WO2013024518A1 - 酸化ハロゲン酸分析方法 - Google Patents

酸化ハロゲン酸分析方法 Download PDF

Info

Publication number
WO2013024518A1
WO2013024518A1 PCT/JP2011/068456 JP2011068456W WO2013024518A1 WO 2013024518 A1 WO2013024518 A1 WO 2013024518A1 JP 2011068456 W JP2011068456 W JP 2011068456W WO 2013024518 A1 WO2013024518 A1 WO 2013024518A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
mobile phase
halogen
acid
analyzing
Prior art date
Application number
PCT/JP2011/068456
Other languages
English (en)
French (fr)
Inventor
渡辺 淳
恵子 松本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US14/238,228 priority Critical patent/US20140179018A1/en
Priority to JP2013528852A priority patent/JP5696787B2/ja
Priority to PCT/JP2011/068456 priority patent/WO2013024518A1/ja
Publication of WO2013024518A1 publication Critical patent/WO2013024518A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8872Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample impurities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient

Definitions

  • the present invention relates to a halogenated acid analysis method for analyzing halogenated acid such as perchloric acid, chloric acid, bromic acid and iodic acid with high sensitivity.
  • bromic acid has a problem of carcinogenicity.
  • regulations on the content of bromic acid in tap water have been strengthened in Japan. With such stricter regulations or growing concerns about pollution of the living environment such as river water, higher sensitivity and higher accuracy are required for quantitative analysis of halogen oxides.
  • halogen oxyhalide exists as a halogen oxyhalide ion in a solution such as water
  • Ion chromatography using an electric conductivity detector as a detector has been conventionally used for quantitative analysis (Patent Document 1, etc.). reference).
  • Ion chromatography is a separation method that uses a column with an ion exchange resin or the like as a stationary phase and an electrolyte solution as a mobile phase.
  • Various ion ions in the sample solution can exchange ions with the ion exchange resin ( Each ion is separated and eluted from the column according to the difference in the selection factor.
  • it is difficult to quantify a very small amount of halogen oxyhalic acid with such a conventional analysis method and the measurement accuracy is not sufficient.
  • pretreatment such as concentration for increasing the concentration of the analysis target component in the sample is essential, and it is difficult to increase the analysis throughput.
  • Non-Patent Document 1 proposes a method for analyzing halogen oxyacid by ion chromatography using an electrospray ionization (ESI) mass spectrometer as a detector.
  • FIG. 3 is a schematic configuration diagram of an analyzer based on the proposed method.
  • the mobile phase (potassium hydroxide) sucked from the mobile phase container 11 by the liquid feed pump 12 is sent to the ion exchange column 14 through the injector 13.
  • a sample containing bromine, bromic acid, chloric acid, perchloric acid or the like is introduced from the injector 13 into the mobile phase, these components are separated and eluted when passing through the ion exchange column 14.
  • a suppressor 15 is inserted between the ion exchange column 14 and the mass spectrometer 17 in order to avoid introduction of this into the mass spectrometer 17. .
  • the background noise can be reduced and the clogging of the ESI spray nozzle due to the salt derived from the mobile phase can be prevented.
  • methanol at a constant flow rate is added to the mobile phase in the methanol addition unit 16 in order to increase the ionization efficiency.
  • the mass spectrometer 17 acquires a mass chromatogram (extracted ion chromatogram) corresponding to each component by executing MRM measurement in the negative ionization mode.
  • the target component is utilized by utilizing the difference in mass-to-charge ratio. Only can be detected.
  • the mass spectrometer 17 and the suppressor 15 in combination the target component can be detected with higher sensitivity than in the case of detection using an electrical conductivity detector.
  • potassium hydroxide used as a mobile phase is a substance that requires careful handling as specified by the Japanese law as a deleterious substance.
  • the use of such a substance as a mobile phase is also an effective analytical task. It becomes an obstacle.
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is to make use of a general high-performance liquid chromatograph mass spectrometer that is simpler and more versatile than the above-described conventional method.
  • An object of the present invention is to provide a method for analyzing halogen oxyacid that can quantitatively analyze halogen oxyacid with high sensitivity and high accuracy.
