WO2013012699A2 - Polyurethane based coating compositions - Google Patents

Polyurethane based coating compositions Download PDF

Info

Publication number
WO2013012699A2
WO2013012699A2 PCT/US2012/046600 US2012046600W WO2013012699A2 WO 2013012699 A2 WO2013012699 A2 WO 2013012699A2 US 2012046600 W US2012046600 W US 2012046600W WO 2013012699 A2 WO2013012699 A2 WO 2013012699A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
based coating
polyurethane based
present
amount
Prior art date
Application number
PCT/US2012/046600
Other languages
French (fr)
Other versions
WO2013012699A3 (en
Inventor
Vipulkumar H. PRAJAPATI
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Publication of WO2013012699A2 publication Critical patent/WO2013012699A2/en
Publication of WO2013012699A3 publication Critical patent/WO2013012699A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38

Definitions

  • the present invention relates to novel polyurethane based coatings, particularly for selectively imparting excellent water vapour impermeability and in-can settling stability, in addition to low viscosity, for application in industrial coating.
  • the composition of the present invention is used particularly for protection of concrete and metal surfaces.
  • PU coatings are widely known for their versatility of application with many advantages over the conventional coating systems.
  • PU coatings can be divided into one pack and two pack systems, wherein the one pack system contains a dissolved fully reacted PU or blocked isocyanate, while the two pack system can contain various types of polyols, varying in functionality, chain length and backbone in one pack and isocyanate in the other pack. Both these systems can be further classified as solvent based, water based or solvent free systems. The solvent free
  • a frequently encountered problem with coating composition is that of the settling of paints over some period of storage thereby resulting in some of the pigments remaining at the bottom of the can/drum. Improper mixing affects the stoichiometry of the finished product and results in inconsistent & inferior performance on application. In case of sticky heavy settling, desired bits free consistency is not achieved even after considerable mixing during application, resulting in inferior performance.
  • a number of publications are known that deal with solvent free polyurethane compositions for application as a protective coating.
  • US 2007-185241 describes cured resin matrix with a plurality of bubbles which provide improved insulative properties and improved adhesion to overlying paint coatings which in turn offers protection against corrosion and acts as heat insulator.
  • US 2008-229976 discloses polyurea compositions and polyurethane compositions related to stain and fouling resistant coatings that provide durable, light weight coatings which exhibit oil- repellency, water-repellency, and stain resistance.
  • US 6977279 relates to solventless reactive system which cure at room temperature based on blocked polyisocyanates, primer amines, compounds with oxirane groups and 2,3 dimethyl-3,4,5,6- tetrahydropyridimine .
  • the objective of the present invention is to provide a cost effective coating which exhibits superior properties in terms of corrosion resistance, moisture impermeability, in-can settling stability and having low viscosity.
  • one embodiment of the present invention is to provide a polyurethane based coating composition having a base component and an activator as another component wherein the base component comprises polyols and ingredients such as catalyst, defoamer, molecular sieve and fillers; while the activator consists essentially of polyisocyanate.
  • the base component of the composition may comprise other ingredients such as pigments, additional polyols, amines and chain extenders.
  • the components of the coating composition interact synergistically to confer a unique combination of the physical and chemical properties to the resultant composition which make it superior to the state of the art compositions.
  • the instant coating composition comprises the individual components in the following concentration:
  • the base and an activator is in 3: 1 (v/v) proportion.
  • the polyol could be a diol, a triol, a higher polyol, or a mixture of one or more of the said polyols.
  • Some other additives such as pigments, chain extenders etc also may be used to control and modify the reaction process and performance characteristics of the polymer.
  • This invention also relates to a process for preparing the polyurethane based coating composition wherein the process comprises initially of preparing the base component and mixing the base with the activator in a suitable proportion to provide the coating composition for use in corrosion protection of metal and concrete structures.
  • This invention also relates to articles and surfaces coated with the instant coating composition.
  • Figure 1 shows a graph plotting the water vapour permeability of the standard coating composition of the invention.
  • Figure 2 shows a graph plotting the water vapour permeability of a coating composition without mica.
  • polyol may include two or more such polyols.
  • all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.
  • the coating composition of the present invention is a solvent free urethane based
  • composition comprising a base and an activator, wherein the base comprises a number of additives like polyols, defoamer, molecular sieve, filler, catalyst and other optional additives; while the activator consists essentially of polyisocyanate.
  • the polyols form an essential ingredient of the base component of the present invention.
  • a polyol is an ploymeric alcohol containing multiple hydroxyl groups.
  • polyols are defined as compounds with multiple hydroxyl functional groups available for organic reactions.
  • a molecule with two hydroxyl groups is a diol, one with three is a triol, one with four is a tetrol and so on.
  • Monomeric polyols such as glycerin, pentaerythritol, ethylene glycol and sucrose often serve as the starting point for polymeric polyols. These materials are often referred to as the "initiators" and reacted with propylene oxide or ethylene oxide to produce polymeric polyols.
  • Polymeric polyols could be polyether polyols, polyester polyols or OH terminated polyacrylics or combination of them.
  • the characteristics of polyols depends on are their molecular backbone, initiator, molecular weight, percentage primary hydroxyl groups, functionality, viscosity and so on.
  • Many polyols are polydispersive materials, being blends of two or more polyols each of specific molecular weights, to give intermediate molecular weight materials.
  • Natural oil polyols or saturated aliphatic polyester polyols with low viscosities at room temperatures are used in the production of polyurethanes.
  • Natural oil polyols also known as NOPs or biopolyols, are polyols derived from vegetable oils by several different techniques. The primary use for these materials is in the production of polyurethanes.
  • the most promising natural oils for the industrial development of biobased polyols are soybean oil, castor oil, palm oil, and canola oil.
  • Castor oil which is obtained from castor seed, is a triglyceride of fatty acid wherein 90% of the fatty acid chains are ricinoleic acid, has presence of OH functional group on 12 th carbon atom, which makes it polar and reactable, which is not the case with other seed oils.
  • castor polyols derived from castor oil possess long C chains with a functional unbranched "OH" group which provides flexibility on reaction with isocyanate to form the polyurethane bond.
  • the castor oil of BSS Grade or commercial grade castor oil More particularly, the castor polyol is Jagropol 115.
  • tri-functional oil-derived polyol having hydroxyl number ranges from 320 to 350 mg KOH/g containing both primary and secondary hydroxyl groups, which are completely miscible with a wide variety of natural oil polyols, demonstrate ability to rapidly build polyurethane cross-linked networks.
  • the trifunctional polyol is polypropylene ether polyol (Desmophen 1380BT).
  • Di primary diols also can be used as an ingredient of the base composition of the present invention.
  • Diols - alcohols that contain two reactable hydroxyl groups can be classified as linear/branched or aliphatic/aromatic diols.
  • 2-methyl 1,3 dipropane diol due to its unique branched structure (i.e) asymmetrical nature, conferred upon it due the presence of the odd number of carbon atoms between the two hydroxyl groups thus inhibiting close packaging thereby exhibiting greater transparency, weatherability, longer shelf life, aiding in suspension of heavy fillers/solids, decreased viscosity, resist settling over the resin when stored for long periods of the end use applications.
  • the 2-methyl 1,3 dipropane diol is MPDiol.
  • 1,4 butane diol is also a preferred diol.
  • Fillers in this invention serve multiple functions based on the type of filler used. Fillers may thicken the composition, support its structure, prevent sagging, increase volume and also enhance the technical properties of the composition.
  • Mica acts as filler providing a smooth consistency, improving the workability of the compound, and providing resistance to cracking. Mica's value is based on its unique lamellar shape, which forms compact packing in the dried film and hence reduces film impermeability.
