WO2013008883A1 - Decontaminating agent for removing harmful substances derived from flying dust and microorganisms, cellulose fiber, and fiber structure - Google Patents

Decontaminating agent for removing harmful substances derived from flying dust and microorganisms, cellulose fiber, and fiber structure Download PDF

Info

Publication number
WO2013008883A1
WO2013008883A1 PCT/JP2012/067812 JP2012067812W WO2013008883A1 WO 2013008883 A1 WO2013008883 A1 WO 2013008883A1 JP 2012067812 W JP2012067812 W JP 2012067812W WO 2013008883 A1 WO2013008883 A1 WO 2013008883A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cellulose
dust
microorganisms
harmful substances
Prior art date
Application number
PCT/JP2012/067812
Other languages
French (fr)
Japanese (ja)
Inventor
山田丸
亀田貴之
早川和一
岩坂泰信
小林史尚
松木篤
築城寿長
檜垣誠吾
Original Assignee
国立大学法人金沢大学
ダイワボウホールディングス株式会社
ダイワボウノイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, ダイワボウホールディングス株式会社, ダイワボウノイ株式会社 filed Critical 国立大学法人金沢大学
Priority to JP2013523981A priority Critical patent/JP6057343B2/en
Priority to CN201280033288.1A priority patent/CN103648637A/en
Priority to KR1020137034973A priority patent/KR20140043909A/en
Publication of WO2013008883A1 publication Critical patent/WO2013008883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3265Non-macromolecular compounds with an organic functional group containing a metal, e.g. a metal affinity ligand
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/467Compounds containing quaternary nitrogen atoms derived from polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/503Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms without bond between a carbon atom and a metal or a boron, silicon, selenium or tellurium atom
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • B01J2220/4831Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton having been subjected to further processing, e.g. paper, cellulose pulp
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the present invention relates to a remover that removes harmful substances and microorganisms that come in dust, cellulose fibers, and fiber structures.
  • Hazardous substances especially carcinogenic polycyclic aromatic hydrocarbons (PAHs)
  • PAHs carcinogenic polycyclic aromatic hydrocarbons
  • the surface of yellow sand acts as a catalyst and further changes to a harmful derivative.
  • microorganisms are attached to the yellow sand particles and sometimes work as a carrier of pathogenic microorganisms.
  • China's rapid economic development not only leads to an increase in the amount of air pollutants generated, but also contributes to an increase in the amount of yellow sand coming in accordance with changes in land-use forms. Is greatly changed.
  • Patent Document 1 proposes preventing yellow sand from entering the room by using a special screen door.
  • Patent Documents 2 to 4 propose an apparatus for removing yellow sand adhering to clothes, blankets and the like.
  • the present invention provides a removal agent, cellulose fiber, and fiber structure excellent in removal performance for removing dust flying harmful substances and microorganisms.
  • the removing agent of the present invention is a removing agent that removes dust dust harmful substances and microorganisms, and a metal phthalocyanine derivative represented by the following formula (I) is supported on cellulose cationized by a cationizing agent.
  • M is Fe, Co or Cu
  • R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group
  • R 1 , R 2 , R 3 and R 4 may be the same or different
  • n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ⁇ n1 + n2 + n3 + n4 ⁇ 8.
  • the cellulose fiber according to the present invention is a cellulose fiber that removes dust flying harmful substances and microorganisms, and a metal phthalocyanine derivative represented by the following formula (I) is supported on the cellulose fiber cationized by a cationizing agent.
  • M is Fe, Co or Cu
  • R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group
  • R 1 , R 2 , R 3 and R 4 may be the same or different
  • n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ⁇ n1 + n2 + n3 + n4 ⁇ 8.
  • the fiber structure of the present invention is a fiber structure that removes dust dust and harmful substances and microorganisms.
  • the fiber structure includes the cellulose fiber, and the content of the metal phthalocyanine derivative in the fiber structure is 0. .2% by mass or more.
  • the present invention provides a dust blast harmful substance having excellent removal performance for removing dust borne harmful substances and microorganisms by supporting the metal phthalocyanine derivative represented by the above formula (I) on cellulose cationized by a cationizing agent.
  • a remover for removing microorganisms, cellulose fibers, and fiber structures can be provided.
  • FIG. 1 is a schematic view of cellulose cationized by a cationizing agent and carrying a metal phthalocyanine derivative.
  • dust and harmful substances and microorganisms flying in the dust refers to substances and microorganisms flying together with dust and harmful to human and animal health.
  • substances and microorganisms that fly with sand dust include yellow sand aerosol, which contains carcinogenic substances and airborne microorganisms (for example, bacteria, fungi, viruses, or variants thereof). It has been known.
  • PAHs polycyclic aromatic hydrocarbons
  • NPAHs nitrated polycyclic aromatic hydrocarbons
  • Polycyclic aromatic hydrocarbons such as Bacillus sp., Bacteria such as Staphylococcus sp., Fungi such as Aspergillus sp., And Jerkandella sp. It is done.
  • Pyrene is an aromatic hydrocarbon having four benzene rings and is said to be a carcinogen.
  • PAHs may be converted into derivatives such as nitrated, hydroxylated, and quinone compounds during long-distance transport in the atmosphere, and the derivatives may be more toxic.
  • the hydroxylated form of PAHs acts as an endocrine disruptor.
  • Bacillus is a Gram-positive bacterium that is widely distributed on the earth, and there are species that show pathogenicity.
  • the present invention relates to a dust flying harmful substance and a microorganism in which a metal phthalocyanine derivative represented by the following formula (I) (hereinafter also simply referred to as a metal phthalocyanine derivative) is supported on cellulose cationized by a cationizing agent.
  • a metal phthalocyanine derivative represented by the following formula (I) (hereinafter also simply referred to as a metal phthalocyanine derivative) is supported on cellulose cationized by a cationizing agent.
  • the present invention relates to a removing agent to be removed (hereinafter also referred to as a removing agent such as a dust flying harmful substance).
  • M is Fe, Co or Cu
  • R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group
  • R 1 , R 2 , R 3 and R 4 May be the same or different
  • n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ⁇ n1 + n2 + n3 + n4 ⁇ 8.
  • planar structure metal phthalocyanine derivatives are laminated together to form a layer structure, and between the layer structure layers formed by planar structure metal phthalocyanine derivatives, dust flying dust harmful substances and It is estimated that microorganisms are adsorbed and removed.
  • the metal phthalocyanine derivative is supported on the cationized cellulose, so that the cellulose in a state where phthalocyanine molecules are dispersed (single molecule state). It is thought that the removal performance is high because it can effectively come into contact with harmful substances and microorganisms such as polycyclic aromatic hydrocarbons and bacteria.
  • the removal agent such as the dust flying toxic substance can exhibit excellent antibacterial properties due to the active reactive species produced by the metal phthalocyanine derivative in various reaction processes.
  • R 1 , R 2 , R 3 and R 4 are preferably sulfonic acid groups.
  • the metal phthalocyanine derivative is likely to be present as a single molecule, and it is considered that the antibacterial property is enhanced because active reactive species are easily generated.
  • the central metal M is preferably Fe or Co. If the central metal M is Fe or Co, the production of active reactive species for exhibiting antibacterial properties increases, and the antibacterial properties are expected to increase.
  • the number of functional groups that is, n1, n2,
  • the sum of n3 and n4 (hereinafter also referred to as n) is preferably 1 or 2. That is, in one molecule of metal phthalocyanine derivative, the total number of sulfonic acid groups is preferably 1 or 2. Since the sulfonic acid group is a hydrophilic group and has a large molecule, if there are a large number of functional groups, the adsorption of harmful substances and microorganisms flying into the interlayer may be hindered.
  • n is preferably 4-8. More preferably, n is 5-8. Since the carboxyl group is an electron-withdrawing group, when n is 4 to 8, the electron density between the layers increases, the adsorption performance against dust flying harmful substances and microorganisms increases, and the adsorption amount increases.
  • the metal phthalocyanine derivative is an iron phthalocyanine derivative
  • the phthalocyanine ring has a distorted structure, and when the n is 4 to 8 although the adsorption performance against dust dust harmful substances and microorganisms is inferior to the cobalt phthalocyanine derivative. Excellent adsorption performance.
  • the sulfonic acid group includes an inorganic base and an organic base thereof.
  • the carboxyl group includes its inorganic base and organic base.
  • the salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, copper (II) salt, ammonium salt and the like.
  • the salt include trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine and the like.
  • Examples of the metal phthalocyanine derivative represented by the above formula (I) include metal phthalocyanine monosulfonic acid and its salt, metal phthalocyanine disulfonic acid and its salt, metal phthalocyanine tetrasulfonic acid and its salt, metal phthalocyanine octasulfonic acid and its salt Metal phthalocyanine monocarboxylic acid and its salt, metal phthalocyanine dicarboxylic acid and its salt, metal phthalocyanine tetracarboxylic acid and its salt, metal phthalocyanine octacarboxylic acid and its salt, and the like.
  • metal phthalocyanine monosulfonic acid or a salt thereof and metal phthalocyanine disulfonic acid or a salt thereof are mixed in the removal agent such as the dust flying harmful substances.
  • the metal phthalocyanine derivative represented by the formula (I) is, for example, cobalt phthalocyanine represented by the following formula (II) Disulfonic acid.
  • the metal phthalocyanine derivative represented by the formula (I) is, for example, an iron phthalocyanine represented by the following formula (III) It becomes monosulfonic acid.
  • the metal phthalocyanine derivative may be a commercially available product or one produced by a known method.
  • iron phthalocyanine tetracarboxylic acid is obtained by adding trimellitic anhydride, urea, ammonium molybdate, and ferric chloride anhydride to nitrobenzene, stirring and heating to reflux to obtain a precipitate. The precipitate is hydrolyzed by adding an alkali, and then acidified by adding an acid.
  • Cobalt phthalocyanine octacarboxylic acid is a similar method using pyromellitic anhydride and ferric chloride anhydride instead of trimellitic anhydride, which is a raw material of iron phthalocyanine tetracarboxylic acid. Can be manufactured.
  • Cobalt phthalocyanine monosulfonic acid can be obtained by sulfonation by reacting non-functional cobalt phthalocyanine with chlorosulfonic acid.
  • the cationic agent examples include a quaternary ammonium salt type chlorohydrin derivative, a quaternary ammonium salt type polymer, a cationic polymer, a cross-linked polyalkylimine, a polyamine cationic resin, and a glyoxal-based fibrin reactive resin. Etc. These may be used alone or in combination of two or more. Of these, quaternary ammonium salt type chlorohydrin derivatives are preferred.
  • Examples of the quaternary ammonium salt type chlorohydrin derivative include NN′-di- (3-chloro-2-hydroxy-propyl) -NN′-tetramethyl-n— represented by the following formula (VI): Examples include hexane-1,6-diammonium dichloride (also referred to as tetramethylhexamethylenediamine quaternary salt), partially 3-chloro-2-hydroxypropylated diallylamine hydrochloride / diallyldimethylammonium chloride copolymer, and the like.
  • quaternary ammonium salt type chlorohydrin derivative represented by the following formula (VI) for example, a commercially available product such as “Cathionone KCN” (on the other hand, trade name, manufactured by Yushi Kogyo Co., Ltd.) can be used.
  • the length of the carbon chain between the cation sites length of the alkyl group
  • that is, between the cation sites like a quaternary ammonium salt type chlorohydrin derivative, particularly a chlorohydrin derivative having two quaternary ammonium salts in a single molecule.
  • the metal phthalocyanine derivative binds to the cation sites and tends to exist as a single molecule, which is harmful to dust dust. It is estimated that the removal performance for substances and microorganisms is high. In addition, it is more harmful for dust to come into contact with a phthalocyanine derivative or to react with harmful substances that come in dust, such as vinyl-based polymers that can be sterically hindered or cationic agents that do not have a functional group such as t-butyl. The removal performance of substances and microorganisms tends to be high.
  • the cellulose is not particularly limited, but is preferably a cellulose material such as cotton or a regenerated cellulose material having crystallinity from the viewpoint that it is easily modified, specifically, easily cationized.
  • the regenerated cellulose having crystallinity means a regenerated cellulose having a primary swelling degree of less than 150%, for example.
  • the regenerated cellulose having crystallinity can be obtained at low cost by a conventional cellulose regenerating method such as a viscose method, a copper-ammonia method, or a solvent method.
  • the primary swelling degree is 90 to 120%.
  • the cellulose may be in any form such as a fiber, sponge, film, etc., but is preferably in the form of a fiber from the viewpoint of better adsorption performance against dust flying harmful substances and microorganisms.
  • the cellulose is in a fiber form in the removal agent such as dust dust flying harmful substances, it corresponds to a cellulose fiber that removes dust flying harmful substances and microorganisms described later.
  • the amount of the metal phthalocyanine derivative supported is not particularly limited as long as it can exhibit adsorption performance for dust flying harmful substances and microorganisms.
  • it is 0.2 to 5% by mass with respect to cellulose, and is preferably 0.5 to 4% by mass, more preferably 1 to 3.3% by mass, from the viewpoint of better adsorption performance.
  • the supported amount of the metal phthalocyanine derivative is within the above range, the phthalocyanine is dispersed and bound to the cation site, so that it is considered that the adsorption site for the dust dust flying harmful substances and microorganisms increases.
  • the loading amount of the metal phthalocyanine derivative is too large, the phthalocyanines associate with each other and the adsorption sites for the dust flying harmful substances and microorganisms are reduced, so that the adsorption performance may be lowered.
  • metal phthalocyanine derivative When the metal phthalocyanine derivative is supported on cationized cellulose, two or more kinds of metal phthalocyanine derivatives may be used in combination as long as the effects are not inhibited, and the metal phthalocyanine derivative and another functional agent may be used in combination. Specifically, two or more kinds of metal phthalocyanine derivatives or metal phthalocyanine derivatives and other functional agents can be mixed and supported. Alternatively, two or more metal phthalocyanine derivatives or metal phthalocyanine derivatives and other functional agents may be separately supported.
  • metal phthalocyanine derivatives when two or more kinds of metal phthalocyanine derivatives are used in combination or when a metal phthalocyanine derivative is used in combination with another functional agent, phthalocyanine associates with each other or the adsorption site of phthalocyanine is blocked. It is preferable to use a single type of metal phthalocyanine derivative alone because there is a possibility that the adsorption site with respect to may decrease.
  • two or more kinds of cationized cellulose carrying a metal phthalocyanine derivative may be used in a range that does not inhibit the effect.
  • a metal phthalocyanine-supported cationized cellulose having a high effect on harmful substances such as PAHs may be used in combination with another metal phthalocyanine-supported cationized cellulose having a high antibacterial property.
  • PAHs harmful substances
  • other functional fibers can be used in combination.
  • the cellulose fiber for removing dust flying harmful substances and microorganisms (hereinafter, also simply referred to as removing cellulose fibers for dust flying harmful substances) of the present invention adsorbs and removes the dust flying harmful substances and microorganisms.
  • the removal dust fiber such as dust flying harmful substances is the same as the removal agent such as dust flying harmful substance except that cellulose is in the form of fibers, and the description of overlapping parts is omitted.
  • the cellulose fiber removing the dust dust harmful substances and the like has a fiber strength of 1 cN / dtex or more. It is more preferably 2 cN / dtex or more, and even more preferably 2.4 cN / dtex or more.
  • a fiber web is formed by the card method, the wet papermaking method, the airlaid method, etc. using the above-described removed dust-carrying cellulose fibers, and fibers such as yarns, woven fabrics, knitted fabrics and nonwoven fabrics. Easy to process into structures.
  • the cellulose fiber is preferably a cotton fiber or a regenerated cellulose fiber having crystallinity from the viewpoint of being easily modified, specifically, easily cationized.
  • the regenerated cellulose fiber having crystallinity means a regenerated cellulose fiber having a primary swelling degree of less than 150%, for example.
  • the regenerated cellulose fiber having crystallinity can be obtained at low cost by a conventional cellulose regenerating method such as a viscose method, a copper-ammonia method, or a solvent method.
  • the “primary swelling degree” means a swelling degree measured without producing a regenerated cellulose fiber by a wet spinning method and then passing through a drying step.
  • the above-mentioned removed cellulose fibers such as dust flying harmful substances can be produced by an ion staining method.
  • the cellulose fiber is cationized with a cation agent, and the cation group of the obtained cationized cellulose fiber is ionically bonded to an anion group such as a carboxyl group or a sulfonic acid group of the metal phthalocyanine derivative.
  • an anion group such as a carboxyl group or a sulfonic acid group of the metal phthalocyanine derivative.
  • Fiber structure a fiber structure according to another embodiment of the present invention will be described.
  • the fiber structure of the present invention adsorbs and removes dust-borne airborne harmful substances and microorganisms.
  • the fiber structure includes the cellulose dust fiber that removes the dust flying harmful substances, and may be in any form such as yarn, woven fabric, knitted fabric, web, nonwoven fabric, paper, and net.
  • the content of the metal phthalocyanine derivative is 0.2% by mass or more, and is preferably 0.5 to 4% by mass from the viewpoint of more excellent adsorption performance, and 1 to 3.3% by mass. % Is more preferable.
  • the fiber structure may contain 100% by mass of the removed cellulose fibers such as the dust flying harmful substances. Moreover, as long as content of the metal phthalocyanine derivative in a fiber structure becomes 0.2 mass% or more, you may include another fiber. In the case where the fiber structure contains other fibers, the content of the removed cellulose fibers such as dust flying harmful substances is preferably 20% by mass or more, more preferably 30% by mass or more, and 50% by mass. More preferably, it is the above. As other fibers, for example, natural fibers, synthetic fibers, semi-synthetic fibers, and recycled fibers can be used. The natural fibers are preferably selected from cellulose fibers such as cotton, hemp or pulp, and protein fibers such as wool or silk.
  • the synthetic fiber is preferably selected from polyolefin fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyvinyl alcohol fibers, polyamide fibers, polyacrylic fibers, polyester fibers, and polyurethane fibers.
  • the semi-synthetic fiber is preferably a cellulose fiber such as acetate rayon.
  • the regenerated fiber is preferably selected from cellulose fibers such as viscose rayon and copper ammonia rayon. These fibers may be single fibers or composite fibers. These other fibers may be used alone or in combination of two or more.
  • the above-mentioned fiber structure can be produced by a known method using the above-mentioned removed cellulose fibers such as dust dust harmful substances and other fibers as necessary.
  • a fiber web is first formed by a card method, an airlaid method, a wet papermaking method, a spunbond method, a melt blown method, a flash spinning method, an electrostatic spinning method, etc. It is processed into thermal bond nonwoven fabrics such as nonwoven fabrics and thermocompression bonded nonwoven fabrics, chemical bond nonwoven fabrics, needle punched nonwoven fabrics, hydroentangled nonwoven fabrics, spunbond nonwoven fabrics, and meltblown nonwoven fabrics.
  • a chemical bond nonwoven fabric is shown as the fiber structure of the present invention.
  • the dust-carrying harmful substance-removed cellulose fibers of the present invention are mixed with other fibers as necessary to form a fiber web.
  • a binder is attached by dipping, spraying (eg, spray bonding), coating (eg, foam bonding), etc., and drying and / or curing It can ring and a chemical bond nonwoven fabric can be obtained.
  • a binder an acrylic binder, a urethane binder, or the like can be used.
  • the adhesion amount of the binder is not particularly limited as long as it can maintain the form of the nonwoven fabric and does not hinder the effect of removing harmful substances and the like.
  • the solid content is preferably 5 to 50% by mass with respect to the mass of the nonwoven fabric.
  • the said fiber structure can be used for masks, such as a sanitary mask, a surgical mask, and a dust mask.
  • the dust mask include an N95-compatible mask (Particulate Respirator Type N95), a respirator, and the like.
  • the fiber structure is preferably a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a hydroentangled nonwoven fabric, a spunbond nonwoven fabric, or a meltblown nonwoven fabric, and more preferably a thermal bond nonwoven fabric or a hydroentangled nonwoven fabric.
  • the fineness of the constituent fibers is preferably 1 to 10 dtex, more preferably 2 to 8 dtex.
  • the basis weight is preferably 20 to 60 g / m 2 .
