WO2013005545A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2013005545A1
WO2013005545A1 PCT/JP2012/065123 JP2012065123W WO2013005545A1 WO 2013005545 A1 WO2013005545 A1 WO 2013005545A1 JP 2012065123 W JP2012065123 W JP 2012065123W WO 2013005545 A1 WO2013005545 A1 WO 2013005545A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
region
magnetic
current path
sensor
Prior art date
Application number
PCT/JP2012/065123
Other languages
English (en)
French (fr)
Inventor
雅俊 野村
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2013522577A priority Critical patent/JP6031639B6/ja
Publication of WO2013005545A1 publication Critical patent/WO2013005545A1/ja
Priority to US14/109,691 priority patent/US9201101B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a current sensor that measures the magnitude of current.
  • a current sensor capable of measuring a large current without contact is required.
  • a magnetic sensor provided in the vicinity of a current path (current path to be measured) of the current to be measured is used to detect a change in magnetic field due to the current to be measured flowing through the current path to be measured;
  • a current sensor for measuring a measured current has also been put to practical use.
  • Such a current sensor is configured, for example, by arranging a plurality of long current paths respectively extending in a specific direction in parallel with their extending directions aligned, and arranging magnetic sensors in each current path. Therefore, the measurement accuracy of the current to be measured is reduced due to the influence of the magnetic field of the adjacent current flowing through the current path (adjacent current path) of the adjacent current through the magnetic sensor provided in the vicinity of the current path to be measured.
  • the direction of the magnetic field generated by the current to be measured is the sensitivity axis direction
  • the direction of the magnetic field generated by the adjacent current is the direction of the sensitivity axis to prevent the decrease in measurement accuracy of the current to be measured.
  • There have been proposed current sensors in which magnetic sensors are disposed at positions orthogonal to each other for example, Patent Document 1 and Patent Document 2).
  • the magnetic sensor is disposed at a position such that the direction of the magnetic field generated by the current to be measured is the sensitivity axis direction and the direction of the magnetic field generated by the adjacent current is the direction orthogonal to the sensitivity axis direction. It is necessary to make the position accuracy of the magnetic sensor very high. Furthermore, it is necessary to incline the magnetic sensor with respect to the vertical direction of the main surface of the measured current path so that the direction of the magnetic field generated by the adjacent current and the sensitivity axis direction of the magnetic sensor are orthogonal to each other. The mounting accuracy of the must also be very high. Therefore, in the current sensor as described above, there is a problem that high positional accuracy and mounting accuracy of the magnetic sensor are required to prevent a decrease in measurement accuracy of the measured current due to the influence of the magnetic field generated by the adjacent current.
  • the mounting accuracy of the magnetic sensor must also be very high. Therefore, in the current sensor as described above, there is a problem that high positional accuracy and mounting accuracy of the magnetic sensor are required to prevent a decrease in measurement accuracy of
  • the present invention has been made in view of such a point, and the influence of the magnetic field generated by the adjacent current is reduced without requiring the very high positional accuracy and mounting accuracy of the magnetic sensor, so that the current to be measured can be accurate.
  • An object of the present invention is to provide a current sensor that can be measured.
  • the current sensor according to the present invention includes a first current path having a pair of main surfaces and a first region having a flat plate shape, and a second region having a pair of main surfaces and having a flat plate shape, A second current path provided in parallel to the first current path, and a sensitivity axis parallel to both main surfaces of the first area, disposed on both main surfaces of the first area, And a first magnetic sensor for detecting a magnetic field generated by a current to be measured which is parallel to each other and which flows through the first area, the second area being the second area of the second area.
  • the main surface is disposed to be orthogonal to the sensitivity axis of the first magnetic sensor.
  • the second region of the second current path is disposed such that the main surface of the second region is orthogonal to the sensitivity axis of the first magnetic sensor, it flows through the second region.
  • a magnetic field (magnetic flux) due to the adjacent current passes through the first magnetic sensor in a direction orthogonal to the sensitivity axis of the first magnetic sensor. Therefore, the first magnetic sensor does not detect the magnetic field generated by the adjacent current. Therefore, this current sensor can measure the measured current flowing through the first current path without being affected by the magnetic field of the adjacent second current path.
  • the first magnetic sensor is disposed on the main surface such that the sensitivity axis of the first magnetic sensor is parallel to the main surface of the first region, very high positional accuracy of the first magnetic sensor And mounting accuracy is not required. Therefore, the measurement accuracy of the measured current flowing through the first current path is reduced due to the influence of the magnetic field of the adjacent second current path, without requiring the very high positional accuracy and mounting accuracy of the first magnetic sensor. You can prevent Furthermore, since the sensitivity axes of the pair of magnetic sensors are parallel to each other, by taking the differential output of the pair of magnetic sensors, it is possible to cancel the disturbance magnetic field such as geomagnetism applied to the pair of magnetic sensors in the same direction.
  • the width of the second region may be wider than the distance between the pair of first magnetic sensors. According to this configuration, since the magnetic field generated by the adjacent current can be applied to the magnetic sensor in the direction perpendicular to the sensitivity axis direction of the magnetic sensor, the influence of the magnetic field due to the adjacent current can be reduced more efficiently.
  • the first current path has a pair of main surfaces and is provided with a flat third region
  • the second current path has a pair of main surfaces and is flat
  • a fourth region is provided and disposed on both main surfaces of the fourth region so that the sensitivity axes are parallel to both main surfaces of the fourth region, and the sensitivity axes are parallel to each other
  • the third region further includes a pair of second magnetic sensors that detect a magnetic field generated by a measured current flowing through the fourth region, and the third region has a sensitivity of the second magnetic sensor as the main surface of the third region. It may be disposed to be orthogonal to the axis.
  • the third region of the first current path is disposed such that the main surface of the third region is orthogonal to the sensitivity axis of the second magnetic sensor, the third region flows through the third region.
  • the magnetic field (magnetic flux) of the adjacent current passes through the second magnetic sensor in the direction orthogonal to the sensitivity axis of the second magnetic sensor. Therefore, the second magnetic sensor does not detect the magnetic field generated by the adjacent current. Therefore, this current sensor can measure the measured current flowing through the second current path without being affected by the magnetic field of the adjacent first current path.
  • the second magnetic sensor is disposed on the main surface so that the sensitivity axis of the second magnetic sensor is parallel to the main surface of the fourth region, very high positional accuracy of the second magnetic sensor And mounting accuracy is not required. Therefore, even if the positional accuracy and the mounting accuracy of the second magnetic sensor are not required, the measurement accuracy of the measured current flowing through the second current path is prevented from being lowered by the influence of the magnetic field of the adjacent first current path. it can. Furthermore, since the sensitivity axes of the pair of magnetic sensors are parallel to each other, by taking the differential output of the pair of magnetic sensors, it is possible to cancel the disturbance magnetic field such as geomagnetism applied to the pair of magnetic sensors in the same direction.
  • the width of the third region may be wider than the distance between the pair of second magnetic sensors. According to this configuration, according to this configuration, the magnetic field generated by the adjacent current can be applied to the magnetic sensor in the direction perpendicular to the sensitivity axis direction of the magnetic sensor, so the influence of the magnetic field due to the adjacent current can be reduced more efficiently. can do.
  • the first current path and the second current path respectively extend in a specific direction, and the main surface of the first region of the first current path and the main of the third region
  • the surface may be orthogonal to the surface, and the main surface of the second region of the second current path may be orthogonal to the main surface of the fourth region.
  • the first current path and the second current path extend in the specific direction in a state in which the first current path and the second current path are juxtaposed, respectively.
  • the main surfaces of the first region and the third region, or the second region and the fourth region) are in a twisted relationship with each other.
  • the main surface of the second region is the sensitivity of the first magnetic sensor