  • the above-described combination of a mobile phase having a high non-volatile salt concentration, an ion exchange column, and a mass spectrometer can achieve high detection sensitivity, but it is inevitable to use a suppressor that removes unwanted ions.
  • the present inventor replaced the ion exchange column as a column, and with respect to hydrophobicity, the inventor has characteristics almost equal to or close to those of a general reverse phase column (reverse phase chromatography column), while having high ionicity.
  • the inventors came up with the use of a column with an ion exchange function so that polar substances can be retained.
  • the halogenated oxyacid analysis method according to the present invention has been made based on the above knowledge, and is a halogenated oxyacid analysis method for quantitatively analyzing a halogenated oxyacid in a sample, Using a liquid chromatograph mass spectrometer in which a high-performance liquid chromatography column and an atmospheric pressure ionization mass spectrometer are connected, and using a reverse phase column having an ion exchange function as the column, an organic acid or an organic acid salt buffer It is characterized in that a mixed liquid of a liquid and an organic solvent is used as a mobile phase to detect various components including halogen oxyacid in the sample after separation.
  • organic acids are acetic acid, formic acid, oxalic acid, lactic acid, tartaric acid, and citric acid. These are carboxylic acids containing trifluoroacetic acid and the like, and as the organic acid salt buffer, for example, ammonium formate buffer or ammonium acetate buffer may be used.
  • the organic solvent is not particularly limited, but typically acetonitrile can be used.
  • the mobile phase can be a mixed solution of ammonium formate buffer and acetonitrile. At that time, it is preferable to perform a gradient analysis in which the ammonium formate concentration is increased over time.
  • ammonium formate contains positively charged ammonium ions and negatively charged formate ions, and contributes to the action of retaining halogen oxide ions in the sample by the ion exchange function of the stationary phase in the column.
  • an organic acid salt buffer such as ammonium formate is a volatile salt, even if it is introduced into, for example, an ESI ion source of a mass spectrometer, problems such as precipitation hardly occur.
  • an organic solvent such as acetolitol is a polar solvent, which contributes to the hydrophobic interaction (that is, reverse phase function) of the stationary phase in the column, and further ionizes sample molecules efficiently in, for example, an ESI source of a mass spectrometer. It also contributes.
  • reverse phase column having an ion exchange function a column in which an ODS (OctaDecylSylyl) group and an ion acceptor are introduced on the surface and a carrier such as porous silica as a stationary phase can be used.
  • a column packed with a mixture of a carrier for reverse phase chromatography having an ODS group introduced on its surface and a carrier for ion chromatography (or ion exchange chromatography) such as an ion exchange resin can be used.
  • the column has both a component separation function by ion exchange and a component separation function in reverse phase mode, so that not only ions derived from halogen oxyacid, which is a strong ionic compound, but also nonionic compounds in the sample are separated. Is done.
  • the halogen oxyacid analysis method of the present invention it is not necessary to provide a suppressor between the column and the mass spectrometer, and it is also necessary to mix an organic solvent in the flow path between the suppressor and the mass spectrometer. Therefore, the analysis can be performed with an apparatus configuration of a very general high performance liquid chromatograph mass spectrometer. Therefore, even when analyzing substances other than halogen oxyacids, it is not necessary to change the apparatus configuration one by one, and the analysis work is not complicated, which is advantageous for improving the throughput. In addition, since a general mobile phase that is easy to handle can be used, the analysis work is also simple in this respect.
  • FIG. 1 is a schematic configuration diagram of an example of HPLC / MS for carrying out the analysis method according to the present invention.
  • the first liquid feed pump 2 sucks the mobile phase A from the first mobile phase container 1 and sends it out at a predetermined flow rate
  • the second liquid feed pump 4 sucks the mobile phase B from the second mobile phase container 3. Then, it is sent out at a predetermined flow rate.
  • Mobile phase A and mobile phase B are mixed by a mixer 5 and sent to a column 7 via an injector 6.
  • a liquid sample to be analyzed is injected into the mobile phase using a microsyringe or the like, and the liquid sample is sent to the column 7 along the flow of the mobile phase.
