WO2013017490A1 - Electrochemical accumulator with latent heat accumulator - Google Patents

Electrochemical accumulator with latent heat accumulator Download PDF

Info

Publication number
WO2013017490A1
WO2013017490A1 PCT/EP2012/064559 EP2012064559W WO2013017490A1 WO 2013017490 A1 WO2013017490 A1 WO 2013017490A1 EP 2012064559 W EP2012064559 W EP 2012064559W WO 2013017490 A1 WO2013017490 A1 WO 2013017490A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical
cell
latent heat
operating gas
heat storage
Prior art date
Application number
PCT/EP2012/064559
Other languages
German (de)
French (fr)
Inventor
Stefan Blendinger
Wolfgang Drenckhahn
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013017490A1 publication Critical patent/WO2013017490A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04052Storage of heat in the fuel cell system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrochemical storage.
  • a rechargeable high-temperature battery in question.
  • the battery has electro ⁇ chemical cells with air electrodes to which air is flowed when charging or discharging the battery.
  • the oxygen contained in the air is chemically bound to release heat, when charging is released by absorbing heat, oxygen.
  • the battery can overheat when discharging and subcharge during charging, which can build a large temperature gradient on the battery, which leads to mechanical stresses, so that it can damage the battery.
  • the heat required to charge the battery is released by means of a heater provided in the memory.
  • the battery can be heated by achieving the heat required during charging by releasing heat via internal electrical resistances of the battery. Both measures consume additional energy, which adversely reduces the efficiency of the storage device. Released during discharging of the battery heat is conventionally removed by an excess of the supplied flows into the Bat ⁇ terie amount of air, thereby also reducing the efficiency.
  • an inert gas For temperature compensation and thus for reducing the temperature gradients in the battery, a large amount of an inert gas is circulated through the battery in a circuit become. For this purpose, however, a high-temperature blower for conveying the inert gas is disadvantageously required. If the inert gas is nitrogen or a noble gas, then it also decreases
  • the object of the invention is to provide an electrochemical storage with a high efficiency, wherein the temperature fluctuations over time and the temperature gradients in the electrochemical storage during operation are small.
  • the electrochemical storage according to the invention comprises Minim ⁇ least one electrochemical cell and a Latenthuispei ⁇ chermantel surrounding the cell at least partially and contacted would ⁇ me facedd, and at least one operating gas channel which be ⁇ borders of the latent heat storing mantle and the cell and is thereby formed and through which a Be ⁇ operating gas of the cell with a gaseous reactant to the cell flowed into and / or can be flowed out of the cell. Because the latent heat storing mantle contacted the elektrochemi ⁇ specific cell thermally conductive, is advantageously stored in discharging the electrochemical cell heat released in the latent heat storage coat.
  • the heat is advantageously released again from the latent heat storage jacket to the electrochemical cell during charging of the electrochemical cell.
  • the latent heat storing mantle of the operation ⁇ gas channel is limited, the latent heat store is in heat-conducting contact, whereby heat is transferred to the process gas during discharge of the electrochemical cell, advantageously stored in the latent heat storage and dispensed again at the operating gas loading with the loading ⁇ operating gas becomes. Because heat is stored during discharge of the electrochemical cell and discharged during discharge, heat losses are reduced, whereby the efficiency of the electrochemical storage is advantageously high. If, during operation of the electrochemical store, it is necessary to maintain the store in the charged state over a long period of time, then the latent heat store jacket makes it possible to achieve advantageous results. liable to keep the temperature of the electrochemical cell high for a long period of time.
  • the latent heat storing mantle limits the operating gas channel loading, may advantageously and further the operating gas, before it is supplied to flow to the electrochemical cell, the heated ⁇ . If the electrochemical storage is a high-temperature battery, this advantageously increases the efficiency of the electrochemical storage.
  • a phase transition of a material is performed with the heat to be stored.
  • the heat storage and heat dissipation occurs at the tempera ⁇ ture of the phase transition.
  • the latent heat storage jacket is preferably formed box-shaped ⁇ and in the cross section, the at least one electrochemical cell is contacted at least three inner sides of the La ⁇ tenteben Eatmantels thermally conductive.
  • the min ⁇ least an operating gas channel is preferably arranged between the ver ⁇ surviving inner sides and the at least one electrochemical cell. Characterized in that the latent heat chermantel is box-shaped, the at least one electrochemical cell is thermally conductive contact with the latent heat storage ⁇ coat.
  • the at least one operating gas channel is preferably between the electrochemical cell and arranged the latent heat storage jacket, so that advantageously the temperature gradients are attenuated both via a single electrochemical cell as well as a stack of a plurality of electrochemical cells.