  • the third region is disposed such that the main surface of the third region is orthogonal to the sensitivity axis of the second magnetic sensor, and the first current path and the second current path are disposed.
  • two of the second current paths are disposed across the first current path, and the main surfaces of the second region of the second current paths are the same as each other.
  • the main surfaces of the fourth region of the second current path are flush with each other across the third region of the first current path. It may be disposed in
  • the present invention it is possible to provide a current sensor capable of measuring the current to be measured with high accuracy by reducing the influence of the magnetic field due to the adjacent current without requiring positional accuracy or mounting accuracy of the magnetic sensor.
  • a current sensor is configured by disposing a magnetic sensor in a device in which a plurality of long current paths extending in a specific direction are arranged in parallel with the extension direction aligned.
  • the magnetic sensor disposed in the current path detects the magnetic field due to the measured current flowing through the current path, and detects the magnetic field due to the adjacent current flowing through the current path adjacent to the current path. Detect the department. Therefore, the measured current can not be accurately measured because of the influence of the magnetic field due to the adjacent current.
  • FIG. 6 three long current paths respectively extending in a specific direction are arranged side by side with their extending directions aligned, and current sensors are disposed in each current path (flat conductor (bus bar)).
  • FIG. 6A is a sectional view
  • FIG. 6B is a partially enlarged sectional view.
  • three bus bars 21 to 23 are disposed so as to extend from the front side to the back side in the drawing. Further, the bus bars 21 to 23 are arranged side by side so that their main surfaces are flush with each other.
  • the current to be measured flows through the bus bars 21 to 23 from the front side to the rear side of the drawing sheet. As described above, when the current to be measured flows through the bus bars 21-23, an induced magnetic field is generated in the direction of the broken line shown in FIG. 6A.
  • a magnetic sensor 24 is disposed on one of the main surfaces of the bus bars 21-23. Further, the sensitivity axes of the magnetic sensors 24 are parallel to the main surfaces of the bus bars 21 to 23 and orthogonal to the flowing direction of the current to be measured.
  • the bus bar 21 will be described as a current path to be measured, and the bus bar 22 will be described as an adjacent current path.
  • the magnetic field of the adjacent current flowing through the bus bar 22 is applied at an angle from a direction perpendicular to the sensitivity axis direction of the magnetic sensor 24 on the main surface of the bus bar 21.
  • the magnetic sensor 24 detects a component B ′ parallel to the sensitivity axis direction of the magnetic sensor 24 in this vector. Therefore, the magnetic sensor 24 detects the magnetic field of the current to be measured flowing through the bus bar 21 and the magnetic field of the adjacent current. As a result, the measured current can not be accurately measured due to the influence of the magnetic field due to the adjacent current.
  • the magnetic sensor is disposed on the main surface so that the sensitivity axis direction of the magnetic sensor is parallel to the in-plane direction of the flat region of the flat current path
  • the current path of the adjacent current is arranged so that the in-plane direction of the planar region of the adjacent current path is orthogonal to the sensitivity axis direction of the magnetic sensor, thereby requiring extremely high positional accuracy and mounting accuracy of the magnetic sensor. It is to measure a to-be-measured electric current accurately.
  • FIG. 1 is a perspective view schematically showing the current sensor 1 of the present embodiment.
  • 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 1
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG.
  • the current sensor 1 includes three current paths, that is, a bus bar 11 (first current path) and bus bars 12 a and 12 b (second current paths).
  • Each of the bus bars 11, 12a and 12b is a long flat plate-shaped conductor extending in a specific direction, and arranged in parallel in a state in which the extending directions are aligned.
  • the bus bar 11 has a pair of main surfaces 11a and 11b as shown in FIG. 2A.
  • the pair of main surfaces 11a and 11b are parallel to each other.
  • Magnetic sensors 13a and 13b are disposed on the pair of main surfaces 11a and 11b, respectively.
  • the directions of the sensitivity axes of the pair of magnetic sensors 13a and 13b are parallel to the respective main surfaces 11a and 11b of the bus bar 11, as shown in FIG. 2A, and are parallel to each other.
  • a region including a portion of the bus bar 11 where the magnetic sensor 13 is disposed corresponds to a first region 111 having a flat plate shape as referred to in the present invention.
  • the first area 111 is an area in the bus bar 11 including at least the position where the magnetic sensor 13 is disposed.
  • the bus bars 12a and 12b have a pair of main surfaces 12c and 12d.
  • the pair of main surfaces 12c, 12d are parallel to each other.
  • Magnetic sensors 13a and 13b are disposed on the pair of main surfaces 12c and 12d, respectively.
  • the directions of the sensitivity axes of the pair of magnetic sensors 13a and 13b are parallel to the main surfaces 12c and 12d of the bus bars 12a and 12b, respectively, as shown in FIG. 2B. It is perpendicular (X direction in FIGS. 2A and 2B) to Y direction in FIGS. 2A and 2B.
  • the directions of the sensitivity axes of the pair of magnetic sensors 13a and 13b are parallel to each other.
  • the area including the portion where the magnetic sensors 13a and 13b are disposed in the bus bars 12a and 12b corresponds to the fourth area 122 having a flat plate shape as referred to in the present invention.
  • the fourth area 122 is an area including at least the positions at which the magnetic sensors 13a and 13b are disposed in the bus bars 12a and 12b.
  • the positions at which the magnetic sensors 13a and 13b of the bus bar 11 are disposed in the side of one end face of the first region 111 (the flow direction of the measured current (Y direction in FIG. 2A)
  • a substantially flat second region 121 of the bus bar 12a is located at substantially the same position as the position where the magnetic sensors 13a and 13b of the bus bar 11 are disposed in the flow direction.
  • the magnetic sensor 13a of the bus bar 11 in the lateral direction of the other end face of the first region 111 in the flow direction of the current to be measured (Y direction in FIG. 2A)).
  • the second region 121 which is a flat plate shape of the bus bar 12b, is located at substantially the same position as the position where the first region 13b is disposed.
  • the magnetic sensor 13a of the bus bar 11 in the direction, a region including at least the position of the bus bar 12b corresponding to the position are disposed in 13b.
  • the magnetic sensor 13 of the bus bar 12a is disposed laterally of the end face of the fourth region 122 of the bus bar 12a on the bus bar 11 side (the flow direction of the measured current (Y direction in FIG. 2B))
  • a third area 112 which is a flat plate shape of the bus bar 11 is located at substantially the same position as the position where the third area 112 is disposed of the magnetic sensors 13a and 13b of the bus bar 12a in the flow direction.
  • Side of the end face of the fourth area 122 of the bus bar 12b on the side of the bus bar 11 (the flow direction of the current to be measured (the Y direction in FIG. 2B).
  • the third region 112 which is a flat plate shape of the bus bar 11 is substantially at the same position as the position where the magnetic sensors 13a and 13b of the bus bar 12b are disposed. It is.
  • the main surface (in-plane direction of the flat region) of the first region 111 of the bus bar 11 and the main surface (in-plane direction of the flat region) of the second region 121 of the bus bars 12a and 12b are orthogonal to each other.
  • the main surface (the in-plane direction of the flat region) of the fourth region 122 is disposed to be orthogonal to the main surface (the in-plane direction of the flat region) of the third region 112 of the bus bar 11.
  • the second regions 121 of the bus bars 12a and 12b are disposed such that the main surface of the second region 121 is orthogonal to the sensitivity axis of the magnetic sensors 13a and 13b, and the third region 112 of the bus bar 11 is a third region
  • the main surface 112 is disposed orthogonal to the sensitivity axes of the magnetic sensors 13a and 13b.
  • the direction of the main surface of the bus bar 11 is twisted by 90 ° between the first area 111 and the third area 112 of the bus bar 11.
  • the bus bars 11, 12a and 12b extend in the specific direction in a state in which the bus bars 11, 12a and 12b are juxtaposed, respectively.
  • the main surfaces of the third region 112 or the second region 121 and the fourth region 122 are in a twisted relationship with each other.
  • the main surface of the second region 121 is the magnetic sensor 13a.
  • the third region 112 is disposed such that the main surface of the third region 112 is orthogonal to the sensitivity axis of the magnetic sensor, and the bus bars 11, 12a, 12b
  • the bus bars 11, 12a, 12b When attaching to other members, it is possible to make the main surfaces of the bus bars 11, 12a and 12b parallel (same) at the attachment position. Thereby, even if it has the structure of this invention, the attachment to the other member of this current sensor becomes easy.
  • the bus bar 11 is twisted in one direction between the first area 111 and the third area 112, and the bus bars 12a and 12b are twisted in the direction opposite to the bus bar 111 between the second area 121 and the fourth area 122. Therefore, the cross-sectional areas of the bus bars 11, 12a and 12b are always kept constant, and the electrical resistance can be made substantially uniform.
  • the sensitivity axes are parallel to both main surfaces 11a and 11b of the bus bar 11, orthogonal to the flow direction of the current to be measured, and parallel to each other.