  • Various components in the sample are separated when passing through the column 7 and are eluted from the outlet of the column 7 with a time difference.
  • the eluate from the column 7 is sent to a mass spectrometer 8 as a detector and sprayed from the spray nozzle of the ESI ion source 81 into a substantially atmospheric pressure atmosphere, and the component molecules contained in the eluate are ionized.
  • the generated ions are converged by the ion lens 82, separated by the quadrupole mass filter 83 according to the mass-to-charge ratio, and reach the ion detector 84 to be detected.
  • the type of component contained in the eluate that is, the type of component used for mass spectrometry, changes with time.
  • the quadrupole mass filter 83 is driven in an ion selection (SIM) mode so as to detect ions having one or more preset mass-to-charge ratios.
  • SIM ion selection
  • the detection signal obtained by the ion detector 84 reflects each component, and a data chromatogram corresponding to the target component oxyhalic acid compound is created based on the detection signal by a data processing unit (not shown).
  • the target component is qualitatively and quantitatively determined based on the peak appearing in the chromatogram.
  • the ion source of the mass spectrometer 8 is not limited to the one based on ESI, but may be based on the atmospheric pressure chemical ionization method (APCI) or the atmospheric pressure photoionization method (APPI).
  • the mass separator may not be a quadrupole mass filter, and may be a time-of-flight mass analyzer, for example.
  • a mass spectrometer capable of MS / MS analysis or MS n analysis, such as a triple quadrupole mass spectrometer, may be used.
  • the column 7 and the mass spectrometer 8 are directly connected, and there is no apparatus for performing any treatment on the solution such as a suppressor in between.
  • the HPLC column 7 is not an ion exchange column, but a column packed with a stationary phase having both an ion exchange function and a component separation function by a reverse phase mode (that is, a component separation function by hydrophobic interaction).
  • the Scherzo C18 series manufactured by Intact see ⁇ URL: http://www.imtakt.com/jp/Products/Scherzo/index.htm>) can be used.
  • a column packed with a mixture of a carrier for reverse phase chromatography having an ODS group introduced on the surface thereof and a carrier for ion chromatography such as an ion exchange resin can be used.
  • an organic acid salt buffer such as ammonium formate buffer or ammonium acetate buffer
  • a mobile phase mixed with an organic solvent such as acetonitrile
  • a gradient analysis is performed in which the concentration of the organic acid salt buffer is changed over time.
  • a mixed phase of ammonium formate having a concentration sufficiently higher than the ammonium formate concentration of mobile phase A and acetonitrile is used as mobile phase A, and a mixture of mobile phase B is used as mobile phase B.
  • Gradient analysis is performed by gradually increasing the ratio from a low ratio, for example, 0%.
  • the halogenated halide ions in the sample are retained in the ion acceptor of the column 7 and further differ as the ammonium formate concentration increases. Due to the large difference in the retention capacity for the different types of halogen oxide ions, different types of halogen oxides are eluted from the column 7 with sufficient temporal differences. On the other hand, nonionic compounds contained in the sample are separated by the hydrophobic interaction of ODS. Therefore, the combination of the mobile phase and the column 7 separates various components contained in the sample, including different types of halogen oxyacids and nonionic compounds.
  • FIG. 2 shows a mass chromatogram obtained by measuring and detecting a perchloric acid standard product (10 ppb) and a bromic acid standard product (100 ppb) under the above analysis conditions. From FIG. 2, it can be seen that perchloric acid and bromic acid are detected with a sufficient holding time difference, and that a background that hinders quantification hardly appears. This is the result of the measurement data using a triple quadrupole mass spectrometer, which is due to the high selectivity of the MRM measurement of the triple quadrupole mass spectrometer. From this result, it can be confirmed that sufficient performance for quantifying bromic acid, perchloric acid, etc. contained in tap water or river water can be ensured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 臭素酸、過塩素酸などの酸化ハロゲン酸を定量分析するために、高速液体クロマトグラフのカラム7の出口に質量分析計8を接続したHPLC/MSを用い、カラム7にはイオン交換機能を持たせた逆相カラムを使用するとともに、移動相には蟻酸アンモニウム緩衝液とアセトニトリルの混合液を使用し、蟻酸アンモニウム/アセトニトリルの濃度を上げるグラジエント分析を行う。それによって、サプレッサを用いない汎用のHPLC/MSの装置構成によって、試料に含まれる各種酸化ハロゲン酸とそれ以外の成分とを適切に分離して高感度で検出することができる。