  • the electrochemical memory preferably includes a plurality of the box-shaped latent heat storage coats, which are arranged in a matrix, wherein the plurality einstü- to the kas ⁇ tenförmigen latent heat storage coats in particular is in one piece formed.
  • the electrochemical cells are arranged in the latent heat storage jackets, they are arranged adjacent to each other, whereby waste heat losses are reduced to the environment of the electrochemical storage and thus advantageously the efficiency of the electrochemical storage is high.
  • a part of the latent heat storage sheath is preferably Zvi ⁇ rule one of the operating gas channels through which the operating gas is the cell zuströmbar and nal another Radiogaska- through which the operating gas of the cell is abströmbar arranged.
  • the electrochemical storage is preferably designed as a sandwich-like ⁇ stack in which the latent heat storing mantle of a plurality of layers is formed, between each of which at least one of the electrochemical cells is arranged.
  • the latent heat storage coat preferably comprises a phase change material ⁇ and a porous support structure, in which the phase change material is introduced. Characterized in that the heat is stored in the phase transition of a phase change material, the latent heat storage jacket can be advantageously built compact ⁇ .
  • the latent heat storage coat can in particular small compared to a sensitive solid-state heat storage be dimensioned, in which the heat is stored in lattice vibrations of the solid and changes its temperature in a heat absorption or a heat release.
  • the phase-change material preferably comprises a salt, a mixture of salts, a metal and / or an alloy, and the salt, the mixture of salts, the metal and / or the alloy are preferably selected such that the associated melting temperature lies between the desired charging temperature. and discharge temperature of the at least one electrochemical cell. Because the melting temperature of the phase change material is between the desired charging and discharging temperature of the electrochemical cell, advantageously results in a high efficiency of the electrochemical storage.
  • phase change material experiences a phase transition during discharging of the at least one electrochemical cell. Therefore, it is advantageously ensured that the heat absorption and the heat dissipation takes place at the temperature of the phase transition. Furthermore, advantageously large temperature fluctuations of the electrochemical storage can be prevented because the heat absorption and the heat release leads to a change in the ratio of the two phases at the temperature of Pha ⁇ senübergangs. This is particularly relevant when there is a high power requirement on the electrochemical storage.
  • said electrochemical cell Rechargeable ⁇ bar.
  • the electrochemical cell is preferably an internal ⁇ material cell, which is preferably also as an electrolyser betreib ⁇ bar.
  • the at least one gaseous reaction partner is oxygen. Preferred dimensions of the operating gas is air.
  • Figure 2 is a plan view of the first embodiment of Figure 1 and
  • Figure 3 is a perspective view of the second embodiment ⁇ form.
  • Figures 1 and 2 show a first embodiment of an electrochemical storage 1, which has a cuboid latent heat storage body 8.
  • the latent heat storage body 8 four equal-sized cuboid chambers 9 are formed, which are arranged in a matrix-like manner in the latent heat storage body 8.
  • the chambers 9 are each an elec- Roche mix cell 1 is arranged, which is cuboid and extend de ⁇ ren sides parallel to the sides of their associated chamber.
  • the part of the latent heat storage body 8, which surrounds one of the cells 2 forms a latent heat storage jacket 3 for the cell 2.
  • the widths of the compartments 9 are so dimensioned that two ge ⁇ genübereaude sides of the chambers 9, each with a side of the cell 2 disposed therein are in touching contact.
  • a heat exchange between the latent heat storage body 8 and the cells 2 takes place during operation of the electromagnetic memory 1 see.
  • the other two sides which are not in contact with their associated cell 2, arranged in propriety to their associated cell 2, so that created by the thus formed cavities operating gas channels 4, 5 for the cells 2.
  • the operating gas of the cells 2 is air, with one supply air duct 4 as one of the operating gas ducts and one exhaust duct 5 as another of the operating gas ducts for each cell 2. are seen.
  • the cells 2 are arranged in groups of four as a respective cell group 6, the cell groups 6 being arranged one above the other as seen in FIG. Between two adjacent cell groups 6, a memory layer 7 is provided in each case, which is formed in the latent ⁇ memory body 8. It is conceivable that the cells 2 are formed by a package of individual sub-cells, wherein the cells are each constructed as a stack of the sub-cells.
  • Figure 3 shows a second embodiment of the electrochemical cell 1, which is as a sandwich-like stack forms ⁇ , wherein said latent heat storing mantle 3 has a multi-number of the memory layers 7, between which one of the electrochemical cells 2 is disposed.
  • Each of the storage layers 7 is penetrated by in each case one of the supply air ducts 5 and one of the exhaust air ducts 5, the ducts 4, 5 extending parallel to one another.
  • the Zu povertykanäle 4 and the exhaust ducts 5 are each bounded by the them neigh ⁇ th electrochemical cells 2.
  • the first embodiment combined with the second embodiment is formed as a third embodiment of the electrochemical memory 1, namely that in the first embodiment according to Figure 1 for each of the cells 2 of the electrochemical storage 1 according to the second embodiment in the corresponding chamber 9 is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

