WO2012176871A1 - 非水電解液電池用電解液及び非水電解液電池 - Google Patents

非水電解液電池用電解液及び非水電解液電池 Download PDF

Info

Publication number
WO2012176871A1
WO2012176871A1 PCT/JP2012/065968 JP2012065968W WO2012176871A1 WO 2012176871 A1 WO2012176871 A1 WO 2012176871A1 JP 2012065968 W JP2012065968 W JP 2012065968W WO 2012176871 A1 WO2012176871 A1 WO 2012176871A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
group
electrolyte battery
battery
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2012/065968
Other languages
English (en)
French (fr)
Inventor
孝敬 森中
夕季 近藤
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2012176871A1 publication Critical patent/WO2012176871A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous electrolyte battery that imparts excellent high-temperature durability and output characteristics to a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery using the same.
  • non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, and lithium ion capacitors have been actively developed.
  • a non-aqueous electrolyte or a non-aqueous electrolyte quasi-solidified with a gelling agent is used as an ionic conductor.
  • the structure is as follows, and as the solvent, an aprotic solvent, for example, one or several kinds of mixed solvents selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc. are used.
  • Lithium salts such as LiPF 6 , LiBF 4 , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, etc. are used as solutes.
  • Patent Document 1 proposes to improve battery characteristics by adding vinylene carbonate to an electrolytic solution.
  • the electrode is coated with a polymer film formed by polymerization of vinylene carbonate to prevent the electrolytic solution from decomposing on the electrode surface.
  • the internal resistance is increased and the input is increased.
  • Working against output characteristics is a challenge.
  • Patent Documents 2 and 3 describe that high-temperature cycle characteristics and output characteristics are improved by the effect of a film formed on the electrode interface when monofluorophosphate or difluorophosphate is added to the electrolyte. .
  • these effects are not yet sufficient, and the solubility of monofluorophosphate and difluorophosphate is low, so there is a risk of precipitation depending on the concentration, solvent composition, and temperature conditions.
  • the problem is that if the amount is reduced, the effect cannot be obtained.
  • Patent Document 4 describes the use of an imide salt having a sulfonic acid ester group as an electrolyte, but does not describe improvement in characteristics due to use as an additive.
  • Patent Document 5 describes that high voltage stability is improved when an imide salt having a sulfonic acid ester group containing a fluorine atom is used as an electrolyte. However, the effect is not yet sufficient, and there is no description about cycle characteristics and output characteristics.
  • the present invention improves the durability of this type of non-aqueous electrolyte battery, such as cycle characteristics and high-temperature storage stability of 45 ° C. or higher, and is used in large equipment such as electric vehicles, hybrid vehicles, fuel cell vehicle auxiliary power supplies, and power storage.
  • the present invention provides a non-aqueous electrolyte battery electrolyte and a non-aqueous electrolyte battery having more excellent output characteristics so that they can be used in a power storage system for applications requiring power.
  • a non-aqueous electrolyte comprising a positive electrode, a negative electrode made of lithium or a negative electrode material capable of occluding and releasing lithium, a non-aqueous organic solvent, and a solute.
  • the cycle characteristics, high-temperature storage stability, output characteristics, etc. can be improved by using a non-aqueous electrolyte battery electrolyte to which a specific compound group is added.
  • the present inventors have found a non-aqueous electrolyte battery electrolyte that can be used, and a non-aqueous electrolyte battery using the electrolyte, and have reached the present invention.
  • the present invention provides an electrolyte solution for a non-aqueous electrolyte battery comprising a non-aqueous organic solvent and a solute, and at least one selected from the first compound group consisting of monofluorophosphate and difluorophosphate as an additive.
  • R 1 and R 2 are each independently a linear or branched alkyl group or alkenyl group having 1 to 10 carbon atoms, a cycloalkyl group or cycloalkenyl group having 3 to 10 carbon atoms, and , At least one organic group selected from aryl groups having 6 to 10 carbon atoms, and a fluorine atom, an oxygen atom, or an unsaturated bond may be present in the organic group.
  • M is an alkali metal cation, alkaline earth metal cation, or onium cation, and n represents an integer having the same number as the valence of the corresponding cation.
  • an imide salt having a sulfonic acid ester group represented by the formula hereinafter, sometimes referred to as “sulfate ester imide” or simply “imide salt”).
  • the first electrolyte solution is characterized in that the addition amount of the first compound group is in the range of 0.01 to 5.0% by mass with respect to the electrolyte solution for a non-aqueous electrolyte battery. It may be a battery electrolyte (second electrolyte).
  • the amount of the imide salt having a sulfonate group represented by the general formula (I) is 0.01 to 10.0 mass with respect to the non-aqueous electrolyte battery electrolyte. % Non-aqueous electrolyte battery electrolyte solution (third electrolyte solution).
  • the counter cation of the first compound group is at least one counter cation selected from lithium ion, sodium ion, potassium ion, and tetraalkylammonium ion. It may be a non-aqueous electrolyte battery electrolyte solution (fourth electrolyte solution).
  • Any one of the first to fourth electrolytes is selected from the group consisting of LiPF 6 , LiBF 4 , (CF 3 SO 2 ) 2 NLi, and (C 2 F 5 SO 2 ) 2 NLi as the solute. It may be an electrolyte solution for a non-aqueous electrolyte battery (fifth electrolyte solution), characterized in that it is at least one solute.
  • the present invention also provides a non-aqueous electrolysis comprising at least a positive electrode, a negative electrode made of lithium or a negative electrode material capable of occluding and releasing lithium, and a non-aqueous electrolyte battery electrolyte comprising a non-aqueous organic solvent and a solute.
  • a liquid battery includes a non-aqueous electrolyte battery including any one of first to fifth electrolytes.
  • the electrolyte solution for non-aqueous electrolyte battery of the present invention improves the film characteristics of the electrode, and improves the durability of the non-aqueous electrolyte battery using the electrode, such as cycle characteristics and storage stability at a high temperature of 45 ° C or higher.
  • output characteristics can be improved in order to suppress an increase in internal resistance. Therefore, the electrolyte for a non-aqueous electrolyte battery of the present invention is more output from an electric vehicle, a hybrid vehicle, a fuel cell vehicle auxiliary power source, a power storage system, etc. It can be used for high battery.
  • the durability of the lithium secondary battery in a high temperature environment can be further improved, and more excellent. Output characteristics are shown. These performance improvements cannot be achieved by each of the first compound group and the imide salt represented by the general formula (I).