  • the mask for example, a laminated structure in which a reinforced nonwoven fabric, a fiber structure of the present invention, a microfiltration nonwoven fabric, a reinforced nonwoven fabric or a flexible nonwoven fabric is arranged in this order from the outside to the inside (mouth side).
  • a laminated structure in which a reinforced nonwoven fabric, a fiber structure of the present invention, a microfiltration nonwoven fabric, a reinforced nonwoven fabric or a flexible nonwoven fabric is arranged in this order from the outside to the inside (mouth side).
  • sand particles having a relatively large particle diameter are captured by the fiber structure of the present invention to exert a removing action, and sand particles having a small particle diameter are mainly captured on the surface of the microfiltration nonwoven fabric.
  • the removal effect of the fiber structure of the present invention against harmful substances and microorganisms in the dust trapped on the surface of the microfiltration nonwoven fabric can be exhibited.
  • positioned in order of the reinforcement nonwoven fabric, the microfiltration nonwoven fabric, the fiber structure of this invention, a reinforcement nonwoven fabric, or a flexible nonwoven fabric is also mentioned.
  • sand particles having a relatively large particle diameter and sand particles having a small particle diameter are trapped mainly on the surface of the microfiltration nonwoven fabric, and are temporarily present against harmful substances and microorganisms in the dust passing through the microfiltration nonwoven fabric.
  • the effect of removing the fiber structure of the invention can be exhibited.
  • the reinforced nonwoven fabric or the flexible nonwoven fabric for example, a spunbond nonwoven fabric or a thermal bond nonwoven fabric can be used.
  • the microfiltration nonwoven fabric for example, an ultrafine fiber nonwoven fabric such as a melt blown nonwoven fabric can be used.
  • the said fiber structure can be used for an air filter.
  • the fiber structure is preferably a woven fabric, a knitted fabric, a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a spunbond nonwoven fabric, or a hydroentangled nonwoven fabric.
  • the fineness of the constituent fibers is preferably 2 to 50 dtex.
  • the basis weight is preferably 10 to 150 g / m 2 .
  • air filters include air conditioner (air conditioning) filters, air conditioner (air conditioner) filters, air purifier filters, humidifier filters, dehumidifier filters, futon dryer filters, wash dryer filters, and cleaning.
  • the air filter will be described in the case of an air cleaner filter, an air conditioning filter used in a building, a hospital, a factory, or the like, or an air conditioning filter such as an automobile.
  • These products can be used as a filter for removing dust dust harmful substances and microorganisms with the air purifier filter, air conditioning filter or air conditioner filter to prevent further contamination.
  • the form of the filter is not particularly limited, but is preferably a woven fabric or a non-woven fabric, and more preferably a non-woven fabric.
  • the said nonwoven fabric it is preferable that they are a spun bond nonwoven fabric, a chemical bond nonwoven fabric, or a thermal bond nonwoven fabric (especially air through nonwoven fabric).
  • the basis weight is preferably 15 g / m 2 or more, more preferably 15 to 120 g / m 2 .
  • the fiber structure of the present invention may be used as an aggregate of a filter and bonded to other nonwoven fabrics or nets, and the fiber of the present invention may be used as an aggregate using a reinforcing nonwoven fabric or a reinforcing net such as a spunbond nonwoven fabric. It may be bonded to a structure.
  • the form of the filter may be flat (plane), pleated or honeycomb processed.
  • the said fiber structure can be used for the protective cover of a stroller.
  • the fiber structure is preferably a woven fabric, a knitted fabric, a nonwoven fabric, paper, or a net.
  • the fineness of the constituent fibers is preferably 1 to 10 dtex.
  • the basis weight is preferably 15 to 80 g / m 2 .
  • a protective cover for a stroller using the above-described fiber structure can prevent dust and harmful substances and microorganisms from entering the child's body.
  • the above fiber structure can be used, for example, for crop covers, pet / livestock shield materials (protective sheets), wiping cloth, interior materials, floor mats, clothing (outer clothing such as coats and jackets, hats) , Gloves, etc.), water treatment filters, adsorbents, curtains and the like.
  • the removal agent for removing dust flying harmful substances and microorganisms, the cellulose fiber and the fiber structure of the present invention can be used by adsorbing and removing the dust flying harmful substances and microorganisms, and its specific application is not particularly limited.
  • Viscose rayon fiber (trade name “Corona”, manufactured by Daiwabo Rayon Co., Ltd.) was prepared as the cellulose fiber.
  • the rayon fiber showed crystallinity, fiber strength was 2.5 cN / dtex, and primary swelling was 90 to 120%.
  • Example 1 A rayon fiber carrying a metal phthalocyanine derivative was produced by ion staining.
  • a cationizing agent “Cathionone KCN” (trade name, manufactured by Yushi Kogyo Co., Ltd.) was used.
  • the rayon fiber fineness of 1.7 dtex, fiber length of 51 mm
  • the rayon fiber is added to 10 L of a mixed solution of 50 g / L of Cationone KCN (trade name manufactured by Yushi Kogyo Co., Ltd.) and 15 g / L of sodium hydroxide aqueous solution.
  • the bath ratio was 1:10 and the reaction was carried out at 85 ° C. for 45 minutes.
  • the obtained cationized rayon fiber was sufficiently washed with water, and then sodium phthalocyanine monosulfonate (Co-pc-monosulfonate) and cobalt phthalocyanine having a concentration of 0.2% owf (on weight of fiber).
  • aqueous solution mixed with sodium disulfonate (Co-pc-Na disulfonate) (hereinafter referred to as “aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf”) at 80 ° C. Stir for 30 minutes to dye the rayon fiber.
  • the obtained dyed rayon fiber was sufficiently washed with water and dried to obtain a cationized rayon fiber carrying a cobalt phthalocyanine derivative.
  • Example 2 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co--) having a concentration of 1% owf
  • a cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • Example 3 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co--) having a concentration of 2% owf A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • Example 4 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-monosulfonate) having a concentration of 3.3% owf and sodium cobalt phthalocyanine disulfonate (A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with Co-pc-disulfonic acid Na) was used.
  • Example 5 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co--) having a concentration of 5% owf A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • Example 6 instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Na-Fe-pc-monosulfonate) having a concentration of 0.2% owf and sodium iron phthalocyanine disulfonate (A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with Fe-pc-disulfonic acid Na) was used.
  • Example 7 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Fe-pc-Na monosulfonate) and sodium iron phthalocyanine disulfonate (Fe--) having a concentration of 1% owf A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • Example 8 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Fe-pc-Na monosulfonate) and sodium iron phthalocyanine disulfonate (Fe—) having a concentration of 2% owf A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • Example 9 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Na-Fe-pc-monosulfonate) and sodium phthalocyanine disulfonate having a concentration of 3.3% owf ( A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with Fe-pc-disulfonic acid Na) was used.
  • Example 10 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Fe-pc-Na monosulfonate) and sodium iron phthalocyanine disulfonate (Fe—) having a concentration of 5% owf A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • Example 11 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine tetracarboxylic acid (Fe-pc-tetracarboxylic acid) having a concentration of 0.5% owf was used.
  • a cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that it was used.
  • Example 12 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine octacarboxylic acid (Fe-pc-octacarboxylic acid) having a concentration of 0.5% owf was used.
  • a cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that it was used.
  • Example 13 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine tetracarboxylic acid (Fe-pc-tetracarboxylic acid) having a concentration of 2% owf was used. Except for the above, a cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1.
  • Example 14 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine octacarboxylic acid (Fe-pc-octacarboxylic acid) having a concentration of 2% owf was used. Except for the above, a cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1.
  • Example 15 Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, copper phthalocyanine monosulfonate (Cu-pc-Na monosulfonate) and copper phthalocyanine disulfonate (Cu--) having a concentration of 2% owf A cationized rayon fiber carrying a copper phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
  • PAS-880 (trade name, manufactured by Nitto Bo Medical) represented by the following formula (VII) was used.
  • a rayon fiber fineness 1.7 dtex, fiber length 51 mm
  • 10 L a mixture of 10 g / L PAS-880 (trade name, manufactured by Nitto Bo Medical Co., Ltd.) and 10 g / L soda ash aqueous solution at a bath ratio of 1:10.
  • the reaction was conducted at 80 ° C. for 30 minutes.
  • the obtained cationized rayon fiber was washed thoroughly with water, and then sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co-pc-) having a concentration of 1% owf. It was immersed in 10 L of an aqueous solution mixed with disulfonic acid (Na) and stirred at 80 ° C. for 30 minutes to dye the rayon fibers. The obtained dyed rayon fiber was sufficiently washed with water and dried to obtain a cationized rayon fiber carrying a cobalt phthalocyanine derivative.
  • Comparative Example 1 The rayon fiber before cationization treatment of Example 1 was set as Comparative Example 1.
  • Comparative Example 2 A cationized rayon fiber produced in the same manner as in Example 1 was used as Comparative Example 2.
  • Example 4 The iron phthalocyanine derivative was supported in the same manner as in Example 8 except that amorphous rayon fibers having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) were used instead of the cationized rayon fibers. Amorphous rayon fiber was obtained.
  • Example 5 An iron phthalocyanine derivative was supported in the same manner as in Example 9 except that amorphous rayon fibers having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) were used instead of the cationized rayon fibers. Amorphous rayon fiber was obtained.
  • Example 6 An iron phthalocyanine derivative was supported in the same manner as in Example 10 except that amorphous rayon fibers having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) were used instead of the cationized rayon fibers. Amorphous rayon fiber was obtained.
  • the PAHs adsorption performance of the rayon fibers of Examples and Comparative Examples was evaluated as follows, and the results are shown in Table 1 below. Further, the amount of metal phthalocyanine supported in the rayon fibers of the examples was calculated from the amount of metal phthalocyanine charged, and the results are shown in Tables 1 and 2 below.
  • PAHs adsorption performance evaluation 1 Using pyrene (Pyr) having a four-ring structure, the adsorption performance of the fiber to PAHs was evaluated. 50 mg of rayon fiber was immersed in 50 ml of 5 nM pyrene aqueous solution and incubated at 37 ° C. for 1 hour. After incubation, the fiber was washed with distilled water and dried under negative pressure, and 20 ml of a mixture of methanol and 25% aqueous ammonia having a mass ratio of 50: 1 was added, and pyrene was extracted by ultrasonic waves.
  • the amount of pyrene adsorbed on the fiber was calculated by quantifying the extracted pyrene by fluorescence detection HPLC after concentration, and the adsorption rate relative to the control (no fiber sample) was determined. The larger the value of the adsorption rate, the better the adsorption performance.
  • PAHs adsorption performance evaluation 2 Using phenanthrene (Phe) having a tricyclic structure, the adsorption performance of fibers against PAHs was evaluated. 50 mg of rayon fiber was immersed in 50 ml of 50 nM phenanthrene aqueous solution and incubated at 37 ° C. for 1 hour. After incubation, the fiber was washed with distilled water and dried under negative pressure, and then 20 ml of a 50: 1 mixture of methanol and 25% aqueous ammonia was added, and phenanthrene was extracted by ultrasound.
  • the amount of phenanthrene adsorbed on the fiber was calculated by quantifying the extracted phenanthrene by fluorescence detection HPLC after concentration, and the adsorption rate relative to the control (no fiber sample) was determined. The larger the value of the adsorption rate, the better the adsorption performance.
  • the pyrene adsorption rate is the order of sulfonic acid group (SO 3 ⁇ ), octacarboxyl group (8COO ⁇ ), and tetracarboxyl group (4COO ⁇ ). It turned out to be low. This is considered to be caused by a difference in the number of adsorption sites due to steric hindrance. It was also suggested that the PAHs adsorption peak when the functional group in the metal phthalocyanine derivative is a sulfonic acid group and the PAHs adsorption peak when the functional group is a carboxyl group may be different.
  • the antibacterial properties of the fibers were evaluated using Bacillus bacteria collected, cultured and isolated from the air above Noto when Kosazawa arrived at Kanazawa University.
  • YPD liquid medium yeast extract 5 g / L, polypeptone 10 g / L, glucose 10 g / L
  • osmotic culture is performed at 30 ° C. for 18 to 20 hours. went.
  • 1 ml of the pre-cultured bacterial solution was transferred into 100 ml of YPD liquid medium containing 50 mg of sample fiber, and osmotic culture was performed at 30 ° C.
  • the culture solution was collected, and the absorbance was measured at a wavelength of 600 nm using an absorptiometer to obtain the bacterial concentration, which was relative to the bacterial concentration of the control (no fiber sample).
  • the ratio of the bacterial concentration in the fiber-mixed solution (hereinafter simply referred to as the bacterial concentration ratio) was determined. It means that it is excellent in antibacterial property, so that the value of ratio of bacteria concentration is small.
  • the concentration of bacteria was significantly reduced as compared with the case of using the rayon fiber of the comparative example.
  • the cationization rayon fiber carrying the predetermined metal phthalocyanine derivative of the present invention has higher antibacterial properties than the rayon fiber carrying the copper phthalocyanine dye of Comparative Example 3 because the phthalocyanine loading method is
  • Comparative Example 3 phthalocyanine is supported in cellulose in an associated state, whereas the present invention uses cationized cellulose to disperse and bond phthalocyanine to the cation site, thereby increasing the reaction site. It is presumed to be.
  • Example 2 From comparison between Example 2 and Example 7, it was found that when the central metal in the metal phthalocyanine derivative is iron, the antibacterial property is slightly high. Further, from comparison between Examples 8, 13, and 14, it is found that when the functional group in the metal phthalocyanine derivative is a sulfonic acid group, the antibacterial property is the highest, and the order of the octacarboxyl group and the tetracarboxyl group decreases. It was.
  • Example 17 20% by mass of the cationized rayon fiber carrying the cobalt phthalocyanine derivative of Example 2, 30% by mass of the rayon fiber carrying copper ions (fineness 1.7 dtex, fiber length 38 mm), polyester fiber (fineness 1.6 dtex, fiber length) 44 mm) was produced in a hydroentangled nonwoven fabric (weight per unit area: 50 g / m 2 ) blended at 50% by mass.
  • Example 7 A hydroentangled nonwoven fabric (weight per unit area: 50 g / m 2 ) was produced in the same manner as in Example 17, except that the rayon fiber of Comparative Example 1 was used instead of the fiber of Example 2 .
  • the extracted pyrene is concentrated and filtered, and then the amount of pyrene is quantified with a gas chromatograph mass spectrometer (GC / MS, GC-17A / QP-5000, manufactured by Shimadzu Corporation) to form fibers and polyurethane foam.
  • the adsorption amount of pyrene was calculated.
  • the GC / MS measurement conditions were as follows: capillary column: DB-5MS (20 m ⁇ 0.25 mm, manufactured by J & W), column temperature: 70 ° C. (1 minute) / 70 to 300 ° C. (32 minutes) / 300 ° C. (5 minutes) )Met.
  • the total amount of pyrene adsorbed on the sample nonwoven fabric and the amount of pyrene adsorbed on the polyurethane foam is defined as the total amount of pyrene generated, and the ratio of the amount of pyrene adsorbed on the sample nonwoven fabric to the total amount of pyrene generated is the sample nonwoven fabric (fiber). Adsorption rate.
  • Example 17 As a result of comparing the adsorption rate of pyrene by the nonwoven fabric of Example 17 and Comparative Example 7 in the air experiment I of Table 4, the nonwoven fabric of Example 17 containing a cationized rayon fiber carrying a metal phthalocyanine derivative even in the air. It was confirmed that pyrene was more easily adsorbed and could be used for filter applications such as masks and air filters. Moreover, from the result of the air experiment II, it was found that the fiber of Example 7 adsorbs the air-containing pyrene and phenanthrene, and it was confirmed that the fiber could be used as a filter.
  • Example 18 Manufacture of mask>
  • the nonwoven fabric of Example 17 was placed on a polypropylene spunbonded nonwoven fabric, and the polypropylene meltblown nonwoven fabric and the polypropylene spunbonded nonwoven fabric were superimposed on the nonwoven fabric of Example 17 in this order, and cut to 15 cm in length and 15 cm in width. Then, pleats were folded in three steps, an ear strap was provided at the center of the lateral end, and the four sides of the sheet end were heat sealed to produce a mask.
  • This mask has a configuration of a reinforcing nonwoven fabric (spunbond nonwoven fabric), a microfiltration nonwoven fabric (meltblown nonwoven fabric), a nonwoven fabric of Example 17, and a reinforcing nonwoven fabric (spunbond nonwoven fabric) from the outside toward the inside (mouth side).
  • this mask was worn, there was no breathing and the wearability was good.
  • this mask contains the nonwoven fabric of Example 17, it is possible to adsorb dust dust harmful substances such as pyrene in the atmosphere.
  • Example 19 ⁇ Production of air filter> 1% by weight of cobalt phthalocyanine derivative is supported in the same manner as in Example 2 except that viscose rayon fiber (trade name “Corona”, manufactured by Daiwabo Rayon Co., Ltd.) having a fineness of 5.5 dtex is used as the rayon fiber. Cationized rayon fibers were obtained.
  • viscose rayon fiber trade name “Corona”, manufactured by Daiwabo Rayon Co., Ltd.
  • Cationized rayon fibers were obtained.
  • the basis weight of the obtained nonwoven fabric was 60 g / m 2 .
  • the obtained chemical bond nonwoven fabric was cut into a predetermined size and fitted into a plastic unit to prepare a prefilter for an air cleaner. When this filter was mounted on an air purifier and used, sufficient filter performance was demonstrated.
  • this filter contains the cationized rayon fiber by which the metal phthalocyanine derivative was carry
  • Example 20 ⁇ Production of air filter> 30 parts by mass of a cationized rayon fiber (fineness 5.5 dtex, fiber length 51 mm) on which 1% by mass of cobalt phthalocyanine derivative prepared in the same manner as in Example 18 was supported, and copper ion-supported fiber (fineness 7.8 dtex, fiber) Length 51mm) 30 parts by mass, sheath-core composite fiber with core component made of polypropylene and sheath component made of high-density polyethylene (Daiwabo Polytech Co., Ltd., trade name “NBF (H)”, fineness 2.2 dtex, fiber length 51 mm) 30 parts by mass were mixed and opened using a card machine.
  • NPF (H) fineness 2.2 dtex, fiber length 51 mm
  • the obtained card web was laminated with a cross layer to produce a laminated web. Subsequently, it heat-processed with the 140 degreeC hot-air processing machine, the sheath component of the sheath-core type composite fiber was melted, and the thermal bond nonwoven fabric was produced.
  • the basis weight of the obtained thermal bond nonwoven fabric was 60 g / m 2 .
  • this nonwoven fabric was used as an air filter for an air purifier, sufficient filter performance was exhibited.
  • this filter contains the cationized rayon fiber by which the metal phthalocyanine derivative was carry
  • the removal agent for removing dust flying harmful substances and microorganisms (cellulose fiber for removing dust flying harmful substances and microorganisms) of the present invention has excellent adsorption performance for PAHs which are dust flying harmful substances, and also dust flying microorganisms. It has excellent antibacterial properties against bacteria. Therefore, the removing agent for removing dust flying harmful substances and microorganisms (cellulose fiber for removing dust flying harmful substances and microorganisms) of the present invention is adsorbed to carcinogenic substances which are harmful substances derived from yellow sand aerosol and derived from yellow sand aerosol. It can be provided as a fiber material that exhibits both antibacterial effects on microorganisms (bacteria).
  • the removing agent for removing dust flying harmful substances and microorganisms, the cellulose fiber and the fiber structure of the present invention can adsorb and remove the dust flying harmful substances and microorganisms, so that, for example, a cover material for people such as filters, masks, strollers, etc. It can be used for agricultural materials such as agricultural covers, screen doors and curtains.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The present invention provides: a decontaminating agent having excellent decontaminating performance of removing harmful substances derived from flying dust and microorganisms; a cellulose fiber; and a fiber structure. This decontaminating agent for removing harmful substances derived from flying dust and microorganisms comprises a metallophthalocyanine derivative represented by formula (I) which is supported on a cellulose that is cationized with a cationizing agent. In formula (I), M represents Fe, Co or Cu; R1, R2, R3 and R4 independently represent a carboxyl group or a sulfonic acid group, wherein R1, R2, R3 and R4 may be the same as or different from one another; and n1, n2, n3 and n4 independently represent an integer of 0 to 4, wherein the requirement represented by the formula is fulfilled: 1 ≤ n1+n2+n3+n4 ≤ 8. The cellulose preferably has a form of a fiber.

