WO2012176336A1 - プレート式熱交換器及び冷凍サイクル装置 - Google Patents

プレート式熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2012176336A1
WO2012176336A1 PCT/JP2011/064580 JP2011064580W WO2012176336A1 WO 2012176336 A1 WO2012176336 A1 WO 2012176336A1 JP 2011064580 W JP2011064580 W JP 2011064580W WO 2012176336 A1 WO2012176336 A1 WO 2012176336A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
main pipe
heat exchanger
flow path
plate
Prior art date
Application number
PCT/JP2011/064580
Other languages
English (en)
French (fr)
Inventor
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180071866.6A priority Critical patent/CN103649668B/zh
Priority to PCT/JP2011/064580 priority patent/WO2012176336A1/ja
Priority to GB1322314.4A priority patent/GB2505829B/en
Priority to JP2013521401A priority patent/JP5665983B2/ja
Priority to US14/124,324 priority patent/US9772145B2/en
Publication of WO2012176336A1 publication Critical patent/WO2012176336A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • This invention relates to a plate heat exchanger.
  • the conventional rectifying / distributing part of the plate heat exchanger has a main pipe with small holes or slits in order to allow the fluid to flow uniformly into the heat exchange flow path between the plates in the plate parallel direction, and the pipe in the flow direction. Some have narrowed the path and reduced the cross-sectional area (for example, Patent Documents 1, 2, and 3).
  • Japanese Patent Application Laid-Open No. 11-101588 page 3, FIG. 2
  • Japanese Patent Laid-Open No. 2001-050611 page 3, FIG. 2, FIG. 3
  • JP-A-5-264126 Page 4, FIGS. 1 and 6)
  • Japanese Patent Laid-Open No. 2001-280888 FIGGS. 1 and 3
  • the first fluid (refrigerant) flowing in the plate parallel direction through the inlet hole is a two-phase flow. It becomes.
  • the liquid tends to flow to the back due to inertial force, and is difficult to be uniformly dispersed in the heat exchange flow path between the plates.
  • a separation flow is easily formed at the inlet hole, and this flow pattern (separation flow formation) also prevents uniform dispersion between the plates. For this reason, heat exchange is not effectively performed with all the plates, and there are problems such as a decrease in heat exchange amount and freezing due to gas-liquid non-uniform distribution. These phenomena are particularly noticeable when the number of plates is large.
  • Patent Documents 1 and 2 As countermeasures for this, in the past (for example, Patent Documents 1 and 2), rectifying and distributing parts are provided. However, in the case of a configuration in which a small hole or a slit is provided in the main pipe as in the past, the resistance in the parallel direction is reduced. Since there is no fluid, the fluid is not uniformized in the parallel direction, and therefore, the tendency of the fluid to flow backward does not change. Since the distribution holes between the plates are concave (simply formed in the main pipe) (Patent Document 1), the fluid reach distance in the plate major axis direction is short in the plate major axis direction in the flow path between the plates. Is difficult to distribute.
  • Patent Document 3 the cross-sectional area of the flow path is successively reduced from the inlet side of the inlet hole.
  • the tendency that the liquid fluid does not easily flow forward does not change when the number of stacked plates is 100 and the number of flow channels is 50.
  • patent document 4 the hollow member 21 as shown in FIG. 3 of patent document 4 is used. However, even if the hollow member 21 is used, the tendency that the liquid fluid hardly flows forward still remains.
  • This invention is intended to provide a plate heat exchanger that distributes the inflowing fluid equally to each heat exchange flow path in the plate heat exchanger.
  • the plate heat exchanger of this invention is A plurality of rectangular plates with holes serving as outflow inlets of the first fluid or the second fluid are provided at four corners, a first flow path through which the first fluid flows between the plates, and the second fluid
  • the second fluid flow paths are alternately formed, and the flow paths of the first fluid in the stacking direction are formed from a plurality of the holes that have the same positions at the four corners and are continuous in the stacking direction,
  • a first laminating direction flow path that is a flow path where the first fluid branches into the first flow path is formed.
  • the fluid distributor includes a plurality of slave pipes that are subordinate pipes that communicate with the internal space of the main pipe and are arranged in the main pipe at the positions of the first flow paths.
  • the plate heat exchanger of the present invention includes a fluid distributor having a main pipe and a plurality of sub pipes, the inflowing fluid can be evenly distributed to each heat exchange flow path.
  • FIG. 3 shows a plate heat exchanger 100 according to the first embodiment.
  • FIG. 2 is an exploded perspective view illustrating a configuration outline of a plate heat exchanger 100 according to the first embodiment.
  • 4A and 4B illustrate a rectifier / distributor 201 in Embodiment 1.
