WO2013018686A1 - 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品 - Google Patents

集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品 Download PDF

Info

Publication number
WO2013018686A1
WO2013018686A1 PCT/JP2012/069121 JP2012069121W WO2013018686A1 WO 2013018686 A1 WO2013018686 A1 WO 2013018686A1 JP 2012069121 W JP2012069121 W JP 2012069121W WO 2013018686 A1 WO2013018686 A1 WO 2013018686A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
resin layer
conductive
current collector
Prior art date
Application number
PCT/JP2012/069121
Other languages
English (en)
French (fr)
Inventor
加藤 治
聡平 斉藤
幸翁 本川
和佐本 充幸
角脇 賢一
郷史 山部
Original Assignee
古河スカイ株式会社
日本製箔株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社, 日本製箔株式会社 filed Critical 古河スカイ株式会社
Priority to JP2013526877A priority Critical patent/JP6076254B2/ja
Priority to CN201280036491.4A priority patent/CN103733400B/zh
Priority to US14/235,775 priority patent/US20140162122A1/en
Priority to KR1020147004361A priority patent/KR101947566B1/ko
Priority to EP12820071.4A priority patent/EP2738855B1/en
Publication of WO2013018686A1 publication Critical patent/WO2013018686A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector and an electrode structure using the same, a nonaqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, or a power storage component.
  • Lithium ion secondary batteries are expected to have high-speed charge / discharge and longer life. Therefore, it is known that by providing a conductive resin layer on a conductive substrate for a lithium ion secondary battery, adhesion with an active material is improved, and both high-speed charge / discharge and adhesion are improved. . There is also an example in which the surface roughness Ra is defined to improve the adhesion.
  • Patent Document 1 describes a conductive adhesive layer in which the ratio Ra / d between the surface roughness Ra and the thickness d is 0.03 or more and 1 or less.
  • the surface roughness Ra of the carbon coat layer is 0.5 ⁇ m to 1.0 ⁇ m
  • the surface area Sa per unit area is 30 m 2 / m 2 or less
  • the pore volume of the carbon coat layer is It describes a current collector foil having Va of 5 cc / m 2 or less.
  • the above technique may not be effective.
  • the present inventor has found that the cause is that when the surface roughness is increased when the thickness of the conductive resin layer is small, the unevenness is in a dense state. In such a state where the unevenness is densely packed, the active material paste or the like hardly flows into the uneven recesses of the conductive resin layer when the active material paste is applied, and the conductive resin layer and the active material layer or the electrode material It was found that a slight gap may be formed between the layers, which is not preferable.
  • the present invention has been made in view of the above circumstances, and improves the adhesion between the surface of a conductive resin layer provided on a current collector and an active material and the like, and a nonaqueous electrolyte battery using the current collector
  • the object is to improve the high rate characteristics or electrode life of an electric double layer capacitor or a lithium ion capacitor.
  • a current collector in which a conductive resin layer is formed on at least one surface of a conductive substrate. Further, the surface roughness Ra of the resin layer having conductivity is 0.1 ⁇ m or more and 1.0 ⁇ m or less. Further, when the film thickness of the resin layer having conductivity is t [ ⁇ m] and the average inclination angle of the unevenness on the surface of the resin layer is ⁇ a [degree], (1/3) t + 0.5 ⁇ ⁇ a ⁇ ( 1/3) A range where t + 10.
  • the film thickness, surface roughness, and unevenness of the conductive resin layer can be within a well-balanced range, so that coating properties such as active material paste and active material paste
  • coating properties such as active material paste and active material paste
  • an electrode structure using the current collector wherein the conductive resin layer contains an active material or is formed on the conductive resin layer.
  • the electrode structure having an active material layer or an electrode material layer.
  • the active material paste is applied to the conductive resin when the active material paste is applied. Since it flows smoothly into the concave and convex portions of the layer and firmly adheres to it, it is possible to obtain an electrode structure that is useful for improving high-rate characteristics and improving electrode life, such as a non-aqueous electrolyte battery, an electric double layer capacitor, and a lithium ion capacitor. .
  • a nonaqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, or a power storage component using the above electrode structure is provided.
  • the active material paste smoothly flows into the concave and convex recesses of the conductive resin layer, and uses the electrode structure that is firmly adhered, so that the non-aqueous electrolyte battery is excellent in improving high rate characteristics and improving electrode life
  • An electric double layer capacitor and a lithium ion capacitor can be obtained.
  • the adhesion between the surface of the conductive resin layer and the active material can be improved. Therefore, by using this current collector, it is possible to obtain a nonaqueous electrolyte battery, an electric double layer capacitor, and a lithium ion capacitor that are excellent in improving the high rate characteristics and improving the electrode life.
  • the number average molecular weight or the weight average molecular weight means that measured by GPC (gel exclusion chromatograph).
  • a current collector in which a conductive resin layer is formed on at least one surface of a conductive substrate.
  • the metal foil known metal foils used as electrodes for electrode structures, non-aqueous electrolyte batteries, electric double layer capacitors, lithium ion capacitors, and power storage components can be used, and particularly limited. Rather, for example, aluminum foil, aluminum alloy foil, copper foil for negative electrode, stainless steel foil, nickel foil, and when the negative electrode active material is a high potential type such as lithium titanate, aluminum foil or aluminum alloy foil can be used is there.
  • aluminum foil, aluminum alloy foil, and copper foil are preferable from the viewpoint of balance between high conductivity and cost.
  • the thickness of the foil can be appropriately adjusted according to the application, but is preferably 7 to 100 ⁇ m, particularly preferably 10 to 50 ⁇ m. If the thickness is too thin, the strength of the foil may be insufficient and it may be difficult to apply the active material layer. On the other hand, if it is too thick, other components such as the active material layer or the electrode material layer have to be thinned, and a sufficient capacity may not be obtained.
  • the conductive resin layer (hereinafter, also simply referred to as “resin layer”) used in the present embodiment is provided on one or both surfaces of the conductive base material and includes a resin and conductive particles.
  • the conductive resin layer is not particularly limited, and any conventionally known conductive resin layer may be used.
  • the conductive resin layer and the active material have excellent adhesion and excellent coating properties. From the aspect of achieving both workability, it is preferable to include any one of nitrified cotton-based resin, acrylic resin, and chitosan-based resin.
  • the method for forming the conductive resin layer used in this embodiment is not particularly limited, but it is preferable to apply a solution or dispersion containing the conductive resin layer and conductive particles on the conductive substrate. .
  • a coating method a roll coater, a gravure coater, a slit die coater or the like can be used.
  • the baking temperature is preferably 100 to 250 ° C. as the temperature reached by the conductive substrate, and the baking time is preferably 10 to 60 seconds. If it is less than 100 degreeC, nitrified cotton-type resin will not fully harden
  • the resin used in the present embodiment preferably contains any one of a nitrified cotton-based resin, an acrylic resin, and a chitosan-based resin.
  • a conductive material (conductive particles) is added to the conductive resin layer in order to provide conductivity, but its dispersibility greatly affects electric characteristics.
  • the conductive substrate and active material This is based on the inventor's knowledge that it is possible to achieve both good adhesion to the above and excellent coating properties.
  • the nitrified cotton-based resin is a resin containing nitrified cotton as a resin component, and may be composed only of nitrified cotton, or may contain nitrified cotton and another resin.
  • Nitrified cotton is a kind of cellulose, but is characterized by having a nitro group.
  • Nitrified cotton is a cellulose having a nitro group, but it is not known as a use for electrodes compared to other celluloses such as carboxymethylcellulose (CMC), and has been used as a raw material for resin films and paints. It has been.
  • CMC carboxymethylcellulose
  • the present inventors obtain a nitrified cotton-based resin composition by dispersing a conductive material in the nitrified cotton, and by forming a resin layer containing the nitrified cotton-based resin and the conductive material on the conductive substrate, It has been found that the high rate characteristics of the nonaqueous electrolyte battery can be dramatically improved.
  • the nitrogen concentration of the nitrified cotton used in the present invention is preferably 10 to 13%, particularly preferably 10.5 to 12.5%. If the nitrogen concentration is too low, it may not be sufficiently dispersed depending on the type of the conductive material. If the nitrogen concentration is too high, the nitrified cotton becomes chemically unstable and is dangerous for use in a battery.
  • the nitrogen concentration depends on the number of nitro groups, the nitrogen concentration can be adjusted by adjusting the number of nitro groups.
  • the viscosity of the above nitrified cotton is usually 1 to 6.5 seconds, particularly 1.0 to 6 seconds, and the acid content is 0.006% or less, particularly 0.005% or less, as measured according to JIS K-6703. It is recommended that When deviating from these ranges, the dispersibility of the conductive material and the battery characteristics may deteriorate.
  • the nitrified cotton-based resin of the present embodiment can be used with 100 parts by mass of nitrified cotton, but it can also be used in combination with other resin components. It is preferable to contain 20 parts by mass or more, particularly 25 parts by mass or more with respect to the resin component. As a result of investigating the resistance of the resin layer by adding a conductive material to various resins, the resistance of the resin layer can be drastically reduced and sufficient high-rate characteristics can be obtained when 20 parts by mass or more of nitrified cotton-based resin is included. I understood.