  • a pair of magnetic sensors 13 are disposed on both major surfaces 11a and 11b, respectively, and the in-plane direction of major surfaces 12c of the two bus bars 12a and 12b disposed on both sides of bus bar 11 and major surface 11a of bus bar 11
  • a cross-sectional structure (H-type) orthogonal to the in-plane direction of 11b and the sensitivity axes are parallel to both main surfaces 12c and 12d of bus bars 12a and 12b, orthogonal to the flow direction of the current to be measured, and parallel to each other
  • a pair of magnetic sensors 13 are disposed on both major surfaces 12c and 12d, respectively, and the in-plane direction of the major surfaces 12c of the two bus bars 12a and 12b disposed on both sides of the bus bar 11 and the major surface of the bus bar 11 11a
  • the bus bars 12a and 12b are disposed with the bus bar 11 in between, and the main surfaces 11c and 12d of the second regions 121 of the bus bars 12a and 12b are the first region 111 of the bus bar 11. And the main surface 12c of the fourth region 122 of the bus bars 12a and 12b is disposed flush with the third region 112 of the bus bar 11. According to this configuration, even in the case of having the three bus bars 11, 12a and 12b, it is possible to accurately measure the measured current without being affected by the magnetic fields of the adjacent bus bars 11, 12a and 12b. it can.
  • the width L of the second region 121 is preferably wider than the distance t (the thickness of the bus bar 11) between the pair of magnetic sensors 13a and 13b.
  • the width L of the third region 112 be wider than the distance t (the thickness of the bus bars 12a and 12b) between the pair of magnetic sensors 13a and 13b.
  • the distance between the bus bar 12a or 12b and the magnetic sensors 13a and 13b (from the central portion in the thickness direction of the bus bars 12a or 12b to the magnetic sensors 13a and 13b) It is preferable that the distance D) to the central part of H be as short as possible. According to this configuration, it is possible to make the magnetic field perpendicular to the sensitivity axis direction of the magnetic sensor 13 in a region in which the magnetic field generated by the adjacent current is more parallel. Can be made smaller.
  • FIG. 1, FIG. 2A, and FIG. 2B explain the case where a bus bar which is a flat plate conductor is used as a current path
  • a sensitivity current direction of a magnetic sensor has a flat plate-shaped measured current path.
  • the magnetic sensor is disposed on the main surface so as to be parallel to the in-plane direction of the flat region of the plane, and the in-plane direction of the flat region of the flat-shaped adjacent current path is orthogonal to the sensitivity axis direction of the magnetic sensor
  • a conductor other than the flat conductor may be used as the current path.
  • the cross-sectional shape of the current path in the region other than the above configuration may be a shape other than a rectangle.
  • the magnetic sensor 13 detects a magnetic field generated by a measured current flowing through the first area 111 and the fourth area 122. It will not be limited especially if it is a magnetic sensor which can detect magnetism as magnetic sensor 13a, 13b.
  • a magnetic sensor using a magnetoresistive effect element such as a GMR (Giant Magneto Resistance) element or a TMR (Tunnel Magneto Resistance) element, or a magnetic sensor using a Hall element can be applied.
  • the magnetoresistive effect element is preferable because the sensitivity axis can be oriented in a direction parallel to the main surface of the planar region of the bus bars 11, 12a and 12b.
  • FIG. 3 is a circuit diagram showing a current sensor according to the present invention.
  • the current sensor shown in FIG. 3 includes a pair of magnetic sensors 13a and 13b, and a signal processing circuit 14 that processes the detection results from the respective magnetic sensors 13a and 13b and outputs the result as a sensor output.
  • the magnetic sensor 13a includes a feedback coil 131a disposed so as to be capable of generating a magnetic field in a direction that cancels the induction magnetic field generated by the current to be measured, a bridge circuit 132a configured of, for example, a magnetoresistive element and a fixed resistor, and a bridge circuit 132a.
  • the magnetic sensor 13b includes a feedback coil 131b disposed so as to be capable of generating a magnetic field in a direction that cancels the induction magnetic field generated by the current to be measured, a bridge circuit 132b configured of, for example, a magnetoresistive element and a fixed resistor, and a bridge
  • the circuit 132b includes a differential / current amplifier 133b that amplifies the differential output of the circuit 132b and controls the feedback current of the feedback coil 131b, and an I / V amplifier 134b that converts the feedback current into a voltage.
  • the bridge circuits 132a and 132b may be configured by only the magnetoresistance effect element.
  • the feedback coils 131a and 131b are disposed in the vicinity of the magnetoresistance effect elements of the bridge circuits 132a and 132b, and generate a cancellation magnetic field that cancels out the induced magnetic field generated by the current to be measured.
  • the magnetoresistance effect element has a characteristic that the resistance value is changed by the induced magnetic field from the current to be measured. In such a circuit, since the differential of the detection result of the magnetic sensors 13a and 13b is output, it is possible to cancel the disturbance magnetic field such as geomagnetism applied to the magnetic sensors 13a and 13b in the same direction.
  • FIG. 3 shows a magnetic balance type current sensor using a magnetoresistance effect element, in the present invention, a magnetic proportional type current sensor having a configuration in which differential outputs of a pair of magnetic sensors are taken.
  • the present invention can also be applied to current sensors using other magnetic detection elements.
  • the second regions 121 of the bus bars 12a and 12b are disposed to face each other across the first region 111 of the bus bar 11. That is, the second regions 121 of the bus bars 12 a and 12 b are disposed such that the main surfaces 12 c and 12 d of the second region 121 are orthogonal to the sensitivity axis of the magnetic sensor 13. At this time, the magnetic sensor 13 is disposed such that the sensitivity axis thereof is parallel to the pair of main surfaces 11 a and 11 b of the first region 111. According to this arrangement, the magnetic field due to the measured current flowing through the first region 111 is applied to the magnetic sensor 13 in a state substantially parallel to the sensitivity axis of the magnetic sensor 13.
  • the magnetic field of the adjacent current flowing through the second region 121 is applied to the magnetic sensor 13 in a state substantially orthogonal to the sensitivity axis of the magnetic sensor 13. Therefore, the magnetic field (magnetic flux) of the adjacent current flowing through the second region 121 passes through the magnetic sensor 13 in the direction orthogonal to the sensitivity axis of the magnetic sensor 13. Therefore, the magnetic sensor 13 detects the magnetic field of the current to be measured and does not detect the magnetic field of the adjacent current. Therefore, the magnetic sensor 13 can accurately measure the current to be measured while suppressing the influence of the magnetic field of the adjacent current.
  • the magnetic sensor 13 is disposed on the main surfaces 11 a and 11 b so that the sensitivity axis of the magnetic sensor 13 is parallel to the main surface of the first region 111, very high position accuracy of the magnetic sensor 13 And mounting accuracy is not required. Therefore, even if the magnetic sensor 13 does not require very high positional accuracy or mounting accuracy, the influence of the magnetic field of the adjacent bus bars 12a and 12b prevents the measurement accuracy of the measured current flowing through the bus bar 11 from being degraded. it can. Furthermore, since the sensitivity axes of the pair of magnetic sensors 13 are parallel to each other, by taking the differential output of the pair of magnetic sensors 13, the disturbance magnetic field such as geomagnetism applied to the pair of magnetic sensors 13 in the same direction is cancelled. Can.
  • the fourth regions 122 of the bus bars 12a and 12b are arranged to face each other across the third region 112 of the bus bar 11. That is, the fourth regions 122 of the bus bars 12a and 12b are disposed such that the main surfaces 12c of the fourth regions 122 are flush with each other.
  • the magnetic sensor 13 is disposed such that the sensitivity axis thereof is parallel to the pair of main surfaces 12 c and 12 d of the fourth region 122. According to this arrangement, the magnetic field due to the measured current flowing through the fourth region 122 is applied to the magnetic sensor 13 in a state substantially parallel to the sensitivity axis of the magnetic sensor 13.
  • the magnetic field of the adjacent current flowing through the third region 112 is applied to the magnetic sensor 13 in a state substantially orthogonal to the sensitivity axis of the magnetic sensor 13. Therefore, the magnetic field (magnetic flux) of the adjacent current flowing through the third region 112 passes through the magnetic sensor 13 in the direction orthogonal to the sensitivity axis of the magnetic sensor 13. Therefore, the magnetic sensor 13 detects the magnetic field of the current to be measured and does not detect the magnetic field of the adjacent current. Therefore, the magnetic sensor 13 can accurately measure the current to be measured while suppressing the influence of the magnetic field of the adjacent current.
  • the magnetic sensor 13 is disposed on the main surfaces 12 c and 12 d so that the sensitivity axis of the magnetic sensor 13 is parallel to the main surface of the fourth region 122, very high position accuracy of the magnetic sensor 13 And mounting accuracy is not required. Therefore, even if the magnetic sensor 13 does not require very high positional accuracy or mounting accuracy, the influence of the magnetic field of the adjacent bus bar 11 prevents deterioration in the measurement accuracy of the measured current flowing through the bus bars 12a and 12b. it can. Furthermore, since the sensitivity axes of the pair of magnetic sensors 13 are antiparallel to each other, by taking differential outputs of the pair of magnetic sensors 13, a disturbance magnetic field such as geomagnetism applied to the pair of magnetic sensors 13 in the same direction is cancelled. be able to.
