WO2013023552A1 - 超低水温蒸发器及具有所述蒸发器的热泵机组 - Google Patents

超低水温蒸发器及具有所述蒸发器的热泵机组 Download PDF

Info

Publication number
WO2013023552A1
WO2013023552A1 PCT/CN2012/079915 CN2012079915W WO2013023552A1 WO 2013023552 A1 WO2013023552 A1 WO 2013023552A1 CN 2012079915 W CN2012079915 W CN 2012079915W WO 2013023552 A1 WO2013023552 A1 WO 2013023552A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
evaporator
ultra
heat exchange
heat
Prior art date
Application number
PCT/CN2012/079915
Other languages
English (en)
French (fr)
Inventor
王全龄
Original Assignee
Wang Quanling
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Quanling filed Critical Wang Quanling
Publication of WO2013023552A1 publication Critical patent/WO2013023552A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box

Definitions

  • the present invention relates to a water source evaporation heat exchange device, and more particularly to a low temperature evaporator capable of extracting heat of an ultra-low water temperature and a heat pump unit having the same.
  • the above heat pump system cannot be heated normally, so all the above projects will die if the water temperature in winter is below 5 °C. Even Sweden, the world's best source of seawater source heat pumps, can only extend the seawater pipelines and water intake points to a depth of a few kilometers to the sea surface, and extract 7 °C seawater. For seawater temperatures below 5 °C, Swedish experts Also helpless. In summary, the temperature of rivers, rivers, lakes, and seawater in winter is often less than 5. C. At present, the water source heat pump units produced by the prior art in the world are all products with a water temperature of 5 °C, and the water source heat pump products with a water temperature lower than 5 °C are blank.
  • the general heat pump unit includes isolated heat exchanger A, evaporator B, condenser C, refrigeration compressor D and expansion valve E.
  • I have long-term and in-depth research on the technology of "low temperature water source heat pump unit".
  • the earlier patented technology only solved the antifreeze problem from the second heat exchanger A to the B-time of the heat pump unit shown in Fig. 1, but did not solve the isolation heat exchanger once.
  • Antifreeze problems between rivers, rivers, lakes and seas In other words, when the water temperature of the river, river, lake and sea water is below 5 ° ⁇ , the temperature difference between the inlet and outlet water is 5 due to the design of the conventional heat exchanger.
  • the temperature difference between the inlet and outlet water is 5 °C.
  • the water After the water enters the evaporator, the water is installed by the water inside the evaporator.
  • the water retaining baffle forcefully completes the flow and heat transfer in the multi-water process.
  • the purpose is to enhance the heat transfer effect and reduce the water flow.
  • the minimum flow is 2, generally 8 processes.
  • the present invention is directed to the above problems, and provides an ultra-low water temperature evaporator adapted to a low-temperature water source and a heat pump unit having the same, which can solve the problem that the existing heat pump unit loses heat exchange efficiency when the inlet water temperature is lower than 5 °C. problem.
  • the ultra low water temperature evaporator of the present invention is a single water flow type evaporating heat exchanger comprising an evaporator outer casing, an evaporating heat exchange tube, a heat exchange tube sheet, an evaporator head, A water baffle, an inlet pipe, an outlet pipe, a refrigerant supply pipe, and a refrigerant return pipe.
  • the working mode of the ultra-low water temperature evaporator of the present invention is: after the water source water enters the evaporator through the inlet pipe, the water is evenly distributed through the water retaining plate, and then flows into the effluent through the pipe of the evaporating heat exchange tube in one direction.
  • another mode of operation of the ultra low water temperature evaporator of the present invention is: water source water is fed The tube enters the evaporator, passes through the water retaining plate, and flows out of the tube of the evaporating heat exchange tube to the outlet pipe.
  • the temperature difference between the inlet water source water temperature and the outlet water temperature of the evaporator is 0. 1 ⁇ 5 °C.
  • the temperature difference between the inlet water source water temperature and the outlet water temperature of the evaporator is 0. 5 °C.
  • the evaporation heat exchange tube, the evaporator casing, the heat exchange tube sheet, the evaporator head, the water deflector, the inlet pipe and the outlet pipe of the ultra low water temperature evaporator of the present invention are salt-tolerant or other chemical elements.