  • the electrolyte solution for a non-aqueous electrolyte battery of the present invention contains the first compound group, an imide salt having a sulfonate group represented by the general formula (I), a non-aqueous organic solvent, and a solute. . If necessary, other commonly known additives can be used in combination.
  • the first compound group used in the present invention is a compound consisting of a group consisting of a monofluorophosphate and a difluorophosphate, and each salt has an anion portion having a structure shown below.
  • the type of the counter cation as long as it does not impair the performance of the non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery of the present invention, and various types can be selected. it can.
  • metal cations such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, silver, copper, and iron
  • onium cations such as tetraalkylammonium, tetraalkylphosphonium, and imidazolium derivatives.
  • lithium ion, sodium ion, potassium ion, and tetraalkylammonium ion are preferable from the viewpoint of helping ion conduction in the nonaqueous electrolyte battery.
  • the addition amount of the first compound group is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and further preferably 0.05% by mass with respect to the electrolyte solution for non-aqueous electrolyte batteries.
  • the upper limit is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and still more preferably 2.0% by mass or less. If the amount is less than 0.01% by mass, the effect of improving the cycle characteristics of the non-aqueous electrolyte battery, durability such as high temperature storage stability, and input / output characteristics may not be sufficiently obtained. If it exceeds 1, the ionic conductivity of the electrolyte for non-aqueous electrolyte batteries may be reduced and the internal resistance may be increased. As a result, the effect of improving the output characteristics may not be sufficiently obtained.
  • the lower limit of the amount of the imide salt having a sulfonic acid ester group represented by the general formula (I) used in the present invention is 0.01% by mass or more with respect to the electrolyte for a nonaqueous electrolyte battery.
  • the upper limit is preferably 10.0% by mass or less, more preferably 5.0% by mass or less, and still more preferably 0.03% by mass or more, more preferably 0.05% by mass or more. Is in the range of 2.0 mass% or less. If it is less than 0.01% by mass, the effects of improving the durability such as cycle characteristics and high-temperature storage stability of the non-aqueous electrolyte battery and suppressing the increase in internal resistance may not be obtained sufficiently, which is not preferable.
  • the addition ratio of the first compound group and the imide salt having a sulfonic acid ester group represented by the general formula (I) is not particularly limited, but the “first compound group /
  • the molar ratio of the “imide salt represented by the general formula (I)” is preferably 0.01 or more as a lower limit, more preferably 0.1 or more, and preferably 100 or less, more preferably 10 or less as an upper limit. It is. If the molar ratio exceeds 100, the durability improvement effect / input / output characteristic improvement effect may not be sufficiently obtained, and if it is less than 0.01, the durability improvement effect may not be sufficiently obtained. It is not preferable.
  • battery characteristics, particularly durability and output characteristics are each independent by the combined use of the first compound group and an imide salt having a sulfonate group represented by the general formula (I).
  • an imide salt having a sulfonate group represented by the general formula (I) Although the details of the mechanism of significant improvement compared to the case of adding in the above are not clear, both compounds form a film on the electrode to prevent degradation by oxidation-reduction of the electrolyte for non-aqueous electrolyte batteries and to prevent deterioration. The durability is improved by suppressing. Further, when these two types of compound groups coexist, a stronger protective film can be formed by a mixed film made of these two types of compounds.
  • the non-aqueous electrolyte battery electrolyte of the present invention is a large device such as an electric vehicle, a hybrid vehicle, a fuel cell vehicle auxiliary power source, and an electric power storage, and has a higher output than a power storage system for applications that require power. Can be used for batteries.
  • the type of the nonaqueous organic solvent used in the electrolyte solution for a nonaqueous electrolyte battery of the present invention is not particularly limited, and any nonaqueous organic solvent can be used.
  • Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate, cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, propion Examples include chain esters such as methyl acid, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane, chain ethers such as dimethoxyethane and diethyl ether, and sulfur-containing nonaqueous organic solvents such as dimethyl sulfoxide and sulfolane. .
  • the nonaqueous organic solvent used for this invention may be used individually by 1
  • the kind of solute used for the electrolyte solution for non-aqueous electrolyte batteries of the present invention is not particularly limited, and any lithium salt can be used. Specific examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiB (CF 3 ) 4 , LiBF 3 (C 2 F 5 ) and the like An electrolyte lithium salt is mentioned.
  • LiPF 6 LiBF 4 , (CF 3 SO 2 ) 2 NLi, and (C 2 F 5 SO 2 ) 2 NLi are preferable in view of the energy density, output characteristics, life, etc. of the battery.
  • the concentration of these solutes is not particularly limited, but the lower limit is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, still more preferably 0.9 mol / L or more, and the upper limit is It is preferably 2.5 mol / L or less, more preferably 2.2 mol / L or less, and still more preferably 2.0 mol / L or less. If the concentration is less than 0.5 mol / L, the ionic conductivity tends to decrease, and the cycle characteristics and output characteristics of the non-aqueous electrolyte battery tend to decrease. On the other hand, if the concentration exceeds 2.5 mol / L, the non-aqueous electrolyte battery is used. As the viscosity of the electrolyte increases, the ionic conductivity also tends to decrease, and the cycle characteristics and output characteristics of the nonaqueous electrolyte battery may be decreased.
  • non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer as used in a non-aqueous electrolyte battery called a lithium polymer battery.
  • the non-aqueous electrolyte battery according to the present invention is characterized by using the above-described electrolyte for a non-aqueous electrolyte battery according to the present invention, and the other components are those used in general non-aqueous electrolyte batteries. Is used. That is, it comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, a current collector, a separator, a container and the like.
  • the negative electrode material is not particularly limited, but lithium metal, alloys of lithium and other metals and intermetallic compounds, various carbon materials, artificial graphite, natural graphite, metal oxide, metal nitride, tin (single), A tin compound, silicon (simple substance), a silicon compound, activated carbon, a conductive polymer, or the like is used.