  • mica functions as a pigment extender that facilitates suspension, reduces chalking, prevents shrinking and shearing of the paint film, increases resistance of the paint film to water penetration and weathering, and brightens the tone of colored pigments.
  • mica coated with titanium dioxide (TiC ⁇ ) results in a pigment that produces a reflective color depending on the thickness of the coating.
  • Ti0 2 acts as a white pigment providing opacity to the dried film.
  • Ti0 2 Anatyze or Rutile In addition to Ti0 2, carbon black such as 318M Black serves as a black pigment which in combination with the white pigment provides a grey colour to the composition.
  • Various pigments can be added for different color of the final composition.
  • fillers such as barium sulphate not only might serve as a white pigment but also modify the consistency and help in providing impact resistance to the application. Of preference is Barytes 2080.
  • One other filler used in these polyurethane compositions is Silica. Silica not only leads to cost reductions by increasing the bulk of the composition but also prevents sagging of the resin.
  • Catalysts are used to catalyse the polymerization of the polyol with the polyisocyanate.
  • Amine compounds and organo metallic complexes are used as catalysts.
  • amines such as tertiary amines, difunctional primary amines etc are used.
  • aromatic diamine such as diethyl toluenediamine which is commercially available under the name Ethacure 100.
  • the catalyst could be used in an amount of 0 to 5% depending on the mode of application by spray or brush.
  • the composition is devoid of catalyst.
  • the said composition without catalyst is suitable for application by brush also by increasing the usable life.
  • Defoamers are used to modify the characteristics of polyurethane composition by eliminating process defects like entrapped bubbles and surface defects such as pin holes and orange peelmarks, acting as air release and anti-foaming agents.
  • silicone free defoamers such as BYK 054 or BYK 535 or BYK 1794 or Foamex N.
  • Molecular sieves or moisture scavengers which contain tiny pores of a precise and uniform size are used as an adsorbent for gases and liquids.
  • highly effective moisture scavenger for coating systems that adsorbs practically only water.
  • isocyanate which is highly reactive to water.
  • micronized, highly porous, crystalline aluminosilicate with pore openings of approximately 3 A such as SYLOSIV A3 or Purmol 3ST or A4 with 4 A pore openings.
  • Paste forms of the molecular sieves P3 and P4 can also be used.
  • Chain extenders are low molecular weight hydroxyl and amine terminated compounds that play an important role in the polymer morphology of polyurethane chains.
  • the chain extender is an amine. More preferably the amine is polyetheramines such as Jeffamine D 400.
  • Pigments which could be used in the invention comprises synthetic iron oxides.
  • Preferred examples of pigments are Bayferrox Black 318M along with Titanium dioxide to create Gray color of the composition.
  • the base of the polyurethane based coating composition comprises 35 to 75 % of polyol mix which includes 0.5 to 5 % of trifunctional polyol and 1-10% of 2-methyl 1,3 dipropane diol, 3 to 25% of mica, 0.5 to 1.5 % of defoamer, 2 to 10 % of molecular sieve, and 0 to 5% of catalyst.
  • composition may optionally contain 0 to 5% of chain extender, 5 to 40% of barium sulphate, 5 to 40% of silica, 2 tol0% of titanium dioxide and 0.15 to 5% of color pigments.
  • Another major embodiment of the present invention is related to a process for preparing the polyurethane based coating composition wherein the process comprises of initially preparing the base component.
  • the base component is nothing but mixture of OH functional polyol components with molecular sieve, fillers, pigments, catalysts and additives.
  • the base component is prepared by dispersing the solid materials viz., pigments, fillers & other additives in polyols in high speed disperser (HSD) or twin shaft disperser and stabilizing the same with rest of the resin and additives.
  • HSD high speed disperser
  • the solid matters can be ground to finer to medium grind depending on the application requirement.
  • the base component is mixed with the activator in a suitable proportion to provide the coating composition for use in corrosion protection of metal and concrete structures.
  • the solvent free urethane coating of the invention is applied by plural feed spray equipment.
  • Most of the known solvent-free urethane compositions are high in viscosity and hence the base component is always heated in the range of 40 to 55°C to reduce the viscosity (viscosity reduces with increase in material temperature) to facilitate the ease of application. Since the viscosity of the instant composition is low, it can be easily applied without heating the base part at temperature above 30°C.
  • the same product can be made applicable by brush also by increasing the usable life. This needs removal of the catalyst from the composition.
  • the standard urethane coating composition of the invention has the following composition.
  • the composition comprises A) Base component and B) Activator.
  • Base component has the composition as shown in Table 1
  • the base component was prepared by dispersing the solid materials viz., pigments, fillers and other additives in polyols in high speed disperser (HSD) or twin shaft disperser and stabilizing the same with rest of the resin and additives.
  • HSD high speed disperser
  • the polyols, especially polyester polyol and some portion of castor oil were taken in the vessel followed by addition of defoamer under stirring.
  • the mix was stirred at slow speed and subsequently the fillers like barium sulfate, silica, mica, molecular sieve, titanium dioxide and pigments were added in sequence under stirring.
  • the speed of the HSD blade was adjusted such a way to ensure proper vortex formation.
  • the solids were dispersed at a tip speed of about 3 to 8 meter per seconds till the finish was achieved.
  • the composition was stabilized with remaining resin, polyols, amines and additives. Defoamer is used to take care of process generated air-entrapments. During processing, the composition was maintained below 60°C by circulating cooling water through the jacket of vessel. The composition was then filtered through filter and packed.
  • the second part of the composition viz., the activator, was prepared by packing the solvent free polyisocyanate under nitrogen blanketing environment.
  • the polyurethane based coating composition was obtained by mixing 3 parts of the base with 1 part of the activator, by volume.
  • Example 1 The product as obtained by Example 1 was subjected to tests for various performance parameters such as specific gravity, flowability, tensile strength, elongation, flexibility, abrasion resistance etc., at the Corrosion Science and Engineering Laboratory of Indian Institute of
  • Tables 2 and 3 show the details and results of the tests for various performance parameters respectively.
  • the polyurethane based coating composition of the present invention exhibited excellent performance parameters that it can be very effectively applied to concrete and metal surfaces.
  • An ambient condition stability test for the urethane coating composition of the present invention was performed in order to ensure that the product is stable under recommended storage conditions.
  • Accelerated stability study was conducted to predict the long-term stability in short period. In this field, 8 week accelerated stability translates in to over 1 year stability in actual storage conditions.
  • the material was packed in 200 ml or 500 ml cans, sealed and was kept at elevated temperature of 60°C for weeks. Four packs were kept for taking observations at the interval of 1 week, 2 week, 4 week and 8 weeks. The observations were taken for degree of settling or phase separation. The material was also tested for performance parameters. The experiment the details are shown in Table 6 and the observations are shown in Table 7. Ratings are as explained in Table 5. Table 6
  • the instant composition was tested to determine the resistance of the coating towards various chemicals in case of chemical splash, spillage of complete immersion.
  • Standard panels were coated with the coating composition, edge sealed and were dipped in the chemicals at 23°C and 50% humidity conditions.
  • the coating film was observed at regular intervals for any defects like blistering, delamination, cracking or peeling.
  • the coating was also tested for adhesion and hardness.
  • the instant coating composition was observed to have excellent chemical resistance against chemicals such as ammonium hydroxide 25% (v/v), citric acid 5% (v/v), methanol, sodium
  • the instant composition was tested for permeability towards water vapors following standard ASTM E96.
  • the testing was done with Water method. Distilled water was filled in standard payne permeability cup and the cured film of the coating, which was of same dimension as the cup, was put on the cup opening. The edges were sealed with suitable sealant. The assembly was then kept under controlled temperature and humidity conditions. The temperature was maintained at 23 +/- 1°C and the relative humidity was maintained at 50 +/- 2 %.
  • Rate of Permeation 0.0003 gms/24Hr
  • Table 9 shows the details of the test with a composition without mica and Figure 2 shows its graphical representation.

