WO2012176820A1 - 縮合複素環化合物およびその重合体 - Google Patents

縮合複素環化合物およびその重合体 Download PDF

Info

Publication number
WO2012176820A1
WO2012176820A1 PCT/JP2012/065780 JP2012065780W WO2012176820A1 WO 2012176820 A1 WO2012176820 A1 WO 2012176820A1 JP 2012065780 W JP2012065780 W JP 2012065780W WO 2012176820 A1 WO2012176820 A1 WO 2012176820A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
compound
ring
independently
Prior art date
Application number
PCT/JP2012/065780
Other languages
English (en)
French (fr)
Inventor
菅 誠治
耕一 光藤
泰輔 鎌田
美樹 ▲つる▼田
純一 吉本
杉岡 尚
Original Assignee
国立大学法人 岡山大学
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学, 株式会社クラレ filed Critical 国立大学法人 岡山大学
Publication of WO2012176820A1 publication Critical patent/WO2012176820A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/226Oligomers, i.e. up to 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/74Further polymerisation of the obtained polymers, e.g. living polymerisation to obtain block-copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a condensed heterocyclic compound and a polymer thereof.
  • semiconductor materials semiconductor materials
  • organic electronic members such as solid electrolytic transistors, organic thin film transistors, and individual identification (RFID) devices using radio waves
  • RFID individual identification
  • these doped polymers have electrical conductivity, and the electrical characteristics and optical characteristics can be appropriately controlled by adjusting the amount of dopant to coexist. Therefore, these doped polymers have been studied for use in various applications such as various electrodes, electrochromic materials, various sensors, primary batteries, secondary batteries, solid electrolytic capacitors, antistatic agents and the like.
  • the fused heterocyclic compound of Patent Document 1 has been studied as a semiconducting material that can be applied and printed because it has excellent semiconductor properties and high solubility in organic solvents. Further, in Patent Document 2 and Non-Patent Document 1, polymers having a structural unit derived from dithienopyrrole have been reported, and their use as a conductive material or a semiconductive material has been studied. Non-Patent Document 2 reports a fused heterocyclic compound containing a pyrrole ring. However, no compound has been reported in which both ends are composed of an aromatic heterocyclic ring and five or more rings are condensed.
  • An object of the present invention is to provide a condensed heterocyclic compound and a polymer thereof that can be suitably used as a conductive material or a semiconductive material.
  • R 1 and each R 2 independently represent a hydrogen atom, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a hetero that may have a substituent.
  • An aryl group or —CO—R (wherein R represents an alkyl group which may have a substituent, an aryl group which may have a substituent or a heteroaryl group which may have a substituent); .)
  • Ring A, Ring B and Ring C are each independently a 5-membered or 6-membered aromatic heterocyclic ring which may have a substituent, n is an integer of 1 to 4. ]
  • W 1 to W 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, An aryl group that may have a substituent, a heteroaryl group that may have a substituent, an alkoxy group that may have a substituent, an alkylthio group that may have a substituent, and a substituent It may have an alkylamino group, a cyano group, a nitro group, an azido group, a hydroxy group, a sulfanyl group, an amino group, a carboxyl group or a salt thereof, a phosphono group or a salt thereof, a sulfo group or a salt thereof, or a substituent.
  • R 1 , R 2 and W 1 to W 4 are as defined in the above [2].
  • R 1 and each R 2 are each independently an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
  • R 1 and each R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a benzyl group, or a phenyl group which may have a substituent.
  • a composition comprising the compound according to any one of [1] to [6] and a dopant.
  • a polymer comprising a structural unit derived from the compound according to [4].
  • R 1 and each R 2 are each independently an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
  • R 1 and each R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a benzyl group, or an optionally substituted phenyl group.
  • a composition comprising the polymer according to any one of [9] to [11] and a dopant.
  • the composition described in [12], wherein the polymer described in any one of [9] to [11] is a cation and the dopant is an anion.
  • [14] An organic electronic member comprising the compound according to any one of [1] to [6] or the composition according to [7] or [8].
  • An organic electronic member comprising the polymer according to any one of [9] to [11] or the composition according to [12] or [13].
  • X 1 to X 4 are each independently a chlorine atom, a bromine atom or an iodine atom
  • W 1 to W 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, An aryl group that may have a substituent, a heteroaryl group that may have a substituent, an alkoxy group that may have a substituent, an alkylthio group that may have a substituent, and a substituent It may have an alkylamino group, a cyano group, a nitro group, an azido group, a hydroxy group, a sulfanyl group, an amino group, a carboxyl group or a salt thereof, a phosphono group or a salt thereof, a sulfo group or a salt thereof, or a substituent.
  • Ak represents an alkyl group.
  • R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or —CO—R ( In the above formula, R represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • a compound of formula (6) R 2 —NH 2 (6)
  • R 2 represents a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or —CO—R ( In the above formula, R represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • R 1 , R 2 and W 1 to W 4 are as defined above.
  • R 1 and R 2 are each independently an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a benzyl group, or an optionally substituted phenyl group.
  • the fused heterocyclic compound and polymer thereof of the present invention are suitably used as a conductive material or a semiconductive material.
  • R 1 and each R 2 in Formula (1) may each independently have a hydrogen atom, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • a good heteroaryl group or —CO—R (wherein R represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent) Represents.).
  • the alkyl group may be linear or branched, and the carbon number thereof is preferably 1-20, more preferably 1-15, still more preferably 1-10. It is.
  • the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, and hexyl.
  • the alkyl group may have a substituent.
  • substituent of the alkyl group examples include a halogen atom, an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), an aryl group which may have a substituent, and the like. .
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 10 carbon atoms.
  • Examples of the aryl group include aryl groups derived from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, pyrene ring, perylene ring, tetracene ring, pentaphen ring, pentacene ring, rubicene ring and the like.
  • the aryl group may have a substituent.
  • substituent of the aryl group examples include a halogen atom, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and 1 to 20 carbon atoms (preferably 1 to 10, more preferably Are alkoxy groups of 1 to 5).
  • a heteroaryl group is a group derived from an aromatic heterocycle containing 1 to 5 heteroatoms such as nitrogen, oxygen, sulfur, selenium, silicon, germanium in addition to carbon atoms.
  • the aromatic heterocyclic ring may be monocyclic or polycyclic (eg, bicyclic, tricyclic).
  • the number of atoms of the heteroaryl group is preferably 5 to 30, more preferably 5 to 10.
  • heteroaryl groups include thiophene ring, pyrrole ring, furan ring, selenophene ring, silole ring, gelmol ring, imidazole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, triazole ring, tetrazole ring , Pyridine ring, pyrazine ring, pyrimidine ring, indole ring, isoindole ring, indazole ring, phthalazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, ⁇ -carboline ring, etc.
  • the heteroaryl group may have a substituent.
  • substituent of the heteroaryl group include a halogen atom, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms). Preferred examples include alkoxy groups 1 to 5).
  • R 1 and each R 2 are each independently preferably an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, More preferably an alkyl group which may have a substituent or an aryl group which may have a substituent, and even more preferably an alkyl group which may have a substituent or a substituent
  • a phenyl group more preferably an alkyl group having 1 to 10 carbon atoms, a benzyl group or an optionally substituted phenyl group, still more preferably an alkyl group having 1 to 10 carbon atoms, a benzyl group, or A phenyl group which may have at least one selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms, particularly preferably an alkyl group having 1 to 10 carbon atoms; Group, a benzyl group or an alkyl group and
  • the number of the substituent is preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • n is 2 or more, the plurality of R 2 may be the same as or different from each other, and are preferably the same. Further, it is preferable that all of R 1 and each R 2 is the same.
  • Ring A, ring B and ring C in the formula (1) are each independently a 5-membered or 6-membered aromatic heterocyclic ring which may have a substituent. Ring A, ring B and ring C are preferably the same.
  • the 5-membered or 6-membered aromatic heterocycle contains a heteroatom such as nitrogen, oxygen, sulfur, selenium, silicon, germanium in addition to the carbon atom.
  • the number of heteroatoms in the 5-membered or 6-membered aromatic heterocycle is preferably 1 to 3, more preferably 1.
  • Examples of the 5- or 6-membered aromatic heterocycle include, for example, a thiophene ring, a pyrrole ring, a furan ring, a selenophene ring, a silole ring, a gelmol ring, an imidazole ring, a pyrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, and an isothiazole. And a ring, a pyridine ring, a pyrazine ring, and a pyrimidine ring.
  • the 5-membered or 6-membered aromatic heterocyclic ring may have a substituent.
  • Examples of the substituent of the 5-membered or 6-membered aromatic heterocyclic ring include a halogen atom, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and 1 to 20 carbon atoms ( Preferred examples include alkoxy groups of 1 to 10, more preferably 1 to 5).
  • Ring A, Ring B and Ring C are each independently preferably a 5-membered aromatic heterocyclic ring which may have a substituent, more preferably a thiophene ring which may have a substituent, More preferably, it is a thiophene ring which may have a halogen atom, more preferably a thiophene ring which may have at least one selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom. An unsubstituted thiophene ring is preferred.
  • N in the formula (1) is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • R 1 and each R 2 are each independently an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, Examples include compounds in which Ring A, Ring B and Ring C are each independently a 5-membered or 6-membered aromatic heterocyclic ring which may have a substituent.
  • R 1 and each R 2 are each independently an alkyl group which may have a substituent or an aryl group which may have a substituent, Examples thereof include compounds in which Ring A, Ring B and Ring C are each independently a 5-membered aromatic heterocyclic ring which may have a substituent.
  • R 1 and each R 2 are each independently an alkyl group which may have a substituent or a phenyl group which may have a substituent
  • examples include a compound in which Ring A, Ring B and Ring C are each independently a thiophene ring which may have a substituent.
  • R 1 and each R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a benzyl group or an optionally substituted phenyl group, Examples thereof include compounds in which Ring A, Ring B and Ring C are each independently a thiophene ring which may have a halogen atom.
  • R 1 and each R 2 are each independently at least one selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a benzyl group, or an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms.
  • R 1 and each R 2 are each independently at least one selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a benzyl group, or an alkyl group having 1 to 5 carbon atoms and an alkoxy group having 1 to 5 carbon atoms.
  • R 1 and each R 2 are the same.
  • W 1 to W 4 in formula (2) each independently have a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, an alkenyl group that may have a substituent, or a substituent.
  • alkynyl group which may have a substituent an aryl group which may have a substituent, a heteroaryl group which may have a substituent, an alkoxy group which may have a substituent, an alkylthio group which may have a substituent
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a bromine atom.
  • the alkenyl group may be linear or branched, and the carbon number thereof is preferably 2 to 20, more preferably 2 to 10.
  • the alkenyl group include a vinyl group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 1-hexenyl group, 1-heptenyl group, 1-octenyl group and the like.