Description

酸化ハロゲン酸分析方法
 本発明は、過塩素酸、塩素酸、臭素酸、ヨウ素酸などの酸化ハロゲン酸を高感度で分析する酸化ハロゲン酸分析方法に関する。
 水道水に対するオゾン高度処理の普及に伴って、その副生成物として生じる臭素酸、過塩素酸などの酸化ハロゲン酸が健康に及ぼす影響が懸念されている。特に臭素酸は発ガン性が問題となっており、近年、我が国では、水道水中の臭素酸の含有量の規制が強化されている。こうした規制の強化、或いは河川水などの生活環境の汚染に対する懸念の高まりなどに伴い、酸化ハロゲン酸の定量分析にはますます高感度化や高精度化が求められている。
 酸化ハロゲン酸は水等の溶液中で酸化ハロゲン酸イオンとして存在しているため、定量分析には、従来、電気伝導度検出器を検出器としたイオンクロマトグラフィが用いられている(特許文献1等参照)。イオンクロマトグラフィは、イオン交換樹脂等を固定相としたカラムを用いるとともに、電解質溶液を移動相とした分離手法であり、試料溶液中に存在する種々のイオンの、イオン交換樹脂とのイオン交換能(選択係数)の差に従って各イオンは分離されてカラムから溶出する。しかしながら、こうした従来の分析手法ではごく微量の酸化ハロゲン酸を定量することが難しく、その測定精度も十分ではない。また、検出感度を上げるには試料中の分析対象成分濃度を高めるための濃縮等の前処理が必須であり、分析のスループットを上げることが難しい。
 こうした問題に対し、検出器としてエレクトロスプレイイオン化(ESI)質量分析計を用いたイオンクロマトグラフィによる酸化ハロゲン酸分析方法が非特許文献1に提案されている。図3は該提案法に基づく分析装置の概略構成図である。
 この装置では、送液ポンプ12により移動相容器11から吸引された移動相(水酸化カリウム)は、インジェクタ13を通してイオン交換カラム14へと送られる。インジェクタ13から移動相中に臭素、臭素酸、塩素酸、過塩素酸等を含む試料が導入されると、これら各成分はイオン交換カラム14を通過する際に分離されて溶出する。移動相は高濃度の不揮発性塩を含むため、これが質量分析計17に導入されることを避けるために、イオン交換カラム14と質量分析計17との間にはサプレッサ15が挿設されている。このサプレッサ15により移動相中のイオンを除去することで、バックグラウンドノイズを低減するとともに析出する移動相由来の塩によるESIスプレイノズルの目詰まりを防止することができる。ただし、サプレッサ15を通過することで溶液の極性が大きくなってイオン化効率が下がるおそれがあるため、イオン化効率を上げるためにメタノール添加部16において一定流量のメタノールを移動相に添加する。質量分析計17では負イオン化モードでMRM測定を実行することにより、各成分に対応したマスクロマトグラム(抽出イオンクロマトグラム)を取得する。
 上述のように検出器として質量分析計を使用することにより、イオン交換カラムで十分に分離しきれない夾雑物が目的成分と重なって溶出した場合でも、質量電荷比の相違を利用して目的成分のみを検出することができる。また、質量分析計17とサプレッサ15とを併用することによって、電気伝導度検出器を用いて検出する場合に比べて高い感度で目的成分を検出することができる。
 しかしながら、上記の分析方法では、イオン交換カラム14と質量分析計17との間にサプレッサ15を挿設する必要があるのみならず、サプレッサ15から質量分析計17への流路中にメタノールなどの有機溶媒を所定流量で追加する必要があり、現在、広く普及している通常の高速液体クロマトグラフ質量分析計(HPLC/MS)とは装置構成を変更しなければならない。例えば水道水や河川水などの検査を行う際には、酸化ハロゲン酸だけでなくそのほかの様々な物質に対する定量分析を行うことになるが、酸化ハロゲン酸を分析するときにのみ装置構成を変更するような煩雑な作業を要すると、分析効率を向上させる上で大きな障害となる。また、移動相として用いられる水酸化カリウムは我が国の法律で劇物に指定されているように取扱いに注意を要する物質であり、こうした物質を移動相として使用することも効率的な分析作業には障害となる。
特開2002-249517号公報
「Agilent6410による臭素及び酸化ハロゲン酸の高感度分析」、[online]、アジレント・テクノロジー株式会社、 [平成23年8月8日検索]、インターネット<URL : http://www.chem-agilent.com/cimg/LCMS-200809TK-001.pdf>
 本発明は上記課題を解決するためになされたものであり、その主な目的は、上記の従来手法よりも簡便で、汎用性の高い一般的な高速液体クロマトグラフ質量分析計を利用して高感度、高精度で酸化ハロゲン酸を定量分析することができる酸化ハロゲン酸分析方法を提供することにある。
