tip 3a of the inner tube 3 Since it can be transferred to the tip 2a of the outer tube 2, the position of the tip 3a of the inner tube 3 can be arbitrarily adjusted with respect to the position of the tip 2a of the outer tube 2 so as to satisfy this positional relationship.
 触媒4は、Hガスと支燃性ガスが供給されることで着火可能となるものであればどのようなものであってもよく、Pt、Pd、PdOまたはPtOのいずれか一種類以上を含有するものを用いると、効率よく着火可能となる。
 特に、PdまたはPdOを触媒として用いた場合は、供給される支燃性ガスの流量を変化させても、H解離触媒として有用であり、また、Hガスの流量が過多な状態であっても、十分な着火性能を有するので、より好ましい。
 なお、触媒4は、最高で500~800度の温度に達する。
The catalyst 4 may be any catalyst that can be ignited by supplying H 2 gas and a combustion-supporting gas, and any one or more of Pt, Pd, PdO, and PtO 2 If a material containing is used, it becomes possible to ignite efficiently.
In particular, when Pd or PdO is used as a catalyst, it is useful as an H 2 dissociation catalyst even if the flow rate of supplied combustion-supporting gas is changed, and the flow rate of H 2 gas is excessive. However, since it has sufficient ignition performance, it is more preferable.
The catalyst 4 reaches a temperature of 500 to 800 degrees at the maximum.
 また、内管3の内部には、触媒4よりも上流側において、更に内管5が配置されている。
 内管5は、パイプ状の中空管体であって、内管3や外管2と軸線方向を同一にしつつ内管3内に配置されている。
Further, an inner pipe 5 is further arranged inside the inner pipe 3 on the upstream side of the catalyst 4.
The inner tube 5 is a pipe-shaped hollow tube body, and is arranged in the inner tube 3 with the same axial direction as the inner tube 3 and the outer tube 2.
 内管5の先端5aとは反対側の一端5b(後端)側には、支燃性ガス供給装置21が配管22を介して接続されており、内管5は、触媒4および燃焼部分6に支燃性ガス(第1の支燃性ガス)を供給することが可能なように形成されている。また、内管5の配置位置は、内管5の先端5aが、触媒4に支燃性ガスを吹き付けることが可能な位置であれば、どのような位置であってもよい。 A combustion-supporting gas supply device 21 is connected to one end 5b (rear end) side of the inner pipe 5 opposite to the front end 5a via a pipe 22, and the inner pipe 5 includes the catalyst 4 and the combustion portion 6. It is formed so as to be able to supply a combustion-supporting gas (first combustion-supporting gas). Further, the arrangement position of the inner tube 5 may be any position as long as the tip 5a of the inner tube 5 can spray the combustion-supporting gas to the catalyst 4.
 このようにH用バーナ1には、外管2と外管2内に配置された内管3との間の空間に、流路A(第2の流路)が形成され、内管3と内管3内に配置された内管5との間の空間に流路Cが形成され、内管5内には、流路Dが形成される。加えて、内管3の先端3c側では、流路Cと流路Dが合流してなる流路B(第1の流路)が形成される。
 すなわち、流路Aは支燃性ガスが、流路BはHガスおよび支燃性ガスが、流路CはHガスが、流路Dは支燃性ガスが、それぞれ流れるように構成されている。
Thus, in the H 2 burner 1, the flow path A (second flow path) is formed in the space between the outer tube 2 and the inner tube 3 disposed in the outer tube 2, and the inner tube 3. And a flow path C is formed in the space between the inner pipe 5 and the inner pipe 5 disposed in the inner pipe 3, and a flow path D is formed in the inner pipe 5. In addition, on the tip 3c side of the inner tube 3, a flow path B (first flow path) formed by joining the flow path C and the flow path D is formed.
That is, the flow path A is configured so that the combustion-supporting gas flows, the flow path B includes the H 2 gas and the combustion-supporting gas, the flow path C includes the H 2 gas, and the flow path D includes the combustion support gas. Has been.
 また、H用バーナ1は、図2(a)および図2(b)に示すように、外管2の内側でかつ内管3の先端3aの下流側に位置する空間に、火炎を検知するための検知機構23を設けてもよい。これにより、内管3に火炎が形成されたか否かを素早く正確に検知することができる。検知機構23としては、例えばフレームロッド、温度計、UVセンサー等を挙げることができる。
 本実施形態のH用バーナ1は、以上のような構成をしている。
Further, as shown in FIGS. 2A and 2B, the H 2 burner 1 detects a flame in a space located inside the outer tube 2 and downstream of the tip 3a of the inner tube 3. A detection mechanism 23 may be provided. Thereby, it is possible to quickly and accurately detect whether or not a flame is formed in the inner tube 3. Examples of the detection mechanism 23 include a frame rod, a thermometer, and a UV sensor.
The H 2 burner 1 of the present embodiment is configured as described above.
 なお、上記実施形態においては、外管2に支燃性ガス供給装置7を、内管3にH供給装置9を、内管5に支燃性ガス供給装置21を接続させたが、必ずしもこのような態様に限定されない。例えば、外管2にHガス供給装置を接続させても構わない。また、内管3に支燃性ガス供給装置を、内管5にHガス供給装置を接続させても構わない。 In the above embodiment, the combustion-supporting gas supply device 7 is connected to the outer tube 2, the H 2 supply device 9 is connected to the inner tube 3, and the combustion-supporting gas supply device 21 is connected to the inner tube 5. It is not limited to such an aspect. For example, an H 2 gas supply device may be connected to the outer tube 2. Further, a combustion-supporting gas supply device may be connected to the inner pipe 3 and an H 2 gas supply device may be connected to the inner pipe 5.