An electrochemical accumulator comprises at least one electrochemical cell (2), a latent heat accumulator jacket (3) that at least partially surrounds the cell (2) and is in thermally conductive contact therewith, and at least one operating gas channel (4, 5) delimited by the latent heat accumulator jacket and the cell (2) and thereby formed and through which an operating gas of the cell (2) together with a gaseous reaction partner can flow towards the cell (2) and away from the cell (2).

Description

Beschreibung description
ELEKTROCHEMISCHER SPEICHER MIT LATENTWÄRMESPEICHER  ELECTROCHEMICAL STORAGE WITH LATENT HEAT STORAGE
Die Erfindung betrifft einen elektrochemischen Speicher. The invention relates to an electrochemical storage.
Um Schwankungen bei der Erzeugung von elektrischer Energie auszugleichen, insbesondere bei der Erzeugung von elektrischer Energie durch regenerative Energiequellen, wie z.B. Windenergie oder Solarenergie, ist es vermehrt erforderlich elektrische Energie zu speichern. Als ein Speicher für die elektrische Energie kommt unter anderem eine wiederaufladbare Hochtemperaturbatterie in Frage. Die Batterie weist elektro¬ chemische Zellen mit Luftelektroden auf, an die beim Laden oder Entladen der Batterie Luft geströmt wird. Beim Entladen wird der in der Luft enthaltene Sauerstoff unter Freisetzen von Wärme chemisch gebunden, beim Laden wird unter Aufnahme von Wärme Sauerstoff freigesetzt. Dabei kann die Batterie beim Entladen überhitzen und beim Laden unterkühlen, wobei sich über die Batterie ein großer Temperaturgradient aufbauen kann, welcher zu mechanischen Spannungen führt, so dass es zu Beschädigungen der Batterie kommen kann. To compensate for variations in the generation of electrical energy, in particular in the generation of electrical energy by renewable energy sources, such as wind energy or solar energy, it is increasingly necessary to store electrical energy. As a storage for the electrical energy, among other things, a rechargeable high-temperature battery in question. The battery has electro ¬ chemical cells with air electrodes to which air is flowed when charging or discharging the battery. During discharge, the oxygen contained in the air is chemically bound to release heat, when charging is released by absorbing heat, oxygen. In this case, the battery can overheat when discharging and subcharge during charging, which can build a large temperature gradient on the battery, which leads to mechanical stresses, so that it can damage the battery.
Herkömmlich wird die zum Laden der Batterie benötigte Wärme mittels einer in dem Speicher vorgesehenen Heizung freigesetzt. Alternativ kann die Batterie geheizt werden, indem die beim Laden benötigte Wärme durch ein Freisetzen von Wärme über interne elektrische Widerstände der Batterie erreicht wird. Durch beide Maßnahmen wird zusätzliche Energie ver- braucht, wodurch sich nachteilig der Wirkungsgrad des Spei¬ chers verringert. Die beim Entladen der Batterie freigesetzte Wärme wird herkömmlich durch einen Überschuss der in die Bat¬ terie zugeströmten Menge an Luft abgeführt, wodurch sich ebenfalls der Wirkungsgrad verringert. Conventionally, the heat required to charge the battery is released by means of a heater provided in the memory. Alternatively, the battery can be heated by achieving the heat required during charging by releasing heat via internal electrical resistances of the battery. Both measures consume additional energy, which adversely reduces the efficiency of the storage device. Released during discharging of the battery heat is conventionally removed by an excess of the supplied flows into the Bat ¬ terie amount of air, thereby also reducing the efficiency.
Zum Temperaturausgleich und somit zur Verringerung der Temperaturgradienten in der Batterie kann eine große Menge eines Inertgases in einem Kreislauf durch die Batterie geströmt werden. Dazu wird jedoch nachteilig ein Hochtemperatur Gebläse zum Fördern des Inertgases benötigt. Ist das Inertgas Stickstoff oder ein Edelgas, so verringert sich zudem For temperature compensation and thus for reducing the temperature gradients in the battery, a large amount of an inert gas is circulated through the battery in a circuit become. For this purpose, however, a high-temperature blower for conveying the inert gas is disadvantageously required. If the inert gas is nitrogen or a noble gas, then it also decreases
nachteilig der Partialdruck des Sauerstoffs. adversely the partial pressure of oxygen.
Aufgabe der Erfindung ist es, einen elektrochemischen Speicher mit einem hohen Wirkungsgrad zu schaffen, wobei die Temperaturschwankungen über die Zeit und die Temperaturgradienten in dem elektrochemischen Speicher im Betrieb klein sind. The object of the invention is to provide an electrochemical storage with a high efficiency, wherein the temperature fluctuations over time and the temperature gradients in the electrochemical storage during operation are small.
Der erfindungsgemäße elektrochemische Speicher weist mindes¬ tens eine elektrochemische Zelle und einen Latentwärmespei¬ chermantel, der die Zelle zumindest teilweise umgibt und wär¬ meleitend kontaktiert, und mindestens einen Betriebsgaskanal auf, der von dem Latentwärmespeichermantel und der Zelle be¬ grenzt und dadurch ausgebildet ist sowie durch den ein Be¬ triebsgas der Zelle mit einem gasförmigen Reaktionspartner zu der Zelle zuströmbar und/oder von der Zelle abströmbar ist. Dadurch, dass der Latentwärmespeichermantel die elektrochemi¬ sche Zelle wärmeleitend kontaktiert, wird beim Entladen der elektrochemischen Zelle frei werdende Wärme vorteilhaft in dem Latentwärmespeichermantel gespeichert. Die Wärme wird beim Laden der elektrochemischen Zelle vorteilhaft wieder von dem Latentwärmespeichermantel an die elektrochemische Zelle abgegeben. Indem der Latentwärmespeichermantel den Betriebs¬ gaskanal begrenzt, steht der Latentwärmespeicher mit dem Be¬ triebsgas in wärmeleitenden Kontakt, wodurch Wärme, die beim Entladen von der elektrochemischen Zelle auf das Betriebsgas übertragen wird, in dem Latentwärmespeicher vorteilhaft gespeichert und beim Laden wieder an das Betriebsgas abgegeben wird. Weil beim Entladen der elektrochemischen Zelle Wärme gespeichert und beim Entladen abgegeben wird, werden Wärmeverluste vermindert, wodurch der Wirkungsgrad des elektroche- mischen Speichers vorteilhaft hoch ist. Ist es im Betrieb des elektrochemischen Speichers erforderlich, den Speicher im geladenen Zustand über einen langen Zeitraum aufrecht zu erhalten, so