  • the two bus bars 12 a and 12 b are disposed with the bus bar 11 interposed therebetween, but the number of bus bars is not limited to this.
  • one bus bar 12 may be provided on one side of the bus bar 11, and a plurality of the bus bars 11 and the bus bars 12 may be arranged in parallel.
  • the magnetic sensor 13 is provided in the approximate center position of the main surface of the 1st area
  • the measured current can be accurately measured by reducing the influence of the adjacent current without requiring the very high positional accuracy and mounting accuracy of the magnetic sensor 13. It can be measured.
  • FIG. 4 is a cross-sectional view of the current sensor 1 according to the present embodiment.
  • 7A is a cross-sectional view of the conventional current sensor 2
  • FIG. 7B is a cross-sectional view of the conventional current sensor 3.
  • the flat measurement current path 21 and the adjacent current path 22 are arranged side by side on the same plane.
  • the magnetic sensors 24 are disposed on the pair of main surfaces of the current path 21 to be measured, and the magnetic sensor 24 detects a magnetic field due to the current to be measured flowing through the current path 21 to be measured.
  • the plate width w of the current path 21 to be measured and the adjacent current path 22 is 10 mm, and the thickness d is 1.5 mm.
  • the distance La from the center position of the magnetic sensor 24 to the center position of the adjacent current path 22 is 15 mm.
  • the mounting angle ⁇ a of the magnetic sensor 24 in the measured current path 21 is 11.3 °.
  • the mounting angle is an angle generated between a line connecting the center position of the adjacent current path 22 and the center position of the magnetic sensor 24 and a horizontal line from the center position of the adjacent current path 22.
  • the height ha from the center position in the thickness d direction of the current path 21 to be measured and the adjacent current path 22 to the center position of the magnetic sensor 24 is 3 mm.
  • the measured current paths 31 and the adjacent current paths 32 having a planar shape are arranged side by side on the same plane.
  • Magnetic sensors 33 are attached on the front and back main surfaces of the current path 31 to be measured at attachment angles ⁇ b of 16.7 °, respectively.
  • the distance Lb from the center position of the magnetic sensor 33 to the center position of the adjacent current path 32 is 10 mm.
  • the height hb from the center position in the thickness d direction of the current path 31 to be measured and the adjacent current path 32 to the center position of the magnetic sensor 33 is 3 mm.
  • the pair of main surfaces of the second region 121 of the adjacent current path 12 is arranged to be orthogonal to the pair of main surfaces of the first region 111 of the measured current path 11. ing.
  • the magnetic sensor 13 is installed on the pair of main surfaces of the first region 111 such that the main surfaces of the first region 111 are in contact with each other. Further, the distance Lc from the center position of the magnetic sensor 13 to the center position of the second region 121 is 10 mm. The height hc from the center position of the first area 111 and the second area 121 to the center position of the magnetic sensor 13 is 3 mm.
  • FIG. 5A is a view showing the relationship between the adjacent current and the measurement error in the current sensors 1 to 3 shown in FIGS. 4, 7A and 7B.
  • the measurement error was determined as a ratio of the component in the direction of the sensitivity axis of the adjacent current magnetic field or the external magnetic field to the full scale of the current magnetic field to be measured.
  • the magnetic field of the adjacent current flowing through the adjacent current path 22 is relative to the sensitivity axis of the magnetic sensor 24 attached to the measured current path 21. It has parallel components. For this reason, in the current sensor 2, a measurement error of the measured current flowing through the measured current path 21 occurs due to the influence of the adjacent current. Therefore, as shown in FIG. 5A, as the amount of adjacent current increases, the measurement error of the current to be measured in the current sensor 2 increases. For example, when the full scale of the adjacent current is 400 A, the measured current in the current sensor 2 has a measurement error of up to 38%.
  • the magnetic field of the adjacent current flowing through the adjacent current path 32 is the magnetic sensor 33 attached to the measured current path 31 at the mounting angle ⁇ b. It is orthogonal to the sensitivity axis. Therefore, the current sensor 3 can measure the current to be measured without being influenced by the adjacent current. Therefore, as shown in FIG. 5A, even if the amount of adjacent current increases, the measurement error of the current to be measured in the current sensor 3 does not occur.
  • the magnetic field of the adjacent current flowing through the second region 121 of the adjacent current path 12 is attached to the first region 111 of the measured current path 11. It is orthogonal to the sensitivity axis of the detected magnetic sensor 13. Therefore, the current sensor 1 can measure the measured current without being affected by the adjacent current. Therefore, as shown in FIG. 5A, even if the amount of adjacent current increases, measurement error of the current to be measured in the current sensor 1 does not occur.
  • FIG. 5B is a view showing the relationship between an external magnetic field and an error in the current sensors 1 to 3 shown in FIGS. 4, 7A and 7B.
  • the magnetic sensor 33 since the magnetic sensor 33 is attached at the attachment angle ⁇ b, assuming that the external magnetic field is parallel to the thickness d direction of the current path 31 to be measured and the adjacent current path 32.
  • the external magnetic field has a component parallel to the sensitivity axis of the magnetic sensor 33.
  • a measurement error of the measured current flowing through the measured current path 31 occurs due to the influence of the external magnetic field. Therefore, as shown in FIG. 5B, as the influence of the external magnetic field increases, the error of the measured current in the current sensor 3 increases. For example, when the external magnetic field is 50 mT, the measurement current in the current sensor 3 causes a measurement error of about 1%.
  • the current sensor 2 in the current sensor 2, assuming that the external magnetic field is parallel to the thickness d direction of the current path 21 to be measured and the adjacent current path 22, the external magnetic field is It is orthogonal to the sensitivity axis of the sensor 24. Therefore, the current sensor 2 can measure the measured current flowing through the measured current path 21 without being affected by the external magnetic field. Therefore, as shown in FIG. 5B, even if the influence of the external magnetic field increases, the measurement error of the current to be measured in the current sensor 2 does not occur.
  • the magnetic sensor 13 can measure the measured current flowing through the first region 111 without being affected by the external magnetic field. Therefore, as shown in FIG. 5B, even if the influence of the external magnetic field increases, the measurement error of the current to be measured in the current sensor 1 does not occur.
  • the second region 121 or the third region 112 which is the adjacent region of the adjacent current path so that the magnetic field of the adjacent current is orthogonal to the sensitivity axis of the magnetic sensor 13. Therefore, as shown in FIG. 5A, even if the amount of adjacent current increases, no error occurs in the current to be measured. Further, since the magnetic sensor 13 abuts on a pair of main surfaces of the first area 111 or the fourth area 122 which is a measurement section of the current path to be measured, the external magnetic field is parallel to the thickness d direction of the current path to be measured. In some cases, as shown in FIG. 5B, even if the influence of the external magnetic field increases, measurement errors of the measured current do not occur. That is, in either case of FIGS. 5A and 5B, according to the current sensor 1 according to the present embodiment, measurement error of the current to be measured does not occur.
  • the influence of the magnetic field of the adjacent current path can be reduced, and the measurement accuracy of the current to be measured is improved.
  • the influence of the external magnetic field can be reduced, and the measurement accuracy of the current to be measured can be improved.
  • the magnetic field of the adjacent current path is the sensitivity axis of the magnetic sensor 13 Since the adjacent current paths are arranged to be orthogonal, the influence of the magnetic field of the adjacent current paths can be eliminated. Therefore, the influence of the magnetic field of the adjacent current path can be eliminated without requiring high positional accuracy and high mounting accuracy of the magnetic sensor 13 as in the current sensor 3 shown in FIG. 7B.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the sensitivity axes arranged on both main surfaces of the first area 111 and the fourth area 122 are parallel is illustrated in the above embodiment, the sensitivity axes may be antiparallel. .
  • the current sensor of the present invention can be used, for example, to detect the magnitude of the current for driving a motor of an electric car or a hybrid car.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 磁気センサの非常に高い位置精度や取り付け精度を要求せずとも、隣接電流により生じる磁場の影響を低下させて、被測定電流を精度良くの測定することができる電流センサを提供すること。本発明の電流センサ(1)は、一対の主面を有し、平板形状である第1領域(111)を備えた第1電流路(11)と、一対の主面を有し、平板形状である第2領域(121)を備え、前記第1電流路(11)に並設された第2電流路(12)と、感度軸が前記第1領域(111)の両主面とそれぞれ平行になるようにして前記第1領域(111)の両主面上に配設されており、前記第1領域(111)を通流する被測定電流により発生する磁場を検出する一対の第1磁気センサ(113)と、を具備し、前記第2領域(121)は、該第2領域(121)の主面が前記第1磁気センサ(113)の感度軸と直交するように配設される。