<H用バーナの燃焼方法>
 次に、上記したH用バーナ1を用いたH用バーナの燃焼方法について説明する。
 まず、支燃性ガス供給装置21を用いて、内管5内の流路Dに支燃性ガスを流し、Hガス供給装置9を用いて内管3と内管5との間の空間に形成された流路CにHガスを流す。
 なお、支燃性ガス供給装置21が供給する支燃性ガスは、例えば空気や酸素であってもよい。
<Combustion method of H 2 burner>
Next, a combustion method of the H 2 burner using the above-described H 2 burner 1 will be described.
First, the combustion-supporting gas is caused to flow through the flow path D in the inner tube 5 using the combustion-supporting gas supply device 21, and the space between the inner tube 3 and the inner tube 5 using the H 2 gas supply device 9. H 2 gas is allowed to flow through the channel C formed in
Note that the combustion-supporting gas supplied by the combustion-supporting gas supply device 21 may be air or oxygen, for example.
 これにより、内管3の先端3a側に形成された流路Bには、流路Cを流れるガスと流路Dを流れるガスが合流することで、Hガスと支燃性ガスが流れることになり、内管3の先端3a側に設けられた触媒4にもHガスと支燃性ガスが供給されることとなる。その結果、Hガスは触媒4にて燃焼を開始し(着火し)、流路Bの先端である内管3の先端3aに火炎(図示略)が形成される。 As a result, the gas flowing through the flow channel C and the gas flowing through the flow channel D merge into the flow channel B formed on the distal end 3a side of the inner tube 3 so that the H 2 gas and the combustion-supporting gas flow. Thus, the H 2 gas and the combustion-supporting gas are also supplied to the catalyst 4 provided on the tip 3a side of the inner tube 3. As a result, the H 2 gas starts to burn (ignites) in the catalyst 4, and a flame (not shown) is formed at the tip 3 a of the inner tube 3 that is the tip of the flow path B.
 触媒4によるHガスの着火原理は、詳細な点は不明なことが多いが、Pd膜によるH透過現象などの研究から、定性的に次のように考えられている。
 まず、H分子が触媒4上に吸着し、このH分子が触媒4上でH原子に解離する。そして、解離してできたH原子が酸素と反応することによって反応熱が生じる。その結果、この反応熱を発火エネルギーとしてHが燃焼状態に移行すると考えられている。
Although the details of the ignition principle of H 2 gas by the catalyst 4 are often unknown, it is qualitatively considered as follows from the study of the H 2 permeation phenomenon by the Pd film.
First, H 2 molecules are adsorbed on the catalyst 4, and these H 2 molecules are dissociated into H atoms on the catalyst 4. Then, reaction heat is generated when H atoms formed by the dissociation react with oxygen. As a result, it is considered that H 2 shifts to a combustion state using this reaction heat as ignition energy.
 なお、流路Cおよび流路Dに流すガスの流量は、触媒4を通過したHおよび支燃性ガスの温度がHの自然発火温度である530℃を上回る温度になるのであればどのような流量でもよく、適宜決定すればよい。 It should be noted that the flow rate of the gas flowing in the flow path C and the flow path D is any if the temperature of H 2 and the combustion-supporting gas that have passed through the catalyst 4 exceeds 530 ° C., which is the spontaneous ignition temperature of H 2. Such a flow rate may be used and may be determined appropriately.
 流路Bの先端に火炎が形成されたら、それと同時にまたはそれと前後して、支燃性ガス供給装置7を用いて、外管2と内管3との間に形成された流路Aに支燃性ガスを流す。これにより、流路Bの先端に形成された火炎を、流路Aの先端である外管2の先端2aに火移りさせ、流路Aの先端に火炎Fを形成する。 When a flame is formed at the tip of the flow path B, it is supported at the flow path A formed between the outer pipe 2 and the inner pipe 3 by using the support gas supply device 7 at the same time or around that time. Flow flammable gas. As a result, the flame formed at the tip of the channel B is transferred to the tip 2a of the outer tube 2 that is the tip of the channel A, and a flame F is formed at the tip of the channel A.
 なお、支燃性ガス供給装置7が供給する支燃性ガスは、例えば空気や酸素であってもよく、必ずしも支燃性ガス供給装置21が供給する支燃性ガスと同一のガスである必要はない。 Note that the combustion-supporting gas supplied from the combustion-supporting gas supply device 7 may be air or oxygen, for example, and is necessarily the same gas as the combustion-supporting gas supplied from the combustion-supporting gas supply device 21. There is no.
 流路Aの先端に火炎Fが形成されたら、支燃性ガス供給装置21によって流路Cに、ひいては流路Bに支燃性ガスを流すことを停止させ、流路Bの先端側に設けられた触媒4でのHガスの着火を停止させる。
 なお、触媒でのHガスの燃焼時間が長いと、触媒の劣化が激しくなることからから、支燃性ガスの供給の停止は、流路Bの先端に種火が形成されてから、または流路Aの先端に火炎Fが形成されてから、間をおかず、略同時に行われるのが好ましい。
When the flame F is formed at the front end of the flow path A, the flow of the combustion-supporting gas to the flow path C and eventually to the flow path B is stopped by the combustion support gas supply device 21 and provided on the front end side of the flow path B. The ignition of H 2 gas in the prepared catalyst 4 is stopped.
Note that if the combustion time of H 2 gas in the catalyst is long, the deterioration of the catalyst becomes severe. Therefore, the supply of the combustion-supporting gas is stopped after the seed flame is formed at the tip of the flow path B, or After the flame F is formed at the front end of the flow path A, it is preferable that the steps be performed substantially at the same time.
 なお、外管2内に検知機構23を設けた場合は、この検知機構23によって、流路Bの先端に火炎が形成されたか否かを正確に検知することができるので、流路Bへの支燃性ガスの供給の停止を精度よく行うことができる。 In addition, when the detection mechanism 23 is provided in the outer tube 2, it is possible to accurately detect whether or not a flame is formed at the tip of the flow path B by the detection mechanism 23. The supply of the combustion-supporting gas can be stopped with high accuracy.