Abstract

The present invention relates to a polyurethane based coating composition which exhibits superior properties in terms of stability, corrosion resistance and moisture permeability and which has low viscosity of the coating composition. The polyurethane based coating composition comprises a base and an activator the base component comprising a polyol, a filler, a defoamer, a catalyst and a molecular sieve and the activator comprises polyisocyanate. Preferably the polyol comprises castor polyol, 2-methyl 1, 3 dipropane diol or 1, 4 butane diol and the filler comprises mica. Mica besides being a filler also functions as a pigment extender. In some embodiments the said composition is devoid of catalyst. The said coating composition is useful in coating concrete and metal surfaces.

Description

POLYURETHANE BASED COATING COMPOSITIONS
Field of the Invention
The present invention relates to novel polyurethane based coatings, particularly for selectively imparting excellent water vapour impermeability and in-can settling stability, in addition to low viscosity, for application in industrial coating. The composition of the present invention is used particularly for protection of concrete and metal surfaces.
Background of the Invention
Polyurethane (PU) coatings are widely known for their versatility of application with many advantages over the conventional coating systems. PU coatings can be divided into one pack and two pack systems, wherein the one pack system contains a dissolved fully reacted PU or blocked isocyanate, while the two pack system can contain various types of polyols, varying in functionality, chain length and backbone in one pack and isocyanate in the other pack. Both these systems can be further classified as solvent based, water based or solvent free systems. The solvent free
polyurethane system offers several advantages over the solvent based system as they are
environmental friendly (due to very low volatile organic compound content) and have a wide range of superior properties such as chemical resistance (due to eliminated solvent entrapment and less permeability), impact strength, and high build application in single coat apart from coating varied number of substrates. Better impermeability also helps in longer corrosion protection by making the coated film a better barrier to water vapour.
A frequently encountered problem with coating composition is that of the settling of paints over some period of storage thereby resulting in some of the pigments remaining at the bottom of the can/drum. Improper mixing affects the stoichiometry of the finished product and results in inconsistent & inferior performance on application. In case of sticky heavy settling, desired bits free consistency is not achieved even after considerable mixing during application, resulting in inferior performance. A number of publications are known that deal with solvent free polyurethane compositions for application as a protective coating.
US 2007-185241 describes cured resin matrix with a plurality of bubbles which provide improved insulative properties and improved adhesion to overlying paint coatings which in turn offers protection against corrosion and acts as heat insulator.
US 2008-229976 discloses polyurea compositions and polyurethane compositions related to stain and fouling resistant coatings that provide durable, light weight coatings which exhibit oil- repellency, water-repellency, and stain resistance. US 6977279 relates to solventless reactive system which cure at room temperature based on blocked polyisocyanates, primer amines, compounds with oxirane groups and 2,3 dimethyl-3,4,5,6- tetrahydropyridimine .
However, most of these compositions known in the art suffer from several drawbacks, such as high cost, poor adhesion to certain substrates, high moisture permeability, tendency to settling over a period of storage and high viscosity of solvent free coating compositions which limits high filler loading required for better impact strength & cost optimization. High viscosities of the solvent- free coating compositions also need heating of the base part to reduce viscosity during application for ease of application.
Therefore there is a need to develop a coating composition which materially alleviates the aforesaid problems faced by the state of the art technologies.
Summary of the Invention
The objective of the present invention is to provide a cost effective coating which exhibits superior properties in terms of corrosion resistance, moisture impermeability, in-can settling stability and having low viscosity.
Accordingly one embodiment of the present invention is to provide a polyurethane based coating composition having a base component and an activator as another component wherein the base component comprises polyols and ingredients such as catalyst, defoamer, molecular sieve and fillers; while the activator consists essentially of polyisocyanate. The base component of the composition may comprise other ingredients such as pigments, additional polyols, amines and chain extenders.
The components of the coating composition interact synergistically to confer a unique combination of the physical and chemical properties to the resultant composition which make it superior to the state of the art compositions.
In a further aspect, the instant coating composition comprises the individual components in the following concentration:
• components of the base
□ polyol in an amount of 35 to75 %
□ filler in an amount of 20 to 60%
□ catalyst in an amount of 0 to 5%
□ defoamer in an amount of 0.5 to 1.5 % and
□ molecular sieve in an amount of 2 to 10 %
• polyisocyante as activator
The base and an activator is in 3: 1 (v/v) proportion. The polyol could be a diol, a triol, a higher polyol, or a mixture of one or more of the said polyols. Some other additives such as pigments, chain extenders etc also may be used to control and modify the reaction process and performance characteristics of the polymer.
This invention also relates to a process for preparing the polyurethane based coating composition wherein the process comprises initially of preparing the base component and mixing the base with the activator in a suitable proportion to provide the coating composition for use in corrosion protection of metal and concrete structures. This invention also relates to articles and surfaces coated with the instant coating composition.
The present invention possesses the following advantages:
□ Excellent moisture impermeability
□ In-can settling stability
□ Low viscosity
□ Excellent corrosion resistance and chemical resistance (towards a number of chemicals) Other features and advantages of the present invention will become apparent as the following detailed description proceeds or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the description. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
Brief description of the drawings
The present invention is illustrated in the accompanying drawings:
Figure 1 shows a graph plotting the water vapour permeability of the standard coating composition of the invention.
Figure 2 shows a graph plotting the water vapour permeability of a coating composition without mica.
Detailed Description of the Invention
For the purposes of the following detailed description, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. Moreover, other than in any operating examples, or where otherwise indicated, all numbers expressing, for example, quantities of ingredients used in the specification are to be understood as being modified in all instances by the term "about". It is noted that, unless otherwise stated, all percentages given in this specification and appended claims refer to percentages by weight of the total composition.
Thus, before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified systems or process parameters that may of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to limit the scope of the invention in any manner.
It must be noted that, as used in this specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the content clearly dictates otherwise.
Thus, for example, reference to a "polyol" may include two or more such polyols. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.
The coating composition of the present invention is a solvent free urethane based
composition comprising a base and an activator, wherein the base comprises a number of additives like polyols, defoamer, molecular sieve, filler, catalyst and other optional additives; while the activator consists essentially of polyisocyanate.
