WO2013018312A1 - Plasma display panel and method for producing same - Google Patents

Plasma display panel and method for producing same Download PDF

Info

Publication number
WO2013018312A1
WO2013018312A1 PCT/JP2012/004691 JP2012004691W WO2013018312A1 WO 2013018312 A1 WO2013018312 A1 WO 2013018312A1 JP 2012004691 W JP2012004691 W JP 2012004691W WO 2013018312 A1 WO2013018312 A1 WO 2013018312A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
metal oxide
dielectric layer
gas
discharge space
Prior art date
Application number
PCT/JP2012/004691
Other languages
French (fr)
Japanese (ja)
Inventor
日下 健一
英幸 白波瀬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013018312A1 publication Critical patent/WO2013018312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the technology of the present disclosure relates to a plasma display panel used for a display device or the like and a manufacturing method thereof.
  • a plasma display panel (hereinafter referred to as PDP) which is one of display devices has a protective layer. It is known to use magnesium oxide (MgO), calcium oxide (CaO) or the like having a higher secondary electron emission capability for the protective layer (see, for example, Patent Document 1).
  • the PDP according to the present disclosure includes a front plate and a back plate disposed to face the front plate.
  • the front plate has a dielectric layer and a protective layer covering the dielectric layer.
  • the protective layer includes at least a first metal oxide and a second metal oxide.
  • the protective layer has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide.
  • the first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak.
  • the first metal oxide and the second metal oxide are two kinds selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide and barium oxide.
  • the back plate includes a base dielectric layer and a plurality of barrier ribs disposed on the base dielectric layer.
  • the partition has a plurality of voids.
  • the porosity of the partition wall is more than 0% and less than 1.0%.
  • the average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29 ⁇ m less than 2.
  • the manufacturing method of this indication is a manufacturing method of PDP which has the discharge space formed between the front board and the back board.
  • the protective layer is exposed to the reducing organic gas by introducing a gas containing the reducing organic gas into the discharge space. Next, reducing organic gas is discharged from the discharge space. Next, the discharge gas is sealed in the discharge space.
  • the front plate has a dielectric layer and a protective layer covering the dielectric layer.
  • the protective layer includes at least a first metal oxide and a second metal oxide. Furthermore, the protective layer has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide.
  • the first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak.
  • the first metal oxide and the second metal oxide are two kinds selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide and barium oxide.
  • the back plate includes a base dielectric layer and a plurality of barrier ribs disposed on the base dielectric layer.
  • the partition has a plurality of voids.
  • the porosity of the partition wall is more than 0% and less than 1.0%.
  • the average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29 ⁇ m less than 2.
  • FIG. 1 is an exploded perspective view of a PDP.
  • FIG. 2 is a front view of the PDP as viewed from the front plate side.
  • FIG. 3 is a view showing a part of a cross section taken along line 3-3 in FIG.
  • FIG. 4 is a diagram illustrating an X-ray diffraction analysis result of the protective layer surface according to the embodiment.
  • FIG. 5 is a diagram illustrating a result of X-ray diffraction analysis of the surface of the protective layer according to the embodiment.
  • FIG. 6 is a manufacturing flowchart of the PDP according to the embodiment.
  • FIG. 7 is a diagram illustrating a first temperature profile example.
  • FIG. 8 is a diagram illustrating a second temperature profile example.
  • FIG. 9 is a diagram illustrating a third temperature profile example.
  • FIG. 10 is a diagram showing a method for evaluating the porosity of the underlying dielectric layer.
  • FIG. 11 is a diagram illustrating a method for evaluating the po
  • the PDP 1 according to the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1 to FIG. 3, the PDP 1 has a configuration in which a front plate 2 and a back plate 10 are arranged to face each other.
  • the front plate 2 includes a front glass substrate 3.
  • a plurality of display electrodes 6 are arranged on the surface of the front glass substrate 3.
  • Each display electrode 6 is arranged parallel to the long side of the front glass substrate 3.
  • Each display electrode 6 has one scan electrode 4 and one sustain electrode 5.
  • a discharge gap is formed between scan electrode 4 and sustain electrode 5.
  • Scan electrode 4 includes a transparent electrode 4a disposed on front glass substrate 3 and a bus electrode 4b stacked on transparent electrode 4a.
  • Sustain electrode 5 includes a transparent electrode 5a disposed on front glass substrate 3, and a bus electrode 5b stacked on transparent electrode 5a.
  • the front plate 2 includes a dielectric layer 8 that covers the display electrodes 6.
  • the front plate 2 includes a protective layer 9 that covers the dielectric layer 8.
  • the protective layer 9 is required to have a function of holding electric charge for generating discharge and a function of emitting secondary electrons during sustain discharge.
  • the applied voltage is reduced by improving the charge retention performance. As the number of secondary electron emission increases, the driving voltage for generating the sustain discharge is reduced.
  • the protective layer 9 includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide and the second metal oxide are two kinds selected from the group consisting of MgO, CaO, SrO and BaO.
  • the protective layer 9 has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide.
  • the first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak of the protective layer 9.
  • the horizontal axis represents the Bragg diffraction angle (2 ⁇ ).
  • the vertical axis represents the intensity of the X-ray diffraction wave.
  • the unit of the diffraction angle is expressed in degrees where one round is 360 degrees.
  • the intensity of the diffracted light is indicated in arbitrary units.
  • the crystal plane orientation is shown in parentheses.
  • the (111) plane orientation of CaO alone is indicated by a peak with a diffraction angle of 32.2 degrees.
  • the (111) plane orientation of MgO alone is indicated by a peak with a diffraction angle of 36.9 degrees.
  • the (111) plane orientation of SrO alone is indicated by a peak with a diffraction angle of 30.0 degrees.
  • the (111) plane orientation of BaO alone is indicated by a peak with a diffraction angle of 27.9 degrees.
  • the protective layer 9 according to the present embodiment includes two or more metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO.
  • the point A is a peak in the (111) plane orientation of the protective layer 9 formed of two of MgO and CaO.
  • Point B is a peak in the (111) plane orientation of the protective layer 9 formed of two of MgO and SrO.
  • the point C is a peak in the (111) plane orientation of the protective layer 9 formed of MgO and BaO.
  • the diffraction angle at point A is 36.1 degrees.
  • the point A exists between the peak of the (111) plane orientation in the MgO body that is the first metal oxide and the peak of the (111) plane orientation in the CaO simple substance that is the second metal oxide.
  • Point B exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the SrO simple substance that is the second metal oxide.
  • ⁇ ⁇ Diffraction at point C is 35.4 degrees.
  • the point C exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the BaO simple substance that is the second metal oxide.
  • the point D is a peak in the (111) plane orientation of the protective layer 9 formed of three of MgO, CaO, and SrO.
  • the point E is a peak in the (111) plane orientation of the protective layer 9 formed of three of MgO, CaO, and BaO.
  • the point F is a peak in the (111) plane orientation of the protective layer 9 formed of three of BaO, CaO, and SrO.
  • the diffraction angle at point D is 33.4 degrees.
  • the point D exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the CaO simple substance that is the second metal oxide.
  • the diffraction angle at point E is 32.8 degrees.
  • the point E exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the SrO simple substance that is the second metal oxide.
  • the diffraction at the F point is 30.2 degrees.
  • the F point exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the BaO simple substance that is the second metal oxide.
  • the plane orientation (111) is exemplified. However, the same applies to other plane orientations.
  • the Auger effect is generated when electrons existing at the energy levels of CaO, SrO, and BaO transition to the ground state of the Xe ion.
  • the peak of the protective layer 9 in the X-ray diffraction analysis is between the peak of the first metal oxide and the peak of the second metal oxide. That is, the energy level of the protective layer 9 exists between single metal oxides. Therefore, it is considered that the number of electrons emitted by the Auger effect is increased compared to the case where transition is made from the energy level of MgO.
  • the protective layer 9 according to the present embodiment has better secondary electron emission characteristics as compared with MgO alone.
  • the drive voltage can be reduced.
  • the driving voltage can be reduced.
  • CaO and the like are chemically unstable compared to MgO, and easily react with moisture and carbon dioxide in the air to form hydroxides and carbonates.
  • the secondary electron emission ability decreases. That is, there are cases where the drive voltage of the PDP cannot be lowered.
  • each address electrode 12 is arranged in parallel with the short side of the rear glass substrate 11. In other words, each address electrode 12 is arranged in a direction orthogonal to the display electrode 6.
  • the address electrode 12 contains Ag for ensuring conductivity.
  • the back plate 10 includes a base dielectric layer 13 that covers the plurality of address electrodes 12.
  • the underlying dielectric layer 13 includes a glass component and a filler. The ratio of the glass component to the sum of the glass component and the filler is 25% by weight or more and 35% by weight or less.
  • the glass component contains 20% to 40% by weight of dibismuth trioxide (Bi 2 O 3 ). Further, the glass component may contain 0.5 wt% to 12 wt% of at least one selected from the group consisting of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Further, the glass components are molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), cerium dioxide (CeO 2 ), manganese dioxide (MnO 2 ), copper oxide (CuO), dichromium trioxide (Cr 2 O). 3 ), at least one selected from the group consisting of dicobalt trioxide (Co 2 O 3 ), vanadium pentoxide (V 2 O 5 ) and antimony trioxide (Sb 2 O 3 ) % By weight may be included.
  • MoO 3 molybdenum trioxide
  • WO 3 tungsten trioxide
  • CeO 2 cerium dioxide
  • MnO 2 manganes
  • a material not containing a lead component such as zinc oxide (ZnO) or diboron trioxide (B 2 O 3 ) may be included.
  • the filler contains at least one selected from the group consisting of dialuminum trioxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), MgO, and cordierite.
  • the base dielectric layer 13 has a gap.
  • the porosity in the underlying dielectric layer 13 is more than 0% and less than 1%.
  • barrier ribs 14 that divide the discharge space 16 are disposed.
  • the barrier ribs 14 include vertical barrier ribs 24 arranged in parallel with the address electrodes 12 and horizontal barrier ribs 26 arranged in parallel with the display electrodes 6.
  • the vertical barrier ribs 24 are disposed between the address electrodes 12 and the address electrodes 12.
  • the partition 14 includes a glass component and a filler.
  • the ratio of the glass component to the sum of the glass component and the filler is 81% by weight or more and 85% by weight or less.
  • the glass component contains 20% to 40% by weight of Bi 2 O 3 .
  • the glass component may contain 0.5 wt% to 12 wt% of at least one selected from the group of CaO, SrO and BaO.
  • the glass component is at least one selected from the group consisting of MoO 3 , WO 3 , CeO 2 , MnO 2 , CuO, Cr 2 O 3 , Co 2 O 3 , V 2 O 5 and Sb 2 O 3 . 1% by weight to 7% by weight may be contained.
  • a material that does not contain a lead component such as ZnO or B 2 O 3 , may be included.
  • the filler contains at least one selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO and cordierite.
  • the partition 14 has a space
  • the porosity in the partition wall 14 is more than 0% and less than 1%.
  • the average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29 ⁇ m less than 2.
  • the back plate 10 includes a phosphor layer 15.
  • the phosphor layer 15 is disposed on the surface of the base dielectric layer 13 and the side surfaces of the barrier ribs 14.
  • the phosphor layer 15 includes a red phosphor layer 151 that emits red light, a blue phosphor layer 152 that emits blue light, and a green phosphor layer 153 that emits green light.
  • the red phosphor layer 151, the blue phosphor layer 152, and the green phosphor layer 153 have emission centers that are excited by ultraviolet rays.
  • the red phosphor used for the red phosphor layer 151 is an Eu 3+ activated red phosphor having a main emission peak in a wavelength region of 610 nm or more and less than 630 nm.
  • the red phosphors are Y 2 O 3 : Eu 3+ (YOX phosphor), (Y, Gd) 2 O 3 : Eu 3+ (YGX phosphor) and Y (P, V) O 4 : Eu.
  • Phosphor particles such as 3+ (YPV phosphor).
  • the blue phosphor layer used for the blue phosphor layer 152 is an Eu 2+ activated blue phosphor having a main emission peak in a wavelength region of 420 nm or more and less than 500 nm.
  • the blue phosphor using Eu 2+ as an activator emits light based on the 4f 6 5d 1 ⁇ 4f 7 electron energy transition of Eu 2+ ions. Therefore, blue light emission with an afterglow time of less than 1 msec can be realized.
  • the blue phosphor is BaMgAl 10 O 17 : Eu 2+ (BAM phosphor), CaMgSi 2 O 6 : Eu 2+ (CMS phosphor), Sr 3 MgSi 2 O 8 : Eu 2+ (SMS phosphor) Such as phosphor particles.
  • the green phosphor used for the green phosphor layer 153 includes an Mn 2+ activated short afterglow green phosphor having an emission peak in a wavelength region of 500 nm or more and less than 560 nm and an afterglow time exceeding 2 msec and less than 5 msec.
  • the phosphor includes a Ce 3+ activated green phosphor or an Eu 2+ activated green phosphor having an emission peak in a wavelength region of 490 nm or more and less than 560 nm.
  • the green phosphor is specifically phosphor particles such as Zn 2 SiO 4 : Mn 2+ (ZSM phosphor) and Y 3 Al 5 O 12 : Ce 3+ (YAG phosphor).
  • the PDP 1 includes a sealing member 22.
  • the sealing member 22 seals the periphery of the front plate 2 and the periphery of the back plate 10. That is, the PDP 1 is hermetically sealed by the sealing member 22.
  • the sealing member 22 is disposed outside the display area in the PDP 1.
  • the sealing member 22 is a glass frit whose main component is Bi 2 O 3 , B 2 O 3 , V 2 O 5 or the like. Further, as the sealing member 22, a member to which a filler made of an oxide such as Al 2 O 3 , SiO 2 , cordierite or the like is added can be used. The softening point of the glass frit is about 460 ° C to 480 ° C.
  • a discharge gas containing xenon (Xe) is sealed in the discharge space 16 at a pressure of 55 kPa to 80 kPa.
  • the manufacturing method of the PDP 1 includes a front plate manufacturing step A1, a back plate manufacturing step B1, a frit coating step B2, a sealing step C1, a reducing gas introduction step C2, and an exhaust. It has process C3 and discharge gas supply process C4.
  • Scan electrode 4 and sustain electrode 5 are formed on front glass substrate 3 by photolithography. First, transparent electrodes 4a and 5a made of indium tin oxide (ITO) or the like are formed.
  • ITO indium tin oxide
  • bus electrodes 4b and 5b are formed.
  • an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used as a material for the bus electrodes 4b and 5b.
  • an electrode paste is applied to the front glass substrate 3 on which the transparent electrodes 4a and 5a are formed by a screen printing method or the like.
  • the electrode paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. in a drying furnace. By drying, the solvent in the electrode paste is removed.
  • the electrode paste is exposed through a photomask in which a plurality of rectangular patterns are formed.
  • the electrode paste is developed.
  • a positive photosensitive resin is used, the exposed part is removed.
  • the remaining electrode paste is an electrode pattern.
  • the electrode pattern is fired in a temperature range of, for example, 400 ° C. to 550 ° C. in a firing furnace.
  • the photosensitive resin in the electrode pattern is removed by baking.
  • the glass frit in the electrode pattern is melted.
  • the melted glass frit is vitrified again after firing.
  • Bus electrodes 4b and 5b are formed by the above steps.
  • a method of forming a metal film by sputtering, vapor deposition, or the like and then patterning can be used.
  • dielectric layer 8 As a material for the dielectric layer 8, a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used. First, a dielectric paste is applied on the front glass substrate 3 with a predetermined thickness by a die coating method or the like. The applied dielectric paste covers scan electrode 4 and sustain electrode 5. Next, the dielectric paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. by a drying furnace. The solvent in the dielectric paste is removed by drying. Finally, the dielectric paste is baked in a temperature range of, for example, 400 ° C. to 550 ° C. in a baking furnace. By baking, the resin in the dielectric paste is removed. The dielectric glass frit is melted by firing. The melted dielectric glass frit is vitrified again after firing. Through the above steps, the dielectric layer 8 is formed.
  • a film that becomes the dielectric layer 8 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the dielectric paste.
  • the protective layer 9 is formed by an EB (Electron Beam) vapor deposition apparatus.
  • the material of the protective layer 9 is a MgO pellet made of single crystal MgO and a CaO pellet made of single crystal CaO. That is, a pellet may be selected according to the composition of the protective layer 9.
  • Aluminum (Al), silicon (Si), or the like may be further added as impurities to the MgO pellets or CaO pellets.
  • an electron beam is irradiated to the MgO pellets and CaO pellets arranged in the film forming chamber of the EB deposition apparatus.
  • the surfaces of the MgO pellets and CaO pellets that have received the energy of the electron beam evaporate.
  • MgO evaporated from the MgO pellets and CaO evaporated from the CaO pellets adhere to the front glass substrate 3 moving in the film forming chamber.
  • MgO and CaO are deposited on the dielectric layer 8 through a mask in which a region serving as a display region is opened.
  • the front glass substrate 3 is heated to about 300 ° C. by a heater.
  • the film thickness of the protective layer 9 is adjusted so as to be within a predetermined range by the intensity of the electron beam, the pressure in the film forming chamber, the moving speed of the front glass substrate 3, and the like.
  • Address electrodes 12 are formed on the rear glass substrate 11 by photolithography.
  • an address electrode paste containing silver (Ag) particles as a conductor, a glass frit that binds the silver particles, a photosensitive resin, a solvent, and the like is used as the material of the address electrode 12.
  • the address electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like.
  • the address electrode paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. by a drying furnace. The solvent in the address electrode paste is removed by drying.
  • the address electrode paste is exposed through a photomask in which a plurality of rectangular patterns are formed.
  • the address electrode paste is developed.
  • the exposed part is removed.
  • the remaining address electrode paste is an address electrode pattern.
  • the address electrode pattern is fired in a temperature range of 400 ° C. to 550 ° C., for example, in a firing furnace.
  • the photosensitive resin in the address electrode pattern is removed by baking. By baking, the glass frit in the address electrode pattern is melted. The melted glass frit is vitrified again after firing.
  • the address electrode 12 is formed by the above process.
  • a method of forming a metal film by sputtering, vapor deposition, or the like and then patterning can be used.
  • a base dielectric paste containing glass frit, filler, resin, solvent, and the like is used as a material for the base dielectric layer 13.
  • the ratio of the glass frit to the sum of the glass frit and the filler is 25% by weight or more and 35% by weight or less.
  • the base dielectric paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like.
  • the applied base dielectric paste covers the address electrodes 12.
  • the base dielectric paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. in a drying furnace. The solvent in the base dielectric paste is removed by drying.
  • the base dielectric paste is baked in a baking furnace in a temperature range of 400 ° C. to 550 ° C., for example.
  • the resin in the base dielectric paste is removed.
  • the glass frit is melted by firing.
  • the filler does not dissolve even by firing.
  • the melted glass frit becomes a glass component again after firing. That is, the base dielectric layer 13 has a configuration in which the filler is dispersed in the glass component.
  • the region where the resin was present becomes a void when the resin is removed.
  • the gap is filled with a glass component around the gap.
  • the porosity in the underlying dielectric layer 13 is greater than 0% and less than 1%.
  • the barrier ribs 14 are formed by photolithography.
  • a partition paste containing a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used as a material for the partition wall 14.
  • the ratio of the glass frit to the sum of the glass frit and the filler is 81% by weight or more and 85% by weight or less.
  • the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like.
  • the partition paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. by a drying furnace. The solvent in the barrier rib paste is removed by drying.
  • the barrier rib paste is exposed through, for example, a photomask having a cross pattern.
  • the barrier rib paste is developed. When a positive photosensitive resin is used, the exposed part is removed. The remaining barrier rib paste is a barrier rib pattern.
  • the barrier rib pattern is fired in a temperature range of, for example, 500 ° C. to 600 ° C. in a firing furnace.
  • the photosensitive resin in the partition wall pattern is removed by baking. By baking, the glass frit in the barrier rib pattern is melted.
  • the filler does not dissolve even by firing. The melted glass frit becomes a glass component again after firing. That is, the partition 14 has a configuration in which the filler is dispersed in the glass component.
  • the partition wall 14 is formed by the above process.
  • the region where the resin was present becomes a void when the resin is removed.
  • the gap is filled with a glass component around the gap.
  • the porosity in the partition wall 14 is more than 0% and less than 1%.
  • a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used as the material of the phosphor layer 15.
  • a phosphor paste is applied on the base dielectric layer 13 between adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14 by a dispensing method or the like.
  • the solvent in the phosphor paste is removed by a drying furnace.
  • the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed.
  • the phosphor layer 15 is formed by the above steps.
  • a screen printing method or the like can be used.
  • the back plate 10 having predetermined constituent members on the back glass substrate 11 is completed.
