WO2012176653A1 - Vehicle headlight - Google Patents

Vehicle headlight Download PDF

Info

Publication number
WO2012176653A1
WO2012176653A1 PCT/JP2012/064966 JP2012064966W WO2012176653A1 WO 2012176653 A1 WO2012176653 A1 WO 2012176653A1 JP 2012064966 W JP2012064966 W JP 2012064966W WO 2012176653 A1 WO2012176653 A1 WO 2012176653A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light source
axis
reflecting mirror
plane
Prior art date
Application number
PCT/JP2012/064966
Other languages
French (fr)
Japanese (ja)
Inventor
棚橋大輔
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2012176653A1 publication Critical patent/WO2012176653A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof

Definitions

  • the present invention relates to a vehicular headlamp, which is a vehicular headlamp having a reflective surface that reflects light emitted from a surface emitting light source such as an LED (Light Emitting Diode).
  • the present invention relates to a vehicle headlamp suitable for obtaining a light pattern.
  • ⁇ Lower fuel consumption of vehicles is being promoted due to environmental considerations, etc. Therefore, a compact and lightweight headlamp is desired. Further, as a light source for a headlamp, a white LED that is power-saving is expected. By the way, one of the performances required for headlamps is whether sufficient luminance can be ensured. This is a requirement that is stipulated in road traffic regulations and the like, and thus is indispensable as a basic performance of the headlamp.
  • an approach from two directions of increasing the efficiency of the optical system and ensuring the luminance of the light source itself is necessary.
  • the efficiency of light utilization can be improved by devising the configuration of the optical system.
  • the efficiency of the optical system basically decreases as the optical system becomes smaller, adjustment on the optical side is essential.
  • the amount of light is insufficient with a single LED chip, a form of using a plurality of chips is generally used.
  • the optical system for small headlamps using LED as a light source since the optical system is downsized and uses a plurality of LED chips, compared to conventional headlamps, There is a fact that the area of the light emitting surface is larger than the optical system. This means that the light source can no longer be regarded as a point light source, which means that it is necessary to consider the spatial spread of the light emission position when considering the configuration of the optical system.
  • one of the important performances when using a headlight with a low beam is a horizontal cut-off line that limits the upward illumination so that the driver of an oncoming vehicle is not too dazzling, and for identifying pedestrians and signs
  • a complex light distribution characteristic that secures both rising lines for raising the sidewalk side illumination and that a hot spot with the highest illuminance exists in the vicinity of the cut-off line.
  • the following configuration is known as an optical system for a vehicle headlamp.
  • the light source is a point light source
  • perfect parallel light can be emitted by adjusting the parameters of the ellipsoidal projection lens (see Patent Documents 1 and 2).
  • This is a general vehicle headlamp configuration, but parallel light cannot be emitted when the light source is larger than the optical system, and the length in the depth direction (vehicle longitudinal direction) is shortened. There were problems such as difficult.
  • (B) Hyperboloid reflector + projection lens type This uses a hyperboloid reflector, a light source is installed at one focal position of the hyperboloid, the other focal position and the focus of the projection lens are matched, and the dimension in the depth direction Is a technique for reducing the size of the image (see Patent Document 3). According to such a technique, there is an advantage that the size in the depth direction can be easily reduced as compared with the “elliptical reflector + projection lens type”.
  • the present invention has been made in view of the problems of the prior art, has a reflecting mirror and a lens having a surface that is easy to manufacture because it is defined by a single surface shape formula using a surface-emitting light source, and is desired.
  • An object of the present invention is to provide a vehicular headlamp that can be reduced in size, particularly thin in the longitudinal direction of the vehicle, while realizing the above light distribution pattern.
  • the vehicle headlamp according to claim 1 is a vehicle headlamp, and includes a surface-emitting light source, a first reflecting mirror, and a lens, and the light-emitting surface of the surface-emitting light source is the first reflecting light.
  • the vertex position of the first reflecting mirror that is facing the direction of the mirror and has a curvature is taken as the origin of the coordinates, and the optical axis of the first reflecting mirror is taken from the origin to the Z axis with the vehicle traveling direction being positive,
  • the orthogonal horizontal direction is the X axis and the vertical direction is the Y axis
  • the first reflecting mirror is composed of a surface based on a hyperboloid
  • the light source is provided on the curvature center side of the first reflecting mirror;
  • the focal point closest to the apex on the light source side of the first reflecting mirror from the coordinate origin is defined as a first focal point F1, and the other focal point as a second focal point F2.
  • the distance from the origin position of the coordinates to the position of the first focus F1 is OF1 (mm)
  • the distance from the coordinate origin position to the position of the second focus F2 is OF2 (mm)
  • the distance from the coordinate origin position to the front focal position F of the lens is defined as OF, the following expression (1) is satisfied.
  • the z coordinate of the second focal point F2 on the YZ plane ⁇ the z coordinate of the front focal position F on the YZ plane ⁇ 0.
  • the first reflecting mirror is constituted by a surface based on a hyperboloid.
  • the surface based on the hyperboloid surface referred to here is at least the value of the surface sag amount sag (y) up to half of the effective diameter excluding the vicinity of the optical axis with respect to the height y (mm) sag (y) ⁇
  • the surface is y 2 / 2R (mm).
  • R is a paraxial radius of curvature in the Y-axis direction. This also sag (y) ⁇ y 2/ 150 (mm) may be used.
  • the light emitting surface center S of the light source is shifted from the first focal point F1 of the first reflecting mirror in the YZ plane, the positions of the front focal point F of the lens and the second focal point F2 of the first reflecting mirror do not coincide with each other. .
  • the condition of Formula (1) is established, and the shortening of the vehicle front-rear direction and the formation of a good light distribution can be realized.
  • the deviation between the first focal point F1 of the first reflecting mirror and the light emitting surface center S of the light source is the positive direction of the Z axis from the first focal point F1 of the first reflecting mirror in the YZ plane. That is, it is located in the vehicle front direction.
  • the following formula is satisfied. OF2 / OF> 8 (1 ')
  • the “surface emitting light source” includes a light source that emits light in a planar shape and a light source having a plurality of light emitting points.
  • the light emitting surface area is 0.25 mm 2 or more.
  • the optical axis of the first reflecting mirror means a straight line connecting the vertex position of the first reflecting mirror and the focal position in the YZ plane including the surface vertex of the first reflecting mirror.
  • the focal position is a position where reflected light rays gather at one point when convergent light is incident on the first reflecting mirror toward the second focal position in the YZ plane including the surface vertex of the first reflecting mirror. Point to.
  • the area of the surface emitting light source is formed by a tangent line in contact with the light emitting region and a tangent line perpendicular to the light emitting region so as to surround the light emitting region of the light source in a plane including the light emitting surface (that is, the four sides are in contact with the outer edge of the light emitting region).
  • the area is a rectangle.
  • the area of the surface light source in the case of having a plurality of light sources is formed by a line in contact with the light emitting region located at the outermost part so as to surround the plurality of light sources and a tangent line perpendicular thereto (that is, FIG. As shown in (b), the area is a rectangular area whose four sides are in contact with the outer edge of one of the light emitting regions.
  • the light emitting surface of the surface emitting light source faces the direction of the first reflecting mirror means that a perpendicular (light source optical axis) passing through the center of the light emitting surface of the light source and perpendicular to the light emitting surface always intersects the first reflecting mirror. Say to have. Here, it is assumed that the perpendicular exists only on the light emitting surface side.
  • the first reflecting mirror in the YZ plane, has a height y (mm) that is at least half the effective diameter excluding the vicinity of the optical axis.
  • the value of the sag amount sag (y) at the position) satisfies the following expression. sag (y) ⁇ y 2 / 2R (mm) (2) Where R is the paraxial radius of curvature (mm) in the Y-axis direction.
  • the optical axis of the lens passing through the apex of the lens is inclined or shifted with respect to the Z axis.
  • the light-emitting portion of the light source is shifted on the lens side and / or the optical axis direction of the lens, not on the Z-axis. It is characterized by being.
  • the light emitting part of the surface emitting light source is not on the Z axis and is shifted in the y coordinate direction of the lens center of the Y axis, so that a hot spot can be formed in the vicinity of the cut-off line.
  • the vehicle headlamp according to claim 5 is the invention according to claim 4, wherein the plane including the light-emitting portion of the light source is inclined in the same direction as the optical axis of the lens with respect to the Z-axis.
  • the plane including the light emitting surface of the surface light source is inclined in the same direction as the lens optical axis with respect to the Z axis, a hot spot can be formed near the cutoff line.
  • a vehicle headlamp according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fifth aspects, the lens is a plano-convex lens having a convex surface portion facing the light source. To do.
  • the lens is a plano-convex lens
  • the effective surface of the lens can be widened by adopting a configuration in which the convex portion is directed to the light source side, and as a result, the maximum luminous intensity can be increased by Etendue's law.