Description

砂塵飛来有害物質及び微生物を除去する除去剤、セルロース繊維並びに繊維構造物Remover that removes harmful substances and microorganisms from flying dust, cellulose fiber and fiber structure
 本発明は、砂塵飛来有害物質及び微生物を除去する除去剤、セルロース繊維並びに繊維構造物に関する。 The present invention relates to a remover that removes harmful substances and microorganisms that come in dust, cellulose fibers, and fiber structures.
 有害物質、特に発がん性を有する多環芳香族炭化水素(PAHs)は中国都市部で非常に高濃度で存在しており、長距離輸送により日本にも影響を及ぼしている。さらに、大気中で輸送中に、これらと黄砂を含む大気が混合することで、黄砂表面が触媒として働き、さらに有害な誘導体に変化する。一方で、黄砂粒子には微生物が付着しており、時には病原性微生物のキャリアーとして働くことが明らかになった。中国の急速な経済発展は、大気汚染物質の発生量増加を招くだけでなく、土地利用形態の変化にともなう黄砂飛来量の増加にも寄与し、黄砂が飛来する東アジアなどの広範囲の大気環境を大きく変化させている。黄砂の輸送にともなうPAHs(その誘導体も含む)或いは一部の微生物は、ヒトの健康に被害を及ぼす可能性があるとして危惧されている。そこで、特許文献1には、特殊な網戸を用いることにより黄砂が室内に入り込むのを防止することが提案されている。特許文献2~4には、衣類や毛布などに付着した黄砂を除去する装置が提案されている。 Hazardous substances, especially carcinogenic polycyclic aromatic hydrocarbons (PAHs), are present in very high concentrations in urban areas of China, and have an impact on Japan through long-distance transportation. Furthermore, when these are mixed with the atmosphere containing yellow sand during transportation in the atmosphere, the surface of yellow sand acts as a catalyst and further changes to a harmful derivative. On the other hand, it has become clear that microorganisms are attached to the yellow sand particles and sometimes work as a carrier of pathogenic microorganisms. China's rapid economic development not only leads to an increase in the amount of air pollutants generated, but also contributes to an increase in the amount of yellow sand coming in accordance with changes in land-use forms. Is greatly changed. There is concern that PAHs (including their derivatives) or some microorganisms associated with the transportation of yellow sand may damage human health. Therefore, Patent Document 1 proposes preventing yellow sand from entering the room by using a special screen door. Patent Documents 2 to 4 propose an apparatus for removing yellow sand adhering to clothes, blankets and the like.
特開2005-232892号公報Japanese Patent Laying-Open No. 2005-232892 登録実用新案第3152697号Registered Utility Model No. 3152697 登録実用新案第3145573号Registered Utility Model No. 3145573 登録実用新案第3145912号Registered Utility Model No. 3145912
 しかし、上記特許文献には、花粉や黄砂などを物理的に濾過するフィルター、網戸が開示されているだけであって、黄砂中に含まれる有害物質などの砂塵飛来有害物質及び微生物を吸着・除去することについては検討されていない。例えば、PAHsは蒸気圧に応じて、環境中ではガス相として存在するものもあるため、従来の物理的濾過では除去することができない。また、微生物(細菌)は濾過できたとしても、フィルター表面で増殖する恐れがある。 However, the above patent document only discloses a filter and screen door for physically filtering pollen, yellow sand, etc., and adsorbs and removes dust-borne harmful substances and microorganisms such as harmful substances contained in yellow sand. It is not considered to do. For example, some PAHs exist as a gas phase in the environment depending on the vapor pressure, and therefore cannot be removed by conventional physical filtration. Moreover, even if microorganisms (bacteria) can be filtered, they may grow on the filter surface.
 本発明は、砂塵飛来有害物質及び微生物を除去する除去性能に優れる除去剤、セルロース繊維並びに繊維構造物を提供する。 The present invention provides a removal agent, cellulose fiber, and fiber structure excellent in removal performance for removing dust flying harmful substances and microorganisms.
 本発明の除去剤は、砂塵飛来有害物質及び微生物を除去する除去剤であり、カチオン化剤によりカチオン化されたセルロースに、下記式(I)で示される金属フタロシアニン誘導体が担持されている。
Figure JPOXMLDOC01-appb-C000003
 但し、式(I)中、MはFe、Co又はCuであり、R、R、R及びRはそれぞれカルボキシル基又はスルホン酸基であり、R、R、R及びRは同一又は異なってもよく、n1、n2、n3及びn4はそれぞれ0~4の整数であり且つ1≦n1+n2+n3+n4≦8を満たす。
The removing agent of the present invention is a removing agent that removes dust dust harmful substances and microorganisms, and a metal phthalocyanine derivative represented by the following formula (I) is supported on cellulose cationized by a cationizing agent.
Figure JPOXMLDOC01-appb-C000003
However, in formula (I), M is Fe, Co or Cu, R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group, and R 1 , R 2 , R 3 and R 4 may be the same or different, and n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ≦ n1 + n2 + n3 + n4 ≦ 8.
 本発明のセルロース繊維は、砂塵飛来有害物質及び微生物を除去するセルロース繊維であり、カチオン化剤によりカチオン化されたセルロース繊維に、下記式(I)で示される金属フタロシアニン誘導体が担持されている。
Figure JPOXMLDOC01-appb-C000004
 但し、式(I)中、MはFe、Co又はCuであり、R、R、R及びRはそれぞれカルボキシル基又はスルホン酸基であり、R、R、R及びRは同一又は異なってもよく、n1、n2、n3及びn4はそれぞれ0~4の整数であり且つ1≦n1+n2+n3+n4≦8を満たす。
The cellulose fiber according to the present invention is a cellulose fiber that removes dust flying harmful substances and microorganisms, and a metal phthalocyanine derivative represented by the following formula (I) is supported on the cellulose fiber cationized by a cationizing agent.
Figure JPOXMLDOC01-appb-C000004
However, in formula (I), M is Fe, Co or Cu, R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group, and R 1 , R 2 , R 3 and R 4 may be the same or different, and n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ≦ n1 + n2 + n3 + n4 ≦ 8.
 本発明の繊維構造物は、砂塵飛来有害物質及び微生物を除去する繊維構造物であり、上記繊維構造物は、上記のセルロース繊維を含み、上記繊維構造物中の金属フタロシアニン誘導体の含有量が0.2質量%以上である。 The fiber structure of the present invention is a fiber structure that removes dust dust and harmful substances and microorganisms. The fiber structure includes the cellulose fiber, and the content of the metal phthalocyanine derivative in the fiber structure is 0. .2% by mass or more.
 本発明は、カチオン化剤によりカチオン化されたセルロースに、上記式(I)で示される金属フタロシアニン誘導体を担持させることにより、砂塵飛来有害物質及び微生物を除去する除去性能に優れる砂塵飛来有害物質及び微生物を除去する除去剤、セルロース繊維並びに繊維構造物を提供することができる。 The present invention provides a dust blast harmful substance having excellent removal performance for removing dust borne harmful substances and microorganisms by supporting the metal phthalocyanine derivative represented by the above formula (I) on cellulose cationized by a cationizing agent. A remover for removing microorganisms, cellulose fibers, and fiber structures can be provided.
図1は、カチオン化剤によりカチオン化され、且つ金属フタロシアニン誘導体が担持されているセルロースの模式図である。FIG. 1 is a schematic view of cellulose cationized by a cationizing agent and carrying a metal phthalocyanine derivative.
 本発明において、「砂塵飛来有害物質及び微生物」とは、砂塵とともに飛来する物質や微生物の中で、人や動物の健康に害を及ぼすものをいう。砂塵とともに飛来する物質や微生物としては、例えば黄砂エアロゾルが挙げられ、黄砂エアロゾルには、発ガン性物質及び浮遊微生物(例えば、細菌、真菌、ウイルス、又はそれらの変異物)が含まれていることが知られている。具体的には、ピレン、フェナントレン、ベンゾ[a]ピレン(別称:3,4-ベンツピレン)などの多環芳香族炭化水素(PAHs)、及びニトロピレンなどのニトロ化多環芳香族炭化水素(NPAHs)等の多環芳香族炭化水素の誘導体、バシラス菌(Bacillus sp.)、ブドウ球菌(Staphylococcus sp.)などの細菌、コウジカビ(Aspergillus sp.)、ジェルカンデラ(Bjerkandera sp.)などの真菌等が挙げられる。ピレンは、ベンゼン環を4個もつ芳香族炭化水素であり、発ガン性物質と言われている。また、PAHsは大気中を長距離輸送される間に、ニトロ化体、水酸化体、キノン体などの誘導体に変化している場合があり、その誘導体の方が毒性が強くなることもある。例えば、PAHsの水酸化体は内分泌攪乱物質として作用する。バシラス菌は、地球上に広く分布しているグラム陽性細菌であり、病原性を示す種も存在している。 In the present invention, “dust and harmful substances and microorganisms flying in the dust” refers to substances and microorganisms flying together with dust and harmful to human and animal health. Examples of substances and microorganisms that fly with sand dust include yellow sand aerosol, which contains carcinogenic substances and airborne microorganisms (for example, bacteria, fungi, viruses, or variants thereof). It has been known. Specifically, polycyclic aromatic hydrocarbons (PAHs) such as pyrene, phenanthrene, benzo [a] pyrene (other name: 3,4-benzpyrene), and nitrated polycyclic aromatic hydrocarbons (NPAHs) such as nitropyrene. Derivatives of polycyclic aromatic hydrocarbons such as Bacillus sp., Bacteria such as Staphylococcus sp., Fungi such as Aspergillus sp., And Jerkandella sp. It is done. Pyrene is an aromatic hydrocarbon having four benzene rings and is said to be a carcinogen. In addition, PAHs may be converted into derivatives such as nitrated, hydroxylated, and quinone compounds during long-distance transport in the atmosphere, and the derivatives may be more toxic. For example, the hydroxylated form of PAHs acts as an endocrine disruptor. Bacillus is a Gram-positive bacterium that is widely distributed on the earth, and there are species that show pathogenicity.
 (砂塵飛来有害物質及び微生物を除去する除去剤)
 まず、本発明の一実施形態である砂塵飛来有害物質及び微生物を除去する除去剤について説明する。本発明は、カチオン化剤によりカチオン化されたセルロースに、下記式(I)で示される金属フタロシアニン誘導体(以下において、単に金属フタロシアニン誘導体ともいう。)が担持されている砂塵飛来有害物質及び微生物を除去する除去剤(以下において、砂塵飛来有害物質等除去剤とも記す。)に関する。
(Remover that removes harmful substances and microorganisms from airborne dust)
First, the removal agent which removes the dust dust flying harmful | toxic substance and microorganisms which are one Embodiment of this invention is demonstrated. The present invention relates to a dust flying harmful substance and a microorganism in which a metal phthalocyanine derivative represented by the following formula (I) (hereinafter also simply referred to as a metal phthalocyanine derivative) is supported on cellulose cationized by a cationizing agent. The present invention relates to a removing agent to be removed (hereinafter also referred to as a removing agent such as a dust flying harmful substance).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(I)中、MはFe、Co又はCuであり、R、R、R及びRはそれぞれカルボキシル基又はスルホン酸基であり、R、R、R及びRは同一又は異なってもよく、n1、n2、n3及びn4はそれぞれ0~4の整数であり且つ1≦n1+n2+n3+n4≦8を満たす。 In the above formula (I), M is Fe, Co or Cu, R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group, and R 1 , R 2 , R 3 and R 4 May be the same or different, and n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ≦ n1 + n2 + n3 + n4 ≦ 8.
 上記砂塵飛来有害物質等除去剤において、平面構造の金属フタロシアニン誘導体が互いに積層されて層構造を形成しており、平面構造の金属フタロシアニン誘導体で形成された層構造の層間に、砂塵飛来有害物質及び微生物が吸着されて除去されると推定される。上記砂塵飛来有害物質等除去剤において、図1に示しているように、カチオン化されたセルロースに金属フタロシアニン誘導体が担持されていることにより、フタロシアニン分子が分散した状態(単分子の状態)でセルロースの表面に多く存在することになり、多環芳香族炭化水素及び細菌などの砂塵飛来有害物質及び微生物に効果的に接触することができ、除去性能が高くなっていると思われる。また、上記砂塵飛来有害物質等除去剤は、金属フタロシアニン誘導体が種々の反応過程で生成する活性反応種により優れた抗菌性を発揮することができる。 In the above-mentioned removal agent for dust flying harmful substances, planar structure metal phthalocyanine derivatives are laminated together to form a layer structure, and between the layer structure layers formed by planar structure metal phthalocyanine derivatives, dust flying dust harmful substances and It is estimated that microorganisms are adsorbed and removed. As shown in FIG. 1, in the above-mentioned removal agent for dust dust flying harmful substances, the metal phthalocyanine derivative is supported on the cationized cellulose, so that the cellulose in a state where phthalocyanine molecules are dispersed (single molecule state). It is thought that the removal performance is high because it can effectively come into contact with harmful substances and microorganisms such as polycyclic aromatic hydrocarbons and bacteria. In addition, the removal agent such as the dust flying toxic substance can exhibit excellent antibacterial properties due to the active reactive species produced by the metal phthalocyanine derivative in various reaction processes.
 抗菌性が高いという観点から、上記R、R、R及びRはスルホン酸基であることが好ましい。上記R、R、R及びRがスルホン酸基であると、金属フタロシアニン誘導体が単分子で存在しやすく、活性反応種が生成しやすいことにより抗菌性が高くなると思われる。 From the viewpoint of high antibacterial properties, R 1 , R 2 , R 3 and R 4 are preferably sulfonic acid groups. When R 1 , R 2 , R 3 and R 4 are sulfonic acid groups, the metal phthalocyanine derivative is likely to be present as a single molecule, and it is considered that the antibacterial property is enhanced because active reactive species are easily generated.
 また、抗菌性が高いという観点から、上記中心金属Mは、Fe又はCoであることが好ましい。上記中心金属MがFe又はCoであると、抗菌性を発現するための活性反応種の生成が増加し、抗菌性が高くなると思われる。 Further, from the viewpoint of high antibacterial properties, the central metal M is preferably Fe or Co. If the central metal M is Fe or Co, the production of active reactive species for exhibiting antibacterial properties increases, and the antibacterial properties are expected to increase.
 また、砂塵飛来有害物質及び微生物を除去する除去性能をより高めるという観点から、上記R、R、R及びRがスルホン酸基である場合、官能基の数、すなわちn1、n2、n3及びn4の合計(以下において、nともいう。)が1又は2であることが好ましい。すなわち、1分子の金属フタロシアニン誘導体において、スルホン酸基の合計の数は1又は2であることが好ましい。スルホン酸基は親水基であり、分子が大きいので、官能基が多いと層間への砂塵飛来有害物質及び微生物の吸着が阻害される場合がある。 Further, from the viewpoint of further improving the removal performance for removing dust flying harmful substances and microorganisms, when R 1 , R 2 , R 3 and R 4 are sulfonic acid groups, the number of functional groups, that is, n1, n2, The sum of n3 and n4 (hereinafter also referred to as n) is preferably 1 or 2. That is, in one molecule of metal phthalocyanine derivative, the total number of sulfonic acid groups is preferably 1 or 2. Since the sulfonic acid group is a hydrophilic group and has a large molecule, if there are a large number of functional groups, the adsorption of harmful substances and microorganisms flying into the interlayer may be hindered.
 上記R、R、R及びRがカルボキシル基である場合は、nは4~8であることが好ましい。より好ましくは、nが5~8である。カルボキシル基が電子吸引性基であるため、nが4~8であると、層間の電子密度が大きくなり、砂塵飛来有害物質及び微生物に対する吸着性能が向上し、吸着量が多くなる。特に金属フタロシアニン誘導体が鉄フタロシアニン誘導体の場合、フタロシアニン環が歪んだ構造になっており、コバルトフタロシアニン誘導体に比較して砂塵飛来有害物質及び微生物に対する吸着性能が劣るもののnが4~8である場合は優れた吸着性能を有する。 When R 1 , R 2 , R 3 and R 4 are carboxyl groups, n is preferably 4-8. More preferably, n is 5-8. Since the carboxyl group is an electron-withdrawing group, when n is 4 to 8, the electron density between the layers increases, the adsorption performance against dust flying harmful substances and microorganisms increases, and the adsorption amount increases. In particular, when the metal phthalocyanine derivative is an iron phthalocyanine derivative, the phthalocyanine ring has a distorted structure, and when the n is 4 to 8 although the adsorption performance against dust dust harmful substances and microorganisms is inferior to the cobalt phthalocyanine derivative. Excellent adsorption performance.
 本発明において、上記スルホン酸基は、それの無機塩基と有機塩基を含む。同様に、上記カルボキシル基も、それの無機塩基と有機塩基を含む。無機塩基の場合、塩の好適な例としては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、銅(II)塩、アンモニウム塩などが挙げられる。有機塩基の場合、好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミンなどが挙げられる。 In the present invention, the sulfonic acid group includes an inorganic base and an organic base thereof. Similarly, the carboxyl group includes its inorganic base and organic base. In the case of an inorganic base, preferable examples of the salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, copper (II) salt, ammonium salt and the like. . In the case of an organic base, preferable examples include trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine and the like.
 上記式(I)で示される金属フタロシアニン誘導体としては、例えば、金属フタロシアニンモノスルホン酸及びその塩、金属フタロシアニンジスルホン酸及びその塩、金属フタロシアニンテトラスルホン酸及びその塩、金属フタロシアニンオクタスルホン酸及びその塩、金属フタロシアニンモノカルボン酸及びその塩、金属フタロシアニンジカルボン酸及びその塩、金属フタロシアニンテトラカルボン酸及びその塩、金属フタロシアニンオクタカルボン酸及びその塩などが挙げられる。立体障害、安定性の観点から、上記砂塵飛来有害物質等除去剤には、金属フタロシアニンモノスルホン酸又はその塩と、金属フタロシアニンジスルホン酸又はその塩が混在していることが好ましい。 Examples of the metal phthalocyanine derivative represented by the above formula (I) include metal phthalocyanine monosulfonic acid and its salt, metal phthalocyanine disulfonic acid and its salt, metal phthalocyanine tetrasulfonic acid and its salt, metal phthalocyanine octasulfonic acid and its salt Metal phthalocyanine monocarboxylic acid and its salt, metal phthalocyanine dicarboxylic acid and its salt, metal phthalocyanine tetracarboxylic acid and its salt, metal phthalocyanine octacarboxylic acid and its salt, and the like. From the viewpoints of steric hindrance and stability, it is preferable that metal phthalocyanine monosulfonic acid or a salt thereof and metal phthalocyanine disulfonic acid or a salt thereof are mixed in the removal agent such as the dust flying harmful substances.
 上記式(I)中、MがCo、Rがスルホン酸基であり、n1が2である場合、式(I)で示される金属フタロシアニン誘導体は、例えば、下記式(II)で示すコバルトフタロシアニンジスルホン酸となる。 In the above formula (I), when M is Co, R 1 is a sulfonic acid group, and n1 is 2, the metal phthalocyanine derivative represented by the formula (I) is, for example, cobalt phthalocyanine represented by the following formula (II) Disulfonic acid.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(I)中、MがFe、Rがスルホン酸基であり、n1が1である場合、式(I)で示される金属フタロシアニン誘導体は、例えば、下記式(III)で示す鉄フタロシアニンモノスルホン酸となる。 In the above formula (I), when M is Fe, R 1 is a sulfonic acid group, and n1 is 1, the metal phthalocyanine derivative represented by the formula (I) is, for example, an iron phthalocyanine represented by the following formula (III) It becomes monosulfonic acid.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(I)中、MがFe、R、R、R及びRの全てがカルボキシル基であり、n1、n2、n3及びn4がそれぞれ1である場合、式(I)で示される金属フタロシアニン誘導体は、例えば下記式(IV)で示す鉄フタロシアニンテトラカルボン酸となる。 In the above formula (I), when M is Fe, R 1 , R 2 , R 3 and R 4 are all carboxyl groups, and n1, n2, n3 and n4 are each 1, it is represented by formula (I) An example of the metal phthalocyanine derivative is iron phthalocyanine tetracarboxylic acid represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(I)中、MがFe、R、R、R及びRの全てがカルボキシル基であり、n1、n2、n3及びn4がそれぞれ2である場合、式(I)で示される金属フタロシアニン誘導体は、例えば下記式(V)で示す鉄フタロシアニンオクタカルボン酸となる。 In the above formula (I), when M is Fe, R 1 , R 2 , R 3 and R 4 are all carboxyl groups, and n1, n2, n3 and n4 are each 2, the formula (I) shows An example of the metal phthalocyanine derivative is iron phthalocyanine octacarboxylic acid represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記金属フタロシアニン誘導体は、市販のものであってもよく、公知の方法により製造したものであってもよい。例えば、鉄フタロシアニンテトラカルボン酸は、ニトロベンゼンにトリメリット酸無水物と、尿素と、モリブデン酸アンモニウムと、塩化第二鉄無水物とを加えて撹拌し、加熱還流させて沈殿物を得、得られた沈殿物にアルカリを加えて加水分解し、次いで酸を加えて酸性にすることで得られる。コバルトフタロシアニンオクタカルボン酸は、上記鉄フタロシアニンテトラカルボン酸の原料であるトリメリット酸無水物に替えてピロメリット酸無水物、塩化第二鉄無水物に替えて塩化第二コバルトを用いて同様の方法で製造可能である。コバルトフタロシアニンモノスルホン酸は、無官能のコバルトフタロシアニンにクロルスルホン酸を反応させてスルホン化を行うことで得ることができる。 The metal phthalocyanine derivative may be a commercially available product or one produced by a known method. For example, iron phthalocyanine tetracarboxylic acid is obtained by adding trimellitic anhydride, urea, ammonium molybdate, and ferric chloride anhydride to nitrobenzene, stirring and heating to reflux to obtain a precipitate. The precipitate is hydrolyzed by adding an alkali, and then acidified by adding an acid. Cobalt phthalocyanine octacarboxylic acid is a similar method using pyromellitic anhydride and ferric chloride anhydride instead of trimellitic anhydride, which is a raw material of iron phthalocyanine tetracarboxylic acid. Can be manufactured. Cobalt phthalocyanine monosulfonic acid can be obtained by sulfonation by reacting non-functional cobalt phthalocyanine with chlorosulfonic acid.