  • Frit application process B2 A glass frit which is a sealing member is applied outside the image display area of the back plate 10 manufactured by the back plate manufacturing step B1. Thereafter, the glass frit is temporarily fired at a temperature of about 350 ° C. A solvent component etc. are removed by temporary baking.
  • the sealing process C1, reducing gas introduction process C2, exhaust process C3, and discharge gas supply process C4 are any one of the temperature profiles illustrated in FIGS. 7 to 9 in the same apparatus. Process based on one.
  • the sealing temperature is a temperature at which the front plate 2 and the back plate 10 are sealed by a frit that is a sealing member.
  • the sealing temperature in the present embodiment is about 490 ° C., for example.
  • the softening point is a temperature at which the frit as the sealing member softens.
  • the softening point in the present embodiment is about 430 ° C., for example.
  • the exhaust temperature is a temperature at which a gas containing a reducing organic gas is exhausted from the discharge space.
  • the exhaust temperature in the present embodiment is about 400 ° C., for example.
  • the temperature is maintained at the exhaust temperature for the period cd.
  • a gas containing a reducing organic gas is introduced into the discharge space during the period cd.
  • the protective layer 9 is exposed to a gas containing a reducing organic gas.
  • the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period d-e, the discharge space is exhausted, so that a gas containing a reducing organic gas is exhausted.
  • a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
  • the temperature is maintained at the exhaust temperature for the period d1-d2.
  • a gas containing a reducing organic gas is introduced into the discharge space during the period d1-d2.
  • the protective layer 9 is exposed to a gas containing a reducing organic gas during the period d1-d2.
  • the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period d2-e, the discharge space is exhausted, so that a gas containing a reducing organic gas is exhausted.
  • a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
  • the reducing gas introduction step C2 is performed within the period of the sealing step C1.
  • the temperature is maintained at the sealing temperature for the period b1-b2. Thereafter, during the period b2-c, the temperature falls to the exhaust temperature.
  • a gas containing a reducing organic gas is introduced into the discharge space.
  • the protective layer 9 is exposed to a gas containing a reducing organic gas.
  • the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period ce, the gas including the reducing organic gas is discharged by exhausting the discharge space.
  • a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
  • the reducing organic gas is preferably a CH-based organic gas having a molecular weight of 58 or less and a large reducing power.
  • a gas containing the reducing organic gas is produced.
  • column C means the number of carbon atoms contained in one molecule of organic gas.
  • the column of H means the number of hydrogen atoms contained in one molecule of the organic gas.
  • “A” is attached to a gas having a vapor pressure of 100 kPa or more at 0 ° C. in the vapor pressure column. Furthermore, “C” is given to the gas whose vapor pressure at 0 ° C. is smaller than 100 kPa.
  • a gas having a boiling point of 0 ° C. or less at 1 atm is marked with “A”. Furthermore, “C” is attached to a gas having a boiling point of greater than 0 ° C. at 1 atmosphere.
  • “A” is given to the gas that is easily decomposed.
  • “B” is attached to a gas that is easily decomposed.
  • “A” is given to the gas having sufficient reducing power.
  • a reducing organic gas that can be supplied in a gas cylinder is desirable. Also, considering the ease of handling in the manufacturing process of PDP, a reducing organic gas having a vapor pressure at 0 ° C. of 100 kPa or higher, a reducing organic gas having a boiling point of 0 ° C. or lower, or a reducing organic gas having a low molecular weight is desirable.
  • part of the gas containing the reducing organic gas may remain in the discharge space even after the exhaust process C3. Therefore, it is desirable that the reducing organic gas has a characteristic that it is easily decomposed.
  • Reducing organic gas is a carbon that does not contain oxygen selected from acetylene, ethylene, methylacetylene, propadiene, propylene and cyclopropane, taking into consideration the ease of handling in the manufacturing process and the property of being easily decomposed. Hydrogen gas is desirable. At least one selected from these reducing organic gases may be mixed with a rare gas or nitrogen gas.
  • the lower limit of the mixing ratio of the rare gas or nitrogen gas and the reducing organic gas is determined according to the combustion ratio of the reducing organic gas used.
  • the upper limit is about several volume%. If the mixing ratio of the reducing organic gas is too high, the organic component is likely to be polymerized to become a polymer. In this case, the polymer remains in the discharge space and affects the characteristics of the PDP. Therefore, it is preferable to appropriately adjust the mixing ratio according to the component of the reducing organic gas to be used.
  • MgO, CaO, SrO, BaO, etc. have high reactivity with impurity gas, such as water and a carbon dioxide.
  • impurity gas such as water and a carbon dioxide.
  • the discharge characteristics are likely to deteriorate, and the discharge characteristics of each discharge cell are likely to vary.
  • the sealing step C1 it is preferable to flow an inert gas so that the inside of the discharge space 16 is in a positive pressure state through a through hole opened in the discharge space 16, and then perform sealing. This is because the reaction between the protective layer 9 and the impurity gas can be suppressed. Nitrogen, helium, neon, argon, xenon, etc. can be used as the inert gas.
  • dry air may be flowed instead of the inert gas. This is because at least the reaction between the protective layer 9 and water can be suppressed, and the manufacturing cost can be reduced compared with the inert gas.
  • nitrogen gas may be flowed at a flow rate of about 2 L / min during the period until the temperature reaches the softening point x.
  • the discharge space 16 is maintained at a positive pressure by nitrogen gas.
  • the temperature is maintained at the sealing temperature for the period ab.
  • the discharge space 16 is filled with nitrogen gas.
  • the temperature falls from the sealing temperature to the exhaust temperature during the period bc.
  • the nitrogen gas that has filled the discharge space 16 is exhausted. That is, the discharge space is in a reduced pressure state.
  • the description for the subsequent period is the same as the above description.
  • the prototype PDP 1 is suitable for a 42-inch class high-definition television.
  • the PDP 1 includes a front plate 2 and a back plate 10 disposed to face the front plate 2.
  • the periphery of the front plate 2 and the back plate 10 is sealed with a sealing member 22.
  • the front plate 2 has a display electrode 6, a dielectric layer 8, and a protective layer 9.
  • the back plate 10 includes address electrodes 12, a base dielectric layer 13, barrier ribs 14, and a phosphor layer 15.
  • PDP 1 was filled with a neon (Ne) -xenon (Xe) -based mixed gas having a xenon (Xe) content of 15% by volume at an internal pressure of 60 kPa.
  • the interelectrode distance between the display electrode 6 and the display electrode 6 was 60 ⁇ m.
  • the film thickness of the base dielectric layer 13 was 10 ⁇ m.
  • the height of the vertical partition wall 24 was 120 ⁇ m, and the distance (cell pitch) between the vertical partition wall 24 and the vertical partition wall 24 was 120 ⁇ m.
  • the height of the horizontal barrier ribs 26 was 100 ⁇ m, and the distance between the horizontal barrier ribs 26 and the horizontal barrier ribs 26 was 45 ⁇ m.
  • YPV was used for the red phosphor layer 151.
  • BAM was used for the blue phosphor layer 152.
  • For the green phosphor layer 153 a mixture of ZSM and YAG at a ratio of 1: 1 was used.
  • the protective layer 9 of sample A is composed of MgO and CaO.
  • the protective layer 9 of sample B is composed of MgO and SrO.
  • the protective layer 9 of sample C is composed of MgO and BaO.
  • the protective layer 9 of sample D is made of MgO, CaO, and SrO.
  • the protective layer 9 of sample E is composed of MgO, CaO, and BaO.
  • the protective layer 9 of the comparative example is composed of MgO alone.
  • the drive voltage was measured for samples A to E.
  • the driving voltage was evaluated by driving the PDP 1 in a subfield.
  • one field is composed of a plurality of subfields.
  • One subfield has an initialization period, an address period, and a sustain period.
  • the initialization period is a period in which the initialization discharge is generated in the discharge cell.
  • the address period is a period for generating an address discharge for selecting a discharge cell to emit light after the initialization period.
  • the sustain period is a period in which a sustain discharge is generated in the discharge cell selected in the address period.
  • the drive voltage means the lowest voltage necessary for generating a normal sustain discharge. A lower driving voltage is preferred.
  • Samples A to E are PDPs manufactured by a normal manufacturing method. That is, samples A to E are PDPs manufactured by a manufacturing method that does not have a reducing organic gas introduction step.
  • the luminance increases by about 30%, but in the comparative example, the driving voltage increases by about 10%.
  • PDP 1 having protective layer 9 having the same configuration as samples A to E was manufactured by the manufacturing method according to the present embodiment.
  • the first temperature profile was used from the sealing step C1 to the discharge gas supply step C4.
  • the driving voltage of the PDP 1 according to the present embodiment was about 5% lower than those of the samples A to E.
  • nitrogen gas is allowed to flow as an inert gas so that the inside of the discharge space 16 is in a positive pressure state through the through-hole opened in the discharge space 16, and then When sealing, it was about 5 to 7% lower than samples A to E.
  • the prototype PDP 1 is suitable for a 42-inch class high-definition television.
  • the PDP 1 includes a front plate 2 and a back plate 10 disposed to face the front plate 2.
  • the periphery of the front plate 2 and the back plate 10 is sealed with a sealing member 22.
  • the front plate 2 has a display electrode 6, a dielectric layer 8, and a protective layer 9.
  • the protective layer 9 contains 80 mol% MgO and 20 mol% CaO.
  • the back plate 10 includes address electrodes 12, a base dielectric layer 13, barrier ribs 14, and a phosphor layer 15. Ethylene was used as the reducing organic gas.
  • the first temperature profile was used from the sealing step to the discharge gas supply step.
  • PDP 1 was filled with a neon (Ne) -xenon (Xe) -based mixed gas having a xenon (Xe) content of 15% by volume at an internal pressure of 60 kPa.
  • the interelectrode distance between the display electrode 6 and the display electrode 6 was 60 ⁇ m.
  • the film thickness of the base dielectric layer 13 was 10 ⁇ m.
  • the height of the vertical partition wall 24 was 120 ⁇ m, and the distance (cell pitch) between the vertical partition wall 24 and the vertical partition wall 24 was 120 ⁇ m.
  • the height of the horizontal barrier ribs 26 was 100 ⁇ m, and the distance between the horizontal barrier ribs 26 and the horizontal barrier ribs 26 was 45 ⁇ m.
  • YPV was used for the red phosphor layer 151.
  • BAM was used for the blue phosphor layer 152.
  • green phosphor layer 153 a mixture of ZSM and YAG at a ratio of 1: 1 was used.
  • Table 2 shows a list of PDP 1 prototyped. That is, the prototype PDP is the same except for the structure of the base dielectric layer 13 and the structure of the partition walls 14.
  • the drive voltage was evaluated in the same manner as in Evaluation 1.
  • Chipping was evaluated by cleaving the PDP 1 after the completion of the PDP 1 and observing the partition wall 14 with an optical microscope. If the partition wall 14 does not maintain the original shape, it means that chipping has occurred. That is, the chipping means that a part of the partition wall 14 is missing when the partition wall 14 contacts the protective layer 9 or the like. As for chipping, it is preferable that the number of occurrences of chipping is small and the size of chipping is small.
  • the porosity in the base dielectric layer 13 varies depending on the ratio of the glass frit to the sum of the glass frit and filler in the base dielectric paste.
  • the ratio of glass frit in sample 1 to sample 4 is 43% by weight.
  • the ratio of glass frit in sample 5 and sample 6 is 70% by weight.
  • the porosity in the partition 14 varies depending on the ratio of the glass frit to the sum of the glass frit and filler in the partition paste.
  • the glass frit ratio in sample 1 is 75% by weight.
  • the ratio of glass frit in sample 2 to sample 6 is 83% by weight.
  • the gap cross-sectional area in the partition wall 14 also varies depending on the firing temperature and firing time of the partition wall 14.
  • the firing temperature means the highest temperature in firing.
  • the firing time means the time kept at the firing temperature.
  • Samples 1 to 6 were fired at a firing temperature of 594 ° C.
  • Sample 4 and sample 5 were fired at the same firing time.
  • Sample 1 and Sample 2 were fired with a firing time that was half that of Sample 4 and Sample 5.
  • Sample 3 and Sample 6 were fired at a firing time 1.5 times that of Sample 4 and Sample 5. That is, as the firing time becomes longer, the gap cross-sectional area becomes smaller.
  • the porosity of the underlying dielectric layer 13 is measured as follows. First, the rear glass substrate 11 on which the base dielectric layer 13 is formed is cleaved so that the cross section of the base dielectric layer 13 appears. Next, a cross section of the underlying dielectric layer 13 is photographed with a scanning electron microscope (S-3100, manufactured by Hitachi, Ltd.). The photographing condition is an acceleration voltage of 10 keV. The image is captured in a 10-bit gradation, for example, in a CCD (Charge Coupled Devices) having 500 horizontal pixels and 500 vertical pixels. As shown in FIG.
  • S-3100 scanning electron microscope
  • the imaging region 40 is removed from the surface layer of the base dielectric layer 13 and about 10% from the rear glass substrate 11. This is because the vicinity of the surface layer and the vicinity of the back glass substrate 11 change the film quality and thus affect the measured value of the porosity.
  • the thickness of the underlying dielectric layer 13 is, for example, 10 ⁇ m
  • an image for 8 ⁇ m is formed in the thickness direction. That is, 1000 vertical pixels correspond to about 8 ⁇ m. Therefore, one pixel of the CCD corresponds to a 0.016 ⁇ m square (0.00026 ⁇ m 2 ) of the underlying dielectric layer 13.
  • the following processing may be performed before imaging.
  • the resin is cured.
  • the back glass substrate 11 is polished together with the resin until a cross-section to be imaged appears.
  • the photographed image is 10 bits, it is represented by 1024 gradations.
  • gain adjustment is performed so that the average gradation is 512 gradations.
  • an averaging process is performed to remove noise.
  • the void is represented as a dark part in the image. This is because electrons are not emitted during shooting.
  • binarization processing is performed.
  • the threshold value is set to 128 gradations.
  • a pixel having a gradation of less than 128 gradations is black, and a pixel having a gradation of 128 gradations or more is white.
  • a black region having a number of pixels (vertical 5 pixels or more ⁇ horizontal 5 pixels or more) (25 pixels or more) is defined as a void.
  • the void ratio is the number of pixels in the area occupied by the void in the total number of pixels of the captured image.
  • the number of voids and the cross-sectional area per void are calculated.
  • the number of voids is obtained by visual observation, for example.
  • the cross-sectional area is calculated from the number of pixels occupied by each gap.
  • the porosity in Table 2 is an average value of the measured values at nine locations in the surface of the PDP 1.
  • the imaging conditions of the scanning electron microscope, the CCD size for image capture, the image processing method, and the like can be changed as appropriate in accordance with the film thickness to be evaluated.
  • the porosity of the partition wall 14 is measured by the following procedure. First, the rear glass substrate 11 having the barrier ribs 14 formed on the base dielectric layer 13 is cleaved so that the barrier ribs 14 have a cross section. Next, the cross section of the partition 14 is image
  • a region of 10% to 20% in the width direction is removed from the side surface of the vertical partition wall 24. This is because the vicinity of the surface layer and the vicinity of the underlying dielectric layer 13 affect the measured value of the porosity because the film quality changes. If the height of the vertical partition 24 is 120 ⁇ m, an image of about 50 ⁇ m is formed in the height direction. That is, 1000 vertical pixels correspond to about 50 ⁇ m. Therefore, one pixel of the CCD corresponds to a 0.05 ⁇ m square (0.0025 ⁇ m 2 ) of the vertical partition wall 24.
  • the following processing may be performed before imaging.
  • the resin is cured.
  • the back glass substrate 11 is polished together with the resin until a cross-section to be imaged appears.
  • the photographed image is 10 bits, it is represented by 1024 gradations.
  • gain adjustment is performed so that the average gradation is 512 gradations.
  • an averaging process is performed to remove noise.
  • the void is represented as a dark part in the image. This is because electrons are not emitted during shooting.
  • binarization processing is performed.
  • the threshold value is set to 128 gradations.
  • a pixel having a gradation of less than 128 gradations is black, and a pixel having a gradation of 128 gradations or more is white.
  • a black region having the number of pixels (vertical 4 pixels or more ⁇ horizontal 4 pixels or more (16 pixels or more)) is defined as a void.
  • the void ratio is the number of pixels in the area occupied by the void in the total number of pixels of the captured image.
  • the number of voids and the cross-sectional area per void are calculated.
  • the number of voids is obtained by visual observation, for example.
  • the cross-sectional area is calculated from the number of pixels occupied by each gap.
  • the porosity in Table 2 is an average value of the measured values at nine locations in the surface of the PDP 1.
  • the void cross-sectional area in Table 1 is an average value of the cross-sectional areas per nine voids in the plane of the PDP 1.
  • the driving voltage of sample 2 is “C”.
  • the porosity of the partition wall 14 decreased as compared with the sample 1.
  • the gap cross-sectional area is large compared to Samples 3 to 6. For this reason, it is considered that the impurity gas is easily generated from the gap. Chipping is “B”.
  • the driving voltage of sample 3 is “B”.
  • the porosity of the base dielectric layer 13 and the porosity of the partition walls 14 are the same as those of the sample 2.
  • the gap cross-sectional area is smaller than that of Sample 2. Therefore, it is considered that gas is less likely to be generated from the gap.
  • the chipping is “C”. This is because the size of chipping is larger than that of Sample 2.
  • the driving voltage of sample 4 is “B”. Chipping is also “B”.
  • the porosity of the base dielectric layer 13 and the porosity of the partition walls 14 are the same as those of Sample 2 and Sample 3. However, the gap cross-sectional area is small compared to Sample 2 and large compared to Sample 3. Therefore, it is considered that the two characteristics of driving voltage and chipping are compatible.
  • the driving voltage of sample 5 is “A”.
  • the porosity and the cross-sectional area of the partition wall 14 are the same as those of the sample 4.
  • the porosity of the base dielectric layer 13 is smaller than that of the sample 3. For this reason, it is considered that the amount of impurity gas remaining in the voids has been reduced. Chipping is “B”.
  • the driving voltage of sample 6 is “A”. However, the chipping is “C”. This is probably because the gap cross-sectional area is smaller than that of Sample 5.
  • Samples in which “A” or “B” was obtained in the two characteristics of driving voltage and chipping were Sample 4 and Sample 5.
  • the porosity of the partition wall 14 is preferably more than 0% and less than 1.0%.
  • the gap cross-sectional area means the average cross-sectional area per one air gap is preferably less than 0.23 .mu.m 2 or 0.29 .mu.m 2.
  • the porosity of the underlying dielectric layer 13 is preferably more than 0% and less than 1.0%. This is because the impurity gas generated from the voids can be further reduced.
  • a PDP 1 includes a front plate 2 and a back plate 10 disposed to face the front plate 2.
  • the front plate 2 includes a dielectric layer 8 and a protective layer 9 that covers the dielectric layer 8.
  • the protective layer 9 includes at least a first metal oxide and a second metal oxide.
  • the protective layer 9 has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide.
  • the first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak.
  • the first metal oxide and the second metal oxide are two kinds selected from the group consisting of MgO, CaO, SrO and BaO.
  • the back plate 10 includes a base dielectric layer 13 and a plurality of barrier ribs 14 disposed on the base dielectric layer 13.
  • the partition 14 has a plurality of voids.
  • the porosity of the partition wall 14 is more than 0% and less than 1.0%.
  • the average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29 ⁇ m less than 2.
  • the PDP 1 according to the present embodiment can reduce the gas generated from the voids existing in the partition wall 14. Therefore, deterioration of the protective layer 9 can be suppressed. That is, a decrease in the secondary electron emission capability of the protective layer 9 can be suppressed. Furthermore, the chipping of the partition walls 14 can be suppressed by defining the average cross-sectional area per void. Therefore, the PDP 1 according to the present embodiment can suppress a decrease in quality due to chipping of the partition wall 14 while suppressing an increase in drive voltage.
  • the manufacturing method of the PDP 1 according to the present embodiment includes the following steps.
  • the protective layer 9 is exposed to the reducing organic gas by introducing a gas containing the reducing organic gas into the discharge space 16.
  • reducing organic gas is discharged from the discharge space 16.
  • the discharge gas is sealed in the discharge space 16.
  • Oxygen deficiency occurs in the protective layer 9 exposed to the reducing organic gas. Oxygen deficiency is considered to improve the secondary electron emission ability of the protective layer. Therefore, the PDP 1 manufactured by the manufacturing method according to the present embodiment can reduce the sustain voltage.
  • the reducing organic gas is preferably a hydrocarbon-based gas that does not contain oxygen. This is because the reduction ability is enhanced by not containing oxygen.
  • the reducing organic gas is preferably at least one selected from acetylene, ethylene, methylacetylene, propadiene, propylene, cyclopropane, propane and butane. This is because the reducing organic gas is easy to handle in the manufacturing process. Furthermore, it is because said reducing organic gas is easy to decompose
  • a manufacturing method in which a gas containing a reducing organic gas is introduced into the discharge space after exhausting the discharge space is exemplified.
  • the gas containing the reducing organic gas can be introduced into the discharge space by continuously supplying the gas containing the reducing organic gas to the discharge space without exhausting the discharge space.
  • constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique.
  • the non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
  • the technology of the present disclosure can reduce the driving voltage of the plasma display panel. Therefore, it is useful for a display device with a large screen.