  • the headlamp lens with a flat front surface has a novel design that is unprecedented and is excellent in design.
  • a vehicle headlamp according to a seventh aspect of the present invention is the vehicle headlamp according to any one of the first to sixth aspects, wherein the intersection of the optical axis of the lens and the Z axis is P in the YZ plane, and the origin of coordinates When the distance from point to point P is OP, the following expression is satisfied.
  • the vehicle headlamp according to claim 8 is the vehicle headlamp according to any one of claims 1 to 7, wherein the distance from the coordinate origin position to the center S of the light source is OS (mm), 4) is satisfied.
  • the vehicle headlamp according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, a second reflecting mirror is provided as an auxiliary reflecting mirror in the vicinity of the light source.
  • the second reflecting mirror as the auxiliary reflecting mirror, it is possible to emit the light emitted from the light emitting surface of the light source to the front of the vehicle without waste.
  • a plane mirror is sufficient, but a cylindrical mirror is more preferable.
  • a vehicle headlamp according to a tenth aspect of the present invention is the vehicle headlamp according to any one of the first to ninth aspects, wherein at least one surface shape of the first reflecting mirror or the lens is Z in the XZ plane. It is characterized by an asymmetric surface shape with the axis as the center.
  • both horizontal and oblique cutoff lines can be used. This can be realized with one optical unit.
  • the vehicle headlamp according to claim 11 is characterized in that, in the invention according to any one of claims 1 to 10, the first reflecting surface does not extend vertically above the coordinate origin. To do. Thereby, a thin headlamp can be formed in the height direction.
  • a headlamp can be provided.
  • a low beam asymmetric light distribution pattern can be realized by a single optical unit without using a light shielding plate or the like.
  • using an asymmetric free-form surface it is possible to realize a desired complicated light distribution characteristic with a single optical unit. Further, since a light shielding plate or the like is not used to form the light distribution, the light amount loss can be reduced.
  • the position of the light source is shifted from the focal point, and the direction of the light emitting surface is devised, so that the single surface light source + It became possible to obtain a desired light distribution with a single unit.
  • FIG. 1 It is a figure which shows the light distribution characteristic by the vehicle headlamp of Example 1.
  • FIG. 2 It is sectional drawing which cut
  • 3 is a graph in which numerical values of Example 2 are plotted. It is a figure which shows the light distribution characteristic by the vehicle headlamp of Example 2.
  • FIG. 2 is a cross-sectional view taken along the YZ plane of the headlamp in the present embodiment.
  • the vertex position of the first reflecting mirror M1 is taken as the origin O of the coordinate
  • the optical axis of the first reflecting mirror M1 is taken as the Z axis with the vehicle traveling direction as positive from the origin
  • the horizontal direction (left side in front of the vehicle) Is the X axis
  • the vertical direction (upward is the positive) is the Y axis.
  • the shapes of the first reflecting mirror M1 and the lens L shown in the figure are bent for computer drawing, but are actually connected smoothly.
  • the headlamp according to the present embodiment has a surface-emitting light source OS composed of a plurality of LEDs, a first reflecting mirror M, and a lens L.
  • RP is a reflecting surface
  • PE is a peripheral edge.
  • the surface emitting light source OS is supported by a support portion (not shown) such as a heat sink.
  • the first reflecting mirror M1 is composed of a surface based on a hyperboloid.
  • a surface-emitting light source OS is provided on the curvature center side of the first reflecting mirror M1, and the focal point closest to the apex on the light source side of the first reflecting mirror M1 from the coordinate origin O is the first focal point F1, and the other focal point is the second focal point.
  • the focal point is F2, the distance from the coordinate origin O to the first focal point F1 is OF1 (mm), the distance from the coordinate origin O to the second focal point F2 is OF2 (mm), and the coordinate origin O to the lens If the distance to the front focal position F of L is OF, the following formula (1) is satisfied.
  • the z coordinate of the second focal point F2 on the YZ plane ⁇ the z coordinate of the front focal position F on the YZ plane ⁇ 0.
  • the value of the surface sag amount sag (y) up to half of the effective diameter excluding at least the vicinity of the optical axis satisfies the following expression with respect to the height y (mm). sag (y) ⁇ y 2 / 2R (mm) (2) Where R is the paraxial radius of curvature (mm) in the y-axis direction. If the sag amount sag (y) exceeds the value of y 2 / 2R in the vicinity of the optical axis, the difference between the sag amount sag (y) and y 2 / 2R is calculated as the maximum sag amount sag (y) within the effective diameter. It is preferable to be within 1% of the value. Moreover, you may make it satisfy
  • fill Formula (2) in the whole area within an effective diameter except the case of y 0.
  • the lens optical axis LOA passing through the apex of the lens L is inclined with respect to the Z axis.
  • the lens optical axis LOA may be shifted with respect to the Z axis.
  • the light emitting part of the surface light source OS is shifted to the Y axis direction negative side (vertical direction downward) with respect to the Z axis.
  • the plane FP including the light emitting portion of the surface light source OS is inclined in the same direction (Y axis direction negative side) as the optical axis LOA of the lens with respect to the Z axis.
  • the lens L1 is composed of a plano-convex lens with the convex portion LP facing the light source and the front side of the vehicle being a plane LF.
  • the light source side may be a flat surface.
  • the surface shape of at least one of the first reflecting mirror M1 and the lens L is an asymmetric surface shape around the Z axis.
  • FIG. 3 is an enlarged sectional view of a vehicle headlamp according to another embodiment.
  • the second reflecting mirror M2 is provided in the vicinity of the surface light source OS as an auxiliary reflecting mirror. Thereby, the light utilization efficiency can be further improved by reflecting the light emitted from the surface light source OS and directing it toward the first reflecting mirror M1.
  • the reflecting surface is a free-form surface
  • the surface shape is defined by the following equation 1 using an orthogonal coordinate system (x, y, z) with the surface vertex as the origin.
  • z displacement from the reference plane in the optical axis direction at the position of height h
  • K Conic constant
  • C (m, n) free-form surface coefficient (for example, when X ** 2, Y ** 8 1.2676E-14 in the table, the free-form surface coefficient C (m, n) for (X 2 , Y 8 ) ) Is 1.2677 ⁇ 10 ⁇ 14 .
  • Example 1 Table 1 shows surface shape data of the first reflecting mirror and the lens of Example 1.
  • a YZ sectional view of Example 1 is shown in FIG. 4, and an XZ sectional view of Example 1 is shown in FIG.
  • the first reflecting surface does not extend vertically above the coordinate origin.
  • the positions of F1, F2, F, etc. are the same as those shown in FIG.
  • FIG. 6 plots the values of sag (y) and y 2 / 2R of the reflecting surface of the first reflecting mirror M1 with the height y from the optical axis on the horizontal axis on the YZ plane.
  • the vertex center position of the lens is (0, -16.358, 80.418), and the surface The center position of the light emitting surface of the light emitting source is (0, -2.7511, 5.89).
  • the distance from the coordinate origin position to the center S of the light source is defined as OS (mm), and the following expression (4) is satisfied.
  • FIG. 7 shows the light distribution characteristics of the vehicle headlamp according to the first embodiment.
  • the horizontal cut-off line HCL and the rising line RL on the left side are secured, and the hot spot HP having the highest illuminance exists in the vicinity of the horizontal cut-off line HCL, and ideal light distribution characteristics can be obtained. I understand.
  • Example 2 shows surface shape data of the first reflecting mirror and the lens of Example 2.
  • a YZ sectional view of Example 2 is shown in FIG. 8, and an XZ sectional view of Example 2 is shown in FIG.
  • the lens optical axis LOA passing through the apex of the lens is shifted with respect to the Z axis.
  • the horizontal axis represents the height y from the optical axis, and the values of sag (y) and y 2 / 2R of the reflecting surface of the first reflecting mirror M1 are plotted and shown. As is apparent from FIG.
  • the vertex center position of the lens is (0, -2.972, 35.438)
  • the center position of the light emitting surface of the light emitting source is (0, -0.461, 6.65).
  • Example 2 also satisfies Expression (4).
  • FIG. 11 shows the light distribution characteristics of the vehicle headlamp according to the second embodiment.
  • the horizontal cut-off line HCL and the rising line RL on the left side are ensured, and the hot spot HP having the highest illuminance exists in the vicinity of the horizontal cut-off line HCL, and ideal light distribution characteristics can be obtained. I understand.
  • OS is the distance from the coordinate origin to the center of the light emitting surface of the light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Provided is a vehicle headlight that uses a surface light-emitting light source, has a reflective mirror having a surface that is defined by a single surface shape formula and therefore readily produced and a lens, and is capable of being more compact and, particularly, of having a reduced thickness in the vehicle front-rear direction. The position of the front-side focal point (F) of the lens and a second focal point (F2) for a first reflective mirror do not correspond because the center (S) of the light emitting-surface for the light source is displaced from a first focal point (F1) for the first reflective mirror in the YZ plane. As a result, the conditions of formula (1) are fulfilled and a shape shorter in the vehicle front-rear direction and having good light distribution can be achieved. Specifically, the displacement between the center (S) of the light emitting-surface for the light source and the first focal point (F1) for the first reflective mirror is such that in the YZ plane the center (S) of the light emitting-surface for the light source is positioned further in the positive direction for the Z axis, i.e., in the vehicle front direction, than the first focal point (F1) for the first reflective mirror. OF2/OF>1 (1)