  • the positive electrode material is not particularly limited.
  • lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and lithium-containing transition metals
  • LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 lithium-containing transition metals
  • LiFePO 4 LiCoPO 4
  • LiCoPO 4 LiCoPO 4 called olivine
  • Transition metal phosphate compounds such as LiMnPO 4, oxides such as TiO 2 , V 2 O 5 and MoO 3
  • sulfides such as TiS 2 and FeS
  • conductivity such as polyacetylene, polyparaphenylene, polyaniline and polypyrrole Polymers, activated carbon, polymers that generate radicals, carbon materials, and the like are used.
  • acetylene black, ketjen black, carbon fiber, graphite as a conductive material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, etc. as a binder to the positive electrode or negative electrode material, and forming into a sheet shape It can be an electrode sheet.
  • a separator for preventing contact between the positive electrode and the negative electrode a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber, or the like is used.
  • a non-aqueous electrolyte battery having a coin shape, a cylindrical shape, a square shape, an aluminum laminate sheet type or the like is assembled from the above elements.
  • LiPF 6 is 1.0 mol / L as a solute in a mixed solvent of ethylene carbonate and ethylmethyl carbonate in a volume ratio of 3: 7, 1.0% by mass of lithium difluorophosphate from the first compound group, and bis (ethyl An electrolyte for a non-aqueous electrolyte battery was prepared so that the amount of sulfonate lithium imide was 1.0% by mass.
  • a cell was prepared using LiCoO 2 as a positive electrode material and graphite as a negative electrode material, and a battery charge / discharge test was actually performed.
  • the test cell was produced as follows.
  • a charge / discharge test was conducted at an ambient temperature of 60 ° C. using the cell produced by the above method, and the cycle characteristics and output characteristics were evaluated. Charging is performed at 4.2V, discharging is performed at 3.0V, and a constant current / constant voltage method is used for 1C (the rated capacity at 1 hour discharge capacity is 1C, and the same applies hereinafter). The charge / discharge cycle was repeated. A value expressed as a percentage of the discharge capacity after 500 cycles with respect to the initial discharge capacity was defined as the capacity maintenance rate. After 500 cycles, the battery was charged at a constant current constant voltage method at an ambient temperature of 25 ° C.
  • Examples 2 to 14, Comparative Examples 1 to 8 The type of the first compound group used in Example 1, the concentration of the first compound group, the type of sulfate ester imide, and the concentration of sulfate ester imide were changed as shown in Table 1, and non-aqueous as in Example 1 An electrolyte solution for an electrolyte battery was prepared and a cell was prepared, and a charge / discharge test was performed. The results are shown in Table 1.
  • Examples 15 to 19, Comparative Examples 9 to 15 The negative electrode body used in Example 1 was changed, and the type of sulfate imide, the concentration of the first compound group and the concentration of sulfate imide used in Example 1 were changed as shown in Table 2, In the same manner as in Example 1, a non-aqueous electrolyte battery electrolyte and a cell were prepared, and a charge / discharge test was performed.
  • the negative electrode active material is Li 4 Ti 5 O 12
  • the negative electrode body is composed of 90% by mass of Li 4 Ti 5 O 12 powder and 5% by mass of polyfluoride as a binder.
  • PVDF vinylidene chloride
  • acetylene black as a conductive agent
  • the negative electrode body is composed of 80% by mass of silicon powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder, 15% by mass of acetylene black was mixed as a conductive material, N-methylpyrrolidone was further added, and the resulting paste was applied on a copper foil and dried to produce a charge end voltage and discharge during battery evaluation.
  • the end voltage was the same as in Example 1.
  • Table 2 shows the evaluation results of the cycle characteristics and output characteristics of the battery cells.
  • Example 20 to 25 Comparative Examples 16 to 27
  • the positive electrode body and the negative electrode body used in Example 1 were changed, and the type of sulfate ester imide, the concentration of the first compound group, and the concentration of sulfate ester imide used in Example 1 were changed as shown in Table 2. Then, in the same manner as in Example 1, a non-aqueous electrolyte battery electrolyte solution and a cell were prepared, and a charge / discharge test was performed.
  • the positive electrode body whose positive electrode active material is LiNi 1/3 Mn 1/3 Co 1/3 O 2 is 5% by mass as a binder in 90% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder.
  • Example 18 As in Example 18, in Examples 24 to 25 and Comparative Examples 24 to 27 in which the negative electrode active material is silicon (single substance), the charge end voltage at the time of battery evaluation was 4.3 V, and the discharge end voltage was 3.0 V. did. Table 2 shows the evaluation results of the cycle characteristics and output characteristics of the battery cells.
  • Examples 26 to 27, Comparative Examples 28 to 31 The positive electrode used in Example 1 was changed, and the type of sulfate imide, the concentration of the first compound group, and the concentration of sulfate imide used in Example 1 were changed as shown in Table 2, In the same manner as in Example 1, a non-aqueous electrolyte battery electrolyte and a cell were prepared, and a charge / discharge test was performed.
  • the positive electrode body in which the positive electrode active material is LiFePO 4 is obtained by adding 90% by mass of LiFePO 4 powder coated with amorphous carbon to 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material. %, And further, N-methylpyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried to produce a charge end voltage of 3.6 V and a discharge end voltage of battery evaluation. 2.0V. Table 2 shows the evaluation results of the cycle characteristics and output characteristics of the battery cells.
  • PVDF polyvinylidene fluoride
  • the electrolyte solution for a non-aqueous electrolyte battery of the present invention is used. It was confirmed that the cycle characteristics and output characteristics of the battery cells were superior to the corresponding comparative examples. Therefore, it was shown that by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent cycle characteristics and output characteristics can be obtained regardless of the type of the positive electrode active material.
  • the battery cell using the electrolyte for the non-aqueous electrolyte battery of the present invention the battery cell using the electrolyte for the non-aqueous electrolyte battery of the present invention. It was confirmed that the cycle characteristics and output characteristics were superior to the corresponding comparative examples. Therefore, it was shown that by using the electrolyte for a nonaqueous electrolyte battery of the present invention, a nonaqueous electrolyte battery exhibiting excellent cycle characteristics and output characteristics can be obtained regardless of the type of the negative electrode active material. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

