WO2013002271A1 - 耐屈曲性導電材料の選定方法及びそれを用いたケーブル - Google Patents

耐屈曲性導電材料の選定方法及びそれを用いたケーブル Download PDF

Info

Publication number
WO2013002271A1
WO2013002271A1 PCT/JP2012/066411 JP2012066411W WO2013002271A1 WO 2013002271 A1 WO2013002271 A1 WO 2013002271A1 JP 2012066411 W JP2012066411 W JP 2012066411W WO 2013002271 A1 WO2013002271 A1 WO 2013002271A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
cable
stress
test
curve
Prior art date
Application number
PCT/JP2012/066411
Other languages
English (en)
French (fr)
Inventor
浩之 因
芙美代 案納
松永 大輔
弘基 北原
新二 安藤
雅之 津志田
俊文 小川
Original Assignee
大電株式会社
福岡県
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社, 福岡県, 国立大学法人 熊本大学 filed Critical 大電株式会社
Publication of WO2013002271A1 publication Critical patent/WO2013002271A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables

Definitions

  • the present invention uses an SN curve showing the relationship between the stress amplitude (dynamic load) applied to the conductive material and the number of stress cycles (number of times to failure) to select a conductive material having excellent flexibility.
  • the present invention relates to a method of selecting a flexible conductive material and a cable using the same.
  • Patent Document 1 discloses the fatigue life of a copper material for determining the number of repeated cycles until the copper material breaks when the copper material is subjected to repeated stress whose amplitude fluctuates. An estimation method has been proposed.
  • Patent Document 2 proposes a method of calculating and predicting the life of a shear pin by using the shear pin S-N curve corresponding to the shaft torsional torque of a gas turbine. Further, Non-Patent Document 1 proposes a method of evaluating the fatigue characteristics of a material using a thin piece.
  • Patent Documents 1 and 2 obtain an SN curve for a specific material, and perform life prediction (prediction of fracture timing and replacement timing) using the obtained SN curve, for example, If prediction is to be made in a range in which the number of repetitions exceeds 10 million, it is necessary to obtain an SN curve by testing up to a range in which the number of repetitions exceeds 10 million. For this reason, it takes a long time to obtain the SN curve, and it can not be said that it is an effective life prediction method. Further, the technique of Non-Patent Document 1 is to evaluate the fatigue fracture characteristics of a material using a thin plate test, and has the advantage that the SN curve of the material constituting the thin plate can be obtained in a short time. However, the bending resistance of the cable can not be predicted directly from the obtained SN curve.
  • the present invention has been made in view of such circumstances, and it is possible to use the SN curve of the conductive material positively and to select the conductive material having excellent flexibility quickly and easily.
  • An object of the present invention is to provide a method of selecting a conductive material and a cable using the same.
  • the conductive material is 100 from the SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material.
  • a method of selecting a flexible conductive material that can withstand 10,000 or more dynamic drive tests comprising: In the range of the stress repetition number up to 10 6 to 10 7 breakages in the SN curve of the conductive material, the finite life region of fatigue failure obtained by setting the stress amplitude value to y MPa and the stress repetition number to x is a straight line
  • the conductive material is 500 from the SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material.
  • a method of selecting a flexible conductive material that can withstand 10,000 or more dynamic drive tests comprising: In the range of the stress repetition number up to 10 6 to 10 7 breakages in the SN curve of the conductive material, the finite life region of fatigue failure obtained by setting the stress amplitude value to y MPa and the stress repetition number to x is a straight line
  • the third aspect of the present invention there is provided a method of selecting a flexible conductive material according to the above object, wherein the conductive material is 1000 from the SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material.
  • a method of selecting a flexible conductive material that can withstand 10,000 or more dynamic drive tests comprising: In the range of the stress repetition number up to 10 6 to 10 7 fractures in the SN curve of the conductive material, the finite life region of fatigue failure obtained by setting the stress amplitude value to y MPa and the stress repetition number to x is a straight line
  • a method of selecting a flexible conductive material according to the fourth aspect of the present invention wherein the conductive material is 2500 from the SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material.
  • a method of selecting a flexible conductive material that can withstand 10,000 or more dynamic drive tests comprising: In the range of the stress repetition number up to 10 6 to 10 7 fractures in the SN curve of the conductive material, the finite life region of fatigue failure obtained by setting the stress amplitude value to y MPa and the stress repetition number to x is a straight line
  • the function equation corresponds to a cable in which the test body used for the dynamic drive test is made of a wire having a wire diameter of d ⁇ m.
  • the value of the y-intercept value of the functional equation is (z ⁇ d) / 2 for the selection of the flexible conductive material that can withstand the dynamic drive test of a cable that is configured and configured by a wire with a wire diameter of z ⁇ m.
  • the functional equation is corrected by adding the calculated correction value.
  • the cable according to the fifth invention in accordance with the object uses the conductive material selected by the method of selecting a flexible conductive material according to the first to fourth inventions.
  • the conductive material is selected based on the data of the SN curve measured in the past or the data of the newly created SN curve.
  • the bending resistance can be estimated, and it becomes possible to select the conductive material having the bending resistance according to the application quickly and simply without actually performing the dynamic drive test.
  • a functional equation is set corresponding to a cable in which a test body used for a dynamic drive test is constituted by a strand of wire diameter d ⁇ m.
  • the value of y-intercept in the functional equation is calculated by (z ⁇ d) / 2.
  • the function equation is corrected by adding the correction value to be corrected, it is possible to select the flexible conductive material which can withstand the dynamic drive test in consideration of the wire diameter of the strands constituting the cable.
  • the SN curve of the conductive material is used for the cable application without actually performing a dynamic drive test of the cable (for example, a cable bending test). It is possible to select flexible conductive materials quickly and easily, and to manufacture reliable cables quickly and at low cost.
  • the cable bending test is an SN curve in consideration of a change in wire diameter used when estimating the number of breakages of 1,000,000 times or more. It is explanatory drawing of the SN curve which estimates the cable bending test fracture
  • an SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material is a method of selecting a flexible conductive material that the conductive material withstands a dynamic drive test of 1,000,000 times or more, and the number of stress cycles to 10 6 to 10 7 breakages in the SN curve of the conductive material
  • the stress amplitude value is yMPa
  • the selection criteria is to be within the region indicated by.
  • a cable bending test is adopted as a dynamic drive test (the same applies to the second to fourth embodiments).
  • a cable bending test a cable having a cross-sectional area of 0.2 mm 2 manufactured using a wire with a wire diameter of 80 ⁇ m is used as a test body, and a bending radius of 15 mm is applied with a load of 100 g applied to the test body.
  • the bending angle range is performed by repeatedly applying right and left bending of ⁇ 90 degrees.
  • the SN curve (same for the second to fourth embodiments) is 30 mm in length, 3 mm in width, 0.3 mm in thickness, using the same flexible conductive material as the cable wire.
  • the fatigue test stress repeated load test
  • the holder is attached to the other end of the test piece so that the tip of the holder is 1 mm from the center of the circular hole, one end of the test piece is downward and the holder is the voice coil portion of the speaker for sound , And the frequency was adjusted so that the test piece was in the primary resonance state by vibrating the voice coil. Then, the maximum stress occurring at the holder root of the test piece was obtained from the equation of bending stress of the cantilever, and it was taken as the stress amplitude at the time of fatigue test.
  • an SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material is a method of selecting a flexible conductive material that the conductive material can withstand 5 million or more dynamic drive tests, and the number of stress cycles until 10 6 to 10 7 breakages in the SN curve of the conductive material
  • the stress amplitude value is yMPa
  • the selection criteria is to be within the region indicated by.
  • an SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material From the above, it is a method of selecting a flexible conductive material that the conductive material withstands 10 million dynamic drive tests or more, and the number of stress cycles until 10 6 to 10 7 breakages in the SN curve of the conductive material
  • the stress amplitude value is yMPa
  • the selection criteria is to be within the region indicated by.