  • the corrosive material is made so that the evaporator can be used for seawater or chemical plant sewage water sources.
  • the present invention also provides a heat pump unit including an isolating heat exchanger, a condenser, a refrigerant compressor, an expansion valve, and the above-described ultra low water temperature evaporator.
  • the ultra-low water temperature evaporator of the invention changes the plurality of flow heat exchange modes of the original low-temperature evaporator, adopts a single-flow heat exchange, and avoids the problem that the water is lost due to freezing in the heat exchange process of the evaporator.
  • the simple design enables the heat pump unit to work under low water temperature conditions, making it more widely used and improving the efficiency of water energy utilization.
  • FIG. 1 is a structural diagram of a prior art heat pump unit
  • FIG. 2 is a schematic structural view showing an embodiment of an ultra-low water temperature evaporator of the present invention
  • FIG. 3 is a schematic structural view showing another embodiment of the ultra-low water temperature evaporator of the present invention.
  • the ultra-low water temperature evaporator of one embodiment of the present invention comprises an evaporation heat exchange tube 2 horizontally disposed in the casing by an evaporator outer casing 1, and the evaporating heat exchange tube 2 is fixedly connected or connected.
  • the heat exchange tube sheet 3 at both ends of the outer casing 1 is spliced or flanged at both ends of the evaporator outer casing 1
  • the head 4 is equipped with a water source inlet pipe 6 and an outlet pipe 7 on the head 4, a water stop plate 5 is installed in the inlet pipe 6 side and the head 4, and a refrigerant supply pipe 8 is provided in the lower portion of the outer casing 1.
  • a refrigerant return pipe 9 is disposed above it.
  • the working principle of the ultra-low water temperature evaporator shown in Fig. 2 is: After the water source water enters the evaporator from the inlet pipe 6, the water beam is blocked by the water baffle 5 to prevent short-circuiting of the water, and the water is dispersed into a uniform water flow, It flows to the outlet pipe 7 through the inside of each evaporating heat transfer tube 2, and then flows out of the evaporator from the outlet pipe 7.
  • the refrigerant liquid enters the evaporator from the liquid supply pipe 8, and evaporates and exchanges heat with the water source water in the pipe through the outer wall of the evaporation heat exchange pipe 2.
  • the refrigerant gas formed by the evaporation is discharged from the refrigerant return pipe 9 and sucked by the compressor.
  • the temperature of the seawater is 2. 5 ° C
  • the temperature of the seawater of the outlet is 3. 0 ° C, that is, the temperature of the seawater, and the temperature of the seawater 5 °C ⁇
  • the temperature difference between the inlet and outlet water source is 0. 5 °C.
  • Fig. 3 is a schematic view showing the structure of an ultra-low water temperature evaporator according to another embodiment of the present invention.
  • the evaporating heat exchange tube 2' constitutes a U-shaped tube structure, and the water source water enters the inlet pipe 6 and forms a water flow outside the tube of the evaporating heat exchange tube 2', and the refrigerant liquid enters from the liquid supply pipe 8
  • the water flow outside the tube evaporates and exchanges with the refrigerant in the tube, and the water is discharged from the outlet pipe 7.
  • the heat exchange tube of the evaporator of the above embodiment has a horizontal structure. It should be understood that the above-mentioned evaporating heat exchange tube can also be formed into a standing structure or other structure, and the source water can be injected from below or from the upper end, specifically Not described.
  • Another embodiment of the present invention provides a heat pump unit including an isolating heat exchanger, a condenser, a refrigerant compressor, an expansion valve, and the above-described ultra low water temperature evaporator.
  • the heat pump unit can be widely applied to the heat extraction and utilization project of water source water temperature of rivers, rivers, lakes and seas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种超低水温蒸发器以及具有此蒸发器的热泵机组,热泵机组用于提取低温水源中的热量。超低水温蒸发器包括蒸发器外壳体(1)、蒸发换热管(2)、换热管管板(3)、蒸发器封头(4)、挡水板(5)、进水管(6)、出水管(7)、制冷剂供液管(8)以及制冷剂回气管(9),蒸发器工作时,水源水由进水管(6)进入蒸发器之后,经挡水板(5),以单一方向水流程经蒸发换热管(2)流向出水管(7)。该超低水温蒸发器,改变原有低温蒸发器的多个流程流动换热方式,采用单流程换热,避免水在蒸发器换热过程中结冰导致丧失换热功能的问题,使具有此蒸发器的热泵机组能够在低水温的环境下工作,应用范围更加广泛,提高水能源利用的效率。