  • nitrified cotton If the amount of nitrified cotton is too small, the improvement effect of nitrified cotton blending on the dispersion of the conductive material cannot be obtained, and the resistance of the resin layer cannot be lowered sufficiently by adding 20 parts by mass or more of nitrified cotton-based resin. It is estimated that it is possible.
  • nitrified cotton-based resin of the present embodiment can be added with various resins in combination with the above-described nitrified cotton.
  • nitrified cotton is added as a resin component by adding melamine resin, acrylic resin, polyacetal resin, and epoxy resin. It has been found that the battery performance can be improved in the same manner as or more than the case of using%. Each addition will be described below.
  • the nitrified cotton-based resin preferably contains a melamine-based resin. Since melamine resin causes a crosslinking reaction with nitrified cotton, it is presumed that the battery performance is improved by improving the curability of the resin and improving the adhesion to the conductive substrate.
  • the added amount is 5 to 200% by mass, more preferably 10 to 150% by mass, based on 100% by mass of nitrified cotton. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the resin layer becomes too hard, and it may be easily peeled off at the time of cutting or winding, and the discharge rate characteristics may be deteriorated.
  • the melamine resin butylated melamine, isobutylated melamine, methylated melamine and the like can be used.
  • the nitrified cotton-based resin preferably contains an acrylic resin. Since the acrylic resin is excellent in adhesion to a conductive substrate, particularly aluminum and copper, the addition to the conductive substrate further improves the adhesion to the conductive substrate. The amount added is preferably 5 to 200% by mass, particularly 10 to 150% by mass, based on 100% by mass of nitrified cotton. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the dispersion of the conductive material may be adversely affected and the discharge rate characteristics may deteriorate. As the acrylic resin, resins having acrylic acid or methacrylic acid and derivatives thereof as main components, and acrylic copolymers containing these monomers can be used.
  • polar group-containing acrylic compounds such as acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide and copolymers thereof can also be used.
  • the weight average molecular weight of the acrylic resin is, for example, 30,000 to 1,000,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000. , 200,000, 300,000, 400,000, 500,000, 700,000, 800,000, 900,000, 1 million, and may be in the range between any two of the numerical values exemplified here.
  • the component as a solid content may be used alone, but in the present invention, it is preferable to use nitrified cotton and a polyacetal-based resin in combination. Since polyacetal resin is excellent in flexibility and compatibility with nitrified cotton, it is presumed that it gives moderate flexibility to the resin layer and improves adhesion with the mixture layer after winding. .
  • the amount added is preferably 5 to 200% by mass, particularly 20 to 150% by mass, based on 100% by mass (solid content) of nitrified cotton.
  • polyacetal resin polyvinyl butyral, polyacetoacetal, polyvinyl acetoacetal and the like can be used.
  • the weight average molecular weight of the polyacetal resin is, for example, 10,000 to 500,000. Specifically, for example, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 , 100,000, 150,000, 200,000, 500,000, and may be within a range between any two of the numerical values exemplified here.
  • the nitrified cotton-based resin preferably contains an epoxy-based resin. Since the epoxy resin is excellent in adhesion to a metal, the addition to the conductive substrate further improves the adhesion.
  • the amount added is preferably 5 to 200% by mass, particularly 10 to 150% by mass, based on 100% by mass of nitrified cotton. If it is less than 5% by mass, the effect of addition is low, and if it exceeds 200% by mass, the dispersion of the conductive material may be adversely affected and the discharge rate characteristics may deteriorate.
  • the epoxy resin is preferably a glycidyl ether type such as bisphenol A type epoxy, bisphenol F type epoxy, or tetramethylbiphenyl type.
  • the weight average molecular weight of the epoxy resin is, for example, 300 to 50,000, specifically, for example, 300,500,1000,2000,3000,4000,5000,10,000,20,000,50,000, It may be within a range between any two of the exemplified numerical values.
  • the nitrified cotton-based resin preferably includes at least one of melamine-based resin, acrylic resin, polyacetal-based resin, and epoxy-based resin, and nitrified cotton.
  • the nitrified cotton-based resin further preferably includes at least one of an acrylic resin and a polyacetal-based resin, a melamine-based resin, and nitrified cotton. This is because in such a combination, the discharge rate characteristics are particularly good.
  • melamine resin is 10 to 40% by mass and nitrified cotton is 50 to 70% by mass. Is more preferable. This is because the discharge rate characteristics are further improved in this case.
  • the acrylic resin used in the present embodiment is a resin formed from a monomer mainly composed of acrylic acid or methacrylic acid, or a derivative thereof.
  • the ratio of the acrylic component in the monomer of the acrylic resin is, for example, 50% by mass or more, and preferably 80% by mass or more.
  • the upper limit is not particularly defined, and the monomer of the acrylic resin may be substantially composed of only the acrylic component.
  • the acrylic resin monomer may contain one or more acrylic components alone.
  • an acrylic copolymer containing at least one of methacrylic acid or a derivative thereof and a polar group-containing acrylic compound as a monomer is preferable. This is because the high rate characteristics are further improved by using an acrylic copolymer containing these monomers.
  • methacrylic acid or derivatives thereof include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate and the like.
  • the polar group-containing acrylic compound include acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide.
  • an acrylic compound having an amide group is preferable. Examples of the acrylic compound having an amide group include acrylamide, N-methylol acrylamide, and diacetone acrylamide.
  • the weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 30000 or more and 200000 or less. If the molecular weight is too small, the flexibility of the resin layer is low, and if the current collector is wound with a small radius of curvature, the resin layer may crack and the capacity of the battery may decrease, and if the molecular weight is too large, This is because the adhesion tends to be low.
  • the weight average molecular weight can be measured using GPC (gel exclusion chromatography) in a resin solution before addition of a conductive material.
  • the chitosan resin is a resin containing a chitosan derivative as a resin component.
  • a chitosan derivative as a resin component.
  • the chitosan-based resin one having a chitosan derivative of 100% by mass can be used, but it can also be used in combination with other resin components.
  • at least the chitosan derivative is 50% by mass with respect to the total resin components. % Or more, and particularly preferably 80% by mass or more.
  • the chitosan derivative is, for example, hydroxyalkyl chitosan, and specific examples include hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, glycerylated chitosan, glycerylated chitosan and the like.
  • the chitosan resin preferably contains an organic acid.
  • organic acids include pyromellitic acid and terephthalic acid.
  • the addition amount of the organic acid is preferably 20 to 300% by mass, more preferably 50 to 150% by mass with respect to 100% by mass of the chitosan derivative. If the amount of the organic acid added is too small or too large, it becomes difficult to obtain a desired uneven shape.
  • the weight average molecular weight of the chitosan derivative is, for example, 30,000 to 500,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000, It may be 200,000 or 500,000, and may be within a range between any two of the numerical values exemplified here.
  • the weight average molecular weight means that measured by GPC (gel exclusion chromatograph).
  • Conductive particles Since the current collector serves as a path for electrons moving from the electrode to the counter electrode, the surface of the current collector must also have conductivity. Since all of the nitrified cotton-based resin, acrylic resin, and chitosan derivative have insulating properties, conductive particles must be added to impart conductivity. As the conductive particles used in the present embodiment, carbon powder, metal powder, and the like can be used. Among them, carbon powder is preferable. As the carbon powder, acetylene black, ketjen black, furnace black, carbon nanotubes and the like can be used. In addition, carbon fibers and carbon nanotubes can be used as long as they are conductive.
  • the addition amount of the conductive particles is preferably 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the resin in the resin layer. If the amount is less than 20 parts by mass, the resistance of the resin layer increases. If the amount exceeds 80 parts by mass, the adhesion between the active material layer or the electrode material layer on the surface of the resin layer may decrease.
  • the conductive material can be dispersed in the resin liquid by using a planetary mixer, a ball mill, a homogenizer, or the like.
  • the surface roughness Ra of the resin layer having conductivity used in the present embodiment is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the center line average roughness Ra may be measured according to JISB0601 (1982) using a surface roughness measuring instrument SE-30D manufactured by Kosaka Laboratory Ltd.
  • the surface roughness Ra is more than 1.0 ⁇ m, the unevenness is large and the groove becomes deep, so that the active material paste hardly flows.
  • the surface roughness Ra is less than 0.1 ⁇ m, the unevenness is small and the groove becomes shallow, so that the active material paste that has flowed in becomes difficult to adhere firmly.
  • This surface roughness Ra can be any value of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 ⁇ m. It may be within the range of two numerical values.
  • t [ ⁇ m] and ⁇ a of the current collector [Degree] is preferably within a suitable range of (1/3) t + 0.5 ⁇ ⁇ a ⁇ (1/3) t + 10. If t [ ⁇ m] and ⁇ a [degree] of the current collector are in this range, the active material paste can easily flow into the entire surface of the electric resin layer, and in addition to the active material resin layer surface. The adhesion can be improved.
  • the film thickness t [ ⁇ m] of the resin layer is determined from the difference in thickness between the resin layer forming part and the non-formed part (aluminum foil only part) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em). It can be calculated.
  • FIG. 1 is a conceptual diagram for explaining a method of calculating the average inclination angle ⁇ a.