  • an SN curve showing the relationship between the number of breaks and the stress amplitude obtained by conducting a fatigue test of the conductive material is a method of selecting a flexible conductive material that can withstand a dynamic drive test of 25 million times or more of the conductive material, and the number of stress cycles to 10 6 to 10 7 times of breakage in the SN curve of the conductive material
  • the stress amplitude value is yMPa
  • the selection criteria is to be within the region indicated by.
  • the test formulas used in the cable bending test have functional diameters of 80 ⁇ m (an example of d ⁇ m) according to the functional formulas (1) to (4).
  • function formulas (1) to (5) Correct the functional equation by adding the correction value calculated by (z-80) / 2 to the value of y-intercept in 4).
  • the relationship between the stress amplitude (repeated stress) and the number of breaks (number of stress cycles up to break) can be expressed by linear approximation, that is, the relationship between the stress amplitude and the number of breaks can be expressed using a linear function.
  • a material with high fatigue resistance is selected in the repeated stress fatigue test and a cable bending test is performed using a cable composed of the selected material wires, high bending resistance is exhibited (the number of breakages is large). Results are obtained and it is known that the cyclic stress fatigue test results and the cable bending test results are in a corresponding relationship.
  • a linear function (straight line) p indicating fatigue fracture behavior in a 10 6 to 10 7 finite life region is determined. If the number of fractures Np is obtained from the cable bending test of a cable composed of a strand formed of the conductive material P, the fatigue test using the conductive material Q of different materials shows that 10 6 to 10 7 times of finite.
  • a linear function q indicating fatigue fracture behavior in the life region is determined, if a linear function q is present on the high stress side (high breaking frequency side) from the linear function p, it is composed of strands formed of the conductive material Q It is expected that the number of breaks Nq obtained from the cable bending test of the obtained cable is larger than the number of breaks Np.
  • the breaking frequency Nq obtained from the cable bending test of the cable composed of the strands formed of the conductive material Q is broken. It is expected to be smaller than the number Np.
  • a test piece is manufactured using copper with a purity of 99.9% as a reference material, and a fatigue test is performed to obtain a linear function (straight line) indicating fatigue fracture behavior in a 10 6 to 10 7 finite life region.
  • An SN curve showing a fatigue fracture behavior in a 10 6 to 10 7 finite life region of 99.9% pure copper is shown in FIG.
  • y is the stress amplitude value
  • x is the stress repetition rate (times).
  • the number of breakages obtained in the cable bending test was 10 million.
  • the fatigue fracture behavior can be expressed by a linear function
  • the material is a test piece of the same material
  • the difference in the fatigue fracture behavior can be expressed as the linear function obtained by translating the obtained linear function Be done.
  • the linear function representing the fatigue failure behavior in the finite life region of 10 6 to 10 7 times in the material of the strands constituting the cable whose number of breakages obtained in the cable bending test is 1,000,000 times is a cable
  • the linear function showing the fatigue fracture behavior in the finite life region of 10 6 to 10 7 times in the material of the strands constituting the cable having a number of breaks of 5,000,000 obtained in the cable bending test is the cable bending.
  • the linear function showing the fatigue fracture behavior in the finite life region of 10 6 to 10 7 times in the material of the strands constituting the cable whose number of breakages obtained in the cable bending test is 25 million is a cable bending
  • the high fracture frequency side is estimated by a linear function showing the fatigue fracture behavior in a 10 6 to 10 7 finite life region of a material whose fracture frequency in the test is 10,000,000.
  • the linear life function showing the fatigue failure behavior in the 10 6 to 10 7 finite life region of the material in which the number of breakages in the cable bending test is 10 million times is 10 times the fracture life.
  • the strain generated in the cable bending test becomes larger than that in the case where the wire diameter of the wire is 80 ⁇ m, and the generated stress also becomes larger.
  • the wire diameter of the wire is smaller than 80 ⁇ m, the strain generated in the cable bending test becomes smaller than in the case where the wire diameter of the wire is 80 ⁇ m, and the generated stress also becomes smaller.
  • the linear function showing the fatigue failure behavior corresponds to the generated strain change It is necessary to move along the stress axis by the value of.
  • the stress is determined as the product of the strain and the elastic modulus of the test piece used in the repeated stress fatigue test, so the wire diameter dependent portion (z-(z-) with respect to the wire diameter of 80 ⁇ m.
  • K is a y-intercept of a linear function.
  • a cable according to an embodiment of the present invention uses a conductive material selected by the method of selecting a flexible conductive material according to the first to fourth embodiments.
  • a conductive material selected by the method of selecting a flexible conductive material according to the first to fourth embodiments For example, in the case of producing a cable (wire diameter of 80 ⁇ m) which withstands a cable bending test of 1,000,000 times or more, first of all, an SN curve prepared in advance for various bending resistant conductive materials
  • the flexible conductive material corresponding to the selected regression line is a candidate material for forming the strands of the cable that can withstand one million or more cable bending tests.
  • the flexible conductive material corresponding to the selected regression line is a candidate material for forming a strand of a cable that can withstand 5 million or more cable bending tests.
  • the flexible conductive material corresponding to the selected regression line is a candidate material for forming the strands of the cable that withstands 10 million or more cable bending tests.
  • the flexible conductive material corresponding to the selected regression line is a candidate material for forming a strand of a cable that can withstand 25 million or more cable bending tests.
  • Example 1 A member with a length of 30 mm, a width of 3 mm, and a thickness of 0.3 mm is manufactured from a copper material for electric wire (hereinafter referred to as copper material A), and the diameter is 0.5 mm at the widthwise center position of 24 mm from one end of the member. A circular hole was formed. Subsequently, the surface of the member in which the circular hole was formed was mirror-finished, and the test piece was produced.
  • copper material A a copper material for electric wire
  • the holder was attached to the other end of the test piece such that the tip of the holder was 1 mm from the center of the circular hole, and one end of the test piece was downward and the holder was fixed to the voice coil portion of the acoustic speaker . Then, the voice coil was vibrated so that the test piece was in the primary resonance state, and the fatigue test was performed.
  • the maximum stress occurring at the holder root of the test piece was obtained from the equation of bending stress of the cantilever, and it was taken as the stress amplitude at the time of fatigue test.
  • FIG. 4 there is a regression line that linearly approximates the 10 6 to 10 7 finite life region in the SN curve of the flexible conductive material that withstands one million or more and five million or more cable bending tests.
  • the functional expression which shows the lower limit of a field is shown, respectively.
  • a cable with a cross-sectional area of 0.2 mm 2 made of a wire made of copper material A and having a wire diameter of 80 ⁇ m is used as a test body, and a bending radius of 15 mm with a load of 100 g applied to the test body.
  • the number of breakages was 4.5 million times.
  • the lower limit of the region where there is a regression line that linearly approximates the 10 6 to 10 7 finite life region of the SN curve of a flexible conductive material that withstands one million or more and 5 million or more cable bending tests The copper material A is used by comparing functional equations (1) and (2) indicating values with regression lines that linearly approximate 10 6 to 10 7 finite life regions of the SN curve of the copper material A. It was confirmed that the number of breakages of the cable bending test using the cable manufactured could be predicted.
  • Example 2 The same fatigue test as in Experimental Example 1 was performed using a copper material for electric wire (hereinafter referred to as copper material B) other than the copper material of Experimental Example 1.
  • copper material B a copper material for electric wire
  • the fatigue test results in a finite life region of 10 6 to 10 7 stress cycles are shown in FIG.
  • Y ⁇ 21.
  • a cable bending test similar to Experimental Example 1 is carried out with a cable having a cross-sectional area of 0.2 mm 2 and made of a wire made of copper material C and having a wire diameter of 80 ⁇ m used as a test body, the number of breakages is It was 900,000 times.
  • Example 4 The same fatigue test as in Experimental Example 1 was performed using a copper material for electric wires (hereinafter referred to as copper material D) different from that of Experimental Examples 1 and 2.
  • the regression line of the copper material D indicates the lower limit value of the existence region of the SN curve of the flexible conductive material that withstands a cable bending test of 5 million times or more.