 上述した、不揮発性塩濃度の高い移動相、イオン交換カラム、及び質量分析計の組み合わせは高い検出感度を達成できるものの、不所望のイオンを除去するサプレッサの使用が避けられない。サプレッサを排除するためには、高濃度の不揮発性塩が添加されない移動相を使用する必要がある。そこで、本願発明者は、カラムとして、イオン交換カラムに代えて、疎水性に関しては一般的な逆相カラム(逆相クロマトグラフィ用カラム)とほぼ同程度又はそれに近い特性を有しつつ、イオン性高極性物質を保持できるようにイオン交換機能を持たせたカラムを使用することに想到した。そして、そうしたカラムを用いつつ、移動相等の分析条件に関する実験的な検討を繰り返し、移動相として有機酸塩緩衝液などと有機溶媒の混合液を用いることで、臭素酸、過塩素酸などの酸化ハロゲン酸を的確に分離し、且つ高い検出感度と定量性とを達成できることを見いだした。
 本発明に係る酸化ハロゲン酸分析方法は上記のような知見に基づいてなされたものであり、試料中の酸化ハロゲン酸を定量分析する酸化ハロゲン酸分析方法であって、
 高速液体クロマトグラフィのカラムと大気圧イオン化質量分析計とを接続した液体クロマトグラフ質量分析計を使用し、前記カラムとしてイオン交換機能を持たせた逆相カラムを用いるとともに、有機酸又は有機酸塩緩衝液と有機溶媒との混合液を移動相として、試料中の酸化ハロゲン酸を含む各種成分を分離した上で検出することを特徴としている。
 一般的に、有機酸とは、酢酸、蟻酸、シュウ酸、乳酸、酒石酸、クエン酸。トリフルオロ酢酸などを含むカルボン酸類のことであり、上記有機酸塩緩衝液としては、例えば、蟻酸アンモニウム緩衝液や酢酸アンモニウム緩衝液を用いればよい。一方、有機溶媒も特に限定されないが、典型的にはアセトニトリルを用いることができる。
 即ち、本発明の一態様として、移動相は蟻酸アンモニウム緩衝液とアセトニトリルとの混合液とすることができる。また、その際に、時間経過に伴い蟻酸アンモニウム濃度を上昇させるグラジエント分析を行うようにするとよい。
 例えば蟻酸アンモニウムは、正電荷のアンモニウムイオンと負電荷の蟻酸イオンとを含み、カラム中の固定相のイオン交換機能による試料中の酸化ハロゲン酸イオンを保持する作用に寄与する。また蟻酸アンモニウム等の有機酸塩緩衝液は揮発性塩であるから、質量分析計の例えばESIイオン源に導入されても析出などの問題を生じにくい。一方、アセトリトリル等の有機溶媒は極性溶媒であり、カラム中の固定相の疎水性相互作用(つまり逆相の機能)に寄与し、さらに質量分析計の例えばESI源において試料分子を効率良くイオン化するのにも寄与する。
 上記「イオン交換機能を持たせた逆相カラム」には各種の態様が考え得る。具体的には例えば、表面にODS(OctaDecylSilyl)基とイオン受容体とを導入した、多孔性シリカ等の担体を固定相としたカラムを利用することができる。また、例えば表面にODS基を導入した逆相クロマトグラフィ用の担体とイオン交換樹脂等のイオンクロマトグラフィ(又はイオン交換クロマトグラフィ)用担体との混合物を充填したカラムを利用することもできる。いずれも、カラムはイオン交換による成分分離機能と逆相モードの成分分離機能とを併せ持つため、試料中の強イオン性化合物である酸化ハロゲン酸由来のイオンのみならず、非イオン性の化合物も分離される。
 本発明に係る酸化ハロゲン酸分析方法によれば、カラムと質量分析計との間にサプレッサを設ける必要がなく、またサプレッサと質量分析計との間の流路中に有機溶媒を混入させる必要もなくなるので、ごく一般的な高速液体クロマトグラフ質量分析計の装置構成で分析が行える。そのため、酸化ハロゲン酸以外の物質の分析を併せて行う場合でも、装置構成を一々変更する必要がなく、分析作業が煩雑にならずスループットを向上させるのに有利である。また、移動相も取扱いが容易な一般的なものを使用できるので、その点でも分析作業が簡便である。
本発明に係る酸化ハロゲン酸分析方法を実施するための高速液体クロマトグラフ質量分析計(HPLC/MS)の一実施例の概略構成図。 本実施例のHPLC/MSによる分析例を示す図。 酸化ハロゲン酸を分析するための従来のイオンクロマトグラフ質量分析計の概略構成図。
 本発明に係る酸化ハロゲン酸分析方法の一実施形態を説明する。図1は本発明に係る分析方法を実施するためのHPLC/MSの一例の概略構成図である。
 図1において、第1送液ポンプ2は第1移動相容器1から移動相Aを吸引して所定流量で送出し、第2送液ポンプ4は第2移動相容器3から移動相Bを吸引して所定流量で送出する。移動相Aと移動相Bとは混合器5で混合され、インジェクタ6を経てカラム7に送出される。インジェクタ6では分析対象である液体試料がマイクロシリンジなどを用いて移動相中に注入され、液体試料は移動相の流れに乗ってカラム7に送り込まれる。試料中の各種成分はカラム7を通過する際に分離され、時間差がついてカラム7出口から溶出する。
 カラム7からの溶出液は検出器としての質量分析計8に送られ、ESIイオン源81のスプレイノズルから略大気圧雰囲気中に噴霧され、溶出液に含まれる成分分子はイオン化される。生成されたイオンはイオンレンズ82で収束され、四重極マスフィルタ83で質量電荷比に応じて分離されて、イオン検出器84に到達し検出される。時間の経過に伴って溶出液中に含まれる成分の種類、つまり質量分析に供される成分の種類は変化する。四重極マスフィルタ83は予め設定された1乃至複数の質量電荷比のイオンを検出するようにイオン選択(SIM)モードで駆動される。したがって、イオン検出器84で得られる検出信号は各成分を反映したものとなり、図示しないデータ処理部では、検出信号に基づいて、目的成分である酸化ハロゲン酸化合物に対応したマスクロマトグラムが作成され、該クロマトグラムに現れるピークに基づいて目的成分の定性、定量が行われる。