Description

車両用前照灯Vehicle headlamp
 本発明は、車両用前照灯に関し、例えばLED(Light Emitting Diode)等の面発光光源から出射された光を反射する反射面を有する車両用前照灯であって、理想的なロービームの配光パターンを得るのに適した車両用前照灯に関する。 The present invention relates to a vehicular headlamp, which is a vehicular headlamp having a reflective surface that reflects light emitted from a surface emitting light source such as an LED (Light Emitting Diode). The present invention relates to a vehicle headlamp suitable for obtaining a light pattern.
 環境面への配慮などから車両の低燃費化が推進されており、このため小型・軽量な前照灯が望まれている。又、前照灯の光源としては、省電力である白色LEDが期待されている。ところで、前照灯に要求される性能の一つに、十分な輝度を確保できるかということがある。これは、道路交通規則等に定められており、よって前照灯の基本的な性能として欠かすことが出来ない要件である。ここで、十分な輝度を実現するためには、光学系の効率を上げること、光源自体の輝度を確保すること、の2方向からのアプローチが必要である。 ¡Lower fuel consumption of vehicles is being promoted due to environmental considerations, etc. Therefore, a compact and lightweight headlamp is desired. Further, as a light source for a headlamp, a white LED that is power-saving is expected. By the way, one of the performances required for headlamps is whether sufficient luminance can be ensured. This is a requirement that is stipulated in road traffic regulations and the like, and thus is indispensable as a basic performance of the headlamp. Here, in order to realize sufficient luminance, an approach from two directions of increasing the efficiency of the optical system and ensuring the luminance of the light source itself is necessary.
 前者のアプローチでは、光学系の構成を工夫して光利用効率の向上を図ることができる。ただし、基本的には光学系の小型化につれ光学系の効率は低下するため、光学側での調整が必須となる。一方、後者のアプローチにおいて、現状ではLEDチップ単体では光量が不足することから、複数個のチップを使用するという形態が一般的である。 In the former approach, the efficiency of light utilization can be improved by devising the configuration of the optical system. However, since the efficiency of the optical system basically decreases as the optical system becomes smaller, adjustment on the optical side is essential. On the other hand, in the latter approach, since the amount of light is insufficient with a single LED chip, a form of using a plurality of chips is generally used.
 従って、LEDを光源とした小型の前照灯用の光学系では、光学系が小型化していること、複数個のLEDチップを使用していることから、従来の前照灯と比較して、光学系に対して発光面の面積が大きくなるという実情がある。このことは、もはや光源が点光源としてみなせなくなるということであり、光学系の構成を考える上で発光位置の空間的な広がりを考慮する必要があることを意味している。 Therefore, in the optical system for small headlamps using LED as a light source, since the optical system is downsized and uses a plurality of LED chips, compared to conventional headlamps, There is a fact that the area of the light emitting surface is larger than the optical system. This means that the light source can no longer be regarded as a point light source, which means that it is necessary to consider the spatial spread of the light emission position when considering the configuration of the optical system.
 また、前照灯をロービームで用いた場合における重要な性能の一つに、すれ違う対向車のドライバーが眩しすぎないように、上方の照射を制限する水平カットオフラインと、歩行者及び標識識別のため歩道側の照射を立ち上げる立ち上がりラインの両方を確保し、且つ最も照度が高いホットスポットがカットオフライン近傍に存在するような複雑な配光特性も求められる。 In addition, one of the important performances when using a headlight with a low beam is a horizontal cut-off line that limits the upward illumination so that the driver of an oncoming vehicle is not too dazzling, and for identifying pedestrians and signs There is also a need for a complex light distribution characteristic that secures both rising lines for raising the sidewalk side illumination and that a hot spot with the highest illuminance exists in the vicinity of the cut-off line.
 ここで、車両用前照灯用の光学系としては以下のような構成が知られている。
(a)楕円反射鏡+投影レンズ型
 光源から出射された光を楕円面で集光し、投影レンズで車両前方に平行光を出射する。
光源が点光源の場合には楕円面投影レンズのパラメータを調整することで完全な平行光を出射することができる(特許文献1,2参照)。これは一般的な車両用前照灯の構成であるが、光源が光学系に比べて大きくなった場合には平行光が出射出来ないこと、また奥行き方向(車両前後方向)の長さの短縮が難しいことなどの課題があった。
(b)双曲面反射鏡+投影レンズ型
 これは双曲面リフレクタ-を用い、双曲面の一方の焦点位置に光源を設置し、他方の焦点位置と投影レンズの焦点を一致させ、奥行き方向の寸法を小さくするという技術である(特許文献3参照)。かかる技術によれば、「楕円反射鏡+投影レンズ型」と比較して奥行き方向のサイズが短縮しやすいという利点がある。
Here, the following configuration is known as an optical system for a vehicle headlamp.
(A) Elliptical reflector + projection lens type The light emitted from the light source is condensed on an elliptical surface, and parallel light is emitted forward of the vehicle by the projection lens.
When the light source is a point light source, perfect parallel light can be emitted by adjusting the parameters of the ellipsoidal projection lens (see Patent Documents 1 and 2). This is a general vehicle headlamp configuration, but parallel light cannot be emitted when the light source is larger than the optical system, and the length in the depth direction (vehicle longitudinal direction) is shortened. There were problems such as difficult.
(B) Hyperboloid reflector + projection lens type This uses a hyperboloid reflector, a light source is installed at one focal position of the hyperboloid, the other focal position and the focus of the projection lens are matched, and the dimension in the depth direction Is a technique for reducing the size of the image (see Patent Document 3). According to such a technique, there is an advantage that the size in the depth direction can be easily reduced as compared with the “elliptical reflector + projection lens type”.
特開2008-77890号公報JP 2008-77890 JP 特開2009-199938号公報JP 2009-199938 特開2007-324003号公報JP 2007-324003 JP
 しかるに、特許文献1,2に記載されたような楕円鏡を用いた光学系では、車両前後方向の光学系の短縮が難しくまた、光学ユニット単一で所望の配光分布を達成することが難しいといえる。 However, in the optical system using the elliptical mirror as described in Patent Documents 1 and 2, it is difficult to shorten the optical system in the vehicle longitudinal direction, and it is difficult to achieve a desired light distribution with a single optical unit. It can be said.
 また、特許文献3の技術では、双曲面反射鏡を用いているため車両前後方向の短縮は実現できているが、光源から出た光の大半がレンズにダイレクトに入射するかまたは所望の光路を通らずに光学ユニットから出ていくため光効率が悪く、遮光部材などを用いないと望む配光が得られない(特に、特許文献3では、最も光強度が高い光源中心からの光線が遮られてしまう)。また、所望の配光を得ようとすると、必然的に光学ユニットは大きくなってしまうという問題もある。更に、その構成ではユニット単体で所望の配光分布を得ることは難しく、何らかの工夫が必要になる。 Further, in the technology of Patent Document 3, since the hyperbolic reflector is used, the vehicle longitudinal direction can be shortened. However, most of the light emitted from the light source is directly incident on the lens or a desired optical path is set. Since light exits from the optical unit without passing through, the light efficiency is poor, and a desired light distribution cannot be obtained unless a light-shielding member is used (particularly, in Patent Document 3, light rays from the center of the light source with the highest light intensity are blocked). ) In addition, there is a problem that the optical unit inevitably becomes large when trying to obtain a desired light distribution. Further, with this configuration, it is difficult to obtain a desired light distribution with a single unit, and some device is required.
 本発明は、従来技術の課題に鑑みてなされたものであり、面発光の光源を用い、単一の面形状式で定義されるため製作しやすい面を持つ反射鏡及びレンズを有し、所望の配光パターンを実現しつつ、小型化、特に車両前後方向の薄型化が可能な車両用前照灯を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, has a reflecting mirror and a lens having a surface that is easy to manufacture because it is defined by a single surface shape formula using a surface-emitting light source, and is desired. An object of the present invention is to provide a vehicular headlamp that can be reduced in size, particularly thin in the longitudinal direction of the vehicle, while realizing the above light distribution pattern.
 請求項1に記載の車両用前照灯は、車両用の前照灯であって、面発光の光源と第1反射鏡とレンズを有し、前記面発光光源の発光面は前記第1反射鏡の方向を向いており、曲率を有する前記第1反射鏡の頂点位置を座標の原点に取り、前記第1反射鏡の光軸を原点から車両進行方向を正とするZ軸に取り、それに直交する水平方向をX軸、鉛直方向をY軸とした際に、
 YZ平面内において、前記第1反射鏡は双曲面を基本とした面で構成され、
 前記第1反射鏡の曲率中心側に前記光源が設けられ、
 座標の原点位置から前記第1反射鏡の光源側の最も頂点に近い焦点を第1焦点F1、もう一方の焦点を第2焦点F2とし、
 座標の原点位置から前記第1焦点F1の位置までの距離をOF1(mm)、
 座標の原点位置から前記第2焦点F2の位置までの距離をOF2(mm)、
 座標の原点位置から前記レンズの前側焦点位置Fまでの距離をOFとすると、下記式(1)を満たすことを特徴とする。
 OF2/OF>1   (1)
 ただし、YZ平面の第2焦点F2のz座標<YZ平面の前記前側焦点位置Fのz座標<0とする。
The vehicle headlamp according to claim 1 is a vehicle headlamp, and includes a surface-emitting light source, a first reflecting mirror, and a lens, and the light-emitting surface of the surface-emitting light source is the first reflecting light. The vertex position of the first reflecting mirror that is facing the direction of the mirror and has a curvature is taken as the origin of the coordinates, and the optical axis of the first reflecting mirror is taken from the origin to the Z axis with the vehicle traveling direction being positive, When the orthogonal horizontal direction is the X axis and the vertical direction is the Y axis,
In the YZ plane, the first reflecting mirror is composed of a surface based on a hyperboloid,
The light source is provided on the curvature center side of the first reflecting mirror;
The focal point closest to the apex on the light source side of the first reflecting mirror from the coordinate origin is defined as a first focal point F1, and the other focal point as a second focal point F2.
The distance from the origin position of the coordinates to the position of the first focus F1 is OF1 (mm),
The distance from the coordinate origin position to the position of the second focus F2 is OF2 (mm),
When the distance from the coordinate origin position to the front focal position F of the lens is defined as OF, the following expression (1) is satisfied.