  • the number of breakages is It was six million times.
  • Example 5 The same fatigue test as in Experimental Example 1 was performed using a copper material for electric wires (hereinafter referred to as copper material E) different from that of Experimental Examples 1, 2 and 4.
  • a regression line y ⁇ 28.0 Ln (x) + 594 which linearly approximates a finite life region of 10 6 to 10 7 stress cycles is shown in FIG.
  • the regression line of copper material E shows the lower limit value of the existence area of the SN curve of a flexible conductive material that withstands a cable bending test of 5 million times or more
  • y ⁇ 21.5 Ln (x) +475
  • function formula 2 shows the lower limit of the existence area of the SN curve of the bendable conductive material which exists on the high stress side and withstands the cable bending test of 10 million times or more
  • y ⁇ 21.5 Ln (x) +505 ( Since it exists immediately below the functional expression (3), it is possible to estimate that the number of breakages is close to 10 million.
  • Example 6 The same fatigue test as that of Experimental Example 1 was performed using a copper material for electric wires (hereinafter referred to as copper material F) different from that of Experimental Examples 1, 2, 4, and 5.
  • a regression line y ⁇ 29.2 Ln (x) + 535 which linearly approximates a finite life region of 10 6 to 10 7 stress cycles is shown in FIG.
  • the lower limit of the region where there is a regression line that linearly approximates the 10 6 to 10 7 finite life region of the SN curve of a flexible conductive material that withstands 10 million times or more and 25 million or more cable bending tests The cable produced with the copper material F was used by comparing the functional equations (3) and (4) showing the values with the regression line that linearly approximates the 10 6 to 10 7 times finite life region of the copper material F It was confirmed that the number of breaks in the cable bending test can be predicted.
  • Example 7 When a cable with a cross-sectional area of 0.2 mm 2 constructed using a wire made of copper material C and having a wire diameter of 100 ⁇ m is used as a test body, the same cable bending test as in Experimental Example 1 is performed with 500,000 breakages. It was times.
  • a cable having a wire diameter of 80 ⁇ m withstands a cable bending test of 1,000,000 times or more, the 10 6 to 10 7 finite life region in the SN curve of the bending resistant conductive material is linearly approximated.
  • a functional expression y ⁇ 21.5 Ln (x) +465 showing the lower limit value corrected in the case of the wire diameter 100 ⁇ m and 10 6 to 10 7 times of the limited life region of the copper material C
  • the cable bending test can be estimated to be less than 1 million times, which is consistent with the cable bending test.
  • Example 8 When a cable bending test similar to Experimental Example 1 is performed on a cable having a cross-sectional area of 0.2 mm 2 and constructed using a wire made of copper material C and having a wire diameter of 50 ⁇ m, the number of breakages is It was 2 million times.
  • a cable having a wire diameter of 80 ⁇ m withstands a cable bending test of 1,000,000 times or more, the 10 6 to 10 7 finite life region in the SN curve of the bending resistant conductive material is linearly approximated.
  • a functional expression y ⁇ 21.5 Ln (x) +440 showing the lower limit value corrected in the case of a wire diameter of 50 ⁇ m and 10 6 to 10 7 times of the limited life region of copper material C
  • the number of breakages in the cable bending test can be estimated to be one million times or more, which is consistent with the cable bending test.
  • Example 9 A member with a length of 30 mm, a width of 3 mm, and a thickness of 0.3 mm from an aluminum-based material prepared by adding 0.45 mass% of zirconium, 0.2 mass% of silicon, and 0.15 mass% of iron to aluminum A circular hole with a diameter of 0.5 mm was formed at a widthwise center position of 24 mm from one end of the member. Subsequently, the surface of the member in which the circular hole was formed was mirror-finished, and the test piece was produced.
  • the holder was attached to the other end of the test piece such that the tip of the holder was 1 mm from the center of the circular hole, and one end of the test piece was downward and the holder was fixed to the voice coil portion of the acoustic speaker . Then, the voice coil was vibrated so that the test piece was in the primary resonance state, and the fatigue test was performed.
  • the maximum stress occurring at the holder root of the test piece was obtained from the equation of bending stress of the cantilever, and it was taken as the stress amplitude at the time of fatigue test.
  • the results of the fatigue test in a finite life region of 10 6 to 10 7 stress cycles are shown in FIG.
  • FIG. 7 is a linear approximation of the 10 6 to 10 7 finite life region in the SN curve of a flexible conductive material that withstands one million or more, 5 million or more, and 10 million or more cable bending tests.
  • the functional equation which shows the lower limit value of the field where the regression line which exists is shown, respectively is shown.
  • the regression line y ⁇ 11.1 Ln (x) +320 of the heat-treated aluminum-based material indicates the lower limit of the region of existence of the SN curve of the flexible conductive material that withstands one million or more cable bending tests.
  • a cable with a cross-sectional area of 0.2 mm 2 made of a heat-treated aluminum-based material and a wire diameter of 80 ⁇ m is used as a test body, and a bending radius of 100 g is applied to the test body.
  • the number of times of breakage was 5 million times.
  • the lower limit of the region where there is a regression line that linearly approximates the 10 6 to 10 7 finite life region of the SN curve of a flexible conductive material that withstands one million or more and 5 million or more cable bending tests Heat-treated aluminum by comparing functional equations (1) and (2) showing the values with regression lines linearly approximating the 10 6 to 10 7 finite life regions of the SN curve of the heat-treated aluminum-based material It was confirmed that the number of breaks in the cable bending test using the cable of the base material can be predicted.
  • Example 10 The same fatigue test as in Example 1 was performed using an aluminum material (pure aluminum material) having a purity of 99%.
  • the regression line y ⁇ 4.8 Ln (x) +119 of a pure aluminum material is the lower limit of the existence region of the SN curve of a flexible conductive material that withstands one million or more cable bending tests.
  • the number of breakages can be estimated to be less than 1,000,000 times when a cable bending test of a pure aluminum material is performed .
  • a cable bending test similar to that of Example 1 is performed on a cable having a cross-sectional area of 0.2 mm 2 made of a pure aluminum material and using a wire with a wire diameter of 80 ⁇ m, the fracture occurs. The number of times was 2000 times.
  • Example 11 Aluminum-based material (Al-Zr-Fe-Si-Ti-based material) manufactured by adding 0.75 mass% of zirconium, 0.33 mass% of iron, 0.30 mass% of silicon, 0.04 mass% of titanium to aluminum
  • the regression line y ⁇ 16.6 Ln (x) +460 of the Al—Zr—Fe—Si—Ti based material is S of the flexible conductive material that withstands 10 million or more cable bending tests.
  • a cable having a cross-sectional area of 0.2 mm 2 made of a wire made of an Al-Zr-Fe-Si-Ti material and having a wire diameter of 80 ⁇ m is the same as that of Example 1.
  • the number of breakages was 20 million times. Therefore, functional equations (3) and (4) indicating the lower limit value of the region where a regression line exists that linearly approximates 10 6 to 10 7 finite life regions, and Al-Zr-Fe-Si-Ti materials It was confirmed that the number of breaks in the cable bending test using a cable of Al-Zr-Fe-Si-Ti material can be predicted by comparing regression lines that linearly approximate 10 6 to 10 7 finite life regions.
  • Example 12 The aluminum-based material melted by adding 0.75 mass% of zirconium, 0.33 mass% of iron, 0.30 mass% of silicon, and 0.04 mass% of titanium to aluminum is quenched at a cooling rate of 10 ° C / min or more Texture-controlled Al-Zr-Fe-Si-Ti material produced by processing for 80% reduction in area, aging treatment at 350 ° C for 5 hours, and further processing for 80% reduction in area
  • the present invention has been described above with reference to the examples, the present invention is not limited to the configurations described in the above examples, and is within the scope of the matters described in the claims. It also includes other examples and modifications that can be considered. Furthermore, combinations of the components included in the present embodiment and other embodiments and modifications are also included in the present invention.
  • the method of a cable bending test can apply methods other than the method shown to the present Example.
  • conductive plastic can be used as the conductive material.
  • a strain amplitude may be employed.
  • a test piece prepared using a conductive material used for a cable without conducting a dynamic drive test of the cable for example, a ⁇ 90 degree left-right bending test
  • a regression line can be obtained which linearly approximates 10 6 to 10 7 finite life regions in the SN curve obtained by conducting the fatigue test used
  • the cable life can be estimated based on this regression line. It becomes possible to search for a novel conductive material excellent in bending resistance quickly and easily. As a result, it is possible to quickly and inexpensively provide a cable that appropriately meets the required characteristics of bending resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が100万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であり、導電材料のS-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+455で示す領域内にあることを選定基準にする。