 また、上記実施形態においては、流路Aおよび流路Dに支燃性ガスを流し、流路CにHガスを流す場合について説明したが、必ずしもこの態様に限定されない。
 流路AにHガスを流すようにしてもよい。また、流路BにHガスと支燃性ガスの両方を流すことができるのであれば、流路Cおよび流路Dに流すガスの選択は適宜決定すればよい。
In the embodiment described above, flowing combustion-supporting gas into the flow path A and the flow path D, the case has been described where the flow of H 2 gas to the flow path C, not necessarily limited to this embodiment.
The flow path A may flow H 2 gas. In addition, if both the H 2 gas and the combustion-supporting gas can be flowed to the flow path B, the selection of the gas to be flowed to the flow path C and the flow path D may be appropriately determined.
 このような場合も、流路Aの先端に火炎Fを形成した後に、Hガスおよび支燃性ガスのうち、流路Aに流すガスと同様の種類のガスについて、流路Bへの供給を停止すればよい。ここで、同様の種類のガスについて供給を停止するとは、例えば流路Aに供給する支燃性ガスが空気であり、流路Bに供給する支燃性ガスが酸素の場合に、この流路Bに供給する支燃性ガス(この場合は酸素)の供給を停止することも含む。 Even in such a case, after the flame F is formed at the tip of the flow path A, the same type of gas that flows through the flow path A out of the H 2 gas and the combustion-supporting gas is supplied to the flow path B. Can be stopped. Here, stopping the supply of the same type of gas means, for example, that the combustion-supporting gas supplied to the flow path A is air and the combustion support gas supplied to the flow path B is oxygen. It also includes stopping the supply of the combustion-supporting gas (in this case, oxygen) supplied to B.
 本実施形態のH用バーナ1には、流路Bに、Hガスと支燃性ガスを供給することで着火可能な触媒4が設けられている。これにより、流路Bに支燃性ガスとHガスを供給することで、トランス等を用いずに触媒4を用いて着火させることが可能となった。その結果、トランスを用いずに着火するので、Hガスを燃料として用いてはいるが、爆轟等が生じることがなくなり、安全性が確保される。
 また、流路Bの先端から火移り可能な位置に、流路Aの先端が形成されている。したがって、流路Bに設けられた触媒4によって種火を形成し、それと同時にもしくはそれと前後して、流路Aに支燃性ガスを供給し、流路Aの先端に種火を火移りさせ、その後に支燃性ガスの流路Bへの供給を停止することで、触媒の劣化を防止することができる。すなわち、触媒によって種火が形成され、それを火移りさせた後に、触媒に供給する支燃性ガスの供給を停止することで、Hガスと支燃性ガスの両方ともが触媒を通過する時間を短くすることができ、触媒での燃焼を停止することで、触媒の劣化を防止することができる。また、支燃性ガスを流路Bに流すことを停止しても、それと同じガスである支燃性ガスが流路Aから供給されるので、流路Aの先端において火炎を継続して形成することができる。
In the H 2 burner 1 of the present embodiment, a catalyst 4 that can be ignited by supplying H 2 gas and combustion-supporting gas to the flow path B is provided. Thus, by supplying the combustion-supporting gas and the H 2 gas to the flow path B, it becomes possible to ignite using the catalyst 4 without using a transformer or the like. As a result, since ignition is performed without using a transformer, although H 2 gas is used as fuel, detonation or the like does not occur and safety is ensured.
Further, the tip end of the flow path A is formed at a position where it can be transferred from the front end of the flow path B. Therefore, the catalyst 4 provided in the flow path B forms a fire, and at the same time or around that time, the combustion supporting gas is supplied to the flow path A, and the fire is transferred to the tip of the flow path A. Then, the catalyst deterioration can be prevented by stopping the supply of the combustion-supporting gas to the flow path B. That is, after the seed fire is formed by the catalyst and it is transferred, both the H 2 gas and the combustion-supporting gas pass through the catalyst by stopping the supply of the combustion-supporting gas supplied to the catalyst. The time can be shortened, and the deterioration of the catalyst can be prevented by stopping the combustion with the catalyst. Further, even if the flow of the combustion-supporting gas to the flow path B is stopped, since the combustion support gas that is the same gas is supplied from the flow path A, the flame is continuously formed at the end of the flow path A. can do.
 また、本実施形態のH用バーナ1の燃焼方法は、流路Bに形成された触媒4にHガスと支燃性ガスを供給することで着火している。したがって、着火の際にトランスを用いないので、爆轟等が生じることがなく、安全性が確保される。
 また、触媒4によって着火して流路Bの先端に種火を形成し、それと同時にもしくはそれと前後して流路Aに支燃性ガスを流し、流路Aの先端に種火を火移りさせ、支燃性ガスを流路Bに流すのを停止している。この結果、支燃性ガスの供給を停止しているので、触媒でのHガスの燃焼を短くすることができ、触媒の劣化を防止することができる。また、支燃性ガスを流路Bに流すことを停止しても、流路Aに支燃性ガスを流すので、火炎Fを継続して形成することができる。
In the combustion method of the H 2 burner 1 of the present embodiment, ignition is performed by supplying H 2 gas and combustion-supporting gas to the catalyst 4 formed in the flow path B. Therefore, since no transformer is used for ignition, detonation or the like does not occur and safety is ensured.
Further, it is ignited by the catalyst 4 to form a seed flame at the tip of the flow path B. At the same time or around that, a combustion-supporting gas is caused to flow through the flow path A, and the seed fire is transferred to the tip of the flow path A The flow of the combustion-supporting gas to the flow path B is stopped. As a result, since the supply of the combustion-supporting gas is stopped, the combustion of H 2 gas in the catalyst can be shortened, and the deterioration of the catalyst can be prevented. Even if the flow of the combustion-supporting gas to the flow path B is stopped, since the combustion-supporting gas flows to the flow path A, the flame F can be continuously formed.