 なお、質量分析計8のイオン源はESIによるものに限らず、大気圧化学イオン化法(APCI)や大気圧光イオン化法(APPI)によるものでもよい。また、質量分離器は四重極マスフィルタでなくてもよく、例えば飛行時間型質量分析器などでもよい。また、三連四重極型質量分析計のように、MS/MS分析又はMSn分析が可能な質量分析計でもよい。
 本発明に係る酸化ハロゲン酸分析方法に使用されるHPLC/MSでは、カラム7と質量分析計8とは直結され、その間にサプレッサなどの溶液に対する何らかの処理を行う装置は設けられない。また、HPLCのカラム7はイオン交換カラムではなく、イオン交換機能と逆相モードによる成分分離機能(つまり疎水性相互作用による成分分離の機能)とを併せ持つ固定相が充填されたカラムが用いられる。具体的には例えば、インタクト社製のScherzo C18シリーズ(<URL :http://www.imtakt.com/jp/Products/Scherzo/index.htm>参照)が利用可能である。これは、表面がイオン交換機能を有する官能基(イオン受容体)とODSとで修飾された多孔性シリカが固定相として充填されたカラムである。また、それ以外にも、例えば表面にODS基を導入した逆相クロマトグラフィ用の担体とイオン交換樹脂等のイオンクロマトグラフィ用担体との混合物を充填したカラムを利用することもできる。
 上記カラムにおいて、強イオン性化合物である酸化ハロゲン酸のイオンのほか、塩基性物質や非イオン性物質を分離するために、例えば蟻酸アンモニウム緩衝液や酢酸アンモニウム緩衝液等の有機酸塩緩衝液とアセトニトリル等の有機溶媒とを混合した移動相を利用する。ただし、臭素酸や過塩素酸など、異なる酸化ハロゲン酸を適切に分離するために、有機酸塩緩衝液の濃度を時間経過に伴って変化させるグラジエント分析を実施する。そこで、この例、移動相Aとして所定濃度の蟻酸アンモニウム、移動相Bとして移動相Aの蟻酸アンモニウム濃度よりも十分に高い濃度の蟻酸アンモニウムとアセトニトリルとの混合液を使用し、移動相Bの混合比率を低比率、例えば0%から徐々に増加させることでグラジエント分析を行う。
 揮発性塩である蟻酸アンモニウムに由来する蟻酸イオン、アンモニウムイオンの存在の下で、試料中の酸化ハロゲン酸イオンはカラム7のイオン受容体に保持され、さらに、蟻酸アンモニウム濃度の上昇に伴って異なる種類の酸化ハロゲン酸イオンに対する保持能の差異が大きくなることで、異なる種類の酸化ハロゲン酸は時間的に十分な差異を以てカラム7から溶出する。一方、試料に含まれる非イオン性化合物はODSの疎水性相互作用によって分離される。したがって、上記移動相とカラム7との組み合わせにより、異なる種類の酸化ハロゲン酸のほか、非イオン性化合物を含め、試料に含まれる様々な成分が分離される。アセトニトリルが移動相に含まれない状態では、移動相の極性は高くESIイオン源81でのイオン化効率はあまり高くないが、アセトニトリルが移動相に添加されて極性が下がるとESIイオン源81でのイオン化効率は向上する。それによって、質量分析計8では、カラム7からの溶出液中に含まれる各種成分を効率良くイオン化して、高い感度で分析することができる。また、蟻酸アンモニウムは揮発性であるため、ESIイオン源81に導入されても目詰まり等を生じるおそれは小さい。
 図1に示したHPLC/MSを用いた酸化ハロゲン酸の具体的な分析例について説明する。
 分析条件は次の通りである。
  ・装置:LCMS-8030(島津製作所製)
  ・カラム:インタクト社製 Scherzo SM-C18(内径2.0mm、長さ50mm、充填物粒子径3μm)
  ・移動相A:1mM 蟻酸アンモニウム緩衝液
  ・移動相B:100mM 蟻酸アンモニウム緩衝液+アセトニトリル(混合比 1:9)
  ・カラム流速:0.25mL/min
  ・グラジエント時間プログラム:0%(0分)-60%(6.0分)移動相B
  ・カラム温度:35℃
 また、質量分析計8でのイオン化法はネガティブイオンモードである。
 上記分析条件の下で、過塩素酸の標準品(10ppb)及び臭素酸の標準品(100ppb)を試料として測定し、検出して得られたマスクロマトグラムを図2に示す。図2から、過塩素酸と臭素酸とが十分な保持時間差を以て検出されていることや、定量に支障となるようなバックグラウンドが殆ど現れないこと、が分かる。これは、本測定データが三連四重極型質量分析計を用いた結果であり、三連四重極型質量分析計のMRM測定の選択性の高さによるものである。この結果から、水道水や河川水などに含まれる臭素酸、過塩素酸などを定量するのに十分な性能を確保できることが確認できる。
 なお、上記実施例は本発明の一例であって、本発明の趣旨の範囲で適宜修正や変更、追加を行っても本願特許請求の範囲に包含されることは明らかである。
1…第1移動相容器
2…第1送液ポンプ
3…第2移動相容器
4…第2送液ポンプ
5…混合器
6…インジェクタ
7…カラム
8…質量分析計
81…ESIイオン源
82…イオンレンズ
83…四重極マスフィルタ
84…イオン検出器