ermöglicht es der Latentwärmespeichermantel vorteil- haft, die Temperatur der elektrochemischen Zelle über einen langen Zeitraum hoch zu halten. The electrochemical storage according to the invention comprises Minim ¬ least one electrochemical cell and a Latentwärmespei ¬ chermantel surrounding the cell at least partially and contacted would ¬ meleitend, and at least one operating gas channel which be ¬ borders of the latent heat storing mantle and the cell and is thereby formed and through which a Be ¬ operating gas of the cell with a gaseous reactant to the cell flowed into and / or can be flowed out of the cell. Because the latent heat storing mantle contacted the elektrochemi ¬ specific cell thermally conductive, is advantageously stored in discharging the electrochemical cell heat released in the latent heat storage coat. The heat is advantageously released again from the latent heat storage jacket to the electrochemical cell during charging of the electrochemical cell. By the latent heat storing mantle of the operation ¬ gas channel is limited, the latent heat store is in heat-conducting contact, whereby heat is transferred to the process gas during discharge of the electrochemical cell, advantageously stored in the latent heat storage and dispensed again at the operating gas loading with the loading ¬ operating gas becomes. Because heat is stored during discharge of the electrochemical cell and discharged during discharge, heat losses are reduced, whereby the efficiency of the electrochemical storage is advantageously high. If, during operation of the electrochemical store, it is necessary to maintain the store in the charged state over a long period of time, then the latent heat store jacket makes it possible to achieve advantageous results. liable to keep the temperature of the electrochemical cell high for a long period of time.
Indem der Latentwärmespeichermantel den Betriebsgaskanal be- grenzt, kann ferner vorteilhaft das Betriebsgas, bevor es zu der elektrochemischen Zelle zugeströmt wird, aufgeheizt wer¬ den. Wenn der elektrochemische Speicher eine Hochtemperaturbatterie ist, erhöht dies vorteilhaft den Wirkungsgrad des elektrochemischen Speichers. By the latent heat storing mantle limits the operating gas channel loading, may advantageously and further the operating gas, before it is supplied to flow to the electrochemical cell, the heated ¬. If the electrochemical storage is a high-temperature battery, this advantageously increases the efficiency of the electrochemical storage.
Des Weiteren ist es vorteilhaft nicht erforderlich, beim La¬ den der elektrochemischen Zelle den elektrochemischen Speicher zusätzlich zu heizen und beim Entladen zusätzlich zu kühlen. Dadurch wird zum Betrieb des elektrochemischen Spei- chers weniger Energie verbraucht, wodurch vorteilhaft der Wirkungsrad des elektrochemischen Speichers hoch ist. Furthermore, it is advantageously not necessary to additionally heat the electrochemical store during charging of the electrochemical cell and additionally to cool it during discharge. As a result, less energy is consumed for the operation of the electrochemical storage, whereby advantageously the efficiency of the electrochemical storage is high.
In dem Latentwärmespeichermantel wird mit der zu speichernden Wärme ein Phasenübergang eines Materials durchgeführt. Die Wärmespeicherung und die Wärmeabgabe erfolgt bei der Tempera¬ tur des Phasenübergangs. Dadurch können vorteilhaft große Temperaturgradienten über den elektrochemischen Speicher vermieden werden, wodurch etwa Beschädigungen durch mechanische Spannungen unterbunden werden können. Des Weiteren können vorteilhaft große zeitliche Temperaturschwankungen des elekt¬ rochemischen Speichers vermieden werden. In the latent heat storage jacket, a phase transition of a material is performed with the heat to be stored. The heat storage and heat dissipation occurs at the tempera ¬ ture of the phase transition. As a result, it is advantageously possible to avoid large temperature gradients via the electrochemical store, as a result of which damage due to mechanical stresses can be prevented, for example. Furthermore, large temperature variation in the elekt ¬ roche mix memory are advantageously avoided.
Der Latentwärmespeichermantel ist bevorzugt kastenförmig aus¬ gebildet und in dessen Querschnitt ist die mindestens eine elektrochemische Zelle an höchstens drei Innenseiten des La¬ tentwärmespeichermantels wärmeleitend kontaktiert. Der min¬ destens eine Betriebsgaskanal ist bevorzugt zwischen den ver¬ bliebenen Innenseiten sowie der mindestens einen elektrochemischen Zelle angeordnet. Dadurch, dass der Latentwärmespei- chermantel kastenförmig ausgebildet ist, ist die mindestens eine elektrochemische Zelle wärmeleitend mit dem Latentwärme¬ speichermantel kontaktiert. Der mindestens eine Betriebsgas¬ kanal ist bevorzugt zwischen der elektrochemischen Zelle und dem Latentwärmespeichermantel angeordnet, so dass vorteilhaft die Temperaturgradienten sowohl über eine einzelne elektrochemische Zelle als auch über einen Stapel aus einer Mehrzahl an elektrochemischen Zellen abgeschwächt werden. The latent heat storage jacket is preferably formed box-shaped ¬ and in the cross section, the at least one electrochemical cell is contacted at least three inner sides of the La ¬ tentwärmespeichermantels thermally conductive. The min ¬ least an operating gas channel is preferably arranged between the ver ¬ surviving inner sides and the at least one electrochemical cell. Characterized in that the latent heat chermantel is box-shaped, the at least one electrochemical cell is thermally conductive contact with the latent heat storage ¬ coat. The at least one operating gas channel is preferably between the electrochemical cell and arranged the latent heat storage jacket, so that advantageously the temperature gradients are attenuated both via a single electrochemical cell as well as a stack of a plurality of electrochemical cells.
Der elektrochemische Speicher weist bevorzugt eine Mehrzahl an den kastenförmigen Latentwärmespeichermänteln auf, die matrixartig angeordnet sind, wobei die Mehrzahl an den kas¬ tenförmigen Latentwärmespeichermänteln insbesondere einstü- ckig ausgebildet ist. Indem die elektrochemischen Zellen in den Latentwärmespeichermänteln angeordnet sind, sind sie zueinander benachbart angeordnet, wodurch Abwärmeverluste an die Umgebung des elektrochemischen Speichers reduziert sind und somit vorteilhaft der Wirkungsgrad des elektrochemischen Speichers hoch ist. The electrochemical memory preferably includes a plurality of the box-shaped latent heat storage coats, which are arranged in a matrix, wherein the plurality einstü- to the kas ¬ tenförmigen latent heat storage coats in particular is in one piece formed. By the electrochemical cells are arranged in the latent heat storage jackets, they are arranged adjacent to each other, whereby waste heat losses are reduced to the environment of the electrochemical storage and thus advantageously the efficiency of the electrochemical storage is high.