  • the alkenyl group may have a substituent.
  • the substituent of the alkenyl group include a halogen atom, an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and the like.
  • the alkynyl group may be linear or branched, and the alkynyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms. Examples include ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 1-hexynyl group, 1-heptynyl group, 1-octynyl group and the like.
  • the alkynyl group may have a substituent. Examples of the substituent of the alkynyl group include a halogen atom, an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and the like.
  • the alkoxy group may be linear or branched, and the carbon number thereof is preferably 1-20, more preferably 1-10.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, an isopentyloxy group, a neopentyloxy group, tert-pentyloxy group, hexyloxy group, isohexyloxy group, 2-ethylhexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, tetradecyloxy group, pentadecyloxy group, Hexadecyloxy group, heptadecyloxy group, octade
  • the alkylthio group may be linear or branched, and the carbon number thereof is preferably 1-20, more preferably 1-10.
  • the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, an isopentylthio group, a neopentylthio group, tert-pentylthio group, hexylthio group, isohexylthio group, 2-ethylhexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, undecylthio group, tetradecylthio
  • the alkylthio group may have a substituent.
  • substituent for the alkylthio group include a halogen atom, an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and the like.
  • the alkylamino group may be linear or branched, and the carbon number thereof is preferably 1 to 10, more preferably 1 to 5, and the alkyl group. Is 1 or 2, preferably 1.
  • the alkylamino group include a methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, nonylamino group, decylamino group, A dimethylamino group, a diethylamino group, etc. are mentioned.
  • the alkylamino group may have a substituent. Examples of the substituent of the alkylamino group include a halogen atom, an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), and the like.
  • any of the carboxyl group, phosphono group and sulfo group may be in a salt form.
  • these salt forms include alkali metal salts, alkaline earth metal salts, quaternary ammonium salts, quaternary phosphonium salts, imidazolium salts, guanidinium salts, and the like.
  • the carbamoyl group which may have a substituent is represented by —CO—N (R ′) (R ′′) (wherein R ′ and R ′′ each independently represents a hydrogen atom) Or a substituent.)
  • the substituent of the carbamoyl group is, for example, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
  • the phosphinoyl group which may have a substituent is represented by —PO (R ′) (R ′′) (wherein R ′ and R ′′ each independently represents a hydrogen atom or a substituent).
  • the substituent of the phosphinoyl group is, for example, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
  • the phosphanyl group which may have a substituent is represented by —P (R ′) (R ′′) (wherein R ′ and R ′′ each independently represents a hydrogen atom or a substituent).
  • the substituent of the phosphanyl group is, for example, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
  • Ak represents an alkyl group.
  • Ak may be linear or branched, and the carbon number thereof is preferably 1 to 10, more preferably 1 to 5.
  • Examples of Ak include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, and hexyl groups. , Isohexyl group, 2-ethylhexyl group, heptyl group, octyl group, nonyl group, decyl group and the like.
  • W 1 to W 4 are preferably each independently a hydrogen atom, a halogen atom or an alkyl group which may have a substituent.
  • W 1 to W 4 are each independently more preferably a hydrogen atom or a halogen atom, still more preferably a hydrogen atom or a bromine atom, and still more preferably a hydrogen atom. It is preferable that W 1 to W 4 are all the same.
  • At least two of W 1 to W 4 are each independently required to be a hydrogen atom, a chlorine atom, a bromine atom or an iodine atom. At least two of W 1 to W 4 are each independently preferably a hydrogen atom or a bromine atom, more preferably a hydrogen atom.
  • the “at least two of W 1 to W 4 ” is preferably W 1 and W 2 .
  • N in the formula (2) is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably 1 or 2.
  • the compound (2) in which n is 1 is the compound (3).
  • the explanation of R 1 , R 2 and W 1 to W 4 in the formula (3) is the same as described above.
  • R 1 and each R 2 are each independently an alkyl group that may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent
  • W 1 to W 4 are each independently a hydrogen atom, a halogen atom or an alkyl group which may have a substituent
  • Examples thereof include compounds in which at least two of W 1 to W 4 are each independently a hydrogen atom, a chlorine atom, a bromine atom or an iodine atom.
  • R 1 and each R 2 are each independently an alkyl group which may have a substituent or an aryl group which may have a substituent
  • W 1 to W 4 are each independently a hydrogen atom or a halogen atom
  • Examples include compounds in which at least two of W 1 to W 4 are each independently a hydrogen atom or a bromine atom.
  • R 1 and each R 2 are each independently an alkyl group which may have a substituent or a phenyl group which may have a substituent, Examples thereof include compounds in which W 1 to W 4 are hydrogen atoms.
  • R 1 and each R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a benzyl group or an optionally substituted phenyl group, Examples thereof include compounds in which W 1 to W 4 are hydrogen atoms.
  • R 1 and each R 2 are each independently at least one selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a benzyl group, or an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms.
  • R 1 and each R 2 are the same.
  • a dopant may be added to the compound of the present invention.
  • the compound of the present invention is preferably a cation and the dopant is preferably an anion.
  • the addition amount of the dopant can be arbitrarily adjusted depending on the dopant to be used, but is preferably 1 to 1000 parts by weight, more preferably 1 to 200 parts by weight with respect to 100 parts by weight of the compound.
  • the method of doping the compound and the description of the dopant used therefor are the same as those of the polymer described later.
  • reaction A a method for producing the fused heterocyclic compound of the present invention (that is, compound (1) to compound (3))
  • a manufacturing method is first demonstrated from the manufacturing method of a compound (3).
  • Compound (3) can be produced by reacting compound (4), compound (5) and compound (6) as shown in the following formula (hereinafter abbreviated as “reaction A”). It is preferable that a compound (5) and a compound (6) are the same compounds.
  • W 1 to W 4 in the formula (4) and R 1 and R 2 in the formulas (5) and (6) are as defined above.
  • X 1 to X 4 are each independently a chlorine atom, bromine atom or iodine atom, preferably a bromine atom.
  • saturated aliphatic hydrocarbons or alicyclic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; benzene, toluene, ethylbenzene, propyl Aromatic hydrocarbons such as benzene, xylene, ethyl toluene, chlorobenzene, o-dichlorobenzene; dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, tert-butyl methyl ether, dibutyl ether, tetrahydrofuran, 1, And ethers such as 4-dioxane; aprotic polar solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrol
  • Reaction A is performed in the presence of a catalyst and a base.
  • the catalyst used in the reaction A include metal catalysts such as a palladium catalyst and a nickel catalyst.
  • the amount of the catalyst is preferably 0.001 to 1 mol with respect to 1 mol of the compound (4).
  • the base used in the reaction A include n-butyllithium, tert-butyllithium, methyllithium and the like.
  • the amount of the base is preferably 0.8 to 1.2 mol with respect to 1 mol of the compound (4).
  • the crude product is preferably purified by a known method (for example, extraction, chromatography).
  • reaction B The compound (4) used in the reaction A is produced by reacting the compound (7), the compound (8) and the compound (9) as shown in the following formula (hereinafter abbreviated as “reaction B”). be able to.
  • X 1 to X 4 and W 1 to W 4 are as defined above.
  • X 5 to X 8 in the formulas (7) to (9) are each independently a chlorine atom, a bromine atom or an iodine atom, preferably a bromine atom.
  • the methods and conditions of Kumada-Tamao coupling and Negishi coupling are preferred, and the methods and conditions of Negishi coupling are more preferred.
  • Both Kumada-Tamao coupling and Negishi coupling are well known in the field of synthetic organic chemistry. For example, the Kumada-Tamao coupling is described in Pure and Applied Chemistry, 1980, Vol. 52, p. 669, Negishi Coupling is described in Accounts of Chemical Research, 1982, Vol. 15, p. 340.
  • saturated aliphatic hydrocarbons or alicyclic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; benzene, toluene, ethylbenzene, propyl Aromatic hydrocarbons such as benzene, xylene, ethyl toluene, chlorobenzene, o-dichlorobenzene; dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, tert-butyl methyl ether, dibutyl ether, tetrahydrofuran, 1, And ethers such as 4-dioxane; aprotic polar solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrroli
  • Examples of the catalyst used in the reaction B include metal catalysts such as a palladium catalyst and a nickel catalyst.
  • the temperature of reaction B is not particularly limited, but is preferably ⁇ 50 ° C. to 200 ° C.
  • the time for reaction B is not particularly limited, but is preferably 1 minute to 48 hours.
  • the crude product is preferably purified by a known method (for example, extraction, chromatography).
  • a compound in which n is 1, and a part or all of ring A, ring B and ring C is a 5-membered or 6-membered aromatic heterocycle other than the thiophene ring (hereinafter abbreviated as “other ring”) ( 1) can be produced by using, as a starting material, a compound in which part or all of the thiophene ring is replaced with another ring in the above reaction A instead of the compound (4).
  • Examples of other rings include pyrrole ring, furan ring, selenophene ring, silole ring, gelmol ring, imidazole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, pyridine ring, pyrazine ring, pyrimidine ring. Etc.
  • compound (1) wherein n is 2 to 4 can be produced in the same manner as in the production method of compound (2).
  • the starting material used in the method for producing compound (1) can be produced by a method well known in the field of synthetic organic chemistry.
  • the polymer of the present invention has a constitution derived from the compound (2) (preferably the compound (3)) in which at least two of W 1 to W 4 are each independently a hydrogen atom, a chlorine atom, a bromine atom or an iodine atom. The unit is included.
  • the average molecular weight of the polymer is not particularly limited.
  • the polymer of the present invention has a rigid structural unit in which five or more aromatic heterocycles derived from the compound (2) (preferably the compound (3)) are condensed, many of the polymers of the present invention Does not dissolve in the solvent, and the average molecular weight cannot be measured by GPC or the like.
  • the weight average molecular weight of a general polymer is in the range of 1000 to 1,000,000.
  • a dopant may be added to the polymer of the present invention.
  • the polymer of the present invention is preferably a cation and the dopant is preferably an anion.
  • the dopant which is an anion functions as a counter anion with respect to the polymer of the present invention which is a cation.
  • the dopant include a halogenated anion of a Group 5B element such as PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ ; a halogenated anion of a Group 3B element such as BF 4 ⁇ ; I ⁇ (I 3 ⁇ ), Br ⁇ .
  • Halogen anions such as Cl 2 ⁇ ; Halogen anions such as ClO 4 ⁇ ; Metal halide anions such as AlCl 4 ⁇ , FeCl 4 ⁇ , SnCl 5 ⁇ ; Nitrate anions (NO 3 ⁇ ); Sulfate anions (SO 4 2 ⁇ ); Organic sulfonate anions such as p-toluenesulfonate anion, naphthalenesulfonate anion, CH 3 SO 3 ⁇ , CF 3 SO 3 — ; carboxylate anions such as CF 3 COO ⁇ , C 6 H 5 COO ⁇ ; and And modified polymers having the above anionic species in the main chain or side chain. These dopants may be used independently and may use 2 or more types together.
  • the method for adding the dopant is not particularly limited.
  • a desired dopant may be appropriately added to the obtained polymer after polymerizing the monomer.
  • an anion derived from an oxidant used for polymerization or doping can be used as a dopant.
  • an anion derived from an electrolyte used for polymerization or doping can be used as a dopant.
  • the addition amount of the dopant can be arbitrarily adjusted depending on the dopant to be used, but is preferably 1 to 1000 parts by weight, more preferably 1 to 200 parts by weight with respect to 100 parts by weight of the polymer.
  • the polymer of the present invention is produced by chemical oxidative polymerization or electrochemical polymerization of the polymerizable compound (2) (preferably compound (3)) of the present invention and, if necessary, other monomers. It is preferable. Hereinafter, polymerization will be described together with doping.