非水有機溶媒と溶質とからなる非水電解液電池用電解液が開示されている。この電解液は、添加剤としてモノフルオロリン酸塩、ジフルオロリン酸塩からなる第一化合物群から選ばれた少なくとも一つの化合物と、一般式(I)、[式中、R1及びR2はそれぞれ互いに独立して、炭素数1~10の直鎖あるいは分岐状のアルキル基またはアルケニル基、炭素数が3~10のシクロアルキル基またはシクロアルケニル基、及び、炭素数が6~10のアリール基から選ばれる少なくとも1つの有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。Mはアルカリ金属カチオン、アルカリ土類金属カチオン、またはオニウムカチオンで、nは該当するカチオンの価数と同数の整数を表す。] で示されるスルホン酸エステル基を有するイミド塩を含むことを特徴とする。この電解液は非水電解液電池に優れた高温耐久性及び出力特性を付与できる。

Description

非水電解液電池用電解液及び非水電解液電池
 本発明は、非水電解液電池に優れた高温耐久性及び出力特性を付与する非水電解液電池用電解液及びそれを用いた非水電解液電池に関するものである。
発明の背景
 近年、情報関連機器、又は通信機器、即ちパソコン、ビデオカメラ、デジタルスチールカメラ、携帯電話等の小型機器で、かつ高エネルギー密度を必要とする用途向け蓄電システムや電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システムが注目を集めている。その一つの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ等の非水電解液電池が盛んに開発されている。
 これらの非水電解液電池は既に実用化されているものも多いが、耐久性に於いて種々の用途で満足できるものではなく、特に環境温度が45℃以上のときの劣化が大きいため、例えば、自動車用など長期間、温度の高い場所で使用する用途では問題がある。
 一般にこれらの非水電解液電池では、非水電解液もしくはゲル化剤により擬固体化された非水電解液がイオン伝導体として用いられている。その構成は次のようなもので、溶媒として、非プロトン性溶媒、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等から選ばれる1種類もしくは数種類の混合溶媒が使用され、溶質としてリチウム塩、即ち LiPF6、LiBF4、(CF3SO22NLi、(C25SO22NLi等が使用されている。
 これまで非水電解液電池のサイクル特性、高温保存性等の耐久性を改善するための手段として、正極や負極の活物質をはじめとする様々な電池構成要素の最適化が検討されてきた。非水電解液関連技術もその例外ではなく、活性な正極や負極の表面で電解液が分解することによる劣化を種々の添加剤で抑制することが提案されている。例えば、特許文献1には、電解液にビニレンカーボネートを添加することにより、電池特性を向上させることが提案されている。この方法は、ビニレンカーボネートの重合によるポリマー皮膜で電極をコートすることにより電解液の電極表面での分解を防ぐものであるが、リチウムイオンもこの皮膜を通過しにくいため内部抵抗が上昇し、入出力特性に関して不利に働くことが課題となっている。
 特許文献2、特許文献3では、電解液にモノフルオロリン酸塩やジフルオロリン酸塩を添加すると電極界面に形成される皮膜の効果で高温サイクル特性、出力特性が向上することが記載されている。しかしながらそれらの効果はまだ十分でない上に、モノフルオロリン酸塩やジフルオロリン酸塩の溶解度が低いために濃度、溶媒組成、温度条件次第では、析出してくる恐れがあり、これを防ぐため添加量を少なくすると効果が得られなくなることが課題となっている。
 また、特許文献4では、スルホン酸エステル基を有するイミド塩の電解質としての使用が記載されているが、添加剤としての使用による特性向上については記載されていない。
 さらに、特許文献5では、フッ素原子を含むスルホン酸エステル基を有するイミド塩を電解質として使用すると、高電圧安定性が向上することが記載されている。しかしながらその効果はまだ十分でなく、また、サイクル特性や出力特性についての記載はない。
特開2000-123867号公報 特許第3439085号公報 特開2004-31079号公報 特表2003-532619号公報 特許第3456561号公報
 本発明は、この種の非水電解液電池のサイクル特性や45℃以上の高温保存性等の耐久性を向上させ、電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システムに使用できるよう、より出力特性の優れた非水電解液電池用電解液及び非水電解液電池を提供するものである。
 本発明者らは、かかる問題を解決するために鋭意検討の結果、正極と、リチウムまたはリチウムの吸蔵放出の可能な負極材料からなる負極と、非水有機溶媒と溶質とからなる非水電解液電池用電解液とを備えた非水電解液電池において、特定の化合物群を添加した非水電解液電池用電解液を用いることにより、サイクル特性、高温保存性、出力特性等を向上させることができる非水電解液電池用電解液、さらにはそれを使用した非水電解液電池を見出し、本発明に至った。 
 すなわち本発明は、非水有機溶媒と溶質とからなる非水電解液電池用電解液において、添加剤としてモノフルオロリン酸塩、ジフルオロリン酸塩からなる第一化合物群から選ばれた少なくとも一つの化合物と、一般式(I)、
Figure JPOXMLDOC01-appb-C000002
[式中、R1及びR2はそれぞれ互いに独立して、炭素数1~10の直鎖あるいは分岐状のアルキル基またはアルケニル基、炭素数が3~10のシクロアルキル基またはシクロアルケニル基、及び、炭素数が6~10のアリール基から選ばれる少なくとも1つの有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。Mはアルカリ金属カチオン、アルカリ土類金属カチオン、またはオニウムカチオンで、nは該当するカチオンの価数と同数の整数を表す。] 
で示されるスルホン酸エステル基を有するイミド塩(以下、「硫酸エステルイミド」または、単に「イミド塩」と記載する場合がある)を含むことを特徴とする、非水電解液電池用電解液(第1電解液)を提供する。