Description

電流センサ
 本発明は、電流の大きさを測定する電流センサに関する。
 近年、大電流を非接触で測定することが可能な電流センサが求められている。このような電流センサとして、被測定電流の電流路(被測定電流路)の近傍に設けられた磁気センサを用いて当該被測定電流路を通流する被測定電流による磁場の変化を検出し、被測定電流を測定する電流センサも実用化されている。
 このような電流センサは、例えば、特定方向にそれぞれ延在する長尺の電流路をその延在方向を揃えた状態で複数並設し、各電流路に磁気センサを配設することにより構成されるので、被測定電流路の近傍に設けられた磁気センサが、隣接電流の電流路(隣接電流路)を通流する隣接電流の磁場の影響を受けて、被測定電流の測定精度が低下するという問題がある。このような隣接電流路の磁場の影響による被測定電流の測定精度の低下を防止するため、被測定電流により生じる磁場の向きが感度軸方向となり、隣接電流により生じる磁場の向きが感度軸方向と直交する方向となるような位置に磁気センサを配設した電流センサが提案されている(例えば、特許文献1及び特許文献2)。
国際公開第2006/090769号 特開2010-019747号公報
 しかしながら、上述のような電流センサでは、被測定電流により生じる磁場の向きが感度軸方向となり、隣接電流により生じる磁場の向きが感度軸方向と直交する方向となるような位置に磁気センサを配設しなければならないため、磁気センサの位置精度を非常に高くする必要がある。さらに、隣接電流により生じる磁場の向きと磁気センサの感度軸方向とが直交するように磁気センサを被測定電流路の主面の鉛直方向に対して傾けて配設する必要があるので、磁気センサの取り付け精度も非常に高くする必要がある。したがって、上述のような電流センサでは、隣接電流により生じる磁場の影響による被測定電流の測定精度の低下を防止するために、磁気センサの位置精度や取り付け精度が高く要求されるという問題点があった。
 本発明はかかる点に鑑みてなされたものであり、磁気センサの非常に高い位置精度や取り付け精度を要求せずとも、隣接電流により生じる磁場の影響を低下させて、被測定電流を精度良くの測定することができる電流センサを提供することを目的とする。
 本発明の電流センサは、一対の主面を有し、平板形状である第1領域を備えた第1電流路と、一対の主面を有し、平板形状である第2領域を備え、前記第1電流路に並設された第2電流路と、感度軸が前記第1領域の両主面とそれぞれ平行になるようにして前記第1領域の両主面上に配設されており、互いの感度軸が平行であり、前記第1領域を通流する被測定電流により発生する磁場を検出する一対の第1磁気センサと、を具備し、前記第2領域は、該第2領域の主面が前記第1磁気センサの感度軸と直交するように配設されることを特徴する。
 この構成によれば、第2電流路の第2領域は、当該第2領域の主面が第1磁気センサの感度軸と直交するように配設されるので、当該第2領域を通流する隣接電流による磁場(磁束)が第1磁気センサの感度軸と直交する方向に第1磁気センサを通過する。したがって、第1磁気センサは、隣接電流により発生する磁場を検出しない。このため、この電流センサは、隣接する第2電流路の磁場の影響を受けることなく、第1電流路を通流する被測定電流を測定できる。また、第1磁気センサは、該第1磁気センサの感度軸が第1領域の主面と平行となるように該主面上に配設されるので、第1磁気センサの非常に高い位置精度や取り付け精度が要求されない。したがって、第1磁気センサの非常に高い位置精度や取り付け精度を要求せずとも、隣接する第2電流路の磁場の影響により、第1電流路を通流する被測定電流の測定精度の低下するのを防止できる。さらに、一対の磁気センサの感度軸が互いに平行であるので、一対の磁気センサの差動出力を取ることにより、一対の磁気センサに同じ方向に加わる地磁気等の外乱磁界をキャンセルすることができる。
 本発明の電流センサにおいては、前記第2領域の幅は、前記一対の第1磁気センサ間の距離よりも広くても良い。この構成によれば、磁気センサの感度軸方向に垂直な方向に隣接電流により生じた磁場を磁気センサに与えることができるので、より効率良く隣接電流による磁場の影響を小さくすることができる。
 本発明の電流センサにおいては、前記第1電流路は、一対の主面を有し、平板形状の第3領域を備え、前記第2電流路は、一対の主面を有し、平板形状の第4領域を備え、感度軸が前記第4領域の両主面とそれぞれ平行になるようにして前記第4領域の両主面上に配設されており、互いの感度軸が平行であり、前記第4領域を通流する被測定電流により発生する磁場を検出する一対の第2磁気センサをさらに具備し、前記第3領域は、該第3領域の主面が前記第2磁気センサの感度軸と直交するように配設されても良い。
 この構成によれば、第1電流路の第3領域は、当該第3領域の主面が第2磁気センサの感度軸と直交するように配設されるので、当該第3領域を通流する隣接電流による磁場(磁束)が第2磁気センサの感度軸と直交する方向に第2磁気センサを通過する。したがって、第2磁気センサは、隣接電流により発生する磁場を検出しない。このため、この電流センサは、隣接する第1電流路の磁場の影響を受けることなく、第2電流路を通流する被測定電流を測定できる。また、第2磁気センサは、該第2磁気センサの感度軸が第4領域の主面と平行となるように該主面上に配設されるので、第2磁気センサの非常に高い位置精度や取り付け精度が要求されない。したがって、第2磁気センサの位置精度や取り付け精度を要求せずとも、隣接する第1電流路の磁場の影響により、第2電流路を通流する被測定電流の測定精度が低下するのを防止できる。さらに、一対の磁気センサの感度軸が互いに平行であるので、一対の磁気センサの差動出力を取ることにより、一対の磁気センサに同じ方向に加わる地磁気等の外乱磁界をキャンセルすることができる。
 本発明の電流センサにおいては、前記第3領域の幅は、前記一対の第2磁気センサ間の距離よりも広くても良い。この構成によれば、この構成によれば、磁気センサの感度軸方向に垂直な方向に隣接電流により生じた磁場を磁気センサに与えることができるので、より効率良く隣接電流による磁場の影響を小さくすることができる。
 本発明の電流センサにおいては、前記第1電流路及び前記第2電流路は特定方向にそれぞれ延在しており、前記第1電流路の前記第1領域の主面と前記第3領域の主面とが直交しており、前記第2電流路の前記第2領域の主面と前記第4領域の主面とが直交していても良い。
 この構成によれば、第1電流路及び第2電流路が並設された状態で特定方向にそれぞれ延在しており、各電流路の延在方向(通流方向)において2つの領域(第1領域及び第3領域、又は、第2領域及び第4領域)の主面が互いに捻れの関係になっている。このように各電流路で捻れ部を設けることにより、で被測定電流の検出領域(第1領域及び第4領域)において、第2領域は、第2領域の主面が第1磁気センサの感度軸と直交するように配設され、第3領域は、第3領域の主面が第2磁気センサの感度軸と直交するように配設されると共に、第1電流路及び第2電流路を他の部材に取り付ける際に、取り付け位置において第1電流路及び第2電流路の主面を平行にすることが可能となる。これにより、本発明の構成を有していても、本電流センサの他の部材への取り付けが容易となる。
 本発明の電流センサにおいては、前記第2の電流路は、前記第1の電流路を挟んで二つ配設され、前記第2の電流路の前記第2領域の主面同士が、前記第1電流路の前記第1領域を挟んで対向するように配設され、前記第2電流路の前記第4領域の主面同士が、前記第1電流路の前記第3領域を挟んで面一に配設されても良い。
 この構成によれば、3つの電流路(一つの第1電流路及び二つの第2電流路)を有する場合であっても、隣接する第1電流路及び第2電流路の磁場の影響を互いに受けることなく、被測定電流を正確に測定することができる。
 本発明により、磁気センサの位置精度や取り付け精度を要求せずとも、隣接電流による磁場の影響を低下させて、被測定電流を精度良く測定することができる電流センサを提供できる。
実施の形態に係る電流センサを模式的に示す斜視図である。 実施の形態に係る電流センサの断面図である。 実施の形態に係る電流センサの一例を示す回路図である。 実施の形態に係る電流センサを説明するための図である。 実施の形態に係る電流センサの評価結果を示すグラフである。 従来の電流センサの一例を示す断面図である。 従来の電流センサを説明するための図である。
 例えば、三相モータのように、特定方向にそれぞれ延在する長尺の電流路をその延在方向を揃えた状態で複数並設してなるデバイスに磁気センサを配設して電流センサを構成する場合においては、電流路に配設した磁気センサは、その電流路を通流する被測定電流による磁場を検出すると共に、その電流路に隣接する電流路を通流する隣接電流による磁場の一部を検出する。このため、隣接電流による磁場の影響のために、被測定電流を正確に測定することができない。
 図6は、特定方向にそれぞれ延在する長尺の電流路をその延在方向を揃えた状態で3つ並設し、各電流路(平板導体(バスバー))に電流センサを配設してなる構成を示す図であり、図6Aは断面図であり、図6Bは部分拡大断面図である。図6Aに示す電流センサにおいては、3つのバスバー21~23を紙面手前側-奥側に延在するように配設している。また、バスバー21~23は、それぞれの主面が面一になるように並設されている。被測定電流は、それぞれバスバー21~23を紙面手前側から奥側に向かって通流する。このようにバスバー21~23に被測定電流が通流することにより、図6Aに示す破線の方向に誘導磁場が発生する。
 バスバー21~23の一方の主面上には、それぞれ磁気センサ24が配設されている。また、各磁気センサ24の感度軸は、バスバー21~23の主面に対して平行であり、かつ、被測定電流の通流方向に対して直交している。以下、一例として、バスバー21を被測定電流路とし、バスバー22を隣接電流路として説明する。
 図6Aに示す配置によると、バスバー22を通流する隣接電流の磁場は、バスバー21の主面上の磁気センサ24の感度軸方向に対して垂直な方向から角度をもって加わるので、図6Bに示すように、このベクトルにおける磁気センサ24の感度軸方向と平行な成分B’を磁気センサ24が検出する。このため、磁気センサ24は、バスバー21を通流する被測定電流による磁場と隣接電流による磁場とを検出することになる。その結果、隣接電流による磁場の影響により被測定電流を正確に測定することができない。
 本発明者は、図6Aに示す配置においては、バスバー22を通流する隣接電流の磁場が、磁気センサ24の感度軸方向に対して垂直な方向から角度をもって加わってしまうことに着目し、バスバー21及び22の配置関係を鋭意検討した結果、平板形状のバスバー22の主面を磁気センサ24の感度軸方向と直交するように配設することにより、バスバー22を通流する隣接電流の磁場が磁気センサ24の感度軸方向に対して垂直な方向に加わるようにできることを見出し本発明をするに至った。
 すなわち、本発明の骨子は、磁気センサの感度軸方向が平板形状の被測定電流路の平面領域の面内方向と平行となるように当該主面上に当該磁気センサを配置するとともに、平板形状の隣接電流路の平面領域の面内方向が上記磁気センサの感度軸方向と直交するように該隣接電流の電流路を配置することにより、当該磁気センサの非常に高い位置精度や取り付け精度を要求せずに、被測定電流を精度良く測定することである。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は、本実施の形態の電流センサ1を示す模式的に示す斜視図である。また、図2Aは、図1におけるIIA-IIA線に沿う断面図であり、図2Bは、図1におけるIIB-IIB線に沿う断面図である。図1に示すように、電流センサ1は、3つの電流路であるバスバー11(第1電流路)、バスバー12a、12b(第2電流路)を備えている。このバスバー11、12a、12bは、それぞれ特定方向にそれぞれ延在する長尺の平板形状の導体であり、その延在方向を揃えた状態で並設されている。