 なお、上記したH用バーナ1は、外管2の内部に内管3が配置された構成となっているが、2つの異なる流路が形成可能で、第1の流路の先端に形成された火炎が、第2の流路の先端に火移り可能であれば、バーナの構造はどのようなものであってもよく、分離された2つの管体から構成されてもよい。
 2つの管体から構成される例としては、例えば図3に示すように、上記した外管2の内部に配置されていた内管3を、外管2の横に配置してもよい。
The H 2 burner 1 described above has a configuration in which the inner tube 3 is disposed inside the outer tube 2, but two different flow paths can be formed and formed at the tip of the first flow path. As long as the fired flame can be transferred to the tip of the second flow path, the burner may have any structure, and may be composed of two separated tubes.
As an example composed of two tube bodies, for example, as shown in FIG. 3, the inner tube 3 disposed inside the outer tube 2 may be disposed beside the outer tube 2.
 また、上記実施形態では、内管3の内部に更に内管5を設けた場合について説明したが、内管5を設けずに、内管3内にHガスと支燃性ガスを両方とも供給する構成を採用しても構わない。
 ここで、内管3の内部に内管5を設けた場合は、予めHガスと支燃性ガスとを混合することなく、触媒4にHガスと支燃性ガスを供給するので、点火の際に逆火が起きる可能性が低い。これに対し、内管5を設けず、単に内管3内にHガスと支燃性ガスの両方を供給する場合は、これらのガスが予め混合されるので、適宜逆火を防ぐための措置を採るのが好ましい。
In the above embodiment, the case where the inner tube 5 is further provided inside the inner tube 3 has been described. However, both the H 2 gas and the combustion-supporting gas are provided in the inner tube 3 without providing the inner tube 5. You may employ | adopt the structure supplied.
Here, when the inner pipe 5 is provided inside the inner pipe 3, the H 2 gas and the combustion-supporting gas are supplied to the catalyst 4 without mixing the H 2 gas and the combustion-supporting gas in advance. The possibility of backfire during ignition is low. On the other hand, when both the H 2 gas and the combustion-supporting gas are simply supplied into the inner pipe 3 without providing the inner pipe 5, these gases are mixed in advance, so as to appropriately prevent backfire. It is preferable to take measures.
 次に、本実施形態のH用バーナのメリットについて、加熱対象ガスの加熱処理方法およびフレアースタックを例にして更に説明する。 Next, the merits of the H 2 burner of the present embodiment will be further described by taking the heat treatment method of the heating target gas and the flare stack as an example.
<対象ガスの加熱処理方法>
 図4に示すように、本実施形態のH用バーナを用いた加熱対象ガスの加熱処理装置24は、メインバーナ25と、メインバーナ25の先端に設けられたH用バーナ1とから概略構成されている。
<Heat treatment method of target gas>
As shown in FIG. 4, the heating target gas heating device 24 using the H 2 burner according to the present embodiment is roughly composed of a main burner 25 and an H 2 burner 1 provided at the tip of the main burner 25. It is configured.
 メインバーナ25は、メインバーナ25の先端部分の空間である燃焼部分26に対象ガスを供給する配管27と、配管27の外周を囲うように形成され、燃焼部分26に燃料を供給する噴出口28aが設けられたメインバーナ本体28とから構成されている。なお、メインバーナ本体28には、メインバーナ本体28に燃料を導入するための配管29が接続されている。 The main burner 25 is formed so as to surround the outer periphery of the piping 27 that supplies the target gas to the combustion portion 26 that is the space of the tip portion of the main burner 25, and the jet outlet 28 a that supplies fuel to the combustion portion 26. And a main burner main body 28 provided with. The main burner body 28 is connected to a pipe 29 for introducing fuel into the main burner body 28.
 この加熱処理装置24を用いて加熱対象ガスを加熱処理する場合は、まずパイロットバーナであるH用バーナ1を点火する。そして、メインバーナ25の配管27から加熱対象ガスを、メインバーナ本体28から燃料をそれぞれ供給し、H用バーナ1の火炎を用いて、メインバーナ25を点火する。このようにしてメインバーナ25の先端の燃焼部分26に火炎(図示略)を形成し、対象ガスを加熱処理する。 When heat-treating the gas to be heated using the heat treatment apparatus 24, first, the H 2 burner 1 that is a pilot burner is ignited. Then, the gas to be heated is supplied from the pipe 27 of the main burner 25 and the fuel is supplied from the main burner body 28, and the main burner 25 is ignited using the flame of the H 2 burner 1. In this way, a flame (not shown) is formed in the combustion portion 26 at the tip of the main burner 25, and the target gas is heated.
 一般に、メインバーナの燃料としてHガスを用いる場合、炉内においてHガスと支燃性ガスの混合による爆発を防止するため、上記のように予めパイロットバーナを点火させてから、メインバーナに燃料を導入することとなる。
 ここで、従来は、パイロットバーナ用の燃料としてHガスを用いることができなかったことから、パイロットバーナには、メインバーナの燃料とは異なった炭化水素系ガス等の燃料を導入する装置およびその漏洩を検知する装置が必要であった。そのため、メインバーナの点火動作に必要なコストが嵩むという不都合があった。
 一方、本実施形態のH用バーナ1を用いれば、Hガスを燃料として用いながらも、安全に点火することができるため、H以外の燃料の供給装置およびその漏洩を検知する装置が不要となり、メインバーナ25の点火にかかる費用を抑制することができる。
In general, when H 2 gas is used as the fuel for the main burner, the pilot burner is ignited in advance as described above in order to prevent explosion due to mixing of H 2 gas and combustion-supporting gas in the furnace. Fuel will be introduced.