Abstract

In the present invention, the protective film of a plasma display panel contains at least a first metal oxide and a second metal oxide. Furthermore, the protective film has at least one peak in an X-ray diffraction analysis. The peak is between a first peak in the X-ray diffraction analysis of the first metal oxide, and a second peak in the X-ray diffraction analysis of the second metal oxide. The first peak and the second peak exhibit the same plane orientation as that exhibited by the peak. A back-surface plate contains an underlying dielectric layer and plurality of partitions disposed on the underlying dielectric layer. The partitions have a plurality of air spaces. The void fraction of the partitions is greater than 0% and less than 1.0%. The average cross-sectional area per air space is at least 0.23 μm2 and less than 0.29 μm2.

Description

プラズマディスプレイパネルおよびその製造方法Plasma display panel and manufacturing method thereof
 本開示の技術は、表示装置などに用いられるプラズマディスプレイパネルおよびその製造方法に関する。 The technology of the present disclosure relates to a plasma display panel used for a display device or the like and a manufacturing method thereof.
 表示装置の一つであるプラズマディスプレイパネル(以下、PDPと称する)は、保護層を有する。保護層に酸化マグネシウム(MgO)と、より二次電子放出能力が高い酸化カルシウム(CaO)などを用いることが知られている(例えば、特許文献1参照)。 A plasma display panel (hereinafter referred to as PDP) which is one of display devices has a protective layer. It is known to use magnesium oxide (MgO), calcium oxide (CaO) or the like having a higher secondary electron emission capability for the protective layer (see, for example, Patent Document 1).
特開2010-080388号公報JP 2010-080388 A
 本開示のPDPは、前面板と、前面板と対向配置される背面板とを備える。前面板は、誘電体層と誘電体層を覆う保護層とを有する。保護層は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。さらに、保護層は、X線回折分析において少なくとも一つのピークを有する。ピークは、第1の金属酸化物のX線回折分析における第1のピークと、第2の金属酸化物のX線回折分析における第2のピークと、の間にある。第1のピークおよび第2のピークは、ピークが示す面方位と同じ面方位を示す。第1の金属酸化物および第2の金属酸化物は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムからなる群の中から選ばれる2種である。背面板は、下地誘電体層と下地誘電体層上に配置された複数の隔壁とを含む。隔壁は複数の空隙を有する。隔壁の空隙率は、0%を超え、かつ、1.0%未満である。空隙の一つあたりの平均断面積は、0.23μm以上0.29μm未満である。 The PDP according to the present disclosure includes a front plate and a back plate disposed to face the front plate. The front plate has a dielectric layer and a protective layer covering the dielectric layer. The protective layer includes at least a first metal oxide and a second metal oxide. Furthermore, the protective layer has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide. The first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak. The first metal oxide and the second metal oxide are two kinds selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide and barium oxide. The back plate includes a base dielectric layer and a plurality of barrier ribs disposed on the base dielectric layer. The partition has a plurality of voids. The porosity of the partition wall is more than 0% and less than 1.0%. The average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29μm less than 2.
 本開示の製造方法は、前面板と背面板との間に形成された放電空間を有するPDPの製造方法である。還元性有機ガスを含むガスを放電空間に導入することにより、保護層を還元性有機ガスに曝す。次に、還元性有機ガスを放電空間から排出する。次に、放電ガスを放電空間に封入する。前面板は、誘電体層と誘電体層を覆う保護層とを有する。保護層は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。さらに、保護層は、X線回折分析において少なくとも一つのピークを有する。ピークは、第1の金属酸化物のX線回折分析における第1のピークと、第2の金属酸化物のX線回折分析における第2のピークと、の間にある。第1のピークおよび第2のピークは、ピークが示す面方位と同じ面方位を示す。第1の金属酸化物および第2の金属酸化物は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムからなる群の中から選ばれる2種である。背面板は、下地誘電体層と下地誘電体層上に配置された複数の隔壁とを含む。隔壁は複数の空隙を有する。隔壁の空隙率は、0%を超え、かつ、1.0%未満である。空隙の一つあたりの平均断面積は、0.23μm以上0.29μm未満である。 The manufacturing method of this indication is a manufacturing method of PDP which has the discharge space formed between the front board and the back board. The protective layer is exposed to the reducing organic gas by introducing a gas containing the reducing organic gas into the discharge space. Next, reducing organic gas is discharged from the discharge space. Next, the discharge gas is sealed in the discharge space. The front plate has a dielectric layer and a protective layer covering the dielectric layer. The protective layer includes at least a first metal oxide and a second metal oxide. Furthermore, the protective layer has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide. The first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak. The first metal oxide and the second metal oxide are two kinds selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide and barium oxide. The back plate includes a base dielectric layer and a plurality of barrier ribs disposed on the base dielectric layer. The partition has a plurality of voids. The porosity of the partition wall is more than 0% and less than 1.0%. The average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29μm less than 2.
図1は、PDPの分解斜視図である。FIG. 1 is an exploded perspective view of a PDP. 図2は、PDPを前面板側から見た正面図である。FIG. 2 is a front view of the PDP as viewed from the front plate side. 図3は、図2における3-3線断面の一部を示す図である。FIG. 3 is a view showing a part of a cross section taken along line 3-3 in FIG. 図4は、実施の形態にかかる実施の形態にかかる保護層表面のX線回折分析結果を示す図である。FIG. 4 is a diagram illustrating an X-ray diffraction analysis result of the protective layer surface according to the embodiment. 図5は、実施の形態にかかる保護層表面のX線回折分析結果を示す図である。FIG. 5 is a diagram illustrating a result of X-ray diffraction analysis of the surface of the protective layer according to the embodiment. 図6は、実施の形態にかかるPDPの製造フロー図である。FIG. 6 is a manufacturing flowchart of the PDP according to the embodiment. 図7は、第1の温度プロファイル例を示す図である。FIG. 7 is a diagram illustrating a first temperature profile example. 図8は、第2の温度プロファイル例を示す図である。FIG. 8 is a diagram illustrating a second temperature profile example. 図9は、第3の温度プロファイル例を示す図である。FIG. 9 is a diagram illustrating a third temperature profile example. 図10は、下地誘電体層の空隙率評価の方法を示す図である。FIG. 10 is a diagram showing a method for evaluating the porosity of the underlying dielectric layer. 図11は、隔壁の空隙率評価の方法を示す図である。FIG. 11 is a diagram illustrating a method for evaluating the porosity of the partition walls.
 以下に、実施の形態が詳細に説明される。実施の形態の説明には、適宜図面が参照される。但し、必要以上に詳細な説明は、省略される場合がある。例えば、既によく知られた事項の詳細な説明や、実質的に同一の構成についての重複した説明は、省略される場合がある。説明が冗長になることを避け、当業者の理解を容易にするためである。 The embodiment will be described in detail below. The drawings are referred to as appropriate for the description of the embodiments. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and overlapping descriptions of substantially the same configuration may be omitted. This is for avoiding redundant description and facilitating understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。発明者らは、請求の範囲に記載された主題が本開示によって限定されることを意図しない。 In addition, the inventors provide the accompanying drawings and the following description for those skilled in the art to fully understand the present disclosure. The inventors do not intend the claimed subject matter to be limited by the present disclosure.
 [1.PDP1の構造]
 本実施の形態にかかるPDP1は、交流面放電型PDPである。図1から図3に示されるように、PDP1は、前面板2と背面板10とが、対向して配置された構成である。
[1. Structure of PDP1]
The PDP 1 according to the present embodiment is an AC surface discharge type PDP. As shown in FIG. 1 to FIG. 3, the PDP 1 has a configuration in which a front plate 2 and a back plate 10 are arranged to face each other.
 [1-1.前面板2]
 図1および図3に示されるように、前面板2は、前面ガラス基板3を含む。複数の表示電極6が、前面ガラス基板3の表面に配置されている。それぞれの表示電極6は、前面ガラス基板3の長辺と平行に配置されている。それぞれの表示電極6は、一つの走査電極4と一つの維持電極5とを有する。走査電極4と維持電極5との間が放電ギャップである。走査電極4は、前面ガラス基板3上に配置された透明電極4aと、透明電極4a上に積層されたバス電極4bとを含む。維持電極5は、前面ガラス基板3上に配置された透明電極5aと、透明電極5a上に積層されたバス電極5bとを含む。前面板2は、表示電極6を被覆する誘電体層8を含む。前面板2は、誘電体層8を被覆する保護層9を含む。
[1-1. Front plate 2]
As shown in FIGS. 1 and 3, the front plate 2 includes a front glass substrate 3. A plurality of display electrodes 6 are arranged on the surface of the front glass substrate 3. Each display electrode 6 is arranged parallel to the long side of the front glass substrate 3. Each display electrode 6 has one scan electrode 4 and one sustain electrode 5. A discharge gap is formed between scan electrode 4 and sustain electrode 5. Scan electrode 4 includes a transparent electrode 4a disposed on front glass substrate 3 and a bus electrode 4b stacked on transparent electrode 4a. Sustain electrode 5 includes a transparent electrode 5a disposed on front glass substrate 3, and a bus electrode 5b stacked on transparent electrode 5a. The front plate 2 includes a dielectric layer 8 that covers the display electrodes 6. The front plate 2 includes a protective layer 9 that covers the dielectric layer 8.
 [1-1-1.保護層9]
 保護層9は、放電を発生させるための電荷を保持する機能、および、維持放電の際に二次電子を放出する機能が求められる。電荷保持性能が向上することにより、印加電圧が低減される。二次電子放出数が増加することにより、維持放電を発生させる駆動電圧が低減される。
[1-1-1. Protective layer 9]
The protective layer 9 is required to have a function of holding electric charge for generating discharge and a function of emitting secondary electrons during sustain discharge. The applied voltage is reduced by improving the charge retention performance. As the number of secondary electron emission increases, the driving voltage for generating the sustain discharge is reduced.
 本実施の形態にかかる保護層9は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。第1の金属酸化物および第2の金属酸化物は、MgO、CaO、SrOおよびBaOからなる群の中から選ばれる2種である。さらに、保護層9は、X線回折分析において少なくとも一つのピークを有する。ピークは、第1金属酸化物のX線回折分析における第1のピークと、第2金属酸化物のX線回折分析における第2のピークとの間にある。第1のピークと第2のピークは、保護層9のピークが示す面方位と同じ面方位を示す。 The protective layer 9 according to the present embodiment includes at least a first metal oxide and a second metal oxide. The first metal oxide and the second metal oxide are two kinds selected from the group consisting of MgO, CaO, SrO and BaO. Furthermore, the protective layer 9 has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide. The first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak of the protective layer 9.
 図4に示すように、横軸はブラッグの回折角(2θ)である。縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示される。回折光の強度は任意単位(arbitrary unit)で示されている。結晶面方位は括弧付けで示されている。 As shown in FIG. 4, the horizontal axis represents the Bragg diffraction angle (2θ). The vertical axis represents the intensity of the X-ray diffraction wave. The unit of the diffraction angle is expressed in degrees where one round is 360 degrees. The intensity of the diffracted light is indicated in arbitrary units. The crystal plane orientation is shown in parentheses.
 CaO単体における(111)面方位は、回折角32.2度のピークで示される。MgO単体における(111)面方位は、回折角36.9度のピークで示される。SrO単体における(111)面方位は、回折角30.0度のピークで示される。BaO単体における(111)面方位は、回折角27.9度のピークで示される。 The (111) plane orientation of CaO alone is indicated by a peak with a diffraction angle of 32.2 degrees. The (111) plane orientation of MgO alone is indicated by a peak with a diffraction angle of 36.9 degrees. The (111) plane orientation of SrO alone is indicated by a peak with a diffraction angle of 30.0 degrees. The (111) plane orientation of BaO alone is indicated by a peak with a diffraction angle of 27.9 degrees.
 本実施の形態にかかる保護層9は、MgO、CaO、SrOおよびBaOからなる群の中から選ばれる2種以上の金属酸化物を含んでいる。 The protective layer 9 according to the present embodiment includes two or more metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO.
 A点は、MgOとCaOの2つから形成された保護層9の(111)面方位におけるピークである。B点は、MgOとSrOの二つから形成された保護層9の(111)面方位におけるピークである。C点は、MgOとBaOの二つから形成された保護層9の(111)面方位におけるピークである。 The point A is a peak in the (111) plane orientation of the protective layer 9 formed of two of MgO and CaO. Point B is a peak in the (111) plane orientation of the protective layer 9 formed of two of MgO and SrO. The point C is a peak in the (111) plane orientation of the protective layer 9 formed of MgO and BaO.
 A点の回折角は36.1度である。A点は、第1の金属酸化物であるMgO体における(111)面方位のピークと、第2の金属酸化物であるCaO単体における(111)面方位のピークとの間に存在する。 The diffraction angle at point A is 36.1 degrees. The point A exists between the peak of the (111) plane orientation in the MgO body that is the first metal oxide and the peak of the (111) plane orientation in the CaO simple substance that is the second metal oxide.
 B点の回折角は35.7度である。B点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるSrO単体における(111)面方位のピークとの間に存在する。 The diffraction angle at point B is 35.7 degrees. Point B exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the SrO simple substance that is the second metal oxide.
 C点の回折各は35.4度である。C点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるBaO単体における(111)面方位のピークとの間に存在する。 回 折 Diffraction at point C is 35.4 degrees. The point C exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the BaO simple substance that is the second metal oxide.
 図5に示すように、D点は、MgO、CaOおよびSrOの3つから形成された保護層9の(111)面方位におけるピークである。E点は、MgO、CaOおよびBaOの3つから形成された保護層9の(111)面方位におけるピークである。F点は、BaO、CaOおよびSrOの3つから形成された保護層9の(111)面方位におけるピークである。 As shown in FIG. 5, the point D is a peak in the (111) plane orientation of the protective layer 9 formed of three of MgO, CaO, and SrO. The point E is a peak in the (111) plane orientation of the protective layer 9 formed of three of MgO, CaO, and BaO. The point F is a peak in the (111) plane orientation of the protective layer 9 formed of three of BaO, CaO, and SrO.
 D点の回折角は33.4度である。D点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるCaO単体における(111)面方位のピークとの間に存在する。 The diffraction angle at point D is 33.4 degrees. The point D exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the CaO simple substance that is the second metal oxide.
 E点の回折角は32.8度である。E点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるSrO単体における(111)面方位のピークとの間に存在する。 The diffraction angle at point E is 32.8 degrees. The point E exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the SrO simple substance that is the second metal oxide.
 F点の回折各は30.2度である。F点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるBaO単体における(111)面方位のピークとの間に存在する。 The diffraction at the F point is 30.2 degrees. The F point exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the BaO simple substance that is the second metal oxide.
 なお、本実施の形態では、面方位(111)について例示された。しかし、他の面方位についても同様である。 In the present embodiment, the plane orientation (111) is exemplified. However, the same applies to other plane orientations.
 CaO、SrOおよびBaOの真空準位からの深さは、MgOと比較して浅い領域に存在する。よって、CaO、SrOおよびBaOは、オージェ効果により放出される電子数がMgOと比較して多くなると考えられる。 The depth from the vacuum level of CaO, SrO and BaO exists in a shallow region as compared with MgO. Therefore, it is considered that CaO, SrO, and BaO have a larger number of electrons emitted by the Auger effect than MgO.
 なお、オージェ効果は、CaO、SrO、BaOのエネルギー準位に存在する電子がXeイオンの基底状態に遷移する際に発生する。 The Auger effect is generated when electrons existing at the energy levels of CaO, SrO, and BaO transition to the ground state of the Xe ion.
 また、上述のように、X線回折分析における保護層9のピークは、第1金属酸化物のピークと第2金属酸化物のピークとの間にある。すなわち、保護層9のエネルギー準位は、単体の金属酸化物の間に存在する。よって、オージェ効果により放出される電子数がMgOのエネルギー準位から遷移する場合と比較して多くなると考えられる。 Further, as described above, the peak of the protective layer 9 in the X-ray diffraction analysis is between the peak of the first metal oxide and the peak of the second metal oxide. That is, the energy level of the protective layer 9 exists between single metal oxides. Therefore, it is considered that the number of electrons emitted by the Auger effect is increased compared to the case where transition is made from the energy level of MgO.
 その結果、本実施の形態にかかる保護層9では、MgO単体と比較して、良好な二次電子放出特性を有する。結果として、駆動電圧の低減ができる。特に、輝度を高めるために放電ガス中のXe分圧を高めた場合に、駆動電圧の低減ができる。 As a result, the protective layer 9 according to the present embodiment has better secondary electron emission characteristics as compared with MgO alone. As a result, the drive voltage can be reduced. In particular, when the Xe partial pressure in the discharge gas is increased in order to increase the luminance, the driving voltage can be reduced.
 しかし、CaOなどは、MgOに比べて化学的に不安定であり、空気中の水分や炭酸ガスと容易に反応して、水酸化物や炭酸化物を形成する。水酸化物や炭酸化物が形成されると、二次電子放出能力が低下する。つまり、PDPの駆動電圧を下げることができない場合がある。 However, CaO and the like are chemically unstable compared to MgO, and easily react with moisture and carbon dioxide in the air to form hydroxides and carbonates. When a hydroxide or a carbonate is formed, the secondary electron emission ability decreases. That is, there are cases where the drive voltage of the PDP cannot be lowered.
 [1-2.背面板10]
 図1および図3に示されるように、複数のアドレス電極12が背面ガラス基板11の表面に配置されている。それぞれのアドレス電極12は、背面ガラス基板11の短辺と平行に配置されている。言い換えると、それぞれのアドレス電極12は、表示電極6と直交する方向に配置されている。アドレス電極12は、導電性を確保するためのAgを含む。
[1-2. Back plate 10]
As shown in FIGS. 1 and 3, a plurality of address electrodes 12 are arranged on the surface of the rear glass substrate 11. Each address electrode 12 is arranged in parallel with the short side of the rear glass substrate 11. In other words, each address electrode 12 is arranged in a direction orthogonal to the display electrode 6. The address electrode 12 contains Ag for ensuring conductivity.
 [1-2-1.下地誘電体層13]
 背面板10は、複数のアドレス電極12を被覆する下地誘電体層13を含む。下地誘電体層13は、ガラス成分とフィラーとを含む。ガラス成分とフィラーとの和に対するガラス成分の比率は、25重量%以上35重量%以下である。
[1-2-1. Underlying dielectric layer 13]
The back plate 10 includes a base dielectric layer 13 that covers the plurality of address electrodes 12. The underlying dielectric layer 13 includes a glass component and a filler. The ratio of the glass component to the sum of the glass component and the filler is 25% by weight or more and 35% by weight or less.
 ガラス成分は、三酸化二ビスマス(Bi)を20重量%~40重量%含む。さらに、ガラス成分は、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)および酸化バリウム(BaO)の群から選ばれる少なくとも1種を0.5重量%~12重量%を含んでもよい。さらに、ガラス成分は、三酸化モリブデン(MoO)、三酸化タングステン(WO)、二酸化セリウム(CeO)、二酸化マンガン(MnO)、酸化銅(CuO)、三酸化二クロム(Cr)、三酸化二コバルト(Co)、二酸化五バナジウム(V)および三酸化二アンチモン(Sb)の群から選ばれる少なくとも1種を0.1重量%~7重量%含んでもよい。 The glass component contains 20% to 40% by weight of dibismuth trioxide (Bi 2 O 3 ). Further, the glass component may contain 0.5 wt% to 12 wt% of at least one selected from the group consisting of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Further, the glass components are molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), cerium dioxide (CeO 2 ), manganese dioxide (MnO 2 ), copper oxide (CuO), dichromium trioxide (Cr 2 O). 3 ), at least one selected from the group consisting of dicobalt trioxide (Co 2 O 3 ), vanadium pentoxide (V 2 O 5 ) and antimony trioxide (Sb 2 O 3 ) % By weight may be included.
 また、上記以外の成分として、酸化亜鉛(ZnO)、三酸化二硼素(B)などの、鉛成分を含まない材料が含まれていてもよい。 Further, as a component other than the above, a material not containing a lead component such as zinc oxide (ZnO) or diboron trioxide (B 2 O 3 ) may be included.
 フィラーは、三酸化二アルミニウム(Al)、二酸化珪素(SiO)、二酸化チタン(TiO)、二酸化ジルコニウム(ZrO)、MgOおよびコージライトの群から選ばれる少なくとも1種を含む。 The filler contains at least one selected from the group consisting of dialuminum trioxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), MgO, and cordierite.
 下地誘電体層13は、空隙を有する。下地誘電体層13における空隙率は、0%を超え、かつ、1%未満である。 The base dielectric layer 13 has a gap. The porosity in the underlying dielectric layer 13 is more than 0% and less than 1%.
 [1-2-2.隔壁14]
 下地誘電体層13上には放電空間16を区切る隔壁14が配置されている。隔壁14は、アドレス電極12と平行に配置された縦隔壁24と、表示電極6と平行に配置された横隔壁26とを含む。縦隔壁24は、アドレス電極12とアドレス電極12との間に配置されている。
[1-2-2. Partition 14]
On the base dielectric layer 13, barrier ribs 14 that divide the discharge space 16 are disposed. The barrier ribs 14 include vertical barrier ribs 24 arranged in parallel with the address electrodes 12 and horizontal barrier ribs 26 arranged in parallel with the display electrodes 6. The vertical barrier ribs 24 are disposed between the address electrodes 12 and the address electrodes 12.
 隔壁14は、ガラス成分とフィラーとを含む。ガラス成分とフィラーとの和に対するガラス成分の比率は、81重量%以上85重量%以下である。ガラス成分は、Biを20重量%~40重量%含む。さらに、ガラス成分は、CaO、SrOおよびBaOの群から選ばれる少なくとも1種を0.5重量%~12重量%を含んでもよい。さらに、ガラス成分は、MoO、WO、CeO、MnO、CuO、Cr、Co、VおよびSbの群から選ばれる少なくとも1種を0.1重量%~7重量%含んでもよい。 The partition 14 includes a glass component and a filler. The ratio of the glass component to the sum of the glass component and the filler is 81% by weight or more and 85% by weight or less. The glass component contains 20% to 40% by weight of Bi 2 O 3 . Further, the glass component may contain 0.5 wt% to 12 wt% of at least one selected from the group of CaO, SrO and BaO. Furthermore, the glass component is at least one selected from the group consisting of MoO 3 , WO 3 , CeO 2 , MnO 2 , CuO, Cr 2 O 3 , Co 2 O 3 , V 2 O 5 and Sb 2 O 3 . 1% by weight to 7% by weight may be contained.
 また、上記以外の成分として、ZnO、Bなどの、鉛成分を含まない材料が含まれていてもよい。 Further, as a component other than the above, a material that does not contain a lead component, such as ZnO or B 2 O 3 , may be included.
 フィラーは、Al、SiO、TiO、ZrO、MgOおよびコージライトの群から選ばれる少なくとも1種を含む。 The filler contains at least one selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO and cordierite.
 隔壁14は、空隙を有する。隔壁14における空隙率は、0%を超え、かつ、1%未満である。空隙の一つあたりの平均断面積は、0.23μm以上0.29μm未満である。 The partition 14 has a space | gap. The porosity in the partition wall 14 is more than 0% and less than 1%. The average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29μm less than 2.
 [1-2-3.蛍光体層15]