OF2 / OF> 1 (1)
However, the z coordinate of the second focal point F2 on the YZ plane <the z coordinate of the front focal position F on the YZ plane <0.
 本発明によれば、YZ平面内において、第1反射鏡は双曲面を基本とした面で構成されている。ここで言う双曲面を基本とした面とは、少なくとも、光軸近傍を除く有効径の半分までの面サグ量sag(y)の値が高さy(mm)に対してsag(y)<y2/2R(mm)である面のことを言う。ここでRはY軸方向の近軸曲率半径である。また、これはsag(y)<y2/150(mm)でもよい。 According to the present invention, in the YZ plane, the first reflecting mirror is constituted by a surface based on a hyperboloid. The surface based on the hyperboloid surface referred to here is at least the value of the surface sag amount sag (y) up to half of the effective diameter excluding the vicinity of the optical axis with respect to the height y (mm) sag (y) < The surface is y 2 / 2R (mm). Here, R is a paraxial radius of curvature in the Y-axis direction. This also sag (y) <y 2/ 150 (mm) may be used.
 また、YZ平面内において第1反射鏡の第1焦点F1から光源の発光面中心Sがずれていることで、レンズの前側焦点Fと第1反射鏡の第2焦点F2の位置は一致しなくなる。これにより、(1)式の条件が成立し、車両前後方向の短縮と良好な配光分布の形成を実現できる。具体的に第1反射鏡の第1焦点F1と光源の発光面中心Sのズレは、YZ平面内において光源の発光面中心Sは第1反射鏡の第1焦点F1よりZ軸の正の方向、つまり車両前方方向に位置することとなる。好ましくは、以下の式を満たすことである。
 OF2/OF>8   (1’)
Further, since the light emitting surface center S of the light source is shifted from the first focal point F1 of the first reflecting mirror in the YZ plane, the positions of the front focal point F of the lens and the second focal point F2 of the first reflecting mirror do not coincide with each other. . Thereby, the condition of Formula (1) is established, and the shortening of the vehicle front-rear direction and the formation of a good light distribution can be realized. Specifically, the deviation between the first focal point F1 of the first reflecting mirror and the light emitting surface center S of the light source is the positive direction of the Z axis from the first focal point F1 of the first reflecting mirror in the YZ plane. That is, it is located in the vehicle front direction. Preferably, the following formula is satisfied.
OF2 / OF> 8 (1 ')
 尚、「面発光光源」とは、面状に発光する光源の他、発光点を複数個有するものも含む。好ましくは、発光面面積は0.25mm2以上である。ここで、第1反射鏡の光軸は、第1反射鏡の面頂点を含むYZ平面内において、第1反射鏡の頂点位置と焦点位置とを結ぶ直線を意味する。また、焦点位置は、第1反射鏡の面頂点を含むYZ平面内において、第1反射鏡に、第二焦点位置に向かって収束光を入射した場合に反射光線が一点に集まる位置のことを指す。また、面発光光源の面積は、発光面を含む平面内において、光源の発光領域を囲むように発光領域に接する接線とそれに垂直な接線で形成される(つまり四辺が発光領域の外縁に接する)長方形の面積とする。また、光源を複数有する場合の面発光光源の面積は、複数の光源を囲むように最外部に位置する発光領域に接する線とそれに垂直な接線で形成される(つまり、図1(a)、(b)に示すように、四辺がいずれかの発光領域の外縁に接する)長方形の面積とする。 The “surface emitting light source” includes a light source that emits light in a planar shape and a light source having a plurality of light emitting points. Preferably, the light emitting surface area is 0.25 mm 2 or more. Here, the optical axis of the first reflecting mirror means a straight line connecting the vertex position of the first reflecting mirror and the focal position in the YZ plane including the surface vertex of the first reflecting mirror. In addition, the focal position is a position where reflected light rays gather at one point when convergent light is incident on the first reflecting mirror toward the second focal position in the YZ plane including the surface vertex of the first reflecting mirror. Point to. The area of the surface emitting light source is formed by a tangent line in contact with the light emitting region and a tangent line perpendicular to the light emitting region so as to surround the light emitting region of the light source in a plane including the light emitting surface (that is, the four sides are in contact with the outer edge of the light emitting region). The area is a rectangle. In addition, the area of the surface light source in the case of having a plurality of light sources is formed by a line in contact with the light emitting region located at the outermost part so as to surround the plurality of light sources and a tangent line perpendicular thereto (that is, FIG. As shown in (b), the area is a rectangular area whose four sides are in contact with the outer edge of one of the light emitting regions.
 又、面発光光源の発光面が第1反射鏡の方向を向いているとは、光源の発光面の中心を通り発光面に垂直な垂線(光源光軸)が必ず第1反射鏡と交点を持つことを言う。ここで垂線は発光面側にのみ存在するものとする。 In addition, the light emitting surface of the surface emitting light source faces the direction of the first reflecting mirror means that a perpendicular (light source optical axis) passing through the center of the light emitting surface of the light source and perpendicular to the light emitting surface always intersects the first reflecting mirror. Say to have. Here, it is assumed that the perpendicular exists only on the light emitting surface side.
 請求項2に記載の車両用前照灯は、請求項1に記載の発明において、YZ平面内において前記第1反射鏡は、少なくとも光軸近傍を除く有効径の半分までの高さy(mm)の位置のサグ量sag(y)の値が、以下の式を満たすことを特徴とする。
sag(y)<y2/2R(mm)   (2)
但し、RはY軸方向の近軸曲率半径(mm)である。
According to a second aspect of the present invention, in the vehicle headlamp according to the first aspect, in the YZ plane, the first reflecting mirror has a height y (mm) that is at least half the effective diameter excluding the vicinity of the optical axis. The value of the sag amount sag (y) at the position) satisfies the following expression.
sag (y) <y 2 / 2R (mm) (2)
Where R is the paraxial radius of curvature (mm) in the Y-axis direction.
 YZ平面内において、第1反射鏡のサグ量を(2)式の範囲内にすることで、投影用のレンズと組み合わせて使用することによって、YZ平面内で平行光に近い光束を出射することが可能となる。 In the YZ plane, by setting the sag amount of the first reflecting mirror within the range of the expression (2), a light beam close to parallel light is emitted in the YZ plane by using it in combination with a projection lens. Is possible.
 請求項3に記載の車両用前照灯は、請求項1又は2に記載の発明において、前記レンズの頂点を通るレンズ光軸はZ軸に対して傾いているまたはシフトしていることを特徴とする。 According to a third aspect of the present invention, in the vehicle headlamp according to the first or second aspect, the optical axis of the lens passing through the apex of the lens is inclined or shifted with respect to the Z axis. And
 レンズの頂点を通るレンズ光軸がZ軸に対して傾いているまたはシフトしていることで、ホットスポットをカットオフライン近傍に形成することが可能となる。 It is possible to form a hot spot near the cut-off line because the optical axis of the lens passing through the apex of the lens is inclined or shifted with respect to the Z axis.
 請求項4に記載の車両用前照灯は、請求項3に記載の発明において、前記光源の発光部は、Z軸上ではなく前記レンズ側及び/または前記レンズの光軸方向にシフトしていることを特徴とする。 According to a fourth aspect of the present invention, in the vehicle headlamp according to the third aspect, the light-emitting portion of the light source is shifted on the lens side and / or the optical axis direction of the lens, not on the Z-axis. It is characterized by being.
 YZ平面内において、面発光光源の発光部がZ軸上になく、Y軸のレンズ中心のy座標方向にシフトしていることで、ホットスポットをカットオフライン近傍に形成することが可能となる。 In the YZ plane, the light emitting part of the surface emitting light source is not on the Z axis and is shifted in the y coordinate direction of the lens center of the Y axis, so that a hot spot can be formed in the vicinity of the cut-off line.
 請求項5に記載の車両用前照灯は、請求項4に記載の発明において、前記光源の発光部を含む平面はZ軸に対して前記レンズの光軸と同じ方向に傾いていることを特徴とする。 The vehicle headlamp according to claim 5 is the invention according to claim 4, wherein the plane including the light-emitting portion of the light source is inclined in the same direction as the optical axis of the lens with respect to the Z-axis. Features.
 面発光光源の発光面を含む平面がZ軸に対してレンズ光軸と同じ方向に傾いていることで、ホットスポットをカットオフライン近傍に形成することが可能となる。 Since the plane including the light emitting surface of the surface light source is inclined in the same direction as the lens optical axis with respect to the Z axis, a hot spot can be formed near the cutoff line.
 請求項6に記載の車両用前照灯は、請求項1~5のいずれかに記載の発明において、前記レンズは凸面部を前記光源側に向けた平凸レンズで構成されていることを特徴とする。 A vehicle headlamp according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fifth aspects, the lens is a plano-convex lens having a convex surface portion facing the light source. To do.
 レンズを平凸レンズとすれば、凸面部を光源側に向けている構成を取ることで、レンズの有効面を広く取ることができ、その結果としてエタンデュの法則より最大光度を高めることが可能となる。又、前面がフラットな前照灯のレンズは、従来にない斬新なデザインで意匠的にも優れている。 If the lens is a plano-convex lens, the effective surface of the lens can be widened by adopting a configuration in which the convex portion is directed to the light source side, and as a result, the maximum luminous intensity can be increased by Etendue's law. . In addition, the headlamp lens with a flat front surface has a novel design that is unprecedented and is excellent in design.
 請求項7に記載の車両用前照灯は、請求項1~6のいずれかに記載の発明において、YZ平面内において、前記レンズの光軸とZ軸との交点をPとし、座標の原点から点Pまでの距離をOPとすると、以下の式を満たすことを特徴とする。
 |OP-OF2|≦OF2/OF   (3)
A vehicle headlamp according to a seventh aspect of the present invention is the vehicle headlamp according to any one of the first to sixth aspects, wherein the intersection of the optical axis of the lens and the Z axis is P in the YZ plane, and the origin of coordinates When the distance from point to point P is OP, the following expression is satisfied.
| OP-OF2 | ≦ OF2 / OF (3)
 (3)式の条件を満たす光学系の構成を取ることで、車両前後方向にコンパクトであり且つ良好な配光分布を形成することが可能となる。 By adopting the configuration of the optical system that satisfies the condition of the expression (3), it is possible to form a compact and good light distribution in the longitudinal direction of the vehicle.