Here, conventionally, since H 2 gas could not be used as the fuel for the pilot burner, a device for introducing a fuel such as a hydrocarbon-based gas different from the fuel for the main burner into the pilot burner, and A device for detecting the leakage was necessary. For this reason, there is a disadvantage that the cost required for the ignition operation of the main burner increases.
On the other hand, if the H 2 burner 1 of the present embodiment is used, it is possible to ignite safely while using H 2 gas as a fuel. Therefore, a supply device for fuel other than H 2 and a device for detecting leakage thereof are provided. It becomes unnecessary and the expense concerning ignition of the main burner 25 can be suppressed.
<フレアースタック>
 次に、本実施形態のH用バーナ1を用いたフレアースタックのメリットについて説明する。
 図5に示すように、フレアースタック41は、燃焼させる所望のガスの貯蔵設備42と接続された放出塔43と、放出塔43の先端に設けられたH用バーナ1とから構成されている。
<Flare stack>
Next, the merit of the flare stack using the H 2 burner 1 of the present embodiment will be described.
As shown in FIG. 5, the flare stack 41 includes a discharge tower 43 connected to a storage facility 42 for a desired gas to be burned, and a H 2 burner 1 provided at the tip of the discharge tower 43. .
 このフレアースタック41を用いてガスを燃焼させる場合は、まずH用バーナ1を点火する。そして、貯蔵設備42から燃焼させる所望のガスを放出塔43に送り、放出塔43の先端において、H用バーナ1の火炎を用いて、所望のガスを点火して燃焼させればよい。 When gas is burned using the flare stack 41, the H 2 burner 1 is first ignited. Then, the desired gas to be combusted from the storage facility 42 may be sent to the emission tower 43 and the desired gas may be ignited and combusted at the tip of the emission tower 43 using the flame of the H 2 burner 1.
 ここで、従来のフレアースタックであれば、放出塔の先端に設置するバーナとしては、通常のパイロットバーナを用いていたので、点火用プラグなどの電気エネルギーを用いて点火する必要があった。
 そのため、電気を供給する設備が必要であり、また、フレアースタックを保安設備としても用いる際には、停電時に備えてバッテリーや非常用発電機といった予備電源を用意する必要があった。
Here, in the case of the conventional flare stack, since a normal pilot burner was used as the burner installed at the tip of the emission tower, it was necessary to ignite using electric energy such as an ignition plug.
Therefore, a facility for supplying electricity is necessary, and when using the flare stack as a safety facility, it is necessary to prepare a spare power source such as a battery or an emergency generator in preparation for a power failure.
 しかしながら、本実施形態のH用バーナ1を用いれば、触媒4上にHガスと支燃性ガスを通気するだけで点火が可能であるため、電気を供給する設備および予備電源を必要としない。このため、電気を供給する設備および予備電源ならびにそれらの維持にかかる費用を抑制することができる。 However, if the H 2 burner 1 of the present embodiment is used, ignition can be performed simply by passing H 2 gas and a combustion-supporting gas over the catalyst 4. do not do. For this reason, it is possible to reduce the cost of facilities for supplying electricity and standby power supplies and maintaining them.
 また、貯蔵設備42に貯蔵された燃焼させるガスがHガスである場合は、そのHガスをH用バーナの燃料とすればよいので、バーナの燃料およびそれを供給するための設備も必要がなくなり、費用を抑制することができる。 Further, when the gas to be combusted stored in the storage facility 42 is H 2 gas, the H 2 gas may be used as fuel for the H 2 burner, so the fuel for the burner and facilities for supplying it are also provided. This eliminates the need for cost reduction.
 更に、Hガスを燃料として用いた火炎は、従来のバーナのように炭化水素系ガスを燃料として用いた場合と比較して、吹き消えを起こし難いため、H用バーナ1を用いると、放出塔43内の風速を大きくした際にも吹き消えずに機能する。
 この結果、同流量のガスをフレアースタック41で処理しようとした場合、H用バーナ1を用いると、従来のバーナを使用する場合と比較して放出塔43の塔内径を小さくすることが可能となり、フレアースタック41自体の小型化が可能となる。
Furthermore, since the flame using H 2 gas as a fuel is less likely to blow out as compared with the case where a hydrocarbon-based gas is used as a fuel like a conventional burner, when the H 2 burner 1 is used, Even when the wind speed in the discharge tower 43 is increased, it functions without blowing off.
As a result, when the gas of the same flow rate is to be processed by the flare stack 41, the use of the H 2 burner 1 makes it possible to reduce the inner diameter of the discharge tower 43 compared to the case of using a conventional burner. Thus, the flare stack 41 itself can be downsized.
 以上、本発明を実施形態に基づき説明したが、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, although this invention was demonstrated based on embodiment, it cannot be overemphasized that this invention can be variously changed in the range which is not limited to the said embodiment and does not deviate from the summary.
 以下、実施例により、本発明を更に詳しく説明するが、本発明は下記実施例に何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.
(実施例1)
 実施例1では、上記したH用バーナ1と同様なH用バーナを用いて、外管2にHガスを10L/minの流量で、内管5にHガスを1.5L/minの流量で供給し、内管3に供給する空気の流量を変化させた際の、着火までに要する時間を測定した。使用した触媒はPdであり、周囲および初期ガス温度は20℃とした。結果を図6に示す。なお、着火の確認は、外管2内の先端側に設置された温度計を用いて行った。
(Example 1)
In Example 1, using the same H 2 burner and burner 1 for H 2 as described above, the H 2 gas in the outer tube 2 at a flow rate of 10L / min, the inner tube 5 H 2 gas 1.5 L / The time required for ignition was measured when the flow rate of air supplied to the inner tube 3 was changed at a flow rate of min. The catalyst used was Pd and the ambient and initial gas temperatures were 20 ° C. The results are shown in FIG. Note that the ignition was confirmed using a thermometer installed on the distal end side in the outer tube 2.