The polyols form an essential ingredient of the base component of the present invention. A polyol is an ploymeric alcohol containing multiple hydroxyl groups. In polymer chemistry, polyols are defined as compounds with multiple hydroxyl functional groups available for organic reactions. A molecule with two hydroxyl groups is a diol, one with three is a triol, one with four is a tetrol and so on. Monomeric polyols such as glycerin, pentaerythritol, ethylene glycol and sucrose often serve as the starting point for polymeric polyols. These materials are often referred to as the "initiators" and reacted with propylene oxide or ethylene oxide to produce polymeric polyols. Polymeric polyols could be polyether polyols, polyester polyols or OH terminated polyacrylics or combination of them. The characteristics of polyols depends on are their molecular backbone, initiator, molecular weight, percentage primary hydroxyl groups, functionality, viscosity and so on. Many polyols are polydispersive materials, being blends of two or more polyols each of specific molecular weights, to give intermediate molecular weight materials.
Natural oil polyols or saturated aliphatic polyester polyols with low viscosities at room temperatures are used in the production of polyurethanes. Natural oil polyols, also known as NOPs or biopolyols, are polyols derived from vegetable oils by several different techniques. The primary use for these materials is in the production of polyurethanes. The most promising natural oils for the industrial development of biobased polyols are soybean oil, castor oil, palm oil, and canola oil. Castor oil, which is obtained from castor seed, is a triglyceride of fatty acid wherein 90% of the fatty acid chains are ricinoleic acid, has presence of OH functional group on 12th carbon atom, which makes it polar and reactable, which is not the case with other seed oils. Moreover, castor polyols derived from castor oil possess long C chains with a functional unbranched "OH" group which provides flexibility on reaction with isocyanate to form the polyurethane bond. Of particular importance is the castor oil of BSS Grade or commercial grade castor oil. More particularly, the castor polyol is Jagropol 115. Also, tri-functional oil-derived polyol having hydroxyl number ranges from 320 to 350 mg KOH/g containing both primary and secondary hydroxyl groups, which are completely miscible with a wide variety of natural oil polyols, demonstrate ability to rapidly build polyurethane cross-linked networks. Preferably the trifunctional polyol is polypropylene ether polyol (Desmophen 1380BT).
Di primary diols also can be used as an ingredient of the base composition of the present invention. Diols - alcohols that contain two reactable hydroxyl groups, can be classified as linear/branched or aliphatic/aromatic diols. Of particular interest is 2-methyl 1,3 dipropane diol due to its unique branched structure (i.e) asymmetrical nature, conferred upon it due the presence of the odd number of carbon atoms between the two hydroxyl groups thus inhibiting close packaging thereby exhibiting greater transparency, weatherability, longer shelf life, aiding in suspension of heavy fillers/solids, decreased viscosity, resist settling over the resin when stored for long periods of the end use applications. Preferably the 2-methyl 1,3 dipropane diol is MPDiol. 1,4 butane diol is also a preferred diol.
Fillers in this invention serve multiple functions based on the type of filler used. Fillers may thicken the composition, support its structure, prevent sagging, increase volume and also enhance the technical properties of the composition.
Among the fillers used, of particular importance in the dried film is mica. Mica acts as filler providing a smooth consistency, improving the workability of the compound, and providing resistance to cracking. Mica's value is based on its unique lamellar shape, which forms compact packing in the dried film and hence reduces film impermeability.
Also in this invention, mica functions as a pigment extender that facilitates suspension, reduces chalking, prevents shrinking and shearing of the paint film, increases resistance of the paint film to water penetration and weathering, and brightens the tone of colored pigments. In addition mica coated with titanium dioxide (TiC^) results in a pigment that produces a reflective color depending on the thickness of the coating. Also, the Ti02 acts as a white pigment providing opacity to the dried film. Of preference is Ti02 Anatyze or Rutile. In addition to Ti02, carbon black such as 318M Black serves as a black pigment which in combination with the white pigment provides a grey colour to the composition. Various pigments can be added for different color of the final composition. Other fillers such as barium sulphate not only might serve as a white pigment but also modify the consistency and help in providing impact resistance to the application. Of preference is Barytes 2080. One other filler used in these polyurethane compositions is Silica. Silica not only leads to cost reductions by increasing the bulk of the composition but also prevents sagging of the resin.
Catalysts are used to catalyse the polymerization of the polyol with the polyisocyanate. Amine compounds and organo metallic complexes are used as catalysts. Particularly, amines such as tertiary amines, difunctional primary amines etc are used. Of particular preference is an aromatic diamine such as diethyl toluenediamine which is commercially available under the name Ethacure 100. The catalyst could be used in an amount of 0 to 5% depending on the mode of application by spray or brush. Thus in an embodiment of the invention the composition is devoid of catalyst. The said composition without catalyst is suitable for application by brush also by increasing the usable life.
Defoamers are used to modify the characteristics of polyurethane composition by eliminating process defects like entrapped bubbles and surface defects such as pin holes and orange peelmarks, acting as air release and anti-foaming agents. Of particular preference are silicone free defoamers such as BYK 054 or BYK 535 or BYK 1794 or Foamex N.
Molecular sieves or moisture scavengers which contain tiny pores of a precise and uniform size are used as an adsorbent for gases and liquids. Of preference is highly effective moisture scavenger for coating systems that adsorbs practically only water. Furthermore, the presence of moisture will consume isocyanate, which is highly reactive to water. Of particular preference are micronized, highly porous, crystalline aluminosilicate with pore openings of approximately 3 A such as SYLOSIV A3 or Purmol 3ST or A4 with 4 A pore openings. Paste forms of the molecular sieves P3 and P4 can also be used.
Chain extenders are low molecular weight hydroxyl and amine terminated compounds that play an important role in the polymer morphology of polyurethane chains. Preferably, the chain extender is an amine. More preferably the amine is polyetheramines such as Jeffamine D 400.
Pigments which could be used in the invention comprises synthetic iron oxides. Preferred examples of pigments are Bayferrox Black 318M along with Titanium dioxide to create Gray color of the composition.
In a preferred embodiment of the present invention, the base of the polyurethane based coating composition comprises 35 to 75 % of polyol mix which includes 0.5 to 5 % of trifunctional polyol and 1-10% of 2-methyl 1,3 dipropane diol, 3 to 25% of mica, 0.5 to 1.5 % of defoamer, 2 to 10 % of molecular sieve, and 0 to 5% of catalyst.
Further, the composition may optionally contain 0 to 5% of chain extender, 5 to 40% of barium sulphate, 5 to 40% of silica, 2 tol0% of titanium dioxide and 0.15 to 5% of color pigments.
Another major embodiment of the present invention is related to a process for preparing the polyurethane based coating composition wherein the process comprises of initially preparing the base component. The base component is nothing but mixture of OH functional polyol components with molecular sieve, fillers, pigments, catalysts and additives. The base component is prepared by dispersing the solid materials viz., pigments, fillers & other additives in polyols in high speed disperser (HSD) or twin shaft disperser and stabilizing the same with rest of the resin and additives. The solid matters can be ground to finer to medium grind depending on the application requirement. The base component is mixed with the activator in a suitable proportion to provide the coating composition for use in corrosion protection of metal and concrete structures.
The solvent free urethane coating of the invention is applied by plural feed spray equipment. Most of the known solvent-free urethane compositions are high in viscosity and hence the base component is always heated in the range of 40 to 55°C to reduce the viscosity (viscosity reduces with increase in material temperature) to facilitate the ease of application. Since the viscosity of the instant composition is low, it can be easily applied without heating the base part at temperature above 30°C. The same product can be made applicable by brush also by increasing the usable life. This needs removal of the catalyst from the composition.