 請求項8に記載の車両用前照灯は、請求項1~7のいずれかに記載の発明において、座標原点位置から光源の中心Sまでの距離をOS(mm)とすると、以下の式(4)を満たすことを特徴とする。
 OS-OF1≦4(mm)   (4)
The vehicle headlamp according to claim 8 is the vehicle headlamp according to any one of claims 1 to 7, wherein the distance from the coordinate origin position to the center S of the light source is OS (mm), 4) is satisfied.
OS-OF1 ≦ 4 (mm) (4)
 (4)式の条件を満たす光学系の構成を取ることで、カットオフライン近傍にホットスポットを形成することが容易になる。 By adopting an optical system configuration that satisfies the condition of equation (4), it becomes easy to form a hot spot near the cutoff line.
 請求項9に記載の車両用前照灯は、請求項1~8のいずれかに記載の発明において、前記光源付近に補助反射鏡として第2反射鏡を設けたことを特徴とする。 The vehicle headlamp according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, a second reflecting mirror is provided as an auxiliary reflecting mirror in the vicinity of the light source.
 補助反射鏡として第2反射鏡を設けることで、光源の発光面から出射した光を無駄なく車両前方に出射することが可能となる。この第2反射鏡は平面ミラーでも十分であるが、シリンドリカルミラーであるとなお良い。 By providing the second reflecting mirror as the auxiliary reflecting mirror, it is possible to emit the light emitted from the light emitting surface of the light source to the front of the vehicle without waste. As the second reflecting mirror, a plane mirror is sufficient, but a cylindrical mirror is more preferable.
 請求項10に記載の車両用前照灯は、請求項1~9のいずれかに記載の発明において、XZ平面内において、前記第1反射鏡または前記レンズのうち少なくとも一方の面形状が、Z軸を中心として非対称な面形状であることを特徴とする。 A vehicle headlamp according to a tenth aspect of the present invention is the vehicle headlamp according to any one of the first to ninth aspects, wherein at least one surface shape of the first reflecting mirror or the lens is Z in the XZ plane. It is characterized by an asymmetric surface shape with the axis as the center.
 Z軸を挟んで高さxの正負で面形状式が異なる非対称な面を、第1反射鏡またはレンズのいずれか一方または両方に使用することで、水平カットオフラインと斜めカットオフラインの両方を単一の光学ユニットで実現できる。 By using an asymmetric surface with positive and negative height x and different surface shape formulas across the Z axis for either or both of the first reflector and the lens, both horizontal and oblique cutoff lines can be used. This can be realized with one optical unit.
 請求項11に記載の車両用前照灯は、請求項1~10のいずれかに記載の発明において、前記第1反射面は、座標原点より鉛直方向上方に延在していないことを特徴とする。これにより高さ方向に薄い前照灯を形成できる。 The vehicle headlamp according to claim 11 is characterized in that, in the invention according to any one of claims 1 to 10, the first reflecting surface does not extend vertically above the coordinate origin. To do. Thereby, a thin headlamp can be formed in the height direction.
 本発明によれば、面発光の光源を用い、単一の面形状式で定義されるため製作しやすい面を持つ光学系を有し、小型化、特に車両前後方向の薄型化が可能な車両用前照灯を提供することができる。これにより、遮光板などを用いずともロービームの非対称な配光パターンを光学ユニット単体で実現することが可能になる。更に非対称な自由曲面を用い、光学ユニット単体で所望の複雑な配光特性を実現できる。又、配光分布の形成に遮光板などを用いていないため、光量ロスを少なくできる。加えて、左右非対称な面形状を有する反射鏡及び投影レンズを用い、光源の位置を焦点からずらし且つ発光面の向きを工夫することで、従来よりもコンパクトな構成にも関わらず一面発光光源+ユニット単体で所望の配光分布を得ることを可能にした。 According to the present invention, a vehicle having an optical system that uses a surface-emitting light source and has a surface that is easy to manufacture because it is defined by a single surface shape formula, and can be reduced in size, particularly in the vehicle longitudinal direction. A headlamp can be provided. As a result, a low beam asymmetric light distribution pattern can be realized by a single optical unit without using a light shielding plate or the like. Furthermore, using an asymmetric free-form surface, it is possible to realize a desired complicated light distribution characteristic with a single optical unit. Further, since a light shielding plate or the like is not used to form the light distribution, the light amount loss can be reduced. In addition, by using a reflecting mirror and a projection lens having a laterally asymmetric surface shape, the position of the light source is shifted from the focal point, and the direction of the light emitting surface is devised, so that the single surface light source + It became possible to obtain a desired light distribution with a single unit.
面発光光源の面積を説明するための図であり、例として、(a)は複数の光源が横方向に所定間隔で並んだ場合、(b)は複数の光源が縦横ずれて配置された場合を示す。It is a figure for demonstrating the area of a surface emitting light source, and as an example, (a) is a case where a plurality of light sources are arranged at predetermined intervals in the horizontal direction, and (b) is a case where a plurality of light sources are arranged vertically and horizontally shifted. Indicates. 本実施の形態における前照灯のYZ平面で切断した断面図である。It is sectional drawing cut | disconnected by YZ plane of the headlamp in this Embodiment. 別な実施の形態にかかる車両用前照灯の拡大断面図である。It is an expanded sectional view of the vehicle headlamp concerning another embodiment. 実施例1の前照灯をYZ平面で切断した断面図である。It is sectional drawing which cut | disconnected the headlamp of Example 1 by the YZ plane. 実施例1の前照灯をXZ平面で切断した断面図である。It is sectional drawing which cut | disconnected the headlamp of Example 1 by XZ plane. 実施例1の数値をプロットしたグラフである。3 is a graph in which numerical values of Example 1 are plotted. 実施例1の車両用前照灯による配光特性を示す図である。It is a figure which shows the light distribution characteristic by the vehicle headlamp of Example 1. FIG. 実施例2の前照灯をYZ平面で切断した断面図である。It is sectional drawing which cut | disconnected the headlamp of Example 2 by the YZ plane. 実施例2の前照灯をXZ平面で切断した断面図である。It is sectional drawing which cut | disconnected the headlamp of Example 2 by XZ plane. 実施例2の数値をプロットしたグラフである。3 is a graph in which numerical values of Example 2 are plotted. 実施例2の車両用前照灯による配光特性を示す図である。It is a figure which shows the light distribution characteristic by the vehicle headlamp of Example 2. FIG.
 以下、本発明の実施の形態を、図面を参照して説明する。図2は、本実施の形態における前照灯のYZ平面で切断した断面図である。但し、第1反射鏡M1の頂点位置を座標の原点Oに取り、第1反射鏡M1の光軸を原点から車両進行方向を正とするZ軸に取り、それに直交する水平方向(車両前方左側を正とする)をX軸、鉛直方向(上方を正とする)をY軸とした。尚、図で示す第1反射鏡M1及びレンズLの形状は、コンピュータ作図のため折れ曲がっているが、実際は滑らかにつながっている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view taken along the YZ plane of the headlamp in the present embodiment. However, the vertex position of the first reflecting mirror M1 is taken as the origin O of the coordinate, the optical axis of the first reflecting mirror M1 is taken as the Z axis with the vehicle traveling direction as positive from the origin, and the horizontal direction (left side in front of the vehicle) Is the X axis, and the vertical direction (upward is the positive) is the Y axis. Note that the shapes of the first reflecting mirror M1 and the lens L shown in the figure are bent for computer drawing, but are actually connected smoothly.
 本実施の形態にかかる前照灯は、複数のLEDからなる面発光光源OSと、第1反射鏡Mと、レンズLを有する。射出成形にて形成できる第1反射鏡M1において、RPは反射面であり、PEは周縁である。面発光光源OSは、ヒートシンクなどの支持部(不図示)により、支持されている。 The headlamp according to the present embodiment has a surface-emitting light source OS composed of a plurality of LEDs, a first reflecting mirror M, and a lens L. In the first reflecting mirror M1 that can be formed by injection molding, RP is a reflecting surface and PE is a peripheral edge. The surface emitting light source OS is supported by a support portion (not shown) such as a heat sink.
 YZ平面内において、第1反射鏡M1は双曲面を基本とした面で構成されている。第1反射鏡M1の曲率中心側に面発光光源OSが設けられ、座標の原点Oから第1反射鏡M1の光源側の最も頂点に近い焦点を第1焦点F1、もう一方の焦点を第2焦点F2とし、座標の原点Oから第1焦点F1の位置までの距離をOF1(mm)、座標の原点Oから第2焦点F2の位置までの距離をOF2(mm)、座標の原点OからレンズLの前側焦点位置Fまでの距離をOFとすると、下記式(1)を満たす。
 OF2/OF>1   (1)
 ただし、YZ平面の第2焦点F2のz座標<YZ平面の前側焦点位置Fのz座標<0とする。
In the YZ plane, the first reflecting mirror M1 is composed of a surface based on a hyperboloid. A surface-emitting light source OS is provided on the curvature center side of the first reflecting mirror M1, and the focal point closest to the apex on the light source side of the first reflecting mirror M1 from the coordinate origin O is the first focal point F1, and the other focal point is the second focal point. The focal point is F2, the distance from the coordinate origin O to the first focal point F1 is OF1 (mm), the distance from the coordinate origin O to the second focal point F2 is OF2 (mm), and the coordinate origin O to the lens If the distance to the front focal position F of L is OF, the following formula (1) is satisfied.
OF2 / OF> 1 (1)
However, the z coordinate of the second focal point F2 on the YZ plane <the z coordinate of the front focal position F on the YZ plane <0.
 YZ平面内において第1反射鏡M1は、少なくとも光軸近傍を除く有効径の半分までの面サグ量sag(y)の値が高さy(mm)に対して以下の式を満たす。
sag(y)<y2/2R(mm)   (2)
但し、Rはy軸方向の近軸曲率半径(mm)である。
 光軸近傍においてサグ量sag(y)がy2/2Rの値を上回る場合は、サグ量sag(y)とy2/2Rとの差を、有効径内におけるサグ量sag(y)の最大値の1%以内とすることが好ましい。また、y=0の場合を除いて有効径内の全域で式(2)を満たすようにしてもよい。
In the YZ plane, the value of the surface sag amount sag (y) up to half of the effective diameter excluding at least the vicinity of the optical axis satisfies the following expression with respect to the height y (mm).
sag (y) <y 2 / 2R (mm) (2)
Where R is the paraxial radius of curvature (mm) in the y-axis direction.
If the sag amount sag (y) exceeds the value of y 2 / 2R in the vicinity of the optical axis, the difference between the sag amount sag (y) and y 2 / 2R is calculated as the maximum sag amount sag (y) within the effective diameter. It is preferable to be within 1% of the value. Moreover, you may make it satisfy | fill Formula (2) in the whole area within an effective diameter except the case of y = 0.