Description

耐屈曲性導電材料の選定方法及びそれを用いたケーブル
本発明は、導電材料に負荷する応力振幅(動的荷重)と応力繰り返し数(破断までの回数)との関係を示すS-N曲線を用いて耐屈曲性に優れた導電材料を選定する耐屈曲性導電材料の選定方法及びそれを用いたケーブルに関する。
産業用ロボットが普及し、その高性能化に伴ってそれに用いられるケーブルに対しても高い性能が要求されてきている。ケーブルに対する要求特性のなかでも特に耐屈曲性は極めて重要であり、電線メーカーではその耐屈曲性ケーブルの開発が大きな技術課題となっている。これまではケーブル用導電材料として電気用軟銅線が主に用いられてきたが、耐屈曲回数が100万回を大きく超えるケーブルニーズが徐々に広がっている。ここで、耐屈曲性ケーブルの耐屈曲性を評価する動的駆動試験法として、例えば±90度の左右曲げ試験法が採用されている。
一方、金属材料は弾性範囲の荷重であっても繰り返し荷重を受けると疲労し、遂には破断することが知られている。このため、金属材料に一定の繰り返し応力を負荷した場合、どのくらいの回数まで耐えられるか、一定の繰り返し回数まで破断させないためには、繰り返し負荷する応力の範囲はどの程度であるべきかを把握するために、S-N曲線が広く使われている。
このS-N曲線の応用に関して、例えば、特許文献1には、銅材に振幅が変動する繰り返し応力を負荷した場合に、銅材が破断するまでの破断繰り返し数を求める銅材の疲労寿命の推定方法が提案されている。また、特許文献2には、ガスタービンの軸ねじりトルクに対応するシェアピンのS-N曲線を用いて、シェアピンの寿命を計算して予測する方法が提案されている。更に、非特許文献1には、薄片試験片を用いた材料の疲労特性の評価方法が提案されている。
特開平11-64203号公報 特開2000-37095号公報
津志田雅之、外3名、「薄片試験片用小型疲労試験機の開発とマグネシウム単結晶の疲労試験」、材料、日本材料学会、2009年8月、第58巻、第8号、p.703-708
耐屈曲性に優れたケーブルを開発するために必要な導電材料の選定を行う場合、これまではケーブル屈曲試験を行っていた。しかしながら、耐屈曲回数が100万回を超える試験では数十日間を超える試験時間が、耐屈曲回数が1000万回を超える試験では数百日間を超える試験時間が必要になるという問題があり、新しい導電材料を選定するためのケーブル屈曲試験を頻繁に実施することは、実質的に困難であった。
また、特許文献1、2の技術は、特定材料についてS-N曲線を求め、求めたS-N曲線を用いて寿命予測(破断時期や交換時期の予測)を行うものであって、例えば、繰り返し回数が1000万回を超える範囲で予測を行おうとする場合は、繰り返し回数が1000万回を超える範囲までの試験を行ってS-N曲線を求める必要がある。このため、S-N曲線を求めることに長時間を要し、実効的な寿命予測方法とはいえない。
また、非特許文献1の技術は、薄片試験片を用いて材料の疲労破壊特性を評価するものであって、薄片試験片を構成する材料のS-N曲線が短時間で得られるという利点はあるが、得られたS-N曲線からケーブルの耐屈曲性を直接予測することはできない。
本発明は、かかる事情に鑑みてなされたもので、導電材料のS-N曲線を積極的に利用し、耐屈曲性に優れた導電材料を迅速かつ簡便に選定することが可能な耐屈曲性導電材料の選定方法及びそれを用いたケーブルを提供することを目的とする。
前記目的に沿う第1の発明に係る耐屈曲性導電材料の選定方法は、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が100万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
前記導電材料の前記S-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+455で示す領域内にあることを選定基準にする。
前記目的に沿う第2の発明に係る耐屈曲性導電材料の選定方法は、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が500万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
前記導電材料の前記S-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+475で示す領域内にあることを選定基準にする。
前記目的に沿う第3の発明に係る耐屈曲性導電材料の選定方法は、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が1000万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
前記導電材料の前記S-N曲線における10~10回の破壊までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+505で示す領域内にあることを選定基準にする。
前記目的に沿う第4の発明に係る耐屈曲性導電材料の選定方法は、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が2500万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
前記導電材料の前記S-N曲線における10~10回の破壊までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+560で示す領域内にあることを選定基準にする。
第1~第4の発明に係る耐屈曲性導電材料の選定方法において、前記関数式は、前記動的駆動試験に使用する試験体が線径dμmの素線で構成されたケーブルに対応して設定され、線径がzμmの素線で構成されたケーブルの前記動的駆動試験に耐える耐屈曲性導電材料の選定には、前記関数式のy切片の値に(z-d)/2で算出される補正値を加えて該関数式を修正することが好ましい。
前記目的に沿う第5の発明に係るケーブルは、第1~第4の発明に係る耐屈曲性導電材料の選定方法によって選ばれた導電材料を使用している。
第1~第4の発明に係る耐屈曲性導電材料の選定方法においては、過去に測定されたS-N曲線のデータ又は新たに作成されたS-N曲線のデータに基づいて、導電材料の耐屈曲性を推定することができ、実際に動的駆動試験を実施しなくても、用途に応じた耐屈曲性を有する導電材料を迅速かつ簡便に選定することが可能になる。
第1~第4の発明に係る耐屈曲性導電材料の選定方法において、関数式が、動的駆動試験に使用する試験体が線径dμmの素線で構成されたケーブルに対応して設定されている際に、線径がzμmの素線で構成されたケーブルの動的駆動試験に耐える耐屈曲性導電材料の選定に、関数式のy切片の値に(z-d)/2で算出される補正値を加えて関数式を修正する場合、ケーブルを構成する素線の線径を考慮して、動的駆動試験に耐える耐屈曲性導電材料の選定を行うことができる。
前記目的に沿う第5の発明に係るケーブルにおいては、実際にケーブルの動的駆動試験(例えばケーブル屈曲試験)を行うことなく、導電材料のS-N曲線を用いてケーブルの用途に適した耐屈曲性を備えた導電材料を迅速かつ簡便に選定することができ、信頼性を有するケーブルを迅速かつ低コストで製造することが可能になる
本発明の一実施例に係る耐屈曲性導電材料の選定方法で使用するケーブル屈曲試験破断回数範囲を推定するS-N曲線である。 ケーブル屈曲試験破断回数100万回以上を推定する際に用いる線径の変化を考慮したS-N曲線である。 ケーブル屈曲試験破断回数範囲を推定するS-N曲線の説明図である。 実験例1~3の導電材料のS-N曲線である。 実験例4~6の導電材料のS-N曲線である。 実験例7、8の導電材料のS-N曲線である。 実験例9~12の導電材料のS-N曲線である。
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
本発明の第1の実施例に係る耐屈曲性導電材料の選定方法は、図1に示すように、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、導電材料が100万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、導電材料のS-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を
関数式y=-21.5Ln(x)+455   (1)
で示す領域内にあることを選定基準としている。
耐屈曲性導電材料で素線を作製し、この素線でケーブルを構成する場合、動的駆動試験(第2~第4の実施例の場合も同様)としては、例えばケーブル屈曲試験を採用することができる。ここで、ケーブル屈曲試験は、線径が80μmの素線を用いて作製した断面積が0.2mmのケーブルを試験体とし、試験体に荷重100gを負荷した状態で、曲げ半径が15mm、折り曲げ角度範囲が±90度の左右繰り返し曲げを加えることにより行う。
また、S-N曲線(第2~第4の実施例の場合も同様)は、ケーブルの素線と同一の耐屈曲性導電材料を用いて、長さ30mm、幅3mm、厚さ0.3mmの部材を作製し、部材の一端から24mmの幅方向中央位置に直径が0.5mmの円孔を形成した後、表面を鏡面仕上げして作製した試験片の疲労試験(応力繰り返し負荷試験)から求めた。なお、疲労試験は、試験片の他端側にホルダーを、ホルダーの先端が円孔中心から1mmの位置になるように取り付け、試験片の一端を下方にしてホルダーを音響用スピーカのボイスコイル部に固定して、ボイスコイルを振動させて試験片が1次共振状態になるように周波数を調整して行った。そして、試験片のホルダー付け根に生じる最大応力を片持ち梁の曲げ応力の式から求め、疲労試験時の応力振幅とした。
本発明の第2の実施例に係る耐屈曲性導電材料の選定方法は、図1に示すように、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、導電材料が500万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、導電材料のS-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を
関数式y=-21.5Ln(x)+475   (2)
で示す領域内にあることを選定基準としている。
本発明の第3の実施例に係る耐屈曲性導電材料の選定方法は、図1に示すように、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、導電材料が1000万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、導電材料のS-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を
関数式y=-21.5Ln(x)+505   (3)
で示す領域内にあることを選定基準としている。
本発明の第4の実施例に係る耐屈曲性導電材料の選定方法は、図1に示すように、導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、導電材料が2500万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、導電材料のS-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を
関数式y=-21.5Ln(x)+560   (4)
で示す領域内にあることを選定基準としている。
そして、第1~第4の実施例に係る耐屈曲性導電材料の選定方法において、関数式(1)~(4)が、ケーブル屈曲試験に使用する試験体が線径80μm(dμmの一例)の素線で構成されたケーブルに対応して設定され、線径がzμmの素線で構成されたケーブルのケーブル屈曲試験に耐える耐屈曲性導電材料の選定には、関数式(1)~(4)のy切片の値に(z-80)/2で算出される補正値を加えて関数式を修正する。図2に、素線の線径を50及び100μmとしたときに関数式(1)を修正して得られる関数式がそれぞれ示す応力振幅と破断回数の関係を、関数式(1)が示す応力振幅と破断回数の関係と併せて示す。
以下、関数式(1)~(4)について説明する。
一般に、繰り返し応力疲労試験から得られるS-N曲線において、応力繰り返し数が10~10回の有限寿命領域では、応力振幅(繰り返し応力)と破断回数(破断までの応力繰り返し回数)の関係(疲労破壊挙動)は直線近似、即ち応力振幅と破断回数の関係を1次関数を用いて表現できる。
更に、繰り返し応力疲労試験で耐疲労破壊特性が高い材質を選定し、選定した材質の素線から構成したケーブルを用いてケーブル屈曲試験を行うと、高い耐屈曲性を示す(破断回数が大きい)結果が得られ、繰り返し応力疲労試験結果とケーブル屈曲試験結果は対応関係にあることが知られている。
このため、導電材料Pを基準材料として、導電材料Pで作製した試験片の疲労試験で、10~10回の有限寿命領域における疲労破壊挙動を示す1次関数(直線)pを求めると共に、この導電材料Pで形成した素線から構成されたケーブルのケーブル屈曲試験から破断回数Npを求めておくと、材質が異なる導電材料Qを用いた疲労試験で、10~10回の有限寿命領域における疲労破壊挙動を示す1次関数qを求めた場合、1次関数pより1次関数qが高応力側(高破断回数側)に存在すると、導電材料Qで形成した素線から構成されたケーブルのケーブル屈曲試験から求まる破断回数Nqは、破断回数Npより大きくなることが予想される。一方、1次関数pより1次関数qが低応力側(低破断回数側)に存在すると、導電材料Qで形成した素線から構成されたケーブルのケーブル屈曲試験から求まる破断回数Nqは、破断回数Npより小さくなることが予想される。
そこで、基準材料として純度99.9%の銅を用いて試験片を作製して疲労試験を行い、10~10回の有限寿命領域における疲労破壊挙動を示す1次関数(直線)を求めた。また、純度99.9%の銅で形成した素線から構成したケーブルのケーブル屈曲試験を行い、破断回数を求めた。純度99.9%の銅の10~10回の有限寿命領域における疲労破壊挙動を示すS-N曲線を図3に示す。なお、10~10回の有限寿命領域における疲労破壊挙動を示す1次関数(回帰直線)は、yを応力振幅値、xを応力繰り返し数(回)としてy=-21.5Ln(x)+505と求まり、ケーブル屈曲試験で得られた破断回数は1000万回であった。