  • the solvent used in the chemical oxidative polymerization or chemical oxidative doping is not particularly limited.
  • methylene chloride, chloroform, chlorobenzene, o-dichlorobenzene, acetonitrile, benzonitrile, propylene carbonate, nitromethane, tetrohydrofuran, methanol, Water etc. are mentioned.
  • the oxidizing agent used in chemical oxidative polymerization or chemical oxidative doping is not particularly limited, but is preferably a halogen or a transition metal salt.
  • the oxidizing agent include halogens such as I 2 , Br 2 , and Cl 2 ; ferric chloride (FeCl 3 ), ferric perchlorate (Fe (ClO 4 ) 3 ), and ferric sulfate (Fe 2).
  • ferric salt that is, iron (III) salt
  • a salt in which iron (III) is replaced with cerium (IV), copper (II), manganese (VII), ruthenium (III) can be used as an oxidizing agent.
  • oxidizing agent Only one type of oxidizing agent may be used, or two or more types may be used in combination.
  • the combination of oxidizing agents used in combination include, for example, a combination of oxidizing agents having a dopant action; a combination of oxidizing agents having no dopant action; an oxidizing agent having a dopant action (for example, one or more kinds having a dopant action)
  • a combination of a ferric salt) and an oxidizing agent having no dopant action for example, one or more ferric salts having no dopant action.
  • the amount of oxidant in the solvent is preferably 0.001 to 10 mol / L.
  • the amount of monomer in the solvent (that is, “molar amount of monomer / volume of solvent”) can be appropriately set depending on the polymerization conditions and the like to be employed. 001 to 10 mol / L.
  • the reaction temperature in chemical oxidative polymerization or chemical oxidative doping is not particularly limited, but is preferably ⁇ 50 ° C. to 200 ° C.
  • the reaction time in chemical oxidative polymerization or chemical oxidative doping is not particularly limited, but is preferably 1 minute to 48 hours.
  • a supporting salt may be used as an additive.
  • the supporting salt is not particularly limited.
  • perchlorate ion, boron tetrafluoride ion, phosphorus hexafluoride ion, halide ion, arsenic hexafluoride ion, antimony hexafluoride ion, sulfate ion, hydrogen sulfate ion examples thereof include support salts containing anions such as alkyl sulfonate ions, benzene sulfonate ions, alkyl benzene sulfonate ions, naphthalene sulfonate ions, alkyl naphthalene sulfonate ions, polystyrene sulfonate ions, and polyvinyl sulfonate ions.
  • solvent used in electrochemical polymerization or electrochemical doping examples include nitromethane, acetonitrile, propylene carbonate, nitrobenzene, cyanobenzene, o-dichlorobenzene, dimethyl sulfoxide, and ⁇ -butyrolactone.
  • Examples of the supporting electrolyte used in electrochemical polymerization or electrochemical doping include (a) alkali metal ions such as lithium ion, potassium ion and sodium ion, cations such as quaternary ammonium ion, and (b) perchlorine.
  • Examples thereof include support electrolytes composed of a combination with anions such as acid ions, boron tetrafluoride ions, phosphorus hexafluoride ions, halide ions, arsenic hexafluoride ions, antimony hexafluoride ions, sulfate ions and hydrogen sulfate ions.
  • the supporting electrolyte may be used alone or in combination of two or more.
  • electrolytic solution used in electrochemical polymerization or electrochemical doping examples include an electrolytic solution composed of the solvent and the supporting electrolyte.
  • ionic liquids such as an alkyl imidazolium salt and an alkyl pyridinium salt, can also be used as an electrolytic solution.
  • the amount of the monomer in the electrolytic solution (that is, “molar amount of monomer / volume of the electrolytic solution”) can be appropriately set depending on the polymerization conditions to be employed, etc. 0.001 to 10 mol / L.
  • the amount of the supporting electrolyte in the electrolytic solution is preferably 0.001 to 10 mol / L.
  • electrode materials used in electrochemical polymerization or electrochemical doping include platinum, gold, nickel, ITO, and the like.
  • the voltage at the time of application in electrochemical polymerization or electrochemical doping can be appropriately set depending on the conditions employed, etc., but is preferably 0.1 to 1.5 V (vs Ag / Ag + ), more The voltage is preferably 0.3 to 1.2 V (vs Ag / Ag + ).
  • the temperature at which the voltage is applied is preferably ⁇ 50 to 50 ° C., more preferably ⁇ 30 to 30 ° C.
  • the reaction temperature in electrochemical polymerization or electrochemical doping is not particularly limited, but is preferably ⁇ 50 ° C. to 200 ° C.
  • the reaction time in electrochemical polymerization or electrochemical doping is not particularly limited, but is preferably 1 minute to 48 hours.
  • the compounds and polymers of the present invention are useful for organic electronics members as semiconductive materials or conductive materials. Accordingly, the present invention also relates to an organic electronic member comprising the compound of the present invention; the composition comprising the compound of the present invention and a dopant; the polymer of the present invention; the composition comprising the polymer and the dopant of the present invention; or a mixture thereof.
  • organic electronics members include electrodes, solid electrolytic capacitors, thermoelectric elements, piezoelectric elements, actuators, sensors, organic thin film solar cells, dye-sensitized solar cells, organic thin film transistors, individual identification (RFID) devices using radio waves, field effect transistors (FET), integrated circuit (IC), organic electroluminescence element (OLED), organic semiconductor element and the like.
  • Example 1 To a Schlenk dried under reduced pressure and substituted with argon, 0.052 g (0.05 mmol) of tris (dibenzylideneacetone) dipalladium (0) chloroform adduct, 0.111 g of 1,1-bis (diphenylphosphino) ferrocene ( 0.20 mmol), sodium tert-butoxide 0.770 g (8.0 mmol), compound (10) 0.282 g (0.50 mmol), and toluene 3.0 mL were added. The mixture was stirred at room temperature for 20 minutes.
  • Example 2 The Schlenk dried under reduced pressure and substituted with argon was charged with 0.029 g (0.05 mmol) of bis (dibenzylideneacetone) dipalladium, 0.111 g (0.20 mmol) of 1,1-bis (diphenylphosphino) ferrocene, sodium Tert-butoxide 0.770 g (8.0 mmol), 0.282 g (0.50 mmol) of compound (10) and 3.5 mL of toluene were added. The mixture was stirred at room temperature for 20 minutes. Thereafter, 0.180 g (1.2 mmol) of 4-butylaniline was added to make Schlenk sealed, and the reaction mixture was stirred at 110 ° C. for 6 hours.
  • Example 3 In the same manner as in Example 2 except that 0.148 g (1.2 mmol) of p-anisidine was added instead of 0.180 g (1.2 mmol) of 4-butylaniline, 181 mg ( 0.371 mmol, 74%).
  • Example 4 In the same manner as in Example 2, except that 0.130 g (1.22 mmol) of benzylamine was added instead of 0.180 g (1.2 mmol) of 4-butylaniline and the reaction mixture was stirred at 90 ° C. for 4 hours. 14) The compound shown by 175 mg (0.385 mmol, 77%) was obtained.
  • Example 5 In the same manner as in Example 2 except that 0.081 g (1.20 mmol) of methylamine hydrochloride was added instead of 0.180 g (1.2 mmol) of 4-butylaniline and the reaction mixture was stirred at 90 ° C. for 2 hours. 78 mg (0.257 mmol, 51%) of the compound represented by the formula (15) was obtained.
  • Example 6 In the same manner as in Example 2 except that 0.098 g (1.34 mmol) of butylamine was added instead of 0.180 g (1.2 mmol) of 4-butylaniline, and the reaction mixture was stirred at 90 ° C. for 6 hours. ) Was obtained in 139 mg (0.374 mmol, 74%).
  • Example 7 85 mg of the compound represented by the formula (17) was obtained in the same manner as in Example 2 except that 0.121 g (1.20 mmol) of n-hexylamine was added instead of 0.180 g (1.2 mmol) of 4-butylaniline. (0.193 mmol, 39%).
  • Example 8 In the same manner as in Example 2 except that 0.157 g (1.20 mmol) of n-octylamine was added instead of 0.180 g (1.2 mmol) of 4-butylaniline, and the reaction mixture was stirred at 110 ° C. for 4 hours. 109 mg (0.218 mmol, 44%) of the compound represented by formula (18) was obtained.
  • Example 9 Using the compound (11), an organic thin film transistor was produced by the following procedure.
  • the substrate (silicon wafer) itself becomes the gate electrode, and the SiO 2 insulating layer becomes the gate insulating layer.
  • This substrate was ultrasonically washed with acetone, methanol and ultrapure water for 5 minutes each, immersed in a mixed solution of concentrated sulfuric acid-hydrogen peroxide solution for 1 minute, and then washed with running water.
  • the surface treatment of the substrate was performed in a hexamethyldisilazane (HMDS) atmosphere.
  • the compound (11) was vacuum-deposited under vacuum (10 ⁇ 6 torr) at a deposition rate of 0.2 to form an organic semiconductor layer having a thickness of 23 nm.
  • gold having a thickness of 48 nm was vacuum deposited to form a source electrode and a drain electrode, thereby obtaining an organic thin film transistor.
  • the channel width was 2058 ⁇ m and the channel length was 30 ⁇ m.
  • a gate voltage of ⁇ 150 V was applied to the gate electrode of the obtained organic thin film transistor, a voltage was further applied between the source electrode and the drain electrode, and a current was passed to evaluate the transistor characteristics.
  • Table 1 The results are shown in Table 1.
  • Example 10 In the same manner as in Example 9, an organic thin film transistor was produced using the compound (15).
  • the obtained organic thin film transistor had a channel width of 1470 ⁇ m and a channel length of 30 ⁇ m.
  • a gate voltage of ⁇ 100 V was applied to the gate electrode of the obtained organic thin film transistor, a voltage was further applied between the source electrode and the drain electrode, and a current was passed to evaluate the transistor characteristics. The results are shown in Table 1.
  • Example 11 Using the compound (11), an organic thin film transistor was produced by the following procedure. First, the same substrate as that used in Example 9 was ultrasonically cleaned with acetone, methanol, and ultrapure water for 5 minutes each. Next, a 0.5 wt% solution of the compound (11) in chloroform was applied onto the substrate using a spin coater (Kyowa Riken: K359S-1), and the film was removed by removing the solvent. A 3 nm organic semiconductor layer was formed. Further, using a mask, gold having a thickness of 43 nm was deposited on the organic semiconductor layer to form a source electrode and a drain electrode, thereby obtaining an organic thin film transistor. The channel width was 1220 ⁇ m and the channel length was 30 ⁇ m. A gate voltage of ⁇ 150 V was applied to the gate electrode of the obtained organic thin film transistor, a voltage was further applied between the source electrode and the drain electrode, and a current was passed to evaluate the transistor characteristics. The results are shown in Table 1.
  • Example 12 In a 50 mL three-necked flask equipped with a thermometer, compound (11) 20 mg (0.044 mmol), ferric perchlorate / n hydrate (anhydride content of 70 wt% or more), 78 mg, 10 mL of benzonitrile was added and the reaction mixture was stirred at 25 ° C. for 24 hours. After completion of the reaction, the reaction mixture was filtered to obtain 13.6 mg of a polymer. The obtained polymer was dried and then compression molded on a glass substrate to produce an electrode. The conductivity of the electrode (polymer) was measured by a four-probe method and found to be 4.27 ⁇ 10 ⁇ 2 S / cm.
  • the obtained polymer was immersed in an aqueous solution of 10% by weight of hydrazine monohydrate for 10 minutes to prepare a dedoping polymer.
  • the obtained dedoping polymer was dried and its conductivity was measured by a four-probe method. As a result, no conductivity was confirmed. This is a phenomenon peculiar to a conductive polymer whose conductivity is changed by doping and dedoping.
  • the condensed heterocyclic compound and the polymer thereof according to the present invention are, for example, inks, antistatic agents, organic electronics members (for example, electrodes, solid electrolytic capacitors, thermoelectric elements, piezoelectric elements, actuators) as semiconductive materials or conductive materials.
  • organic electronics members for example, electrodes, solid electrolytic capacitors, thermoelectric elements, piezoelectric elements, actuators
  • Sensors organic thin film solar cells, dye-sensitized solar cells, organic thin film transistors, radio wave identification (RFID) devices, field effect transistors (FETs), integrated circuits (ICs), organic electroluminescence devices (OLEDs), organic semiconductor devices Etc.).
  • RFID radio wave identification
  • FETs field effect transistors
  • ICs integrated circuits
  • OLEDs organic electroluminescence devices
  • organic semiconductor devices Etc. organic semiconductor devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明は、式(1)で示される化合物およびその重合体を提供する。[式中、Rおよび各Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)であり、環A、環Bおよび環Cは、それぞれ独立に、置換基を有してもよい5員または6員の芳香族複素環であり、nは、1~4の整数である。]