 背面板10は、蛍光体層15を含む。蛍光体層15は、下地誘電体層13の表面および隔壁14の側面に配置されている。蛍光体層15は、赤色光を発する赤色蛍光体層151、青色光を発する青色蛍光体層152および緑色光を発する緑色蛍光体層153を含む。赤色蛍光体層151、青色蛍光体層152および緑色蛍光体層153は、紫外線によって励起される発光中心を有する。
[1-2-3. Phosphor layer 15]
The back plate 10 includes a phosphor layer 15. The phosphor layer 15 is disposed on the surface of the base dielectric layer 13 and the side surfaces of the barrier ribs 14. The phosphor layer 15 includes a red phosphor layer 151 that emits red light, a blue phosphor layer 152 that emits blue light, and a green phosphor layer 153 that emits green light. The red phosphor layer 151, the blue phosphor layer 152, and the green phosphor layer 153 have emission centers that are excited by ultraviolet rays.
 赤色蛍光体層151に用いられる赤色蛍光体は、一例として、610nm以上630nm未満の波長領域に主発光ピークを有するEu3+付活赤色蛍光体である。赤色蛍光体は、具体的には、Y:Eu3+(YOX蛍光体)、(Y,Gd):Eu3+(YGX蛍光体)およびY(P,V)O:Eu3+(YPV蛍光体)などの蛍光体粒子である。 As an example, the red phosphor used for the red phosphor layer 151 is an Eu 3+ activated red phosphor having a main emission peak in a wavelength region of 610 nm or more and less than 630 nm. Specifically, the red phosphors are Y 2 O 3 : Eu 3+ (YOX phosphor), (Y, Gd) 2 O 3 : Eu 3+ (YGX phosphor) and Y (P, V) O 4 : Eu. Phosphor particles such as 3+ (YPV phosphor).
 青色蛍光体層152に用いられる青色蛍光体層は、一例として、420nm以上500nm未満の波長領域に主発光ピークを有するEu2+付活青色蛍光体である。Eu2+を付活剤とする青色蛍光体は、Eu2+イオンの4f5d→4f電子エネルギー遷移に基づいて発光する。そのために、1msec未満の残光時間の青色発光が実現できる。青色蛍光体は、具体的には、BaMgAl1017:Eu2+(BAM蛍光体)、CaMgSi:Eu2+(CMS蛍光体)、SrMgSi:Eu2+(SMS蛍光体)などの蛍光体粒子である。 As an example, the blue phosphor layer used for the blue phosphor layer 152 is an Eu 2+ activated blue phosphor having a main emission peak in a wavelength region of 420 nm or more and less than 500 nm. The blue phosphor using Eu 2+ as an activator emits light based on the 4f 6 5d 1 → 4f 7 electron energy transition of Eu 2+ ions. Therefore, blue light emission with an afterglow time of less than 1 msec can be realized. Specifically, the blue phosphor is BaMgAl 10 O 17 : Eu 2+ (BAM phosphor), CaMgSi 2 O 6 : Eu 2+ (CMS phosphor), Sr 3 MgSi 2 O 8 : Eu 2+ (SMS phosphor) Such as phosphor particles.
 緑色蛍光体層153に用いられる緑色蛍光体は、一例として、500nm以上560nm未満の波長領域に発光ピークを有し残光時間が2msecを超え5msec未満のMn2+付活短残光緑色蛍光体と、490nm以上560nm未満の波長領域に発光ピークを有するCe3+付活緑色蛍光体またはEu2+付活緑色蛍光体を含む蛍光体である。緑色蛍光体は、具体的には、ZnSiO:Mn2+(ZSM蛍光体)およびYAl12:Ce3+(YAG蛍光体)などの蛍光体粒子である。 As an example, the green phosphor used for the green phosphor layer 153 includes an Mn 2+ activated short afterglow green phosphor having an emission peak in a wavelength region of 500 nm or more and less than 560 nm and an afterglow time exceeding 2 msec and less than 5 msec. The phosphor includes a Ce 3+ activated green phosphor or an Eu 2+ activated green phosphor having an emission peak in a wavelength region of 490 nm or more and less than 560 nm. The green phosphor is specifically phosphor particles such as Zn 2 SiO 4 : Mn 2+ (ZSM phosphor) and Y 3 Al 5 O 12 : Ce 3+ (YAG phosphor).
 [1-3.封着部材22]
 図2に示されるように、PDP1は、封着部材22を備える。封着部材22は、前面板2の周縁と背面板10の周縁とを封着する。つまりPDP1は、封着部材22によって気密封着されている。PDP1における表示領域の外側に封着部材22が配置される。
[1-3. Sealing member 22]
As shown in FIG. 2, the PDP 1 includes a sealing member 22. The sealing member 22 seals the periphery of the front plate 2 and the periphery of the back plate 10. That is, the PDP 1 is hermetically sealed by the sealing member 22. The sealing member 22 is disposed outside the display area in the PDP 1.
 封着部材22は、一例として、Bi、B、Vなどを主成分としたガラスフリットが用いられる。さらに、封着部材22としては、Al2、SiO2、コージライトなどの酸化物からなるフィラーを加えたものを用いることができる。ガラスフリットの軟化点は、460℃から480℃程度である。 As an example, the sealing member 22 is a glass frit whose main component is Bi 2 O 3 , B 2 O 3 , V 2 O 5 or the like. Further, as the sealing member 22, a member to which a filler made of an oxide such as Al 2 O 3 , SiO 2 , cordierite or the like is added can be used. The softening point of the glass frit is about 460 ° C to 480 ° C.
 さらに、放電空間16には、キセノン(Xe)を含む放電ガスが55kPa~80kPaの圧力で封入される。 Further, a discharge gas containing xenon (Xe) is sealed in the discharge space 16 at a pressure of 55 kPa to 80 kPa.
 [2.PDP1の製造方法]
 図6に示されるように、本実施の形態にかかるPDP1の製造方法は、前面板作製工程A1、背面板作製工程B1、フリット塗布工程B2、封着工程C1、還元性ガス導入工程C2、排気工程C3および放電ガス供給工程C4を有する。
[2. Manufacturing method of PDP1]
As shown in FIG. 6, the manufacturing method of the PDP 1 according to the present embodiment includes a front plate manufacturing step A1, a back plate manufacturing step B1, a frit coating step B2, a sealing step C1, a reducing gas introduction step C2, and an exhaust. It has process C3 and discharge gas supply process C4.
 [2-1.前面板作製工程A1]
 [2-1-1.表示電極6の形成]
 フォトリソグラフィ法によって、前面ガラス基板3上に、走査電極4および維持電極5が形成される。まず、インジウム錫酸化物(ITO)などからなる透明電極4a、5aが形成される。
[2-1. Front plate manufacturing process A1]
[2-1-1. Formation of display electrode 6]
Scan electrode 4 and sustain electrode 5 are formed on front glass substrate 3 by photolithography. First, transparent electrodes 4a and 5a made of indium tin oxide (ITO) or the like are formed.
 次に、バス電極4b、5bが形成される。バス電極4b、5bの材料には、銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含む電極ペーストが用いられる。まず、スクリーン印刷法などによって、電極ペーストが、透明電極4a、5aが形成された前面ガラス基板3に塗布される。次に、乾燥炉によって、電極ペーストが、例えば100℃から250℃の温度範囲で乾燥される。乾燥によって、電極ペースト中の溶剤が除去される。次に、例えば、複数の矩形パターンが形成されたフォトマスクを介して、電極ペーストが露光される。 Next, bus electrodes 4b and 5b are formed. As a material for the bus electrodes 4b and 5b, an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used. First, an electrode paste is applied to the front glass substrate 3 on which the transparent electrodes 4a and 5a are formed by a screen printing method or the like. Next, the electrode paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. in a drying furnace. By drying, the solvent in the electrode paste is removed. Next, for example, the electrode paste is exposed through a photomask in which a plurality of rectangular patterns are formed.
 次に、電極ペーストが現像される。ポジ型の感光性樹脂が用いられた場合は、露光された部分が除去される。残存した電極ペーストが電極パターンである。最後に、焼成炉によって、例えば400℃から550℃の温度範囲で、電極パターンが焼成される。焼成によって、電極パターン中の感光性樹脂が除去される。焼成によって、電極パターン中のガラスフリットが溶ける。溶けたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、バス電極4b、5bが形成される。 Next, the electrode paste is developed. When a positive photosensitive resin is used, the exposed part is removed. The remaining electrode paste is an electrode pattern. Finally, the electrode pattern is fired in a temperature range of, for example, 400 ° C. to 550 ° C. in a firing furnace. The photosensitive resin in the electrode pattern is removed by baking. By baking, the glass frit in the electrode pattern is melted. The melted glass frit is vitrified again after firing. Bus electrodes 4b and 5b are formed by the above steps.
 上述の方法の他、スパッタ法、蒸着法などにより、金属膜を形成し、その後パターニングする方法なども用いることができる。 In addition to the method described above, a method of forming a metal film by sputtering, vapor deposition, or the like and then patterning can be used.
 [2-1-2.誘電体層8の形成]
 誘電体層8の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む誘電体ペーストが用いられる。まずダイコート法などによって、誘電体ペーストが所定の厚みで前面ガラス基板3上に塗布される。塗布された誘電体ペーストは、走査電極4および維持電極5を被覆する。次に、乾燥炉によって、誘電体ペーストが、例えば100℃から250℃の温度範囲で乾燥される。乾燥によって、誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、例えば400℃から550℃の温度範囲で、誘電体ペーストが焼成される。焼成によって、誘電体ペースト中の樹脂が除去される。焼成によって、誘電体ガラスフリットが溶ける。溶けた誘電体ガラスフリットは、焼成後に再びガラス化する。以上の工程によって、誘電体層8が形成される。
[2-1-2. Formation of dielectric layer 8]
As a material for the dielectric layer 8, a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used. First, a dielectric paste is applied on the front glass substrate 3 with a predetermined thickness by a die coating method or the like. The applied dielectric paste covers scan electrode 4 and sustain electrode 5. Next, the dielectric paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. by a drying furnace. The solvent in the dielectric paste is removed by drying. Finally, the dielectric paste is baked in a temperature range of, for example, 400 ° C. to 550 ° C. in a baking furnace. By baking, the resin in the dielectric paste is removed. The dielectric glass frit is melted by firing. The melted dielectric glass frit is vitrified again after firing. Through the above steps, the dielectric layer 8 is formed.
 上述の方法の他、スクリーン印刷法、スピンコート法などを用いることができる。また、誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、誘電体層8となる膜を形成することもできる。 In addition to the methods described above, screen printing, spin coating, and the like can be used. Further, a film that becomes the dielectric layer 8 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the dielectric paste.
 [2-1-3.保護層9の形成]
 保護層9は、一例として、EB(Electron Beam)蒸着装置により形成される。保護層9がMgOとCaOを含む場合、保護層9の材料は単結晶のMgOからなるMgOペレットと単結晶のCaOからなるCaOペレットである。つまり、保護層9の組成に合わせてペレットを選択すればよい。MgOペレットまたはCaOペレットには、さらに不純物としてアルミニウム(Al)、珪素(Si)などが添加されていてもよい。
[2-1-3. Formation of protective layer 9]
As an example, the protective layer 9 is formed by an EB (Electron Beam) vapor deposition apparatus. When the protective layer 9 contains MgO and CaO, the material of the protective layer 9 is a MgO pellet made of single crystal MgO and a CaO pellet made of single crystal CaO. That is, a pellet may be selected according to the composition of the protective layer 9. Aluminum (Al), silicon (Si), or the like may be further added as impurities to the MgO pellets or CaO pellets.
 まず、EB蒸着装置の成膜室に配置されたMgOペレットおよびCaOペレットに電子ビームが照射される。電子ビームのエネルギーを受けたMgOペレットおよびCaOペレットの表面は蒸発していく。MgOペレットから蒸発したMgOおよびCaOペレットから蒸発したCaOは、成膜室内を移動する前面ガラス基板3上に付着する。より詳細には、表示領域となる領域が開口したマスクを介して、MgOおよびCaOが誘電体層8上に付着する。前面ガラス基板3は、ヒータによって約300℃に加熱されている。成膜室の圧力は、約10-4Paに減圧された後、酸素ガスが供給され、酸素分圧が約3E-2Paになるように保たれる。保護層9の膜厚は、電子ビームの強度、成膜室の圧力、前面ガラス基板3の移動速度などによって、所定の範囲に収まるように調整される。 First, an electron beam is irradiated to the MgO pellets and CaO pellets arranged in the film forming chamber of the EB deposition apparatus. The surfaces of the MgO pellets and CaO pellets that have received the energy of the electron beam evaporate. MgO evaporated from the MgO pellets and CaO evaporated from the CaO pellets adhere to the front glass substrate 3 moving in the film forming chamber. More specifically, MgO and CaO are deposited on the dielectric layer 8 through a mask in which a region serving as a display region is opened. The front glass substrate 3 is heated to about 300 ° C. by a heater. After the pressure in the film forming chamber is reduced to about 10 −4 Pa, oxygen gas is supplied, and the oxygen partial pressure is maintained at about 3E −2 Pa. The film thickness of the protective layer 9 is adjusted so as to be within a predetermined range by the intensity of the electron beam, the pressure in the film forming chamber, the moving speed of the front glass substrate 3, and the like.
 [2-2.背面板作製工程B1]
 [2-2-1.アドレス電極12の形成]
 フォトリソグラフィ法によって、背面ガラス基板11上に、アドレス電極12が形成される。アドレス電極12の材料には、導電体としての銀(Ag)粒子と銀粒子同士を結着させるガラスフリットと感光性樹脂と溶剤などを含むアドレス電極ペーストが用いられる。まず、スクリーン印刷法などによって、アドレス電極ペーストが所定の厚みで背面ガラス基板11上に塗布される。次に、乾燥炉によって、例えば100℃から250℃の温度範囲でアドレス電極ペーストが乾燥される。乾燥によって、アドレス電極ペースト中の溶剤が除去される。例えば、複数の矩形パターンが形成されたフォトマスクを介して、アドレス電極ペーストが露光される。次に、アドレス電極ペーストが現像される。ポジ型の感光性樹脂が用いられた場合は、露光された部分が除去される。残存したアドレス電極ペーストがアドレス電極パターンである。最後に、焼成炉によって、例えば400℃から550℃の温度範囲で、アドレス電極パターンが焼成される。焼成によって、アドレス電極パターン中の感光性樹脂が除去される。焼成によって、アドレス電極パターン中のガラスフリットが溶ける。溶けたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、アドレス電極12が形成される。
[2-2. Back plate manufacturing process B1]
[2-2-1. Formation of Address Electrode 12]
Address electrodes 12 are formed on the rear glass substrate 11 by photolithography. As the material of the address electrode 12, an address electrode paste containing silver (Ag) particles as a conductor, a glass frit that binds the silver particles, a photosensitive resin, a solvent, and the like is used. First, the address electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like. Next, the address electrode paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. by a drying furnace. The solvent in the address electrode paste is removed by drying. For example, the address electrode paste is exposed through a photomask in which a plurality of rectangular patterns are formed. Next, the address electrode paste is developed. When a positive photosensitive resin is used, the exposed part is removed. The remaining address electrode paste is an address electrode pattern. Finally, the address electrode pattern is fired in a temperature range of 400 ° C. to 550 ° C., for example, in a firing furnace. The photosensitive resin in the address electrode pattern is removed by baking. By baking, the glass frit in the address electrode pattern is melted. The melted glass frit is vitrified again after firing. The address electrode 12 is formed by the above process.
 上述の方法の他、スパッタ法、蒸着法などにより、金属膜を形成し、その後パターニングする方法なども用いることができる。 In addition to the method described above, a method of forming a metal film by sputtering, vapor deposition, or the like and then patterning can be used.
 [2-2-2.下地誘電体層13の形成]
 下地誘電体層13の材料には、ガラスフリット、フィラー、樹脂および溶剤などを含む下地誘電体ペーストが用いられる。ガラスフリットとフィラーとの和に対するガラスフリットの比率は、25重量%以上35重量%以下である。まず、スクリーン印刷法などによって、下地誘電体ペーストが所定の厚みで背面ガラス基板11上に塗布される。塗布された下地誘電体ペーストは、アドレス電極12を被覆する。次に、乾燥炉によって、例えば100℃から250℃の温度範囲で下地誘電体ペーストが乾燥される。乾燥によって、下地誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、例えば400℃から550℃の温度範囲で、下地誘電体ペーストが焼成される。焼成によって、下地誘電体ペースト中の樹脂が除去される。また、焼成によって、ガラスフリットが溶ける。一方、焼成によっても、フィラーは溶けない。溶けたガラスフリットは、焼成後に再びガラス成分となる。つまり、下地誘電体層13は、フィラーがガラス成分中に分散した構成である。なお、樹脂が存在していた領域は、樹脂が除去されると空隙になる。空隙は、空隙の周囲のガラス成分によって、埋められていく。その結果として、下地誘電体層13における空隙率は、0%を超え、かつ、1%未満である。以上の工程によって、下地誘電体層13が形成される。スクリーン印刷法の他にも、スピンコート法、ダイコート法などを用いることができる。
[2-2-2. Formation of underlying dielectric layer 13]
As a material for the base dielectric layer 13, a base dielectric paste containing glass frit, filler, resin, solvent, and the like is used. The ratio of the glass frit to the sum of the glass frit and the filler is 25% by weight or more and 35% by weight or less. First, the base dielectric paste is applied on the rear glass substrate 11 with a predetermined thickness by screen printing or the like. The applied base dielectric paste covers the address electrodes 12. Next, the base dielectric paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. in a drying furnace. The solvent in the base dielectric paste is removed by drying. Finally, the base dielectric paste is baked in a baking furnace in a temperature range of 400 ° C. to 550 ° C., for example. By baking, the resin in the base dielectric paste is removed. Further, the glass frit is melted by firing. On the other hand, the filler does not dissolve even by firing. The melted glass frit becomes a glass component again after firing. That is, the base dielectric layer 13 has a configuration in which the filler is dispersed in the glass component. The region where the resin was present becomes a void when the resin is removed. The gap is filled with a glass component around the gap. As a result, the porosity in the underlying dielectric layer 13 is greater than 0% and less than 1%. Through the above steps, the base dielectric layer 13 is formed. In addition to the screen printing method, a spin coating method, a die coating method, or the like can be used.
 [2-2-3.隔壁14の形成]
 フォトリソグラフィ法によって、隔壁14が形成される。隔壁14の材料には、フィラーと、フィラーを結着させるためのガラスフリットと、感光性樹脂と、溶剤などを含む隔壁ペーストが用いられる。ガラスフリットとフィラーとの和に対するガラスフリットの比率は、81重量%以上85重量%以下である。まず、ダイコート法などによって、隔壁ペーストが所定の厚みで下地誘電体層13上に塗布される。次に、乾燥炉によって、例えば100℃から250℃の温度範囲で隔壁ペーストが乾燥される。乾燥によって、隔壁ペースト中の溶剤が除去される。次に、例えば井桁パターンのフォトマスクを介して、隔壁ペーストが露光される。次に、隔壁ペーストが現像される。ポジ型の感光性樹脂が用いられた場合は、露光された部分が除去される。残存した隔壁ペーストが隔壁パターンである。最後に、焼成炉によって、例えば500℃から600℃の温度範囲で隔壁パターンが焼成される。焼成によって、隔壁パターン中の感光性樹脂が除去される。焼成によって、隔壁パターン中のガラスフリットが溶ける。一方、焼成によっても、フィラーは溶けない。溶けたガラスフリットは、焼成後に再びガラス成分となる。つまり、隔壁14は、フィラーがガラス成分中に分散した構成である。以上の工程によって、隔壁14が形成される。なお、樹脂が存在していた領域は、樹脂が除去されると空隙になる。空隙は、空隙の周囲のガラス成分によって、埋められていく。その結果として、隔壁14における空隙率は、0%を超え、かつ、1%未満である。
[2-2-3. Formation of partition wall 14]
The barrier ribs 14 are formed by photolithography. As a material for the partition wall 14, a partition paste containing a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used. The ratio of the glass frit to the sum of the glass frit and the filler is 81% by weight or more and 85% by weight or less. First, the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like. Next, the partition paste is dried in a temperature range of, for example, 100 ° C. to 250 ° C. by a drying furnace. The solvent in the barrier rib paste is removed by drying. Next, the barrier rib paste is exposed through, for example, a photomask having a cross pattern. Next, the barrier rib paste is developed. When a positive photosensitive resin is used, the exposed part is removed. The remaining barrier rib paste is a barrier rib pattern. Finally, the barrier rib pattern is fired in a temperature range of, for example, 500 ° C. to 600 ° C. in a firing furnace. The photosensitive resin in the partition wall pattern is removed by baking. By baking, the glass frit in the barrier rib pattern is melted. On the other hand, the filler does not dissolve even by firing. The melted glass frit becomes a glass component again after firing. That is, the partition 14 has a configuration in which the filler is dispersed in the glass component. The partition wall 14 is formed by the above process. The region where the resin was present becomes a void when the resin is removed. The gap is filled with a glass component around the gap. As a result, the porosity in the partition wall 14 is more than 0% and less than 1%.
 [2-2-4.蛍光体層15の形成]
 蛍光体層15の材料には、蛍光体粒子とバインダと溶剤などとを含む蛍光体ペーストが用いられる。まず、ディスペンス法などによって、蛍光体ペーストが所定の厚みで隣接する隔壁14間の下地誘電体層13上および隔壁14の側面に塗布される。次に、乾燥炉によって、蛍光体ペースト中の溶剤が除去される。最後に、焼成炉によって、蛍光体ペーストが所定の温度で焼成される。つまり、蛍光体ペースト中の樹脂が除去される。以上の工程によって、蛍光体層15が形成される。ディスペンス法の他にも、スクリーン印刷法などを用いることができる。
[2-2-4. Formation of phosphor layer 15]
As the material of the phosphor layer 15, a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used. First, a phosphor paste is applied on the base dielectric layer 13 between adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14 by a dispensing method or the like. Next, the solvent in the phosphor paste is removed by a drying furnace. Finally, the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed. The phosphor layer 15 is formed by the above steps. In addition to the dispensing method, a screen printing method or the like can be used.
 以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。 Through the above steps, the back plate 10 having predetermined constituent members on the back glass substrate 11 is completed.
 [2-3.フリット塗布工程B2]
 背面板作製工程B1により作製された背面板10の画像表示領域外に封着部材であるガラスフリットが塗布される。その後、ガラスフリットは、350℃程度の温度で仮焼成される。仮焼成によって、溶剤成分などが除去される。
[2-3. Frit application process B2]
A glass frit which is a sealing member is applied outside the image display area of the back plate 10 manufactured by the back plate manufacturing step B1. Thereafter, the glass frit is temporarily fired at a temperature of about 350 ° C. A solvent component etc. are removed by temporary baking.
 [2-4.封着工程C1から放電ガス供給工程C4まで]
 前面板2とフリット塗布工程B1を経た背面板10とが対向配置されて周辺部が封着部材により封着される。その後、放電空間16に放電ガスが封入される。
[2-4. From sealing process C1 to discharge gas supply process C4]
The front plate 2 and the back plate 10 that has been subjected to the frit application step B1 are arranged to face each other, and the peripheral portion is sealed by a sealing member. Thereafter, a discharge gas is sealed in the discharge space 16.
 本実施の形態にかかる封着工程C1、還元性ガス導入工程C2、排気工程C3、および放電ガス供給工程C4は、同一の装置において、図7から図9に例示された温度プロファイルのいずれか一つに基づいて処理を行う。 The sealing process C1, reducing gas introduction process C2, exhaust process C3, and discharge gas supply process C4 according to the present embodiment are any one of the temperature profiles illustrated in FIGS. 7 to 9 in the same apparatus. Process based on one.
 封着温度とは、前面板2と背面板10とが封着部材であるフリットにより封着されるときの温度である。本実施の形態における封着温度は、例えば約490℃である。軟化点とは、封着部材であるフリットが軟化する温度である。本実施の形態における軟化点は、例えば約430℃である。排気温度とは、還元性有機ガスを含むガスが放電空間から排気されるときの温度である。本実施の形態における排気温度は、例えば約400℃である。 The sealing temperature is a temperature at which the front plate 2 and the back plate 10 are sealed by a frit that is a sealing member. The sealing temperature in the present embodiment is about 490 ° C., for example. The softening point is a temperature at which the frit as the sealing member softens. The softening point in the present embodiment is about 430 ° C., for example. The exhaust temperature is a temperature at which a gas containing a reducing organic gas is exhausted from the discharge space. The exhaust temperature in the present embodiment is about 400 ° C., for example.
 [2-4-1.第1の温度プロファイル]
 図7に示されるように、まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a-bの期間、封着温度に維持される。その後、温度は、b-cの期間に封着温度から排気温度に下降する。b-cの期間において、放電空間内が排気される。つまり、放電空間内は減圧状態になる。
[2-4-1. First temperature profile]