Ein Teil des Latentwärmespeichermantels ist bevorzugt zwi¬ schen einem der Betriebsgaskanäle, durch den das Betriebsgas zu der Zelle zuströmbar ist, und einem anderen Betriebsgaska- nal, durch den das Betriebsgas von der Zelle abströmbar ist, angeordnet. Dadurch kann vorteilhaft ein Überhitzen bzw. ein Unterkühlen des zuströmenden bzw. abströmenden Betriebsgases vermieden werden. Der elektrochemische Speicher ist bevorzugt als ein sandwich¬ artiger Stapel ausgebildet, in dem der Latentwärmespeichermantel aus einer Mehrzahl an Schichten gebildet ist, zwischen denen jeweils mindestens eine der elektrochemischen Zellen angeordnet ist. Durch diese Anordnung kann vorteilhaft der Temperaturgradient jeder der elektrochemischen Zellen vermindert werden. A part of the latent heat storage sheath is preferably Zvi ¬ rule one of the operating gas channels through which the operating gas is the cell zuströmbar and nal another Betriebsgaska- through which the operating gas of the cell is abströmbar arranged. As a result, overheating or undercooling of the inflowing or outflowing operating gas can advantageously be avoided. The electrochemical storage is preferably designed as a sandwich-like ¬ stack in which the latent heat storing mantle of a plurality of layers is formed, between each of which at least one of the electrochemical cells is arranged. By this arrangement, advantageously, the temperature gradient of each of the electrochemical cells can be reduced.
Der Latentwärmespeichermantel weist bevorzugt ein Phasenüber¬ gangsmaterial und eine poröse Trägerstruktur auf, in die das Phasenübergangsmaterial eingebracht ist. Dadurch, dass die Wärme in dem Phasenübergang eines Phasenübergangsmaterials gespeichert wird, kann der Latentwärmespeichermantel vorteil¬ haft kompakt gebaut sein. Der Latentwärmespeichermantel kann insbesondere klein im Vergleich zu einem sensiblen Festkörperwärmespeicher dimensioniert sein, bei dem die Wärme in Gitterschwingungen des Festkörpers gespeichert wird und der bei einer Wärmeaufnahme bzw. einer Wärmeabgabe seine Tempera- tur ändert. The latent heat storage coat preferably comprises a phase change material ¬ and a porous support structure, in which the phase change material is introduced. Characterized in that the heat is stored in the phase transition of a phase change material, the latent heat storage jacket can be advantageously built compact ¬ . The latent heat storage coat can in particular small compared to a sensitive solid-state heat storage be dimensioned, in which the heat is stored in lattice vibrations of the solid and changes its temperature in a heat absorption or a heat release.
Das Phasenübergangsmaterial weist bevorzugt ein Salz, eine Mischung von Salzen, ein Metall und/oder eine Legierung auf und das Salz, die Mischung von Salzen, das Metall und/oder die Legierung sind bevorzugt so gewählt, dass die zugehörige Schmelztemperatur zwischen der gewünschten Lade- und Entladetemperatur der mindestens einen elektrochemischen Zelle liegt. Weil die Schmelztemperatur des Phasenübergangsmaterials zwischen der gewünschten Lade- und Entladetemperatur der elektrochemischen Zelle liegt, ergibt sich vorteilhaft ein hoher Wirkungsgrad des elektrochemischen Speichers. The phase-change material preferably comprises a salt, a mixture of salts, a metal and / or an alloy, and the salt, the mixture of salts, the metal and / or the alloy are preferably selected such that the associated melting temperature lies between the desired charging temperature. and discharge temperature of the at least one electrochemical cell. Because the melting temperature of the phase change material is between the desired charging and discharging temperature of the electrochemical cell, advantageously results in a high efficiency of the electrochemical storage.
Bevorzugtermaßen erfährt mindestens ein Teil des Phasenübergangsmaterials während des Entladens der mindestens einen elektrochemischen Zelle einen Phasenübergang. Deshalb ist vorteilhaft gewährleistet, dass die Wärmeaufnahme und die Wärmeabgabe bei der Temperatur des Phasenübergangs erfolgt. Ferner können dadurch vorteilhaft große Temperaturschwankungen des elektrochemischen Speichers verhindert werden, weil die Wärmeaufnahme und die Wärmeabgabe zu einer Veränderung des Verhältnisses der zwei Phasen bei der Temperatur des Pha¬ senübergangs führt. Dies ist insbesondere relevant, wenn eine hohe Leistungsanforderung an den elektrochemischen Speicher besteht . Preferably, at least a portion of the phase change material experiences a phase transition during discharging of the at least one electrochemical cell. Therefore, it is advantageously ensured that the heat absorption and the heat dissipation takes place at the temperature of the phase transition. Furthermore, advantageously large temperature fluctuations of the electrochemical storage can be prevented because the heat absorption and the heat release leads to a change in the ratio of the two phases at the temperature of Pha ¬ senübergangs. This is particularly relevant when there is a high power requirement on the electrochemical storage.
Bevorzugtermaßen ist die elektrochemische Zelle wiederauflad¬ bar. Die elektrochemische Zelle ist bevorzugt eine Brenn¬ stoffzelle, welche bevorzugt auch als Elektrolyseur betreib¬ bar ist. Ferner ist der mindestens eine gasförmige Reaktions- partner Sauerstoff. Bevorzugtermaßen ist das Betriebsgas Luft. Im Folgenden werden zwei bevorzugte Ausführungsformen des erfindungsgemäßen elektrochemischen Speichers anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigt: Figur 1 eine perspektivische Ansicht der ersten Ausführungs¬ form, Preferably, said electrochemical cell Rechargeable ¬ bar. The electrochemical cell is preferably an internal ¬ material cell, which is preferably also as an electrolyser betreib ¬ bar. Furthermore, the at least one gaseous reaction partner is oxygen. Preferred dimensions of the operating gas is air. In the following, two preferred embodiments of the electrochemical storage according to the invention will be explained with reference to the attached schematic drawings. In the drawings: Figure 1 is a perspective view of the first execution ¬ form,