Description

超低水温蒸发器及具有所述蒸发器的热泵机组 技术领域
本发明涉及一种水源蒸发换热装置, 特别涉及一种可以提取超低水温的热 量的低温蒸发器以及具有此蒸发器的热泵机组。
背景技术
为了节能减排, 世界各国都倾力将可再生能源开发利用转向江、 河、 湖、 海水方向上, 力求从江、 河、 湖、 海水中提取低温热量, 为了有效地提取上述 水温中的低温热量, 需要一种低水温热泵机组, 本专利申请的发明人在 2001年 申请了一种 "低温水源热泵机组" 的中国发明专利, 专利号为 ZL01226888. 7。 此专利所公开的低温水源热泵机组已被大量应用于国内多个江、 河、 湖、 海水 源热泵工程的热泵***中, 然而这些工程都面临一个难题, 即当水温低于 5 °C 以下时, 上述热泵***无法正常供热采暖, 因此凡是冬季水温低于 5 °C以下时 上述工程全部夭折。 就连号称世界海水源热泵最出色的瑞典, 也只能将抽取海 水管道和取水点延伸至海面几公里深处, 抽取 7 °C的海水, 对于海水温度低于 5 °C的情况, 瑞典专家也束手无策。 综上所述, 冬季时江、 河、 湖、 海水的水温 常常低于 5。C, 而目前世界上现有技术生产的水源热泵机组均是水温 5 °C的产 品, 水温低于 5 °C的水源热泵产品为空白。 然而究其关键是世界目前尚没有适 应水温低于 5 °C的蒸发器产品, 一旦攻破了适应低于 5 °C水温的蒸发器, 那么适 用于低于 5 °C水温的热泵机组便成为现实。
目前, 如图 1所示, 一般的热泵机组包括隔离换热器 A、 蒸发器 B、 冷凝器 C、 制冷压缩机 D以及膨胀阀 E, 本人对 "低温水源热泵机组"技术进行长期深 入研究和反复试验, 发现早先的专利技术只解决了如图 1所示的热泵机组的从 隔离换热器 A二次至蒸发器 B-次之间的防冻问题, 而没有解决隔离换热器 1次 与江、 河、 湖、 海水间的防冻问题。 换句话说当江、 河、 湖、 海水水温低于 5 °〇以下时, 由于一般常规换热器设计标准进出水温差为 5。C, 当隔离换热器一 次进入 5 °C以下低温水时, 由于 5 °C换热温差即出水也就为 0 °C, 已接近结冰点 水温, 那么在 5 °C以下时, 比如当进水温度是 3 °C, 那么出水就是一 2 °C, 已经 在隔离换热器中结冰了, 结冰后热阻无穷大, 所以丧失了蒸发换热的作用, 这 就是目前世界现有技术生产的水源热泵当水源水温低于 5 °C以下时, 无法正常 供热的问题所在。 从当前所有制冷空调教科书和世界各国换热器厂商所提供的 关于蒸发器结构和换热原理可见, 导致进出水温差 5 °C的原因是水进入蒸发器 之后, 水被蒸发器内部安装的水程挡水隔板强迫完成多水流程流动换热, 其目 的是加强换热效果和减小水的流量, 最少的流程是 2, 一般为 8流程。 经过这 样水流程, 水在蒸发器换热的过程中水温逐渐降低, 以致于在换热管壁上结冰, 增加换热阻力, 降低换热效果, 最终丧失换热功能。
发明内容
本发明针对上述问题, 提出一种适应低温水源的超低水温蒸发器以及具有 此蒸发器的热泵机组, 其可以解决现有的热泵机组在进水温度低于 5 °C时丧失 换热效能的问题。
为达到本发明的一个目的, 本发明的超低水温蒸发器为一种单一水流程式 蒸发换热器, 其包括蒸发器外壳体、 蒸发换热管、 换热管管板、 蒸发器封头、 挡水板、 进水管、 出水管、 制冷剂供液管以及制冷剂回气管。
优选的, 本发明的超低水温蒸发器的一种工作方式是: 水源水经进水管进 入蒸发器后, 经过挡水板将水均匀分布后, 单向经蒸发换热管的管内流向出水 再优选的, 本发明的超低水温蒸发器的另一种工作方式是: 水源水由进水 管进入蒸发器, 经挡水板, 单向经蒸发换热管的管外流向出水管。