Description

縮合複素環化合物およびその重合体
 本発明は、縮合複素環化合物およびその重合体に関する。
 ピロール、チオフェン、アニリン等のようにヘテロ原子が環内外に存在する5員環構造または6員環構造を有する化合物或いは炭化水素系芳香環構造を有する化合物を重合して得られる重合体は、半導性を有する。これらの重合体を、半導性材料(半導体)として、固体電解トランジスタ、有機薄膜トランジスタ、電波による個体識別(RFID)器等の様々な有機エレクトロニクス部材に用いることが検討されている。また、ドーピングされたこれらの重合体は、導電性を有しており、共存させるドーパント量を調整することにより電気特性および光学特性を適切にコントロールすることができる。そのため、ドーピングされたこれらの重合体は、各種電極、エレクトロクロミック材料、各種センサー、一次電池、二次電池、固体電解コンデンサ、帯電防止剤等の様々な用途に用いることが検討されている。
 特許文献1の縮合複素環化合物は、優れた半導体特性を有し、有機溶媒への高い溶解性示すことから、塗布や印刷プロセスが可能な半導性材料として検討されている。また、特許文献2および非特許文献1において、ジチエノピロールに由来する構成単位を有する重合体が報告されており、これらは導電性材料や半導性材料としての用途が検討されている。また、非特許文献2には、ピロール環を含む縮合複素環化合物が報告されている。しかし、両末端が芳香族複素環で構成され、且つ五つ以上の環が縮合している化合物は報告されていない。
特許第4581062号 米国特許出願公開第2008/0262183号
Journal of American Chemical Society,2008年,130巻,p.13167-13176 Organic letters,2010年,12巻,p.232-235
 本発明は、導電性材料または半導性材料として好適に用いることができる縮合複素環化合物およびその重合体を提供することを目的とする。
 [1] 式(1):
Figure JPOXMLDOC01-appb-C000006
[式中、Rおよび各Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)であり、
 環A、環Bおよび環Cは、それぞれ独立に、置換基を有してもよい5員または6員の芳香族複素環であり、
 nは、1~4の整数である。]
で示される化合物。
 [2] 式(2):
Figure JPOXMLDOC01-appb-C000007
[式中、R、各Rおよびnは、前記[1]に記載の通りであり、
 W~Wは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアルキルアミノ基、シアノ基、ニトロ基、アジド基、ヒドロキシ基、スルファニル基、アミノ基、カルボキシル基またはその塩、ホスホノ基またはその塩、スルホ基またはその塩、置換基を有してもよいカルバモイル基、置換基を有してもよいホスフィノイル基、置換基を有してもよいホスファニル基、-CO-R、-SO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)、-MgCl、-MgBr、-MgI、-ZnCl、-ZnBr、-ZnI、-Sn(Ak)、-B(OH)、-B(OAk)、-B(-OC(CHC(CHO-)、-Si(Ak)、または-Si(OAk)(前記式中、Akは、アルキル基を表す。)である。]
で示される、前記[1]に記載の化合物。
 [3] 式(3):
Figure JPOXMLDOC01-appb-C000008
[式中、R、RおよびW~Wは、前記[2]に記載の通りである。]
で示される、前記[2]に記載の化合物。
 [4] W~Wの少なくとも二つが、それぞれ独立に、水素原子、塩素原子、臭素原子またはヨウ素原子である、前記[2]または[3]に記載の化合物。
 [5] Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基である、前記[1]~[4]のいずれか一つに記載の化合物。
 [6] Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基である、前記[1]~[4]のいずれか一つに記載の化合物。
 [7] 前記[1]~[6]のいずれか一つに記載の化合物およびドーパントを含む、組成物。
 [8] 前記[1]~[6]のいずれか一つに記載の化合物がカチオンであり、ドーパントがアニオンである、前記[7]に記載の組成物。
 [9] 前記[4]に記載の化合物に由来する構成単位を含む、重合体。
 [10] Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基である、前記[9]に記載の重合体。
 [11] Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基である、前記[9]に記載の重合体。
 [12] 前記[9]~[11]のいずれか一つに記載の重合体およびドーパントを含む、組成物。
 [13] 前記[9]~[11]のいずれか一つに記載の重合体がカチオンであり、ドーパントがアニオンである、前記[12]に記載の組成物。
 [14] 前記[1]~[6]のいずれか一つに記載の化合物、或いは前記[7]または[8]に記載の組成物を含む、有機エレクトロニクス部材。
 [15] 電極、固体電解コンデンサ、熱電素子、圧電素子、アクチュエーター、センサー、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、電波による個体識別(RFID)器、電界効果トランジスタ(FET)、集積回路(IC)、有機エレクトロルミネッセンス素子(OLED)または有機半導体素子である、前記[14]に記載の有機エレクトロニクス部材。
 [16] 前記[9]~[11]のいずれか一つに記載の重合体、或いは前記[12]または[13]に記載の組成物を含む、有機エレクトロニクス部材。
 [17] 電極、固体電解コンデンサ、熱電素子、圧電素子、アクチュエーター、センサー、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、電波による個体識別(RFID)器、電界効果トランジスタ(FET)、集積回路(IC)、有機エレクトロルミネッセンス素子(OLED)または有機半導体素子である、前記[16]に記載の有機エレクトロニクス部材。
 [18] 式(4):
Figure JPOXMLDOC01-appb-C000009
[式中、X~Xは、それぞれ独立に、塩素原子、臭素原子またはヨウ素原子であり、
 W~Wは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアルキルアミノ基、シアノ基、ニトロ基、アジド基、ヒドロキシ基、スルファニル基、アミノ基、カルボキシル基またはその塩、ホスホノ基またはその塩、スルホ基またはその塩、置換基を有してもよいカルバモイル基、置換基を有してもよいホスフィノイル基、置換基を有してもよいホスファニル基、-CO-R、-SO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)、-MgCl、-MgBr、-MgI、-ZnCl、-ZnBr、-ZnI、-Sn(Ak)、-B(OH)、-B(OAk)、-B(-OC(CHC(CHO-)、-Si(Ak)、または-Si(OAk)(前記式中、Akは、アルキル基を表す。)である。]
で示される化合物と、式(5):
 R-NH   (5)
[式中、Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)である。]
で示される化合物と、式(6):
 R-NH   (6)
[式中、Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)である。]
で示される化合物とを反応させることを含む、式(3):
Figure JPOXMLDOC01-appb-C000010
[式中、R、RおよびW~Wは、前記と同義である。]
で示される化合物の製造方法。
 [19] RおよびRが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基である、前記[18]に記載の製造方法。
 [20] RおよびRが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基である、前記[18]に記載の製造方法。
 本発明の縮合複素環化合物およびその重合体は、導電性材料または半導性材料として好適に用いられる。
 以下、本発明を実施するための形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。また以下では、「式(1)で示される化合物」等を、「化合物(1)」等と略称することがある。
 まず、本発明の化合物(1)から説明する。式(1)中のRおよび各Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)である。
 本明細書中、アルキル基は、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは1~20、より好ましくは1~15、さらに好ましくは1~10である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。アルキル基は置換基を有していてもよい。アルキル基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基、置換基を有してもよいアリール基等が挙げられる。
 本明細書中、アリール基の炭素数は、好ましくは6~30、より好ましくは6~10である。アリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、ピレン環、ペリレン環、テトラセン環、ペンタフェン環、ペンタセン環、ルビセン環等から誘導されるアリール基が挙げられる。アリール基は置換基を有していてもよい。アリール基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルキル基、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 本明細書中、ヘテロアリール基は、炭素原子に加えて、窒素、酸素、硫黄、セレン、ケイ素、ゲルマニウムなどのヘテロ原子を1~5個を含有する芳香族複素環から誘導される基である。芳香族複素環は、単環または多環(例:2環、3環)のいずれでもよい。ヘテロアリール基の原子数は、好ましくは5~30、より好ましくは5~10である。ヘテロアリール基としては、例えば、チオフェン環、ピロール環、フラン環、セレノフェン環、シロール環、ゲルモール環、イミダゾール環、ピラゾール環、オキサゾール環、イソキサゾール環、チアゾール環、イソチアゾール環、トリアゾール環、テトラゾール環、ピリジン環、ピラジン環、ピリミジン環、インドール環、イソインドール環、インダゾール環、フタラジン環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、シンノリン環、β-カルボリン環等から誘導される基が挙げられる。ヘテロアリール基は置換基を有していてもよい。ヘテロアリール基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルキル基、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 Rおよび各Rは、それぞれ独立に、好ましくは置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基であり、より好ましくは置換基を有してもよいアルキル基または置換基を有してもよいアリール基であり、より一層好ましくは置換基を有してもよいアルキル基または置換基を有してもよいフェニル基であり、さらに好ましくは炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基であり、さらに一層好ましくは炭素数1~10のアルキル基、ベンジル基、または炭素数1~10のアルキル基および炭素数1~10のアルコキシ基からなる群から選ばれる少なくとも一つを有してもよいフェニル基であり、特に好ましくは炭素数1~10のアルキル基、ベンジル基、または炭素数1~5のアルキル基および炭素数1~5のアルコキシ基からなる群から選ばれる少なくとも一つを有してもよいフェニル基である。フェニル基が置換基を有する場合、その置換基の数は、好ましくは1~3の整数、より好ましくは1または2、より一層好ましくは1である。
 nが2以上である場合、複数のRは、互いに同じでも、異なっていてもよく、好ましくは同じである。また、Rおよび各Rの全てが同じであることが好ましい。
 式(1)中の環A、環Bおよび環Cは、それぞれ独立に、置換基を有してもよい5員または6員の芳香族複素環である。環A、環Bおよび環Cは、同じであることが好ましい。
 本明細書中、5員または6員の芳香族複素環は、炭素原子に加えて、窒素、酸素、硫黄、セレン、ケイ素、ゲルマニウムなどのヘテロ原子を含有する。5員または6員の芳香族複素環中のヘテロ原子の数は、好ましくは1~3であり、より好ましくは1である。5員または6員の芳香族複素環としては、例えば、チオフェン環、ピロール環、フラン環、セレノフェン環、シロール環、ゲルモール環、イミダゾール環、ピラゾール環、オキサゾール環、イソキサゾール環、チアゾール環、イソチアゾール環、ピリジン環、ピラジン環、ピリミジン環が挙げられる。5員または6員の芳香族複素環は置換基を有していてもよい。5員または6員の芳香族複素環の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルキル基、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 環A、環Bおよび環Cは、それぞれ独立に、好ましくは置換基を有してもよい5員の芳香族複素環であり、より好ましくは置換基を有してもよいチオフェン環であり、より一層好ましくはハロゲン原子を有してもよいチオフェン環であり、さらに好ましくは塩素原子、臭素原子およびヨウ素原子からなる群から選ばれる少なくとも一つを有してもよいチオフェン環であり、さらに一層好ましくは無置換のチオフェン環である。
 式(1)中のnは1~4の整数であり、好ましくは1~3の整数、より好ましくは1または2、さらに好ましくは1である。
 好ましい化合物(1)としては、
 Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基であり、
 環A、環Bおよび環Cが、それぞれ独立に、置換基を有してもよい5員または6員の芳香族複素環である
化合物が挙げられる。
 より好ましい化合物(1)としては、
 Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基または置換基を有してもよいアリール基であり、
 環A、環Bおよび環Cが、それぞれ独立に、置換基を有してもよい5員の芳香族複素環である
化合物が挙げられる。
 より一層好ましい化合物(1)としては、
 Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基または置換基を有してもよいフェニル基であり、
 環A、環Bおよび環Cが、それぞれ独立に、置換基を有してもよいチオフェン環である
化合物が挙げられる。
 さらに好ましい化合物(1)としては、
 Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基であり、
 環A、環Bおよび環Cが、それぞれ独立に、ハロゲン原子を有してもよいチオフェン環である
化合物が挙げられる。
 さらに一層好ましい化合物(1)としては、
 Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基、または炭素数1~10のアルキル基および炭素数1~10のアルコキシ基からなる群から選ばれる少なくとも一つを有してもよいフェニル基であり、
 環A、環Bおよび環Cが、それぞれ独立に、塩素原子、臭素原子およびヨウ素原子からなる群から選ばれる少なくとも一つを有してもよいチオフェン環である
化合物が挙げられる。
 特に好ましい化合物(1)としては、
 Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基、または炭素数1~5のアルキル基および炭素数1~5のアルコキシ基からなる群から選ばれる少なくとも一つを有してもよいフェニル基であり、
 環A、環Bおよび環Cが、無置換のチオフェン環である
化合物が挙げられる。
 上述の好ましい化合物(1)では、いずれも、Rおよび各Rが同じであることが好ましい。
 次に、本発明の化合物(2)について説明する。式(2)中のRおよび各Rの説明は、上述のものと同じである。式(2)中のW~Wは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアルキルアミノ基、シアノ基、ニトロ基、アジド基、ジシアノメチル基、ヒドロキシ基、スルファニル基、アミノ基、カルボキシル基またはその塩、ホスホノ基またはその塩、スルホ基またはその塩、置換基を有してもよいカルバモイル基、置換基を有してもよいホスフィノイル基、置換基を有してもよいホスファニル基、-CO-R、-SO-R、-SO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)、-MgCl、-MgBr、-MgI、-ZnCl、-ZnBr、-ZnI、-Sn(Ak)、-B(OH)、-B(OAk)、-B(-OC(CHC(CHO-)、-Si(Ak)、または-Si(OAk)(前記式中、Akは、アルキル基を表す。)である。なお、-B(-OC(CHC(CHO-)の構造は、以下の通りである。
Figure JPOXMLDOC01-appb-C000011