As shown in FIG. 7, first, in the sealing step C1, the temperature rises from room temperature to the sealing temperature. The temperature is then maintained at the sealing temperature for the period ab. Thereafter, the temperature falls from the sealing temperature to the exhaust temperature during the period bc. In the period bc, the discharge space is exhausted. That is, the discharge space is in a reduced pressure state.
 次に、還元性ガス導入工程C2において、温度は、c-dの期間、排気温度に維持される。c-dの期間に放電空間内に還元性有機ガスを含むガスが導入される。c-dの期間に保護層9は、還元性有機ガスを含むガスに曝される。 Next, in the reducing gas introduction step C2, the temperature is maintained at the exhaust temperature for the period cd. A gas containing a reducing organic gas is introduced into the discharge space during the period cd. During the period cd, the protective layer 9 is exposed to a gas containing a reducing organic gas.
 その後、排気工程C3において、温度は所定の期間、排気温度に維持される。その後、温度は、室温程度まで下降する。d-eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。 Thereafter, in the exhaust process C3, the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period d-e, the discharge space is exhausted, so that a gas containing a reducing organic gas is exhausted.
 次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。 Next, in the discharge gas supply step C4, a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
 [2-4-2.第2の温度プロファイル]
 図8に示されるように、まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a-bの期間、封着温度に維持される。その後、温度はb-cの期間に封着温度から排気温度に下降する。温度が排気温度に維持されているc-d1の期間において、放電空間内が排気される。つまり、放電空間内は減圧状態になる。
[2-4-2. Second temperature profile]
As shown in FIG. 8, first, in the sealing step C1, the temperature rises from room temperature to the sealing temperature. The temperature is then maintained at the sealing temperature for the period ab. Thereafter, the temperature falls from the sealing temperature to the exhaust temperature during the period bc. The discharge space is exhausted during the period cd1 during which the temperature is maintained at the exhaust temperature. That is, the discharge space is in a reduced pressure state.
 次に、還元性ガス導入工程C2において、温度は、d1-d2の期間、排気温度に維持される。d1-d2の期間に放電空間内に還元性有機ガスを含むガスが導入される。d1-d2の期間に保護層9は、還元性有機ガスを含むガスに曝される。 Next, in the reducing gas introduction step C2, the temperature is maintained at the exhaust temperature for the period d1-d2. A gas containing a reducing organic gas is introduced into the discharge space during the period d1-d2. The protective layer 9 is exposed to a gas containing a reducing organic gas during the period d1-d2.
 その後、排気工程C3において、所定の期間、温度は排気温度に維持される。その後、温度は、室温程度まで下降する。d2-eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。 Thereafter, in the exhaust process C3, the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period d2-e, the discharge space is exhausted, so that a gas containing a reducing organic gas is exhausted.
 次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。 Next, in the discharge gas supply step C4, a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
 [2-4-3.第3の温度プロファイル]
 図9に示されるように、まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a-b1-b2の期間、封着温度に維持される。a-b1の期間に放電空間内が排気される。つまり、放電空間内は減圧状態になる。その後、温度はb2-cの期間に封着温度から排気温度に下降する。
[2-4-3. Third temperature profile]
As shown in FIG. 9, first, in the sealing step C1, the temperature rises from room temperature to the sealing temperature. Next, the temperature is maintained at the sealing temperature for ab1-b2. The discharge space is exhausted during the period ab1. That is, the discharge space is in a reduced pressure state. Thereafter, the temperature falls from the sealing temperature to the exhaust temperature during the period b2-c.
 還元性ガス導入工程C2は、封着工程C1の期間内に行われる。温度は、b1-b2の期間、封着温度に維持される。その後、b2-cの期間に温度は、排気温度まで下降する。b1-cの期間に放電空間内に還元性有機ガスを含むガスが導入される。b1-cの期間に保護層9は、還元性有機ガスを含むガスに曝される。 The reducing gas introduction step C2 is performed within the period of the sealing step C1. The temperature is maintained at the sealing temperature for the period b1-b2. Thereafter, during the period b2-c, the temperature falls to the exhaust temperature. During the period b1-c, a gas containing a reducing organic gas is introduced into the discharge space. During the period b1-c, the protective layer 9 is exposed to a gas containing a reducing organic gas.
 その後、排気工程C3において、温度は、所定の期間排気温度に維持される。その後、温度は、室温程度まで下降する。c-eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。 Thereafter, in the exhaust process C3, the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period ce, the gas including the reducing organic gas is discharged by exhausting the discharge space.
 次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。 Next, in the discharge gas supply step C4, a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
 なお、いずれの温度プロファイルにおいてもほぼ同等の作用を有する。 In addition, it has almost the same action in any temperature profile.
 [2-4-4.還元性有機ガスの詳細]
 表1に示されるように、還元性有機ガスとしては、分子量が58以下の還元力の大きいCH系有機ガスが望ましい。種々の還元性有機ガスの中から選ばれる少なくとも一つが希ガスや窒素ガスなどに混合されることにより、還元性有機ガスを含むガスが製造される。
[2-4-4. Details of reducing organic gas]
As shown in Table 1, the reducing organic gas is preferably a CH-based organic gas having a molecular weight of 58 or less and a large reducing power. When at least one selected from various reducing organic gases is mixed with a rare gas or nitrogen gas, a gas containing the reducing organic gas is produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、Cの列は、有機ガスの一分子に含まれる炭素原子数を意味する。Hの列は、有機ガスの一分子に含まれる水素原子数を意味する。 In Table 1, column C means the number of carbon atoms contained in one molecule of organic gas. The column of H means the number of hydrogen atoms contained in one molecule of the organic gas.
 表1に示すように、蒸気圧の列において、0℃での蒸気圧が100kPa以上のガスには、「A」が付されている。さらに、0℃での蒸気圧が100kPaより小さいガスには、「C」が付されている。沸点の列において、1気圧での沸点が0℃以下のガスには、「A」が付されている。さらに、1気圧での沸点が0℃より大きいガスには、「C」が付されている。分解しやすさの列において、分解しやすいガスには、「A」が付されている。分解しやすさが普通のガスには、「B」が付されている。還元力の列において、還元力が十分であるガスには、「A」が付されている。 As shown in Table 1, “A” is attached to a gas having a vapor pressure of 100 kPa or more at 0 ° C. in the vapor pressure column. Furthermore, “C” is given to the gas whose vapor pressure at 0 ° C. is smaller than 100 kPa. In the boiling point column, a gas having a boiling point of 0 ° C. or less at 1 atm is marked with “A”. Furthermore, “C” is attached to a gas having a boiling point of greater than 0 ° C. at 1 atmosphere. In the column for easy decomposition, “A” is given to the gas that is easily decomposed. “B” is attached to a gas that is easily decomposed. In the column of reducing power, “A” is given to the gas having sufficient reducing power.
 表1において、「A」は良い特性であることを意味する。「B」は普通の特性であることを意味する。「C」は不十分な特性であることを意味する。 In Table 1, “A” means good characteristics. “B” means normal characteristics. “C” means insufficient properties.
 PDPの製造工程における有機ガスの取扱い易さの観点から考えると、ガスボンベに入れて供給できる還元性有機ガスが望ましい。また、PDPの製造工程における取扱い易さから考えると、0℃での蒸気圧が100kPa以上の還元性有機ガス、または沸点が0℃以下の還元性有機ガス、または分子量が小さい還元性有機ガスが望ましい。 From the viewpoint of easy handling of organic gas in the PDP manufacturing process, a reducing organic gas that can be supplied in a gas cylinder is desirable. Also, considering the ease of handling in the manufacturing process of PDP, a reducing organic gas having a vapor pressure at 0 ° C. of 100 kPa or higher, a reducing organic gas having a boiling point of 0 ° C. or lower, or a reducing organic gas having a low molecular weight is desirable.
 さらに、排気工程C3の後にも還元性有機ガスを含むガスの一部が放電空間内に残留する可能性がある。よって、還元性有機ガスは、分解しやすい特性を有することが望ましい。 Furthermore, part of the gas containing the reducing organic gas may remain in the discharge space even after the exhaust process C3. Therefore, it is desirable that the reducing organic gas has a characteristic that it is easily decomposed.
 還元性有機ガスは、製造工程上での取扱い易さや、分解しやすい特性などの点を考慮して、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレンおよびシクロプロパンの中から選ばれる酸素を含まない炭化水素系ガスが望ましい。これらの還元性有機ガスの中から選ばれる少なくとも一種を希ガスや窒素ガスに混合して用いればよい。 Reducing organic gas is a carbon that does not contain oxygen selected from acetylene, ethylene, methylacetylene, propadiene, propylene and cyclopropane, taking into consideration the ease of handling in the manufacturing process and the property of being easily decomposed. Hydrogen gas is desirable. At least one selected from these reducing organic gases may be mixed with a rare gas or nitrogen gas.
 なお、希ガスや窒素ガスと還元性有機ガスの混合比率は、使用する還元性有機ガスの燃焼割合に応じて下限が決定される。上限は、数体積%程度である。還元性有機ガスの混合比率が高すぎると、有機成分が重合して高分子となりやすい。この場合、高分子が放電空間に残留し、PDPの特性に影響を与えてしまう。よって、使用する還元性有機ガスの成分に応じて、混合比率を適宜調整することが好ましい。 The lower limit of the mixing ratio of the rare gas or nitrogen gas and the reducing organic gas is determined according to the combustion ratio of the reducing organic gas used. The upper limit is about several volume%. If the mixing ratio of the reducing organic gas is too high, the organic component is likely to be polymerized to become a polymer. In this case, the polymer remains in the discharge space and affects the characteristics of the PDP. Therefore, it is preferable to appropriately adjust the mixing ratio according to the component of the reducing organic gas to be used.
 なお、MgO、CaO、SrO、およびBaOなどは、水、二酸化炭素などの不純物ガスとの反応性が高い。特に水、二酸化炭素と反応することにより放電特性が劣化しやすく、放電セル毎の放電特性にばらつきが発生しやすい。 In addition, MgO, CaO, SrO, BaO, etc. have high reactivity with impurity gas, such as water and a carbon dioxide. In particular, by reacting with water and carbon dioxide, the discharge characteristics are likely to deteriorate, and the discharge characteristics of each discharge cell are likely to vary.
 そこで、封着工程C1において、放電空間16に開口する貫通孔を通して放電空間16内が陽圧状態となるように不活性ガスを流し、その後、封着を行うことが好ましい。保護層9と不純物ガスとの反応が抑制できるからである。不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン、キセノンなどが用いられ得る。 Therefore, in the sealing step C1, it is preferable to flow an inert gas so that the inside of the discharge space 16 is in a positive pressure state through a through hole opened in the discharge space 16, and then perform sealing. This is because the reaction between the protective layer 9 and the impurity gas can be suppressed. Nitrogen, helium, neon, argon, xenon, etc. can be used as the inert gas.
 また、不活性ガスの代わりに乾燥空気を流してもよい。少なくとも保護層9と水との反応が抑制できる上に、不活性ガスより製造コストが低減できるからである。 Also, dry air may be flowed instead of the inert gas. This is because at least the reaction between the protective layer 9 and water can be suppressed, and the manufacturing cost can be reduced compared with the inert gas.
 具体的には、図7から図9に示される封着工程C1において、温度が軟化点に達するxまでの期間において、例えば窒素ガスを2L/min程度の流量で流してもよい。放電空間16は、窒素ガスによって陽圧に保たれる。温度が軟化点を超えると、窒素ガスの供給が止められる。放電空間16は、窒素ガスによって陽圧に保たれたままである。温度は、a-bの期間、封着温度に維持される。放電空間16は、窒素ガスによって満たされている。その後、温度は、b-cの期間に封着温度から排気温度に下降する。b-cの期間において、放電空間16を満たしていた窒素ガスが排気される。つまり、放電空間内は減圧状態になる。以降の期間についての説明は、前述の説明と同様である。 Specifically, in the sealing step C1 shown in FIGS. 7 to 9, for example, nitrogen gas may be flowed at a flow rate of about 2 L / min during the period until the temperature reaches the softening point x. The discharge space 16 is maintained at a positive pressure by nitrogen gas. When the temperature exceeds the softening point, the supply of nitrogen gas is stopped. The discharge space 16 is kept at a positive pressure by nitrogen gas. The temperature is maintained at the sealing temperature for the period ab. The discharge space 16 is filled with nitrogen gas. Thereafter, the temperature falls from the sealing temperature to the exhaust temperature during the period bc. During the period bc, the nitrogen gas that has filled the discharge space 16 is exhausted. That is, the discharge space is in a reduced pressure state. The description for the subsequent period is the same as the above description.
 [3.評価]
 [3-1.評価1]
 試作されたPDP1は、42インチクラスのハイビジョンテレビに適合するものである。PDP1は、前面板2と、前面板2と対向配置された背面板10と、を備える。また、前面板2と背面板10の周囲は、封着部材22で封着されている。前面板2は、表示電極6と誘電体層8と保護層9とを有する。背面板10は、アドレス電極12と、下地誘電体層13と、隔壁14と、蛍光体層15とを有する。PDP1には、キセノン(Xe)の含有量が15体積%のネオン(Ne)-キセノン(Xe)系の混合ガスが、60kPaの内圧で封入された。また、表示電極6と表示電極6との電極間距離は、60μmであった。下地誘電体層13の膜厚は、10μmであった。縦隔壁24の高さは120μm、縦隔壁24と縦隔壁24との間隔(セルピッチ)は120μmであった。横隔壁26の高さは100μm、横隔壁26と横隔壁26との間隔は45μmであった。赤色蛍光体層151にはYPVが用いられた。青色蛍光体層152にはBAMが用いられた。緑色蛍光体層153にはZSMとYAGを1:1の割合で混合したものが用いられた。
[3. Evaluation]
[3-1. Evaluation 1]
The prototype PDP 1 is suitable for a 42-inch class high-definition television. The PDP 1 includes a front plate 2 and a back plate 10 disposed to face the front plate 2. The periphery of the front plate 2 and the back plate 10 is sealed with a sealing member 22. The front plate 2 has a display electrode 6, a dielectric layer 8, and a protective layer 9. The back plate 10 includes address electrodes 12, a base dielectric layer 13, barrier ribs 14, and a phosphor layer 15. PDP 1 was filled with a neon (Ne) -xenon (Xe) -based mixed gas having a xenon (Xe) content of 15% by volume at an internal pressure of 60 kPa. The interelectrode distance between the display electrode 6 and the display electrode 6 was 60 μm. The film thickness of the base dielectric layer 13 was 10 μm. The height of the vertical partition wall 24 was 120 μm, and the distance (cell pitch) between the vertical partition wall 24 and the vertical partition wall 24 was 120 μm. The height of the horizontal barrier ribs 26 was 100 μm, and the distance between the horizontal barrier ribs 26 and the horizontal barrier ribs 26 was 45 μm. YPV was used for the red phosphor layer 151. BAM was used for the blue phosphor layer 152. For the green phosphor layer 153, a mixture of ZSM and YAG at a ratio of 1: 1 was used.
 サンプルAの保護層9は、MgOとCaOによって構成されている。サンプルBの保護層9は、MgOとSrOによって構成されている。サンプルCの保護層9は、MgOとBaOによって構成されている。サンプルDの保護層9は、MgO、CaOおよびSrOによって構成されている。サンプルEの保護層9はMgO、CaOおよびBaOによって構成されている。また、比較例の保護層9は、MgO単体によって構成されている。 The protective layer 9 of sample A is composed of MgO and CaO. The protective layer 9 of sample B is composed of MgO and SrO. The protective layer 9 of sample C is composed of MgO and BaO. The protective layer 9 of sample D is made of MgO, CaO, and SrO. The protective layer 9 of sample E is composed of MgO, CaO, and BaO. The protective layer 9 of the comparative example is composed of MgO alone.
 サンプルAからEについて、駆動電圧が測定された。駆動電圧は、PDP1をサブフィールド駆動することにより評価された。サブフィールド駆動法は、1フィールドを複数のサブフィールドにより構成する。一つのサブフィールドは、初期化期間と、書込み期間と、維持期間とを有する。初期化期間は放電セルにおいて初期化放電を発生させる期間である。書込み期間は、初期化期間のあと、発光させる放電セルを選択する書込み放電を発生させる期間である。維持期間は、書込み期間において選択された放電セルに維持放電を発生させる期間である。本実施の形態において、駆動電圧とは、正常な維持放電を発生させるために必要な最も低い電圧を意味する。駆動電圧は低い方が好ましい。 The drive voltage was measured for samples A to E. The driving voltage was evaluated by driving the PDP 1 in a subfield. In the subfield driving method, one field is composed of a plurality of subfields. One subfield has an initialization period, an address period, and a sustain period. The initialization period is a period in which the initialization discharge is generated in the discharge cell. The address period is a period for generating an address discharge for selecting a discharge cell to emit light after the initialization period. The sustain period is a period in which a sustain discharge is generated in the discharge cell selected in the address period. In the present embodiment, the drive voltage means the lowest voltage necessary for generating a normal sustain discharge. A lower driving voltage is preferred.
 比較例の駆動電圧を100とした場合、サンプルAの駆動電圧は90、サンプルBの駆動電圧は87、サンプルCの駆動電圧は85、サンプルDの駆動電圧は81、サンプルEの駆動電圧は82であった。サンプルAからEは、通常の製造方法で製造されたPDPである。つまり、サンプルAからEは、還元性有機ガス導入工程を有さない製造方法で製造されたPDPである。 When the driving voltage of the comparative example is 100, the driving voltage of sample A is 90, the driving voltage of sample B is 87, the driving voltage of sample C is 85, the driving voltage of sample D is 81, and the driving voltage of sample E is 82. Met. Samples A to E are PDPs manufactured by a normal manufacturing method. That is, samples A to E are PDPs manufactured by a manufacturing method that does not have a reducing organic gas introduction step.
 放電ガスのXeの分圧を10%から15%に高めた場合には輝度が約30%上昇するが、比較例では、駆動電圧が約10%上昇する。 When the Xe partial pressure of the discharge gas is increased from 10% to 15%, the luminance increases by about 30%, but in the comparative example, the driving voltage increases by about 10%.
 一方、サンプルA、サンプルB、サンプルC、サンプルDおよびサンプルEの駆動電圧はいずれも、比較例より約10%~20%低減できた。 On the other hand, the driving voltages of Sample A, Sample B, Sample C, Sample D, and Sample E were all reduced by about 10% to 20% from the comparative example.
 次に、本実施の形態にかかる製造方法でサンプルAからEと同じ構成の保護層9を有するPDP1が作製された。封着工程C1から放電ガス供給工程C4には、第1の温度プロファイルが用いられた。 Next, PDP 1 having protective layer 9 having the same configuration as samples A to E was manufactured by the manufacturing method according to the present embodiment. The first temperature profile was used from the sealing step C1 to the discharge gas supply step C4.
 還元性有機ガスは、一例として、プロピレン、シクロプロパン、アセチレン、およびエチレンが用いられた。本実施の形態にかかるPDP1の駆動電圧は、サンプルAからEと比較してさらに5%程度低かった。 As the reducing organic gas, propylene, cyclopropane, acetylene, and ethylene were used as an example. The driving voltage of the PDP 1 according to the present embodiment was about 5% lower than those of the samples A to E.
 さらに、還元性有機ガスを導入する前に、封着工程C1において、放電空間16に開口する貫通孔を通して放電空間16内が陽圧状態となるように不活性ガスとして窒素ガスを流し、その後、封着を行った場合は、サンプルAからEと比較してさらに5から7%程度低かった。 Furthermore, before introducing the reducing organic gas, in the sealing step C1, nitrogen gas is allowed to flow as an inert gas so that the inside of the discharge space 16 is in a positive pressure state through the through-hole opened in the discharge space 16, and then When sealing, it was about 5 to 7% lower than samples A to E.
 [3-2.評価2]
 試作されたPDP1は、42インチクラスのハイビジョンテレビに適合するものである。PDP1は、前面板2と、前面板2と対向配置された背面板10と、を備える。また、前面板2と背面板10の周囲は、封着部材22で封着されている。前面板2は、表示電極6と誘電体層8と保護層9とを有する。保護層9は、MgOを80mol%とCaOを20mol%含む。背面板10は、アドレス電極12と、下地誘電体層13と、隔壁14と、蛍光体層15とを有する。還元性有機ガスには、エチレンが用いられた。封着工程から放電ガス供給工程までは、第1の温度プロファイルが用いられた。PDP1には、キセノン(Xe)の含有量が15体積%のネオン(Ne)-キセノン(Xe)系の混合ガスが、60kPaの内圧で封入された。また、表示電極6と表示電極6との電極間距離は、60μmであった。下地誘電体層13の膜厚は、10μmであった。縦隔壁24の高さは120μm、縦隔壁24と縦隔壁24との間隔(セルピッチ)は120μmであった。横隔壁26の高さは100μm、横隔壁26と横隔壁26との間隔は45μmであった。赤色蛍光体層151にはYPVが用いられた。青色蛍光体層152にはBAMが用いられた。緑色蛍光体層153にはZSMとYAGを1:1の割合で混合したものが用いられた。表2に試作されたPDP1の一覧が示される。つまり、試作されたPDPは、下地誘電体層13の構造と隔壁14の構造の他は同一である。
[3-2. Evaluation 2]
The prototype PDP 1 is suitable for a 42-inch class high-definition television. The PDP 1 includes a front plate 2 and a back plate 10 disposed to face the front plate 2. The periphery of the front plate 2 and the back plate 10 is sealed with a sealing member 22. The front plate 2 has a display electrode 6, a dielectric layer 8, and a protective layer 9. The protective layer 9 contains 80 mol% MgO and 20 mol% CaO. The back plate 10 includes address electrodes 12, a base dielectric layer 13, barrier ribs 14, and a phosphor layer 15. Ethylene was used as the reducing organic gas. The first temperature profile was used from the sealing step to the discharge gas supply step. PDP 1 was filled with a neon (Ne) -xenon (Xe) -based mixed gas having a xenon (Xe) content of 15% by volume at an internal pressure of 60 kPa. The interelectrode distance between the display electrode 6 and the display electrode 6 was 60 μm. The film thickness of the base dielectric layer 13 was 10 μm. The height of the vertical partition wall 24 was 120 μm, and the distance (cell pitch) between the vertical partition wall 24 and the vertical partition wall 24 was 120 μm. The height of the horizontal barrier ribs 26 was 100 μm, and the distance between the horizontal barrier ribs 26 and the horizontal barrier ribs 26 was 45 μm. YPV was used for the red phosphor layer 151. BAM was used for the blue phosphor layer 152. For the green phosphor layer 153, a mixture of ZSM and YAG at a ratio of 1: 1 was used. Table 2 shows a list of PDP 1 prototyped. That is, the prototype PDP is the same except for the structure of the base dielectric layer 13 and the structure of the partition walls 14.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 駆動電圧は、評価1と同様に評価された。 The drive voltage was evaluated in the same manner as in Evaluation 1.
 チッピングは、PDP1の完成後に、PDP1を割断し、隔壁14を光学顕微鏡で観察することにより評価された。隔壁14が当初の形状を保っていなければ、チッピングが発生したことを意味する。つまり、チッピングとは、隔壁14が保護層9などに接触することによって、隔壁14の一部が欠けることを意味する。チッピングは、チッピングの発生数が少なく、チッピングの大きさが小さい方が好ましい。 Chipping was evaluated by cleaving the PDP 1 after the completion of the PDP 1 and observing the partition wall 14 with an optical microscope. If the partition wall 14 does not maintain the original shape, it means that chipping has occurred. That is, the chipping means that a part of the partition wall 14 is missing when the partition wall 14 contacts the protective layer 9 or the like. As for chipping, it is preferable that the number of occurrences of chipping is small and the size of chipping is small.
 表2において、「A」は良い特性であることを意味する。「B」は十分な特性であることを意味する。「C」は不十分な特性であることを意味する。 In Table 2, “A” means good characteristics. “B” means sufficient characteristics. “C” means insufficient properties.