再优选的, 蒸发器的进水水源水温与出水水温的温差为 0. 1〜5°C。
再优选的, 蒸发器的进水水源水温与出水水温的温差为 0. 5 °C。
再优选的, 本发明的的超低水温蒸发器的蒸发换热管、 蒸发器外壳、 换热 管管板、 蒸发器封头、 挡水板、 进水管和出水管由耐盐或其它化学元素腐蚀材 料制作, 使蒸发器可以用于海水或化工厂污水水源。
根据本发明的另一目的, 本发明还提出一种热泵机组, 包括隔离换热器、 冷凝器、 制冷压缩机、 膨胀阀以及上述的超低水温蒸发器。
本发明的超低水温蒸发器, 改变了原有低温蒸发器的多个流程流动换热方 式, 采用单流程换热, 避免了水在蒸发器换热过程中结冰导致丧失换热功能的 问题, 采用简单的设计达到了使热泵机组能够在低水温的工况下工作, 使其应 用范围更加广泛, 提高了水能源利用的效率。
附图说明
通过下面结合附图的详细描述, 本发明前述的和其他的目的、 特征和优点 将变得显而易见。 其中:
图 1所示为现有技术的的热泵机组的组成架构图;
图 2所示为本发明的超低水温蒸发器的一个实施方式的结构示意图; 图 3所示为本发明的超低水温蒸发器的另一实施方式的结构示意图。
具体实施方式
下面将结合附图对本发明的具体结构、 实施方式以及功效进行详细说明。 如图 2所示, 本发明的一个实施例的超低水温蒸发器包括由蒸发器外壳体 1, 在壳体内水平设置的蒸发换热管 2, 蒸发换热管 2固定悍接或涨接在外壳体 1两端的换热管管板 3中, 在蒸发器外壳体 1的两端悍接或法兰连接固定安装 封头 4, 在封头 4上装配有水源进水管 6和出水管 7, 在进水管 6侧和封头 4内 安装有挡水板 5, 在外壳体 1下部设有制冷剂供液管 8, 在其上方配置有制冷剂 回气管 9。
图 2所示的超低水温蒸发器的工作原理是: 水源水由进水管 6进入蒸发器 之后, 先经挡水板 5将水束档住防止水短路, 并将水分散成均匀水流, 单向经 每个蒸发换热管 2的管内流向出水管 7, 再由出水管 7流出蒸发器。 制冷剂液 体由供液管 8进入蒸发器, 经蒸发换热管 2外壁与管内水源水蒸发换热, 蒸发 形成的制冷剂气体由制冷剂回气管 9排出并被压缩机吸入。 本实施例应用于海 水热量提取时, 根据海水的流速和蒸发换热管长度, 海水的进水温度为 2. 5 °C, 出水口海水的温度为 3. 0°C, 即本实施例的进、 出口的水源水的温差为 0. 5 °C。 如此, 在温度较低的江、 河、 湖、 海水源热泵运行中就可以有效地防止水源水 结冰的现象发生。
图 3所示为本发明的另一实施例的超低水温蒸发器的结构示意图。 与图 2 所不同的是, 蒸发换热管 2 ' 组成 U形管结构, 水源水由进水管 6进入后经蒸 发换热管 2 ' 的管外形成水流, 制冷剂液体由供液管 8进入蒸发换热管 2 ' 内, 管外的水流与管内的制冷剂蒸发换热, 出水由出水管 7排出。
上述实施例的蒸发器的换热管为水平式结构, 应当理解的是上述蒸发换热 管也可以制作成立式结构或其他结构, 而水源水从下方注入或从上端流进也可 以, 具体就不叙述了。
本发明的另一实施例提出一种热泵机组, 包括隔离换热器、 冷凝器、 制冷 压缩机、膨胀阀以及上述的超低水温蒸发器。所述热泵机组可被广泛应用于江、 河、 湖、 海等的水源水温的热量提取利用工程项目上。
本发明的超低水温蒸发器以及应用此蒸发器的热泵机组, 可以处理的水源 水温没有最低限制温度值, 只要是液态的非结冰液态的水源, 无论水温多低, 均可有效地提取其低温热量。
本发明并不局限于所述的实施例, 本领域的技术人员在不脱离本发明的精 神即公开范围内, 仍可作一些修正或改变, 故本发明的权利保护范围以权利要 求书限定的范围为准。