 第1電解液は、前記第一化合物群の添加量が、非水電解液電池用電解液に対して0.01~5.0質量%の範囲であることを特徴とする、非水電解液電池用電解液(第2電解液)であってもよい。
 第1又は第2電解液は、前記一般式(I)で示されるスルホン酸エステル基を有するイミド塩の添加量が、非水電解液電池用電解液に対して0.01~10.0質量%の範囲であることを特徴とする、非水電解液電池用電解液(第3電解液)であってもよい。
 第1乃至第3電解液のいずれか1つは、前記第一化合物群の対カチオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオンから選ばれた少なくとも一つの対カチオンであることを特徴とする、非水電解液電池用電解液(第4電解液)であってもよい。
 第1乃至第4電解液のいずれか1つは、前記溶質が、LiPF6、LiBF4、(CF3SO22NLi、(C25SO22NLiからなる群から選ばれた少なくとも一つ以上の溶質であることを特徴とする、非水電解液電池用電解液(第5電解液)であってもよい。
 また、本発明は、少なくとも正極と、リチウムまたはリチウムの吸蔵放出の可能な負極材料からなる負極と、非水有機溶媒と溶質とからなる非水電解液電池用電解液とを備えた非水電解液電池において、第1乃至第5電解液のいずれか1つを含むことを特徴とする、非水電解液電池を提供する。
 本発明の非水電解液電池用電解液は、電極の皮膜特性を向上させ、それを使用した非水電解液電池のサイクル特性や45℃以上の高温での保存性等の耐久性を向上させ、かつ、内部抵抗上昇を抑制するため出力特性も向上させることができる。従って、本発明の非水電解液電池用電解液は、電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システム等のより出力の高い電池へ使用することができる。
詳細な説明
 本発明のリチウム二次電池用非水電解液及びそれを用いたリチウム二次電池によれば、リチウム二次電池の高温環境下での耐久性をより向上させることができ、且つ、より優れた出力特性を示す。これらの性能向上は、第一化合物群と一般式(I)で示されるイミド塩がそれぞれ単独では達成できない。
 本発明の非水電解液電池用電解液は、前記第一化合物群と、前記一般式(I)で示されるスルホン酸エステル基を有するイミド塩と、非水有機溶媒と、溶質とを含有する。また、必要であれば一般に良く知られている別の添加剤の併用も可能である。
 以下、本発明の非水電解液電池用電解液の各構成要素について詳細に説明する。
 本発明で使用される第一化合物群は、モノフルオロリン酸塩、ジフルオロリン酸塩からなる群からなる化合物であり、それぞれの塩は以下に示される構造のアニオン部を有する。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 これらのアニオンと組み合わせる対カチオンとしては、本発明の非水電解液電池用電解液及び非水電解液電池の性能を損なうものでなければその種類に特に制限はなく様々なものを選択することができる。
 具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、銀、銅、鉄、等の金属カチオン、テトラアルキルアンモニウム、テトラアルキルホスホニウム、イミダゾリウム誘導体、等のオニウムカチオンが挙げられるが、特に非水電解液電池中でのイオン伝導を助ける役割をするという観点から、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオンが好ましい。
 第一化合物群の添加量は、非水電解液電池用電解液に対して下限は、0.01質量%以上が好ましく、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上であり、また、上限は5.0質量%以下が好ましく、より好ましくは3.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。0.01質量%を下回ると非水電解液電池のサイクル特性、高温保存性等の耐久性、且つ入出力特性を向上させる効果が十分に得られない恐れがあり、一方、5.0質量%を越えると非水電解液電池用電解液のイオン伝導性を低下させ、内部抵抗を増加させる恐れがあり、結果として出力特性を向上させる効果が十分に得られない場合がある。
 次に、本発明で使用される一般式(I)で示されるスルホン酸エステル基を有するイミド塩の添加量は、非水電解液電池用電解液に対して下限は、0.01質量%以上が好ましく、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上であり、また、上限は10.0質量%以下が好ましく、より好ましくは5.0質量%以下、さらに好ましくは2.0質量%以下の範囲である。0.01質量%を下回ると非水電解液電池のサイクル特性、高温保存性等の耐久性を向上させ、且つ内部抵抗の上昇を抑制する効果が、十分に得られない恐れがあり好ましくない。一方、10.0質量%を越えても、添加量程に効果が上がることは期待できず、コストの面から不利になるとともに、前記イミド塩が全量溶解されずに、未溶解分が電解液中に存在してしまう場合があるため好ましくない。
 第一化合物群と、一般式(I)で示されるスルホン酸エステル基を有するイミド塩との添加割合は、特に制限はされないが、非水電解液電池用電解液中における「第一化合物群/一般式(I)で示されるイミド塩」のモル比が、下限として0.01以上が好ましく、より好ましくは0.1以上で、また、上限として100以下が好ましく、より好ましくは10以下の範囲である。上記モル比が、100を超えると耐久性向上効果・入出力特性向上効果が十分得られない恐れがあり、また、0.01未満であると耐久性向上効果が十分得られない恐れがあるので好ましくない。