 上記カチオン剤としては、例えば、第4級アンモニウム塩型クロルヒドリン誘導体、第4級アンモニウム塩型高分子、カチオン系高分子、クロスリンク型ポリアルキルイミン、ポリアミン系カチオン樹脂、グリオキザール系繊維素反応型樹脂などが挙げられる。これらは単独で用いてもよく、2種以上組み合せて用いてもよい。中でも、第4級アンモニウム塩型クロルヒドリン誘導体が好ましい。上記第4級アンモニウム塩型クロルヒドリン誘導体としては、例えば、下記式(VI)に示すN-N’-ジ-(3-クロロ-2-ヒドロキシ-プロピル)-N-N’-テトラメチル-n-ヘキサン-1,6-ジアンモニウムジクロライド(テトラメチルヘキサメチレンジアミン4級塩ともいう。)、部分3-クロロ-2-ヒドロキシプロピル化ジアリルアミン塩酸塩・ジアリルジメチルアンモニウムクロライド共重合体などが挙げられる。下記式(VI)に示す第4級アンモニウム塩型クロルヒドリン誘導体としては、例えば、「カチオノンKCN」(一方社油脂工業社製商品名) などの市販のものを用いることができる。第4級アンモニウム塩型クロルヒドリン誘導体、特に単分子中に2つの第4級アンモニウム塩を有するクロルヒドリン誘導体のように、カチオンサイト間の炭素鎖の長さ(アルキル基の長さ)、すなわちカチオンサイト間の距離が大きいカチオン剤でセルロースをカチオン化したとき、カチオンサイトがセルロースの表面に分散して存在するので、金属フタロシアニン誘導体がカチオンサイトと結合して単分子で存在しやすくなるため、砂塵飛来有害物質及び微生物に対する除去性能が高いと推定される。また、フタロシアニン誘導体との結合や砂塵飛来有害物質と反応するのに、立体障害となり得るビニル系などのポリマー、t-ブチル基などの官能基を持たないカチオン剤を用いた方が、砂塵飛来有害物質及び微生物の除去性能が高い傾向にある。 Examples of the cationic agent include a quaternary ammonium salt type chlorohydrin derivative, a quaternary ammonium salt type polymer, a cationic polymer, a cross-linked polyalkylimine, a polyamine cationic resin, and a glyoxal-based fibrin reactive resin. Etc. These may be used alone or in combination of two or more. Of these, quaternary ammonium salt type chlorohydrin derivatives are preferred. Examples of the quaternary ammonium salt type chlorohydrin derivative include NN′-di- (3-chloro-2-hydroxy-propyl) -NN′-tetramethyl-n— represented by the following formula (VI): Examples include hexane-1,6-diammonium dichloride (also referred to as tetramethylhexamethylenediamine quaternary salt), partially 3-chloro-2-hydroxypropylated diallylamine hydrochloride / diallyldimethylammonium chloride copolymer, and the like. As the quaternary ammonium salt type chlorohydrin derivative represented by the following formula (VI), for example, a commercially available product such as “Cathionone KCN” (on the other hand, trade name, manufactured by Yushi Kogyo Co., Ltd.) can be used. The length of the carbon chain between the cation sites (length of the alkyl group), that is, between the cation sites, like a quaternary ammonium salt type chlorohydrin derivative, particularly a chlorohydrin derivative having two quaternary ammonium salts in a single molecule. When the cellulose is cationized with a cationic agent having a large distance, the cation sites are dispersed on the surface of the cellulose, so that the metal phthalocyanine derivative binds to the cation sites and tends to exist as a single molecule, which is harmful to dust dust. It is estimated that the removal performance for substances and microorganisms is high. In addition, it is more harmful for dust to come into contact with a phthalocyanine derivative or to react with harmful substances that come in dust, such as vinyl-based polymers that can be sterically hindered or cationic agents that do not have a functional group such as t-butyl. The removal performance of substances and microorganisms tends to be high.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記セルロースは、特に限定されないが、改質し易い、具体的にはカチオン化し易いという観点から、コットン等のセルロース材料又は結晶性を有する再生セルロース材料であることが好ましい。本発明において、結晶性を有する再生セルロースとは、例えば一次膨潤度が150%未満である再生セルロースを意味する。上記結晶性を有する再生セルロースは、ビスコース法、銅-アンモニア法、溶剤法など通常のセルロース再生法により、安価に得ることができる。例えば、一般に結晶性を有するビスコースレーヨンであれば、一次膨潤度は90~120%である。上記セルロースは、繊維、スポンジ、フィルムなどのいずれの形態であってもよいが、砂塵飛来有害物質及び微生物に対する吸着性能がより優れるという観点から繊維の形態であることが好ましい。上記砂塵飛来有害物質等除去剤において、上記セルロースが繊維形態である場合は、後述の砂塵飛来有害物質及び微生物を除去するセルロース繊維に該当する。 The cellulose is not particularly limited, but is preferably a cellulose material such as cotton or a regenerated cellulose material having crystallinity from the viewpoint that it is easily modified, specifically, easily cationized. In the present invention, the regenerated cellulose having crystallinity means a regenerated cellulose having a primary swelling degree of less than 150%, for example. The regenerated cellulose having crystallinity can be obtained at low cost by a conventional cellulose regenerating method such as a viscose method, a copper-ammonia method, or a solvent method. For example, in the case of generally viscose rayon having crystallinity, the primary swelling degree is 90 to 120%. The cellulose may be in any form such as a fiber, sponge, film, etc., but is preferably in the form of a fiber from the viewpoint of better adsorption performance against dust flying harmful substances and microorganisms. When the cellulose is in a fiber form in the removal agent such as dust dust flying harmful substances, it corresponds to a cellulose fiber that removes dust flying harmful substances and microorganisms described later.
 上記砂塵飛来有害物質等除去剤において、上記金属フタロシアニン誘導体の担持量は、砂塵飛来有害物質及び微生物に対する吸着性能を発揮し得る範囲であればよく、特に限定されない。例えばセルロースに対して0.2~5質量%であり、吸着性能がより優れるという観点から、0.5~4質量%であることが好ましく、1~3.3質量%であることがより好ましい。金属フタロシアニン誘導体の担持量が上記範囲内にあると、フタロシアニンがカチオンサイトに分散して結合するので、砂塵飛来有害物質及び微生物に対する吸着サイトが増加すると考えられる。金属フタロシアニン誘導体の担持量が多すぎると、フタロシアニン同士が会合し、砂塵飛来有害物質及び微生物に対する吸着サイトが減少するので、吸着性能が低下する場合がある。 In the above-mentioned remover for dust flying harmful substances, the amount of the metal phthalocyanine derivative supported is not particularly limited as long as it can exhibit adsorption performance for dust flying harmful substances and microorganisms. For example, it is 0.2 to 5% by mass with respect to cellulose, and is preferably 0.5 to 4% by mass, more preferably 1 to 3.3% by mass, from the viewpoint of better adsorption performance. . If the supported amount of the metal phthalocyanine derivative is within the above range, the phthalocyanine is dispersed and bound to the cation site, so that it is considered that the adsorption site for the dust dust flying harmful substances and microorganisms increases. If the loading amount of the metal phthalocyanine derivative is too large, the phthalocyanines associate with each other and the adsorption sites for the dust flying harmful substances and microorganisms are reduced, so that the adsorption performance may be lowered.
 上記金属フタロシアニン誘導体をカチオン化セルロースに担持させる場合、効果を阻害しない範囲で、二種以上の金属フタロシアニン誘導体を併用してもよく、金属フタロシアニン誘導体と他の機能剤を併用してもよい。具体的には、二種以上の金属フタロシアニン誘導体又は金属フタロシアニン誘導体と他の機能剤を混合して担持されることができる。或いは、二種以上の金属フタロシアニン誘導体又は金属フタロシアニン誘導体と他の機能剤を別々に担持してもよい。ただし、二種以上の金属フタロシアニン誘導体を併用する場合或いは金属フタロシアニン誘導体と他の機能剤を併用する場合、フタロシアニン同士が会合することやフタロシアニンの吸着サイトが閉塞することにより、砂塵飛来有害物質及び微生物に対する吸着サイトが減少する可能性があるため、一種の金属フタロシアニン誘導体を単独で使用することが好ましい。 When the metal phthalocyanine derivative is supported on cationized cellulose, two or more kinds of metal phthalocyanine derivatives may be used in combination as long as the effects are not inhibited, and the metal phthalocyanine derivative and another functional agent may be used in combination. Specifically, two or more kinds of metal phthalocyanine derivatives or metal phthalocyanine derivatives and other functional agents can be mixed and supported. Alternatively, two or more metal phthalocyanine derivatives or metal phthalocyanine derivatives and other functional agents may be separately supported. However, when two or more kinds of metal phthalocyanine derivatives are used in combination or when a metal phthalocyanine derivative is used in combination with another functional agent, phthalocyanine associates with each other or the adsorption site of phthalocyanine is blocked. It is preferable to use a single type of metal phthalocyanine derivative alone because there is a possibility that the adsorption site with respect to may decrease.
 また、金属フタロシアニン誘導体を担持したカチオン化セルロースは、効果を阻害しない範囲で、二種以上併用してもよい。例えば、機能に応じて、PAHsのような有害物質に対して効果が高い金属フタロシアニン担持カチオン化セルロースと、抗菌性の高い別の金属フタロシアニン担持カチオン化セルロースを併用してもよい。特に、後述する繊維構造物として用いる場合は、繊維として混合することができるので、特に有効である。勿論他の機能性繊維と併用することも可能である。 In addition, two or more kinds of cationized cellulose carrying a metal phthalocyanine derivative may be used in a range that does not inhibit the effect. For example, depending on the function, a metal phthalocyanine-supported cationized cellulose having a high effect on harmful substances such as PAHs may be used in combination with another metal phthalocyanine-supported cationized cellulose having a high antibacterial property. In particular, when used as a fiber structure to be described later, it is particularly effective because it can be mixed as a fiber. Of course, other functional fibers can be used in combination.
 (砂塵飛来有害物質及び微生物を除去するセルロース繊維)
 以下、本発明の他の一実施形態である砂塵飛来有害物質及び微生物を除去するセルロース繊維について説明する。本発明の砂塵飛来有害物質及び微生物を除去するセルロース繊維(以下において、単に砂塵飛来有害物質等除去セルロース繊維とも記す。)は、砂塵飛来有害物質及び微生物を吸着して除去する。上記砂塵飛来有害物質等除去セルロース繊維は、セルロースが繊維の形態になっている以外は、上記砂塵飛来有害物質等除去剤と同様であり、重複する部分については説明を省略する。
(Cellulose fiber that removes dust and harmful substances and microorganisms)
Hereinafter, the cellulose fiber which removes a dust flying harmful substance and microorganisms which are other embodiment of this invention is demonstrated. The cellulose fiber for removing dust flying harmful substances and microorganisms (hereinafter, also simply referred to as removing cellulose fibers for dust flying harmful substances) of the present invention adsorbs and removes the dust flying harmful substances and microorganisms. The removal dust fiber such as dust flying harmful substances is the same as the removal agent such as dust flying harmful substance except that cellulose is in the form of fibers, and the description of overlapping parts is omitted.
 上記砂塵飛来有害物質等除去セルロース繊維において、セルロースが繊維の形態になっていることで嵩があり大きな表面積を持つため、セルロース繊維に担持されている金属フタロシアニン誘導体が効率よく空気中の砂塵飛来有害物質及び微生物に接触することができる。 In the above-mentioned removed cellulose fibers such as dust dust toxic substances, because the cellulose is in the form of fibers, it is bulky and has a large surface area, so the metal phthalocyanine derivative carried on the cellulose fibers is efficiently toxic to dust in the air. Can contact materials and microorganisms.
 上記砂塵飛来有害物質等除去セルロース繊維は、繊維強度が1cN/dtex以上であることが好ましい。2cN/dtex以上であることがより好ましく、2.4cN/dtex以上であることがさらにより好ましい。繊維強度が1cN/dtex以上であると、上記砂塵飛来有害物質等除去セルロース繊維を用い、カード法、湿式抄紙法、エアレイド法などにより繊維ウェブを形成し、糸、織物、編物、不織布などの繊維構造物に加工しやすい。 It is preferable that the cellulose fiber removing the dust dust harmful substances and the like has a fiber strength of 1 cN / dtex or more. It is more preferably 2 cN / dtex or more, and even more preferably 2.4 cN / dtex or more. When the fiber strength is 1 cN / dtex or more, a fiber web is formed by the card method, the wet papermaking method, the airlaid method, etc. using the above-described removed dust-carrying cellulose fibers, and fibers such as yarns, woven fabrics, knitted fabrics and nonwoven fabrics. Easy to process into structures.
 上記セルロース繊維は、改質し易い、具体的にはカチオン化し易いという観点から、コットン繊維又は結晶性を有する再生セルロース繊維であることが好ましい。本発明において、結晶性を有する再生セルロース繊維とは、例えば一次膨潤度が150%未満である再生セルロース繊維を意味する。上記結晶性を有する再生セルロース繊維は、ビスコース法、銅-アンモニア法、溶剤法など通常のセルロース再生法により、安価に得ることができる。本発明において、「一次膨潤度」とは、湿式紡糸法により再生セルロース繊維を製造した後、乾燥工程を経ないで測定される膨潤度をいう。 The cellulose fiber is preferably a cotton fiber or a regenerated cellulose fiber having crystallinity from the viewpoint of being easily modified, specifically, easily cationized. In the present invention, the regenerated cellulose fiber having crystallinity means a regenerated cellulose fiber having a primary swelling degree of less than 150%, for example. The regenerated cellulose fiber having crystallinity can be obtained at low cost by a conventional cellulose regenerating method such as a viscose method, a copper-ammonia method, or a solvent method. In the present invention, the “primary swelling degree” means a swelling degree measured without producing a regenerated cellulose fiber by a wet spinning method and then passing through a drying step.
 上記砂塵飛来有害物質等除去セルロース繊維は、イオン染色法により製造することができる。具体的には、セルロース繊維をカチオン剤によりカチオン化処理し、得られたカチオン化されたセルロース繊維のカチオン基と金属フタロシアニン誘導体が持つカルボキシル基やスルホン酸基などのアニオン基をイオン的に結合させ、カチオン化されたセルロース繊維に金属フタロシアニン誘導体が担持されている砂塵飛来有害物質等除去セルロース繊維を得る。 The above-mentioned removed cellulose fibers such as dust flying harmful substances can be produced by an ion staining method. Specifically, the cellulose fiber is cationized with a cation agent, and the cation group of the obtained cationized cellulose fiber is ionically bonded to an anion group such as a carboxyl group or a sulfonic acid group of the metal phthalocyanine derivative. In this way, a cellulose fiber that removes dust and other harmful substances in which a metal phthalocyanine derivative is supported on a cationized cellulose fiber is obtained.
 (繊維構造物)
 以下、本発明の他の一実施形態である繊維構造物について説明する。本発明の繊維構造物は、砂塵飛来有害物質及び微生物を吸着して除去する。
(Fiber structure)
Hereinafter, a fiber structure according to another embodiment of the present invention will be described. The fiber structure of the present invention adsorbs and removes dust-borne airborne harmful substances and microorganisms.
 上記繊維構造物は、上記砂塵飛来有害物質等除去セルロース繊維を含み、糸、織物、編物、ウェブ、不織布、紙、ネットなどのいずれの形態であってもよい。 The fiber structure includes the cellulose dust fiber that removes the dust flying harmful substances, and may be in any form such as yarn, woven fabric, knitted fabric, web, nonwoven fabric, paper, and net.
 上記繊維構造物において、金属フタロシアニン誘導体の含有量は0.2質量%以上であり、吸着性能がより優れるという観点から、0.5~4質量%であることが好ましく、1~3.3質量%であることがより好ましい。 In the above fiber structure, the content of the metal phthalocyanine derivative is 0.2% by mass or more, and is preferably 0.5 to 4% by mass from the viewpoint of more excellent adsorption performance, and 1 to 3.3% by mass. % Is more preferable.
 上記繊維構造物は、上記砂塵飛来有害物質等除去セルロース繊維を100質量%含んでもよい。また、繊維構造物における金属フタロシアニン誘導体の含有量が0.2質量%以上になる限り、他の繊維を含んでもよい。上記繊維構造物が他の繊維を含む場合、上記砂塵飛来有害物質等除去セルロース繊維の含有量は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。他の繊維としては、例えば、天然繊維、合成繊維、半合成繊維及び再生繊維を用いることができる。上記天然繊維は、木綿、麻又はパルプのようなセルロース繊維、羊毛又は絹のような蛋白質繊維から選ばれることが好ましい。上記合成繊維は、ポリオレフィン系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリビニルアルコール系繊維、ポリアミド系繊維、ポリアクリル系繊維、ポリエステル系繊維、ポリウレタン系繊維から選ばれることが好ましい。上記半合成繊維は、アセテートレーヨンのようなセルロース繊維であることが好ましい。上記再生繊維は、ビスコースレーヨン、銅アンモニアレーヨンなどのセルロース繊維から選ばれることが好ましい。これらの繊維は、単一繊維であってもよく、複合繊維であってもよい。これらの他の繊維は、単独で用いてもよく、二種以上を組み合わせてもちいてもよい。 The fiber structure may contain 100% by mass of the removed cellulose fibers such as the dust flying harmful substances. Moreover, as long as content of the metal phthalocyanine derivative in a fiber structure becomes 0.2 mass% or more, you may include another fiber. In the case where the fiber structure contains other fibers, the content of the removed cellulose fibers such as dust flying harmful substances is preferably 20% by mass or more, more preferably 30% by mass or more, and 50% by mass. More preferably, it is the above. As other fibers, for example, natural fibers, synthetic fibers, semi-synthetic fibers, and recycled fibers can be used. The natural fibers are preferably selected from cellulose fibers such as cotton, hemp or pulp, and protein fibers such as wool or silk. The synthetic fiber is preferably selected from polyolefin fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyvinyl alcohol fibers, polyamide fibers, polyacrylic fibers, polyester fibers, and polyurethane fibers. The semi-synthetic fiber is preferably a cellulose fiber such as acetate rayon. The regenerated fiber is preferably selected from cellulose fibers such as viscose rayon and copper ammonia rayon. These fibers may be single fibers or composite fibers. These other fibers may be used alone or in combination of two or more.
 上記繊維構造物は、上記砂塵飛来有害物質等除去セルロース繊維と、必要に応じて、他の繊維を用いて公知の方法により製造することができる。例えば、上記繊維構造物が不織布である場合、まず、カード法、エアレイド法、湿式抄紙法、スパンボンド法、メルトブローン法、フラッシュ紡糸法、静電紡糸法などにより繊維ウェブを形成した後、エアースルー不織布や熱圧着不織布などのサーマルボンド不織布、ケミカルボンド不織布、ニードルパンチ不織布、水流交絡不織布、スパンボンド不織布、メルトブローン不織布などに加工される。 The above-mentioned fiber structure can be produced by a known method using the above-mentioned removed cellulose fibers such as dust dust harmful substances and other fibers as necessary. For example, when the fiber structure is a non-woven fabric, a fiber web is first formed by a card method, an airlaid method, a wet papermaking method, a spunbond method, a melt blown method, a flash spinning method, an electrostatic spinning method, etc. It is processed into thermal bond nonwoven fabrics such as nonwoven fabrics and thermocompression bonded nonwoven fabrics, chemical bond nonwoven fabrics, needle punched nonwoven fabrics, hydroentangled nonwoven fabrics, spunbond nonwoven fabrics, and meltblown nonwoven fabrics.
 本発明の繊維構造物として、ケミカルボンド不織布の一例を示す。まず、本発明の砂塵飛来有害物質等除去セルロース繊維と、必要に応じて他の繊維を混合して繊維ウェブを形成する。必要に応じて、繊維ウェブを不織布(例えば、ニードルパンチ不織布)に成形した後、バインダーを浸漬、噴霧(例えば、スプレーボンド)、コーティング(例えば、フォームボンド)等により付着させ、乾燥及び/又はキュアリングして、ケミカルボンド不織布を得ることができる。バインダーとしては、アクリルバインダー、ウレタンバインダーなどを用いることができる。バインダーの付着量は、不織布の形態を維持することができ、有害物質等の除去効果を阻害しない範囲であればよく、特に限定されない。例えば、不織布質量に対して、固形分で5~50質量%であることが好ましい。 An example of a chemical bond nonwoven fabric is shown as the fiber structure of the present invention. First, the dust-carrying harmful substance-removed cellulose fibers of the present invention are mixed with other fibers as necessary to form a fiber web. If necessary, after forming the fibrous web into a non-woven fabric (eg, needle punched non-woven fabric), a binder is attached by dipping, spraying (eg, spray bonding), coating (eg, foam bonding), etc., and drying and / or curing It can ring and a chemical bond nonwoven fabric can be obtained. As the binder, an acrylic binder, a urethane binder, or the like can be used. The adhesion amount of the binder is not particularly limited as long as it can maintain the form of the nonwoven fabric and does not hinder the effect of removing harmful substances and the like. For example, the solid content is preferably 5 to 50% by mass with respect to the mass of the nonwoven fabric.
 上記繊維構造物は、衛生マスク、サージカルマスク、防塵マスク等のマスクに用いることができる。防塵マスクとしては、例えば、N95対応マスク(Particulate Respirator Type N95)、呼吸用保護具等が挙げられる。マスクに用いる場合、上記繊維構造物は、サーマルボンド不織布、ケミカルボンド不織布、水流交絡不織布、スパンボンド不織布、又はメルトブローン不織布であることが好ましく、サーマルボンド不織布又は水流交絡不織布であることがより好ましい。また、マスクに用いる場合、構成繊維の繊度は、1~10dtexであることが好ましく、より好ましくは2~8dtexである。目付は20~60g/mであることが好ましい。上記繊維構造物を用いたマスクを着用することにより、砂塵飛来有害物質及び微生物が体内に侵入することを防止することができる。 The said fiber structure can be used for masks, such as a sanitary mask, a surgical mask, and a dust mask. Examples of the dust mask include an N95-compatible mask (Particulate Respirator Type N95), a respirator, and the like. When used for a mask, the fiber structure is preferably a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a hydroentangled nonwoven fabric, a spunbond nonwoven fabric, or a meltblown nonwoven fabric, and more preferably a thermal bond nonwoven fabric or a hydroentangled nonwoven fabric. When used in a mask, the fineness of the constituent fibers is preferably 1 to 10 dtex, more preferably 2 to 8 dtex. The basis weight is preferably 20 to 60 g / m 2 . By wearing a mask using the above-described fiber structure, it is possible to prevent dust and harmful substances and microorganisms from entering the body.
 マスクの具体的な構成としては、例えば、外側から内側(口側)にかけて、補強不織布、本発明の繊維構造物、精密濾過不織布、補強不織布又は柔軟不織布の順番で配置された積層構造が挙げられる。このような積層構造にすると、比較的粒子径の大きい砂塵を本発明の繊維構造物までに捕捉して除去作用を発揮し、粒子径の小さい砂塵は精密濾過不織布の主として表面で捕捉するので、精密濾過不織布の表面で捕捉した砂塵中の有害物質及び微生物に対する本発明の繊維構造物の除去作用を発揮することができる。或いは、補強不織布、精密濾過不織布、本発明の繊維構造物、補強不織布又は柔軟不織布の順番で配置された積層構造も挙げられる。このような積層構造にすると、比較的粒子径の大きい砂塵及び粒子径の小さい砂塵は精密濾過不織布の主として表面で捕捉し、仮に精密濾過不織布を通過した砂塵中の有害物質及び微生物に対して本発明の繊維構造物の除去作用を発揮することができる。補強不織布又は柔軟不織布としては、例えば、スパンボンド不織布、サーマルボンド不織布などを用いることができる。精密濾過不織布としては、例えば、メルトブローン不織布などの極細繊維不織布を用いることができる。 As a specific configuration of the mask, for example, a laminated structure in which a reinforced nonwoven fabric, a fiber structure of the present invention, a microfiltration nonwoven fabric, a reinforced nonwoven fabric or a flexible nonwoven fabric is arranged in this order from the outside to the inside (mouth side). . When such a laminated structure is used, sand particles having a relatively large particle diameter are captured by the fiber structure of the present invention to exert a removing action, and sand particles having a small particle diameter are mainly captured on the surface of the microfiltration nonwoven fabric. The removal effect of the fiber structure of the present invention against harmful substances and microorganisms in the dust trapped on the surface of the microfiltration nonwoven fabric can be exhibited. Or the laminated structure arrange | positioned in order of the reinforcement nonwoven fabric, the microfiltration nonwoven fabric, the fiber structure of this invention, a reinforcement nonwoven fabric, or a flexible nonwoven fabric is also mentioned. With such a laminated structure, sand particles having a relatively large particle diameter and sand particles having a small particle diameter are trapped mainly on the surface of the microfiltration nonwoven fabric, and are temporarily present against harmful substances and microorganisms in the dust passing through the microfiltration nonwoven fabric. The effect of removing the fiber structure of the invention can be exhibited. As the reinforced nonwoven fabric or the flexible nonwoven fabric, for example, a spunbond nonwoven fabric or a thermal bond nonwoven fabric can be used. As the microfiltration nonwoven fabric, for example, an ultrafine fiber nonwoven fabric such as a melt blown nonwoven fabric can be used.