  • the calculation method of the average inclination angle ⁇ a is as follows. First, using a device that measures surface irregularities, the surface of the resin layer is traced with a needle, and the surface shape is read by the device. At this time, since the shape of the surface unevenness is read as a numerical value, the difference between each peak and valley can be calculated. At this time, ⁇ a represents the angle of the triangle of each height h. The angle when using the sum of the heights of the peaks thus obtained and the reference length L is calculated by the following equation.
  • the average inclination angle ⁇ a may be calculated by the above formula.
  • FIG. 2 is a conceptual diagram for explaining coating properties and adhesion when ⁇ a is large (upper limit value ⁇ a ⁇ (1/3) t + 10).
  • the value that defines the uneven state on the surface of the conductive resin layer includes the average inclination angle ⁇ a [degree] of the unevenness.
  • the film thickness t [ ⁇ m] changes in the conductive resin layer having the same average inclination angle ⁇ a [degree]
  • the ease of flow of the active material paste changes.
  • the film thickness t is small, the leveling property of the coating is deteriorated, and the crests of the conductive resin layer and the tips of the projections are pointed.
  • the leveling property of the recesses is easy to proceed even with the same paint properties, and the recesses and the projections are likely to be rounded. Therefore, even if the value of ⁇ a is the same, the thinner the film thickness t, the more difficult it is for the overcoat to flow. That is, even if the ⁇ a is the same, the active material paste flows more easily when the film thickness t is larger. In other words, when ⁇ a is large when the film thickness t is small, the unevenness becomes dense, and the active material paste may not flow completely.
  • the film thickness t is small with respect to the large average inclination angle ⁇ a and the condition is ⁇ a> (1/3) t + 10, Since the unevenness is concentrated on the surface of the conductive resin layer and the paint is difficult to flow in, the improvement of the high rate characteristic is not observed.
  • the active material paste or the like hardly flows into the concave and convex portions of the conductive resin layer when the active material paste or the like is applied. Since a slight gap may be formed between the active material layer or the electrode material layer, the battery characteristics are likely to deteriorate. Therefore, when the average inclination ⁇ a is large, the battery characteristics are better when the film thickness t is larger.
  • FIG. 3 is a conceptual diagram for explaining coating properties and adhesion when ⁇ a is small (lower limit (1/3) t + 0.5 ⁇ ⁇ a).
  • ⁇ a lower limit
  • t + 0.5 ⁇ ⁇ a the active material paste tends to flow regardless of the film thickness t.
  • the film thickness t is thick, it becomes conductive due to roundness due to leveling properties.
  • the surface of the conductive resin layer approaches flatness.
  • the active material paste easily flows, but the surface of the conductive resin layer and the active material The contact area does not increase and the adhesion does not increase, so that no improvement in high-rate characteristics is observed.
  • the average inclination angle ⁇ a is small, if the film thickness t is large, the leveling property of the recesses easily proceeds even with the same paint physical properties, and the recesses and the projections are easily rounded.
  • the contact area between the surface of the conductive resin layer and the active material is reduced, and the adhesiveness is reduced, so that the battery characteristics are likely to deteriorate. Therefore, when the average inclination ⁇ a is small, the battery characteristics are better when the film thickness t is smaller.
  • the viscosity and surface tension are adjusted, and the paint with reduced leveling properties is used. It can be transferred to the base material in the form of a gravure plate. Further, by changing the viscosity and the surface tension, the leveling property can be improved and a surface smoother than the plate shape can be obtained. At this time, if ⁇ a ⁇ (1/3) t + 0.5, the active material paint tends to flow into the recesses on the surface of the conductive resin layer, but the contact area does not increase and the adhesion does not increase, so the high rate characteristics The improvement is not seen.
  • the unevenness of the surface of the conductive resin layer is dense, and the active material paint does not easily flow into the recesses of the surface of the conductive resin layer. can not see. Therefore, when the film thickness of the resin layer having conductivity in the present embodiment is t [ ⁇ m] and the average inclination angle of the irregularities on the resin layer surface is ⁇ a [degrees], the average inclination angle ⁇ a and the film thickness t are: (1/3) t + 0.5 ⁇ ⁇ a ⁇ (1/3) It is preferable to be within the range of the mathematical formula of t + 10.
  • the active material paste can easily flow into the entire surface, and the surface of the conductive resin layer can be excellent in adhesion to the active material. That is, in this way, the film thickness, surface roughness, and unevenness density of the conductive resin layer can be within a well-balanced range. It is possible to simultaneously realize a property having a trade-off relationship such as adhesion of a material paste and the like in a balanced manner. Therefore, according to this structure, the adhesiveness between the surface of the conductive resin layer and the active material can be improved. Therefore, by using this current collector, it is possible to obtain a nonaqueous electrolyte battery, an electric double layer capacitor, and a lithium ion capacitor that are excellent in improving the high rate characteristics and improving the electrode life.
  • Ra and ⁇ a on the surface of the conductive resin layer can be changed depending on the type of resin, the blending amount, and the physical properties of the paint (viscosity and surface tension). It can also be changed by using a smoothing roll.
  • the roughness of the surface of the conductive resin layer can be adjusted by controlling the resin blending ratio, the physical properties of the paint, and the time from coating to baking. is there.
  • the resin compounding ratio a network structure is formed by curing with the added resin, and an increase in roughness is observed.
  • viscosity and surface tension are important in the physical properties of the paint.
  • a paint having a low viscosity and a low surface tension has high leveling properties, Ra and ⁇ a are low, and Ra and ⁇ a are high when the viscosity and surface tension are high.
  • the viscosity is preferably 1 mPa ⁇ s or more and 10,000 mPa ⁇ s or less. More preferably, it is 10 mPa ⁇ s or more and 5000 mPa ⁇ s.
  • the viscosity is preferably 10 mPa ⁇ s or more and 10,000 mPa ⁇ s or less. More preferably, they are 50 mPa * s or more and 5000 mPa * s or less.
  • the resin forming the conductive resin layer is preferably a nitrified cotton-based resin, a chitosan derivative, or an acrylic resin.
  • a conductive material is added to the conductive resin layer in order to provide conductivity, but its dispersibility greatly affects electric characteristics.
  • nitrified cotton-based resins, chitosan derivatives, and acrylic resins are preferable.
  • curing agents such as an epoxy resin, a melamine resin, and polyhydric carboxylic acid, to the said resin.
  • Electrode structure The electrode structure of the present invention can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector of the present embodiment.
  • the electrode structure for an electrical storage component in which the electrode material layer is formed will be described later.
  • a nonaqueous electrolyte battery can be manufactured using this electrode structure, a separator, a nonaqueous electrolyte, and the like.
  • a member other than the current collector can be a known nonaqueous battery member.
  • the active material layer formed in the present embodiment may have been conventionally proposed for non-aqueous electrolyte batteries.
  • the current collector of the present invention using an aluminum foil as a positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as an active material, carbon black such as acetylene black as a conductive material, and these are binders
  • the positive electrode structure of the present embodiment can be obtained.
  • the negative electrode for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector of the present invention using copper foil as the conductive base material, and these are dispersed in CMC as a thickener, and then the binder.
  • the negative electrode structure of the present invention can be obtained by applying a paste mixed with SBR.
  • the nonaqueous electrolyte battery according to this embodiment can be configured by sandwiching the positive electrode structure and the negative electrode structure with a separator impregnated with an electrolyte for a nonaqueous electrolyte battery having a nonaqueous electrolyte.
  • the nonaqueous electrolyte and the separator those used for known nonaqueous electrolyte batteries can be used.
  • the electrolytic solution carbonates or lactones can be used as a solvent.
  • a solution obtained by dissolving LiPF 6 or LiBF 4 as an electrolyte in a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) is used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the separator for example, a film having a microporous made of polyolefin can be used.
  • the current collector of this embodiment can also be applied to power storage components such as an electric double layer capacitor and a lithium ion capacitor that require discharging at a large current density.
  • the electrode structure for a power storage component of the present embodiment is obtained by forming an electrode material layer on the current collector of the present embodiment.
  • An electric double layer capacitor or a lithium ion capacitor is obtained by using the electrode structure, a separator, an electrolytic solution, and the like. And the like.
  • members other than the current collector can be members for known electric double layer capacitors or lithium ion capacitors.
  • the electrode material layer is composed of an electrode material, a conductive material, and a binder for both the positive electrode and the negative electrode.
  • an electrode structure can be obtained by forming the electrode material layer on at least one side of the current collector of the present embodiment.
  • the electrode material those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used.
  • carbon powder or carbon fiber such as activated carbon or graphite can be used.
  • carbon black such as acetylene black can be used.
  • the binder for example, PVDF (polyvinylidene fluoride) or SBR (styrene butadiene rubber) can be used.
  • the electric storage component of the present invention can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure of the present invention with a separator interposed therebetween and allowing the electrolyte to penetrate into the separator.
  • a separator for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used.