そして、疲労破壊挙動が1次関数で表現可能な場合、材質が同一の試験片であれば、疲労破壊挙動の違いは、得られた1次関数を平行移動した1次関数で表現できると解される。このため、ケーブル屈曲試験で得られる破断回数が100万回であるケーブルを構成している素線の材料における10~10回の有限寿命領域における疲労破壊挙動を示す1次関数は、ケーブル屈曲試験の破断回数が1000万回である材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数を、破断回数が1/10になるように低破断回数側に移動させることにより決定する。したがって、ケーブル破断回数が100万回に対応した素線の材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数を、例えばy=-21.5Ln(x)+455とする。
また、ケーブル屈曲試験で得られる破断回数が500万回であるケーブルを構成している素線の材料における10~10回の有限寿命領域における疲労破壊挙動を示す1次関数は、ケーブル屈曲試験の破断回数が1000万回である材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数を、破断回数が1/2になるように低破断回数側に移動させることにより決定する。したがって、ケーブル破断回数が500万回に対応した素線の材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数を、例えばy=-21.5Ln(x)+475とする。
一方、ケーブル屈曲試験で得られる破断回数が2500万回であるケーブルを構成している素線の材料における10~10回の有限寿命領域における疲労破壊挙動を示す1次関数は、ケーブル屈曲試験の破断回数が1000万回である材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数で、高破断回数側を推定することになる。このため、過少評価を防止するため、ケーブル屈曲試験の破断回数が1000万回である材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数を、破断寿命が10倍になるように高破断回数側に移動させることにより決定する。したがって、ケーブル破断回数が2500万回に対応した素線の材料の10~10回の有限寿命領域における疲労破壊挙動を示す1次関数を、例えばy=-21.5Ln(x)+560とする。
ケーブル屈曲試験時の曲げ半径をRとして、素線の線径がzμmの場合に発生する歪みは、(R+z/2)/Rであり、素線の線径が80μmの場合に発生する歪みは、(R+80/2)/Rである。したがって、素線の線径が80μmの場合を基準とした場合、素線の線径がzμmの場合に発生する歪み変化分は、{(R+z/2)/R}-{(R+80/2)/R}=(z-80)/(2R)となる。このため、素線の線径が80μmより大きいと、ケーブル屈曲試験時に発生する歪みは、素線の線径が80μmの場合より大きくなり、発生する応力も大きくなる。一方、素線の線径が80μmより小さいと、ケーブル屈曲試験時に発生する歪みは、素線の線径が80μmの場合より小さくなり、発生する応力も小さくなる。
そこで、ケーブル屈曲試験における素線の線径の違いを、繰り返し応力疲労試験で得られるS-N曲線に反映させる場合、疲労破壊挙動を示す1次関数を、発生する歪み変化分に相当する応力の値だけ、応力軸に沿って移動させる必要がある。また、応力は、歪みと繰り返し応力疲労試験に用いた試験片の弾性率との積として求まるので、素線の線径80μmの場合を基準として、歪みの変化分の線径依存部分(z-80)/2だけを独立させた形式で1次関数に組み込むと、ケーブル屈曲試験時の素線線径の違いをS-N曲線に反映させた場合の疲労破壊挙動を示す1次関数は、y=-21.5Ln(x)+K+(z-80)/2となる。ここで、Kは1次関数のy切片である。
本発明の一実施例に係るケーブルは、第1~第4の実施例に係る耐屈曲性導電材料の選定方法によって選ばれた導電材料を使用するものである。
例えば、100万回以上のケーブル屈曲試験に耐えるケーブル(素線の線径は80μm)を作製する場合、先ず、種々の耐屈曲性導電材料に対して予め作成しておいたS-N曲線のデータにおいて、10~10回の範囲の有限寿命領域を直線近似した回帰直線の中から、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+455よりは高応力側に存在し、500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+475よりは低応力側に存在する回帰直線を選定する。なお、ケーブルの素線が80μmと異なる場合は、y=-21.5Ln(x)+455+(z-80)/2よりは高応力側に存在し、y=-21.5Ln(x)+475+(z-80)/2よりは低応力側に存在する回帰直線を選定する。
そして、選定した回帰直線に対応する耐屈曲性導電材料が、100万回以上のケーブル屈曲試験に耐えるケーブルの素線を形成する候補材料となる。
500万回以上のケーブル屈曲試験に耐えるケーブル(素線の線径は80μm)を作製する場合は、予め作成しておいたS-N曲線の10~10回の範囲の有限寿命領域を直線近似した回帰直線の中から、y=-21.5Ln(x)+475よりは高応力側に存在し、1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+505よりは低応力側に存在する回帰直線を選定する。なお、ケーブルの素線が80μmと異なる場合は、y=-21.5Ln(x)+475+(z-80)/2よりは高応力側に存在し、y=-21.5Ln(x)+505+(z-80)/2よりは低応力側に存在する回帰直線を選定する。
そして、選定した回帰直線に対応する耐屈曲性導電材料が、500万回以上のケーブル屈曲試験に耐えるケーブルの素線を形成する候補材料となる。
1000万回以上のケーブル屈曲試験に耐えるケーブル(素線の線径は80μm)を作製する場合は、予め作成しておいたS-N曲線の10~10回の範囲の有限寿命領域を直線近似した回帰直線の中から、y=-21.5Ln(x)+505よりは高応力側に存在し、2500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+560よりは低応力側に存在する回帰直線を選定する。なお、ケーブルの素線が80μmと異なる場合は、y=-21.5Ln(x)+505+(z-80)/2よりは高応力側に存在し、y=-21.5Ln(x)+560+(z-80)/2よりは低応力側に存在する回帰直線を選定する。
そして、選定した回帰直線に対応する耐屈曲性導電材料が、1000万回以上のケーブル屈曲試験に耐えるケーブルの素線を形成する候補材料となる。
2500万回以上のケーブル屈曲試験に耐えるケーブル(素線の線径は80μm)を作製する場合は、予め作成しておいたS-N曲線の10~10回の範囲の有限寿命領域を直線近似した回帰直線の中から、y=-21.5Ln(x)+560より高応力側に存在する回帰直線を選定する。なお、ケーブルの素線が80μmと異なる場合は、y=-21.5Ln(x)+560+(z-80)/2よりは高応力側に存在する回帰直線を選定する。そして、選定した回帰直線に対応する耐屈曲性導電材料が、2500万回以上のケーブル屈曲試験に耐えるケーブルの素線を形成する候補材料となる。
次に、本発明の作用効果を確認するために行った実験例について、以下に説明する。
(実験例1)
電線用の銅材(以下、銅材Aという)から、長さ30mm、幅3mm、厚さ0.3mmの部材を作製し、部材の一端から24mmの幅方向中央位置に直径が0.5mmの円孔を形成した。次いで、円孔が形成された部材の表面を鏡面仕上げして試験片を作製した。続いて、試験片の他端側にホルダーを、ホルダーの先端が円孔中心から1mmの位置になるように取り付け、試験片の一端を下方にしてホルダーを音響用スピーカのボイスコイル部に固定した。そして、ボイスコイルを振動させて試験片が1次共振状態になるようにして、疲労試験を行った。なお、試験片のホルダー付け根に生じる最大応力を片持ち梁の曲げ応力の式から求め、疲労試験時の応力振幅とした。応力繰り返し数が10~10回の有限寿命領域における疲労試験結果を図4に示す。また、10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-21.5Ln(x)+470であった。
図4には、100万回以上及び500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線における10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式をそれぞれ示している。回帰直線y=-21.5Ln(x)+470は、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限値を示すy=-21.5Ln(x)+455(関数式(1))よりは高応力側に存在するが、500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+475(関数式(2))よりは低応力側に存在している。したがって、銅材Aを用いて作製するケーブルのケーブル屈曲試験を行った場合、破断回数は100万回を超えると推定できるが、破断回数が500万回未満と推定できる。
一方、銅材Aから作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体とし、試験体に荷重100gを負荷した状態で、曲げ半径が15mm、折り曲げ角度範囲が±90度の左右繰り返し曲げを加えることによりケーブル屈曲試験を行った結果、破断回数は450万回であった。したがって、100万回以上及び500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(1)、(2)と、銅材AのS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、銅材Aを用いて作製するケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例2)
実験例1の銅材とは別の電線用の銅材(以下、銅材Bという)を用いて、実験例1と同様の疲労試験を行った。応力繰り返し数が10~10回の有限寿命領域における疲労試験結果を図4に示す。また、10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-4.8Ln(x)+119であった。
銅材Bの回帰直線y=-4.8Ln(x)+119は、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+455(関数式(1))より低応力側に存在するため、銅材Bを用いて作製するケーブルのケーブル屈曲試験を行った場合、破断回数は100万回未満と推定できる。
一方、銅材Bで作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体として、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は2000回であった。したがって、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(1)と、銅材BのS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、銅材Bで作製するケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例3)
純度99.9%の純銅(以下、銅材Cという)を用いて、実験例1と同様の疲労試験を行った。応力繰り返し数が10~10回の有限寿命領域を直線近似する回帰直線を図4に示す。また、10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-20.7Ln(x)+455であった。
銅材Cの回帰直線は、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+455(関数式(1))の低応力側直下に存在するため、破断回数は100万回未満であるが、100万回に近いと推定できる。
一方、銅材Cで作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体として、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は90万回であった。したがって、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(1)と、銅材CのS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、銅材Cで作製するケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例4)
実験例1、2とは別の電線用の銅材(以下、銅材Dという)を用いて、実験例1と同様の疲労試験を行った。応力繰り返し数が10~10回の有限寿命領域における疲労試験結果を図5に示す。また、10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-35Ln(x)+700であった。
銅材Dの回帰直線は、500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限値を示すy=-21.5Ln(x)+475(関数式(2))よりは高応力側に存在し、1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+505(関数式(3))と交差しているため、破断回数は500万回以上であるが、1000万回未満と推定できる。
一方、銅材Dで作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体として、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は600万回であった。したがって、10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(2)、(3)と、銅材Dの10~10回の有限寿命領域を直線近似する回帰直線を比較することで、銅材Dで作製するケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例5)