 また、上記繊維構造物は、エアフィルターに用いることができる。エアフィルターに用いる場合、上記繊維構造物は、織物、編物、サーマルボンド不織布、ケミカルボンド不織布、スパンボンド不織布又は水流交絡不織布であることが好ましい。また、エアフィルターに用いる場合、構成繊維の繊度は、2~50dtexであることが好ましい。目付は10~150g/mであることが好ましい。エアフィルターとしては、例えば、空気調和設備(空調)用フィルター、エア・コンディショナー(エアコン)フィルター、空気清浄機フィルター、加湿器用フィルター、除湿器用フィルター、布団乾燥機用フィルター、洗濯乾燥機用フィルター、掃除機用フィルター、住宅換気システム用・換気口フィルター、自動車用キャビンフィルター等が挙げられる。上記繊維構造物を用いたエアフィルターを、例えばエア・コンディショナー(エアコン)に用いることにより、砂塵飛来有害物質及び微生物が室内に進入することを防止することができる。 Moreover, the said fiber structure can be used for an air filter. When used for an air filter, the fiber structure is preferably a woven fabric, a knitted fabric, a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a spunbond nonwoven fabric, or a hydroentangled nonwoven fabric. When used in an air filter, the fineness of the constituent fibers is preferably 2 to 50 dtex. The basis weight is preferably 10 to 150 g / m 2 . Examples of air filters include air conditioner (air conditioning) filters, air conditioner (air conditioner) filters, air purifier filters, humidifier filters, dehumidifier filters, futon dryer filters, wash dryer filters, and cleaning. Air filter, housing ventilation system / ventilation port filter, automobile cabin filter, etc. By using an air filter using the above fiber structure for, for example, an air conditioner (air conditioner), it is possible to prevent dust and harmful substances and microorganisms from entering the room.
 エアフィルターの具体的な構成として、空気清浄機フィルター、ビル、病院及び工場などで使用する空調用フィルター又は自動車等のエアコンフィルターである場合について説明する。これらの製品は、砂塵飛来有害物質及び微生物を当該空気清浄機フィルター、空調用フィルター又はエアコンフィルターで除去し、更なる汚染を防止するためのフィルターとして用いることができる。この場合、フィルターの形態は特に限定されないが、織物又は不織布であることが好ましく、不織布であることがより好ましい。上記不織布の場合には、スパンボンド不織布、ケミカルボンド不織布又はサーマルボンド不織布(特にエアースルー不織布)であることが好ましい。目付としては、15g/m以上であることが好ましく、15~120g/mであることがより好ましい。上記フィルターは、本発明の繊維構造物を単独で用いて構成してもよい。或いは、フィルターの骨材として本発明の繊維構造物を用いて他の不織布やネット等と貼り合わせたものでもよく、骨材としてスパンボンド不織布などの補強不織布又は補強ネットを用いて本発明の繊維構造物と貼り合せたものでもよい。また、フィルターの形態は、平面(プレーン)でもよいし、プリーツ加工、ハニカム加工をしても良い。 A specific configuration of the air filter will be described in the case of an air cleaner filter, an air conditioning filter used in a building, a hospital, a factory, or the like, or an air conditioning filter such as an automobile. These products can be used as a filter for removing dust dust harmful substances and microorganisms with the air purifier filter, air conditioning filter or air conditioner filter to prevent further contamination. In this case, the form of the filter is not particularly limited, but is preferably a woven fabric or a non-woven fabric, and more preferably a non-woven fabric. In the case of the said nonwoven fabric, it is preferable that they are a spun bond nonwoven fabric, a chemical bond nonwoven fabric, or a thermal bond nonwoven fabric (especially air through nonwoven fabric). The basis weight is preferably 15 g / m 2 or more, more preferably 15 to 120 g / m 2 . You may comprise the said filter using the fiber structure of this invention independently. Alternatively, the fiber structure of the present invention may be used as an aggregate of a filter and bonded to other nonwoven fabrics or nets, and the fiber of the present invention may be used as an aggregate using a reinforcing nonwoven fabric or a reinforcing net such as a spunbond nonwoven fabric. It may be bonded to a structure. Further, the form of the filter may be flat (plane), pleated or honeycomb processed.
 また、上記繊維構造物は、ベビーカーの保護カバーに用いることができる。ベビーカーの保護カバーに用いる場合、上記繊維構造物は、織物、編物、不織布、紙、ネットであることが好ましい。また、ベビーカーの保護カバーに用いる場合、構成繊維の繊度は、1~10dtexであることが好ましい。目付は15~80g/mであることが好ましい。上記繊維構造物を用いたベビーカー用の保護カバーにより、砂塵飛来有害物質及び微生物が子供の体内に侵入することを防止することができる。 Moreover, the said fiber structure can be used for the protective cover of a stroller. When used for a protective cover of a stroller, the fiber structure is preferably a woven fabric, a knitted fabric, a nonwoven fabric, paper, or a net. When used for a protective cover for a stroller, the fineness of the constituent fibers is preferably 1 to 10 dtex. The basis weight is preferably 15 to 80 g / m 2 . A protective cover for a stroller using the above-described fiber structure can prevent dust and harmful substances and microorganisms from entering the child's body.
 上記繊維構造物は、前述した用途以外にも、例えば、農作物用カバー、ペット・家畜用シールド材(保護シート)、ワイピングクロス、内装材、フロアマット、衣料(コート,ジャケットなどのアウター衣料、帽子、手袋等)、水処理用フィルター、吸着材、カーテン等に用いることができる。本発明の砂塵飛来有害物質及び微生物を除去する除去剤、セルロース繊維並びに繊維構造物は、砂塵飛来有害物質及び微生物を吸着して除去する用いることができ、その具体的な用途は特に限定されない。 In addition to the uses described above, the above fiber structure can be used, for example, for crop covers, pet / livestock shield materials (protective sheets), wiping cloth, interior materials, floor mats, clothing (outer clothing such as coats and jackets, hats) , Gloves, etc.), water treatment filters, adsorbents, curtains and the like. The removal agent for removing dust flying harmful substances and microorganisms, the cellulose fiber and the fiber structure of the present invention can be used by adsorbing and removing the dust flying harmful substances and microorganisms, and its specific application is not particularly limited.
 以下、実施例を用いて本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.
 <セルロース繊維>
 セルロース繊維として、ビスコースレーヨン繊維(商品名「コロナ」、ダイワボウレーヨン株式会社製)を用意した。上記レーヨン繊維は結晶性を示し、繊維強度が2.5cN/dtex、一次膨潤度が90~120%であった。
<Cellulose fiber>
Viscose rayon fiber (trade name “Corona”, manufactured by Daiwabo Rayon Co., Ltd.) was prepared as the cellulose fiber. The rayon fiber showed crystallinity, fiber strength was 2.5 cN / dtex, and primary swelling was 90 to 120%.
 (実施例1)
 イオン染色法により金属フタロシアニン誘導体が担持されたレーヨン繊維を作製した。カチオン化剤として、「カチオノンKCN」(一方社油脂工業社製の商品名)を用いた。まず、50g/LのカチオノンKCN(一方社油脂工業社製の商品名)と、15g/Lの水酸化ナトリウム水溶液との混合液10Lに、上記レーヨン繊維(繊度1.7dtex、繊維長51mm)を浴比1:10の条件で入れ、85℃で45分間反応させた。得られたカチオン化レーヨン繊維を十分に水にて洗浄した後、濃度が0.2%owf(on weight of fiber)のコバルトフタロシアニンモノスルホン酸ナトリウム(Co-pc-モノスルホン酸Na)及びコバルトフタロシアニンジスルホン酸ナトリウム(Co-pc-ジスルホン酸Na)が混在する水溶液(以下において、「濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液」と記す。)10L中に浸漬し、80℃で30分間撹拌してレーヨン繊維を染色した。得られた染色レーヨン繊維を十分に水にて洗浄した後乾燥し、コバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
Example 1
A rayon fiber carrying a metal phthalocyanine derivative was produced by ion staining. As a cationizing agent, “Cathionone KCN” (trade name, manufactured by Yushi Kogyo Co., Ltd.) was used. First, the rayon fiber (fineness of 1.7 dtex, fiber length of 51 mm) is added to 10 L of a mixed solution of 50 g / L of Cationone KCN (trade name manufactured by Yushi Kogyo Co., Ltd.) and 15 g / L of sodium hydroxide aqueous solution. The bath ratio was 1:10 and the reaction was carried out at 85 ° C. for 45 minutes. The obtained cationized rayon fiber was sufficiently washed with water, and then sodium phthalocyanine monosulfonate (Co-pc-monosulfonate) and cobalt phthalocyanine having a concentration of 0.2% owf (on weight of fiber). Immerse in 10 L of an aqueous solution mixed with sodium disulfonate (Co-pc-Na disulfonate) (hereinafter referred to as “aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf”) at 80 ° C. Stir for 30 minutes to dye the rayon fiber. The obtained dyed rayon fiber was sufficiently washed with water and dried to obtain a cationized rayon fiber carrying a cobalt phthalocyanine derivative.
 (実施例2)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が1%owfのコバルトフタロシアニンモノスルホン酸ナトリウム(Co-pc-モノスルホン酸Na)及びコバルトフタロシアニンジスルホン酸ナトリウム(Co-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にしてコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 2)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co--) having a concentration of 1% owf A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例3)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が2%owfのコバルトフタロシアニンモノスルホン酸ナトリウム(Co-pc-モノスルホン酸Na)及びコバルトフタロシアニンジスルホン酸ナトリウム(Co-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にしてコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 3)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co--) having a concentration of 2% owf A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例4)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が3.3%owfのコバルトフタロシアニンモノスルホン酸ナトリウム(Co-pc-モノスルホン酸Na)及びコバルトフタロシアニンジスルホン酸ナトリウム(Co-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にしてコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 4)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-monosulfonate) having a concentration of 3.3% owf and sodium cobalt phthalocyanine disulfonate ( A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with Co-pc-disulfonic acid Na) was used.
 (実施例5)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が5%owfのコバルトフタロシアニンモノスルホン酸ナトリウム(Co-pc-モノスルホン酸Na)及びコバルトフタロシアニンジスルホン酸ナトリウム(Co-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にしてコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 5)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co--) having a concentration of 5% owf A cationized rayon fiber carrying a cobalt phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例6)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が0.2%owfの鉄フタロシアニンモノスルホン酸ナトリウム(Fe-pc-モノスルホン酸Na)及び鉄フタロシアニンジスルホン酸ナトリウム(Fe-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 6)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Na-Fe-pc-monosulfonate) having a concentration of 0.2% owf and sodium iron phthalocyanine disulfonate ( A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with Fe-pc-disulfonic acid Na) was used.
 (実施例7)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が1%owfの鉄フタロシアニンモノスルホン酸ナトリウム(Fe-pc-モノスルホン酸Na)及び鉄フタロシアニンジスルホン酸ナトリウム(Fe-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 7)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Fe-pc-Na monosulfonate) and sodium iron phthalocyanine disulfonate (Fe--) having a concentration of 1% owf A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例8)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が2%owfの鉄フタロシアニンモノスルホン酸ナトリウム(Fe-pc-モノスルホン酸Na)及び鉄フタロシアニンジスルホン酸ナトリウム(Fe-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 8)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Fe-pc-Na monosulfonate) and sodium iron phthalocyanine disulfonate (Fe—) having a concentration of 2% owf A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例9)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が3.3%owfの鉄フタロシアニンモノスルホン酸ナトリウム(Fe-pc-モノスルホン酸Na)及び鉄フタロシアニンジスルホン酸ナトリウム(Fe-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
Example 9
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Na-Fe-pc-monosulfonate) and sodium phthalocyanine disulfonate having a concentration of 3.3% owf ( A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with Fe-pc-disulfonic acid Na) was used.
 (実施例10)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が5%owfの鉄フタロシアニンモノスルホン酸ナトリウム(Fe-pc-モノスルホン酸Na)及び鉄フタロシアニンジスルホン酸ナトリウム(Fe-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 10)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, sodium phthalocyanine monosulfonate (Fe-pc-Na monosulfonate) and sodium iron phthalocyanine disulfonate (Fe—) having a concentration of 5% owf A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例11)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が0.5%owfの鉄フタロシアニンテトラカルボン酸(Fe-pc-テトラカルボン酸)の水酸化ナトリウム溶液(pH12)を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 11)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine tetracarboxylic acid (Fe-pc-tetracarboxylic acid) having a concentration of 0.5% owf was used. A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that it was used.
 (実施例12)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が0.5%owfの鉄フタロシアニンオクタカルボン酸(Fe-pc-オクタカルボン酸)の水酸化ナトリウム溶液(pH12)を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
Example 12
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine octacarboxylic acid (Fe-pc-octacarboxylic acid) having a concentration of 0.5% owf was used. A cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1 except that it was used.
 (実施例13)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が2%owfの鉄フタロシアニンテトラカルボン酸(Fe-pc-テトラカルボン酸)の水酸化ナトリウム溶液(pH12)を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 13)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine tetracarboxylic acid (Fe-pc-tetracarboxylic acid) having a concentration of 2% owf was used. Except for the above, a cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1.
 (実施例14)
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が2%owfの鉄フタロシアニンオクタカルボン酸(Fe-pc-オクタカルボン酸)の水酸化ナトリウム溶液(pH12)を用いた以外は、実施例1と同様にして鉄フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 14)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, a sodium hydroxide solution (pH 12) of iron phthalocyanine octacarboxylic acid (Fe-pc-octacarboxylic acid) having a concentration of 2% owf was used. Except for the above, a cationized rayon fiber carrying an iron phthalocyanine derivative was obtained in the same manner as in Example 1.
 (実施例15]
 濃度が0.2%owfのコバルトフタロシアニンスルホン酸塩の水溶液に替えて、濃度が2%owfの銅フタロシアニンモノスルホン酸ナトリウム(Cu-pc-モノスルホン酸Na)及び銅フタロシアニンジスルホン酸ナトリウム(Cu-pc-ジスルホン酸Na)が混在する水溶液を用いた以外は、実施例1と同様にして銅フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 15)
Instead of an aqueous solution of cobalt phthalocyanine sulfonate having a concentration of 0.2% owf, copper phthalocyanine monosulfonate (Cu-pc-Na monosulfonate) and copper phthalocyanine disulfonate (Cu--) having a concentration of 2% owf A cationized rayon fiber carrying a copper phthalocyanine derivative was obtained in the same manner as in Example 1 except that an aqueous solution mixed with (pc-disulfonic acid Na) was used.
 (実施例16 )
 カチオン化剤として下記式(VII)に示す「PAS-880」(ニットーボーメディカル社製の商品名)を用いた。10g/LのPAS-880(ニットーボーメディカル社製の商品名)と、10g/Lのソーダ灰水溶液との混合液10Lに、レーヨン繊維(繊度1.7dtex、繊維長51mm)を浴比1:10の条件で入れ、80℃で30分間反応させた。得られたカチオン化レーヨン繊維を十分に水にて洗浄した後、濃度が1%owfのコバルトフタロシアニンモノスルホン酸ナトリウム(Co-pc-モノスルホン酸Na)及びコバルトフタロシアニンジスルホン酸ナトリウム(Co-pc-ジスルホン酸Na)が混在する水溶液10L中に浸漬し、80℃で30分間撹拌してレーヨン繊維を染色した。得られた染色レーヨン繊維を十分に水にて洗浄した後乾燥し、コバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。
(Example 16)
As the cationizing agent, “PAS-880” (trade name, manufactured by Nitto Bo Medical) represented by the following formula (VII) was used. A rayon fiber (fineness 1.7 dtex, fiber length 51 mm) is added to 10 L of a mixture of 10 g / L PAS-880 (trade name, manufactured by Nitto Bo Medical Co., Ltd.) and 10 g / L soda ash aqueous solution at a bath ratio of 1:10. The reaction was conducted at 80 ° C. for 30 minutes. The obtained cationized rayon fiber was washed thoroughly with water, and then sodium cobalt phthalocyanine monosulfonate (Co-pc-Na monosulfonate) and sodium cobalt phthalocyanine disulfonate (Co-pc-) having a concentration of 1% owf. It was immersed in 10 L of an aqueous solution mixed with disulfonic acid (Na) and stirred at 80 ° C. for 30 minutes to dye the rayon fibers. The obtained dyed rayon fiber was sufficiently washed with water and dried to obtain a cationized rayon fiber carrying a cobalt phthalocyanine derivative.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (比較例1)
 実施例1のカチオン化処理前のレーヨン繊維を比較例1とした。
(Comparative Example 1)
The rayon fiber before cationization treatment of Example 1 was set as Comparative Example 1.
 (比較例2)
 実施例1と同様に作製したカチオン化レーヨン繊維を比較例2とした。
(Comparative Example 2)
A cationized rayon fiber produced in the same manner as in Example 1 was used as Comparative Example 2.
 (比較例3)
 一次膨潤度が250%の非晶質レーヨン繊維(繊度7.8dtex、繊維長51mm)に、下記式(VIII)で示す銅フタロシアニン系染料(リアクティブブルー21)を3.2質量%染着(担持)させたレーヨン繊維を用い、比較例3とした。
(Comparative Example 3)
An amorphous rayon fiber having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) is dyed with 3.2% by mass of a copper phthalocyanine dye (reactive blue 21) represented by the following formula (VIII) ( The loaded rayon fiber was used as Comparative Example 3.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (比較例4)
 カチオン化レーヨン繊維に替えて、一次膨潤度が250%の非晶質レーヨン繊維(繊度7.8dtex、繊維長51mm)を用いた以外は、実施例8と同様にして鉄フタロシアニン誘導体が担持された非晶質レーヨン繊維を得た。
(Comparative Example 4)
The iron phthalocyanine derivative was supported in the same manner as in Example 8 except that amorphous rayon fibers having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) were used instead of the cationized rayon fibers. Amorphous rayon fiber was obtained.
 (比較例5)
 カチオン化レーヨン繊維に替えて、一次膨潤度が250%の非晶質レーヨン繊維(繊度7.8dtex、繊維長51mm)を用いた以外は、実施例9と同様にして鉄フタロシアニン誘導体が担持された非晶質レーヨン繊維を得た。
(Comparative Example 5)
An iron phthalocyanine derivative was supported in the same manner as in Example 9 except that amorphous rayon fibers having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) were used instead of the cationized rayon fibers. Amorphous rayon fiber was obtained.
 (比較例6)
 カチオン化レーヨン繊維に替えて、一次膨潤度が250%の非晶質レーヨン繊維(繊度7.8dtex、繊維長51mm)を用いた以外は、実施例10と同様にして鉄フタロシアニン誘導体が担持された非晶質レーヨン繊維を得た。
(Comparative Example 6)
An iron phthalocyanine derivative was supported in the same manner as in Example 10 except that amorphous rayon fibers having a primary swelling degree of 250% (fineness 7.8 dtex, fiber length 51 mm) were used instead of the cationized rayon fibers. Amorphous rayon fiber was obtained.
 実施例及び比較例のレーヨン繊維のPAHs吸着性能を下記のように評価し、その結果を下記表1に示した。また、実施例のレーヨン繊維における金属フタロシアニンの担持量を、金属フタロシアニンの仕込み量により算出し、その結果を下記表1及び表2に示した。 The PAHs adsorption performance of the rayon fibers of Examples and Comparative Examples was evaluated as follows, and the results are shown in Table 1 below. Further, the amount of metal phthalocyanine supported in the rayon fibers of the examples was calculated from the amount of metal phthalocyanine charged, and the results are shown in Tables 1 and 2 below.
 (PAHs吸着性能評価1)
 4環構造を持つピレン(Pyr)を用いて、繊維のPAHsに対する吸着性能を評価した。レーヨン繊維50mgを5nMのピレン水溶液50ml中に浸漬し、37℃で1時間インキュベーションした。インキュベーション後に繊維を蒸留水で洗浄して負圧乾燥させた後、質量比が50:1のメタノール及び25%アンモニア水の混合液20mlを添加し、超音波により、ピレンを抽出した。抽出したピレンを、濃縮後に蛍光検出HPLCにより定量することで、繊維におけるピレンの吸着量を算出し、コントロール(繊維試料なし)に対する吸着率を求めた。吸着率の値が大きいほど、吸着性能に優れることを意味する。
(PAHs adsorption performance evaluation 1)
Using pyrene (Pyr) having a four-ring structure, the adsorption performance of the fiber to PAHs was evaluated. 50 mg of rayon fiber was immersed in 50 ml of 5 nM pyrene aqueous solution and incubated at 37 ° C. for 1 hour. After incubation, the fiber was washed with distilled water and dried under negative pressure, and 20 ml of a mixture of methanol and 25% aqueous ammonia having a mass ratio of 50: 1 was added, and pyrene was extracted by ultrasonic waves. The amount of pyrene adsorbed on the fiber was calculated by quantifying the extracted pyrene by fluorescence detection HPLC after concentration, and the adsorption rate relative to the control (no fiber sample) was determined. The larger the value of the adsorption rate, the better the adsorption performance.
 (PAHs吸着性能評価2)
 3環構造を持つフェナントレン(Phe)を用いて、繊維のPAHsに対する吸着性能を評価した。レーヨン繊維50mgを50nMのフェナントレン水溶液50ml中に浸漬し、37℃で1時間インキュベーションした。インキュベーション後に繊維を蒸留水で洗浄して負圧乾燥させた後、質量比が50:1のメタノール及び25%アンモニア水の混合液20mlを添加し、超音波により、フェナントレンを抽出した。抽出したフェナントレンを、濃縮後に蛍光検出HPLCにより定量することで、繊維におけるフェナントレンの吸着量を算出し、コントロール(繊維試料なし)に対する吸着率を求めた。吸着率の値が大きいほど、吸着性能に優れることを意味する。