Figur 2 eine Draufsicht der ersten Ausführungsform aus Figur 1 und Figure 2 is a plan view of the first embodiment of Figure 1 and
Figur 3 eine perspektivische Ansicht der zweiten Ausführungs¬ form. Figure 3 is a perspective view of the second embodiment ¬ form.
Figuren 1 und 2 zeigen eine erste Ausführungsform eines elektrochemischen Speichers 1, der einen quaderförmigen Latentwärmespeicherkörper 8 aufweist. In dem Latentwärmespeicherkörper 8 sind vier gleich große quaderförmige Kammern 9 ausgebildet, die in dem Latentwärmespeicherkörper 8 matrixartig angeordnet sind. In die Kammern 9 ist jeweils eine elekt- rochemische Zelle 1 angeordnet, die quaderförmig ist und de¬ ren Seiten parallel zu den Seiten der ihr zugeordneten Kammer 9 verlaufen. Der Teil des Latentwärmespeicherkörpers 8, der eine der Zellen 2 umgibt, bildet einen Latentwärmespeichermantel 3 für die Zelle 2. Figures 1 and 2 show a first embodiment of an electrochemical storage 1, which has a cuboid latent heat storage body 8. In the latent heat storage body 8 four equal-sized cuboid chambers 9 are formed, which are arranged in a matrix-like manner in the latent heat storage body 8. In the chambers 9 are each an elec- Roche mix cell 1 is arranged, which is cuboid and extend de ¬ ren sides parallel to the sides of their associated chamber. 9 The part of the latent heat storage body 8, which surrounds one of the cells 2, forms a latent heat storage jacket 3 for the cell 2.
Die Weiten der Kammern 9 sind so dimensioniert, dass zwei ge¬ genüberliegende Seiten der Kammern 9 mit jeweils einer Seite der in ihr angeordneten Zelle 2 in Berührkontakt stehen. Via diesen Berührkontakt findet im Betrieb des elektromagneti- sehen Speichers 1 ein Wärmeaustausch zwischen dem Latentwärmespeicherkörper 8 und den Zellen 2 statt. Ferner sind die beiden anderen Seiten, die nicht in Berührkontakt mit ihrer zugeordneten Zelle 2 stehen, im Anstand zu ihrer zugeordneten Zelle 2 angeordnet, so dass von den dadurch ausgebildeten Hohlräumen Betriebsgaskanäle 4, 5 für die Zellen 2 geschaffen sind. Das Betriebsgas der Zellen 2 ist Luft, wobei für jede Zelle 2 ein Zuluftkanal 4 als einer der Betriebsgaskanäle und ein Abluftkanal 5 als ein anderer der Betriebsgaskanäle vor- gesehen sind. Außerdem sind benachbarte Betriebsgaskanäle 4, 5, die unterschiedlichen Zellen 2 zugeordnet sind, von Material des Latentwärmespeicherkörpers 8 räumlich getrennt, so dass ein Wärmeaustausch zwischen den Betriebsgaskanälen via den Latentwärmespeicherkörper 8 ermöglicht ist. The widths of the compartments 9 are so dimensioned that two ge ¬ genüberliegende sides of the chambers 9, each with a side of the cell 2 disposed therein are in touching contact. Through this Berührkontakt a heat exchange between the latent heat storage body 8 and the cells 2 takes place during operation of the electromagnetic memory 1 see. Furthermore, the other two sides, which are not in contact with their associated cell 2, arranged in propriety to their associated cell 2, so that created by the thus formed cavities operating gas channels 4, 5 for the cells 2. The operating gas of the cells 2 is air, with one supply air duct 4 as one of the operating gas ducts and one exhaust duct 5 as another of the operating gas ducts for each cell 2. are seen. In addition, adjacent operating gas channels 4, 5, which are associated with different cells 2, spatially separated from the material of the latent heat storage body 8, so that a heat exchange between the operating gas channels via the latent heat storage body 8 is made possible.
In dem elektrochemischen Speicher 1 sind die Zellen 2 in Vierergruppen als jeweils eine Zellengruppe 6 angeordnet, wobei die Zellengruppen 6 in Figur 1 gesehen übereinander angeord- net sind. Zwischen zwei benachbarten Zellengruppen 6 ist jeweils eine Speicherschicht 7 vorgesehen, die in dem Latent¬ speicherkörper 8 ausgebildet ist. Es ist denkbar, dass die Zellen 2 von einem Paket einzelner Unterzellen gebildet sind, wobei die Zellen jeweils als ein Stapel der Unterzellen auf- gebaut sind. In the electrochemical storage device 1, the cells 2 are arranged in groups of four as a respective cell group 6, the cell groups 6 being arranged one above the other as seen in FIG. Between two adjacent cell groups 6, a memory layer 7 is provided in each case, which is formed in the latent ¬ memory body 8. It is conceivable that the cells 2 are formed by a package of individual sub-cells, wherein the cells are each constructed as a stack of the sub-cells.
Figur 3 zeigt eine zweite Ausführungsform des elektrochemischen Speichers 1, der als ein sandwichartiger Stapel ausge¬ bildet ist, wobei der Latentwärmespeichermantel 3 eine Mehr- zahl an den Speicherschichten 7 aufweist, zwischen denen jeweils eine der elektrochemischen Zellen 2 angeordnet ist. Jede der Speicherschichten 7 ist von jeweils einem der Zuluftkanäle 5 und einem der Abluftkanäle 5 durchdrungen, wobei die Kanäle 4, 5 zueinander parallel verlaufen. Die Zuluftkanäle 4 und die Abluftkanäle 5 sind jeweils von den ihnen benachbar¬ ten elektrochemischen Zellen 2 begrenzt. Figure 3 shows a second embodiment of the electrochemical cell 1, which is as a sandwich-like stack forms ¬, wherein said latent heat storing mantle 3 has a multi-number of the memory layers 7, between which one of the electrochemical cells 2 is disposed. Each of the storage layers 7 is penetrated by in each case one of the supply air ducts 5 and one of the exhaust air ducts 5, the ducts 4, 5 extending parallel to one another. The Zuluftkanäle 4 and the exhaust ducts 5 are each bounded by the them neigh ¬ th electrochemical cells 2.
Denkbar ist, dass die erste Ausführungsform kombiniert mit der zweiten Ausführungsform als eine dritte Ausführungsform des elektrochemischen Speichers 1 gebildet ist, nämlich, dass bei der ersten Ausführungsform gemäß Figur 1 für jede der Zellen 2 der elektrochemische Speicher 1 gemäß der zweiten Ausführungsform in die entsprechende Kammer 9 eingesetzt ist. It is conceivable that the first embodiment combined with the second embodiment is formed as a third embodiment of the electrochemical memory 1, namely that in the first embodiment according to Figure 1 for each of the cells 2 of the electrochemical storage 1 according to the second embodiment in the corresponding chamber 9 is used.