 本明細書中、ハロゲン原子は、フッ素原子、塩素原子、臭素原子またはヨウ素原子であり、好ましくは塩素原子、臭素原子またはヨウ素原子であり、より好ましくは臭素原子である。
 本明細書中、アルケニル基は、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは2~20、より好ましくは2~10である。アルケニル基としては、例えば、ビニル基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、1-ヘキセニル基、1-ヘプテニル基、1-オクテニル基等が挙げられる。アルケニル基は置換基を有していてもよい。アルケニル基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 本明細書中、アルキニル基は、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは2~10、より好ましくは2~5であるアルキニル基としては、例えば、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、1-ヘキシニル基、1-ヘプチニル基、1-オクチニル基等が挙げられる。アルキニル基は置換基を有していてもよい。アルキニル基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 本明細書中、アルコキシ基は、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは1~20、より好ましくは1~10である。アルコキシ基としては、例えば、メトキシ基、エチトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、ヘキシルオキシ基、イソヘキシルオキシ基、2-エチルヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、イコシルオキシ基等が挙げられる。アルコキシ基は置換基を有していてもよい。アルコキシ基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 本明細書中、アルキルチオ基は、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは1~20、より好ましくは1~10である。アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、イソペンチルチオ基、ネオペンチルチオ基、tert-ペンチルチオ基、ヘキシルチオ基、イソヘキシルチオ基、2-エチルヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ウンデシルチオ基、テトラデシルチオ基、ペンタデシルチオ基、ヘキサデシルチオ基、ヘプタデシルチオ基、オクタデシルチオ基、ノナデシルチオ基、イコシルチオ基等が挙げられる。アルキルチオ基は置換基を有していてもよい。アルキルチオ基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 本明細書中、アルキルアミノ基は、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは1~10、より好ましくは1~5であり、そのアルキル基の数は、1または2、好ましくは1である。アルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。アルキルアミノ基は置換基を有していてもよい。アルキルアミノ基の置換基としては、例えば、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基等が挙げられる。
 本明細書中、カルボキシル基、ホスホノ基およびスルホ基は、いずれも塩形態であってもよい。これらの塩形態としては、例えば、アルカリ金属塩、アルカリ土類金属塩、4級アンモニウム塩、4級ホスホニウム塩、イミダゾリウム塩、グアニジウム塩等の形態が挙げられる。
 本明細書中、置換基を有してもよいカルバモイル基は、-CO-N(R’)(R”)で示される(前記式中、R’およびR”は、それぞれ独立に、水素原子または置換基である。)。カルバモイル基の置換基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基である。
 本明細書中、置換基を有してもよいホスフィノイル基は、-PO(R’)(R”)で示される(前記式中、R’およびR”は、それぞれ独立に、水素原子または置換基である。)。ホスフィノイル基の置換基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基である。
 本明細書中、置換基を有してもよいホスファニル基は、-P(R’)(R”)で示される(前記式中、R’およびR”は、それぞれ独立に、水素原子または置換基である。)。ホスファニル基の置換基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基である。
 本明細書中、Akは、アルキル基を表す。Akは、直鎖状であっても、分岐鎖状であってもよく、その炭素数は、好ましくは1~10、より好ましくは1~5である。Akとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
 W~Wは、それぞれ独立に、水素原子、ハロゲン原子または置換基を有してもよいアルキル基であることが好ましい。W~Wは、それぞれ独立に、より好ましくは水素原子またはハロゲン原子であり、より一層好ましくは水素原子または臭素原子であり、さらに好ましくは水素原子である。また、W~Wが、全て同じであることが好ましい。
 化合物(2)が重合するためには、W~Wの少なくとも二つは、それぞれ独立に、水素原子、塩素原子、臭素原子またはヨウ素原子であることが必要である。W~Wの少なくとも二つは、それぞれ独立に、好ましくは水素原子または臭素原子であり、より好ましくは水素原子である。前記「W~Wの少なくとも二つ」は、WおよびWであることが好ましい。
 式(2)中のnは1~4の整数であり、好ましくは1~3の整数、より好ましくは1または2である。nが1である化合物(2)とは、化合物(3)である。式(3)中のR、RおよびW~Wの説明は、上述のものと同じである。
 好ましい化合物(2)または化合物(3)としては、
 Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基であり、
 W~Wが、それぞれ独立に、水素原子、ハロゲン原子または置換基を有してもよいアルキル基であり、
 W~Wの少なくとも二つが、それぞれ独立に、水素原子、塩素原子、臭素原子またはヨウ素原子である
化合物が挙げられる。
 より好ましい化合物(2)または化合物(3)としては、
 Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基または置換基を有してもよいアリール基であり、
 W~Wが、それぞれ独立に、水素原子またはハロゲン原子であり、
 W~Wの少なくとも二つが、それぞれ独立に、水素原子または臭素原子である
化合物が挙げられる。
 より一層好ましい化合物(2)または化合物(3)としては、
 Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基または置換基を有してもよいフェニル基であり、
 W~Wが、水素原子である
化合物が挙げられる。
 さらに好ましい化合物(2)または化合物(3)としては、
 Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基であり、
 W~Wが、水素原子である
化合物が挙げられる。
 さらに一層好ましい化合物(2)または化合物(3)としては、
 Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基、または炭素数1~10のアルキル基および炭素数1~10のアルコキシ基からなる群から選ばれる少なくとも一つを有してもよいフェニル基であり、
 W~Wが、水素原子である
化合物が挙げられる。
 上述の好ましい化合物(2)または化合物(3)では、いずれも、Rおよび各Rが同じであることが好ましい。
 導電性を向上させるために、本発明の化合物にドーパントを添加してもよい。ドーパントおよび本発明の化合物を含む組成物中、本発明の化合物がカチオンであり、ドーパントがアニオンであることが好ましい。ドーパントの添加量は、用いるドーパントにより任意に調整することができるが、化合物100重量部に対して、好ましくは1~1000重量部、より好ましくは1~200重量部である。化合物へのドーピングの方法およびそれに用いるドーパントの説明は、後述する重合体のものと同じである。
 次に、本発明の縮合複素環化合物(即ち、化合物(1)~化合物(3))の製造方法について説明する。製造方法は、まず、化合物(3)の製造方法から説明する。化合物(3)は、下記式(以下「反応A」と略称する)に示すように、化合物(4)と化合物(5)と化合物(6)とを反応させることによって製造することができる。化合物(5)および化合物(6)が、同じ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(4)中のW~W並びに式(5)および式(6)中のRおよびRは、前記と同義である。X~Xは、それぞれ独立に、塩素原子、臭素原子またはヨウ素原子、好ましくは臭素原子である。
 反応Aに用いられる溶媒としては、特に限定されないが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン等の飽和脂肪族炭化水素または脂環式炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン、エチルトルエン、クロロベンゼン、o-ジクロロベンゼン等の芳香族炭化水素;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、tert-ブチルメチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒;などが挙げられる。溶媒は1種のみを使用してもよく、2種以上を併用してもよい。反応Aの温度としては、特に限定されないが、-50℃~200℃が好ましい。反応Aの時間としては、特に限定されないが、1分~48時間が好ましい。
 反応Aは、触媒および塩基の存在下で行われる。反応Aで使用する触媒としては、例えば、パラジウム触媒、ニッケル触媒等の金属触媒が挙げられる。触媒の量は、化合物(4)1molに対して、好ましくは0.001~1molである。反応Aで使用する塩基としては、例えば、n-ブチルリチウム、tert-ブチルリチウム、メチルリチウム等が挙げられる。塩基の量は、化合物(4)1molに対して、好ましくは0.8~1.2molである。反応Aの終了後に、粗生成物を公知の手法(例えば、抽出、クロマトグラフィー)で精製することが好ましい。
 反応Aで用いられる化合物(4)は、下記式(以下「反応B」と略称する)に示すように、化合物(7)と化合物(8)と化合物(9)とを反応させることによって製造することができる。
Figure JPOXMLDOC01-appb-C000013
 式(4)および式(7)~式(9)中のX~XおよびW~Wは、前記と同義である。式(7)~式(9)中のX~Xは、それぞれ独立に、塩素原子、臭素原子またはヨウ素原子であり、好ましくは臭素原子である。
 反応Bの手法および条件としては、熊田・玉尾カップリングおよび根岸カップリングの手法および条件が好ましく、根岸カップリングの手法および条件がより好ましい。熊田・玉尾カップリングおよび根岸カップリングは、いずれも有機合成化学の分野で周知である。例えば、熊田・玉尾カップリングは、Pure and Applied Chemistry,1980年,第52巻,p.669に記載されており、根岸カップリングは、Accounts of Chemical Research,1982年,第15巻,p.340に記載されている。
 反応Bに用いられる溶媒としては、特に限定されないが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン等の飽和脂肪族炭化水素または脂環式炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン、エチルトルエン、クロロベンゼン、o-ジクロロベンゼン等の芳香族炭化水素;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、tert-ブチルメチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒;などが挙げられる。溶媒は1種のみを使用してもよく、2種以上を併用してもよい。反応Bに用いられる触媒としては、パラジウム触媒、ニッケル触媒等の金属触媒が挙げられる。反応Bの温度としては、特に限定されないが、-50℃~200℃が好ましい。反応Bの時間としては、特に限定されないが、1分~48時間が好ましい。反応Bの終了後に、粗生成物を公知の手法(例えば、抽出、クロマトグラフィー)で精製することが好ましい。
 次に、化合物(2)の製造方法を説明する。nが2~4である化合物(2)は、上記反応Aにおいて、化合物(4)(チオフェン環が三つである化合物)の代わりに、それぞれ、チオフェン環が四つである化合物、チオフェン環が五つである化合物またはチオフェン環が六つである化合物を出発原料として使用することによって製造することができる。化合物(2)の製造方法で使用する出発原料は、有機合成化学の分野で周知の方法によって製造することができる。
 次に、化合物(1)の製造方法を説明する。nが1であり、且つ環A、環Bおよび環Cの一部または全部がチオフェン環以外の5員または6員の芳香族複素環(以下「他の環」と略称する)である化合物(1)は、上記反応Aにおいて、化合物(4)の代わりに、チオフェン環の一部または全部が他の環に置き換わった化合物を出発原料として使用することによって製造することができる。他の環としては、例えば、ピロール環、フラン環、セレノフェン環、シロール環、ゲルモール環、イミダゾール環、ピラゾール環、オキサゾール環、イソキサゾール環、チアゾール環、イソチアゾール環、ピリジン環、ピラジン環、ピリミジン環などが挙げられる。また、nが2~4である化合物(1)は、化合物(2)の製造方法と同様にして製造することができる。化合物(1)の製造方法で使用する出発原料は、有機合成化学の分野で周知の方法によって製造することができる。
 次に、本発明の重合体について説明する。本発明の重合体は、W~Wの少なくとも二つが、それぞれ独立に、水素原子、塩素原子、臭素原子またはヨウ素原子である化合物(2)(好ましくは化合物(3))に由来する構成単位を含むことを特徴とする。
 本発明において、重合体の平均分子量に特に限定は無い。また、本発明の重合体は、化合物(2)(好ましくは化合物(3))に由来する五つ以上の芳香族複素環が縮合した剛直な構成単位を有するため、本発明の重合体の多くは溶媒に溶解せず、GPC等によって平均分子量を測定することができない。なお、一般的な重合体の重量平均分子量は、1000~1,000,000の範囲内である。
 導電性を向上させるために、本発明の重合体にドーパントを添加してもよい。本発明の重合体およびドーパントを含む組成物中、本発明の重合体がカチオンであり、ドーパントがアニオンであることが好ましい。この場合、カチオンである本発明の重合体に対して、アニオンであるドーパントはカウンターアニオンとして機能する。ドーパントとしては、例えば、PF 、SbF 、AsF 等の5B族元素のハロゲン化アニオン;BF 等の3B族元素のハロゲン化アニオン;I(I )、Br、Cl等のハロゲンアニオン;ClO 等のハロゲン酸アニオン;AlCl 、FeCl 、SnCl 等の金属ハロゲン化物アニオン;硝酸アニオン(NO );硫酸アニオン(SO 2-);p-トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、CHSO 、CFSO 等の有機スルホン酸アニオン;CFCOO、CCOO等のカルボン酸アニオン;および上記のアニオン種を主鎖または側鎖に有する変性ポリマー;などが挙げられる。これらのドーパントは、単独で用いてもよく、2種以上を併用してもよい。
 ドーパントの添加方法については特に限定されない。例えば、単量体を重合した後に、得られた重合体に所望のドーパントを適宜添加してもよい。また、単量体を化学酸化的重合させる場合または重合体に化学酸化的ドーピングを施す場合には、重合またはドーピングに用いられる酸化剤由来のアニオンを、ドーパントとして用いることができる。また、単量体を電気化学的重合させる場合または重合体に電気化学的ドーピングを施す場合には、重合またはドーピングに用いられる電解質由来のアニオンを、ドーパントとして用いることができる。
 ドーパントの添加量は、用いるドーパントにより任意に調整することができるが、重合体100重量部に対して、好ましくは1~1000重量部、より好ましくは1~200重量部である。
 本発明の重合体は、重合可能な本発明の化合物(2)(好ましくは化合物(3))および必要に応じて他の単量体を化学酸化的重合または電気化学的重合することによって製造することが好ましい。以下、重合について、ドーピングと共に説明する。
 化学酸化的重合または化学酸化的ドーピングにおいて用いられる溶媒は、特に制限されず、例えば、塩化メチレン、クロロホルム、クロロベンゼン、o-ジクロロベンゼン、アセトニトリル、ベンゾニトリル、プロピレンカーボネート、ニトロメタン、テトロヒドロフラン、メタノール、水等が挙げられる。