(PAHs adsorption performance evaluation 2)
Using phenanthrene (Phe) having a tricyclic structure, the adsorption performance of fibers against PAHs was evaluated. 50 mg of rayon fiber was immersed in 50 ml of 50 nM phenanthrene aqueous solution and incubated at 37 ° C. for 1 hour. After incubation, the fiber was washed with distilled water and dried under negative pressure, and then 20 ml of a 50: 1 mixture of methanol and 25% aqueous ammonia was added, and phenanthrene was extracted by ultrasound. The amount of phenanthrene adsorbed on the fiber was calculated by quantifying the extracted phenanthrene by fluorescence detection HPLC after concentration, and the adsorption rate relative to the control (no fiber sample) was determined. The larger the value of the adsorption rate, the better the adsorption performance.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1から、実施例の金属フタロシアニン誘導体が担持されたカチオン化レーヨン繊維には、比較例のレーヨン繊維に比べて、同一条件下において約3~8倍のピレンが吸着されていることが分かった。また、金属フタロシアニン誘導体の担持量が1~3.3質量%の範囲の場合、ピレンに対する吸着性能がより優れることが分かった。また、表2から、金属フタロシアニン誘導体の担持量が1~3.3質量%の範囲の場合、フェナントレンに対する吸着性能にも優れることが分かった。なお、ピレンに対する吸着率がフェナントレンに対する吸着率より高かった。 From Table 1, it was found that the cationized rayon fiber carrying the metal phthalocyanine derivative of the example adsorbed about 3 to 8 times as much pyrene under the same conditions as the rayon fiber of the comparative example. . It was also found that when the amount of the metal phthalocyanine derivative supported is in the range of 1 to 3.3% by mass, the adsorption performance for pyrene is more excellent. Table 2 also shows that the adsorption performance for phenanthrene is excellent when the loading amount of the metal phthalocyanine derivative is in the range of 1 to 3.3% by mass. In addition, the adsorption rate with respect to pyrene was higher than the adsorption rate with respect to phenanthrene.
 また、金属フタロシアニン誘導体を同量(例えば2質量%)担持させた場合、ピレン吸着率が、スルホン酸基(SO3-)、オクタカルボキシル基(8COO)、テトラカルボキシル基(4COO)の順番で低くなることが分かった。これは、立体障害による吸着サイトの数の差が要因であると考えられる。また、金属フタロシアニン誘導体における官能基がスルホン酸基である場合のPAHs吸着ピークと、カルボキシル基である場合のPAHs吸着ピークが異なる可能性も示唆された。 Further, when the same amount (for example, 2% by mass) of the metal phthalocyanine derivative is supported, the pyrene adsorption rate is the order of sulfonic acid group (SO 3− ), octacarboxyl group (8COO ), and tetracarboxyl group (4COO ). It turned out to be low. This is considered to be caused by a difference in the number of adsorption sites due to steric hindrance. It was also suggested that the PAHs adsorption peak when the functional group in the metal phthalocyanine derivative is a sulfonic acid group and the PAHs adsorption peak when the functional group is a carboxyl group may be different.
 実施例及び比較例のレーヨン繊維の抗菌性を下記のように評価し、その結果を下記表3に示した。 The antibacterial properties of the rayon fibers of Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 3 below.
 (抗菌性評価)
 金沢大学に保管されている黄砂飛来時に能登上空の大気中から採集し、培養し、単離したBacillus菌を用いて、繊維の抗菌性を評価した。まず、前培養として、YPD液体培地(酵母エキス5g/L、ポリペプトン10g/L、グルコース10g/L)10ml中に、2白金耳量のBacillus菌を入れ、30℃で18~20時間浸透培養を行った。その後、前培養した菌液1mlを、試料繊維50mgを入れたYPD液体培地100ml中に移し、30℃で浸透培養を行った。8時間後と、12時間後と、24時間後に、それぞれ培養液を採集し、吸光光度計を用いて波長600nmで吸光度を測定し、細菌の濃度とし、コントロール(繊維試料なし)の細菌濃度に対する繊維混入溶液中の細菌濃度の比(以下において、単に細菌濃度の比とも記す。)を求めた。細菌濃度の比の値が小さいほど、抗菌性に優れることを意味する。
(Antimicrobial evaluation)
The antibacterial properties of the fibers were evaluated using Bacillus bacteria collected, cultured and isolated from the air above Noto when Kosazawa arrived at Kanazawa University. First, as a preculture, 2 platinum ears of Bacillus bacteria are put into 10 ml of YPD liquid medium (yeast extract 5 g / L, polypeptone 10 g / L, glucose 10 g / L), and osmotic culture is performed at 30 ° C. for 18 to 20 hours. went. Thereafter, 1 ml of the pre-cultured bacterial solution was transferred into 100 ml of YPD liquid medium containing 50 mg of sample fiber, and osmotic culture was performed at 30 ° C. After 8 hours, 12 hours, and 24 hours, the culture solution was collected, and the absorbance was measured at a wavelength of 600 nm using an absorptiometer to obtain the bacterial concentration, which was relative to the bacterial concentration of the control (no fiber sample). The ratio of the bacterial concentration in the fiber-mixed solution (hereinafter simply referred to as the bacterial concentration ratio) was determined. It means that it is excellent in antibacterial property, so that the value of ratio of bacteria concentration is small.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3から、実施例の鉄フタロシアニン誘導体又はコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を用いた場合、比較例のレーヨン繊維を用いた場合に比較して、細菌の濃度が顕著に低減していることが分かった。特に、本発明の所定の金属フタロシアニン誘導体を担持させたカチオン化レーヨン繊維が比較例3の銅フタロシアニン系染料を担持させたレーヨン繊維に比べて抗菌性が高くなったのは、フタロシアニンの担持方法が異なる、即ち比較例3はフタロシアニンが会合状態のままでセルロースに担持されているのに対し、本発明はカチオン化セルロースを用いることにより、フタロシアニンがカチオンサイトに分散して結合し、反応サイトが増加するためであると推測される。また、実施例2と実施例7の比較から、金属フタロシアニン誘導体における中心金属が鉄である場合、抗菌性がやや高いことが分かった。また、実施例8、13及び14の比較から、金属フタロシアニン誘導体における官能基がスルホン酸基である場合に抗菌性が最も高く、オクタカルボキシル基、テトラカルボキシル基の順番で低くなっていることが分かった。 From Table 3, when the cationized rayon fiber carrying the iron phthalocyanine derivative or cobalt phthalocyanine derivative of the example was used, the concentration of bacteria was significantly reduced as compared with the case of using the rayon fiber of the comparative example. I found out. In particular, the cationization rayon fiber carrying the predetermined metal phthalocyanine derivative of the present invention has higher antibacterial properties than the rayon fiber carrying the copper phthalocyanine dye of Comparative Example 3 because the phthalocyanine loading method is In contrast, in Comparative Example 3, phthalocyanine is supported in cellulose in an associated state, whereas the present invention uses cationized cellulose to disperse and bond phthalocyanine to the cation site, thereby increasing the reaction site. It is presumed to be. Further, from comparison between Example 2 and Example 7, it was found that when the central metal in the metal phthalocyanine derivative is iron, the antibacterial property is slightly high. Further, from comparison between Examples 8, 13, and 14, it is found that when the functional group in the metal phthalocyanine derivative is a sulfonic acid group, the antibacterial property is the highest, and the order of the octacarboxyl group and the tetracarboxyl group decreases. It was.
(実施例17)
 実施例2のコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維が20質量%、銅イオン担持レーヨン繊維(繊度1.7dtex、繊維長38mm)が30質量%、ポリエステル繊維(繊度1.6dtex、繊維長44mm)が50質量%で配合された水流交絡不織布(目付50g/m)を作製した。
(Example 17)
20% by mass of the cationized rayon fiber carrying the cobalt phthalocyanine derivative of Example 2, 30% by mass of the rayon fiber carrying copper ions (fineness 1.7 dtex, fiber length 38 mm), polyester fiber (fineness 1.6 dtex, fiber length) 44 mm) was produced in a hydroentangled nonwoven fabric (weight per unit area: 50 g / m 2 ) blended at 50% by mass.
 (比較例7)
 実施例2の繊維に替えて比較例1のレーヨン繊維を用いた以外は、実施例17と同様にして、水流交絡不織布(目付50g/m)を作製した。
(Comparative Example 7)
A hydroentangled nonwoven fabric (weight per unit area: 50 g / m 2 ) was produced in the same manner as in Example 17, except that the rayon fiber of Comparative Example 1 was used instead of the fiber of Example 2 .
 実施例17及び比較例7の水流交絡不織布を用いて、気中のピレン(Pyr)に対する吸着性を、気中実験Iで評価し、その結果を下記表4に示した。 Using the hydroentangled nonwoven fabrics of Example 17 and Comparative Example 7, the adsorptivity to air pyrene (Pyr) was evaluated in air experiment I, and the results are shown in Table 4 below.
[気中実験I]
 ピレンを塗布したフラスコをウォーターバスで30℃に加温してガス状ピレンを発生させ、その後ポンプを使ってピレン含有空気を吸引した。試料不織布を流路途中に設置し、ピレン含有空気を通気させ、流路の最後にはポリウレタンフォームを設置した。15L/分のポンプ流量で30分間通気させた後、試料不織布及びポリウレタンフォームにジクロロメタンを添加し、超音波により、ピレンを抽出した。抽出したピレンを、濃縮してろ過した後、ガスクロマトグラフ質量分析計(GC/MS、島津製作所(株)製のGC-17A/QP-5000)により、ピレンを定量し、繊維及びポリウレタンフォームへのピレンの吸着量を算出した。GC/MSの測定条件は、キャピラリカラム:DB-5MS(20m×0.25mm、J&W社製)、カラム温度:70℃(1分)/70~300℃(32分)/300℃(5分)であった。試料不織布へのピレンの吸着量及びポリウレタンフォームへのピレンの吸着量の合計を、ピレン発生量合計とし、ピレン発生量合計に対する試料不織布へのピレンの吸着量の比率を、試料不織布(繊維)への吸着率とした。
[Air experiment I]
The pyrene-coated flask was heated to 30 ° C. in a water bath to generate gaseous pyrene, and then the pyrene-containing air was sucked using a pump. A sample nonwoven fabric was installed in the middle of the flow path, a pyrene-containing air was vented, and polyurethane foam was installed at the end of the flow path. After aeration for 30 minutes at a pump flow rate of 15 L / min, dichloromethane was added to the sample nonwoven fabric and polyurethane foam, and pyrene was extracted by ultrasonic waves. The extracted pyrene is concentrated and filtered, and then the amount of pyrene is quantified with a gas chromatograph mass spectrometer (GC / MS, GC-17A / QP-5000, manufactured by Shimadzu Corporation) to form fibers and polyurethane foam. The adsorption amount of pyrene was calculated. The GC / MS measurement conditions were as follows: capillary column: DB-5MS (20 m × 0.25 mm, manufactured by J & W), column temperature: 70 ° C. (1 minute) / 70 to 300 ° C. (32 minutes) / 300 ° C. (5 minutes) )Met. The total amount of pyrene adsorbed on the sample nonwoven fabric and the amount of pyrene adsorbed on the polyurethane foam is defined as the total amount of pyrene generated, and the ratio of the amount of pyrene adsorbed on the sample nonwoven fabric to the total amount of pyrene generated is the sample nonwoven fabric (fiber). Adsorption rate.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 また、実施例7の繊維の大気中のピレンとフェナントレン(Phe)に対する吸着性を、気中実験IIで評価し、その結果を下記表5に示した。 In addition, the adsorptivity of the fiber of Example 7 to pyrene and phenanthrene (Phe) in the atmosphere was evaluated in an air experiment II, and the results are shown in Table 5 below.
[気中実験II]
 ピレンとフェナントレンについて、粒子相とガス相への分配率と気中における繊維への吸着率を調べた。室内空気を、ガラス繊維フィルター(直径55mm)、実施例7の繊維(0.1g)、ポンプ、流量計という順番の流路をたどるように通過させた。なお、ガラス繊維フィルター及び実施例7の繊維によって、それぞれ、粒子状及びガス状PAHsが採集されることになる。室温(20±5℃)下、24時間(ポンプ流量:17.5L/分)PAHsを採集した。その後、直径が5mmになるようにカットしたガラス繊維フィルターに、エタノール10mlとベンゼン20mlを添加し、PAHsを超音波抽出した。実施例7の繊維には、質量比が50:1のメタノール及び25%アンモニア水の混合液20mlを添加し、超音波により、PAHsを抽出した。抽出したPAHsを、濃縮後に蛍光検出HPLCにより定量することで、ピレン及びフェナントレンの吸着量を算出した。
[Air experiment II]
For pyrene and phenanthrene, the partition rate into the particle phase and the gas phase and the adsorption rate to the fibers in the air were investigated. The room air was passed through a glass fiber filter (diameter 55 mm), the fiber of Example 7 (0.1 g), a pump, and a flow meter in that order. Particulate and gaseous PAHs are collected by the glass fiber filter and the fibers of Example 7, respectively. PAHs were collected at room temperature (20 ± 5 ° C.) for 24 hours (pump flow rate: 17.5 L / min). Thereafter, 10 ml of ethanol and 20 ml of benzene were added to a glass fiber filter cut to have a diameter of 5 mm, and PAHs were ultrasonically extracted. To the fiber of Example 7, 20 ml of a mixed solution of methanol and 25% ammonia water having a mass ratio of 50: 1 was added, and PAHs were extracted by ultrasonic waves. The amount of pyrene and phenanthrene adsorbed was calculated by quantifying the extracted PAHs by fluorescence detection HPLC after concentration.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表4の気中実験Iにおける実施例17及び比較例7の不織布によるピレン吸着率を比較した結果、気中においても金属フタロシアニン誘導体を担持したカチオン化レーヨン繊維を含む実施例17の不織布の方がピレンをより吸着しやすく、マスクやエアフィルターなどのフィルター用途として使用できることが確認できた。また、気中実験IIの結果から、実施例7の繊維が気中のピレン及びフェナントレンを吸着することが分かり、フィルター用途として使用できることが確認できた。 As a result of comparing the adsorption rate of pyrene by the nonwoven fabric of Example 17 and Comparative Example 7 in the air experiment I of Table 4, the nonwoven fabric of Example 17 containing a cationized rayon fiber carrying a metal phthalocyanine derivative even in the air. It was confirmed that pyrene was more easily adsorbed and could be used for filter applications such as masks and air filters. Moreover, from the result of the air experiment II, it was found that the fiber of Example 7 adsorbs the air-containing pyrene and phenanthrene, and it was confirmed that the fiber could be used as a filter.
 (実施例18)
<マスクの作製>
 実施例17の不織布を、ポリプロピレンスパンボンド不織布の上に載置し、さらに実施例17の不織布の上にポリプロピレンメルトブローン不織布とポリプロピレンスパンボンド不織布をこの順番で重ね合わせて、縦15cm、横15cmに切断し、3段にプリーツ折りして、横方向の端の中央部に耳掛け紐を設け、シート端の四辺をヒートシール加工し、マスクを作製した。このマスクは、外側から内側(口側)に向けて補強不織布(スパンボンド不織布)、精密濾過不織布(メルトブローン不織布)、実施例17の不織布、補強不織布(スパンボンド不織布)の構成となっている。このマスクを装着したところ、息苦しさもなく、装着性も良好であった。なお、このマスクは、実施例17の不織布を含むため、大気中のピレンなどの砂塵飛来有害物質を吸着することが可能である。
(Example 18)
<Manufacture of mask>
The nonwoven fabric of Example 17 was placed on a polypropylene spunbonded nonwoven fabric, and the polypropylene meltblown nonwoven fabric and the polypropylene spunbonded nonwoven fabric were superimposed on the nonwoven fabric of Example 17 in this order, and cut to 15 cm in length and 15 cm in width. Then, pleats were folded in three steps, an ear strap was provided at the center of the lateral end, and the four sides of the sheet end were heat sealed to produce a mask. This mask has a configuration of a reinforcing nonwoven fabric (spunbond nonwoven fabric), a microfiltration nonwoven fabric (meltblown nonwoven fabric), a nonwoven fabric of Example 17, and a reinforcing nonwoven fabric (spunbond nonwoven fabric) from the outside toward the inside (mouth side). When this mask was worn, there was no breathing and the wearability was good. In addition, since this mask contains the nonwoven fabric of Example 17, it is possible to adsorb dust dust harmful substances such as pyrene in the atmosphere.
(実施例19)
<エアフィルターの作製>
 レーヨン繊維として、繊度5.5dtexであるビスコースレーヨン繊維(商品名「コロナ」、ダイワボウレーヨン株式会社製)を用いた以外は、実施例2と同様にして、1質量%のコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維を得た。得られたコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維(繊度5.5dtex、繊維長51mm)40質量部と、銅イオン担持繊維(繊度7.8dtex、繊維長51mm)20質量部と、ポリエステル繊維(繊度30dtex、繊維長64mm)40質量部を混合し、カード機を用いて開繊した。得られたカードウェブをクロスレイヤーで積層して積層ウェブを作製した。次いで、アクリルバインダーを積層ウェブの両面にスプレーして、120℃で1分間乾燥し、150℃で3分間キュアリングして、アクリルバインダーが固形分で15質量%付着したケミカルボンド不織布を作製した。得られた不織布の目付は60g/mであった。得られたケミカルボンド不織布を所定の大きさに裁断して、プラスチック製ユニットにはめ込んで、空気清浄機用プレフィルターを作製した。このフィルターを空気清浄機に装着して使用したところ、十分なフィルター性能を発揮していた。なお、このフィルターは、金属フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を含むため、大気中のピレンなどの砂塵飛来有害物質を吸着することが可能である。
(Example 19)
<Production of air filter>
1% by weight of cobalt phthalocyanine derivative is supported in the same manner as in Example 2 except that viscose rayon fiber (trade name “Corona”, manufactured by Daiwabo Rayon Co., Ltd.) having a fineness of 5.5 dtex is used as the rayon fiber. Cationized rayon fibers were obtained. 40 parts by mass of cationized rayon fiber (fineness 5.5 dtex, fiber length 51 mm) carrying the cobalt phthalocyanine derivative obtained, 20 parts by mass of copper ion-carrying fiber (fineness 7.8 dtex, fiber length 51 mm), and polyester fiber 40 parts by mass (fineness 30 dtex, fiber length 64 mm) were mixed and opened using a card machine. The obtained card web was laminated with a cross layer to produce a laminated web. Next, an acrylic binder was sprayed on both sides of the laminated web, dried at 120 ° C. for 1 minute, and cured at 150 ° C. for 3 minutes to produce a chemical bond nonwoven fabric in which 15% by mass of the acrylic binder adhered to the solid content. The basis weight of the obtained nonwoven fabric was 60 g / m 2 . The obtained chemical bond nonwoven fabric was cut into a predetermined size and fitted into a plastic unit to prepare a prefilter for an air cleaner. When this filter was mounted on an air purifier and used, sufficient filter performance was demonstrated. In addition, since this filter contains the cationized rayon fiber by which the metal phthalocyanine derivative was carry | supported, it can adsorb | suck a dust dust flying harmful substance, such as pyrene in air | atmosphere.
 (実施例20)
<エアフィルターの作製>
 実施例18と同様にして作製した1質量%のコバルトフタロシアニン誘導体が担持されたカチオン化レーヨン繊維(繊度5.5dtex、繊維長51mm)30質量部と、銅イオン担持繊維(繊度7.8dtex、繊維長51mm)30質量部と、芯成分がポリプロピレン、鞘成分が高密度ポリエチレンからなる鞘芯型複合繊維(ダイワボウポリテック(株)製、商品名「NBF(H)」、繊度2.2dtex、繊維長51mm)30質量部を混合し、カード機を用いて開繊した。得られたカードウェブをクロスレイヤーで積層して積層ウェブを作製した。次いで、140℃の熱風加工機で熱処理して、鞘芯型複合繊維の鞘成分を溶融させて、サーマルボンド不織布を作製した。得られたサーマルボンド不織布の目付は60g/mであった。この不織布を空気清浄機用エアフィルターとして使用したところ、十分なフィルター性能を発揮していた。なお、このフィルターは、金属フタロシアニン誘導体が担持されたカチオン化レーヨン繊維を含むため、大気中のピレンなどの砂塵飛来有害物質を吸着することが可能である。
(Example 20)
<Production of air filter>
30 parts by mass of a cationized rayon fiber (fineness 5.5 dtex, fiber length 51 mm) on which 1% by mass of cobalt phthalocyanine derivative prepared in the same manner as in Example 18 was supported, and copper ion-supported fiber (fineness 7.8 dtex, fiber) Length 51mm) 30 parts by mass, sheath-core composite fiber with core component made of polypropylene and sheath component made of high-density polyethylene (Daiwabo Polytech Co., Ltd., trade name “NBF (H)”, fineness 2.2 dtex, fiber length 51 mm) 30 parts by mass were mixed and opened using a card machine. The obtained card web was laminated with a cross layer to produce a laminated web. Subsequently, it heat-processed with the 140 degreeC hot-air processing machine, the sheath component of the sheath-core type composite fiber was melted, and the thermal bond nonwoven fabric was produced. The basis weight of the obtained thermal bond nonwoven fabric was 60 g / m 2 . When this nonwoven fabric was used as an air filter for an air purifier, sufficient filter performance was exhibited. In addition, since this filter contains the cationized rayon fiber by which the metal phthalocyanine derivative was carry | supported, it can adsorb | suck a dust dust flying harmful substance, such as pyrene in air | atmosphere.
 本発明の砂塵飛来有害物質及び微生物を除去する除去剤(砂塵飛来有害物質及び微生物を除去するセルロース繊維)は、砂塵飛来有害物質であるPAHsに対して優れた吸着性能を有するとともに、砂塵飛来微生物である細菌に対しても優れた抗菌性を有する。よって、本発明の砂塵飛来有害物質及び微生物を除去する除去剤(砂塵飛来有害物質及び微生物を除去するセルロース繊維)は、黄砂エアロゾル由来の有害物質である発ガン性物質に対する吸着作用及び黄砂エアロゾル由来の微生物(細菌)に対する抗菌作用の両方の効果を示す繊維素材として提供することができる。 The removal agent for removing dust flying harmful substances and microorganisms (cellulose fiber for removing dust flying harmful substances and microorganisms) of the present invention has excellent adsorption performance for PAHs which are dust flying harmful substances, and also dust flying microorganisms. It has excellent antibacterial properties against bacteria. Therefore, the removing agent for removing dust flying harmful substances and microorganisms (cellulose fiber for removing dust flying harmful substances and microorganisms) of the present invention is adsorbed to carcinogenic substances which are harmful substances derived from yellow sand aerosol and derived from yellow sand aerosol. It can be provided as a fiber material that exhibits both antibacterial effects on microorganisms (bacteria).
 本発明の砂塵飛来有害物質及び微生物を除去する除去剤、セルロース繊維並びに繊維構造物は、砂塵飛来有害物質及び微生物を吸着・除去できることから、例えば、フィルター、マスク、ベビーカーなどの対人用のカバー材、農業用カバーなどの農業資材、網戸、カーテンなどの用途に用いることができる。 The removing agent for removing dust flying harmful substances and microorganisms, the cellulose fiber and the fiber structure of the present invention can adsorb and remove the dust flying harmful substances and microorganisms, so that, for example, a cover material for people such as filters, masks, strollers, etc. It can be used for agricultural materials such as agricultural covers, screen doors and curtains.