 バスバー11は、図2Aに示すように、一対の主面11a、11bを有する。この一対の主面11a、11bは互いに平行である。一対の主面11a、11b上には、それぞれ磁気センサ13a、13bが配設されている。この一対の磁気センサ13a、13bの感度軸の方向は、図2Aに示すように、バスバー11のそれぞれの主面11a、11bに並行であり、互いに平行である。図2Aにおいては、バスバー11における磁気センサ13が配設される部分を含む領域が本発明で言う平板形状である第1領域111に相当する。この第1領域111は、バスバー11において、磁気センサ13が配設されている位置を少なくとも含む領域である。また、バスバー12a、12bは、一対の主面12c、12dを有する。この一対の主面12c、12dは互いに平行である。一対の主面12c、12d上には、それぞれ磁気センサ13a、13bが配設されている。この一対の磁気センサ13a、13bの感度軸の方向は、図2Bに示すように、バスバー12a、12bのそれぞれの主面12c、12dに並行であり、バスバー11、12a、12bの通流方向(図2A及び図2BにおけるY方向)に対して垂直(図2A及び図2BにおけるX方向)である。また、一対の磁気センサ13a、13bの感度軸の方向は、互いに平行である。図2Bにおいては、バスバー12a、12bにおける磁気センサ13a、13bが配設される部分を含む領域が本発明で言う平板形状である第4領域122に相当する。この第4領域122は、バスバー12a、12bにおいて、磁気センサ13a、13bが配設されている位置を少なくとも含む領域である。
 図2Aに示すように、第1領域111の一方の端面の側方(被測定電流の通流方向(図2AにおけるY方向)においてバスバー11の磁気センサ13a、13bの配設されている位置とほぼ同じ位置には、バスバー12aの平板形状である第2領域121が位置している。この第2領域121は、上記通流方向においてバスバー11の磁気センサ13a、13bの配設されている位置に対応するバスバー12aの位置を少なくとも含む領域である。同様に、第1領域111の他方の端面の側方(被測定電流の通流方向(図2AにおけるY方向)においてバスバー11の磁気センサ13a、13bの配設されている位置とほぼ同じ位置には、バスバー12bの平板形状である第2領域121が位置している。この第2領域121は、上記通流方向においてバスバー11の磁気センサ13a、13bの配設されている位置に対応するバスバー12bの位置を少なくとも含む領域である。
 図2Bに示すように、バスバー12aの第4領域122のバスバー11側の端面の側方(被測定電流の通流方向(図2BにおけるY方向)においてバスバー12aの磁気センサ13の配設されている位置とほぼ同じ位置には、バスバー11の平板形状である第3領域112が位置している。この第3領域112は、上記通流方向においてバスバー12aの磁気センサ13a、13bの配設されている位置に対応するバスバー11の位置を少なくとも含む領域である。同様に、バスバー12bの第4領域122のバスバー11側の端面の側方(被測定電流の通流方向(図2BにおけるY方向)においてバスバー12bの磁気センサ13a、13bの配設されている位置とほぼ同じ位置には、バスバー11の平板形状である第3領域112が位置している。
 バスバー11の第1領域111の主面(平面領域の面内方向)とバスバー12a、12bの第2領域121の主面(平面領域の面内方向)とが直交しており、バスバー12a、12bの第4領域122の主面(平面領域の面内方向)とバスバー11の第3領域112の主面(平面領域の面内方向)とが直交するように配設されている。すなわち、バスバー12a、12bの第2領域121は、第2領域121の主面が磁気センサ13a、13bの感度軸と直交するように配設され、バスバー11の第3領域112は、第3領域112の主面が磁気センサ13a、13bの感度軸と直交するように配設される。
 このように第1領域111から第4領域122を配設するために、バスバー11の第1領域111と第3領域112との間でバスバー11の主面の方向が90°変えるように捩じられ、バスバー12a、12bの第2領域121と第4領域122との間でバスバー12a、12bの主面の方向が90°変えるように捩じられる。この構成によれば、バスバー11、12a、12bが並設された状態で特定方向にそれぞれ延在しており、各電流路の延在方向(通流方向)において2つの領域(第1領域111及び第3領域112、又は、第2領域121及び第4領域122)の主面が互いに捻れの関係になる。このように各電流路で捻れ部を設けることにより、被測定電流の検出領域(第1領域111及び第4領域122)において、第2領域121は、第2領域121の主面が磁気センサ13a、13bの感度軸と直交するように配設され、第3領域112は、第3領域112の主面が磁気センサの感度軸と直交するように配設されると共に、バスバー11、12a、12bを他の部材に取り付ける際に、取り付け位置においてバスバー11、12a、12bの主面を平行にする(面一にする)ことが可能となる。これにより、本発明の構成を有していても、本電流センサの他の部材への取り付けが容易となる。なお、第1領域111と第3領域112との間においてバスバー11が一方向に捻られ、第2領域121と第4領域122との間においてバスバー12a、12bがバスバー111と反対の方向に捻られるので、バスバー11、12a、12bの断面積は常に一定に保たれており、電気抵抗を略均一とすることができる。
 上述したように、本構成においては、図2Aに示すような、感度軸がバスバー11の両主面11a、11bに平行であり、被測定電流の通流方向と直交し、互いに平行である、一対の磁気センサ13が両主面11a、11b上にそれぞれ配設され、バスバー11の両側に配設された2つのバスバー12a、12bの主面12cの面内方向とバスバー11の主面11a、11bの面内方向とが直交する断面構造(H型)と、感度軸がバスバー12a、12bの両主面12c、12dに平行であり、被測定電流の通流方向と直交し、互いに平行である、一対の磁気センサ13が両主面12c、12d上にそれぞれ配設され、バスバー11の両側に配設された2つのバスバー12a、12bの主面12cの面内方向とバスバー11の主面11a、11bの面内方向とが直交する断面構造(+型)と、がバスバー11、12a、12bの延在方向(通流方向)において繰り返し連続するようになっている。そして、本構造の電流センサにおいては、バスバー12a、12bは、バスバー11を挟んで配設され、バスバー12a、12bの第2領域121の主面11c、12d同士が、バスバー11の第1領域111を挟んで対向するように配設され、バスバー12a、12bの第4領域122の主面12cが、バスバー11の第3領域112を挟んで面一に配設されている。この構成によれば、3つのバスバー11、12a、12bを有する場合であっても、隣接するバスバー11、12a、12bの磁場の影響を互いに受けることなく、被測定電流を正確に測定することができる。
 このような構成において、図2Aに示すように、第2領域121の幅Lは、一対の磁気センサ13a、13b間の距離t(バスバー11の厚さ)よりも広いことが好ましく、図2Bに示すように、第3領域112の幅Lは、一対の磁気センサ13a、13b間の距離t(バスバー12a、12bの厚さ)よりも広いことが好ましい。この構成によれば、磁気センサ13の感度軸方向に垂直な方向に隣接電流により生じた磁場を磁気センサに与えることができるので、より効率良く隣接電流による磁場の影響を小さくすることができる。
 また、第2領域121及び第3領域112の幅Lに対し、バスバー12a又は12bと磁気センサ13a、13bとの間の距離(バスバー12a又は12bの厚さ方向の中央部から磁気センサ13a、13bの中央部までの距離)Dは、できるだけ短いことが好ましい。この構成によれば、隣接電流により生じる磁場がより平行な領域にて、磁気センサ13の感度軸方向に対しその磁場を垂直な方向とすることができるので、より確実に隣接電流による磁場の影響を小さくすることができる。
 図1、図2A、図2Bにおいては、電流路として、平板導体であるバスバーを用いた場合について説明しているが、本発明においては、磁気センサの感度軸方向が平板形状の被測定電流路の平面領域の面内方向と平行となるように当該主面上に当該磁気センサを配置するとともに、平板形状の隣接電流路の平面領域の面内方向が上記磁気センサの感度軸方向と直交するように該隣接電流の電流路を配置する構成を備えていれば、電流路として平板導体以外の導体を用いても良い。例えば、前記構成以外の領域の電流路の断面形状が矩形以外の形状であっても良い。
 磁気センサ13は、第1領域111及び第4領域122を通流する被測定電流により発生する磁場を検出する。磁気センサ13a、13bとしては、磁気検出が可能な磁気センサであれば特に限定されない。磁気センサ13a、13bとしては、例えば、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などの磁気抵抗効果素子を用いた磁気センサ、ホール素子を用いた磁気センサなどを適用できる。この中で、磁気抵抗効果素子は、バスバー11,12a、12bの平面領域の主面に対して平行な方向に感度軸を向けて形成することができるので好ましい。
 図3は、本発明に係る電流センサを示す回路図である。図3に示す電流センサは、一対の磁気センサ13a、13bと、それぞれの磁気センサ13a、13bからの検出結果を信号処理してセンサ出力とする信号処理回路14とから構成されている。磁気センサ13aは、被測定電流によって発生する誘導磁場を打ち消す方向の磁場を発生可能に配置されたフィードバックコイル131aと、例えば磁気抵抗効果素子及び固定抵抗で構成されるブリッジ回路132aと、ブリッジ回路132aの差動出力を増幅し、フィードバックコイル131aのフィードバック電流を制御する差動・電流アンプ133aと、フィードバック電流を電圧に変換するI/Vアンプ134aとを含む。また、磁気センサ13bは、被測定電流によって発生する誘導磁場を打ち消す方向の磁場を発生可能に配置されたフィードバックコイル131bと、例えば磁気抵抗効果素子及び固定抵抗で構成されるブリッジ回路132bと、ブリッジ回路132bの差動出力を増幅し、フィードバックコイル131bのフィードバック電流を制御する差動・電流アンプ133bと、フィードバック電流を電圧に変換するI/Vアンプ134bとを含む。なお、ブリッジ回路132a,132bは、磁気抵抗効果素子のみで構成しても良い。
 フィードバックコイル131a、131bは、ブリッジ回路132a、132bの磁気抵抗効果素子の近傍に配置されており、被測定電流により発生する誘導磁場を相殺するキャンセル磁場を発生する。磁気抵抗効果素子は、被測定電流からの誘導磁場により抵抗値が変化するという特性を有する。このような回路においては、磁気センサ13a、13bの検出結果の差動を出力するので、磁気センサ13a、13bに同じ方向に加わる地磁気等の外乱磁界をキャンセルすることができる。なお、図3においては、磁気抵抗効果素子を用いた磁気平衡式電流センサについて示しているが、本発明においては、一対の磁気センサの差動出力をとる構成であれば、磁気比例式電流センサにも適用することができ、他の磁気検出素子を用いた電流センサにも適用することができる。