 化学酸化的重合または化学酸化的ドーピングにおいて用いられる酸化剤は、特に限定されないが、ハロゲンまたは遷移金属塩であることが好ましい。酸化剤としては、例えば、I、Br、Cl等のハロゲン;塩化第二鉄(FeCl)、過塩素酸第二鉄(Fe(ClO)、硫酸第二鉄(Fe(SO)、炭素数1~16のアルコキシベンゼンスルホン酸鉄、炭素数1~16のアルキルベンゼンスルホン酸鉄、フェノールスルホン酸鉄、スルホイソフタル酸鉄ジアルキルエステル、アルキルスルホン酸鉄、ナフタレンスルホン酸鉄、アルコキシナフタレンスルホン酸鉄、テトラリンスルホン酸鉄等の第二鉄塩;等が挙げられる。また、前記第二鉄塩(即ち、鉄(III)塩)の代わりに、鉄(III)をセリウム(IV)、銅(II)、マンガン(VII)、ルテニウム(III)で置き換えた塩も、酸化剤として使用することができる。
 酸化剤は、1種のみを用いてもよく、2種以上を併用してもよい。併用する酸化剤の組合せとしては、例えば、ドーパント作用を有する酸化剤同士の組合せ;ドーパント作用を有さない酸化剤同士の組合せ;ドーパント作用を有する酸化剤(例えば、ドーパント作用を有する1種以上の第二鉄塩)とドーパント作用を有さない酸化剤(例えば、ドーパント作用を有さない1種以上の第二鉄塩)との組合せ;が挙げられる。
 化学酸化的重合または化学酸化的ドーピングにおいて、溶媒中の酸化剤の量(即ち「酸化剤のモル量/溶媒の体積」)は、好ましくは0.001~10mol/Lである。
 化学酸化的重合において、溶媒中の単量体の量(即ち、「単量体のモル量/溶媒の体積」)は、採用する重合条件等により適宜設定することができるが、好ましくは0.001~10mol/Lである。
 化学酸化的重合または化学酸化的ドーピングにおける反応温度としては、特に限定されないが、-50℃~200℃が好ましい。化学酸化的重合または化学酸化的ドーピングにおける反応時間としては、特に限定されないが、1分~48時間が好ましい。
 化学酸化的重合または化学酸化的ドーピングにおいて、添加剤として支持塩を用いてもよい。支持塩は、特に限定されないが、例えば、過塩素酸イオン、四フッ化ホウ素イオン、六フッ化リンイオン、ハロゲン化物イオン、六フッ化ヒ素イオン、六フッ化アンチモンイオン、硫酸イオン、硫酸水素イオン、アルキルスルホン酸イオン、ベンゼンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、アルキルナフタレンスルホン酸イオン、ポリスチレンスルホン酸イオン、ポリビニルスルホン酸イオンなどのアニオンを含む支持塩が挙げられる。
 電気化学的重合または電気化学的ドーピングにおいて用いられる溶媒としては、例えば、ニトロメタン、アセトニトリル、プロピレンカーボネート、ニトロベンゼン、シアノベンゼン、o-ジクロロベンゼン、ジメチルスルホオキシド、γ-ブチロラクトン等が挙げられる。
 電気化学的重合または電気化学的ドーピングにおいて用いられる支持電解質としては、例えば、(a)リチウムイオン、カリウムイオン、ナトリウムイオン等のアルカリ金属イオン、四級アンモニウムイオンなどのカチオンと、(b)過塩素酸イオン、四フッ化ホウ素イオン、六フッ化リンイオン、ハロゲン化物イオン、六フッ化ヒ素イオン、六フッ化アンチモンイオン、硫酸イオン、硫酸水素イオンなどのアニオンとの組合せからなる支持電解質が挙げられる。支持電解質は1種のみを用いても、2種以上を併用しても良い。
 電気化学的重合または電気化学的ドーピングにおいて用いられる電解液としては、上記溶媒と上記支持電解質からなる電解液が挙げられる。また電解液として、アルキルイミダゾリウム塩、アルキルピリジニウム塩等のイオン液体を用いることもできる。
 電気化学的重合において、電解液中の単量体の量(即ち、「単量体のモル量/電解液の体積」)は、採用する重合条件等により適宜設定することができるが、好ましくは0.001~10mol/Lである。
 電気化学的重合または電気化学的ドーピングにおいて、電解液中の支持電解質の量(即ち「支持電解質のモル量/電解液の体積」)は、好ましくは0.001~10mol/Lである。
 電気化学的重合または電気化学的ドーピングにおいて用いられる電極材料としては、例えば、白金、金、ニッケル、ITO等が挙げられる。
 電気化学的重合または電気化学的ドーピングにおいて印加する際の電圧は、採用する条件等により適宜設定することができるが、好ましくは0.1~1.5V(vs Ag/Ag)であり、より好ましくは0.3~1.2V(vs Ag/Ag)である。電圧印加する際の温度は、好ましくは-50~50℃であり、より好ましくは-30~30℃である。
 電気化学的重合または電気化学的ドーピングにおける反応温度としては、特に限定されないが、-50℃~200℃が好ましい。電気化学的重合または電気化学的ドーピングにおける反応時間としては、特に限定されないが、1分~48時間が好ましい。
 本発明の化合物および重合体は、半導性材料または導電性材料として、有機エレクトロニクス部材に有用である。そこで、本発明は、本発明の化合物;本発明の化合物およびドーパントを含む組成物;本発明の重合体;本発明の重合体およびドーパントを含む組成物;またはこれらの混合物を含む有機エレクトロニクス部材も提供する。有機エレクトロニクス部材としては、例えば、電極、固体電解コンデンサ、熱電素子、圧電素子、アクチュエーター、センサー、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、電波による個体識別(RFID)器、電界効果トランジスタ(FET)、集積回路(IC)、有機エレクトロルミネッセンス素子(OLED)、有機半導体素子等が挙げられる。
 以下、実施例を用いて、本発明を更に具体的に説明する。
 製造例1
 温度計およびジムロート冷却器を備えた100mL三つ口フラスコに、ジエチルエーテル15mLおよび2,3-ジブロモチオフェン3.60g(14.9mmol)を加えた。反応容器を-78℃に冷却後、1.6Mのn-ブチルリチウム(ヘキサン溶液)28.1mLを30分かけて滴下した。テトラヒドロフラン29mL中のZnCl(15.0mmol,20.4g)の希釈液を-78℃に冷却し、カニュレーションによって反応容器内に移した。反応容器の温度を0℃に上げ、1時間攪拌した。その後、2,3,4,5-テトラブロモチオフェン2.0g(5.0mmol)を加え、更に[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)(PdCl(dppf))220mg(300mmol)を加えた。反応容器の温度を50℃に上げ、24時間攪拌した。反応終了後、塩化アンモニウム水溶液でクエンチし、その後塩化メチレン40mLで3回抽出した。得られた有機層をMgSOで脱水した後、濃縮、減圧乾燥し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製することにより、式(10)で示される化合物(3,4,3’,3”-テトラブロモ-2,2’:5’,2”-ターチオフェン)を2.39mg(4.24mmol,85%)で得た。
Figure JPOXMLDOC01-appb-C000014
 化合物(10)の物性データ
 H-NMR(400MHz、CDCl)δ:7.11(d,J=7.2Hz,2H)、7.46(d,J=7.2Hz,2H)
 13C-NMR(400MHz,CDCl)δ:113.1、116.5、128.2、128.3、130.9
 実施例1
 減圧乾燥し、アルゴンで置換したシュレンクに、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体0.052g(0.05mmol)、1,1-ビス(ジフェニルフホスフィノ)フェロセン0.111g(0.20mmol)、ナトリウム tert-ブトキシド0.770g(8.0mmol)、化合物(10)0.282g(0.50mmol)、トルエン3.0mLを加えた。混合物を、室温下20分間撹拌した。その後、p-トルイジン0.128g(1.2mmol)、トルエン0.5mLを加え、シュレンクを密閉状態にした後、反応混合物を110℃で12時間撹拌した。反応終了後、反応混合物にトルエンを加えて希釈しながら、中性アルミナカラム(展開溶媒:トルエン)に通して得られた溶液を、濃縮および減圧乾燥することによって、茶色固体である粗生成物が得られた(196mg)。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製することにより、式(11)で示される化合物を110.1mg(0.242mmol,48%)で得た。
Figure JPOXMLDOC01-appb-C000015
 化合物(11)の物性データ
 H-NMR(400MHz、CDCl)δ:7.06(d,J=8.3Hz,4H)、7.05(d,J=5.3Hz,2H)、6.93(d,J=5.3Hz,2H)、6.78(d,J=8.3Hz,4H)、2.26(s,6H)
 実施例2
 減圧乾燥し、アルゴンで置換したシュレンクに、ビス(ジベンジリデンアセトン)ジパラジウム0.029g(0.05mmol)、1,1-ビス(ジフェニルフホスフィノ)フェロセン0.111g(0.20mmol)、ナトリウム tert-ブトキシド0.770g(8.0mmol)、化合物(10)0.282g(0.50mmol)、トルエン3.5mLを加えた。混合物を、室温下20分間撹拌した。その後、4-ブチルアニリン0.180g(1.2mmol)を加え、シュレンクを密閉状態にした後、反応混合物を110℃で6時間撹拌した。反応終了後、反応混合物に蒸留水に入れた後、塩化メチレンを加え抽出した。得られた有機層を無水硫酸マグネシウムで乾燥した後、シリカゲルカラムクロマトグラフィーで精製することにより、式(12)で示される化合物を164mg(0.305mmol,61%)で得た。
Figure JPOXMLDOC01-appb-C000016
 化合物(12)の物性データ
 H-NMR(400MHz、CDCl)δ:7.08(d,J=8.6Hz,2H)、7.06(d,J=5.4Hz,4H)、6.96(d,J=5.4Hz,2H)、6.78(d,J=8.6Hz,4H)、2.46(t,J=7.6Hz,4H)、1.51(q,J=7.6Hz,4H)、1.37(sextet,J=7.6Hz,4H)、0.95(t,J=7.6Hz,6H)
 実施例3
 4-ブチルアニリン0.180g(1.2mmol)の代わりにp-アニシジン0.148g(1.2mmol)を加えた以外は実施例2と同様にして、式(13)で示される化合物を181mg(0.371mmol,74%)で得た。
Figure JPOXMLDOC01-appb-C000017
 化合物(13)の物性データ
 H-NMR(400MHz、CDCl)δ:7.07(d,J=8.6Hz,4H)、7.05(d,J=5.1Hz,2H)、6.86(d,J=5.1Hz,2H)、6.51(d,J=8.6Hz,4H)、3.78(s,6H)
 実施例4
 4-ブチルアニリン0.180g(1.2mmol)の代わりにベンジルアミン0.130g(1.22mmol)を加え、反応混合物を90℃で4時間撹拌した以外は実施例2と同様にして、式(14)で示される化合物を175mg(0.385mmol,77%)で得た。
Figure JPOXMLDOC01-appb-C000018
 化合物(14)の物性データ
 H-NMR(400MHz、CDCl)δ:7.22(m,6H)、7.03(d,J=7.0Hz,2H)、6.94(d,J=7.7Hz,4H)、6.77(d,J=7.0Hz,2H)、5.27(s,4H)
 実施例5
 4-ブチルアニリン0.180g(1.2mmol)の代わりにメチルアミン塩酸塩0.081g(1.20mmol)を加え、反応混合物を90℃で2時間撹拌した以外は実施例2と同様にして、式(15)で示される化合物を78mg(0.257mmol,51%)で得た。
Figure JPOXMLDOC01-appb-C000019
 化合物(15)の物性データ
 H-NMR(400MHz、CDCl)δ:7.10(d,J=5.3Hz,2H)、7.01(d,J=5.3Hz,2H)、4.14(s,6H)
 実施例6
 4-ブチルアニリン0.180g(1.2mmol)の代わりにブチルアミン0.098g(1.34mmol)を加え、反応混合物を90℃で6時間撹拌した以外は実施例2と同様にして、式(16)で示される化合物を139mg(0.374mmol,74%)で得た。
Figure JPOXMLDOC01-appb-C000020
 化合物(16)の物性データ
 H-NMR(400MHz、CDCl)δ:7.08(d,J=5.2Hz,2H)、7.00(d=J=5.2Hz,2H)、4.38(t,J=7.5Hz,4H)、1,88(q,J=7.5Hz,4H)、1.36(sextet,J=7.5Hz,4H)、0.94(t,J=7.5Hz,6H)
 実施例7
 4-ブチルアニリン0.180g(1.2mmol)の代わりにn-ヘキシルアミン0.121g(1.20mmol)を加えた以外は実施例2と同様にして、式(17)で示される化合物を85mg(0.193mmol,39%)で得た。
Figure JPOXMLDOC01-appb-C000021
 化合物(17)の物性データ
 H-NMR(400MHz、CDCl)δ:7.08(d,J=5.2Hz,2H)、7.00(d,J=5.2Hz,2H)、4.36(t,J=7.6Hz,4H)、1.89(q,J=7.5Hz,4H)、1.22-1.40(m,12H)、0.86(t,J=7.0Hz,6H)
 実施例8
 4-ブチルアニリン0.180g(1.2mmol)の代わりにn-オクチルアミン0.157g(1.20mmol)を加え、反応混合物を110℃で4時間撹拌した以外は実施例2と同様にして、式(18)で示される化合物を109mg(0.218mmol,44%)で得た。
Figure JPOXMLDOC01-appb-C000022
 化合物(18)の物性データ
 H-NMR(400MHz、CDCl)δ:7.04(d,J=4.9Hz,2H)、7.00(d,J=4.9Hz,2H)、4.36(t,J=7.6Hz,4H)、1.89(q,J=6.9Hz,4H)、1.20-1.40(m,20H)、0.86(t,J=6.8Hz,6H)
 実施例9
 化合物(11)を用いて有機薄膜トランジスタを以下の手順で作製した。抵抗率0.01~0.03Ω・cmのシリコンウェハに、熱酸化法によって厚さ400nmの酸化シリコン(SiO)絶縁層を形成したものを、基板として用いた。ここで、基板(シリコンウェハ)自体がゲート電極となり、SiO絶縁層がゲート絶縁層となる。この基板をアセトン、メタノールおよび超純水で各5分超音波洗浄し、濃硫酸-過酸化水素水の混合溶液に1分浸した後、流水洗浄を行った。次に、ヘキサメチルジシラザン(HMDS)雰囲気下で基板の表面処理を行った。この上に、真空下(10-6torr)で、化合物(11)を、蒸着速度0.2Åの速度で真空蒸着し、厚さ23nmの有機半導体層を形成した。さらに有機半導体層上に、マスクを用いて、厚さ48nmの金を真空蒸着してソース電極およびドレイン電極を形成し、有機薄膜トランジスタを得た。なお、チャネル幅は2058μmであり、チャネル長は30μmであった。得られた有機薄膜トランジスタのゲート電極に-150Vのゲート電圧を印加し、さらにソース電極-ドレイン電極間に電圧を印加して電流を流して、そのトランジスタ特性を評価した。結果を表1に示す。
 実施例10
 実施例9と同様にして、化合物(15)を用いて有機薄膜トランジスタを作製した。得られた有機薄膜トランジスタのチャネル幅は1470μmであり、チャネル長は30μmであった。得られた有機薄膜トランジスタのゲート電極に-100Vのゲート電圧を印加し、さらにソース電極-ドレイン電極間に電圧を印加して電流を流して、そのトランジスタ特性を評価した。結果を表1に示す。
 実施例11
 化合物(11)を用いて有機薄膜トランジスタを以下の手順で作製した。まず、実施例9で使用したものと同じ基板をアセトン、メタノールおよび超純水で各5分超音波洗浄した。次いで、0.5重量%の化合物(11)のクロロホルム溶液を、スピンコーター(共和理研:K359S-1)を用いて基板上に塗布し、溶媒除去することで成膜して、厚さ23.3nmの有機半導体層を形成した。さらに有機半導体層上に、マスクを用いて、厚さ43nmの金を蒸着してソース電極およびドレイン電極を形成し、有機薄膜トランジスタを得た。なお、チャネル幅は1220μmであり、チャネル長は30μmであった。得られた有機薄膜トランジスタのゲート電極に-150Vのゲート電圧を印加し、さらにソース電極-ドレイン電極間に電圧を印加して電流を流して、そのトランジスタ特性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000023
 実施例12
 温度計を備えた50mL三つ口フラスコに、化合物(11)20mg(0.044mmol)、過塩素酸第二鉄・n水和物(無水物の含有量が70重量%以上のもの)78mg、ベンゾニトリル10mLを加え、反応混合物を25℃で24時間撹拌した。反応終了後、反応混合物をろ過し、重合体13.6mgを得た。得られた重合体を乾燥させた後、ガラス基板上に圧縮成形して、電極を作製した。その電極(重合体)の導電率を四探針法で測定したところ、4.27×10-2S/cmであった。
 また、得られた重合体を、10重量%のヒドラジン・一水和物の水溶液に10分間浸漬して、脱ドーピング重合体を調製した。得られた脱ドーピング重合体を、乾燥させて、その導電率を四探針法で測定したところ、導電性は確認されなかった。これは、ドーピング・脱ドーピングにより導電性が変化する導電性重合体に特有の現象である。
 本発明の縮合複素環化合物およびその重合体は、半導性材料または導電性材料として、例えば、インク、帯電防止剤、有機エレクトロニクス部材(例えば、電極、固体電解コンデンサ、熱電素子、圧電素子、アクチュエーター、センサー、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、電波による個体識別(RFID)器、電界効果トランジスタ(FET)、集積回路(IC)、有機エレクトロルミネッセンス素子(OLED)、有機半導体素子等)などの様々な用途に有用である。