Claims

权 利 要 求 书
1. -种应用于热泵机组的超低水温蒸发器, 其包括蒸发器外壳体(1)、 蒸发 换热管 (2)、 换热管管板 (3)、 蒸发器封头 (4)、 挡水板 (5)、 进水管 (6)、 出水管 (7)、 制冷剂供液管 (8)以及制冷剂回气管 (9), 其特征在于, 当所述蒸发器工作 时, 水源水由进水管 (6)进入蒸发器之后, 经挡水板 (5), 单一方向水流程经蒸 发换热管 (2)流向出水管(7)。
2. 根据权利要求 1所述的超低水温蒸发器, 其特征在于, 所述水源水由进 水管 (6)进入蒸发器, 经挡水板 (5), 单一方向水流程经蒸发换热管 (2)的管内流 向出水管(7)。
3. 根据权利要求 2所述的超低水温蒸发器, 其特征在于, 所述蒸发器所需 的制冷剂液体由供液管 (8)进入蒸发器, 经蒸发换热管 (2)外壁与管内水源水蒸 发换热, 蒸发形成的制冷剂气体由制冷剂回气管 (9)排出并被压缩机吸入。
4. 根据权利要求 1所述的超低水温蒸发器, 其特征在于, 所述蒸发换热管 (2)为 U 形管结构, 水源水由进水管 (6)进入后经蒸发换热管 (2)的管外形成水 流, 与蒸发换热管 (2)内的制冷剂蒸发换热, 并由出水管 (7)排出。
5. 根据权利要求 1所述的超低水温蒸发器, 其特征在于, 所述蒸发器的进 水水源水温与出水水温的温差为 0. 1〜5 °C。
6. 根据权利要求 5所述的超低水温蒸发器, 其特征在于, 所述蒸发器的进 水水源水温与出水水温的温差为 0. 5°C。
7. 根据权利要求 1所述的超低水温蒸发器, 其特征在于, 所述蒸发器外壳 (1)、蒸发换热管 (2)、换热管管板 (3)、蒸发器封头 (4)、挡水板 (5)、进水管 (6) 和出水管 (7)由耐盐或其它化学元素腐蚀材料制作,可用于海水水源或化工厂等 污水水源。
8. -种热泵机组, 用于提取水源水温的热量, 其包括隔离换热器、 蒸发器、 冷凝器、 制冷压缩机以及膨胀阀, 其特征在于, 所述蒸发器为如权利要求
6项任一项所述的超低水温蒸发器。
PCT/CN2012/079915 2011-08-18 2012-08-10 超低水温蒸发器及具有所述蒸发器的热泵机组 WO2013023552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110237214.7 2011-08-18
CN2011102372147A CN102338508A (zh) 2011-08-18 2011-08-18 超低水温蒸发器及具有所述蒸发器的热泵机组

Publications (1)

Publication Number Publication Date
WO2013023552A1 true WO2013023552A1 (zh) 2013-02-21

Family

ID=45514373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079915 WO2013023552A1 (zh) 2011-08-18 2012-08-10 超低水温蒸发器及具有所述蒸发器的热泵机组

Country Status (2)