  • carbonates and lactones can be used as the solvent in the electrolyte, and the electrolyte includes tetraethylammonium salt and triethylmethylammonium salt as the cation, and hexafluorophosphate and tetrafluoroborate as the anion. Can be used.
  • a lithium ion capacitor is a combination of a negative electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor.
  • Examples 1 to 3> As shown in Table 1, 54 parts by mass of nitrified cotton (JIS K6703L1 / 4) as the main resin (the weight of nitrified cotton is the weight of the solid content), and a copolymer of methyl acrylate and methacrylic acid as the acrylic resin (Methyl acrylate: methacrylic acid 95: 5, weight average molecular weight 70000) 16 parts by mass, as a melamine resin, 30 parts by mass of a methylol melamine resin (number average molecular weight 2700) were dissolved in MEK.
  • acetylene black 60% by mass of acetylene black was added to the solid content (hereinafter the same) and dispersed for 8 hours with a ball mill, and the viscosity was adjusted to 500 mPa ⁇ s and the surface tension was set to 35 mN / m to obtain a paint.
  • This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater, and a current collector was prepared so that the coating thickness would be 1, 2, 4 ⁇ m.
  • the thickness of the resin layer was calculated from the difference in thickness between the resin layer formed part and the non-formed part (aluminum foil only part) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em). (The same applies hereinafter).
  • Examples 4 to 6> As shown in Table 1, 54 parts by mass of nitrified cotton (JIS K6703L1 / 4) as the main resin (the weight of the nitrified cotton is the weight of the solid content) and polyvinyl butyral resin (weight average molecular weight 90000) 16 as the polyacetal 60 parts by mass of acetylene black with respect to the resin component was added to a resin solution obtained by dissolving 30 parts by mass of methylol melamine resin (number average molecular weight 2700) in MEK as a mass part and melamine resin, and dispersed for 8 hours by a ball mill.
  • nitrified cotton JIS K6703L1 / 4
  • polyvinyl butyral resin weight average molecular weight 90000
  • the paint used in Invention Examples 4 to 6 was adjusted to have a viscosity of 50, 2000, 8000 mPa ⁇ s and a surface tension of 35, 38, 41 mN / m to obtain a paint.
  • This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness was 2 ⁇ m, and heated for 30 seconds to produce a current collector.
  • Example 7 As shown in Table 1, 40 parts by mass of nitrified cotton (JIS K6703L1 / 4) as the main resin (the weight of the nitrified cotton is the weight of the solid content) and polyvinyl butyral resin (weight average molecular weight 90000) 16 as the polyacetal
  • a resin solution in which 30 parts by mass of methylol melamine resin (number average molecular weight 2700) as a melamine resin and 14 parts by mass of a bisphenol A type epoxy resin (weight average molecular weight 2900) as an epoxy resin are dissolved in MEK, 60% by mass of acetylene black was added and dispersed for 8 hours in a ball mill, adjusted to have a viscosity of 3500 mPa ⁇ s and a surface tension of 29 mN / m to obtain a paint.
  • This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating
  • Example 8> As shown in Table 1, 80 parts by mass of nitrified cotton (JIS K6703L1 / 4) as the main resin (the weight of nitrified cotton is the weight of the solid content) and methylol melamine resin (number average molecular weight 2700) as the melamine resin Add 60% by mass of acetylene black with respect to the resin component to a resin solution in which 20 parts by weight are dissolved in MEK, and disperse in a ball mill for 8 hours so that the viscosity is 500 mPa ⁇ s and the surface tension is 33 mN / m. Adjusted to a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness was 2 ⁇ m, and heated for 30 seconds to produce a current collector.
  • nitrified cotton JIS K6703L1 / 4
  • methylol melamine resin number average molecular weight 2700
  • Example 9 As shown in Table 1, as the main resin, 100 parts by mass of nitrified cotton (JIS K6703L1 / 4) (the weight of nitrified cotton is the weight of solids) in a resin solution dissolved in MEK, 60% by mass of acetylene black was added and dispersed in a ball mill for 8 hours. The viscosity was adjusted to 500 mPa ⁇ s, and the surface tension was adjusted to 32 mN / m to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness was 2 ⁇ m, and heated for 30 seconds to produce a current collector.
  • JIS K6703L1 / 4 the weight of nitrified cotton is the weight of solids
  • nitrified cotton As shown in Table 1, as the main resin, 54 parts by mass of nitrified cotton (JIS K6703L1 / 4) (the weight of nitrified cotton is the weight of the solid content), 16 parts by mass of polyvinyl butyral resin as polyacetal, and as melamine resin 60% by mass of acetylene black with respect to the resin component is added to a resin solution obtained by dissolving 30 parts of methylol melamine resin in MEK, and dispersed in a ball mill for 8 hours. The viscosity is 20 mPa ⁇ s, and the surface tension is 28 mN / m. The paint was adjusted to This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness was 2 ⁇ m, and heated for 30 seconds to produce a current collector.
  • JIS K6703L1 / 4 the weight of nitrified cotton is the weight of the solid content
  • ⁇ Comparative Example 4> An emulsion resin liquid of polypropylene (weight average molecular weight 100000) as a main resin is added with 60% by mass of acetylene black based on the resin component, and dispersed for 8 hours in a ball mill. The viscosity is 1000 mPa ⁇ s, the surface tension is 61 mN / m was adjusted to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness was 2 ⁇ m, and heated for 30 seconds to produce a current collector.
  • JIS A1085 20 ⁇ m thick aluminum foil
  • the emulsion resin liquid of acrylic resin (acrylic acid 60% by mass, methyl acrylate 20% by mass, butyl acrylate 20% by mass, weight average molecular weight 110000 as monomer) is 60% by mass with respect to the resin component.
  • Acetylene black was added, dispersed for 8 hours with a ball mill, adjusted to have a viscosity of 500 mPa ⁇ s and a surface tension of 65 mN / m, to obtain a paint.
  • This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thicknesses were 1, 2, and 4 ⁇ m, respectively, and heated for 30 seconds to prepare a current collector.
  • Examples 13 to 15 As shown in Table 2, 60% by mass of acetylene with respect to the resin component in an emulsion resin solution of acrylic resin (acrylic acid 50% by mass, butyl acrylate 20% by mass, acrylamide 30% by mass, weight average molecular weight 100000) as a monomer. Black was added and dispersed in a ball mill for 8 hours. The viscosity of Examples 13 to 15 was adjusted to 100, 500, 4500 mPa ⁇ s, and the surface tension was 75, 65, 55 mN / m to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness would be 2 ⁇ m, and heated for 30 seconds to prepare a current collector.
  • acrylic resin acrylic acid 50% by mass, butyl acrylate 20% by mass, acrylamide 30% by mass, weight average molecular weight 100000
  • Black was added and dispersed in a ball mill for 8 hours.
  • Example 16> As shown in Table 2, in an emulsion resin solution of an acrylic resin (methacrylic acid 60% by mass, butyl methacrylate 20% by mass, acrylonitrile 20% by mass, weight average molecular weight 110000 as a monomer), 60% by mass of acetylene with respect to the resin component. Black was added, dispersed for 8 hours with a ball mill, adjusted to have a viscosity of 2000 mPa ⁇ s, and a surface tension of 65 mN / m to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness would be 2 ⁇ m, and heated for 30 seconds to prepare a current collector.
  • an acrylic resin methacrylic acid 60% by mass, butyl methacrylate 20% by mass, acrylonitrile 20% by mass, weight average molecular weight 110000 as a monomer
  • Black was added, dispersed for 8 hours with a ball mill
  • Example 17 As shown in Table 2, 60% by mass of acetylene with respect to the resin component in an emulsion resin liquid of acrylic resin (80% by mass of methacrylic acid as monomer, 10% by mass of butyl acrylate, 10% by mass of acrylamide, and weight average molecular weight of 140000). Black was added and dispersed for 8 hours with a ball mill, and the viscosity was set to 2000 mPa ⁇ s and the surface tension was adjusted to 57 mN / m to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness would be 2 ⁇ m, and heated for 30 seconds to prepare a current collector.
  • JIS A1085 20 ⁇ m thick aluminum foil
  • Example 18 As shown in Table 2, an emulsion resin solution of an acrylic resin (acrylic acid 50% by mass, methyl methacrylate 15% by mass, butyl acrylate 10% by mass, ethyl methacrylate 25% by mass, weight average molecular weight 110,000 as a monomer) 60% by mass of acetylene black was added and dispersed in a ball mill for 8 hours. The viscosity was adjusted to 500 mPa ⁇ s and the surface tension was adjusted to 65 mN / m to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness would be 2 ⁇ m, and heated for 30 seconds to prepare a current collector.
  • an acrylic resin acrylic acid 50% by mass, methyl methacrylate 15% by mass, butyl acrylate 10% by mass, ethyl methacrylate 25% by mass, weight average molecular weight 110,000 as a monomer
  • the emulsion resin liquid of acrylic resin (acrylic acid 60% by mass, methyl acrylate 20% by mass, butyl acrylate 20% by mass, weight average molecular weight 110000 as monomer) is 60% by mass with respect to the resin component.
  • Acetylene black was added and dispersed in a ball mill for 8 hours, and the amount of the solvent was adjusted to adjust the viscosity to 10 mPa ⁇ s and the surface tension to 51 mN / m to obtain a paint.
  • This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness would be 2 ⁇ m, and heated for 30 seconds to prepare a current collector.
  • Examples 19 to 21 As shown in Table 3, 60% by mass of acetylene black is added to a resin component obtained by dissolving 60% by mass of hydroxyalkyl chitosan (weight average molecular weight 80,000) and 40% by mass of trimellitic acid in NMP, The viscosity of Examples 19 to 21 was adjusted to 200, 2000, 4500 mPa ⁇ s, and the surface tension was 45, 41, 41 mN / m to obtain a paint. This paint was applied to one side of a 20 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness would be 2 ⁇ m, and heated for 30 seconds to prepare a current collector.
  • JIS A1085 20 ⁇ m thick aluminum foil
  • a coin battery was produced by placing a polypropylene microporous separator between these electrode structures in a battery case.
  • an electrolytic solution obtained by adding 1M LiPF 6 to a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used.
  • Evaluation criteria of discharge rate at 20C when 0.2C is 100% ⁇ 70% or more ⁇ 60% or more and less than 70% ⁇ 50% or more and less than 60% ⁇ less than 50%
  • the adhesiveness between the surface of the conductive resin layer and the active material can be improved. Therefore, by using this current collector, it is possible to obtain a nonaqueous electrolyte battery, an electric double layer capacitor, and a lithium ion capacitor that are excellent in improving the high rate characteristics and improving the electrode life.