The following examples merely illustrate certain aspect of the invention and is to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be construed as limiting the scope of the invention, but merely as being illustrative and representative thereof.
EXAMPLE 1 :
In a preferred embodiment of the present invention, the standard urethane coating composition of the invention has the following composition. The composition comprises A) Base component and B) Activator.
A) Base component has the composition as shown in Table 1
Table 1
Figure imgf000008_0001
B) Activator is polyisocyanate
The base component was prepared by dispersing the solid materials viz., pigments, fillers and other additives in polyols in high speed disperser (HSD) or twin shaft disperser and stabilizing the same with rest of the resin and additives. The polyols, especially polyester polyol and some portion of castor oil were taken in the vessel followed by addition of defoamer under stirring. The mix was stirred at slow speed and subsequently the fillers like barium sulfate, silica, mica, molecular sieve, titanium dioxide and pigments were added in sequence under stirring. The speed of the HSD blade was adjusted such a way to ensure proper vortex formation. The solids were dispersed at a tip speed of about 3 to 8 meter per seconds till the finish was achieved. Once the finish was achieved, the composition was stabilized with remaining resin, polyols, amines and additives. Defoamer is used to take care of process generated air-entrapments. During processing, the composition was maintained below 60°C by circulating cooling water through the jacket of vessel. The composition was then filtered through filter and packed.
The second part of the composition, viz., the activator, was prepared by packing the solvent free polyisocyanate under nitrogen blanketing environment.
The polyurethane based coating composition was obtained by mixing 3 parts of the base with 1 part of the activator, by volume.
EXAMPLE 2:
The product as obtained by Example 1 was subjected to tests for various performance parameters such as specific gravity, flowability, tensile strength, elongation, flexibility, abrasion resistance etc., at the Corrosion Science and Engineering Laboratory of Indian Institute of
Technology, Mumbai. Tables 2 and 3 show the details and results of the tests for various performance parameters respectively.
Table 2
Figure imgf000010_0001
Table 3
Figure imgf000011_0001
As evident from the above table, the polyurethane based coating composition of the present invention exhibited excellent performance parameters that it can be very effectively applied to concrete and metal surfaces.
EXAMPLE 3:
An ambient condition stability test for the urethane coating composition of the present invention was performed in order to ensure that the product is stable under recommended storage conditions.
Test Method:
The material was packed in standard pack size with standard packaging material and was stored under recommended storage conditions without opening it. The observations were taken at regular intervals for degree of settling or phase separation. The material was also tested for performance parameters. Samples were stored in sealed container at ambient conditions. The details of the test are shown in Table 4. Table 4
Figure imgf000012_0001
** Based on field feedback; *Based on Internal observations
Ratings are shown in Table 5.
Table 5
Figure imgf000012_0002
EXAMPLE 4:
An accelerated condition stability test to study the anti settling property of the urethane coating composition of the present invention was performed. Accelerated stability study was conducted to predict the long-term stability in short period. In this field, 8 week accelerated stability translates in to over 1 year stability in actual storage conditions.
Test Method:
The material was packed in 200 ml or 500 ml cans, sealed and was kept at elevated temperature of 60°C for weeks. Four packs were kept for taking observations at the interval of 1 week, 2 week, 4 week and 8 weeks. The observations were taken for degree of settling or phase separation. The material was also tested for performance parameters. The experiment the details are shown in Table 6 and the observations are shown in Table 7. Ratings are as explained in Table 5. Table 6
Figure imgf000013_0001
Duration: 72 days; Exposure- 8 weeks in 500 ml containers @ 60°C Incubator
Table 7
Figure imgf000013_0002
From the results it may be noted that for the instant composition even with the low viscosity, anti-settling is excellent. MP Diol and castor oil are contributing towards the excellent anti-settling performance as is evident from Exp 1 to 4; viz., the moment castor oil and MP diol are removed the rating goes down to 3. As explained in Exp 5 when MP diol is replaced with 1 ,4 butane diol, still the anti-settling is very good though slightly lesser than Exp 1 which is having MP diol. So 1 ,4 butane diol also a good alternative diol which is useful in the invention. At last, as shown in Exp 7, this excellent anti-settling property and low viscosity of composition allows formulator to increase filler loading further (which helps in cost reduction). Even with 56.5% filler loading, anti-settling is very good.
The above example clearly shows that the various components of the coating composition synergistically interact to give rise to a coating composition with the desired superior properties. The field trails proves the better stability and desired lower viscosity of the composition. Hence the present composition is a good energy efficient composition with low viscosity.
The field trials also highlighted the following advantages.
□ The product was applied by plural feed spray equipment and, in field, product could be applied without heating at ambient conditions of 35 - 40°C temperature. □ Film thickness of 1000 microns could be built up without sagging with multi-pass wet on wet manual spray application.
□ No settling observed in the field in 200 Lt drum after 11 months, phase separation though observed, it was easily miscible.
EXAMPLE 5
Chemical Resistance Test
The instant composition was tested to determine the resistance of the coating towards various chemicals in case of chemical splash, spillage of complete immersion.
Test Method:
Standard panels were coated with the coating composition, edge sealed and were dipped in the chemicals at 23°C and 50% humidity conditions. The coating film was observed at regular intervals for any defects like blistering, delamination, cracking or peeling. The coating was also tested for adhesion and hardness.
The instant coating composition was observed to have excellent chemical resistance against chemicals such as ammonium hydroxide 25% (v/v), citric acid 5% (v/v), methanol, sodium
carbonate, sodium hydroxide, glycerine, sulphuric acid 30% (v/v), NaCl, HC1, diethylene glycol, acetonitrile, iso propyl alcohol diesel, lubricating oil and urea solution.
EXAMPLE 6
Water vapor permeability Test
The instant composition was tested for permeability towards water vapors following standard ASTM E96.
Test Method:
The testing was done with Water method. Distilled water was filled in standard payne permeability cup and the cured film of the coating, which was of same dimension as the cup, was put on the cup opening. The edges were sealed with suitable sealant. The assembly was then kept under controlled temperature and humidity conditions. The temperature was maintained at 23 +/- 1°C and the relative humidity was maintained at 50 +/- 2 %.
Loss of weight resulting from the vapor transmission through the film was calculated every 24 hrs and plotted against the time. Once the steady state was achieved, the permeability was calculated. Results of the test are shown in the below. Table 8 shows the details of the test with the standard coating composition of the invention and Figure 1 shows its graphical representation. Table 8
Figure imgf000015_0001
Considering Rate of Permeability between 18.02.11 to 22.02.11,
In figure 1 :
Point 18 X2 432 Hrs
Y2 0.0182 Gms
Point 14 X2 336 Hrs
Y2 0.0170 Gms
Slope (Gms/Hr) x= 1.25E-05 Gms/Hr
x= 0.0003 Gms/24Hr
= 0.3 Gms/24Hrs/Sq meter
Total Weight loss between 18th Feb 11 to 22nd Feb 11 = 0.0012 Gms
No of Hrs = 96 Hrs
Rate of Permeation = 0.0003 gms/24Hr
Water Vapour Permeability (Rate of Permeation per Sq meter area) = 0.3 Gms/24Hrs/Sq meter
Table 9 shows the details of the test with a composition without mica and Figure 2 shows its graphical representation. Table 9
Figure imgf000016_0001
In figure 2:
Y2 0.2797
Yl 0.2422
X2 624
XI 456
Water Vapour Permeability (Rate of Permeation per sq. meter area) = 5.357143 gm/24hrs/Sq meter.
The data above shows that the instant composition has a superior effect with respect to the impermeability improvement, which is contributed by mica.