 図6に示すように、触媒上のH濃度は、20~30体積%程度であると着火までに要する時間が短くなっている。
 これは、H濃度ごとにおけるスパークによる最小発火エネルギーの測定結果(図7参照)とよく合致しており、触媒上でHの燃焼が行われていることが認められる。
As shown in FIG. 6, when the H 2 concentration on the catalyst is about 20 to 30% by volume, the time required for ignition is shortened.
This is in good agreement with the measurement result of the minimum ignition energy by spark for each H 2 concentration (see FIG. 7), and it is recognized that H 2 is burned on the catalyst.
(実施例2)
 実施例2では、実施形態で説明したH用バーナ1と同様なH用バーナを用い、触媒としてPd,Pt,PdOおよびPtOのそれぞれを用いた場合について、着火性能の比較を行った。具体的には、外管2にHガスを10L/minの流量で、内管5にHガスを2L/minの流量で供給し、内管3内に供給する空気の流量を変化させながら、点火動作後30秒で到達する最高温度を計測することで、性能比較を行った。なお、最高温度の測定は、図8に示すように、内管3の先端3aの外壁に設置した温度センサー44を用いて行った。結果を図9に示す。
(Example 2)
In Example 2, using the same H 2 burner with H 2 burner 1 described in the embodiment, Pd as a catalyst, Pt, for the case of using each of PdO and PtO 2, were compared in ignition performance . Specifically, the H 2 gas in the outer tube 2 at a flow rate of 10L / min, H 2 gas into the inner tube 5 was supplied at a flow rate of 2L / min, while changing the flow rate of air supplied to the inner tube 3 However, the performance was compared by measuring the maximum temperature reached 30 seconds after the ignition operation. In addition, the measurement of the maximum temperature was performed using the temperature sensor 44 installed in the outer wall of the front-end | tip 3a of the inner tube 3, as shown in FIG. The results are shown in FIG.
 図9に示すように、いずれの触媒においても、触媒を通過したHと支燃性ガスとがHの自然発火点530℃を上回る温度を示す空気風量の範囲が存在し、Hガスの着火に必要な性能を有していることが分かった。
 また、PdまたはPdOを触媒として用いた場合は、空気流量の広い範囲において触媒を通過したHと支燃性ガスとが530℃以上の温度に到達することから、H解離触媒として非常に有用であることが分かる。
As shown in FIG. 9, in any of the catalyst, H 2 and combustion-supporting gas that has passed through the catalyst is present in the range of air air volume indicating a temperature above 530 ° C. autoignition point of H 2, H 2 gas It was found that it had the performance necessary for ignition.
Further, Pd or PdO is when used as a catalyst, since the H 2 and combustion-supporting gas that has passed through the catalyst over a wide range of air flow rate reaches a temperature above 530 ° C., as a very H 2 dissociation catalyst It turns out that it is useful.
 また、PdまたはPdOを触媒として用いた場合は、触媒上を通気する空気流量が、Hガス量に対して理論空気比未満であった場合でも高い温度上昇が確認された。これは、理論空気比未満であった場合、触媒で加熱された未燃Hガスが、ノズル噴出孔先端にて自然発火し、火炎を生成するためである。したがって、これらの触媒を用いた場合は、燃料過多な空気比においても十分な着火性能を有している。 Further, when Pd or PdO was used as a catalyst, a high temperature rise was confirmed even when the air flow rate over the catalyst was less than the theoretical air ratio with respect to the H 2 gas amount. This is because when the ratio is less than the theoretical air ratio, the unburned H 2 gas heated by the catalyst spontaneously ignites at the tip of the nozzle ejection hole to generate a flame. Therefore, when these catalysts are used, they have sufficient ignition performance even in an air ratio with excessive fuel.
 また、実施例2では、最高で750℃まで温度が上昇したが、いずれの条件でも逆火は確認されず、予めHガスと支燃性ガスを混合させない構造を採用することで、Hの温度が上昇した際でも逆火が発生することなく、点火が行えることが確認された。 Moreover, in Example 2, although the temperature rose to 750 ° C. at the maximum, no backfire was confirmed under any conditions, and by adopting a structure in which H 2 gas and combustion-supporting gas were not mixed in advance, H 2 It was confirmed that ignition could be performed without backfire even when the temperature of the battery rose.
 本発明によれば、H用バーナの第1の流路に支燃性ガスとHガスを流すことでトランスを用いずに着火するので、Hガスを燃料として用いてはいるが、爆轟等が生じることがなくなり、安全性が確保される。したがって、本発明は、H用バーナおよびその燃焼方法に好適に用いることができる。 According to the present invention, the H 2 gas is used as a fuel because it ignites without using a transformer by flowing a combustion-supporting gas and H 2 gas through the first flow path of the H 2 burner. No detonation occurs and safety is ensured. Accordingly, the present invention can be suitably used in H 2 burner and combustion method.