 図2に示すように、レンズLの頂点を通るレンズ光軸LOAはZ軸に対して傾いている。レンズ光軸LOAはZ軸に対してシフトしていても良い。 As shown in FIG. 2, the lens optical axis LOA passing through the apex of the lens L is inclined with respect to the Z axis. The lens optical axis LOA may be shifted with respect to the Z axis.
 面発光光源OSの発光部は、Z軸に対してY軸方向負側(鉛直方向下方)にシフトしている。面発光光源OSの発光部を含む平面FPは、Z軸に対してレンズの光軸LOAと同じ方向(Y軸方向負側)に傾いている。 The light emitting part of the surface light source OS is shifted to the Y axis direction negative side (vertical direction downward) with respect to the Z axis. The plane FP including the light emitting portion of the surface light source OS is inclined in the same direction (Y axis direction negative side) as the optical axis LOA of the lens with respect to the Z axis.
 レンズL1は凸面部LPを光源側に向け、車両前方側を平面LFとした平凸レンズで構成されている。但し、光源側を平面としても良い。 The lens L1 is composed of a plano-convex lens with the convex portion LP facing the light source and the front side of the vehicle being a plane LF. However, the light source side may be a flat surface.
 YZ平面内において、レンズLの光軸LOAとZ軸との交点をPとし、座標の原点Oから点Pまでの距離をOPとすると、点Pは第2焦点F2近傍に存在し、以下の式を満たす。
 |OP-OF2|≦OF2/OF   (3)
In the YZ plane, if the intersection between the optical axis LOA of the lens L and the Z axis is P and the distance from the origin O to the point P is OP, the point P exists near the second focal point F2, and Satisfy the formula.
| OP-OF2 | ≦ OF2 / OF (3)
 XZ平面内において、第1反射鏡M1またはレンズLのうち少なくとも一方の面形状が、Z軸を中心として非対称な面形状であると好ましい。 In the XZ plane, it is preferable that the surface shape of at least one of the first reflecting mirror M1 and the lens L is an asymmetric surface shape around the Z axis.
 図3は、別な実施の形態にかかる車両用前照灯の拡大断面図である。本実施の形態では、補助反射鏡として第2反射鏡M2が面発光光源OS近傍に設けられている。これにより、面発光光源OSから出射された光を反射して第1反射鏡M1に向かわせることで、より光の利用効率を高めることができる。 FIG. 3 is an enlarged sectional view of a vehicle headlamp according to another embodiment. In the present embodiment, the second reflecting mirror M2 is provided in the vicinity of the surface light source OS as an auxiliary reflecting mirror. Thereby, the light utilization efficiency can be further improved by reflecting the light emitted from the surface light source OS and directing it toward the first reflecting mirror M1.
 以下の実施例における反射面は自由曲面であり、その面形状は面頂点を原点とする直交座標系(x,y,z)を用いた以下の数1式で定義される。 In the following examples, the reflecting surface is a free-form surface, and the surface shape is defined by the following equation 1 using an orthogonal coordinate system (x, y, z) with the surface vertex as the origin.
Figure JPOXMLDOC01-appb-M000001
 ただし、
z:高さhの位置での光軸方向の基準面からの変位量、
h:光軸に対して垂直な方向の高さ(h2=x2+y2)、
c:近軸曲率(=1/曲率半径)、
K:コーニック定数、
C(m,n):自由曲面係数(例えば表中、X**2,Y**8 1.2677E-14とある時、(X2、Y8)にかかる自由曲面係数C(m,n)が、1.2677×10-14であることを意味する。
Figure JPOXMLDOC01-appb-M000001
However,
z: displacement from the reference plane in the optical axis direction at the position of height h,
h: height in the direction perpendicular to the optical axis (h 2 = x 2 + y 2 ),
c: Paraxial curvature (= 1 / curvature radius),
K: Conic constant,
C (m, n): free-form surface coefficient (for example, when X ** 2, Y ** 8 1.2676E-14 in the table, the free-form surface coefficient C (m, n) for (X 2 , Y 8 ) ) Is 1.2677 × 10 −14 .
(実施例1)
 実施例1の第1反射鏡とレンズの面形状データを表1に示す。実施例1のYZ断面図を図4に示し、実施例1のXZ断面図を図5に示す。本実施例では、第1反射面は、座標原点より鉛直方向上方に延在していない。尚、F1,F2,F等の位置は、図2に示すものと同様である。又、図6に、YZ面において、横軸に光軸からの高さyを取り、第1反射鏡M1の反射面のsag(y)、y2/2Rの値をそれぞれプロットして示す。図6から明らかであるが、少なくともY軸有効径の半分までの高さy(mm)の値のサグ量sag(y)の値が、以下の式を満たす。
sag(y)<y2/2R(mm)   (2)
 但し、Rは以下の式により算出した。
 R=1/(2* C(0,2))
Example 1
Table 1 shows surface shape data of the first reflecting mirror and the lens of Example 1. A YZ sectional view of Example 1 is shown in FIG. 4, and an XZ sectional view of Example 1 is shown in FIG. In the present embodiment, the first reflecting surface does not extend vertically above the coordinate origin. The positions of F1, F2, F, etc. are the same as those shown in FIG. Further, FIG. 6 plots the values of sag (y) and y 2 / 2R of the reflecting surface of the first reflecting mirror M1 with the height y from the optical axis on the horizontal axis on the YZ plane. As is apparent from FIG. 6, the value of the sag amount sag (y) corresponding to the value of the height y (mm) at least half the effective diameter of the Y-axis satisfies the following expression.
sag (y) <y 2 / 2R (mm) (2)
However, R was calculated by the following formula.
R = 1 / (2 * C (0,2))
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここで、単位をmmとした3次元座標において、第1反射鏡の頂点座標を(0,0,0)とすると、レンズの頂点中心位置は、(0,-16.358,80.418)であり、面発光光源の発光面中心位置は、(0,-2.7511,5.89)である。 Here, in the three-dimensional coordinates with the unit of mm, if the vertex coordinates of the first reflector are (0, 0, 0), the vertex center position of the lens is (0, -16.358, 80.418), and the surface The center position of the light emitting surface of the light emitting source is (0, -2.7511, 5.89).
 また、実施例1は座標原点位置から光源の中心Sまでの距離をOS(mm)として、以下の式(4)を満たす。
 OS-OF1≦4(mm)   (4)
 これにより、カットオフライン近傍にホットスポット形成しやすくしている。
In the first embodiment, the distance from the coordinate origin position to the center S of the light source is defined as OS (mm), and the following expression (4) is satisfied.
OS-OF1 ≦ 4 (mm) (4)
This facilitates hot spot formation near the cutoff line.
 又、図7に、実施例1の車両用前照灯による配光特性を示す。図7によれば、水平カットオフラインHCL及び左側に立ち上がりラインRLが確保され、且つ最も照度が高いホットスポットHPが水平カットオフラインHCL近傍に存在しており、理想的な配光特性が得られることが分かる。 FIG. 7 shows the light distribution characteristics of the vehicle headlamp according to the first embodiment. According to FIG. 7, the horizontal cut-off line HCL and the rising line RL on the left side are secured, and the hot spot HP having the highest illuminance exists in the vicinity of the horizontal cut-off line HCL, and ideal light distribution characteristics can be obtained. I understand.
(実施例2)
 実施例2の第1反射鏡とレンズの面形状データを表2に示す。実施例2のYZ断面図を図8に示し、実施例2のXZ断面図を図9に示す。本実施例では、レンズの頂点を通るレンズ光軸LOAはZ軸に対してシフトしている。図10に、YZ面において、横軸に光軸からの高さyを取り、第1反射鏡M1の反射面のsag(y)、y2/2Rの値をそれぞれプロットして示す。図10から明らかであるが、少なくともY軸有効径の半分までの面サグ量sag(y)の値が高さy(mm)に対して以下の式を満たす。
sag(y)<y2/2R(mm)   (2)
 但し、R(mm)は以下の式により算出した。
 R=1/(2* C(0,2))
(Example 2)
Table 2 shows surface shape data of the first reflecting mirror and the lens of Example 2. A YZ sectional view of Example 2 is shown in FIG. 8, and an XZ sectional view of Example 2 is shown in FIG. In this embodiment, the lens optical axis LOA passing through the apex of the lens is shifted with respect to the Z axis. In FIG. 10, on the YZ plane, the horizontal axis represents the height y from the optical axis, and the values of sag (y) and y 2 / 2R of the reflecting surface of the first reflecting mirror M1 are plotted and shown. As is apparent from FIG. 10, the value of the surface sag amount sag (y) up to at least half of the Y-axis effective diameter satisfies the following expression with respect to the height y (mm).
sag (y) <y 2 / 2R (mm) (2)
However, R (mm) was calculated by the following formula.
R = 1 / (2 * C (0,2))
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ここで、単位をmmとした3次元座標において、第1反射鏡の頂点座標を(0,0,0)とすると、レンズの頂点中心位置は、(0,-2.972,35.438)であり、面発光光源の発光面中心位置は、(0,-0.461,6.65)である。 Here, in the three-dimensional coordinates with the unit of mm, if the vertex coordinates of the first reflector are (0, 0, 0), the vertex center position of the lens is (0, -2.972, 35.438) The center position of the light emitting surface of the light emitting source is (0, -0.461, 6.65).
 また、実施例2も式(4)を満たす。
 OS-OF1≦4(mm)   (4)
 これにより、カットオフライン近傍にホットスポット形成しやすくしている。
In addition, Example 2 also satisfies Expression (4).
OS-OF1 ≦ 4 (mm) (4)
This facilitates hot spot formation near the cutoff line.
 又、図11に、実施例2の車両用前照灯による配光特性を示す。図11によれば、水平カットオフラインHCL及び左側に立ち上がりラインRLが確保され、且つ最も照度が高いホットスポットHPが水平カットオフラインHCL近傍に存在しており、理想的な配光特性が得られることが分かる。 FIG. 11 shows the light distribution characteristics of the vehicle headlamp according to the second embodiment. According to FIG. 11, the horizontal cut-off line HCL and the rising line RL on the left side are ensured, and the hot spot HP having the highest illuminance exists in the vicinity of the horizontal cut-off line HCL, and ideal light distribution characteristics can be obtained. I understand.
 表3に、各条件式の値をまとめて示す。尚、OSは、座標原点から光源の発光面中心までの距離である。 Table 3 summarizes the values of each conditional expression. OS is the distance from the coordinate origin to the center of the light emitting surface of the light source.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、本発明は、本明細書に記載の実施の形態及び実施例に限定されるものではなく、他の実施の形態や変形例を含むことは、本明細書に記載された実施の形態や技術的思想から本分野の当業者にとって明らかである。 Note that the present invention is not limited to the embodiments and examples described in this specification, and includes other embodiments and modified examples. It will be clear to those skilled in the art from the technical idea.
S 発光面中心
F レンズ前側焦点
FP1 第1反射鏡の第1焦点
FP2 第1反射鏡の第2焦点
L レンズ
M1 第1反射鏡
M2 第2反射鏡
O 原点
OS 面発光光源
S Light emitting surface center F Lens front focal point FP1 First reflecting mirror first focal point FP2 First reflecting mirror second focal point L Lens M1 First reflecting mirror M2 Second reflecting mirror O Origin OS Surface emitting light source