Claims (8)

  1.  砂塵飛来有害物質及び微生物を除去する除去剤であり、
     カチオン化剤によりカチオン化されたセルロースに、下記式(I)で示される金属フタロシアニン誘導体が担持されている除去剤。
    Figure JPOXMLDOC01-appb-C000001
     但し、式(I)中、MはFe、Co又はCuであり、R、R、R及びRはそれぞれカルボキシル基又はスルホン酸基であり、R、R、R及びRは同一又は異なってもよく、n1、n2、n3及びn4はそれぞれ0~4の整数であり且つ1≦n1+n2+n3+n4≦8を満たす。
    It is a remover that removes harmful substances and microorganisms that come in dust,
    A removing agent in which a metal phthalocyanine derivative represented by the following formula (I) is supported on cellulose cationized by a cationizing agent.
    Figure JPOXMLDOC01-appb-C000001
    However, in formula (I), M is Fe, Co or Cu, R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group, and R 1 , R 2 , R 3 and R 4 may be the same or different, and n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ≦ n1 + n2 + n3 + n4 ≦ 8.
  2.  前記R、R、R及びRは同一又は異なるスルホン酸基であり、n1、n2、n3及びn4はそれぞれ0~1の整数であり、且つ1≦n1+n2+n3+n4≦2である請求項1に記載の除去剤。 2. The R 1 , R 2 , R 3 and R 4 are the same or different sulfonic acid groups, n1, n2, n3 and n4 are each an integer of 0 to 1, and 1 ≦ n1 + n2 + n3 + n4 ≦ 2. The remover described in 1.
  3.  前記カチオン化剤は、第4級アンモニウム塩型クロルヒドリン誘導体である請求項1又は2に記載の除去剤。 The removing agent according to claim 1 or 2, wherein the cationizing agent is a quaternary ammonium salt type chlorohydrin derivative.
  4.  前記第4級アンモニウム塩型クロルヒドリン誘導体は、単分子中に2つの第4級アンモニウム塩を有するクロルヒドリン誘導体である請求項3に記載の除去剤。 The removal agent according to claim 3, wherein the quaternary ammonium salt type chlorohydrin derivative is a chlorohydrin derivative having two quaternary ammonium salts in a single molecule.
  5.  前記セルロースは、コットンセルロース材料又は結晶性を有する再生セルロース材料である請求項1~4のいずれか1項に記載の除去剤。 The removing agent according to any one of claims 1 to 4, wherein the cellulose is a cotton cellulose material or a regenerated cellulose material having crystallinity.
  6.  前記金属フタロシアニン誘導体の担持量は、セルロースに対し0.5~3.3質量%である請求項1~5のいずれか1項に記載の除去剤。 The removal agent according to any one of claims 1 to 5, wherein the supported amount of the metal phthalocyanine derivative is 0.5 to 3.3 mass% with respect to cellulose.
  7.  砂塵飛来有害物質及び微生物を除去するセルロース繊維であり、
     カチオン化剤によりカチオン化されたセルロース繊維に、下記式(I)で示される金属フタロシアニン誘導体が担持されているセルロース繊維。
    Figure JPOXMLDOC01-appb-C000002
     但し、式(I)中、MはFe、Co又はCuであり、R、R、R及びRはそれぞれカルボキシル基又はスルホン酸基であり、R、R、R及びRは同一又は異なってもよく、n1、n2、n3及びn4はそれぞれ0~4の整数であり且つ1≦n1+n2+n3+n4≦8を満たす。
    Cellulose fibers that remove harmful substances and microorganisms that come in dust,
    A cellulose fiber in which a metal phthalocyanine derivative represented by the following formula (I) is supported on a cellulose fiber cationized by a cationizing agent.
    Figure JPOXMLDOC01-appb-C000002
    However, in formula (I), M is Fe, Co or Cu, R 1 , R 2 , R 3 and R 4 are each a carboxyl group or a sulfonic acid group, and R 1 , R 2 , R 3 and R 4 may be the same or different, and n1, n2, n3 and n4 are each an integer of 0 to 4 and satisfy 1 ≦ n1 + n2 + n3 + n4 ≦ 8.
  8.  砂塵飛来有害物質及び微生物を除去する繊維構造物であり、
     前記繊維構造物は、請求項7に記載のセルロース繊維を含み、
     前記繊維構造物中の金属フタロシアニン誘導体の含有量が0.2質量%以上である繊維構造物。
    It is a fiber structure that removes dust dust harmful substances and microorganisms,
    The fiber structure includes the cellulose fiber according to claim 7,
    The fiber structure whose content of the metal phthalocyanine derivative in the said fiber structure is 0.2 mass% or more.
PCT/JP2012/067812 2011-07-14 2012-07-12 Decontaminating agent for removing harmful substances derived from flying dust and microorganisms, cellulose fiber, and fiber structure WO2013008883A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013523981A JP6057343B2 (en) 2011-07-14 2012-07-12 Remover that removes harmful substances and microorganisms from flying dust, cellulose fiber and fiber structure
CN201280033288.1A CN103648637A (en) 2011-07-14 2012-07-12 Decontaminating agent for removing harmful substances derived from flying dust and microorganisms, cellulose fiber, and fiber structure
KR1020137034973A KR20140043909A (en) 2011-07-14 2012-07-12 Decontaminating agent for removing harmful substances derived from flying dust and microorganisms, cellulose fiber, and fiber structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011155806 2011-07-14
JP2011-155806 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008883A1 true WO2013008883A1 (en) 2013-01-17