1・・・H用バーナ、2・・・外管、2a・・・外管の先端、3・・・内管、3a・・・内管の先端、4・・・触媒、5・・・内管、5a・・・内管の先端、6・・・燃焼部分、7,21・・・支燃性ガス供給装置、8,10,22,27,29・・・配管、9・・・Hガス供給装置、23・・・検知機構、24・・・加熱処理装置、25・・・メインバーナ、26・・・燃焼部分、28・・・メインバーナ本体、41・・・フレアースタック、42・・・貯蔵設備、43・・・放出塔 1 ... H 2 burner, 2 ... outer tube, 2a ... tip of outer tube, 3 ... inner tube, 3a ... tip of inner tube, 4 ... catalyst, 5 ... Inner pipe, 5a ... tip of inner pipe, 6 ... combustion part, 7, 21 ... combustion-supporting gas supply device, 8, 10, 22, 27, 29 ... piping, 9 ... · H 2 gas supply unit, 23 ... detection mechanism, 24 ... heat treatment device, 25 ... main burner, 26 ... combustion portion, 28 ... main burner body, 41 ... flare stack 42 ... Storage equipment, 43 ... Discharge tower

Claims (6)

  1.  2つの異なるガスの流路を有するH用バーナであって、
     第1の流路は、Hガスおよび第1の支燃性ガスが流れるように構成されており、
     第2の流路は、Hガスまたは第2の支燃性ガスが流れるように構成されており、
     前記第2の流路の先端は、前記第1の流路の先端に形成される火炎が火移り可能な位置に配置されており、
     前記第1の流路には、Hガスと第1の支燃性ガスを供給することで着火可能な触媒が設けられていることを特徴とするH用バーナ。
    An H 2 burner having two different gas flow paths,
    The first flow path is configured so that the H 2 gas and the first combustion-supporting gas flow,
    The second flow path is configured such that H 2 gas or second combustion-supporting gas flows,
    The tip of the second channel is arranged at a position where a flame formed at the tip of the first channel can be transferred,
    The H 2 burner, wherein the first flow path is provided with a catalyst that can be ignited by supplying H 2 gas and a first combustion-supporting gas.
  2.  前記触媒が、Pt、Pd、PdOまたはPtOのいずれか一種類以上を含有することを特徴とする請求項1に記載のH用バーナ。 The burner for H 2 according to claim 1, wherein the catalyst contains at least one of Pt, Pd, PdO, and PtO 2 .
  3.  前記第1の流路の先端に、火炎の形成を検知可能な検知機構が設けられていることを特徴とする請求項1または請求項2に記載のH用バーナ。 3. The H 2 burner according to claim 1, wherein a detection mechanism capable of detecting formation of a flame is provided at a tip of the first flow path.
  4.  2つの異なるガスの流路を有し、第1の流路に触媒が設けられているH用バーナの燃焼方法であって、
     前記第1の流路にHガスおよび第1の支燃性ガスを流し、前記触媒によって着火させて第1の流路の先端に火炎を形成する工程と、
     前記H用バーナの第2の流路にHガスまたは第2の支燃性ガスを流す工程と、
     前記第1の流路の先端に形成された火炎を前記第2の流路の先端に火移りさせる工程と、
     Hガスおよび第1の支燃性ガスのうち、前記第2の流路に流すガスと同様の種類のガスについて、前記第1の流路に流すことを停止する工程と、
    を有することを特徴とするH用バーナの燃焼方法。
    A combustion method for an H 2 burner having two different gas flow paths, wherein a catalyst is provided in the first flow path,
    Flowing a H 2 gas and a first combustion-supporting gas through the first flow path, and igniting with the catalyst to form a flame at the tip of the first flow path;
    A step of flowing H 2 gas or a second combustion assisting gas to the second flow path of the H 2 burner,
    Transferring the flame formed at the tip of the first channel to the tip of the second channel;
    Of the H 2 gas and the first combustion-supporting gas, a step of stopping the flow of the same kind of gas as the gas flowing through the second flow path into the first flow path;
    A combustion method of a burner for H 2 characterized by comprising:
  5.  前記第1の流路の先端に火炎を形成した後に、前記第2の流路にHガスまたは第2の支燃性ガスを流すことを特徴とする請求項4に記載のH用バーナの燃焼方法。 5. The H 2 burner according to claim 4, wherein after a flame is formed at a tip of the first flow path, H 2 gas or a second combustion-supporting gas is allowed to flow through the second flow path. Combustion method.
  6.  前記触媒が、Pt、Pd、PdOまたはPtOのいずれか一種類以上を含有することを特徴とする請求項4または請求項5に記載のH用バーナの燃焼方法。 The combustion method of the burner for H 2 according to claim 4 or 5, wherein the catalyst contains at least one of Pt, Pd, PdO, and PtO 2 .
PCT/JP2012/070334 2011-08-17 2012-08-09 H2 burner and h2 burner combustion method WO2013024783A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147001810A KR101974819B1 (en) 2011-08-17 2012-08-09 H2 burner and h2 burner combustion method
CN201280035371.2A CN103732991B (en) 2011-08-17 2012-08-09 H 2with burner and H 2with the combustion method of burner
JP2013528993A JP5732135B2 (en) 2011-08-17 2012-08-09 H2 burner combustion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011178212 2011-08-17
JP2011-178212 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013024783A1 true WO2013024783A1 (en) 2013-02-21

Family

ID=47715102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070334 WO2013024783A1 (en) 2011-08-17 2012-08-09 H2 burner and h2 burner combustion method

Country Status (5)

Country Link
JP (1) JP5732135B2 (en)
KR (1) KR101974819B1 (en)
CN (1) CN103732991B (en)
TW (1) TWI550234B (en)
WO (1) WO2013024783A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424958A (en) * 2017-09-05 2019-03-05 丰田自动车株式会社 Nozzle arrangements for hydrogen gas combustor device
JP2019039590A (en) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 Nozzle for hydrogen gas combustion
JP2019039608A (en) * 2017-08-25 2019-03-14 トヨタ自動車株式会社 Nozzle for hydrogen gas combustion
US11428405B2 (en) 2020-06-29 2022-08-30 AMF Den Boer B.V. Hydrogen gas burner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551375B2 (en) * 2016-12-07 2019-07-31 トヨタ自動車株式会社 Hydrogen gas burner structure and hydrogen gas burner apparatus equipped with the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259331A (en) * 1989-03-30 1990-10-22 Central Res Inst Of Electric Power Ind Combustion device for catalytic combustion type gas turbine