Claims (20)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rおよび各Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)であり、
     環A、環Bおよび環Cは、それぞれ独立に、置換基を有してもよい5員または6員の芳香族複素環であり、
     nは、1~4の整数である。]
    で示される化合物。
  2.  式(2):
    Figure JPOXMLDOC01-appb-C000002
     
    [式中、R、各Rおよびnは、請求項1に記載の通りであり、
     W~Wは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアルキルアミノ基、シアノ基、ニトロ基、アジド基、ヒドロキシ基、スルファニル基、アミノ基、カルボキシル基またはその塩、ホスホノ基またはその塩、スルホ基またはその塩、置換基を有してもよいカルバモイル基、置換基を有してもよいホスフィノイル基、置換基を有してもよいホスファニル基、-CO-R、-SO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)、-MgCl、-MgBr、-MgI、-ZnCl、-ZnBr、-ZnI、-Sn(Ak)、-B(OH)、-B(OAk)、-B(-OC(CHC(CHO-)、-Si(Ak)、または-Si(OAk)(前記式中、Akは、アルキル基を表す。)である。]
    で示される、請求項1に記載の化合物。
  3.  式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、RおよびW~Wは、請求項2に記載の通りである。]
    で示される、請求項2に記載の化合物。
  4.  W~Wの少なくとも二つが、それぞれ独立に、水素原子、塩素原子、臭素原子またはヨウ素原子である、請求項2または3に記載の化合物。
  5.  Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基である、請求項1~4のいずれか一項に記載の化合物。
  6.  Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基である、請求項1~4のいずれか一項に記載の化合物。
  7.  請求項1~6のいずれか一項に記載の化合物およびドーパントを含む、組成物。
  8.  請求項1~6のいずれか一項に記載の化合物がカチオンであり、ドーパントがアニオンである、請求項7に記載の組成物。
  9.  請求項4に記載の化合物に由来する構成単位を含む、重合体。
  10.  Rおよび各Rが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基である、請求項9に記載の重合体。
  11.  Rおよび各Rが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基である、請求項9に記載の重合体。
  12.  請求項9~11のいずれか一項に記載の重合体およびドーパントを含む、組成物。
  13.  請求項9~11のいずれか一項に記載の重合体がカチオンであり、ドーパントがアニオンである、請求項12に記載の組成物。
  14.  請求項1~6のいずれか一項に記載の化合物、或いは請求項7または8に記載の組成物を含む、有機エレクトロニクス部材。
  15.  電極、固体電解コンデンサ、熱電素子、圧電素子、アクチュエーター、センサー、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、電波による個体識別(RFID)器、電界効果トランジスタ(FET)、集積回路(IC)、有機エレクトロルミネッセンス素子(OLED)または有機半導体素子である、請求項14に記載の有機エレクトロニクス部材。
  16.  請求項9~11のいずれか一項に記載の重合体、或いは請求項12または13に記載の組成物を含む、有機エレクトロニクス部材。
  17.  電極、固体電解コンデンサ、熱電素子、圧電素子、アクチュエーター、センサー、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、電波による個体識別(RFID)器、電界効果トランジスタ(FET)、集積回路(IC)、有機エレクトロルミネッセンス素子(OLED)または有機半導体素子である、請求項16に記載の有機エレクトロニクス部材。
  18.  式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式中、X~Xは、それぞれ独立に、塩素原子、臭素原子またはヨウ素原子であり、
     W~Wは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアルキルアミノ基、シアノ基、ニトロ基、アジド基、ヒドロキシ基、スルファニル基、アミノ基、カルボキシル基またはその塩、ホスホノ基またはその塩、スルホ基またはその塩、置換基を有してもよいカルバモイル基、置換基を有してもよいホスフィノイル基、置換基を有してもよいホスファニル基、-CO-R、-SO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)、-MgCl、-MgBr、-MgI、-ZnCl、-ZnBr、-ZnI、-Sn(Ak)、-B(OH)、-B(OAk)、-B(-OC(CHC(CHO-)、-Si(Ak)、または-Si(OAk)(前記式中、Akは、アルキル基を表す。)である。]
    で示される化合物と、式(5):
     R-NH   (5)
    [式中、Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)である。]
    で示される化合物と、式(6):
     R-NH   (6)
    [式中、Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基または-CO-R(前記式中、Rは、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。)である。]
    で示される化合物とを反応させることを含む、式(3):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R、RおよびW~Wは、前記と同義である。]
    で示される化合物の製造方法。
  19.  RおよびRが、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基である、請求項18に記載の製造方法。
  20.  RおよびRが、それぞれ独立に、炭素数1~10のアルキル基、ベンジル基または置換基を有してもよいフェニル基である、請求項18に記載の製造方法。
PCT/JP2012/065780 2011-06-22 2012-06-20 縮合複素環化合物およびその重合体 WO2012176820A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-138932 2011-06-22
JP2011138932 2011-06-22
JP2012049806 2012-03-06
JP2012-049806 2012-03-06