Abstract

集電体に設けられた導電性樹脂層の表面と活物質などとの密着性を改善し、その集電体を用いた非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタなどのハイレート特性又は電極寿命を向上させる。導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体が提供される。また、その導電性を有する樹脂層の表面粗度Raは、0.1μm以上1.0μm以下である。さらに、その導電性を有する樹脂層の膜厚さをt[μm]、その樹脂層表面の凹凸の平均傾斜角をθa[度]としたとき、(1/3)t+0.5≦θa≦(1/3)t+10となる範囲である。

Description

集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
 本発明は、集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品に関する。
 リチウムイオン2次電池には高速充放電や長寿命化が望まれている。そのためにリチウムイオン2次電池用の導電性基材上に導電性樹脂層を設けることで活物質などとの密着性が改善し、高速充放電、密着性が共に向上することが知られている。また、表面の粗さRaを規定し、密着性を向上させた例もある。
 特許文献1には、表面粗度Raと厚さdの比Ra/dが0.03以上1以下である導電性接着剤層について記載されている。
 特許文献2には、カーボンコート層の表面粗度Raが0.5μm~1.0μmであり、単位面積当たりの表面積Saが30m/m以下とされ、かつ、カーボンコート層の細孔容積Vaが5cc/m以下である集電箔について記載されている。
特開2010-108971号公報 特開2010-212167号公報
 しかしながら、上記技術では効果が得られない場合があった。本発明者は、その原因として、導電性樹脂層の膜厚さが薄い場合に、表面粗度を大きくしようとすると、凹凸が密集した状態となることが原因であることを突き止めた。そして、このように凹凸が密集した状態では、活物質ペーストなどを塗工する際に活物質ペーストなどが導電性樹脂層の凹凸の凹部に流れ込みにくく、導電性樹脂層と活物質層又は電極材層との間にわずかな空隙ができる場合があるため好ましくないことを見出した。
 本発明は上記事情に鑑みてなされたものであり、集電体に設けられた導電性樹脂層の表面と活物質などとの密着性を改善し、その集電体を用いた非水電解質電池、電気二重層キ
ャパシタやリチウムイオンキャパシタなどのハイレート特性又は電極寿命を向上させることを目的とする。
 本発明によれば、導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体が提供される。また、その導電性を有する樹脂層の表面粗度Raは、0.1μm以上1.0μm以下である。さらに、その導電性を有する樹脂層の膜厚さをt[μm]、その樹脂層表面の凹凸の平均傾斜角をθa[度]としたとき、(1/3)t+0.5≦θa≦(1/3)t+10となる範囲である。
 この構成によれば、導電性を有する樹脂層の膜厚さ、表面粗度、凹凸の密集状況をバランスのよい範囲内にすることができるため、活物質ペーストなどの塗工性および活物質ペーストなどの密着性という互いにトレードオフの関係にある特性を同時にバランスよく実現することが可能になる。そのため、この構成によれば、導電性樹脂層の表面と活物質などとの密着性を改善することができる。そのため、この集電体を用いることにより、ハイレート特性向上や電極寿命向上に優れる非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタを得ることができる。
 また、本発明によれば、上記の集電体を用いた電極構造体であって、その導電性を有する樹脂層中に活物質を含有するか、又はその導電性を有する樹脂層上に形成されている活物質層又は電極材層を有する、電極構造体が提供される。
 この構成によれば、導電性樹脂層の表面と活物質などとの密着性が改善された集電体を用いることにより、活物質ペーストなどを塗工する際に活物質ペーストなどが導電性樹脂層の凹凸の凹部にスムーズに流れ込んだ上で強固に密着するため、非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタなどのハイレート特性向上や電極寿命向上に役立つ電極構造体を得ることができる。
 また、本発明によれば、上記の電極構造体を用いた、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品が提供される。
 この構成によれば、活物質ペーストなどが導電性樹脂層の凹凸の凹部にスムーズに流れ込んだ上で強固に密着した電極構造体を用いるため、ハイレート特性向上や電極寿命向上に優れる非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタを得ることができる。
 本発明によれば、導電性樹脂層の表面と活物質などとの密着性を改善することができる。そのため、この集電体を用いることにより、ハイレート特性向上や電極寿命向上に優れる非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタを得ることができる。
平均傾斜角θaの計算方法を説明するための概念図である。 θa大の場合(上限値θa≦(1/3)t+10)の塗布性および密着性について説明するための概念図である。 θa小の場合(下限値(1/3)t+0.5≦θa)の塗布性および密着性について説明するための概念図である。
 以下、本発明の実施の形態について、図面を用いて説明する。以下の説明において、数平均分子量又は重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
 本実施形態によれば、導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体が提供される。以下、各構成について詳しく説明する。
<1.導電性基材>
 本実施形態で用いる導電性基材としては、各種金属箔が使用可能である。金属箔としては電極構造体用、非水電解質電池用、電気二重層キャパシタ用、リチウムイオンキャパシタ用、及び蓄電部品用電極として用いられる公知の金属箔を使用することができ、特に制限されるものではなく、例えば、アルミニウム箔、アルミニウム合金箔、負極用として銅箔、ステンレス箔、ニッケル箔、負極活物質がチタン酸リチウム等の高電位タイプの場合はアルミニウム箔やアルミニウム合金箔などが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム箔、アルミニウム合金箔、銅箔が好ましい。箔の厚さとしては用途に応じて適宜調整できるが、7~100μm、特に10~50μmが好ましい。厚さが薄すぎると箔の強度が不足して活物質層の塗工が困難になる場合がある。一方、厚すぎるとその分活物質層あるいは電極材層等の他の構成を薄くせざるを得ず、十分な容量が得られなくなる場合がある。
 <2.導電性を有する樹脂層>
 本実施形態で用いる導電性を有する樹脂層(以下、単に「樹脂層」とも称する)は、上記導電性基材の片面又は両面に設けられ、樹脂と導電性粒子とを含む。なお、この導電性を有する樹脂層は、特に限定せず任意の従来公知の導電性を有する樹脂層を用いてもよいが、例えば、導電性基材および活物質などに対する密着性と優れた塗工性とを両立させる面からは、硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかを含むことが好ましい。
 本実施形態で用いる導電性を有する樹脂層の形成方法は特に限定されないが、導電性を有する樹脂層と導電性粒子とを含む溶液や分散液を導電性基材上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能である。焼付温度は導電性基材の到達温度として100~250℃、焼付時間は10~60秒が好ましい。100℃未満では硝化綿系樹脂が十分に硬化せず、250℃を超えると活物質層との密着性が低下する場合がある。本実施形態に用いる樹脂は硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかを含むことが好ましい。導電性樹脂層には導電性を持たせるために導電材(導電性粒子)を添加するが、その分散性が大きく電気特性に影響する。種々の樹脂に導電性粒子を添加して樹脂層の体積固有抵抗を調査した結果、硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかを含む場合には、導電性基材および活物質などに対する密着性と優れた塗工性とを両立させることができるという本発明者の知見に基づくものである。
 <2-1.硝化綿系樹脂>
 本実施形態において、硝化綿系樹脂は、樹脂成分として硝化綿を含む樹脂であり、硝化綿のみからなるものであってもよく、硝化綿と別の樹脂とを含有するものであってもよい。硝化綿はセルロースの1種であるが、ニトロ基を有する点に特徴がある。硝化綿はニトロ基を有するセルロースであるが、カルボキシメチルセルロース(CMC)等の他のセルロースと比較して、電極に使用する用途としては知られておらず、従来、樹脂フィルムや塗料の原料として用いられている。
 本発明者らは、この硝化綿に導電材を分散して硝化綿系樹脂組成物を得て、導電性基材上に硝化綿系樹脂と導電材を含有する樹脂層を形成することにより、非水電解質電池のハイレート特性を飛躍的に向上させることができることを知見した。本発明に用いる硝化綿の窒素濃度は10~13%、特に10.5~12.5%が好ましい。窒素濃度が低すぎると、導電材の種類によっては十分分散できない場合があり、窒素濃度が高すぎると、硝化綿が化学的に不安定になり、電池に用いるには危険だからである。窒素濃度はニトロ基の数に依存するため、窒素濃度の調整はニトロ基数を調整することによって行うことができる。また、上記硝化綿の粘度は、JIS K-6703に基づく測定値が、通常1~6.5秒、特に1.0~6秒、酸分は0.006%以下、特に0.005%以下であることが推奨される。これらの範囲を逸脱すると、導電材の分散性、電池特性が低下する場合がある。
 本実施形態の硝化綿系樹脂は、硝化綿を100質量部であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくとも硝化綿系樹脂を全樹脂成分に対して20質量部以上、特に25質量部以上含むことが好ましい。種々の樹脂に導電材を添加して樹脂層の抵抗を調査した結果、硝化綿系樹脂を20質量部以上含むと樹脂層の抵抗が飛躍的に低減化でき、十分なハイレート特性が得られることがわかった。これは硝化綿の配合量が少なすぎると導電材の分散に対する硝化綿配合による改善効果が得られず、20質量部以上の硝化綿系樹脂を添加することにより、樹脂層の抵抗を十分低くできないできるためと推定される。
 本実施形態の硝化綿系樹脂は、上述した硝化綿と併用して種々の樹脂を添加することが可能である。本実施形態においては、電池性能(キャパシタ性能を含む。以下同じ)を調査した結果、メラミン系樹脂、アクリル系樹脂、ポリアセタール系樹脂、エポキシ系樹脂を添加することにより、樹脂成分として硝化綿を100%使用した場合と同様かそれ以上に電池性能を向上させることができることがわかった。以下にそれぞれの添加について説明する。
 硝化綿系樹脂は、メラミン系樹脂を含有することが好ましい。メラミン系樹脂は硝化綿と架橋反応を起こすため、樹脂の硬化性が向上し、導電性基材との密着性も向上することにより、電池性能が向上するものと推定される。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、より好ましくは10~150質量%である。5質量%未満では添加する効果が低く、200質量%を超えると樹脂層が硬くなりすぎ、切断時や捲回時にかえって剥離しやすくなり、放電レート特性が低下する場合がある。メラミン系樹脂としてはブチル化メラミン、イソブチル化メラミン、メチル化メラミンなどを用いることができる。
 硝化綿系樹脂は、アクリル系樹脂を含有することが好ましい。アクリル系樹脂は導電性基材、特にアルミニウム、銅との密着性に優れることから、添加することによりさらに導電性基材との密着性が向上する。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、特に10~150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。アクリル系樹脂としてはアクリル酸あるいはメタクリル酸およびそれらの誘導体を主成分とする樹脂、また、これらのモノマを含むアクリル共重合体を用いることができる。具体的にはアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸イソプロピルなどやその共重合体である。また、アクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミドなどの極性基含有アクリル系化合物やその共重合体を用いることもできる。アクリル系樹脂の重量平均分子量は、例えば、3万~100万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,30万,40万,50万,60万,70万,80万,90万,100万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 硝化綿系樹脂は、固形分としての成分を硝化綿単独で使用しても良いが、本発明においては、硝化綿とポリアセタール系樹脂を併用することが好ましい。ポリアセタール系樹脂は可撓性、硝化綿との相溶性に優れていることから、樹脂層に適度な柔軟性を与え、捲回後における合剤層との密着性が向上するものと推定される。添加量は、硝化綿を100質量%(固形分)としたときの割合が5~200質量%、特に20~150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。ポリアセタール系樹脂としては、ポリビニルブチラール、ポリアセトアセタール、ポリビニルアセトアセタールなどが使用可能である。ポリアセタール系樹脂の重量平均分子量は、例えば、1万~50万であり、具体的には例えば1万,2万,3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 硝化綿系樹脂は、エポキシ系樹脂を含有することが好ましい。エポキシ系樹脂は金属との密着性に優れることから、添加することによりさらに導電性基材との密着性が向上する。添加量は、硝化綿を100質量%としたときの割合が5~200質量%、特に10~150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。エポキシ系樹脂としてはビスフェノールA型エポキシ、ビスフェノールF型エポキシ、テトラメチルビフ
ェニル型といったグリシジルエーテル型が好ましい。エポキシ系樹脂の重量平均分子量は、例えば、300~5万であり、具体的には例えば300,500,1000,2000,3000,4000,5000,1万,2万,5万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 このように、硝化綿系樹脂は、メラミン系樹脂、アクリル系樹脂、ポリアセタール系樹脂、エポキシ系樹脂のうちの少なくとも一種と、硝化綿とを含むことが好ましい。
 また、硝化綿系樹脂は、アクリル系樹脂とポリアセタール系樹脂のうちの少なくとも一種と、メラミン系樹脂と、硝化綿とを含むことがさらに好ましい。このような組み合わせの場合に、放電レート特性が特に良好になるからである。また、アクリル系樹脂、ポリアセタール系樹脂、メラミン系樹脂、及び硝化綿の合計を100質量%としたとき、メラミン系樹脂が10~40質量%であり、硝化綿が50~70質量%であることがさらに好ましい。この場合に、放電レート特性がさらに良好になるからである。