Claims (3)

  1.  試料中の酸化ハロゲン酸を定量分析する酸化ハロゲン酸分析方法であって、
     高速液体クロマトグラフィのカラムと大気圧イオン化質量分析計とを接続した液体クロマトグラフ質量分析計を使用し、前記カラムとしてイオン交換機能を持たせた逆相カラムを用いるとともに、有機酸又は有機酸塩緩衝液と有機溶媒との混合液を移動相として、試料中の酸化ハロゲン酸を含む各種成分を分離した上で検出することを特徴とする酸化ハロゲン酸分析方法。
  2.  請求項1に記載の酸化ハロゲン酸分析方法であって、
     前記カラムは表面にODS基とイオン受容体とを導入した担体を固定相としたものであることを特徴とする酸化ハロゲン酸分析方法。
  3.  請求項1又は2に記載の酸化ハロゲン酸分析方法であって、
     前記移動相は蟻酸アンモニウム緩衝液とアセトニトリルとの混合液であり、時間経過に伴い蟻酸アンモニウム濃度を上昇させるグラジエント分析を行うことを特徴とする酸化ハロゲン酸分析方法。
PCT/JP2011/068456 2011-08-12 2011-08-12 酸化ハロゲン酸分析方法 WO2013024518A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/238,228 US20140179018A1 (en) 2011-08-12 2011-08-12 Method for analyzing halogen oxoacids
JP2013528852A JP5696787B2 (ja) 2011-08-12 2011-08-12 酸化ハロゲン酸分析方法
PCT/JP2011/068456 WO2013024518A1 (ja) 2011-08-12 2011-08-12 酸化ハロゲン酸分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068456 WO2013024518A1 (ja) 2011-08-12 2011-08-12 酸化ハロゲン酸分析方法

Publications (1)

Publication Number Publication Date
WO2013024518A1 true WO2013024518A1 (ja) 2013-02-21

Family

ID=47714861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068456 WO2013024518A1 (ja) 2011-08-12 2011-08-12 酸化ハロゲン酸分析方法

Country Status (3)

Country Link
US (1) US20140179018A1 (ja)
JP (1) JP5696787B2 (ja)
WO (1) WO2013024518A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067658A (ja) * 2015-09-30 2017-04-06 東ソー株式会社 イオン化合物のイオン変換方法及びイオン変換装置
JP2017067660A (ja) * 2015-09-30 2017-04-06 東ソー株式会社 イオン化合物のイオン変換方法及びイオン変換装置
JP2017067661A (ja) * 2015-09-30 2017-04-06 東ソー株式会社 イオン化合物のイオン変換方法及びイオン変換装置
EP3141894A4 (en) * 2014-05-08 2017-11-15 Showa Denko K.K. Method, column, and device for analyzing organic acid by mass spectrometry
CN109154291A (zh) * 2016-09-26 2019-01-04 株式会社岛津制作所 切换阀、二元泵以及具备该二元泵的液相色谱仪
US20220026404A1 (en) * 2018-11-28 2022-01-27 Shimadzu Corporation Analyzing method for azo compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249517A (ja) * 2000-12-19 2002-09-06 Showa Denko Kk 多孔質重合体粒子、耐アルカリ性陰イオン交換体、その製造方法、イオンクロマトグラフィー用カラム、及び陰イオン測定方法
JP2006242944A (ja) * 2005-02-04 2006-09-14 Showa Denko Kk イオンクロマトグラフィー用充填剤
WO2010137132A1 (ja) * 2009-05-27 2010-12-02 株式会社島津製作所 陰イオン測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249517A (ja) * 2000-12-19 2002-09-06 Showa Denko Kk 多孔質重合体粒子、耐アルカリ性陰イオン交換体、その製造方法、イオンクロマトグラフィー用カラム、及び陰イオン測定方法
JP2006242944A (ja) * 2005-02-04 2006-09-14 Showa Denko Kk イオンクロマトグラフィー用充填剤
WO2010137132A1 (ja) * 2009-05-27 2010-12-02 株式会社島津製作所 陰イオン測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUAKI ITO ET AL.: "Enhanced Detection of Iodide in Seawater by Ion Chromatography Using an ODS Column Coated with Cetyltrimethylammonium", ANALYTICAL SCIENCES, vol. 17, no. 5, May 2001 (2001-05-01), pages 579 - 581 *
T.TAKEUCHI ET AL.: "Indirect Fluorometric Detection in Micro High- Performance Liquid Chromatography", CHROMATOGRAPHIA, vol. 25, no. 12, December 1988 (1988-12-01), pages 1072 - 1074 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141894A4 (en) * 2014-05-08 2017-11-15 Showa Denko K.K. Method, column, and device for analyzing organic acid by mass spectrometry
JP2017067658A (ja) * 2015-09-30 2017-04-06 東ソー株式会社 イオン化合物のイオン変換方法及びイオン変換装置
JP2017067660A (ja) * 2015-09-30 2017-04-06 東ソー株式会社 イオン化合物のイオン変換方法及びイオン変換装置
JP2017067661A (ja) * 2015-09-30 2017-04-06 東ソー株式会社 イオン化合物のイオン変換方法及びイオン変換装置
CN109154291A (zh) * 2016-09-26 2019-01-04 株式会社岛津制作所 切换阀、二元泵以及具备该二元泵的液相色谱仪
CN109154291B (zh) * 2016-09-26 2019-12-13 株式会社岛津制作所 切换阀、二元泵以及具备该二元泵的液相色谱仪
US20220026404A1 (en) * 2018-11-28 2022-01-27 Shimadzu Corporation Analyzing method for azo compound