Claims (11)

  1.  車両用の前照灯であって、面発光の光源と第1反射鏡とレンズを有し、前記面発光光源の発光面は前記第1反射鏡の方向を向いており、曲率を有する前記第1反射鏡の頂点位置を座標の原点に取り、前記第1反射鏡の光軸を原点から車両進行方向を正とするZ軸に取り、それに直交する水平方向をX軸、鉛直方向をY軸とした際に、
     YZ平面内において、前記第1反射鏡は双曲面を基本とした面で構成され、
     前記第1反射鏡の曲率中心側に前記光源が設けられ、
     座標の原点位置から前記第1反射鏡の光源側の最も頂点に近い焦点を第1焦点F1、もう一方の焦点を第2焦点F2とし、
     座標の原点位置から前記第1焦点F1の位置までの距離をOF1(mm)、
     座標の原点位置から前記第2焦点F2の位置までの距離をOF2(mm)、
     座標の原点位置から前記レンズの前側焦点位置Fまでの距離をOFとすると、下記式(1)を満たすことを特徴とする車両用前照灯。
     OF2/OF>1   (1)
     ただし、YZ平面の第2焦点F2のz座標<YZ平面の前記前側焦点位置Fのz座標<0とする。
    A headlight for a vehicle, comprising: a surface emitting light source; a first reflecting mirror; and a lens, wherein the light emitting surface of the surface emitting light source faces the first reflecting mirror and has a curvature. The vertex position of one reflector is taken as the origin of coordinates, the optical axis of the first reflector is taken as the Z axis with the vehicle traveling direction as positive from the origin, the horizontal direction orthogonal to the X axis is taken, and the vertical direction is taken as the Y axis When
    In the YZ plane, the first reflecting mirror is composed of a surface based on a hyperboloid,
    The light source is provided on the curvature center side of the first reflecting mirror;
    The focal point closest to the apex on the light source side of the first reflecting mirror from the coordinate origin is defined as a first focal point F1, and the other focal point as a second focal point F2.
    The distance from the origin position of the coordinates to the position of the first focus F1 is OF1 (mm),
    The distance from the coordinate origin position to the position of the second focus F2 is OF2 (mm),
    A vehicle headlamp characterized by satisfying the following formula (1), where OF is the distance from the coordinate origin position to the front focal position F of the lens.
    OF2 / OF> 1 (1)
    However, the z coordinate of the second focal point F2 on the YZ plane <the z coordinate of the front focal position F on the YZ plane <0.
  2.  YZ平面内において前記第1反射鏡は、少なくとも光軸近傍を除く有効径の半分までの高さy(mm)の位置のサグ量sag(y)の値が、以下の式を満たすことを特徴とする請求項1に記載の車両用前照灯。
    sag(y)<y2/2R(mm)   (2)
    但し、RはY軸方向の近似曲率半径(mm)である。
    In the YZ plane, the value of the sag amount sag (y) at the position of the height y (mm) up to half the effective diameter excluding at least the vicinity of the optical axis satisfies the following expression. The vehicle headlamp according to claim 1.
    sag (y) <y 2 / 2R (mm) (2)
    Where R is the approximate radius of curvature (mm) in the Y-axis direction.
  3.  前記レンズの頂点を通るレンズ光軸はZ軸に対して傾いているまたはシフトしていることを特徴とする請求項1又は2に記載の車両用前照灯。 3. The vehicle headlamp according to claim 1, wherein a lens optical axis passing through the apex of the lens is tilted or shifted with respect to the Z axis.
  4.  前記光源の発光部は、Z軸上ではなく前記レンズ側及び/または前記レンズの光軸方向にシフトしていることを特徴とする請求項3に記載の車両用前照灯。 4. The vehicular headlamp according to claim 3, wherein the light emitting portion of the light source is shifted not on the Z axis but on the lens side and / or in the optical axis direction of the lens.
  5.  前記光源の発光部を含む平面はZ軸に対して前記レンズの光軸と同じ方向に傾いていることを特徴とする請求項4に記載の車両用前照灯。 The vehicle headlamp according to claim 4, wherein the plane including the light emitting portion of the light source is inclined in the same direction as the optical axis of the lens with respect to the Z axis.
  6.  前記レンズは凸面部を前記光源側に向けた平凸レンズで構成されていることを特徴とする請求項1~5のいずれかに記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 5, wherein the lens is a plano-convex lens having a convex surface portion directed toward the light source.
  7.  YZ平面内において、前記レンズの光軸とZ軸との交点をPとし、座標の原点から点Pまでの距離をOPとすると、以下の式を満たすことを特徴とする請求項1~6のいずれかに記載の車両用前照灯。
     |OP-OF2|≦OF2/OF   (3)
    In the YZ plane, if the intersection of the optical axis of the lens and the Z axis is P, and the distance from the origin of the coordinate to the point P is OP, the following expression is satisfied: The vehicle headlamp according to any one of the above.
    | OP-OF2 | ≦ OF2 / OF (3)
  8.  座標原点位置から光源の中心Sまでの距離をOS(mm)とすると、以下の式(4)を満たすことを特徴とする請求項1~7のいずれかに記載の車両用前照灯。
     OS-OF1≦4(mm)   (4)
    The vehicle headlamp according to any one of claims 1 to 7, wherein when the distance from the coordinate origin position to the center S of the light source is OS (mm), the following expression (4) is satisfied.
    OS-OF1 ≦ 4 (mm) (4)
  9.  前記光源付近に補助反射鏡として第2反射鏡を設けたことを特徴とする請求項1~8のいずれかに記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 8, wherein a second reflecting mirror is provided as an auxiliary reflecting mirror in the vicinity of the light source.
  10.  XZ平面内において、前記第1反射鏡または前記レンズのうち少なくとも一方の面形状が、Z軸を中心として非対称な面形状であることを特徴とする請求項1~9のいずれかに記載の車両用前照灯。 The vehicle according to any one of claims 1 to 9, wherein a surface shape of at least one of the first reflecting mirror and the lens in the XZ plane is an asymmetric surface shape about the Z axis. For headlamps.
  11.  前記第1反射面は、座標原点より鉛直方向上方に延在していないことを特徴とする請求項1~10のいずれかに記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 10, wherein the first reflecting surface does not extend vertically above the coordinate origin.
PCT/JP2012/064966 2011-06-21 2012-06-12 Vehicle headlight WO2012176653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-136956 2011-06-21
JP2011136956 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176653A1 true WO2012176653A1 (en) 2012-12-27