実験例1、2、4とは別の電線用の銅材(以下、銅材Eという)を用いて、実験例1と同様の疲労試験を行った。応力繰り返し数が10~10回の有限寿命領域を直線近似する回帰直線y=-28.0Ln(x)+594を図5に示す。
銅材Eの回帰直線は、500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限値を示すy=-21.5Ln(x)+475(関数式(2))よりは高応力側に存在し、1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+505(関数式(3))の直下に存在するため、破断回数は1000万回に近い回数と推定できる。
一方、銅材Eで作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体として、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は900万回であった。したがって、1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(3)と、銅材Eの10~10回の有限寿命領域を直線近似する回帰直線を比較することで、銅材Eで作製するケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例6)
実験例1、2、4、5とは別の電線用の銅材(以下、銅材Fという)を用いて、実験例1と同様の疲労試験を行った。応力繰り返し数が10~10回の有限寿命領域を直線近似する回帰直線y=-29.2Ln(x)+535を図5に示す。
銅材Fの回帰直線は、1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+505(関数式(3))よりは高応力側に存在し、2500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限値を示すy=-21.5Ln(x)+560(関数式(4))の下側に存在するため、破断回数は2500万回に近い回数と推定できる。
一方、銅材Fで作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体として、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は2400万回であった。したがって、1000万回以上及び2500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(3)、(4)と、銅材Fの10~10回の有限寿命領域を直線近似する回帰直線を比較することで、銅材Fで作製するケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例7)
銅材Cで作製した線径が100μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体として、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は50万回であった。
ここで、素線の線径が80μmであるケーブルが100万回以上のケーブル屈曲試験に耐える場合、耐屈曲性導電材料のS-N曲線における10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式はy=-21.5Ln(x)+455であるから、ケーブル屈曲試験時の素線の線径が100μmの場合は、下限値を示す関数式は、y=-21.5Ln(x)+455+(100-80)/2=-21.5Ln(x)+465と修正される。一方、銅材Cを用いた疲労試験における応力繰り返し数が10~10回の有限寿命領域を直線近似する回帰直線はy=-22.8Ln(x)+480である。そして、図6に示すように、線径100μmの場合に修正した下限値を示す関数式y=-21.5Ln(x)+465と銅材Cの10~10回の有限寿命領域を直線近似する回帰直線y=-22.8Ln(x)+480を比較すると、銅材Cの回帰直線は、線径100μmの場合に修正した下限値を示す関数式y=-21.5Ln(x)+465の低応力側に存在しており、ケーブル屈曲試験の破断回数は100万回未満と推定でき、ケーブル屈曲試験と一致する。
(実験例8)
銅材Cで作製した線径が50μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体に対して、実験例1と同様のケーブル屈曲試験を実施すると、破断回数は200万回であった。
ここで、素線の線径が80μmであるケーブルが100万回以上のケーブル屈曲試験に耐える場合、耐屈曲性導電材料のS-N曲線における10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式はy=-21.5Ln(x)+455であるから、ケーブル屈曲試験時の素線の線径が50μmの場合は、下限値を示す関数式は、y=-21.5Ln(x)+455+(50-80)/2=-21.5Ln(x)+440と修正される。一方、銅材Cを用いた疲労試験における応力繰り返し数が10~10回の有限寿命領域を直線近似する回帰直線はy=-17.9Ln(x)+392である。そして、図6に示すように、線径50μmの場合に修正した下限値を示す関数式y=-21.5Ln(x)+440と銅材Cの10~10回の有限寿命領域を直線近似する回帰直線y=-17.9Ln(x)+392を比較すると、銅材Cの回帰直線は、線径50μmの場合に修正した下限値を示す関数式y=-21.5Ln(x)+440の高応力側に存在しており、ケーブル屈曲試験の破断回数は100万回以上と推定でき、ケーブル屈曲試験と一致する。
(実験例9)
アルミニウムに0.45mass%のジルコニウム、0.2mass%のシリコン、及び0.15mass%の鉄を加えて作製し、熱処理したアルミニウム系材料から、長さ30mm、幅3mm、厚さ0.3mmの部材を作製し、部材の一端から24mmの幅方向中央位置に直径が0.5mmの円孔を形成した。次いで、円孔が形成された部材の表面を鏡面仕上げして試験片を作製した。続いて、試験片の他端側にホルダーを、ホルダーの先端が円孔中心から1mmの位置になるように取り付け、試験片の一端を下方にしてホルダーを音響用スピーカのボイスコイル部に固定した。そして、ボイスコイルを振動させて試験片が1次共振状態になるようにして、疲労試験を行った。なお、試験片のホルダー付け根に生じる最大応力を片持ち梁の曲げ応力の式から求め、疲労試験時の応力振幅とした。応力繰り返し数が10~10回の有限寿命領域における疲労試験結果を図7に示す。また、10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-11.1Ln(x)+320であった。
図7には、100万回以上、500万回以上、及び1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線における10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式をそれぞれ示している。熱処理したアルミニウム系材料の回帰直線y=-11.1Ln(x)+320は、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+455(関数式(1))よりは高応力側に存在するが、500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+475(関数式(2))とは交差している。したがって、熱処理したアルミニウム系材料のケーブル屈曲試験を行った場合、破断回数は100万回を超えると推定できるが、破断回数が500万回を超えるとは推定できない。
一方、熱処理したアルミニウム系材料で作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体とし、試験体に荷重100gを負荷した状態で、曲げ半径が15mm、折り曲げ角度範囲が±90度の左右繰り返し曲げを加えることによりケーブル屈曲試験を行った結果、破断回数は500万回であった。したがって、100万回以上及び500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(1)、(2)と、熱処理したアルミニウム系材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、熱処理したアルミニウム系材料のケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例10)
純度99%のアルミニウム材料(純アルミニウム材料)を用いて、実施例1と同様の疲労試験を行った。10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-4.8Ln(x)+119であった。
図7に示すように、純アルミニウム材料の回帰直線y=-4.8Ln(x)+119は、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+455(関数式(1))より低応力側に存在するため、純アルミニウム材料のケーブル屈曲試験を行った場合、破断回数は100万回未満と推定できる。
一方、純アルミニウム材料で作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体に対して、実施例1と同様のケーブル屈曲試験を実施すると、破断回数は2000回であった。したがって、100万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(1)と、純アルミニウム材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、純アルミニウム材料のケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例11)
アルミニウムに0.75mass%のジルコニウム、0.33mass%の鉄、0.30mass%のシリコン、0.04mass%のチタンを加えて作製したアルミニウム系材料(Al-Zr-Fe-Si-Ti系材料)を用いて、実施例1と同様の疲労試験を行った。10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-16.6Ln(x)+460であった。
図7に示すように、Al-Zr-Fe-Si-Ti系材料の回帰直線y=-16.6Ln(x)+460は、1000万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+505(関数式(3))より高応力側に存在し、2500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+560(関数式(4))より低応力側に存在するため、Al-Zr-Fe-Si-Ti系材料のケーブル屈曲試験を行った場合、破断回数は1000万回以上、2500万回未満と推定できる。
一方、Al-Zr-Fe-Si-Ti系材料で作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体に対して、実施例1と同様のケーブル屈曲試験を実施すると、破断回数は2000万回であった。したがって、10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(3)、(4)と、Al-Zr-Fe-Si-Ti系材料の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、Al-Zr-Fe-Si-Ti系材料のケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
(実験例12)
アルミニウムに0.75mass%のジルコニウム、0.33mass%の鉄、0.30mass%のシリコン、0.04mass%のチタンを加えて溶製したアルミニウム系材料を10℃/min以上の冷却速度で急冷し、減面率80%の加工を施した後に350℃で5時間の時効処理を行い、更に減面率80%の加工を実施して作製した組織制御Al-Zr-Fe-Si-Ti系材料を用いて、実施例1と同様の疲労試験を行った。10~10回の範囲の有限寿命領域を直線近似した回帰直線は、y=-14.8Ln(x)+471であった。
図7に示すように、組織制御Al-Zr-Fe-Si-Ti系材料の回帰直線は、2500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の存在領域の下限を示すy=-21.5Ln(x)+560(関数式(4))の高応力側に存在するため、破断回数は2500万回以上と推定できる。
一方、組織制御Al-Zr-Fe-Si-Ti系材料で作製した線径が80μmの素線を用いて構成した断面積が0.2mmのケーブルを試験体に対して、実施例1と同様のケーブル屈曲試験を実施すると、破断回数は5000万回であった。したがって、2500万回以上のケーブル屈曲試験に耐える耐屈曲性導電材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線が存在する領域の下限値を示す関数式(4)と、組織制御Al-Zr-Fe-Si-Ti系材料のS-N曲線の10~10回の有限寿命領域を直線近似する回帰直線を比較することで、組織制御Al-Zr-Fe-Si-Ti系材料のケーブルを用いたケーブル屈曲試験の破断回数を予測できることが確認された。
以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。
更に、本実施例とその他の実施例や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
例えば、ケーブル屈曲試験の方法は、本実施例に示した方法以外の方法を適用することができる。
また、導電材料には、金属材料のほかに導電性プラスチックを使用することができる。
更に、S-N曲線の縦軸に示す応力振幅の代わりに、歪み振幅を採用してもよい。
本発明の耐屈曲性導電材料の選定方法では、ケーブルの動的駆動試験(例えば、±90度の左右曲げ試験)を実施せずに、ケーブルに使用する導電材料を用いて作製した試験片を用いた疲労試験を行って得られたS-N曲線における10~10回の有限寿命領域を直線近似する回帰直線を求め、この回帰直線に基づいてケーブルの寿命を推定することができるので、耐屈曲性に優れた新規の導電材料を迅速かつ簡便に探索することが可能になる。その結果、耐屈曲性の要求特性に適切に対応するケーブルを迅速かつ安価に提供することができる。