Claims

WE CLAIM:
1. A polyurethane based coating composition comprising a base and an activator wherein the base component comprises
a polyol,
a filler,
a catalyst,
a defoamer and
a molecular sieve;
and the activator comprises polyisocyanate.
2. The polyurethane based coating composition as claimed in claim 1 wherein the base and the activator are present in a ratio of 3 : 1 v/v.
3. The polyurethane based coating composition as claimed in claim 1 and 2 wherein the base optionally comprises a pigment, additional polyols, amines and chain extender.
4. The polyurethane based coating composition as claimed in claim 1 to 3 wherein
the polyol is present in an amount of 35 to 75%,
the filler is present in an amount of 20 to 60%,
the catalyst is present in an amount of 0 to 5%,
the defoamer is present in an amount of 0.5 to 1.5 % and
the molecular sieve is present in an amount of 2 to 10 %. 5. The polyurethane based coating composition as claimed in claim 1 to 4 wherein
the trifunctional polyol is present in an amount of 0.5 to 5 %,
2-methyl 1 ,3 dipropane diol is present in an amount of 1 to 20%
mica is present in an amount of 3 to 25%
catalyst is present in an amount of 0.1 to 5%
the defoamer is present in an amount of 0.5 to 1.
5 %, and
the molecular sieve is present in an amount of 2 to 10 %.
6. The polyurethane based coating composition as claimed in claim 1 to 5 wherein
2-methyl 1 ,3 dipropane diol is present in an amount of 1 to 10%,
barium sulphate is present in an amount of 5 to 40%,
silica is present in an amount of 5 to 40%,
chain extender is present in an amount of 0 to 5% , titanium dioxide is present in an amount of 2 to 10% and
colour pigment is present in an amount of 0.15 to 5%.
7. The polyurethane based coating composition as claimed in claim 1 to 6 wherein the polyol comprises a diol and/or a triol.
8. The polyurethane based coating composition as claimed in claim 1 to 7 wherein the polyol comprises natural oil polyols or saturated aliphatic polyester polyols.
9. The polyurethane based coating composition as claimed in claim 1 to 8 wherein the natural oil polyol is derived from soybean oil, castor oil, palm oil or canola oil.
10. The polyurethane based coating composition as claimed in claim 1 to 9 wherein the natural oil polyol is a castor polyol.
11. The polyurethane based coating composition as claimed in claim 1 to 10 wherein the diol is a linear diol or a branched diol.
12. The polyurethane based coating composition as claimed in claim 1 to 11 wherein the diol is an aliphatic diol or an aromatic diol.
13. The polyurethane based coating composition as claimed in claim 1 to 12 wherein the polyol comprises 2-methyl 1,3 dipropane diol.
14. The polyurethane based coating composition as claimed in claim 1 to 13 wherein the polyol comprises 1,4 butane diol.
15. The polyurethane based coating composition as claimed in claim 1 to 14 wherein the polyol is polypropylene ether polyol.
16. The polyurethane based coating composition as claimed in claim 1 to 15 wherein the catalyst is diethyl toluenediamine
17. The polyurethane based coating composition as claimed in claim 1 to 15 wherein the catalyst is absent from the composition.
18. The polyurethane based coating composition as claimed in claim 1 to 17 wherein the defoamer is a silicon free defoamer.
19. The polyurethane based coating composition as claimed in claim 1 to 18 wherein the filler comprises one or more of substances selected from mica, barium sulphate and silica.
20. The polyurethane based coating composition as claimed in claim 1 to 19 wherein the filler comprises mica.
21. The polyurethane based coating composition as claimed in claim 1 to 20 wherein mica functions as an extender.
22. The polyurethane based coating composition as claimed in claim 1 to 21 wherein the mica is coated with titanium dioxide (T1O2) or carbon black
23. The polyurethane based coating composition as claimed in claim 1 to 22 wherein the molecular sieve is crystalline aluminosilicate.
24. The polyurethane based coating composition as claimed in claim 1 to 23 wherein the molecular sieve has a pore openings of about 3 A.
25. The polyurethane based coating composition as claimed in claim 1 to 24 wherein the chain extender is a polyether amine.
26. The polyurethane based coating composition as claimed in claim 1 to 25 wherein it the pigment comprises synthetic iron oxides.
27. A process for preparing the polyurethane based coating composition as claimed in claim 1 wherein the process comprises the steps of
a) preparing the base component by dispersing the solid materials like pigments, fillers and other additives in polyols in high speed disperser (HSD) or twin shaft disperser and stabilizing the same with rest of the polyols and additives;
b) preparing the activator and
c) mixing the base with the activator.
28. The process as claimed in claim 26 wherein it comprises the steps of mixing the polyol with the defoamer under stirring at slow speed, adding other additives like barium sulfate, silica, mica, molecular sieve, titanium dioxide and pigments in sequence under stirring, wherein the speed of the HSD blade is adjusted to tip speed of about 3 to 8 meter per seconds, stabilizing the composition with remaining resin, polyols, amines and additives, preparing the activator by packing the solvent free polyisocyanate under nitrogen blanketing environment and by mixing 3 parts of the base with 1 part of the activator, by volume.
An article coated with the polyurethane based coating composition as claimed in claim 1 to
PCT/US2012/046600 2011-07-15 2012-07-13 Polyurethane based coating compositions WO2013012699A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN2429/CHE/2011 2011-07-15
IN2429CH2011 2011-07-15