 上記構成の電流センサにおいては、図2Aに示すように、バスバー12a、12bの第2領域121は、バスバー11の第1領域111を挟んで対向するように配置される。すなわち、バスバー12a、12bの第2領域121は、第2領域121の主面12c、12dが磁気センサ13の感度軸と直交するように配設される。このとき、磁気センサ13は、その感度軸が第1領域111の一対の主面11a、11bと平行となるように配設される。この配置によれば、第1領域111を通流する被測定電流による磁場が磁気センサ13の感度軸に対してほぼ平行な状態で磁気センサ13に加わることになる。一方、第2領域121を通流する隣接電流の磁場が磁気センサ13の感度軸に対してほぼ直交した状態で磁気センサ13に加わることになる。このため、第2領域121を通流する隣接電流による磁場(磁束)が磁気センサ13の感度軸と直交する方向に磁気センサ13を通過する。したがって、磁気センサ13は、被測定電流による磁場を検出し、隣接電流による磁場を検出しない。このため、磁気センサ13は、隣接電流の磁場の影響を抑えて、被測定電流を精度良く測定することができる。また、磁気センサ13は、磁気センサ13の感度軸が第1領域111の主面と平行となるように該主面11a、11b上に配設されるので、磁気センサ13の非常に高い位置精度や取り付け精度が要求されない。したがって、磁気センサ13の非常に高い位置精度や取り付け精度を要求せずとも、隣接するバスバー12a、12bの磁場の影響により、バスバー11を通流する被測定電流の測定精度の低下するのを防止できる。さらに、一対の磁気センサ13の感度軸が互いに平行であるので、一対の磁気センサ13の差動出力を取ることにより、一対の磁気センサ13に同じ方向に加わる地磁気等の外乱磁界をキャンセルすることができる。
 また、上記構成の電流センサにおいては、図2Bに示すように、バスバー12a、12bの第4領域122は、バスバー11の第3領域112を挟んで対向するように配置される。すなわち、バスバー12a、12bの第4領域122は、第4領域122の主面12cが面一になるように配設される。このとき、磁気センサ13は、その感度軸が第4領域122の一対の主面12c、12dと平行となるように配設される。この配置によれば、第4領域122を通流する被測定電流による磁場が磁気センサ13の感度軸に対してほぼ平行な状態で磁気センサ13に加わることになる。一方、第3領域112を通流する隣接電流の磁場が磁気センサ13の感度軸に対してほぼ直交した状態で磁気センサ13に加わることになる。このため、第3領域112を通流する隣接電流による磁場(磁束)が磁気センサ13の感度軸と直交する方向に磁気センサ13を通過する。したがって、磁気センサ13は、被測定電流による磁場を検出し、隣接電流による磁場を検出しない。このため、磁気センサ13は、隣接電流の磁場の影響を抑えて、被測定電流を精度良く測定することができる。また、磁気センサ13は、磁気センサ13の感度軸が第4領域122の主面と平行となるように該主面12c、12d上に配設されるので、磁気センサ13の非常に高い位置精度や取り付け精度が要求されない。したがって、磁気センサ13の非常に高い位置精度や取り付け精度を要求せずとも、隣接するバスバー11の磁場の影響により、バスバー12a、12bを通流する被測定電流の測定精度の低下するのを防止できる。さらに、一対の磁気センサ13の感度軸が互いに反平行であるので、一対の磁気センサ13の差動出力を取ることにより、一対の磁気センサ13に同じ方向に加わる地磁気等の外乱磁界をキャンセルすることができる。
 なお、図1に示す電流センサ1では、バスバー11を挟んで2つのバスバー12a、12bを配置して構成しているが、バスバーの数はこれに限られるものではない。例えば、バスバー11の片側に1つのバスバー12を設ける構成とすることも可能であり、バスバー11とバスバー12とを複数本並設して構成しても良い。また、図1では、磁気センサ13は、第1領域111及び第4領域122の主面の略中央位置に設けられているが、磁気センサ13の位置はこれに限られるものではない。
 以上のように、本実施の形態に係る磁気センサ1によれば、磁気センサ13の非常に高い位置精度や取り付け精度を要求せずとも、隣接電流の影響を小さくして正確に被測定電流を測定することができる。
(実施例)
 以下、電流センサ1の効果を明確にするために行った実施例について説明する。図4は、本実施の形態に係る電流センサ1の断面図である。また、図7Aは、従来の電流センサ2の断面図であり、図7Bは、従来の電流センサ3の断面図である。
 図7Aに示す電流センサ2においては、平板形状の被測定電流路21及び隣接電流路22が、同一平面上に並べて配置されている。被測定電流路21の一対の主面上には、それぞれ磁気センサ24が配設されており、被測定電流路21を通流する被測定電流による磁場が磁気センサ24によって検出される。例えば、図7Aにおいて、被測定電流路21及び隣接電流路22の板幅wは10mmであり、厚さdは1.5mmである。また、磁気センサ24の中心位置から隣接電流路22の中心位置までの距離Laは、15mmである。また、被測定電流路21における磁気センサ24の取り付け角度θaは、11.3°である。ここで、取り付け角度とは、隣接電流路22の中心位置及び磁気センサ24の中心位置を結ぶ線と、隣接電流路22の中心位置から水平方向の線との間に生じる角度である。また、被測定電流路21及び隣接電流路22の厚さd方向の中心位置から磁気センサ24の中心位置までの高さhaは、3mmである。
 図7Bに示す電流センサ3においては、平面形状の被測定電流路31及び隣接電流路32が、同一平面上に並べて配置されている。被測定電流路31の表裏両主面上には、それぞれ、取り付け角度θbが16.7°で磁気センサ33が取り付けられる。磁気センサ33の中心位置から隣接電流路32の中心位置までの距離Lbは、10mmである。また、被測定電流路31及び隣接電流路32の厚さd方向の中心位置から磁気センサ33の中心位置までの高さhbは、3mmである。
 図4に示す電流センサ1においては、被測定電流路11の第1領域111の一対の主面に対して、隣接電流路12の第2領域121の一対の主面が直交するように配置されている。第1領域111の一対の主面上には、互いの主面が当接するように磁気センサ13が設置されている。また、磁気センサ13の中心位置から第2領域121の中心位置までの距離Lcは、10mmである。また、第1領域111及び第2領域121の中心位置から磁気センサ13の中心位置までの高さhcは、3mmである。
 なお、図4においては、説明の便宜上、被測定電流路を電流路11、隣接電流路を電流路12とした場合の第1領域111と第2領域121との関係を説明している。しかしながら、被測定電流路を電流路12、隣接電流路を電流路11とした場合の第4領域122と第3領域112とでも同様の関係が適用される。
 次に、以上のような電流センサ1~3において生じる被測定電流の測定誤差について詳述する。図5Aは、図4、7A及び7Bに示す電流センサ1~3における隣接電流と測定誤差との関係を示す図である。なお、測定誤差は、隣接電流磁場や外部磁場の感度軸方向成分の、被測定電流磁場のフルスケールに対する比率として求めた。
 図7Aを参照して説明したように、電流センサ2においては、隣接電流路22を通流する隣接電流の磁場は、被測定電流路21に取り付けられた磁気センサ24の感度軸に対して、平行成分を有している。このため、電流センサ2では、隣接電流の影響により、被測定電流路21を通流する被測定電流の測定誤差が生じる。したがって、図5Aに示すように、隣接電流量が増加するにつれて、電流センサ2における被測定電流の測定誤差が増加する。例えば、隣接電流のフルスケールが400Aである場合、電流センサ2における被測定電流は最大38%の測定誤差が生じてしまう。
 一方、図7Bを参照して説明したように、電流センサ3においては、隣接電流路32を通流する隣接電流の磁場は、被測定電流路31に取り付け角度θbで取り付けられた磁気センサ33の感度軸と直交する。このため、電流センサ3では、隣接電流の影響を受けずに、被測定電流を測定できる。したがって、図5Aに示すように、隣接電流量が増加しても、電流センサ3における被測定電流の測定誤差は、生じない。
 また、図4を参照して説明したように、電流センサ1においても、隣接電流路12の第2領域121を通流する隣接電流の磁場は、被測定電流路11の第1領域111に取り付けられた磁気センサ13の感度軸と直交する。このため、電流センサ1では、隣接電流の影響を受けずに、被測定電流を測定できる。したがって、図5Aに示すように、隣接電流量が増加しても、電流センサ1における被測定電流の測定誤差は、生じない。
 図5Bは、図4、7A及び7Bに示す電流センサ1~3における外部磁場と誤差との関係を示す図である。図7Bに示す電流センサ3においては、磁気センサ33は、取り付け角度θbで取り付けられているので、外部磁場が被測定電流路31及び隣接電流路32の厚さd方向に平行であると仮定すると、外部磁場は、磁気センサ33の感度軸に対して平行成分を有している。このため、磁気センサ33では、外部磁場の影響により、被測定電流路31を通流する被測定電流の測定誤差が生じる。したがって、図5Bに示すように、外部磁場の影響が増加するにつれて、電流センサ3における被測定電流の誤差が増加する。例えば、外部磁場が50mTである場合、電流センサ3における被測定電流は1%程度の測定誤差が生じてしまう。
 一方、図7Aを参照して説明したように、電流センサ2においては、外部磁場が被測定電流路21及び隣接電流路22の厚さd方向に平行であると仮定すると、外部磁場は、磁気センサ24の感度軸と直交する。このため、電流センサ2では、外部磁場の影響を受けずに、被測定電流路21を通流する被測定電流を測定できる。したがって、図5Bに示すように、外部磁場の影響が増加しても、電流センサ2における被測定電流の測定誤差は生じない。
 また、図4を参照して説明したように、電流センサ1においても、外部磁場が被測定電流路11の第1領域111の厚さd方向に平行であると仮定すると、外部磁場は、磁気センサ13の感度軸と直交する。このため、磁気センサ13では、外部磁場の影響を受けずに、第1領域111を通流する被測定電流を測定できる。したがって、図5Bに示すように、外部磁場の影響が増加しても、電流センサ1における被測定電流の測定誤差は生じない。
 以上のように、本実施の形態に係る電流センサ1においては、隣接電流の磁場が磁気センサ13の感度軸と直交するように隣接電流路の隣接領域である第2領域121又は第3領域112が配置されるので、図5Aに示すように、隣接電流量が増加しても被測定電流の誤差は生じない。また、被測定電流路の被測定区間である第1領域111又は第4領域122の一対の主面に磁気センサ13が当接するので、外部磁場が被測定電流路の厚さd方向に平行である場合、図5Bに示すように、外部磁場の影響が増加しても被測定電流の測定誤差は生じない。すなわち、図5A及び5Bのいずれの場合においても、本実施の形態に係る電流センサ1によれば、被測定電流の測定誤差は生じない。
 したがって、本実施の形態に係る電流センサ1において、例えば、図7Aに示される電流センサ2などと比較して、隣接電流路の磁場の影響を低減でき、被測定電流の測定精度を向上させることができる。また、例えば、図7Bに示される電流センサ3などと比較して、外部磁場の影響を低減でき、被測定電流の測定精度を向上させることができる。
 さらに、本実施の形態に係る電流センサ1においては、磁気センサ13の主面が被測定電流路の一対の主面に当接しても、隣接電流路の磁場が当該磁気センサ13の感度軸と直交するように隣接電流路が配置されるので、隣接電流路の磁場の影響を排除できる。したがって、図7Bに示される電流センサ3のように磁気センサ13の高い位置精度や高い取り付け精度を要求することなく、隣接電流路の磁場の影響を排除できる。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態においては、第1領域111及び第4領域122の両主面上に配置された感度軸が平行である場合について例示したが、当該感度軸は反平行であってもよい。
 以上のように、上記実施の形態における各構成要素の配置、大きさなどは適宜変更して実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。
 本出願は、2011年7月5日出願の特願2011-149024に基づく。この内容は、すべてここに含めておく。