Claims (6)

  1. 導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が100万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
    前記導電材料の前記S-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+455で示す領域内にあることを選定基準にすることを特徴とする耐屈曲性導電材料の選定方法。
  2. 導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が500万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
    前記導電材料の前記S-N曲線における10~10回の破断までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+475で示す領域内にあることを選定基準にすることを特徴とする耐屈曲性導電材料の選定方法。
  3. 導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が1000万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
    前記導電材料の前記S-N曲線における10~10回の破壊までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+505で示す領域内にあることを選定基準にすることを特徴とする耐屈曲性導電材料の選定方法。
  4. 導電材料の疲労試験を行って求めた破断回数と応力振幅の関係を示すS-N曲線から、該導電材料が2500万回以上の動的駆動試験に耐える耐屈曲性導電材料を選定する方法であって、
    前記導電材料の前記S-N曲線における10~10回の破壊までの応力繰り返し数の範囲において、応力振幅値をyMPa、応力繰り返し数をx回として求めた疲労破壊の有限寿命領域を直線近似した回帰直線が、下限値を関数式y=-21.5Ln(x)+560で示す領域内にあることを選定基準にすることを特徴とする耐屈曲性導電材料の選定方法。
  5. 請求項1~4のいずれか1項に記載の耐屈曲性導電材料の選定方法において、前記関数式は、前記動的駆動試験に使用する試験体が線径dμmの素線で構成されたケーブルに対応して設定され、線径がzμmの素線で構成されたケーブルの前記動的駆動試験に耐える耐屈曲性導電材料の選定には、前記関数式のy切片の値に(z-d)/2で算出される補正値を加えて該関数式を修正することを特徴とする耐屈曲性導電材料の選定方法。
  6. 請求項1~5のいずれか1項に記載の耐屈曲性導電材料の選定方法によって選ばれた導電材料を使用することを特徴とするケーブル。
PCT/JP2012/066411 2011-06-30 2012-06-27 耐屈曲性導電材料の選定方法及びそれを用いたケーブル WO2013002271A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146294 2011-06-30
JP2011146294 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002271A1 true WO2013002271A1 (ja) 2013-01-03