Country Link
CN (1) CN102338508A (zh)
WO (1) WO2013023552A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390394A (zh) * 2014-12-17 2015-03-04 广东申菱空调设备有限公司 一种低温保温型干式蒸发器及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338508A (zh) * 2011-08-18 2012-02-01 王全龄 超低水温蒸发器及具有所述蒸发器的热泵机组
CN108562069A (zh) * 2018-05-07 2018-09-21 王全龄 一种江、河、湖或海水水源热泵
CN108826733B (zh) * 2018-08-01 2023-10-27 安徽欧瑞达电器科技有限公司 一种水源热水机组
CN111237840A (zh) * 2020-01-14 2020-06-05 西安交通大学 一种多热源耦合的复合蒸发器及其热泵***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2500141A1 (de) * 1974-01-23 1975-07-24 Gen Signal Corp Elektrisches anschlusstueck mit variabler laenge
CN101067539A (zh) * 2007-06-07 2007-11-07 哈尔滨工业大学 污水及地表水热泵明渠式换热槽换热方法及其装置
CN101078582A (zh) * 2007-06-27 2007-11-28 王全龄 高效能江、河、湖、海水源热泵空调
CN101324388A (zh) * 2008-07-28 2008-12-17 哈尔滨工业大学 具有快速除污功能的干式管壳式换热器
CN101762207A (zh) * 2010-01-15 2010-06-30 北京中科华誉能源技术发展有限责任公司 防沙型壳管式全逆流冷凝器
CN102338508A (zh) * 2011-08-18 2012-02-01 王全龄 超低水温蒸发器及具有所述蒸发器的热泵机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367634A (en) * 1979-04-12 1983-01-11 Bolton Bruce E Modulating heat pump system
JP2006162086A (ja) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
CN201218668Y (zh) * 2008-06-04 2009-04-08 王承信 甲醛换热器
CN102003836B (zh) * 2010-12-27 2012-09-19 堃霖冷冻机械(上海)有限公司 低温水源热泵机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2500141A1 (de) * 1974-01-23 1975-07-24 Gen Signal Corp Elektrisches anschlusstueck mit variabler laenge
CN101067539A (zh) * 2007-06-07 2007-11-07 哈尔滨工业大学 污水及地表水热泵明渠式换热槽换热方法及其装置
CN101078582A (zh) * 2007-06-27 2007-11-28 王全龄 高效能江、河、湖、海水源热泵空调
CN101324388A (zh) * 2008-07-28 2008-12-17 哈尔滨工业大学 具有快速除污功能的干式管壳式换热器
CN101762207A (zh) * 2010-01-15 2010-06-30 北京中科华誉能源技术发展有限责任公司 防沙型壳管式全逆流冷凝器
CN102338508A (zh) * 2011-08-18 2012-02-01 王全龄 超低水温蒸发器及具有所述蒸发器的热泵机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390394A (zh) * 2014-12-17 2015-03-04 广东申菱空调设备有限公司 一种低温保温型干式蒸发器及其控制方法
CN104390394B (zh) * 2014-12-17 2016-10-26 广东申菱环境***股份有限公司 一种低温保温型干式蒸发器及其控制方法

Also Published As

Publication number Publication date
CN102338508A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
CN103449548B (zh) 船用热管式海水淡化装置
WO2013023552A1 (zh) 超低水温蒸发器及具有所述蒸发器的热泵机组
CN101275791A (zh) 一种可自动反冲洗污水的水源热泵机组
CN103175324A (zh) 带热回收的平行流蒸发式冷凝制冷机组
CN111153543A (zh) 一种节能零排放低温常压蒸发结晶***及其工作方法
CN101776400A (zh) 强制通风直接水膜蒸发空冷凝汽***
CN104236164A (zh) 一种超高温复叠式水源热泵***
KR101151691B1 (ko) 내부순환 복합에너지 난방제냉기술 및 장치
CN105645491A (zh) 水净化***及工艺
CN201917140U (zh) 太阳能热泵饮用水设备
CN108800389A (zh) 一种自动除垢的海水空调***及方法
CN202126119U (zh) 耐腐蚀壳管式蒸发器
CN103090590B (zh) 燃气发动机驱动螺杆式空气源热泵冷热水机组
CN204404414U (zh) 一种地源供暖空调热泵
CN204115294U (zh) 超高温复叠式水源热泵***
KR20100103770A (ko) 냉매 기화열을 이용한 증기설비 복수기 시스템
CN211770781U (zh) 一种节能零排放低温常压蒸发结晶***
CN105271458A (zh) 多效真空沸腾式海水淡化装置
CN102705928A (zh) 一种冰蓄冷蓄热空调
CN208720406U (zh) 一种自动除垢的海水空调***
CN203132195U (zh) 空气能热水装置
CN208269456U (zh) 一种江、河、湖或海水水源热泵
CN201028868Y (zh) 可自动反冲洗污水的水源热泵机组
CN207335223U (zh) 一种利用喷射式热泵回收化肥厂造气水余热***
CN202747500U (zh) 一种冰蓄冷蓄热空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823521

Country of ref document: EP

Kind code of ref document: A1