Family

ID=47422493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064966 WO2012176653A1 (en) 2011-06-21 2012-06-12 Vehicle headlight

Country Status (2)

Country Link
JP (1) JPWO2012176653A1 (en)
WO (1) WO2012176653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860442A1 (en) * 2013-10-11 2015-04-15 Koito Manufacturing Co., Ltd. Vehicle lamp

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287522A (en) * 2006-04-18 2007-11-01 Koito Mfg Co Ltd Lighting fixture unit of vehicular headlight
JP2007287521A (en) * 2006-04-18 2007-11-01 Koito Mfg Co Ltd Vehicular lighting fixture
JP2007324003A (en) * 2006-06-01 2007-12-13 Ichikoh Ind Ltd Vehicular lighting fixture
JP2008198483A (en) * 2007-02-13 2008-08-28 Koito Mfg Co Ltd Vehicle headlight
JP2009134964A (en) * 2007-11-29 2009-06-18 Stanley Electric Co Ltd Vehicle headlamp
WO2011077947A1 (en) * 2009-12-24 2011-06-30 コニカミノルタオプト株式会社 Vehicle headlight
WO2011078008A1 (en) * 2009-12-24 2011-06-30 コニカミノルタオプト株式会社 Vehicle headlight
JP2011134548A (en) * 2009-12-24 2011-07-07 Konica Minolta Opto Inc Vehicular headlight
JP2011175818A (en) * 2010-02-24 2011-09-08 Stanley Electric Co Ltd Vehicle light, and multi-focal lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287522A (en) * 2006-04-18 2007-11-01 Koito Mfg Co Ltd Lighting fixture unit of vehicular headlight
JP2007287521A (en) * 2006-04-18 2007-11-01 Koito Mfg Co Ltd Vehicular lighting fixture
JP2007324003A (en) * 2006-06-01 2007-12-13 Ichikoh Ind Ltd Vehicular lighting fixture
JP2008198483A (en) * 2007-02-13 2008-08-28 Koito Mfg Co Ltd Vehicle headlight
JP2009134964A (en) * 2007-11-29 2009-06-18 Stanley Electric Co Ltd Vehicle headlamp
WO2011077947A1 (en) * 2009-12-24 2011-06-30 コニカミノルタオプト株式会社 Vehicle headlight
WO2011078008A1 (en) * 2009-12-24 2011-06-30 コニカミノルタオプト株式会社 Vehicle headlight
JP2011134548A (en) * 2009-12-24 2011-07-07 Konica Minolta Opto Inc Vehicular headlight
JP2011175818A (en) * 2010-02-24 2011-09-08 Stanley Electric Co Ltd Vehicle light, and multi-focal lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860442A1 (en) * 2013-10-11 2015-04-15 Koito Manufacturing Co., Ltd. Vehicle lamp
JP2015076374A (en) * 2013-10-11 2015-04-20 株式会社小糸製作所 Vehicular lighting fixture
US9488328B2 (en) 2013-10-11 2016-11-08 Koito Manufacturing Co., Ltd. Vehicle lamp

Also Published As

Publication number Publication date
JPWO2012176653A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US10260697B2 (en) Vehicle lamp having integral projection lenses and a primary array of light emitting elements arranged on common support with apertures and a secondary array of light emitting elements arranged behind apertures
US9273844B2 (en) Vehicular lamp
US8439537B2 (en) Lighting fixture
JP5233686B2 (en) Vehicle lighting
US8678629B2 (en) Lamp unit for vehicular headlamp
EP2796773A2 (en) Vehicular headlamp
JP2016046129A (en) Lens body and vehicular lighting tool
JP2008262754A (en) Lamp unit for vehicle
EP2484964B1 (en) Lamp unit
JP2017195050A (en) Vehicular lighting fixture
JP5206364B2 (en) Vehicle lighting
JP2007280959A (en) Lighting module for headlight of light of automobile, and headlight provided with module of this type
JP2018018590A (en) Vehicular lighting fixture
JP4863502B2 (en) Vehicle headlamp
JP5529708B2 (en) Lighting fixtures for vehicles
JP6136219B2 (en) Vehicle headlamp
JP5365163B2 (en) Vehicle lighting
EP2172694A1 (en) Vehicular lamp
KR102036098B1 (en) Lamp for vehicle and Vehicle having the same
CN108302456B (en) Vehicle lamp
JP2011134548A (en) Vehicular headlight
WO2012176653A1 (en) Vehicle headlight
WO2011077947A1 (en) Vehicle headlight
WO2012176652A1 (en) Vehicle headlight
JP7028618B2 (en) Vehicle lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802219

Country of ref document: EP

Kind code of ref document: A1