Claims (6)

  1.  一対の主面を有し、平板形状である第1領域を備えた第1電流路と、
     一対の主面を有し、平板形状である第2領域を備え、前記第1電流路に並設された第2電流路と、
     感度軸が前記第1領域の両主面とそれぞれ平行になるようにして前記第1領域の両主面上に配設されており、互いの感度軸が平行であり、前記第1領域を通流する被測定電流により発生する磁場を検出する一対の第1磁気センサと、を具備し、
     前記第2領域は、該第2領域の主面が前記第1磁気センサの感度軸と直交するように配設されることを特徴する電流センサ。
  2.  前記第2領域の幅は、前記一対の第1磁気センサ間の距離よりも広いことを特徴とする請求項1に記載の電流センサ。
  3.  前記第1電流路は、一対の主面を有し、平板形状の第3領域を備え、
     前記第2電流路は、一対の主面を有し、平板形状の第4領域を備え、
     感度軸が前記第4領域の両主面とそれぞれ平行になるようにして前記第4領域の両主面上に配設されており、互いの感度軸が平行であり、前記第4領域を通流する被測定電流により発生する磁場を検出する一対の第2磁気センサをさらに具備し、
     前記第3領域は、該第3領域の主面が前記第2磁気センサの感度軸と直交するように配設されることを特徴とする請求項1又は請求項2に記載の電流センサ。
  4.  前記第3領域の幅は、前記一対の第2磁気センサ間の距離よりも広いことを特徴とする請求項3に記載の電流センサ。
  5.  前記第1電流路及び前記第2電流路は特定方向にそれぞれ延在しており、
     前記第1電流路の前記第1領域の主面と前記第3領域の主面とが直交しており、
     前記第2電流路の前記第2領域の主面と前記第4領域の主面とが直交していることを特徴とする請求項3又は請求項4に記載の電流センサ。
  6.  前記第2の電流路は、前記第1の電流路を挟んで二つ配設され、
     前記第2の電流路の前記第2領域の主面同士が、前記第1電流路の前記第1領域を挟んで対向するように配設され、
     前記第2電流路の前記第4領域の主面同士が、前記第1電流路の前記第3領域を挟んで面一に配設されることを特徴とする請求項5に記載の電流センサ。
PCT/JP2012/065123 2011-07-05 2012-06-13 電流センサ WO2013005545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522577A JP6031639B6 (ja) 2011-07-05 2012-06-13 電流センサ
US14/109,691 US9201101B2 (en) 2011-07-05 2013-12-17 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-149024 2011-07-05
JP2011149024 2011-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/109,691 Continuation US9201101B2 (en) 2011-07-05 2013-12-17 Current sensor

Publications (1)

Publication Number Publication Date
WO2013005545A1 true WO2013005545A1 (ja) 2013-01-10

Family

ID=47436902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065123 WO2013005545A1 (ja) 2011-07-05 2012-06-13 電流センサ

Country Status (2)

Country Link
US (1) US9201101B2 (ja)
WO (1) WO2013005545A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132499A (ja) * 2014-01-10 2015-07-23 トヨタ自動車株式会社 電流センサ
JP2016200438A (ja) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 電流センサ
JP2019100923A (ja) * 2017-12-05 2019-06-24 日立金属株式会社 電流センサ
JP2020071100A (ja) * 2018-10-30 2020-05-07 矢崎総業株式会社 電流検出方法及び電流検出構造

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971398B2 (ja) * 2013-02-27 2016-08-17 株式会社村田製作所 電流センサおよびそれを内蔵した電子機器
US9689904B2 (en) * 2015-05-04 2017-06-27 Honeywell International Inc. Current sensor with stray magnetic field rejection
US11408910B2 (en) * 2017-03-24 2022-08-09 Honda Motor Co., Ltd. Accelerator position detection device with improved abnormal detection
US10837753B2 (en) * 2019-01-10 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor using MR elements for detecting flux line divergence
DE102021127855A1 (de) * 2021-06-11 2022-12-22 Methode Electronics Malta Ltd. Stromsensor, der einen Magnetfeldsensor in einer V-förmigenAnordnung umfasst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090769A1 (ja) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation 電流測定装置
JP2011039021A (ja) * 2009-08-18 2011-02-24 Kohshin Electric Corp 電流センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153491B2 (ja) 2008-07-11 2013-02-27 矢崎総業株式会社 電流検出装置
CN103080755B (zh) * 2010-08-31 2015-01-21 阿尔卑斯绿色器件株式会社 电流传感器
JP5544502B2 (ja) * 2011-03-07 2014-07-09 アルプス・グリーンデバイス株式会社 電流センサ
WO2013172109A1 (ja) * 2012-05-16 2013-11-21 アルプス・グリーンデバイス株式会社 電流センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090769A1 (ja) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation 電流測定装置
JP2011039021A (ja) * 2009-08-18 2011-02-24 Kohshin Electric Corp 電流センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132499A (ja) * 2014-01-10 2015-07-23 トヨタ自動車株式会社 電流センサ
JP2016200438A (ja) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 電流センサ
JP2019100923A (ja) * 2017-12-05 2019-06-24 日立金属株式会社 電流センサ
JP7003609B2 (ja) 2017-12-05 2022-01-20 日立金属株式会社 電流センサ
JP2020071100A (ja) * 2018-10-30 2020-05-07 矢崎総業株式会社 電流検出方法及び電流検出構造

Also Published As

Publication number Publication date
JPWO2013005545A1 (ja) 2015-02-23
US20140103918A1 (en) 2014-04-17
US9201101B2 (en) 2015-12-01
JP6031639B2 (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2013005545A1 (ja) 電流センサ
JP5732679B2 (ja) 電流センサ
JP5648246B2 (ja) 電流センサ
US9063185B2 (en) Current sensor
JP5906488B2 (ja) 電流センサ
US9933462B2 (en) Current sensor and current measuring device
WO2013099504A1 (ja) 電流センサ
JP6409970B2 (ja) 電流センサ
WO2016056135A1 (ja) 電流検出装置、及び電流検出方法
WO2013038867A1 (ja) 電流センサ
JP5816958B2 (ja) 電流センサ
JP6384677B2 (ja) 電流センサ
JP2015036636A (ja) 電流センサ
WO2012046547A1 (ja) 電流センサ
JP2015190781A (ja) 基板
JP5487403B2 (ja) 電流センサ
JP2019100922A (ja) 電流センサ
JP6031639B6 (ja) 電流センサ
JP2014066623A (ja) 電流センサ
JP2013142569A (ja) 電流センサ
WO2012035906A1 (ja) 電流センサ
US11506729B2 (en) Current sensor and electric control device
JP6144597B2 (ja) 電流センサ
JP6115951B2 (ja) 電流センサ
JP2015090316A (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808002

Country of ref document: EP

Kind code of ref document: A1