 本発明の非水電解液電池用電解液において、第一化合物群と一般式(I)で示されるスルホン酸エステル基を有するイミド塩の併用により電池特性、特に、耐久性及び出力特性がそれぞれ単独で添加した場合に比べて著しく向上するメカニズムの詳細は明らかではないが、どちらの化合物群も電極上で皮膜を形成して非水電解液電池用電解液の酸化還元による分解を防ぎ、劣化を抑制することで耐久性を向上させる。また、この二種類の化合物群が共存した場合、この二種類の化合物群からできた混合皮膜により、より強固な保護皮膜ができる。しかもその皮膜のイオン伝導を助ける酸素原子がそれぞれの添加剤から供給されるため、パワーを必要とする用途に必要な出力特性も向上させるものと推測される。従って本発明の非水電解液電池用電解液は電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システム等のより出力の高い電池へ使用することができる。
 本発明の非水電解液電池用電解液に用いる非水有機溶媒の種類は、特に限定されず、任意の非水有機溶媒を用いることができる。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル、酢酸メチル、プロピオン酸メチル等の鎖状エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン等の環状エーテル、ジメトキシエタン、ジエチルエーテル等の鎖状エーテル、ジメチルスルホキシド、スルホラン等の含イオウ非水有機溶媒等を挙げることができる。また、本発明に用いる非水有機溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。
 本発明の非水電解液電池用電解液に用いる溶質の種類は、特に限定されず、任意のリチウム塩を用いることができる。具体例としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiSbF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、LiPF3(C373、LiB(CF34、LiBF3(C25)等に代表される電解質リチウム塩が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えるとLiPF6、LiBF4、(CF3SO22NLi、(C25SO22NLiが好ましい。
 これら溶質の濃度については、特に制限はないが、下限は0.5mol/L以上が好ましく、より好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は2.5mol/L以下が好ましく、より好ましくは2.2mol/L以下、さらに好ましくは2.0mol/L以下の範囲である。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下する傾向があり、一方、2.5mol/Lを越えると非水電解液電池用電解液の粘度が上昇することによりやはりイオン伝導度が低下する傾向があり、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。
 以上が本発明の非水電解液電池用電解液の基本的な構成についての説明であるが、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般に用いられるその他の添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、ビニレンカーボネート、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、プロパンサルトン、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果、正極保護効果を有する化合物が挙げられる。また、リチウムポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
 次に本発明の非水電解液電池の構成について説明する。本発明の非水電解液電池は、上記の本発明の非水電解液電池用電解液を用いることが特徴であり、その他の構成部材には一般の非水電解液電池に使用されているものが用いられる。即ち、リチウムの吸蔵及び放出が可能な正極及び負極、集電体、セパレーター、容器等から成る。
 負極材料としては、特に限定されないが、リチウム金属、リチウムと他の金属との合金及び金属間化合物や種々のカーボン材料、人造黒鉛、天然黒鉛、金属酸化物、金属窒化物、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、活性炭、導電性ポリマー等が用いられる。
 正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2 、LiNiO2 、LiMnO2 、LiMn2 O4 等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO4、LiCoPO4、LiMnPO4等の遷移金属のリン酸化合物、TiO2 、V2 O5 、MoO3 等の酸化物、TiS2 、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、黒鉛、結着剤としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が加えられ、シート状に成型されることにより電極シートにすることができる。
 正極と負極の接触を防ぐためのセパレーターとしては、ポリプロピレン、ポリエチレン、紙、ガラス繊維、等で作られた不織布や多孔質シートが使用される。
 以上の各要素からコイン状、円筒状、角形、アルミラミネートシート型等の形状の非水電解液電池が組み立てられる。
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
 [実施例1]
エチレンカーボネートとエチルメチルカーボネートの体積比3:7の混合溶媒中に溶質としてLiPF6を1.0mol/L、第一化合物群からジフルオロリン酸リチウムを1.0質量%、イミド塩としてビス(エチルスルホナート)イミドリチウムを1.0質量%となるように非水電解液電池用電解液を調製した。
 この電解液を用いてLiCoO2を正極材料、黒鉛を負極材料としてセルを作製し、実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。