 下地誘電体層13における空隙率は、下地誘電体ペースト中のガラスフリットとフィラーとの和に対するガラスフリットの比率によって変化する。例えば、サンプル1からサンプル4におけるガラスフリットの比率は、43重量%である。例えば、サンプル5およびサンプル6におけるガラスフリットの比率は、70重量%である。 The porosity in the base dielectric layer 13 varies depending on the ratio of the glass frit to the sum of the glass frit and filler in the base dielectric paste. For example, the ratio of glass frit in sample 1 to sample 4 is 43% by weight. For example, the ratio of glass frit in sample 5 and sample 6 is 70% by weight.
 隔壁14における空隙率は、隔壁ペースト中のガラスフリットとフィラーとの和に対するガラスフリットの比率によって変化する。例えば、サンプル1におけるガラスフリットの比率は、75重量%である。例えば、サンプル2からサンプル6におけるガラスフリットの比率は、83重量%である。 The porosity in the partition 14 varies depending on the ratio of the glass frit to the sum of the glass frit and filler in the partition paste. For example, the glass frit ratio in sample 1 is 75% by weight. For example, the ratio of glass frit in sample 2 to sample 6 is 83% by weight.
 隔壁14における空隙断面積は、隔壁14の焼成温度、焼成時間によっても変化する。本実施の形態において、焼成温度とは、焼成における最高温度を意味する。焼成時間とは、焼成温度に保持されている時間を意味する。サンプル1からサンプル6は、594℃の焼成温度で焼成された。サンプル4およびサンプル5は、同じ焼成時間で焼成された。サンプル1およびサンプル2は、サンプル4およびサンプル5の焼成時間の半分の焼成時間で焼成された。サンプル3およびサンプル6は、サンプル4およびサンプル5の焼成時間の1.5倍の焼成時間で焼成された。つまり、焼成時間が長くなると、空隙断面積が小さくなる。 The gap cross-sectional area in the partition wall 14 also varies depending on the firing temperature and firing time of the partition wall 14. In the present embodiment, the firing temperature means the highest temperature in firing. The firing time means the time kept at the firing temperature. Samples 1 to 6 were fired at a firing temperature of 594 ° C. Sample 4 and sample 5 were fired at the same firing time. Sample 1 and Sample 2 were fired with a firing time that was half that of Sample 4 and Sample 5. Sample 3 and Sample 6 were fired at a firing time 1.5 times that of Sample 4 and Sample 5. That is, as the firing time becomes longer, the gap cross-sectional area becomes smaller.
 [3-2.下地誘電体層13の空隙率測定]
 [3-2-1.撮像]
 下地誘電体層13の空隙率は、次のように測定される。まず、下地誘電体層13の断面がでるように、下地誘電体層13が形成された背面ガラス基板11が割断される。次に、走査型電子顕微鏡(日立製作所社製S-3100)によって、下地誘電体層13の断面が撮影される。撮影条件は、加速電圧10keVである。画像は、例えば、水平500画素、垂直500画素のCCD(Charge Coupled Devices)に、10ビットの階調で取り込まれる。図10に示すように、撮影領域40は、下地誘電体層13の表層から約10%および背面ガラス基板11から約10%が除かれる。表層近傍および背面ガラス基板11の近傍は、膜質が変化するため、空隙率の測定値に影響を与えるからである。下地誘電体層13の膜厚が、例えば、10μmであるならば、厚さ方向には8μm分の画像になる。つまり、垂直1000画素が約8μmに相当する。よって、CCDの1画素は、下地誘電体層13の0.016μm角(0.00026μm)に相当する。
[3-2. Measurement of porosity of underlying dielectric layer 13]
[3-2-1. Imaging]
The porosity of the underlying dielectric layer 13 is measured as follows. First, the rear glass substrate 11 on which the base dielectric layer 13 is formed is cleaved so that the cross section of the base dielectric layer 13 appears. Next, a cross section of the underlying dielectric layer 13 is photographed with a scanning electron microscope (S-3100, manufactured by Hitachi, Ltd.). The photographing condition is an acceleration voltage of 10 keV. The image is captured in a 10-bit gradation, for example, in a CCD (Charge Coupled Devices) having 500 horizontal pixels and 500 vertical pixels. As shown in FIG. 10, about 10% of the imaging region 40 is removed from the surface layer of the base dielectric layer 13 and about 10% from the rear glass substrate 11. This is because the vicinity of the surface layer and the vicinity of the back glass substrate 11 change the film quality and thus affect the measured value of the porosity. If the thickness of the underlying dielectric layer 13 is, for example, 10 μm, an image for 8 μm is formed in the thickness direction. That is, 1000 vertical pixels correspond to about 8 μm. Therefore, one pixel of the CCD corresponds to a 0.016 μm square (0.00026 μm 2 ) of the underlying dielectric layer 13.
 なお、撮像に適した断面を得るために、撮像前に以下の処理を施しても良い。まず、割断された背面ガラス基板11がエポキシなどの樹脂に埋められる。次に、樹脂が硬化される。最後に、背面ガラス基板11が撮像予定の断面が出るまで樹脂ごと研磨される。 In order to obtain a cross section suitable for imaging, the following processing may be performed before imaging. First, the cleaved rear glass substrate 11 is buried in a resin such as epoxy. Next, the resin is cured. Finally, the back glass substrate 11 is polished together with the resin until a cross-section to be imaged appears.
 [3-2-2.画像処理]
 撮影された画像は、10ビットなので、1024階調で表わされる。まず、平均階調が512階調になるように、ゲイン調整がなされる。次に、ノイズ除去のため、平均化処理などがなされる。空隙は、画像において暗部として表わされる。撮影時に電子が放出されないからである。次に、二値化処理がなされる。一例として、しきい値が128階調に設定される。128階調未満の階調を有する画素が黒とし、128階調以上の階調を有する画素が白になる。垂直5画素以上×水平5画素以上の画素数(25画素以上)を有する黒の領域が空隙とされる。本実施の形態において、撮影した画像全体の画素数における、空隙が占める領域の画素数が空隙率である。
[3-2-2. Image processing]
Since the photographed image is 10 bits, it is represented by 1024 gradations. First, gain adjustment is performed so that the average gradation is 512 gradations. Next, an averaging process is performed to remove noise. The void is represented as a dark part in the image. This is because electrons are not emitted during shooting. Next, binarization processing is performed. As an example, the threshold value is set to 128 gradations. A pixel having a gradation of less than 128 gradations is black, and a pixel having a gradation of 128 gradations or more is white. A black region having a number of pixels (vertical 5 pixels or more × horizontal 5 pixels or more) (25 pixels or more) is defined as a void. In the present embodiment, the void ratio is the number of pixels in the area occupied by the void in the total number of pixels of the captured image.
 最後に、空隙の数と、空隙の一つあたりの断面積が計算される。空隙の数は、例えば、目視により求められる。断面積は、それぞれの空隙が占める画素数から計算される。 Finally, the number of voids and the cross-sectional area per void are calculated. The number of voids is obtained by visual observation, for example. The cross-sectional area is calculated from the number of pixels occupied by each gap.
 測定誤差を低減するために、複数箇所の断面において、上述の測定を実施することが好ましい。表2における空隙率は、PDP1の面内9箇所の測定値の平均値である。 In order to reduce the measurement error, it is preferable to perform the above-described measurement at a plurality of cross sections. The porosity in Table 2 is an average value of the measured values at nine locations in the surface of the PDP 1.
 なお、評価対象の膜厚などに合わせて、走査型電子顕微鏡の撮影条件、画像取り込みのためのCCDサイズおよび画像処理方法などは、適宜変更され得る。 Note that the imaging conditions of the scanning electron microscope, the CCD size for image capture, the image processing method, and the like can be changed as appropriate in accordance with the film thickness to be evaluated.
 [3-3.隔壁14の空隙率測定]
 [3-3-1.撮像]
 隔壁14の空隙率は、次の手順で測定される。まず、隔壁14の断面がでるように、下地誘電体層13上に隔壁14が形成された背面ガラス基板11が割断される。次に、走査型電子顕微鏡によって、隔壁14の断面が撮影される。撮影条件は、加速電圧10keVである。画像は、例えば、水平1000画素、垂直1000画素のCCDに、10ビットの階調で取り込まれる。図11に示すように、撮影領域42は、縦隔壁24の表層から約50%および下地誘電体層13から約10%が除かれる。さらに、縦隔壁24の側面から幅方向に10%~20%の領域が除かれる。表層近傍および下地誘電体層13の近傍は、膜質が変化するため、空隙率の測定値に影響を与えるからである。縦隔壁24の高さが120μmであるならば、高さ方向には約50μm分の画像になる。つまり、垂直1000画素が約50μmに相当する。よって、CCDの1画素は、縦隔壁24の0.05μm角(0.0025μm)に相当する。
[3-3. Measurement of porosity of partition wall 14]
[3-3-1. Imaging]
The porosity of the partition wall 14 is measured by the following procedure. First, the rear glass substrate 11 having the barrier ribs 14 formed on the base dielectric layer 13 is cleaved so that the barrier ribs 14 have a cross section. Next, the cross section of the partition 14 is image | photographed with a scanning electron microscope. The photographing condition is an acceleration voltage of 10 keV. For example, an image is captured at a gradation of 10 bits into a CCD having 1000 horizontal pixels and 1000 vertical pixels. As shown in FIG. 11, in the imaging region 42, about 50% is removed from the surface layer of the vertical partition wall 24 and about 10% is removed from the base dielectric layer 13. Further, a region of 10% to 20% in the width direction is removed from the side surface of the vertical partition wall 24. This is because the vicinity of the surface layer and the vicinity of the underlying dielectric layer 13 affect the measured value of the porosity because the film quality changes. If the height of the vertical partition 24 is 120 μm, an image of about 50 μm is formed in the height direction. That is, 1000 vertical pixels correspond to about 50 μm. Therefore, one pixel of the CCD corresponds to a 0.05 μm square (0.0025 μm 2 ) of the vertical partition wall 24.
 なお、撮像に適した断面を得るために、撮像前に以下の処理を施しても良い。まず、割断された背面ガラス基板11がエポキシなどの樹脂に埋められる。次に、樹脂が硬化される。最後に、背面ガラス基板11が撮像予定の断面が出るまで樹脂ごと研磨される。 In order to obtain a cross section suitable for imaging, the following processing may be performed before imaging. First, the cleaved rear glass substrate 11 is buried in a resin such as epoxy. Next, the resin is cured. Finally, the back glass substrate 11 is polished together with the resin until a cross-section to be imaged appears.
 [3-3-2.画像処理]
 撮影された画像は、10ビットなので、1024階調で表わされる。まず、平均階調が512階調になるように、ゲイン調整がなされる。次に、ノイズ除去のため、平均化処理などがなされる。空隙は、画像において暗部として表わされる。撮影時に電子が放出されないからである。次に、二値化処理がなされる。一例として、しきい値が128階調に設定される。128階調未満の階調を有する画素が黒とし、128階調以上の階調を有する画素が白になる。垂直4画素以上×水平4画素以上の画素数(16画素以上)を有する黒の領域が空隙とされる。本実施の形態において、撮影した画像全体の画素数における、空隙が占める領域の画素数が空隙率である。
[3-3-2. Image processing]
Since the photographed image is 10 bits, it is represented by 1024 gradations. First, gain adjustment is performed so that the average gradation is 512 gradations. Next, an averaging process is performed to remove noise. The void is represented as a dark part in the image. This is because electrons are not emitted during shooting. Next, binarization processing is performed. As an example, the threshold value is set to 128 gradations. A pixel having a gradation of less than 128 gradations is black, and a pixel having a gradation of 128 gradations or more is white. A black region having the number of pixels (vertical 4 pixels or more × horizontal 4 pixels or more (16 pixels or more)) is defined as a void. In the present embodiment, the void ratio is the number of pixels in the area occupied by the void in the total number of pixels of the captured image.
 最後に、空隙の数と、空隙の一つあたりの断面積が計算される。空隙の数は、例えば、目視により求められる。断面積は、それぞれの空隙が占める画素数から計算される。 Finally, the number of voids and the cross-sectional area per void are calculated. The number of voids is obtained by visual observation, for example. The cross-sectional area is calculated from the number of pixels occupied by each gap.
 測定誤差を低減するために、複数箇所の断面において、上述の測定を実施することが好ましい。表2における空隙率は、PDP1の面内9箇所の測定値の平均値である。表1における空隙断面積は、PDP1の面内9箇所の空隙一つあたりの断面積の平均値である。 In order to reduce the measurement error, it is preferable to perform the above-described measurement at a plurality of cross sections. The porosity in Table 2 is an average value of the measured values at nine locations in the surface of the PDP 1. The void cross-sectional area in Table 1 is an average value of the cross-sectional areas per nine voids in the plane of the PDP 1.
 [3-4.評価結果]
 表2に示されるように、サンプル1のチッピングは、「A」である。空隙のために、隔壁14の破損が内部まで進行することが抑制されたためと考えられる。つまり、空隙の位置で破損が止まったと考えられる。しかし、サンプル1の駆動電圧は「C」である。下地誘電体層13および隔壁14に存在する空隙から発生した水、二酸化炭素などの不純物ガスが保護層9に吸着することによって、保護層9を劣化させたためと考えられる。
[3-4. Evaluation results]
As shown in Table 2, the chipping of Sample 1 is “A”. It is considered that the breakage of the partition wall 14 is suppressed from proceeding to the inside due to the gap. That is, it is considered that the breakage stopped at the position of the gap. However, the drive voltage of Sample 1 is “C”. This is considered to be because the protective layer 9 was deteriorated by adsorbing to the protective layer 9 impurity gases such as water and carbon dioxide generated from voids existing in the base dielectric layer 13 and the partition wall 14.
 サンプル2の駆動電圧は、「C」である。隔壁14の空隙率はサンプル1と比較して減少した。しかし空隙断面積が、サンプル3から6と比較して大きい。そのため、空隙から不純物ガスが発生しやすくなったと考えられる。チッピングは「B」である。 The driving voltage of sample 2 is “C”. The porosity of the partition wall 14 decreased as compared with the sample 1. However, the gap cross-sectional area is large compared to Samples 3 to 6. For this reason, it is considered that the impurity gas is easily generated from the gap. Chipping is “B”.
 サンプル3の駆動電圧は、「B」である。下地誘電体層13の空隙率および隔壁14の空隙率は、サンプル2と同等である。しかし、空隙断面積がサンプル2と比較して小さい。そのため、空隙からガスが発生しにくくなったと考えられる。一方、チッピングは「C」である。チッピングの大きさが、サンプル2と比較して大きくなったためである。 The driving voltage of sample 3 is “B”. The porosity of the base dielectric layer 13 and the porosity of the partition walls 14 are the same as those of the sample 2. However, the gap cross-sectional area is smaller than that of Sample 2. Therefore, it is considered that gas is less likely to be generated from the gap. On the other hand, the chipping is “C”. This is because the size of chipping is larger than that of Sample 2.
 サンプル4の駆動電圧は、「B」である。チッピングも「B」である。下地誘電体層13の空隙率および隔壁14の空隙率は、サンプル2およびサンプル3と同等である。しかし、空隙断面積は、サンプル2と比較して小さく、サンプル3と比較して大きい。そのため駆動電圧とチッピングの二つの特性が両立したと考えられる。 The driving voltage of sample 4 is “B”. Chipping is also “B”. The porosity of the base dielectric layer 13 and the porosity of the partition walls 14 are the same as those of Sample 2 and Sample 3. However, the gap cross-sectional area is small compared to Sample 2 and large compared to Sample 3. Therefore, it is considered that the two characteristics of driving voltage and chipping are compatible.
 サンプル5の駆動電圧は、「A」である。隔壁14の空隙率および空隙断面積はサンプル4と同等である。しかし、下地誘電体層13の空隙率がサンプル3と比較して小さい。そのため、空隙に滞留していた不純物ガスの量が低減されたためと考えられる。チッピングは「B」である。 The driving voltage of sample 5 is “A”. The porosity and the cross-sectional area of the partition wall 14 are the same as those of the sample 4. However, the porosity of the base dielectric layer 13 is smaller than that of the sample 3. For this reason, it is considered that the amount of impurity gas remaining in the voids has been reduced. Chipping is “B”.
 サンプル6の駆動電圧は、「A」である。しかし、チッピングが「C」である。空隙断面積がサンプル5と比較して小さいためと考えられる。 The driving voltage of sample 6 is “A”. However, the chipping is “C”. This is probably because the gap cross-sectional area is smaller than that of Sample 5.
 駆動電圧とチッピングの二つの特性において「A」または「B」が得られたサンプルは、サンプル4およびサンプル5であった。隔壁14の空隙率は、0%を超え、かつ、1.0%未満であることが好ましい。さらに、空隙の一つあたりの平均断面積を意味する空隙断面積は、0.23μm以上0.29μm未満であることが好ましい。 Samples in which “A” or “B” was obtained in the two characteristics of driving voltage and chipping were Sample 4 and Sample 5. The porosity of the partition wall 14 is preferably more than 0% and less than 1.0%. Further, the gap cross-sectional area means the average cross-sectional area per one air gap is preferably less than 0.23 .mu.m 2 or 0.29 .mu.m 2.
 さらに、下地誘電体層13の空隙率は、0%を超え、かつ、1.0%未満であることが好ましい。空隙から発生する不純物ガスをさらに低減できるからである。 Furthermore, the porosity of the underlying dielectric layer 13 is preferably more than 0% and less than 1.0%. This is because the impurity gas generated from the voids can be further reduced.
 [4.効果等]
 本実施の形態にかかるPDP1は、前面板2と、前面板2と対向配置される背面板10とを備える。前面板2は、誘電体層8と誘電体層8を覆う保護層9とを有する。保護層9は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。さらに、保護層9は、X線回折分析において少なくとも一つのピークを有する。ピークは、第1の金属酸化物のX線回折分析における第1のピークと、第2の金属酸化物のX線回折分析における第2のピークと、の間にある。第1のピークおよび第2のピークは、ピークが示す面方位と同じ面方位を示す。第1の金属酸化物および第2の金属酸化物は、MgO、CaO、SrOおよびBaOからなる群の中から選ばれる2種である。背面板10は、下地誘電体層13と下地誘電体層13上に配置された複数の隔壁14とを含む。隔壁14は複数の空隙を有する。隔壁14の空隙率は、0%を超え、かつ、1.0%未満である。空隙の一つあたりの平均断面積は、0.23μm以上0.29μm未満である。
[4. Effect]
A PDP 1 according to the present embodiment includes a front plate 2 and a back plate 10 disposed to face the front plate 2. The front plate 2 includes a dielectric layer 8 and a protective layer 9 that covers the dielectric layer 8. The protective layer 9 includes at least a first metal oxide and a second metal oxide. Furthermore, the protective layer 9 has at least one peak in the X-ray diffraction analysis. The peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide. The first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak. The first metal oxide and the second metal oxide are two kinds selected from the group consisting of MgO, CaO, SrO and BaO. The back plate 10 includes a base dielectric layer 13 and a plurality of barrier ribs 14 disposed on the base dielectric layer 13. The partition 14 has a plurality of voids. The porosity of the partition wall 14 is more than 0% and less than 1.0%. The average cross-sectional area per one void is 0.23 .mu.m 2 or 0.29μm less than 2.
 本実施の形態にかかるPDP1は、隔壁14に存在する空隙から発生するガスを低減できる。よって、保護層9の劣化を抑制できる。つまり、保護層9の二次電子放出能力の低下を抑制できる。さらに、空隙の一つあたりの平均断面積を規定することによって、隔壁14のチッピングを抑制できる。したがって、本実施の形態にかかるPDP1は、駆動電圧の上昇を抑えつつ、隔壁14のチッピングによる品質低下を抑制できる。 The PDP 1 according to the present embodiment can reduce the gas generated from the voids existing in the partition wall 14. Therefore, deterioration of the protective layer 9 can be suppressed. That is, a decrease in the secondary electron emission capability of the protective layer 9 can be suppressed. Furthermore, the chipping of the partition walls 14 can be suppressed by defining the average cross-sectional area per void. Therefore, the PDP 1 according to the present embodiment can suppress a decrease in quality due to chipping of the partition wall 14 while suppressing an increase in drive voltage.
 本実施の形態にかかるPDP1の製造方法は、以下の工程を備える。還元性有機ガスを含むガスを放電空間16に導入することにより、保護層9を還元性有機ガスに曝す。次に、還元性有機ガスを放電空間16から排出する。次に、放電ガスを放電空間16に封入する。 The manufacturing method of the PDP 1 according to the present embodiment includes the following steps. The protective layer 9 is exposed to the reducing organic gas by introducing a gas containing the reducing organic gas into the discharge space 16. Next, reducing organic gas is discharged from the discharge space 16. Next, the discharge gas is sealed in the discharge space 16.
 還元性有機ガスに曝された保護層9には、酸素欠損が生じる。酸素欠損が生じることにより、保護層の二次電子放出能力が向上すると考えられる。したがって、本実施の形態にかかる製造方法で製造されたPDP1は、維持電圧を低減することができる。 Oxygen deficiency occurs in the protective layer 9 exposed to the reducing organic gas. Oxygen deficiency is considered to improve the secondary electron emission ability of the protective layer. Therefore, the PDP 1 manufactured by the manufacturing method according to the present embodiment can reduce the sustain voltage.
 さらに、還元性有機ガスは、酸素を含まない炭化水素系ガスであることが好ましい。酸素を含まないことによって、還元能力が高まるからである。 Furthermore, the reducing organic gas is preferably a hydrocarbon-based gas that does not contain oxygen. This is because the reduction ability is enhanced by not containing oxygen.
 さらに、還元性有機ガスは、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレン、シクロプロパン、プロパンおよびブタンの中から選ばれる少なくとも一種であることが好ましい。上記の還元性有機ガスは、製造工程上での取扱いが容易だからである。さらに、上記の還元性有機ガスは、分解が容易だからである。 Furthermore, the reducing organic gas is preferably at least one selected from acetylene, ethylene, methylacetylene, propadiene, propylene, cyclopropane, propane and butane. This is because the reducing organic gas is easy to handle in the manufacturing process. Furthermore, it is because said reducing organic gas is easy to decompose | disassemble.
 なお、本実施の形態においては、放電空間を排気した後、還元性有機ガスを含むガスを放電空間に導入する製造方法が例示された。しかし、放電空間を排気することなく、放電空間に還元性有機ガスを含むガスを連続的に供給することによって、還元性有機ガスを含むガスを放電空間に導入することもできる。 In the present embodiment, a manufacturing method in which a gas containing a reducing organic gas is introduced into the discharge space after exhausting the discharge space is exemplified. However, the gas containing the reducing organic gas can be introduced into the discharge space by continuously supplying the gas containing the reducing organic gas to the discharge space without exhausting the discharge space.
 以上のように、本開示における技術の例示として、実施の形態が説明された。そのために、添付図面および詳細な説明が提供された。 As described above, the embodiment has been described as an example of the technique in the present disclosure. To that end, the accompanying drawings and detailed description have been provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。上記技術を例示するためである。必須ではない構成要素が添付図面や詳細な説明に記載されていることによって、それら必須ではない構成要素が必須であるとの認定がなされるべきではない。 Therefore, the constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique. The non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
 また、上述の実施の形態は、本開示における技術を例示するためのものである。よって、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, the above-described embodiment is for illustrating the technique in the present disclosure. Therefore, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示の技術は、プラズマディスプレイパネルの駆動電圧を低減できる。よって、大画面の表示デバイスなどに有用である。 The technology of the present disclosure can reduce the driving voltage of the plasma display panel. Therefore, it is useful for a display device with a large screen.
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  透明電極
 4b,5b  バス電極
 5  維持電極
 6  表示電極
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 22  封着部材
 24  縦隔壁
 26  横隔壁
 40,42  撮影領域
 151  赤色蛍光体層
 152  青色蛍光体層
 153  緑色蛍光体層
1 PDP
DESCRIPTION OF SYMBOLS 2 Front plate 3 Front glass substrate 4 Scan electrode 4a, 5a Transparent electrode 4b, 5b Bus electrode 5 Sustain electrode 6 Display electrode 8 Dielectric layer 9 Protection layer 10 Back plate 11 Back glass substrate 12 Address electrode 13 Base dielectric layer 14 Partition DESCRIPTION OF SYMBOLS 15 Phosphor layer 16 Discharge space 22 Sealing member 24 Vertical barrier rib 26 Horizontal barrier rib 40,42 Imaging area 151 Red fluorescent substance layer 152 Blue fluorescent substance layer 153 Green fluorescent substance layer