Family

ID=47424162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066411 WO2013002271A1 (ja) 2011-06-30 2012-06-27 耐屈曲性導電材料の選定方法及びそれを用いたケーブル

Country Status (2)

Country Link
JP (1) JPWO2013002271A1 (ja)
WO (1) WO2013002271A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085003A1 (ja) * 2011-12-07 2013-06-13 大電株式会社 複合導体及びそれを使用した電線
CN105445126A (zh) * 2015-11-18 2016-03-30 四川华西九方电缆有限公司 电缆的抗疲劳强度性能测试方法
CN108572115A (zh) * 2015-05-21 2018-09-25 江苏理工学院 用于测试材料的疲劳强度的试验方法
CN112630065A (zh) * 2020-12-21 2021-04-09 深圳市信维通信股份有限公司 一种fpc折弯疲劳寿命s-n曲线的多数据测试方法
CN112763353A (zh) * 2020-12-21 2021-05-07 深圳市信维通信股份有限公司 一种fpc折弯疲劳寿命s-n曲线的测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166333A (ja) * 1994-10-11 1996-06-25 Sumitomo Electric Ind Ltd 複合体の耐屈曲寿命予測方法及び複合体の耐屈曲性評価方法
JP2007057325A (ja) * 2005-08-23 2007-03-08 Toshiba Corp 予寿命予測方法
JP2008157882A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk スポット溶接構造体の疲労寿命予測方法
JP2008180657A (ja) * 2007-01-25 2008-08-07 Tokyo Electric Power Co Inc:The 架空電線の振動寿命推定方法及び振動寿命推定プログラム
WO2009110440A1 (ja) * 2008-03-04 2009-09-11 新日鐵化学株式会社 積層体の屈曲寿命予測方法、積層体の屈曲寿命予測装置、積層体の屈曲寿命予測プログラムおよび記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166333A (ja) * 1994-10-11 1996-06-25 Sumitomo Electric Ind Ltd 複合体の耐屈曲寿命予測方法及び複合体の耐屈曲性評価方法
JP2007057325A (ja) * 2005-08-23 2007-03-08 Toshiba Corp 予寿命予測方法
JP2008157882A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk スポット溶接構造体の疲労寿命予測方法
JP2008180657A (ja) * 2007-01-25 2008-08-07 Tokyo Electric Power Co Inc:The 架空電線の振動寿命推定方法及び振動寿命推定プログラム
WO2009110440A1 (ja) * 2008-03-04 2009-09-11 新日鐵化学株式会社 積層体の屈曲寿命予測方法、積層体の屈曲寿命予測装置、積層体の屈曲寿命予測プログラムおよび記録媒体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085003A1 (ja) * 2011-12-07 2013-06-13 大電株式会社 複合導体及びそれを使用した電線
JPWO2013085003A1 (ja) * 2011-12-07 2015-04-27 大電株式会社 複合導体及びそれを使用した電線
US9293232B2 (en) 2011-12-07 2016-03-22 Dyden Corporation Composite conductor and electric wire using the same
CN108572115A (zh) * 2015-05-21 2018-09-25 江苏理工学院 用于测试材料的疲劳强度的试验方法
CN108572115B (zh) * 2015-05-21 2020-12-08 江苏理工学院 用于测试材料的疲劳强度的试验方法
CN105445126A (zh) * 2015-11-18 2016-03-30 四川华西九方电缆有限公司 电缆的抗疲劳强度性能测试方法
CN112630065A (zh) * 2020-12-21 2021-04-09 深圳市信维通信股份有限公司 一种fpc折弯疲劳寿命s-n曲线的多数据测试方法
CN112763353A (zh) * 2020-12-21 2021-05-07 深圳市信维通信股份有限公司 一种fpc折弯疲劳寿命s-n曲线的测试方法
CN112630065B (zh) * 2020-12-21 2022-06-21 深圳市信维通信股份有限公司 一种fpc折弯疲劳寿命s-n曲线的多数据测试方法
CN112763353B (zh) * 2020-12-21 2022-07-26 深圳市信维通信股份有限公司 一种fpc折弯疲劳寿命s-n曲线的测试方法

Also Published As

Publication number Publication date
JPWO2013002271A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2013002271A1 (ja) 耐屈曲性導電材料の選定方法及びそれを用いたケーブル
Ayatollahi et al. Fatigue life extension by crack repair using stop-hole technique under pure mode-I and pure mode-II loading conditions
JP6103599B2 (ja) 複合導体及びそれを使用した電線
Kalombo et al. Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: tests and analysis
Takahashi et al. Improvement of fatigue limit by shot peening for high‐strength steel containing a crack‐like surface defect
CA2997017C (en) Cables and wires having conductive elements formed from improved aluminum-zirconium alloys
JPWO2012077378A1 (ja) 電気・電子用材
JP2012108102A (ja) 円筒形金属素材の疲労破壊評価方法
Chen et al. Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue
Merkle et al. Lifetime prediction of thick aluminium wire bonds for mechanical cyclic loads
JP5962443B2 (ja) ケーブルの屈曲断線寿命予測方法および装置
JP5906875B2 (ja) ケーブル屈曲疲労寿命予測方法、及びケーブル屈曲疲労寿命予測装置
JP6287665B2 (ja) 薄鋼板製部材の延性脆性破壊特性の予測方法及び装置、並びにそのプログラム及び記録媒体
Martínez et al. Geometrical size effect in the fatigue life predictions of aluminum wires with micro holes using methods of the critical distance
JP2018185274A (ja) 疲労限度を予測する方法及びコンピュータプログラム
WO2023013523A1 (ja) 導電性線材
JP2012141257A (ja) ケーブル屈曲疲労寿命予測方法及び装置
Rocha et al. Influence of 1350 and 6201 aluminum alloys on the fatigue life of overhead conductors–A finite element analysis
JP7167748B2 (ja) 超音波疲労試験用試験片及び超音波疲労試験方法
JP2004101228A (ja) 加工硬化データの取得方法
JP2012242342A (ja) 材料試験方法及び材料試験装置
JP3598348B2 (ja) 材料の静負荷付与下での制振特性評価方法及びその制振特性評価を得るための装置
JP2015230217A (ja) 単結晶の結晶塑性特性評価が可能な試験片
CN111044804A (zh) 一种压电材料的压电系数测量方法
JP2004234962A (ja) 電線の屈曲寿命予測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804122

Country of ref document: EP

Kind code of ref document: A1