 LiCoO2粉末90質量部に、バインダーとして5質量部のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量部混合し、さらにN-メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量部に、バインダーとして10質量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN-メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレーターに電解液を浸み込ませてコイン型のセルを組み立てた。
 以上のような方法で作製したセルを用いて60℃の環境温度で充放電試験を実施し、サイクル特性及び出力特性を評価した。充電は、4.2V、放電は、3.0Vまで行い、定電流定電圧法で、1C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)充放電サイクルを繰り返した。初期の放電容量に対する500サイクル後の放電容量の百分率で表した値を容量維持率とした。そして、500サイクル後、25℃の環境温度で充電上限電圧4.2Vまで定電流定電圧法で、0.2Cで充電した後、放電終止電圧3.0Vまで5Cの定電流で放電し、この放電容量の初期の放電容量に対する割合を5C放電効率とし、セルの出力特性を評価した。結果を表1に示す。
  [実施例2~14、比較例1~8]
 実施例1で用いた第一化合物群の種類、第一化合物群の濃度、硫酸エステルイミドの種類、硫酸エステルイミドの濃度を表1に示すように変更して、実施例1と同様に非水電解液電池用電解液の調製、及びセルの作製を行い、充放電試験を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 以上の結果を比較すると、第一化合物群と、一般式(I)で示されるスルホン酸エステル基を有するイミド塩をそれぞれ単独で使用するよりも併用したほうが容量維持率、5C放電効率共に優れていることがわかる。
  [実施例15~19、比較例9~15]
 実施例1で用いた負極体を変更し、さらに実施例1で用いた、硫酸エステルイミドの種類、第一化合物群の濃度、硫酸エステルイミドの濃度を表2に示すように変更して、実施例1と同様に非水電解液電池用電解液の調製、及びセルの作製を行い、充放電試験を実施した。なお、負極活物質がLi4Ti512である実施例15~17及び比較例9~12において、負極体は、Li4Ti512粉末90質量%に、バインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電剤としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。また、負極活物質がケイ素(単体)である実施例18~19、及び比較例13~15において、負極体は、ケイ素粉末80質量%に、バインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを15質量%混合しさらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧と放電終止電圧は実施例1と同様とした。上記の電池セルのサイクル特性及び出力特性の評価結果を表2に示す。
  [実施例20~25、比較例16~27]
 実施例1で用いた正極体および負極体を変更し、さらに実施例1で用いた、硫酸エステルイミドの種類、第一化合物群の濃度、硫酸エステルイミドの濃度を表2に示すように変更して、実施例1と同様に非水電解液電池用電解液の調製、及びセルの作製を行い、充放電試験を実施した。なお、正極活物質がLiNi1/3Mn1/3Co1/32である正極体は、LiNi1/3Mn1/3Co1/32粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。実施例1と同様に負極活物質が黒鉛である実施例20~21、及び比較例16~19において、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。実施例15と同様に負極活物質がLi4Ti512である実施例22~23及び比較例20~23において、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.5Vとした。実施例18と同様に負極活物質がケイ素(単体)である実施例24~25及び比較例24~27において、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。上記の電池セルのサイクル特性及び出力特性の評価結果を表2に示す。
  [実施例26~27、比較例28~31]
 実施例1で用いた正極体を変更し、さらに実施例1で用いた、硫酸エステルイミドの種類、第一化合物群の濃度、硫酸エステルイミドの濃度を表2に示すように変更して、実施例1と同様に非水電解液電池用電解液の調製、及びセルの作製を行い、充放電試験を実施した。なお、正極活物質がLiFePO4である正極体は、非晶質炭素で被覆されたLiFePO4粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとした。上記の電池セルのサイクル特性及び出力特性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 上記のように、正極活物質として、LiNi1/3Mn1/3Co1/32、LiFePO4を用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いた電池セルのサイクル特性及び出力特性は、それぞれの対応する比較例に比べて優れていることが確認された。したがって、本発明の非水電解液電池用電解液を用いることで、正極活物質の種類によらず、優れたサイクル特性、出力特性を示す非水電解液電池を得られることが示された。
 また、上記のように、負極活物質として、Li4Ti512、ケイ素(単体)を用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いた電池セルのサイクル特性及び出力特性は、それぞれの対応する比較例に比べて優れていることが確認された。したがって、本発明の非水電解液電池用電解液を用いることで、負極活物質の種類によらず、優れたサイクル特性、及び出力特性を示す非水電解液電池を得られることが示された。