Claims

Patentansprüche claims
1. Elektrochemischer Speicher mit mindestens einer elektrochemischen Zelle (2), einem Latentwärmespeichermantel (3), der die Zelle (2) zumindest teilweise umgibt und wärmeleitend kontaktiert, und mindestens einen Betriebsgaskanal (4, 5), der von dem Latentwärmespeichermantel (3) und der Zelle (2) begrenzt und dadurch ausgebildet ist sowie durch den ein Be¬ triebsgas der Zelle (2) mit einem gasförmigen Reaktionspart- ner zu der Zelle (2) zuströmbar und/oder von der Zelle (2) abströmbar ist. 1. Electrochemical storage with at least one electrochemical cell (2), a latent heat storage jacket (3) which surrounds the cell (2) at least partially and contacted thermally conductive, and at least one operating gas channel (4, 5) of the latent heat storage jacket (3) and the cell (2) is limited and thereby formed and by the Be ¬ a driving gas of the cell (2) with a gaseous Reaktionspart- ner to the cell (2) flows into and / or from the cell (2) can be flowed off.
2. Elektrochemischer Speicher gemäß Anspruch 1, wobei der Latentwärmespeichermantel (3) kastenförmig ausgebildet ist und in dessen Querschnitt die mindestens eine elektrochemische2. Electrochemical storage according to claim 1, wherein the latent heat storage jacket (3) is box-shaped and in its cross section, the at least one electrochemical
Zelle (2) an höchstens drei Innenseiten des Latentwärmespei¬ chermantels (3) wärmeleitend kontaktiert ist sowie der min¬ destens eine Betriebsgaskanal (4, 5) zwischen den verbliebe¬ nen Innenseiten und der mindestens einen elektrochemischen Zelle (2) angeordnet ist. Cell (2) to a maximum of three inner sides of the Latentwärmespei ¬ chermantels (3) is contacted in a thermally conductive and the min ¬ least an operating gas channel (4, 5) is arranged between the would remain ¬ NEN inner sides and the at least one electrochemical cell (2).
3. Elektrochemischer Speicher gemäß Anspruch 2, der eine Mehrzahl an den kastenförmigen Latentwärmespeichermänteln (3) aufweist, die matrixartig angeordnet sind, wobei die Mehrzahl an den kastenförmigen Latentwärmespeichermänteln (3) insbesondere einstückig ausgebildet ist. 3. Electrochemical storage according to claim 2, which has a plurality of the box-shaped Latentwärmespeichermänteln (3), which are arranged like a matrix, wherein the plurality of the box-shaped latent heat storage shrouds (3) is in particular integrally formed.
4. Elektrochemischer Speicher gemäß einem der Ansprüche 1 bis 3, wobei ein Teil des Latentwärmespeichermantels (3) zwischen einem der Betriebsgaskanäle (4), durch den das Betriebsgas zu der Zelle (2) zuströmbar ist, und einem anderen Betriebsgaskanal (5), durch den das Betriebsgas von der Zelle (2) abströmbar ist, angeordnet ist. 4. An electrochemical storage according to any one of claims 1 to 3, wherein a part of the latent heat storage jacket (3) between one of the operating gas channels (4), through which the operating gas to the cell (2) is flown, and another operating gas channel (5) the operating gas from the cell (2) can be flowed out, is arranged.
5. Elektrochemischer Speicher gemäß Anspruch 1, wobei der elektrochemische Speicher (1) als ein sandwichartiger Stapel ausgebildet ist, in dem der Latentwärmespeichermantel (3) aus einer Mehrzahl an Schichten gebildet ist, zwischen denen je- weils mindestens eine der elektrochemischen Zelle (2) ange¬ ordnet ist. 5. The electrochemical store according to claim 1, wherein the electrochemical store (1) is designed as a sandwich-like stack in which the latent heat storage jacket (3) is formed from a plurality of layers, between which because at least one of the electrochemical cell (2) is arranged ¬ .
6. Elektrochemischer Speicher gemäß einem der Ansprüche 1 bis 5, wobei der Latentwärmespeichermantel (3) ein Phasenüber¬ gangsmaterial und eine poröse Trägerstruktur aufweist, in die das Phasenübergangsmaterial eingebracht ist. 6. An electrochemical storage according to one of claims 1 to 5, wherein the latent heat storage jacket (3) has a Phasenüber ¬ gangsmaterial and a porous support structure, in which the phase change material is introduced.
7. Elektrochemischer Speicher gemäß Anspruch 6, wobei das Phasenübergangsmaterial ein Salz, eine Mischung von Salzen, ein Metall und/oder eine Legierung aufweist und das Salz, die Mischung von Salzen, das Metall und/oder die Legierung so gewählt sind, dass die zugehörige Schmelztemperatur zwischen der gewünschten Lade- und Entladetemperatur der mindestens einen elektrochemischen Zelle (2) liegt. 7. The electrochemical storage according to claim 6, wherein the phase change material comprises a salt, a mixture of salts, a metal and / or an alloy, and the salt, the mixture of salts, the metal and / or the alloy are chosen such that the associated Melting temperature between the desired charging and discharging temperature of the at least one electrochemical cell (2).
8. Elektrochemischer Speicher gemäß Anspruch 6 oder 7, wobei mindestens ein Teil des Phasenübergangsmaterials während des Entladens der mindestens einen elektrochemischen Zelle (2) einen Phasenübergang erfährt. 8. An electrochemical storage according to claim 6 or 7, wherein at least a portion of the phase change material undergoes a phase transition during discharge of the at least one electrochemical cell (2).
9. Elektrochemischer Speicher gemäß einem der Ansprüche 1 bis 8, wobei die elektrochemische Zelle (2) wiederaufladbar ist. 9. An electrochemical storage according to any one of claims 1 to 8, wherein the electrochemical cell (2) is rechargeable.
10. Elektrochemischer Speicher gemäß einem der Ansprüche 1 bis 9, wobei die elektrochemische Zelle (2) eine Brennstoff¬ zelle ist. 10. Electrochemical storage according to one of claims 1 to 9, wherein the electrochemical cell (2) is a fuel cell ¬ .
11. Elektrochemischer Speicher gemäß Anspruch 10, wobei die Brennstoffzelle auch als Elektrolyseur betreibbar ist. 11. An electrochemical storage according to claim 10, wherein the fuel cell is also operable as an electrolyzer.
12. Elektrochemischer Speicher gemäß einem der Ansprüche 1 bis 11, wobei der mindestens eine gasförmige Reaktionspartner Sauerstoff ist. 12. An electrochemical storage according to any one of claims 1 to 11, wherein the at least one gaseous reactant is oxygen.
13. Elektrochemischer Speicher gemäß einem der Ansprüche 1 bis 12, wobei das Betriebsgas Luft ist. 13. An electrochemical store according to any one of claims 1 to 12, wherein the operating gas is air.
PCT/EP2012/064559 2011-08-02 2012-07-25 Electrochemical accumulator with latent heat accumulator WO2013017490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110080237 DE102011080237A1 (en) 2011-08-02 2011-08-02 Electrochemical storage
DE102011080237.1 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013017490A1 true WO2013017490A1 (en) 2013-02-07

Family

ID=46650511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064559 WO2013017490A1 (en) 2011-08-02 2012-07-25 Electrochemical accumulator with latent heat accumulator

Country Status (2)