Claims (8)

  1. 前面板と、前記前面板と対向配置される背面板とを備え、
     前記前面板は、誘電体層と前記誘電体層を覆う保護層とを有し、
      前記保護層は、少なくとも第1の金属酸化物と第2の金属酸化物とを含み、
      さらに、前記保護層は、X線回折分析において少なくとも一つのピークを有し、
      前記ピークは、前記第1の金属酸化物のX線回折分析における第1のピークと、前記第2の金属酸化物のX線回折分析における第2のピークと、の間にあり、
       前記第1のピークおよび前記第2のピークは、前記ピークが示す面方位と同じ面方位を示し、
       前記第1の金属酸化物および前記第2の金属酸化物は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムからなる群の中から選ばれる2種であり、
     前記背面板は、下地誘電体層と前記下地誘電体層上に配置された複数の隔壁とを含み、
      前記隔壁は複数の空隙を有し、
      前記隔壁の空隙率は、0%を超え、かつ、1.0%未満であり、
       前記空隙の一つあたりの平均断面積は、0.23μm以上0.29μm未満である、
    プラズマディスプレイパネル。
    A front plate, and a back plate disposed opposite to the front plate,
    The front plate has a dielectric layer and a protective layer covering the dielectric layer,
    The protective layer includes at least a first metal oxide and a second metal oxide,
    Further, the protective layer has at least one peak in X-ray diffraction analysis,
    The peak is between a first peak in an X-ray diffraction analysis of the first metal oxide and a second peak in an X-ray diffraction analysis of the second metal oxide;
    The first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak,
    The first metal oxide and the second metal oxide are two kinds selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide and barium oxide,
    The back plate includes a base dielectric layer and a plurality of barrier ribs disposed on the base dielectric layer,
    The partition has a plurality of voids;
    The porosity of the partition wall is more than 0% and less than 1.0%;
    The average cross-sectional area per one of the air gap is 0.23 .mu.m 2 or 0.29μm less than 2,
    Plasma display panel.
  2. 前記下地誘電体層は複数の空隙を有し、
     前記下地誘電体層の空隙率は、0%を超え、かつ、1.0%未満である、
    請求項1に記載のプラズマディスプレイパネル。
    The underlying dielectric layer has a plurality of voids;
    The porosity of the underlying dielectric layer is greater than 0% and less than 1.0%.
    The plasma display panel according to claim 1.
  3. 前面板と背面板との間に形成された放電空間を有するプラズマディスプレイパネルの製造方法であって、
     前記前面板は、誘電体層と前記誘電体層を覆う保護層とを有し、
      前記保護層は、少なくとも第1の金属酸化物と第2の金属酸化物とを含み、
      さらに、前記保護層は、X線回折分析において少なくとも一つのピークを有し、
      前記ピークは、前記第1の金属酸化物のX線回折分析における第1のピークと、前記第2の金属酸化物のX線回折分析における第2のピークと、の間にあり、
       前記第1のピークおよび前記第2のピークは、前記ピークが示す面方位と同じ面方位を示し、
       前記第1の金属酸化物および前記第2の金属酸化物は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムからなる群の中から選ばれる2種であり、
     前記背面板は、下地誘電体層と前記下地誘電体層上に配置された複数の隔壁とを含み、
      前記隔壁は複数の空隙を有し、
      前記隔壁の空隙率は、0%を超え、かつ、1.0%未満であり、
       前記空隙の一つあたりの平均断面積は、0.23μm以上0.29μm未満であり、
    還元性有機ガスを含むガスを前記放電空間に導入することにより、前記保護層を前記還元性有機ガスに曝し、
    次に、前記還元性有機ガスを前記放電空間から排出し、
    次に、放電ガスを前記放電空間に封入する、
    プラズマディスプレイパネルの製造方法。
    A method of manufacturing a plasma display panel having a discharge space formed between a front plate and a back plate,
    The front plate has a dielectric layer and a protective layer covering the dielectric layer,
    The protective layer includes at least a first metal oxide and a second metal oxide,
    Further, the protective layer has at least one peak in X-ray diffraction analysis,
    The peak is between a first peak in an X-ray diffraction analysis of the first metal oxide and a second peak in an X-ray diffraction analysis of the second metal oxide;
    The first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak,
    The first metal oxide and the second metal oxide are two kinds selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide and barium oxide,
    The back plate includes a base dielectric layer and a plurality of barrier ribs disposed on the base dielectric layer,
    The partition has a plurality of voids;
    The porosity of the partition wall is more than 0% and less than 1.0%;
    The average cross-sectional area per one of the air gap is 0.23 .mu.m 2 or 0.29μm less than 2,
    By introducing a gas containing a reducing organic gas into the discharge space, the protective layer is exposed to the reducing organic gas,
    Next, the reducing organic gas is discharged from the discharge space,
    Next, a discharge gas is sealed in the discharge space.
    A method for manufacturing a plasma display panel.
  4. 還元性有機ガスを含むガスを前記放電空間に導入する前に、前記放電空間を陽圧に保ちつつ、前記前面板と前記背面板との周囲を封着する、
    請求項3に記載のプラズマディスプレイパネルの製造方法。
    Before introducing a gas containing a reducing organic gas into the discharge space, the periphery of the front plate and the back plate is sealed while maintaining the discharge space at a positive pressure.
    The manufacturing method of the plasma display panel of Claim 3.
  5. 還元性有機ガスを含むガスを前記放電空間に導入する前に、前記放電空間に不活性ガスを流すことにより、前記放電空間を陽圧に保ちつつ、前記前面板と前記背面板との周囲を封着する、
    請求項4に記載のプラズマディスプレイパネルの製造方法。
    Before introducing a gas containing a reducing organic gas into the discharge space, by flowing an inert gas through the discharge space, the discharge space is maintained at a positive pressure, and the periphery of the front plate and the back plate is maintained. To seal,
    The manufacturing method of the plasma display panel of Claim 4.
  6. 還元性有機ガスを含むガスを前記放電空間に導入する前に、前記放電空間に乾燥空気を流すことにより、前記放電空間を陽圧に保ちつつ、前記前面板と前記背面板との周囲を封着する、
    請求項4に記載のプラズマディスプレイパネルの製造方法。
    Before introducing a gas containing a reducing organic gas into the discharge space, the periphery of the front plate and the back plate is sealed by flowing dry air through the discharge space while maintaining the discharge space at a positive pressure. To wear,
    The manufacturing method of the plasma display panel of Claim 4.
  7. 前記還元性有機ガスは、酸素を含まない炭化水素系ガスである、
    請求項3に記載のプラズマディスプレイパネルの製造方法。
    The reducing organic gas is a hydrocarbon gas that does not contain oxygen.
    The manufacturing method of the plasma display panel of Claim 3.
  8. 前記還元性有機ガスは、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレン、シクロプロパン、プロパンおよびブタンの群から選ばれる少なくとも一種である、
    請求項7に記載のプラズマディスプレイパネルの製造方法。
    The reducing organic gas is at least one selected from the group consisting of acetylene, ethylene, methylacetylene, propadiene, propylene, cyclopropane, propane and butane.
    The manufacturing method of the plasma display panel of Claim 7.
PCT/JP2012/004691 2011-08-01 2012-07-24 Plasma display panel and method for producing same WO2013018312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011168105A JP2013033602A (en) 2011-08-01 2011-08-01 Plasma display panel and method for manufacturing the same
JP2011-168105 2011-08-01