 <2-2.アクリル系樹脂>
 本実施形態で用いるアクリル系樹脂は、アクリル酸若しくはメタクリル酸、又はこれらの誘導体を主成分とするモノマから形成された樹脂である。アクリル系樹脂のモノマ中のアクリル成分の割合は、例えば50質量%以上であり、好ましくは、80質量%以上である。上限は、特に規定されず、アクリル系樹脂のモノマが実質的にアクリル成分のみで構成されてもよい。また、アクリル系樹脂のモノマは、アクリル成分一種を単独で又はを二種以上含んでいてもよい。
 アクリル系樹脂の中でもメタクリル酸又はその誘導体と極性基含有アクリル系化合物の中から少なくともひとつをモノマとして含むアクリル共重合体が好ましい。これらのモノマを含むアクリル共重合体を用いることにより、ハイレート特性がさらに向上するからである。メタクリル酸又はその誘導体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピルなどが挙げられる。極性基含有アクリル系化合物としてはアクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミドなどがある。さらに極性基含有アクリル系化合物の中でもアミド基を有するアクリル化合物が好ましい。アミド基を有するアクリル化合物としてアクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミドなどがある。
 アクリル系樹脂の重量平均分子量は、特に限定されないが、30000以上、200000以下が好ましい。分子量が小さすぎると、樹脂層の柔軟性が低く、小さい曲率半径で集電体を捲回すると樹脂層にクラックが発生して電池等の容量が低下する場合があり、分子量が大きすぎると、密着性が低くなる傾向があるからである。重量平均分子量は、導電材添加前の樹脂液にてGPC(ゲル排除クロマトグラフィー)を用いて測定することができる。
 <2-3.キトサン系樹脂>
 本実施形態において、キトサン系樹脂は、樹脂成分としてキトサン誘導体を含む樹脂である。キトサン系樹脂は、キトサン誘導体が100質量%であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともキトサン誘導体を全樹脂成分に対して50質量%以上、特に80質量%以上含むことが好ましい。キトサン誘導体は、例えばヒドロキシアルキルキトサンであり、具体的には、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、グリセリル化キトサン、グリセリル化キトサン等が挙げられる。
 キトサン系樹脂は、好ましくは、有機酸を含む。有機酸としては、ピロメリット酸、テレフタル酸などが挙げられる。有機酸の添加量は、キトサン誘導体100質量%に対して20~300質量%が好ましく、50~150質量%がさらに好ましい。有機酸の添加量が少なすぎても多すぎても所望の凹凸形状を得ることが困難になる。
 キトサン誘導体の重量平均分子量は、例えば、3万~50万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
 <2-4.導電性粒子>
 集電体は電極から対極に移動する電子の通路となるので、その表面にも導電性が必要である。硝化綿系樹脂、アクリル系樹脂又はキトサン誘導体は、いずれも絶縁性を有するので、導電性を付与するために導電性粒子を添加しなければならない。本実施形態で用いる導電性粒子としては炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブなどが使用可能である。また、導電性があれば炭素繊維やカーボンナノチューブなども使用可能である。これらの中でも、比較的アグリゲートが長くかつ比較的少ない添加量で導電性を向上させることができるアセチレンブラックを用いることが好ましい。添加量を少なくすることで活物質層あるいは電極材層との密着性の低下を抑えることができる。導電性粒子の添加量は、樹脂層の樹脂100質量部に対して20質量部以上、80質量部以下が好ましい。20質量部未満では樹脂層の抵抗が高くなり、80質量部を超えると樹脂層表面の活物質層あるいは電極材層との密着性が低下する場合があるからである。導電材を樹脂液に分散するにはプラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。
 <3.樹脂層表面の粗度Ra>
 本実施形態に用いる導電性を有する樹脂層の表面粗度Raは、0.1μm以上1.0μm以下であることが好ましい。具体的な測定方法としては、中心線平均粗さRaを株式会社小坂研究所製表面粗さ測定器SE-30Dを用いてJISB0601(1982)に沿って測定を行えばよい。この表面粗度Raが1.0μm超であると凹凸が大きく、溝が深くなるため、活物質ペーストが流れ込みにくくなる。一方、この表面粗度Raが0.1μm未満であると凹凸が小さく、溝が浅くなるため、流れ込んだ活物質ペーストが強固に密着しにくくなる。この表面粗度Raは、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0μmのうち任意の2つの数値の範囲内であってもよい。
 本実施形態に用いる導電性を有する樹脂層の膜厚さをt[μm]、その樹脂層表面の凹凸の平均傾斜角をθa[度]としたとき、集電体のt[μm]およびθa[度]は、(1/3)t+0.5≦θa≦(1/3)t+10となる好適な範囲に収まることが好ましい。集電体のt[μm]およびθa[度]がこの範囲内であれば、活物質ペーストが全体に流れ込みやすい電性樹脂層表面とすることができることにくわえて、活物質の樹脂層表面への密着性も向上することができる。なお、樹脂層の膜厚さt[μm]は、フィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から算出可能である。
 図1は、平均傾斜角θaの計算方法を説明するための概念図である。平均傾斜角θaの計算方法は以下のとおりである。まず、表面凹凸を測定する装置を用いて、樹脂層表面を針にてなぞり、表面形状を装置が読み取る。このとき、表面凹凸の形状が数値として読み取られているので、各山と谷の差を計算することができる。このとき、θaは各高さhの三角形の角度を表している。こうして得られた各山の高さの和と基準長さLを用いたときの角度を以下の式で計算する。
Figure JPOXMLDOC01-appb-M000001
 具体的な平均傾斜角θaの測定法としては、株式会社小坂研究所製表面粗さ測定器SE-30Dを用いて測定を行えばよい。そして、測定結果に基づいて基準長さL間における各凹凸の高さをそれぞれh1、h2、h3、・・・hnとしたとき、上記の式にて平均傾斜角θaを算出すればよい。
 <3-1.厚さtと平均山高さθaの関係>
 図2は、θa大の場合(上限値θa≦(1/3)t+10)の塗布性および密着性について説明するための概念図である。導電性樹脂層表面の凹凸の状態を規定する値に凹凸の平均傾斜角θa[度]がある。この図に示すように、同じ平均傾斜角θa[度]を持っている導電性樹脂層において膜厚さt[μm]が変化した場合、活物質ペーストの流れ込みやすさが変化する。膜厚さtが薄い場合、塗料のレベリング性は悪くなり、導電性樹脂層の山の凹部と凸部の先端は尖るような形状となる。膜厚さtが厚い場合では同じ塗料物性であっても凹部のレベリング性が進みやすく、凹部と凸部は丸くなりやすくなる。そのため、同じθaの値であっても膜厚さtが薄い方が上塗りの塗料が流れ込みにくくなる。すなわち、同じθaであっても膜厚tが大きいほうが活物質ペーストが流れ込みやすい。逆に言うと、膜厚tが薄い場合に、θaが大きくなると凹凸は密集している状態となり、活物質ペーストが完全に流れ込んでいかない場合がある。
 そのため、同じθaであっても膜厚tの違いによって流れ込みにくさが異なり、大きな平均傾斜角θaに対して膜厚tが小さく、θa>(1/3)t+10のような条件になると、導電性樹脂層の表面に凹凸が密集し、塗料が流れ込みにくくなるため、ハイレート特性の向上は見られなくなる。言い換えれば、大きな平均傾斜角θaに対して膜厚tが小さいと、活物質ペーストなどを塗工する際に活物質ペーストなどが導電性樹脂層の凹凸の凹部に流れ込みにくく、導電性樹脂層と活物質層又は電極材層との間にわずかな空隙ができる場合があるため電池特性が低下しやすい。したがって、平均傾斜θaが大きい場合、膜厚さtが大きいほうが電池特性が良い。
 図3は、θa小の場合(下限値(1/3)t+0.5≦θa)の塗布性および密着性について説明するための概念図である。この図に示すように、平均傾斜角θa小の場合には、膜厚tの大小にかかわらずどちらも活物質ペーストが流れ込みやすいが、膜厚tが厚いとレベリング性によって丸みを帯びることによって導電性樹脂層の表面が平坦に近づく。すなわち、小さな平均傾斜角θaに対して膜厚tが大きく、θa<(1/3)t+0.5のような条件になると、活物質ペーストは流れ込みやすいが、導電性樹脂層の表面と活物質との接触面積は増加せず、密着性も上がらないため、ハイレート特性の向上は見られない。言い換えると、平均傾斜角θa小の場合には膜厚さtが厚いと、同じ塗料物性であっても凹部のレベリング性が進みやすく、凹部と凸部は丸くなりやすくなる。その結果、導電性樹脂層の表面と活物質との接触面積が低下し、密着性が低下するためため電池特性が低下しやすい。したがって、平均傾斜θaが小さい場合、膜厚さtが薄いほうが電池特性が良い。
 本実施形態で用いる導電性樹脂層を形成するための導電性ペーストをグラビアコーターにて導電性基材の表面に塗工した際、粘度や表面張力を調整し、レベリング性を落とした塗料では、グラビア版の形状のまま基材に転写することができる。また、粘度、表面張力を変えることによりレベリング性を上げ、版形状よりもなだらかな表面を得ることができる。このとき、θa<(1/3)t+0.5である場合、活物質塗料は導電性樹脂層の表面の凹部に流れ込みやすいが、接触面積は増加せず、密着性も上がらないため、ハイレート特性の向上は見られない。一方で、θa>(1/3)t+10を上回る場合、導電性樹脂層の表面の凹凸が密集し、導電性樹脂層の表面の凹部に活物質塗料が流れ込みにくくなるため、ハイレート特性の向上は見られない。したがって、本実施形態における導電性を有する樹脂層の膜厚さをt[μm]、樹脂層表面の凹凸の平均傾斜角をθa[度]としたとき、平均傾斜角θaおよび膜厚tは、(1/3)t+0.5≦θa≦(1/3)t+10の数式の範囲内に収まることが好ましい。
 このように、平均傾斜角θaおよび膜厚tは、(1/3)t+0.5≦θa≦(1/3)t+10の数式の範囲内に収まる場合には、後述する実施例で示すように、活物質ペーストが全体に流れ込みやすく、活物質との密着性にも優れる導電性樹脂層表面とすることができる。すなわち、このようにすれば、導電性を有する樹脂層の膜厚さ、表面粗度、凹凸の密集状況をバランスのよい範囲内にすることができるため、活物質ペーストなどの塗工性および活物質ペーストなどの密着性という互いにトレードオフの関係にある特性を同時にバランスよく実現することが可能になる。そのため、この構成によれば、導電性樹脂層の表面と活物質などとの密着性を改善することができる。そのため、この集電体を用いることにより、ハイレート特性向上や電極寿命向上に優れる非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタを得ることができる。
 <3-2.厚さtと平均山高さθaの調整方法>
 ここで、導電性樹脂層表面のRaとθa(本明細書では、両者をあわせて粗度という)は、樹脂の種類、配合量、塗料物性(粘度、表面張力)よって変えることができる。また、スムージングロールの使用などによっても変えることができる。
 (1)塗料物性によって制御する方法
 本実施形態において、導電性樹脂層表面の粗度の調整は、樹脂配合比や塗料物性、塗工してから焼付けるまでの時間を制御することにより可能である。樹脂配合比では添加樹脂による硬化によって網目構造ができ、粗度の増加が見られる。また、塗料物性においては粘度、表面張力が重要である。粘度が低く、表面張力の低い塗料はレベリング性が高く、Raやθaは低くなり、粘度、表面張力が高い場合には、Ra、θaが高くなる。樹脂組成や用いられている溶剤によってそれぞれ好ましい粘度や表面張力の範囲があり、その範囲によってRaとθaをコントロールすることができる。表面張力もしくは粘度のどちらかが低くなると、Raとθaがそれぞれ下がることになる。
 塗料の表面張力が50~75mN/mの範囲内であるとき、粘度は1mPa・s以上10000mPa・s以下が好ましい。さらに好ましくは10mPa・s以上5000mPa・sである。塗料の表面張力が20~50mN/mの範囲内であるとき、粘度は10mPa・s以上、10000mPa・s以下が好ましい。さらに好ましくは50mPa・s以上5000mPa・s以下である。
 (2)樹脂によって制御する方法
 樹脂の種類によって主にRaが変化する。樹脂によって硬化時に3次元網目構造を取る樹脂や、平滑な2次元になる樹脂もある。メラミンやエポキシ、セルロース類などの硬化性樹脂においてはミクロな3次元網目構造になり、それに伴いRaが高くなり、オレフィン系などの樹脂ではRaは低くなる。
 導電性樹脂層を形成する樹脂は硝化綿系樹脂、キトサン誘導体、アクリル系樹脂が好ましい。導電性樹脂層には導電性を持たせるために導電材を添加するが、その分散性が大きく電気特性に影響する。各種樹脂において実験を行い検討した結果、硝化綿系樹脂、キトサン誘導体、アクリル系樹脂が好ましいことがわかっている。また、上記樹脂にエポキシ樹脂やメラミン樹脂、多価カルボン酸などの硬化剤を添加してもよい。
 <4.電極構造体>
 本実施形態の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本発明の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質等を用いて非水電解質電池を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。
 本実施形態において形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウム箔を用いた本発明の集電体に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFに分散したペーストを塗工することにより、本実施形態の正極構造体を得ることができる。
 負極としては、導電性基材として銅箔を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを塗工することにより、本発明の負極構造体を得ることができる。
 <5.非水電解質電池>
 上記の正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本実施形態の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPFやLiBFを溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
 <6.蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)>