Country Link
DE (1) DE102011080237A1 (en)
WO (1) WO2013017490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074985A (en) * 2013-02-27 2015-11-18 宝马股份公司 Fuel cell system
US9742047B2 (en) 2014-08-11 2017-08-22 Milwaukee Electric Tool Corporation Battery pack with phase change material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054650B1 (en) * 2016-07-26 2019-04-19 Valeo Systemes Thermiques HEAT EXCHANGER, IN PARTICULAR FOR THE THERMAL REGULATION OF AN ENERGY RESERVE UNIT, AND TOGETHER FORM OF THE EXCHANGER AND THE UNIT.
US20220412667A1 (en) * 2019-12-02 2022-12-29 Summerheat Group B.V. Thermal energy storage
NL2024355B1 (en) * 2019-12-02 2021-08-31 Summerheat Group B V Thermal energy storage
DE102020118376A1 (en) 2020-07-13 2022-01-13 Audi Aktiengesellschaft Fuel cell device, method for operating a fuel cell vehicle and fuel cell vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588004A1 (en) * 1992-09-12 1994-03-23 Bayerische Motoren Werke Aktiengesellschaft Electrical storage battery, particularly useful for vehicle drive
DE10337898A1 (en) * 2003-08-18 2005-04-21 Audi Ag Latent heat storage unit for fuel cell uses phase change of PCM material to absorb or release heat, accommodated in plates installed outside anode and cathode
DE102004013256A1 (en) * 2004-03-18 2005-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Operating process for a fuel cell leads heat from a latent heat store to the fuel cell before or during start up
DE102007033428A1 (en) * 2007-07-18 2009-01-22 Robert Bosch Gmbh Fuel cell system comprising a tempering agent comprising a phase change material
US20100248058A1 (en) * 2009-03-30 2010-09-30 Sanyo Electric Co., Ltd. Fuel cell module
US20110033769A1 (en) * 2009-08-10 2011-02-10 Kevin Huang Electrical Storage Device Including Oxide-ion Battery Cell Bank and Module Configurations
DE102009057720A1 (en) * 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Battery and method for operating a battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945713A1 (en) * 1999-09-23 2001-04-05 Siemens Ag High temperature polymer electrolyte membrane fuel cell for stationary and mobile uses operates independently of the water content in the cell
DE102007061061A1 (en) * 2007-12-14 2009-06-18 Volkswagen Ag Fuel cell stack for traction system of motor vehicle, has hydrogen supply line for supplying hydrogen to anodes and dummy cell, and hydrogen discharge line for removing residual hydrogen from anode and dummy cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588004A1 (en) * 1992-09-12 1994-03-23 Bayerische Motoren Werke Aktiengesellschaft Electrical storage battery, particularly useful for vehicle drive
DE10337898A1 (en) * 2003-08-18 2005-04-21 Audi Ag Latent heat storage unit for fuel cell uses phase change of PCM material to absorb or release heat, accommodated in plates installed outside anode and cathode
DE102004013256A1 (en) * 2004-03-18 2005-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Operating process for a fuel cell leads heat from a latent heat store to the fuel cell before or during start up
DE102007033428A1 (en) * 2007-07-18 2009-01-22 Robert Bosch Gmbh Fuel cell system comprising a tempering agent comprising a phase change material
US20100248058A1 (en) * 2009-03-30 2010-09-30 Sanyo Electric Co., Ltd. Fuel cell module
US20110033769A1 (en) * 2009-08-10 2011-02-10 Kevin Huang Electrical Storage Device Including Oxide-ion Battery Cell Bank and Module Configurations
DE102009057720A1 (en) * 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Battery and method for operating a battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074985A (en) * 2013-02-27 2015-11-18 宝马股份公司 Fuel cell system
US9742047B2 (en) 2014-08-11 2017-08-22 Milwaukee Electric Tool Corporation Battery pack with phase change material
US10305155B2 (en) 2014-08-11 2019-05-28 Milwaukee Electric Tool Corporation Battery pack with phase change material

Also Published As

Publication number Publication date
DE102011080237A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
WO2013017490A1 (en) Electrochemical accumulator with latent heat accumulator
DE60008295T2 (en) Polymer Electrolyte Membrane-FUEL CELL STACK
DE10392548T5 (en) Coolant flow field construction for fuel cell stack
DE102011075462A1 (en) Battery module a battery cell stack of at least two battery cells having a passive air conditioning and motor vehicle
DE102015103475A1 (en) SIDE-MOUNTED HEATING PLATE FOR TRACTION BATTERY
DE102014112802B4 (en) Cooling contact for a secondary battery
DE102011015557A1 (en) Device and system for thermal management of a secondary battery
DE102010063057A1 (en) Battery system for a motor vehicle with at least one electrochemical cell and at least one latent heat storage
WO2014012654A2 (en) Method for producing a secondary battery, housing assembly for said secondary battery, secondary battery having the housing assembly, method for producing the housing assembly, method for operating the secondary battery
DE102014205133A1 (en) Battery pack with a number of battery modules
DE102013012164A1 (en) Traction battery system and method for heating a high voltage battery of a traction battery system
DE102017005593A1 (en) High-voltage battery device for a motor vehicle
DE102015113711A1 (en) Angled battery cell configuration for a traction battery assembly
DE112019006047T5 (en) INTEGRATED BATTERY UNIT
DE102013215975A1 (en) Spacer for a battery, battery and motor vehicle
DE102010013222A1 (en) Rechargeable electrochemical energy storage e.g. lithium ion battery, has phase change material arranged in housing for temperature control, where part of material absorbs heat delivered by storage during charging/discharging
DE102014200983A1 (en) Battery system with multiple battery cells and a housing, housing system for a battery and method for mounting a battery system
WO2015155125A1 (en) Bipolar plate and fuel cell
EP3036790B1 (en) Thermal storage system with high temperature battery
DE102021109239A1 (en) ENERGY STORAGE ASSEMBLY
DE102014105123A1 (en) Battery system and method for operating a battery system
WO2014131738A1 (en) Activatable battery module
DE102008048002A1 (en) Energy converting assembly for use in vehicle, has heat transfer medium moving from one aggregation condition into another aggregation condition to independently interact with heat transfer surface of heat sink
DE102011007606A1 (en) Method and device for homogenizing the temperature distribution of fluid-tempered body
DE102011006648A1 (en) Energy storage device with a solar cell module and associated operating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746053

Country of ref document: EP

Kind code of ref document: A1