Claims (6)

  1. 非水有機溶媒と溶質とからなる非水電解液電池用電解液において、添加剤としてモノフルオロリン酸塩、ジフルオロリン酸塩からなる第一化合物群から選ばれた少なくとも一つの化合物と、一般式(I)、
    Figure JPOXMLDOC01-appb-C000001
     [式中、R1及びR2はそれぞれ互いに独立して、炭素数1~10の直鎖あるいは分岐状のアルキル基またはアルケニル基、炭素数が3~10のシクロアルキル基またはシクロアルケニル基、及び、炭素数が6~10のアリール基から選ばれる少なくとも1つの有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。Mはアルカリ金属カチオン、アルカリ土類金属カチオン、またはオニウムカチオンで、nは該当するカチオンの価数と同数の整数を表す。]
    で示されるスルホン酸エステル基を有するイミド塩を含むことを特徴とする、非水電解液電池用電解液。
  2. 第一化合物群の添加量が、非水電解液電池用電解液に対して0.01~5.0質量%の範囲であることを特徴とする、請求項1に記載の非水電解液電池用電解液。
  3. 前記一般式(I)で示されるスルホン酸エステル基を有するイミド塩の添加量が、非水電解液電池用電解液に対して0.01~10.0質量%の範囲であることを特徴とする、請求項1または請求項2に記載の非水電解液電池用電解液。
  4. 第一化合物群の対カチオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオンから選ばれた少なくとも一つの対カチオンであることを特徴とする、請求項1乃至請求項3のいずれか1項に記載の非水電解液電池用電解液。
  5. 溶質が、LiPF6、LiBF4、(CF3SO22NLi、(C25SO22NLiからなる群から選ばれた少なくとも一つ以上の溶質であることを特徴とする、請求項1乃至請求項4のいずれか1項に記載の非水電解液電池用電解液。
  6. 少なくとも正極と、リチウムまたはリチウムの吸蔵放出の可能な負極材料からなる負極と、非水有機溶媒と溶質とからなる非水電解液電池用電解液とを備えた非水電解液電池において、請求項1乃至請求項5のいずれか1項に記載の非水電解液電池用電解液を含むことを特徴とする、非水電解液電池。
PCT/JP2012/065968 2011-06-24 2012-06-22 非水電解液電池用電解液及び非水電解液電池 WO2012176871A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011140775 2011-06-24
JP2011-140775 2011-06-24
JP2012-127645 2012-06-05
JP2012127645A JP2013030465A (ja) 2011-06-24 2012-06-05 非水電解液電池用電解液及び非水電解液電池

Publications (1)

Publication Number Publication Date
WO2012176871A1 true WO2012176871A1 (ja) 2012-12-27

Family

ID=47422699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065968 WO2012176871A1 (ja) 2011-06-24 2012-06-22 非水電解液電池用電解液及び非水電解液電池

Country Status (2)

Country Link
JP (1) JP2013030465A (ja)
WO (1) WO2012176871A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366343B1 (ko) * 2013-03-27 2022-02-23 미쯔비시 케미컬 주식회사 비수계 전해액 및 그것을 사용한 비수계 전해액 전지
JP6361486B2 (ja) 2014-12-01 2018-07-25 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6665396B2 (ja) 2015-02-19 2020-03-13 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR102123495B1 (ko) 2015-12-22 2020-06-16 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액, 및 이를 이용한 비수전해액 전지
JP6245312B2 (ja) 2016-05-30 2017-12-13 セントラル硝子株式会社 非水系電解液二次電池用電解液及びそれを用いた非水系電解液二次電池
JP7168851B2 (ja) * 2017-12-06 2022-11-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
CN117954689A (zh) * 2017-12-06 2024-04-30 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
KR20200047199A (ko) * 2018-10-26 2020-05-07 삼성전자주식회사 리튬전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167270A (ja) * 1997-08-21 1999-03-09 Sanyo Electric Co Ltd 非水系電解液二次電池
JP3456561B2 (ja) * 1995-04-14 2003-10-14 日立マクセル株式会社 非水電池用イオン伝導体およびそれを使用した非水電池
JP2003532619A (ja) * 1998-08-25 2003-11-05 ミネソタ マイニング アンド マニュファクチャリング カンパニー スルホニルイミドおよび導電性塩としてのその使用
JP2010135088A (ja) * 2008-12-02 2010-06-17 Mitsubishi Chemicals Corp 二次電池用非水系電解液の製造方法
JP2010282761A (ja) * 2009-06-02 2010-12-16 Mitsubishi Chemicals Corp リチウム二次電池
JP2011054406A (ja) * 2009-09-01 2011-03-17 Mitsui Chemicals Inc 非水電解液及びそれを用いた非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456561B2 (ja) * 1995-04-14 2003-10-14 日立マクセル株式会社 非水電池用イオン伝導体およびそれを使用した非水電池
JPH1167270A (ja) * 1997-08-21 1999-03-09 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2003532619A (ja) * 1998-08-25 2003-11-05 ミネソタ マイニング アンド マニュファクチャリング カンパニー スルホニルイミドおよび導電性塩としてのその使用
JP2010135088A (ja) * 2008-12-02 2010-06-17 Mitsubishi Chemicals Corp 二次電池用非水系電解液の製造方法
JP2010282761A (ja) * 2009-06-02 2010-12-16 Mitsubishi Chemicals Corp リチウム二次電池
JP2011054406A (ja) * 2009-09-01 2011-03-17 Mitsui Chemicals Inc 非水電解液及びそれを用いた非水電解質二次電池

Also Published As

Publication number Publication date
JP2013030465A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5796417B2 (ja) 非水電解液電池用電解液及び非水電解液電池
JP4972922B2 (ja) 非水電解液電池用電解液及び非水電解液電池
JP6255722B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP5573313B2 (ja) 非水電解液電池用電解液及びこれを用いる非水電解液電池
JP5239119B2 (ja) 非水電解液電池用電解液及び非水電解液電池
JP6221365B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6365082B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR101633794B1 (ko) 비수 전해액 전지용 전해액, 및 이것을 이용한 비수 전해액 전지
JP2019057356A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2012176871A1 (ja) 非水電解液電池用電解液及び非水電解液電池
KR20110131264A (ko) 전기 화학 디바이스용 전해질, 이것을 사용하는 전해액 및 비수 전해액 전지
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2016131059A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2014133169A1 (ja) 二次電池用電解液およびそれを用いた二次電池
CN108352571B (zh) 二次电池用非水电解液和二次电池
KR20220170456A (ko) 전지용 전해액 및 이를 포함하는 이차전지
JP6324845B2 (ja) 非水電解液及びこれを含むリチウムイオン二次電池
JP2015015097A (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803321

Country of ref document: EP

Kind code of ref document: A1