Publications (1)

Publication Number Publication Date
WO2013018312A1 true WO2013018312A1 (en) 2013-02-07

Family

ID=47628863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004691 WO2013018312A1 (en) 2011-08-01 2012-07-24 Plasma display panel and method for producing same

Country Status (2)

Country Link
JP (1) JP2013033602A (en)
WO (1) WO2013018312A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154027A (en) * 1997-08-05 1999-02-26 Canon Inc Electron source and manufacture of image forming device
JP2001229838A (en) * 1999-12-02 2001-08-24 Toray Ind Inc Member for display and display
JP2004220968A (en) * 2003-01-16 2004-08-05 Pioneer Electronic Corp Display panel and its manufacturing method
JP2005008514A (en) * 2003-05-23 2005-01-13 Fujifilm Arch Co Ltd Inorganic material membrane, inorganic material membrane structure, its forming process, and transfer film
JP2008030994A (en) * 2006-07-28 2008-02-14 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free powdered glass
JP2008262931A (en) * 2008-08-05 2008-10-30 Toray Ind Inc Paste for buffer layer formation of plasma display panel
JP2010267436A (en) * 2009-05-13 2010-11-25 Panasonic Corp Method for manufacturing plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154027A (en) * 1997-08-05 1999-02-26 Canon Inc Electron source and manufacture of image forming device
JP2001229838A (en) * 1999-12-02 2001-08-24 Toray Ind Inc Member for display and display
JP2004220968A (en) * 2003-01-16 2004-08-05 Pioneer Electronic Corp Display panel and its manufacturing method
JP2005008514A (en) * 2003-05-23 2005-01-13 Fujifilm Arch Co Ltd Inorganic material membrane, inorganic material membrane structure, its forming process, and transfer film
JP2008030994A (en) * 2006-07-28 2008-02-14 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free powdered glass
JP2008262931A (en) * 2008-08-05 2008-10-30 Toray Ind Inc Paste for buffer layer formation of plasma display panel
JP2010267436A (en) * 2009-05-13 2010-11-25 Panasonic Corp Method for manufacturing plasma display panel

Also Published As

Publication number Publication date
JP2013033602A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US7501763B2 (en) Gas discharge display panel
WO2007126061A1 (en) Plasma display panel and its manufacturing method
US20040217706A1 (en) Plasma display unit, phosphor and process for producing phosphor
JP2003041247A (en) Plasma display apparatus
JP5549677B2 (en) Plasma display panel
WO2011118152A1 (en) Manufacturing method for plasma display panel
WO2011118162A1 (en) Method for producing plasma display panel
WO2013018312A1 (en) Plasma display panel and method for producing same
JP4694088B2 (en) Plasma display device
WO2011118164A1 (en) Method for producing plasma display panel
WO2011118165A1 (en) Process for producing plasma display panel
US20120052761A1 (en) Method for producing plasma display panel
JP4096618B2 (en) Plasma display device
JP5304900B2 (en) Plasma display panel
JP2013008583A (en) Plasma display panel protection layer, and plasma display panel
JP2008287966A (en) Plasma display panel
WO2013018355A1 (en) Plasma display panel and method for producing same
WO2013021548A1 (en) Fluorescent material and fluorescent material paste
WO2011118154A1 (en) Manufacturing method for plasma display panel
WO2013018335A1 (en) Plasma display panel and manufacturing method thereof
US20120049730A1 (en) Plasma display panel
WO2011114701A1 (en) Plasma display panel
WO2013018354A1 (en) Plasma display panel and method for producing same
JP2013033629A (en) Plasma display panel
JP2013033628A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820203

Country of ref document: EP

Kind code of ref document: A1