Family

ID=47506162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067812 WO2013008883A1 (en) 2011-07-14 2012-07-12 Decontaminating agent for removing harmful substances derived from flying dust and microorganisms, cellulose fiber, and fiber structure

Country Status (5)

Country Link
JP (1) JP6057343B2 (en)
KR (1) KR20140043909A (en)
CN (1) CN103648637A (en)
TW (1) TWI589581B (en)
WO (1) WO2013008883A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171997A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Anion adsorptive material, method for producing the same, and water treating material
JP2018071022A (en) * 2016-10-31 2018-05-10 ダイワボウホールディングス株式会社 Fiber aggregate and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116227B (en) * 2014-04-09 2016-06-29 青岛阳光动力生物医药技术有限公司 A kind of antibacterial and effective mask filter disc filtering PM2.5 particulate matter
CN104894857B (en) * 2015-06-25 2017-12-05 浙江理工大学 Anti-bacterial, anti-itching catalysis fibre and preparation method thereof
CN104894878B (en) * 2015-06-30 2017-07-28 浙江理工大学 Anti-bacterial, anti-itching catalysis fibre based on metal phthalocyanine and preparation method thereof
CN109972293A (en) * 2019-04-26 2019-07-05 嘉兴学院 A kind of metal phthalocyanine polylactic acid nano fiber film and preparation method thereof
CN111729653A (en) * 2020-07-01 2020-10-02 北京理工大学珠海学院 Polyamine vegetable fiber-based adsorption material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135572A (en) * 1986-11-22 1988-06-07 東洋紡績株式会社 Fiber having deodorizing function
JPH02124162A (en) * 1988-11-04 1990-05-11 Matsushita Electric Ind Co Ltd Deodorizing material
JPH02307983A (en) * 1989-05-19 1990-12-21 Kurabo Ind Ltd Deodorizing fiber
JP2004316006A (en) * 2003-04-15 2004-11-11 Daiei Kk Nipple patch
JP2004329270A (en) * 2003-04-30 2004-11-25 Suminoe Textile Co Ltd Deodorizing material and its production method
WO2009104761A1 (en) * 2008-02-20 2009-08-27 大和紡績株式会社 Anti-viral agents, anti-viral fibers and anti-viral fiber structures
JP2011042095A (en) * 2009-08-20 2011-03-03 Daiwabo Holdings Co Ltd Antiviral film material, waterproof fabric product, and tent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135572A (en) * 1986-11-22 1988-06-07 東洋紡績株式会社 Fiber having deodorizing function
JPH02124162A (en) * 1988-11-04 1990-05-11 Matsushita Electric Ind Co Ltd Deodorizing material
JPH02307983A (en) * 1989-05-19 1990-12-21 Kurabo Ind Ltd Deodorizing fiber
JP2004316006A (en) * 2003-04-15 2004-11-11 Daiei Kk Nipple patch
JP2004329270A (en) * 2003-04-30 2004-11-25 Suminoe Textile Co Ltd Deodorizing material and its production method
WO2009104761A1 (en) * 2008-02-20 2009-08-27 大和紡績株式会社 Anti-viral agents, anti-viral fibers and anti-viral fiber structures
JP2011042095A (en) * 2009-08-20 2011-03-03 Daiwabo Holdings Co Ltd Antiviral film material, waterproof fabric product, and tent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171997A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Anion adsorptive material, method for producing the same, and water treating material
JP2018071022A (en) * 2016-10-31 2018-05-10 ダイワボウホールディングス株式会社 Fiber aggregate and manufacturing method thereof

Also Published As

Publication number Publication date
TWI589581B (en) 2017-07-01
TW201317244A (en) 2013-05-01
CN103648637A (en) 2014-03-19
KR20140043909A (en) 2014-04-11
JP6057343B2 (en) 2017-01-11
JPWO2013008883A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6057343B2 (en) Remover that removes harmful substances and microorganisms from flying dust, cellulose fiber and fiber structure
JP4558831B2 (en) Antiviral agent, antiviral fiber and antiviral fiber structure
TWI687250B (en) Wash-durable face mask with antimicrobial properties and/or improved washability
CN107455822A (en) A kind of nanofiber micrometer fibers compound anti-mist haze mouth mask
US7955997B2 (en) Electrostatically charged filter media incorporating an active agent
US20100272668A1 (en) Antiviral substance, antiviral fiber, and antiviral fiber structure
EP2063723A1 (en) Anti-viral face mask and filter material
KR20170125875A (en) Textile with antimicrobial properties
CN107029552A (en) It is a kind of to be used for self-assembled coating cloth or paper of the VOCs such as formaldehyde improvement and preparation method thereof
JP2000070646A (en) Air purifying filter member
CN106917267A (en) A kind of preparation method of antibacterial high efficiency filter non-woven fabrics
CN106861287B (en) A kind of air-conditioning air inlet filter screen air filtration non-woven fabrics and preparation method thereof
CN111535033B (en) Preparation method and application of iodine antimicrobial microporous fiber material
Couzon et al. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs)–A review
US20090299250A1 (en) Antiviral filter and its use in an air purifier, air conditioner or air humidifier
WO2013086511A1 (en) Processes for producing antitoxic fibers and fabrics
JP4030231B2 (en) Air purification filter
CN208130648U (en) Composite filtering film
WO2012123446A1 (en) Filter material and face mask against pathogens
WO2021181345A1 (en) Air filtration system and manufacturing method thereof
CN107174868B (en) A kind of vehicle-mounted air purification piece and preparation method thereof
JP2011042615A (en) Antiviral substance, antiviral fiber and antiviral fiber structure
JP2000279505A (en) Deodorizing electret filter and manufacture thereof
JP6257547B2 (en) Deodorant-filled filter media
JP4669247B2 (en) filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523981

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034973

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811113

Country of ref document: EP

Kind code of ref document: A1