Publications (1)

Publication Number Publication Date
WO2012176820A1 true WO2012176820A1 (ja) 2012-12-27

Family

ID=47422651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065780 WO2012176820A1 (ja) 2011-06-22 2012-06-20 縮合複素環化合物およびその重合体

Country Status (2)

Country Link
JP (1) JPWO2012176820A1 (ja)
WO (1) WO2012176820A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028750A (ja) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機トランジスタ
JP2013235904A (ja) * 2012-05-07 2013-11-21 Fujifilm Corp 有機薄膜太陽電池、これに用いられる有機半導体材料用組成物および単量体
US20150090994A1 (en) * 2013-10-02 2015-04-02 Pusan National University Industry-University Cooperation Foundation Organic compound and organic light emitting diode device including the same
EP2903047A1 (en) * 2014-01-31 2015-08-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Hole transporting and light absorbing material for solid state solar cells
KR20160065885A (ko) * 2013-09-27 2016-06-09 헬리아텍 게엠베하 광전자 부품들을 위한 광활성 유기 재료
CN105837598A (zh) * 2016-03-28 2016-08-10 大连理工大学 并噻吩并吡咯醌式化合物、制备方法及包含该材料的半导体设备
CN106977528A (zh) * 2017-03-29 2017-07-25 淮阴工学院 含三噻吩并吡咯‑噻吩的有机染料及其在染料敏化太阳能电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063780A1 (ja) * 2007-11-12 2009-05-22 Mitsui Chemicals, Inc. 有機トランジスタ
JP2009190999A (ja) * 2008-02-13 2009-08-27 Osaka Univ 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ。
JP2010034449A (ja) * 2008-07-31 2010-02-12 Mitsui Chemicals Inc 有機トランジスタ
WO2010061176A1 (en) * 2008-11-28 2010-06-03 Cambridge Display Technology Limited Organic semiconductors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063780A1 (ja) * 2007-11-12 2009-05-22 Mitsui Chemicals, Inc. 有機トランジスタ
JP2009190999A (ja) * 2008-02-13 2009-08-27 Osaka Univ 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ。
JP2010034449A (ja) * 2008-07-31 2010-02-12 Mitsui Chemicals Inc 有機トランジスタ
WO2010061176A1 (en) * 2008-11-28 2010-06-03 Cambridge Display Technology Limited Organic semiconductors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FIROUZI, R.: "Linear regression analysis of molecular energy properties for poly heterocyclic compounds", JOURNAL OF MOLECULAR STRUCTURE: THEOCHEM, vol. 906, no. 1-3, 2009, pages 35 - 40 *
MITSUDO, K.: "Synthesis of Nitrogen-Bridged Terthiophenes by Tandem Buchwald-Hartwig Coupling and Their Properties", ORGANIC LETTERS, vol. 14, no. 11, 17 May 2012 (2012-05-17), pages 2702 - 2705 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028750A (ja) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機トランジスタ
JP2013235904A (ja) * 2012-05-07 2013-11-21 Fujifilm Corp 有機薄膜太陽電池、これに用いられる有機半導体材料用組成物および単量体
KR20160065885A (ko) * 2013-09-27 2016-06-09 헬리아텍 게엠베하 광전자 부품들을 위한 광활성 유기 재료
KR102233924B1 (ko) 2013-09-27 2021-03-30 헬리아텍 게엠베하 광전자 부품들을 위한 광활성 유기 재료
KR20150039459A (ko) * 2013-10-02 2015-04-10 삼성디스플레이 주식회사 유기 화합물 및 이를 포함하는 유기 발광 장치
US9666811B2 (en) * 2013-10-02 2017-05-30 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
KR102111031B1 (ko) * 2013-10-02 2020-05-15 삼성디스플레이 주식회사 유기 화합물 및 이를 포함하는 유기 발광 장치
US20150090994A1 (en) * 2013-10-02 2015-04-02 Pusan National University Industry-University Cooperation Foundation Organic compound and organic light emitting diode device including the same
WO2015114521A1 (en) * 2014-01-31 2015-08-06 Ecole Polytechnique Federale De Lausanne (Epfl) Hole transporting and light absorbing material for solid state solar cells
EP2903047A1 (en) * 2014-01-31 2015-08-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Hole transporting and light absorbing material for solid state solar cells
CN106062984A (zh) * 2014-01-31 2016-10-26 洛桑联邦理工学院 用于固态太阳能电池的空穴传输和光吸收材料
US20160351342A1 (en) * 2014-01-31 2016-12-01 Ecole Polytechnique Federale De Lausanne (Epfl) Hole transporting and light absorbing material for solid state solar cells
CN105837598A (zh) * 2016-03-28 2016-08-10 大连理工大学 并噻吩并吡咯醌式化合物、制备方法及包含该材料的半导体设备
CN106977528A (zh) * 2017-03-29 2017-07-25 淮阴工学院 含三噻吩并吡咯‑噻吩的有机染料及其在染料敏化太阳能电池中的应用

Also Published As

Publication number Publication date
JPWO2012176820A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012176820A1 (ja) 縮合複素環化合物およびその重合体
Zou et al. Unexpected Propeller‐Like Hexakis (fluoren‐2‐yl) benzene Cores for Six‐Arm Star‐Shaped Oligofluorenes: Highly Efficient Deep‐Blue Fluorescent Emitters and Good Hole‐Transporting Materials
TWI675033B (zh) 含有雜環的化合物、使用該化合物的聚合物及其用途
Ye et al. Cyanated diazatetracene diimides with ultrahigh electron affinity for n-channel field effect transistors
US8378338B2 (en) Conjugated compound, nitrogenated condensed-ring compound, nitrogenated condensed-ring polymer, organic thin film, and organic thin film element
JP4931118B2 (ja) フッ素化シクロペンタン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
EP1997821A1 (en) Fluorine-containing compound and method for producing same, fluorine-containing polymer, organic thin film, and organic thin film device
Lin et al. Ambipolar organic field-effect transistors based on diketopyrrolopyrrole derivatives containing different π-conjugating spacers
JP2008255097A (ja) 含フッ素多環芳香族化合物、含フッ素重合体、有機薄膜及び有機薄膜素子
JP2008248228A (ja) ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
Li et al. Two Regioisomeric π‐Conjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties
JP2011079827A (ja) ベンゾジチオフェンを製造する方法および半導体ポリマを製造する方法
WO2011120951A1 (en) Annealed dithiophene copolymers
Gao et al. Approaching high charge carrier mobility by alkylating both donor and acceptor units at the optimized position in conjugated polymers
Funahashi Anisotropic electrical conductivity of n-doped thin films of polymerizable liquid-crystalline perylene bisimide bearing a triethylene oxide chain and cyclotetrasiloxane rings
Kang et al. Aqueous-alcohol-processable high-mobility semiconducting copolymers with engineered oligo (ethylene glycol) side chains
WO2010104131A1 (ja) 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
US20150021526A1 (en) Semiconductor composition
Huang et al. Stepwise structural evolution of a DTS-F2BT oligomer and influence of structural disorder on organic field effect transistors and organic photovoltaic performance
Wang et al. Direct C–H arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors
WO2021221039A1 (ja) 導体材料
JP2009040903A (ja) イソチアナフテン構造含有高分子及びその製造方法、並びに電荷輸送材料及び有機電子デバイス
JP2012214730A (ja) チエノチオフェン共重合体及びその製造方法
Fan et al. Synthesis and photovoltaic properties of two star-shaped molecules involving phenylquinoxaline as core and triphenylamine and thiophene units as arms
Molji et al. Macroscopically oriented (3-pentadecyl phenol) dangled fluorene based conductive polymer through side chain engineering for microelectronics.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803012

Country of ref document: EP

Kind code of ref document: A1