 本実施形態の集電体は大電流密度での放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本実施形態の蓄電部品用電極構造体は本実施形態の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本実施形態の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 電極材層は正極、負極共、電極材、導電材、バインダよりなる。本発明においては、本実施形態の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電材としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)やSBR(スチレンブタジエンゴム)を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本実施形態の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 <実施例1~3>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)54質量部(硝化綿の重量はいずれも固形分の重量である)、アクリル樹脂としてアクリル酸メチルとメタクリル酸の共重合体(アクリル酸メチル:メタクリル酸=95:5、重量平均分子量70000)16質量部、メラミン樹脂としてメチロールメラミン樹脂(数平均分子量2700)30量部をMEKに溶解した樹脂液に、樹脂成分(樹脂の固形分、以下同じ)に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が500mPa・s、表面張力が35mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗布し、塗膜厚さが1、2、4μmとなるように集電体を作製した。樹脂層の厚さはフィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から樹脂層の厚さを算出した(以下、同様である)。
 <実施例4~6>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)54質量部(硝化綿の重量はいずれも固形分の重量である)と、ポリアセタールとしてポリビニルブチラール樹脂(重量平均分子量90000)16質量部、メラミン樹脂としてメチロールメラミン樹脂(数平均分子量2700)30量部をMEKに溶解した樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、本発明例4~6に用いる塗料の粘度が50、2000、8000mPa・s、表面張力が35、38、41mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
 <実施例7>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)40質量部(硝化綿の重量はいずれも固形分の重量である)と、ポリアセタールとしてポリビニルブチラール樹脂(重量平均分子量90000)16質量部、メラミン樹脂としてメチロールメラミン樹脂(数平均分子量2700)30質量部、エポキシ樹脂としてビスフェノールA型エポキシ樹脂(重量平均分子量2900)14質量部をMEKに溶解した樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が3500mPa・s、表面張力が29mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
 <実施例8>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)80質量部(硝化綿の重量はいずれも固形分の重量である)と、メラミン樹脂としてメチロールメラミン樹脂(数平均分子量2700)20量部をMEKに溶解した樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が500mPa・s、表面張力が33mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
 <実施例9>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)100質量部(硝化綿の重量はいずれも固形分の重量である)をMEKに溶解した樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が500mPa・s、表面張力が32mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
 <比較例1>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)54質量部(硝化綿の重量はいずれも固形分の重量である)、アクリル樹脂としてアクリル酸メチルとメタクリル酸の共重合体(アクリル酸メチル:メタクリル酸=95:5、重量平均分子量70000)16質量部、メラミン樹脂としてメチロールメラミン樹脂(数平均分子量2700)30量%をMEKに溶解した樹脂液に、樹脂成分(樹脂の固形分、以下同じ)に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が11000mPa・s、表面張力が35mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmとなるように塗布し、30秒加熱して集電体を作製した。
 <比較例2>
 表1に示すように、主樹脂として硝化綿(JIS K6703L1/4)54質量部(硝化綿の重量はいずれも固形分の重量である)と、ポリアセタールとしてポリビニルブチラール樹脂16質量部、メラミン樹脂としてメチロールメラミン樹脂30量部をMEKに溶解した樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し粘度を20 mPa・s、表面張力を28mN/mに調整し塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
 <比較例3>
 表1に示すように、主樹脂としてポリエチレン(重量平均分子量80000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が1000mPa・s、表面張力が68mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
 <比較例4>
 主樹脂としてポリプロピレン(重量平均分子量100000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が1000mPa・s、表面張力が61mN/mとなるように調整し、塗料と
した。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μmになるように塗布し、30秒加熱して集電体を作製した。
Figure JPOXMLDOC01-appb-T000002
 <実施例10~12>
 表2に示すように、アクリル樹脂(モノマとしてアクリル酸60質量%、メチルアクリレート20質量%、ブチルアクリレート20質量%、重量平均分子量110000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が500mPa・s、表面張力が65mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ1、2、4μmとなるように塗布し、30秒加熱して集電体を作製した。
 <実施例13~15>
 表2に示すように、アクリル樹脂(モノマとしてアクリル酸50質量%、ブチルアクリレート20質量%、アクリルアミド30質量%、重量平均分子量100000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、実施例13~15の粘度が100、500、4500mPa・s、表面張力が75、65、55mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
 <実施例16>
 表2に示すように、アクリル樹脂(モノマとしてメタクリル酸60質量%、ブチルメタクリレート20質量%、アクリロニトリル20質量%、重量平均分子量110000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が2000mPa・s、表面張力が65mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
 <実施例17>
 表2に示すように、アクリル樹脂(モノマとしてメタクリル酸80質量%、ブチルアクリレート10質量%、アクリルアミド10質量%、重量平均分子量140000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が2000mPa・s、表面張力が57mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
 <実施例18>
 表2に示すように、アクリル樹脂(モノマとしてアクリル酸50質量%、メチルメタクリレート15質量%、ブチルアクリレート10質量%、メタクリル酸エチル25質量%、重量平均分子量110000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が500mPa・s、表面張力が65mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
 <比較例5>
 表2に示すように、アクリル樹脂(モノマとしてアクリル酸60質量%、メチルアクリレート20質量%、ブチルアクリレート20質量%、重量平均分子量110000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、溶剤の量を調整して、粘度が10mPa・s、表面張力が51mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
 <比較例6>
 表2に示すように、アクリル樹脂(モノマとしてメタクリル酸50質量%、ブチルアクリレート20質量%、アクリロニトリル30質量%、重量平均分子量110000)のエマルジョン樹脂液に、樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、粘度が10000mPa・s、表面張力が61mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
Figure JPOXMLDOC01-appb-T000003
 <実施例19~21>
 表3に示すように、ヒドロキシアルキルキトサン(重量平均分子量80000)60質量%、トリメリット酸を40質量%をNMPに溶解させた樹脂成分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散し、実施例19~21の粘度が200、2000、4500mPa・s、表面張力が45、41、41mN/mとなるように調整し、塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さがそれぞれ2μmとなるように塗布し、30秒加熱して集電体を作製した。
Figure JPOXMLDOC01-appb-T000004
 <特性評価>
 (1)物性評価
 (1-1)中心線平均粗さRaの測定方法
 中心線平均粗さRaを株式会社小坂研究所製表面粗さ測定器SE-30Dを用いてJISB0601(1982)に沿って測定を行った。評価結果を表4、表5、表6に示す。
 (1-2)平均傾斜角θaの測定法
 株式会社小坂研究所製表面粗さ測定器SE-30Dを用いて測定を行い、測定結果に基づいて基準長さL間における各凹凸の高さをそれぞれh1、h2、h3、・・・hnとしたとき、下記の式にて平均傾斜角θaを算出した。評価結果を表4、表5、表6に示す。
Figure JPOXMLDOC01-appb-M000005
 (2)リチウムイオン電池の放電レート特性評価、電極寿命評価
 (2-1)リチウムイオン電池の製造方法
 正極には、活物質のLiCoOと導電材のアセチレンブラックをバインダであるPVDF(ポリフッ化ビニリデン)に分散したペーストを厚さ70μmにて上記の各集電体に塗工したものを用いた。負極には、活物質の黒鉛をCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを厚さ20μmの銅箔に厚さ70μmにて塗工したものを用いた。これらの電極構造体にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収め、コイン電池を作製した。電解液としてはEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合液に1MのLiPFを添加した電解液を用いた。
 (2-2)放電レート特性評価方法
 充電上限電圧4.2V、充電電流0.2C、放電終了電圧2.8V、温度25℃において、放電電流レート20Cの条件で、これらのリチウムイオン電池の放電容量(0.2C基準、単位%)を測定した。(1Cはその電池の電流容量(Ah)を1時間(h)で取り出すときの電流値(A)である。20Cでは1/20h=3minでその電池の電流容量を取り出すことができる。あるいは充電することができる。)評価結果を表4、表5、表6に示す。
 0.2Cを100%としたときの20Cにおける放電レートの評価基準
◎70%以上
○60%以上70%未満
△50%以上60%未満
×50%未満
 (3)電気二重層キャパシタの放電レート特性評価、電極寿命評価
 (3-1)電気二重層キャパシタの製造方法
 電極材の活性炭、導電材のケッチェンブラックをバインダのPVDFに分散したペーストを厚さ80μmにて上記の集電体に塗工し、正極、負極共同じ電極構造体とした。この電極構造体2枚に電解液を含浸した電気二重層キャパシタ用不織布を挟んで固定し、電気二重層キャパシタを構成した。電解液は溶媒であるプロピレンカーボネートに1.5MのTEMA(トリエチルメチルアンモニウム)と四フッ化ほう酸を添加したものを用いた。
 (3-2)放電レート特性評価方法)
 充電上限電圧2.8V、充電電流1C、充電終了条件2h、放電終了電圧0V、温度25℃、放電電流レート500Cの条件で、これらの電気二重層キャパシタの放電容量(1C基準、単位%)を測定した。評価結果を表4、表5、表6に示す。
 1Cを100%としたときの500Cにおける放電レートの評価基準
◎80%以上
○70%以上80%未満
△60%以上70%未満
×60%未満
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 <結果の考察>
 上記の実施例・比較例の実験結果から、平均傾斜角θaおよび膜厚tが、(1/3)t+0.5≦θa≦(1/3)t+10の数式の範囲内に収まる場合には、活物質ペーストが全体に流れ込みやすく、活物質との密着性にも優れる導電性樹脂層表面とすることができる。すなわち、このようにすれば、導電性を有する樹脂層の膜厚さ、表面粗さ、凹凸の密集状況をバランスのよい範囲内にすることができるため、活物質ペーストなどの塗工性および活物質ペーストなどの密着性という互いにトレードオフの関係にある特性を同時にバランスよく実現することが可能になる。そのため、この構成によれば、導電性樹脂層の表面と活物質などとの密着性を改善することができる。そのため、この集電体を用いることにより、ハイレート特性向上や電極寿命向上に優れる非水電解質電池、電気二重層キャパシタやリチウムイオンキャパシタを得ることができる。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。