JPH0321651U (en) * 1989-07-05 1991-03-05
JPH11509307A (en) * 1995-06-12 1999-08-17 シーメンス アクチエンゲゼルシヤフト Burners with catalytic introduction combustion, especially for gas turbines
JP2001065815A (en) * 1999-08-31 2001-03-16 Denso Corp Combustion device
JP2007163044A (en) * 2005-12-14 2007-06-28 Osamu Hirota Injection flame burner, furnace and flame generation method
JP2009079881A (en) * 2007-09-27 2009-04-16 Jfe Steel Kk Pilot burner and its ignition detecting method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737247C1 (en) * 1987-11-03 1989-03-02 Zettner Michael L Burner
US5634784A (en) * 1991-01-09 1997-06-03 Precision Combustion, Inc. Catalytic method
DE4416650A1 (en) * 1994-05-11 1995-11-16 Abb Management Ag Combustion process for atmospheric combustion plants
DE4426351B4 (en) * 1994-07-25 2006-04-06 Alstom Combustion chamber for a gas turbine
US5950434A (en) * 1995-06-12 1999-09-14 Siemens Aktiengesellschaft Burner, particularly for a gas turbine, with catalytically induced combustion
JP3619626B2 (en) * 1996-11-29 2005-02-09 株式会社東芝 Operation method of gas turbine combustor
US7121097B2 (en) * 2001-01-16 2006-10-17 Catalytica Energy Systems, Inc. Control strategy for flexible catalytic combustion system
JP2004163030A (en) * 2002-11-14 2004-06-10 Calsonic Kansei Corp Hydrogen combustor
JP4299868B2 (en) * 2006-07-28 2009-07-22 クロリンエンジニアズ株式会社 Hydrogen combustion equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259331A (en) * 1989-03-30 1990-10-22 Central Res Inst Of Electric Power Ind Combustion device for catalytic combustion type gas turbine
JPH0321651U (en) * 1989-07-05 1991-03-05
JPH11509307A (en) * 1995-06-12 1999-08-17 シーメンス アクチエンゲゼルシヤフト Burners with catalytic introduction combustion, especially for gas turbines
JP2001065815A (en) * 1999-08-31 2001-03-16 Denso Corp Combustion device
JP2007163044A (en) * 2005-12-14 2007-06-28 Osamu Hirota Injection flame burner, furnace and flame generation method
JP2009079881A (en) * 2007-09-27 2009-04-16 Jfe Steel Kk Pilot burner and its ignition detecting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039590A (en) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 Nozzle for hydrogen gas combustion
JP2019039608A (en) * 2017-08-25 2019-03-14 トヨタ自動車株式会社 Nozzle for hydrogen gas combustion
CN109424958A (en) * 2017-09-05 2019-03-05 丰田自动车株式会社 Nozzle arrangements for hydrogen gas combustor device
EP3450843A1 (en) * 2017-09-05 2019-03-06 Toyota Jidosha Kabushiki Kaisha Nozzle structure for hydrogen gas burner apparatus
JP2019045092A (en) * 2017-09-05 2019-03-22 トヨタ自動車株式会社 Nozzle structure for hydrogen gas burner device
CN111810950A (en) * 2017-09-05 2020-10-23 丰田自动车株式会社 Nozzle structure for hydrogen burner device
US11098893B2 (en) 2017-09-05 2021-08-24 Toyota Jidosha Kabushiki Kaisha Nozzle structure for hydrogen gas burner apparatus
US11428405B2 (en) 2020-06-29 2022-08-30 AMF Den Boer B.V. Hydrogen gas burner

Also Published As

Publication number Publication date
CN103732991B (en) 2016-03-02
JP5732135B2 (en) 2015-06-10
TW201319469A (en) 2013-05-16
CN103732991A (en) 2014-04-16
KR101974819B1 (en) 2019-08-23
JPWO2013024783A1 (en) 2015-03-05
KR20140051907A (en) 2014-05-02
TWI550234B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5732135B2 (en) H2 burner combustion method
JP5216369B2 (en) Burner and its operating method
JP2015008142A (en) Multistage combustor and method for starting fuel cell system
JP3876204B2 (en) Stepwise mixing type high pressure catalyst / flame combined combustion burner
JP2009120448A (en) Hydrogen generator and fuel battery system equipped with the same
JP5771631B2 (en) Equipment for providing hot exhaust gases
KR101244510B1 (en) Fuel reformer burner of fuel cell system
US20090239181A1 (en) Combustor
WO2015018962A2 (en) Burner integrated into a hydrocarbon- and alcohol-reforming system, and hydrocarbon- and alcohol-reforming system comprising said burner and associated method
US20130344409A1 (en) Multi-fuel combustor with swirl flame stabilization
JP5322465B2 (en) Combustion device of reformer, reformer, and fuel cell system
JP2015144092A (en) Fuel battery device
JP2010108832A (en) Fuel cell electric power generation system
KR20120080005A (en) Film cooling apparatus for bipropellant rocket engine and testing method of the same
JP4546831B2 (en) Driving method of post-combustion device and post-combustion device
JP5309799B2 (en) Reformer and fuel cell system
JP5202069B2 (en) Combustion device of reformer and reformer
ES2433121B1 (en) BURNER INTEGRATED IN A HYDROCARBON REFORMING SYSTEM AND ALCOHOLS
JP6111998B2 (en) Combustion device
WO2009087416A2 (en) Methods and apparatus for the ignition and combustion of particulate fuel
KR101029909B1 (en) Catalytst-flame combustor for molten carbonate fuel cellMCFC
JP5831380B2 (en) Combustion device
JP5402197B2 (en) Reformer and fuel cell system
Allouis et al. IR thermal imaging characterization of a hybrid catalytic radiant gas burner
JP2009218032A (en) Ignitor motion control method and device for fuel processing device burner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528993

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147001810

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824298

Country of ref document: EP

Kind code of ref document: A1