Publications (2)

Publication Number Publication Date
WO2013012699A2 true WO2013012699A2 (en) 2013-01-24
WO2013012699A3 WO2013012699A3 (en) 2013-04-11

Family

ID=47558676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/046600 WO2013012699A2 (en) 2011-07-15 2012-07-13 Polyurethane based coating compositions

Country Status (1)

Country Link
WO (1) WO2013012699A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850241B2 (en) 2012-03-02 2014-09-30 Microsoft Corporation Multi-stage power adapter configured to provide low power upon initial connection of the power adapter to the host device and high power thereafter upon notification from the host device to the power adapter
US8854799B2 (en) 2012-03-02 2014-10-07 Microsoft Corporation Flux fountain
US8873227B2 (en) 2012-03-02 2014-10-28 Microsoft Corporation Flexible hinge support layer
US8991473B2 (en) 2012-10-17 2015-03-31 Microsoft Technology Holding, LLC Metal alloy injection molding protrusions
US9075566B2 (en) 2012-03-02 2015-07-07 Microsoft Technoogy Licensing, LLC Flexible hinge spine
US9354748B2 (en) 2012-02-13 2016-05-31 Microsoft Technology Licensing, Llc Optical stylus interaction
US9426905B2 (en) 2012-03-02 2016-08-23 Microsoft Technology Licensing, Llc Connection device for computing devices
US9759854B2 (en) 2014-02-17 2017-09-12 Microsoft Technology Licensing, Llc Input device outer layer and backlighting
US9793073B2 (en) 2012-03-02 2017-10-17 Microsoft Technology Licensing, Llc Backlighting a fabric enclosure of a flexible cover
US9824808B2 (en) 2012-08-20 2017-11-21 Microsoft Technology Licensing, Llc Switchable magnetic lock
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US10120420B2 (en) 2014-03-21 2018-11-06 Microsoft Technology Licensing, Llc Lockable display and techniques enabling use of lockable displays
EP3218597B1 (en) 2014-11-10 2019-03-27 Polytech A/S Polyurethane material, process for preparing such material and protective cover for wind turbine blade
US10324733B2 (en) 2014-07-30 2019-06-18 Microsoft Technology Licensing, Llc Shutdown notifications
US10678743B2 (en) 2012-05-14 2020-06-09 Microsoft Technology Licensing, Llc System and method for accessory device architecture that passes via intermediate processor a descriptor when processing in a low power state
WO2020190899A1 (en) 2019-03-21 2020-09-24 DDP Specialty Electronic Materials US, Inc. Water-resistive coating composition
CN112574661A (en) * 2020-12-31 2021-03-30 郑州双塔涂料有限公司 Double-component acrylic polyurethane middle paint and preparation method thereof
CN113773743A (en) * 2021-09-29 2021-12-10 惠州市惠阳区嘉泰涂料有限公司 High-temperature-resistant aging-resistant low-VOC (volatile organic compound) polyurethane anticorrosive paint and preparation method thereof
USRE48963E1 (en) 2012-03-02 2022-03-08 Microsoft Technology Licensing, Llc Connection device for computing devices
WO2023194225A1 (en) * 2022-04-06 2023-10-12 Basf Se Polyurethane composition for vapor barrier in the building with low indoor temperature

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329821A (en) * 2018-03-08 2018-07-27 江西铭川科技实业有限公司 A kind of anti-yellowing polyurethane use for synthetic leather aqueous surface finishing agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081830A1 (en) * 2002-10-29 2004-04-29 Tim Croley Polyurethane system and application thereof
US20070117947A1 (en) * 2003-09-23 2007-05-24 Jochen Wehner Two-component composition for producing flexible polyurethane gel coats
US20070210476A1 (en) * 2004-03-23 2007-09-13 Sanyo Chemical Industries, Ltd. Machinable Resin Molded Product, Material For Forming The Same, And Model Made Of The Same
US20090035506A1 (en) * 2007-06-01 2009-02-05 Sika Technology Ag Honeycomb sandwich panels and the use of a two component polyrethane adhesive in the manufacture thereof
US20090198036A1 (en) * 2007-12-28 2009-08-06 Duffy Sean G Continuous Process for the Production of Moisture-Cure, Polyurethane Sealants and Adhesives
US7622541B2 (en) * 2003-01-17 2009-11-24 The United States Of America As Represented By The Secretary Of The Navy Polyurethane coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081830A1 (en) * 2002-10-29 2004-04-29 Tim Croley Polyurethane system and application thereof
US7622541B2 (en) * 2003-01-17 2009-11-24 The United States Of America As Represented By The Secretary Of The Navy Polyurethane coating
US20070117947A1 (en) * 2003-09-23 2007-05-24 Jochen Wehner Two-component composition for producing flexible polyurethane gel coats
US20070210476A1 (en) * 2004-03-23 2007-09-13 Sanyo Chemical Industries, Ltd. Machinable Resin Molded Product, Material For Forming The Same, And Model Made Of The Same
US20090035506A1 (en) * 2007-06-01 2009-02-05 Sika Technology Ag Honeycomb sandwich panels and the use of a two component polyrethane adhesive in the manufacture thereof
US20090198036A1 (en) * 2007-12-28 2009-08-06 Duffy Sean G Continuous Process for the Production of Moisture-Cure, Polyurethane Sealants and Adhesives