Claims (5)

  1.  導電性基材の少なくとも片面に導電性を有する樹脂層を形成した集電体であって、
     前記導電性を有する樹脂層の表面粗度Raが0.1μm以上1.0μm以下であり、かつ、
     前記導電性を有する樹脂層の膜厚さをt[μm]、前記樹脂層表面の凹凸の平均傾斜角をθa[度]としたとき、
    (1/3)t+0.5≦θa≦(1/3)t+10
    となる範囲である、集電体。
  2.  前記導電性を有する樹脂層が、硝化綿系樹脂、アクリル系樹脂又はキトサン系樹脂のいずれかの樹脂成分を含む、請求項1に記載の集電体。
  3.  前記導電性を有する樹脂層が、硝化綿系樹脂にくわえて、アクリル系樹脂、ポリアセタール系樹脂、メラミン系樹脂、エポキシ系樹脂からなる群から選ばれる1種以上をさらに含む、請求項1に記載の集電体。
  4.  請求項1に記載の集電体を用いた電極構造体であって、
     前記導電性を有する樹脂層中に活物質を含有するか、又は前記導電性を有する樹脂層上
    に形成されている活物質層又は電極材層を有する、電極構造体。
  5.  請求項3に記載の電極構造体を用いた、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品。
PCT/JP2012/069121 2011-07-29 2012-07-27 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品 WO2013018686A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013526877A JP6076254B2 (ja) 2011-07-29 2012-07-27 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
CN201280036491.4A CN103733400B (zh) 2011-07-29 2012-07-27 集电体以及使用了该种集电体的电极结构体、非水电解质电池、双电层电容器、锂离子电容器或蓄电部件
US14/235,775 US20140162122A1 (en) 2011-07-29 2012-07-27 Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
KR1020147004361A KR101947566B1 (ko) 2011-07-29 2012-07-27 집전체 및 그것을 이용한 전극 구조체, 비수전해질 전지, 전기 이중층 커패시터, 리튬이온 커패시터 또는 축전 부품
EP12820071.4A EP2738855B1 (en) 2011-07-29 2012-07-27 Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166391 2011-07-29
JP2011166391 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018686A1 true WO2013018686A1 (ja) 2013-02-07

Family

ID=47629210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069121 WO2013018686A1 (ja) 2011-07-29 2012-07-27 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品

Country Status (7)

Country Link
US (1) US20140162122A1 (ja)
EP (1) EP2738855B1 (ja)
JP (1) JP6076254B2 (ja)
KR (1) KR101947566B1 (ja)
CN (1) CN103733400B (ja)
TW (1) TWI569502B (ja)
WO (1) WO2013018686A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074979A (zh) * 2013-03-29 2015-11-18 株式会社Uacj 集电体、电极结构体、非水电解质电池及蓄电部件
JP2017084682A (ja) * 2015-10-30 2017-05-18 日本ゼオン株式会社 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
WO2018083917A1 (ja) * 2016-11-04 2018-05-11 日産自動車株式会社 電池用電極及び電池
JP2020017490A (ja) * 2018-07-27 2020-01-30 トヨタ自動車株式会社 固体電池用電極及び固体電池
JP2020161232A (ja) * 2019-03-25 2020-10-01 三洋化成工業株式会社 リチウムイオン電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036829A (ja) * 2014-08-07 2016-03-22 Jx日鉱日石金属株式会社 圧延銅箔及びそれを用いた二次電池用集電体
US20170331115A1 (en) * 2014-10-29 2017-11-16 Showa Denko K.K. Electrode current collector, method of manufacturing the same, electrode, lithium ion secondary battery, redox flow battery, and electric double layer capacitor
FR3028088B1 (fr) * 2014-11-03 2016-12-23 Hutchinson Electrodes conductrices et leur procede de fabrication
US10516154B2 (en) * 2016-07-01 2019-12-24 Lg Chem, Ltd. Positive electrode for lithium secondary battery and method for preparing the same
KR102207524B1 (ko) * 2016-09-01 2021-01-26 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극
JP6998278B2 (ja) * 2018-06-13 2022-02-10 三洋化成工業株式会社 樹脂集電体、積層型樹脂集電体、及び、リチウムイオン電池
US10770731B2 (en) * 2018-08-01 2020-09-08 Chongqing Jinmei New Material Technology Co., Ltd. Positive electrode current collector and preparation method and use thereof
CN113066958B (zh) * 2021-03-22 2022-09-27 珠海冠宇电池股份有限公司 一种集流体及其应用
JP7377831B2 (ja) * 2021-05-14 2023-11-10 プライムプラネットエナジー&ソリューションズ株式会社 二次電池の集電体および二次電池
CN114464791B (zh) * 2022-01-26 2023-10-31 广东羚光新材料股份有限公司 一种水系磷酸铁锂正极浆料及其制备方法和应用
CN116544346B (zh) * 2023-07-04 2024-01-23 深圳海辰储能控制技术有限公司 正极极片、储能装置及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172973A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 電池
JP2007066633A (ja) * 2005-08-30 2007-03-15 Sony Corp 集電体,負極および電池
JP2009295474A (ja) * 2008-06-06 2009-12-17 Nec Tokin Corp 非水電解液二次電池
JP2010108971A (ja) * 2008-10-28 2010-05-13 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法および電気化学素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071542A (ja) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
JP4197491B2 (ja) * 2003-12-26 2008-12-17 パナソニック株式会社 非水電解質二次電池用負極とその製造方法ならびにそれを用いた非水電解質二次電池
JP5249258B2 (ja) * 2005-02-10 2013-07-31 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
KR100669335B1 (ko) * 2005-08-19 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP4866173B2 (ja) * 2006-01-25 2012-02-01 大日精化工業株式会社 ヒドロキシアルキル化キトサン溶液
JP4421570B2 (ja) * 2006-03-30 2010-02-24 株式会社東芝 非水電解質電池、電池パック及び自動車
JP2008171788A (ja) * 2006-12-15 2008-07-24 Hitachi Cable Ltd リチウムイオン電池用集電体及びその製造方法
CN101779312B (zh) * 2007-08-09 2012-06-27 松下电器产业株式会社 锂二次电池用电极和具有该电极的锂二次电池
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
JP2010097843A (ja) * 2008-10-17 2010-04-30 Panasonic Corp リチウムイオン二次電池
KR20110109810A (ko) * 2009-01-28 2011-10-06 도요 알루미늄 가부시키가이샤 탄소 피복 알루미늄재와 그 제조 방법
WO2010098018A1 (ja) * 2009-02-24 2010-09-02 パナソニック株式会社 非水系二次電池用電極板とその製造方法およびこれを用いた非水系二次電池
JP5359442B2 (ja) * 2009-03-25 2013-12-04 住友化学株式会社 ナトリウムイオン電池
KR101489042B1 (ko) * 2009-08-27 2015-02-02 다이니치 세이카 고교 가부시키가이샤 수계 슬러리 조성물, 축전 장치용 전극판 및 축전 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172973A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 電池
JP2007066633A (ja) * 2005-08-30 2007-03-15 Sony Corp 集電体,負極および電池
JP2009295474A (ja) * 2008-06-06 2009-12-17 Nec Tokin Corp 非水電解液二次電池
JP2010108971A (ja) * 2008-10-28 2010-05-13 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法および電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738855A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074979A (zh) * 2013-03-29 2015-11-18 株式会社Uacj 集电体、电极结构体、非水电解质电池及蓄电部件
JP2017084682A (ja) * 2015-10-30 2017-05-18 日本ゼオン株式会社 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
WO2018083917A1 (ja) * 2016-11-04 2018-05-11 日産自動車株式会社 電池用電極及び電池
WO2018084252A1 (ja) * 2016-11-04 2018-05-11 日産自動車株式会社 電池用電極及び電池
JP2018081909A (ja) * 2016-11-04 2018-05-24 日産自動車株式会社 電池用電極及び電池
US10601050B2 (en) 2016-11-04 2020-03-24 Nissan Motor Co., Ltd. Electrode for cell, and cell
JP2020017490A (ja) * 2018-07-27 2020-01-30 トヨタ自動車株式会社 固体電池用電極及び固体電池
JP7087784B2 (ja) 2018-07-27 2022-06-21 トヨタ自動車株式会社 固体電池用電極及び固体電池
JP2020161232A (ja) * 2019-03-25 2020-10-01 三洋化成工業株式会社 リチウムイオン電池
WO2020196372A1 (ja) * 2019-03-25 2020-10-01 Apb株式会社 リチウムイオン電池
JP7281934B2 (ja) 2019-03-25 2023-05-26 三洋化成工業株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
EP2738855B1 (en) 2017-11-08
KR101947566B1 (ko) 2019-02-13
CN103733400A (zh) 2014-04-16
TWI569502B (zh) 2017-02-01
JP6076254B2 (ja) 2017-02-08
TW201318258A (zh) 2013-05-01
CN103733400B (zh) 2016-11-09
EP2738855A4 (en) 2015-01-07
KR20140051324A (ko) 2014-04-30
EP2738855A1 (en) 2014-06-04
US20140162122A1 (en) 2014-06-12
JPWO2013018686A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6076254B2 (ja) 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
JP6121325B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5600576B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
TW201843870A (zh) 蓄電裝置用集電體、其製造方法,及用於其製造的塗覆液
JP5985161B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
KR101947565B1 (ko) 집전체 및 그것을 이용한 전극 구조체, 비수전해질 전지, 전기 이중층 커패시터, 리튬이온 커패시터 또는 축전 부품
JP6184552B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6140073B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
WO2013154176A1 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5780871B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5788985B2 (ja) 集電体、電極構造体、非水電解質電池、蓄電部品、硝化綿系樹脂材料
JP5788730B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6130018B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6031223B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526877

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147004361

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012820071

Country of ref document: EP