Also Published As

Publication number Publication date
JPWO2013024518A1 (ja) 2015-03-05
JP5696787B2 (ja) 2015-04-08
US20140179018A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5696787B2 (ja) 酸化ハロゲン酸分析方法
Mandal et al. Detection of protein from detergent solutions by probe electrospray ionization mass spectrometry (PESI‐MS)
Medina‐Casanellas et al. Transient isotachophoresis in on‐line solid phase extraction capillary electrophoresis time‐of‐flight‐mass spectrometry for peptide analysis in human plasma
Chen et al. Application of nanoring amino-functionalized magnetic polymer dispersive micro-solid-phase extraction and ultra fast liquid chromatography–tandem mass spectrometry in dicyandiamide residue analysis of powdered milk
Somsen et al. On-line micellar electrokinetic chromatography–mass spectrometry: Feasibility of direct introduction of non-volatile buffer and surfactant into the electrospray interface
Wu et al. Simultaneous determination of oxathiapiprolin and two metabolites in fruits, vegetables and cereal using a modified quick, easy, cheap, effective, rugged, and safe method and liquid chromatography coupled to tandem mass spectrometry
Jeong et al. Capillary electrophoresis mass spectrometry with sheathless electrospray ionization for high sensitivity analysis of underivatized amino acids
Rodríguez‐Gonzalo et al. Determination of endocrine disruptors in honey by CZE‐MS using restricted access materials for matrix cleanup
CN106596751B (zh) 一种氯代消毒副产物二氯乙酰胺和三氯乙酰胺的高效液相色谱-电喷雾质谱检测方法
Buiarelli et al. Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol by HPLC–MS–MS and GC–MS
Sano et al. Analysis of triorganotin compounds in water samples by hydrophilic interaction liquid chromatography–electrospray ionization-mass spectrometry
Matějíček et al. Online molecularly imprinted solid‐phase extraction coupled to liquid chromatography‐tandem mass spectrometry for the determination of hormones in water and sediment samples
KR20120014736A (ko) 액체크로마토그래피-질량분석기를 이용한 혈장 중의 아스피린의 분석방법
Vlčková et al. Determination of amphetamine and methadone in human urine by microextraction by packed sorbent coupled directly to mass spectrometry: an alternative for rapid clinical and forensic analysis
Yamamoto et al. Application of partially fluorinated carboxylic acids as ion-pairing reagents in LC/ESI-MS
JP2009139177A (ja) アミノグリコシド系抗生物質の分析方法
Hoegg et al. Proof-of-concept: Interfacing the liquid sampling-atmospheric pressure glow discharge ion source with a miniature quadrupole mass spectrometer towards trace metal analysis in cell culture media
Zhang et al. Study of automated mass spectral deconvolution and identification system (AMDIS) in pesticide residue analysis
Bernsmann et al. Quick screening of priority β-agonists in urine using automated TurboFlow™-LC/Exactive mass spectrometry
Ye et al. Solid‐phase extraction‐field‐amplified sample injection coupled with CE‐ESI‐MS for online pre‐concentration and quantitative analysis of brain‐gut peptides
Zhang et al. A highly sensitive method for analyzing marker phytoplankton pigments: Ultra‐high‐performance liquid chromatography‐tandem triple quadrupole mass spectrometry
Tao et al. Evaluation of matrix solid‐phase dispersion extraction for 11 β‐agonists in swine feed by liquid chromatography with electrospray ionization tandem mass spectrometry
Zachariadis et al. Use of modified Doehlert‐type experimental design in optimization of a hybrid electrospray ionization ion trap time‐of‐flight mass spectrometry technique for glutathione determination
US10436794B1 (en) Protocol for preconcentration and quantification of microcystins using LC-MS
Shen et al. Development of a PRiME cartridge purification method for rapid determination of malachite green and leucomalachite green in Chinese softshell turtle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14238228

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11870876

Country of ref document: EP

Kind code of ref document: A1