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354748B2 (en) 2012-02-13 2016-05-31 Microsoft Technology Licensing, Llc Optical stylus interaction
US9460029B2 (en) 2012-03-02 2016-10-04 Microsoft Technology Licensing, Llc Pressure sensitive keys
US9075566B2 (en) 2012-03-02 2015-07-07 Microsoft Technoogy Licensing, LLC Flexible hinge spine
US9465412B2 (en) 2012-03-02 2016-10-11 Microsoft Technology Licensing, Llc Input device layers and nesting
US10963087B2 (en) 2012-03-02 2021-03-30 Microsoft Technology Licensing, Llc Pressure sensitive keys
US9618977B2 (en) 2012-03-02 2017-04-11 Microsoft Technology Licensing, Llc Input device securing techniques
US9134807B2 (en) 2012-03-02 2015-09-15 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US9134808B2 (en) 2012-03-02 2015-09-15 Microsoft Technology Licensing, Llc Device kickstand
US9158384B2 (en) 2012-03-02 2015-10-13 Microsoft Technology Licensing, Llc Flexible hinge protrusion attachment
US9176900B2 (en) 2012-03-02 2015-11-03 Microsoft Technology Licensing, Llc Flexible hinge and removable attachment
US9176901B2 (en) 2012-03-02 2015-11-03 Microsoft Technology Licensing, Llc Flux fountain
US9268373B2 (en) 2012-03-02 2016-02-23 Microsoft Technology Licensing, Llc Flexible hinge spine
US9619071B2 (en) 2012-03-02 2017-04-11 Microsoft Technology Licensing, Llc Computing device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US9426905B2 (en) 2012-03-02 2016-08-23 Microsoft Technology Licensing, Llc Connection device for computing devices
USRE48963E1 (en) 2012-03-02 2022-03-08 Microsoft Technology Licensing, Llc Connection device for computing devices
US8947864B2 (en) 2012-03-02 2015-02-03 Microsoft Corporation Flexible hinge and removable attachment
US8873227B2 (en) 2012-03-02 2014-10-28 Microsoft Corporation Flexible hinge support layer
US8854799B2 (en) 2012-03-02 2014-10-07 Microsoft Corporation Flux fountain
US9678542B2 (en) 2012-03-02 2017-06-13 Microsoft Technology Licensing, Llc Multiple position input device cover
US9710093B2 (en) 2012-03-02 2017-07-18 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US8850241B2 (en) 2012-03-02 2014-09-30 Microsoft Corporation Multi-stage power adapter configured to provide low power upon initial connection of the power adapter to the host device and high power thereafter upon notification from the host device to the power adapter
US9766663B2 (en) 2012-03-02 2017-09-19 Microsoft Technology Licensing, Llc Hinge for component attachment
US9793073B2 (en) 2012-03-02 2017-10-17 Microsoft Technology Licensing, Llc Backlighting a fabric enclosure of a flexible cover
US10013030B2 (en) 2012-03-02 2018-07-03 Microsoft Technology Licensing, Llc Multiple position input device cover
US9852855B2 (en) 2012-03-02 2017-12-26 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US9904327B2 (en) 2012-03-02 2018-02-27 Microsoft Technology Licensing, Llc Flexible hinge and removable attachment
US10678743B2 (en) 2012-05-14 2020-06-09 Microsoft Technology Licensing, Llc System and method for accessory device architecture that passes via intermediate processor a descriptor when processing in a low power state
US9824808B2 (en) 2012-08-20 2017-11-21 Microsoft Technology Licensing, Llc Switchable magnetic lock
US8991473B2 (en) 2012-10-17 2015-03-31 Microsoft Technology Holding, LLC Metal alloy injection molding protrusions
US9759854B2 (en) 2014-02-17 2017-09-12 Microsoft Technology Licensing, Llc Input device outer layer and backlighting
US10120420B2 (en) 2014-03-21 2018-11-06 Microsoft Technology Licensing, Llc Lockable display and techniques enabling use of lockable displays
US10324733B2 (en) 2014-07-30 2019-06-18 Microsoft Technology Licensing, Llc Shutdown notifications
EP3218597B1 (en) 2014-11-10 2019-03-27 Polytech A/S Polyurethane material, process for preparing such material and protective cover for wind turbine blade
US11629689B2 (en) 2014-11-10 2023-04-18 Polytech A/S Polyurethane material, process for preparing such material and protective cover for wind turbine blade
WO2020190899A1 (en) 2019-03-21 2020-09-24 DDP Specialty Electronic Materials US, Inc. Water-resistive coating composition
US11198790B2 (en) 2019-03-21 2021-12-14 Ddp Specialty Electronic Materials Us, Llc Water-resistive coating composition
CN112574661A (en) * 2020-12-31 2021-03-30 郑州双塔涂料有限公司 Double-component acrylic polyurethane middle paint and preparation method thereof
CN113773743A (en) * 2021-09-29 2021-12-10 惠州市惠阳区嘉泰涂料有限公司 High-temperature-resistant aging-resistant low-VOC (volatile organic compound) polyurethane anticorrosive paint and preparation method thereof
WO2023194225A1 (en) * 2022-04-06 2023-10-12 Basf Se Polyurethane composition for vapor barrier in the building with low indoor temperature

Also Published As

Publication number Publication date
WO2013012699A3 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2013012699A2 (en) Polyurethane based coating compositions
CN101687975B (en) Low volatiles coatings, sealants and binders from renewable oils
EP3105273B1 (en) Two component coating compositions and coatings produced therefrom having high erosion resistance
CN109642099A (en) Polyurethane coating composition and relevant coating and method containing the vinyl compound activated of 1,1- bis-
EP3256509B1 (en) Two component coating compositions and coatings produced from the same for improved erosion resistance
EP2695902B1 (en) Blocked polyisocyanate compound
AU2010200029B2 (en) Ambient cure water-based coatings for writable-erasable surfaces
EP1274756A1 (en) Branched hydroxyl-functional polyester resin and its use in aqueous cross-linkable binder compositions
AU2001263863A1 (en) Branched hydroxyl-functional polyester resin and its use in aqueous cross-linkable binder compositions
JP6618802B2 (en) Rheology control composition
CN103980804B (en) The method forming duplex coating
US9255204B2 (en) Cavitation resistant polyurethane compositions and methods of forming coating films using the same
CN107429100A (en) Dispersible pigment dispersion
TWI543996B (en) Resin composition for steam barriers, adhesive and coating agent
JP2019116631A (en) Urethane coating composition for metal substrate
CN103906815A (en) Coating composition for packaging articles
CN103906577B (en) Form the method for multilayer coating film
MX2015001865A (en) Polyester polyol.
EP1826243A2 (en) Polymers made of organically modified siloxane resins with separation effect
JP2013095758A (en) Two pack room temperature curable urethane coating water-proof material composition
CN111057458A (en) Moisture-cured oil-resistant anticorrosive paint and preparation method thereof
JP6617916B2 (en) Polyol composition for solventless adhesive, solventless adhesive, and laminated film
JPS60177013A (en) Polyol composition
EP1155062A1 (en) Coating agent and method for its production
KR102634259B1 (en) Coating material using eco-friendly polymer with improved dispersibility and abrasion resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814400

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814400

Country of ref document: EP

Kind code of ref document: A2