  • FIG. FIG. 3 is a diagram showing a rectifier / distributor 201 using a flat tube as the slave tube 220 in the first embodiment.
  • FIG. 3 shows a rectifier / distributor 201 using a thin tube for the secondary tube 220 in the first embodiment.
  • FIG. 6 illustrates a rectifier / distributor 202 in Embodiment 2.
  • FIG. 10 is a diagram illustrating an effect of the rectifier / distributor 202 in the second embodiment.
  • FIG. 10 is a diagram showing the relationship between the refrigerant flow rate flowing into the main pipe 210 and the inner diameter of the main pipe 210 in the third embodiment.
  • FIG. 1 shows a plate heat exchanger 100 according to the first embodiment.
  • FIG. 1A is a side view of the plate heat exchanger 100.
  • FIG. (2) FIG. 1B is a front view (in the direction of arrow X in FIG. 1A).
  • the arrow X direction of Fig.1 (a) is a lamination direction of a plate.
  • the front reinforcing side plate 1 in FIG. 1B is located on the outermost side.
  • the front reinforcing side plate 1 includes an inflow / outflow pipe 5 for the first fluid A, an inflow / outflow pipe 7 for the first fluid A, an inflow pipe 6 for the second fluid B, and an outflow pipe 8 for the second fluid B.
  • the inflow / outflow pipe 5 of the first fluid A and the outflow / inflow pipe 7 of the first fluid A are referred to as “outflow / inflow pipe” for the following reason.
  • the plate heat exchanger 100 When the plate heat exchanger 100 is used as an evaporator (heat absorber), the refrigerant (first fluid) flows in from an inflow / outflow pipe 7 of FIG.
  • the plate heat exchanger 100 When the plate heat exchanger 100 is used as a condenser (heat radiator), the refrigerant (first fluid) flows in from the inflow / outflow pipe 5 and flows out from the outflow / inflow pipe 7.
  • the fluid flows out or flows in when used as an evaporator or a condenser.
  • FIG. 1 (c) shows a V-shaped wave shape 9 formed in the first fluid A and the second fluid B (first and second channels 21 and 22 described later).
  • a front heat transfer plate 2 is shown.
  • the front heat transfer plate 2 has holes 11 to 14 at the four corners that serve as outflow inlets of the first fluid A or the second fluid B.
  • FIG. 1 (d) shows that the V-shaped wave shape 10 is placed facing the front heat transfer plate 2 (so that the V-shapes intersect each other), and the first fluid A and the second fluid
  • the rear side heat-transfer plate 3 which comprises the B flow path is shown.
  • a flow path through which the first fluid A flows is referred to as a first flow path 21, and a flow path through which the second fluid B flows is referred to as a second flow path 22. That is, the first flow path 21 and the second flow path 22 are alternately formed by alternately arranging the front heat transfer plate 2 and the rear heat transfer plate 3.
  • FIG. 1E shows the rear reinforcing side plate 4 located on the outermost side.
  • 2 is a rear view of the plate heat exchanger 100.
  • FIG. (6) FIG. 1F is a diagram showing a state in which the front heat transfer plate 2 and the rear heat transfer plate 3 are overlapped.
  • FIG. 1 (f) shows the shape of the front heat transfer plate 2 that is actually visible when viewed in the direction of the arrow X in FIG.
  • the wave shape of the side heat transfer plate 3 is indicated by a dotted line.
  • FIG. 2 is an exploded perspective view showing an outline of the configuration of the plate heat exchanger 100. Note that FIG. 2 does not show a rectifier / distributor 201 described later.
  • FIG. 2 is a diagram for illustrating the stacked state of the plates and the flow of the first fluid A and the second fluid B.
  • FIG. FIG. 2 shows a case where the plate heat exchanger 100 is used as an evaporator. Therefore, the first fluid A flows in from the inflow / outflow pipe 7, flows through the first flow path 21, and flows out of the outflow / inflow pipe 5.
  • the second fluid B flows in from the inflow pipe 6, flows through the second flow path 22, and flows out from the outflow pipe 8. As shown in FIG.
  • first flow paths 21 through which the first fluid A flows and second flow paths 22 through which the second fluid B flows are alternately formed between the plates.
  • the 1st lamination direction flow path 41 is formed.
  • the first stacking direction flow path 41 is a flow path of the first fluid A in the stacking direction X formed by a plurality of holes 13 having the same positions at the four corners and continuous in the stacking direction X, and each first flow direction This is a flow path where the first fluid A branches into the path 21.
  • FIG. 3 is a diagram for explaining the rectifier / distributor 201 included in the plate heat exchanger 100.
  • FIG. 3A is a front view of the vicinity of the inflow / outflow pipe 7 corresponding to FIG.
  • FIG. 3B shows an AA cross section of FIG. The AA section is cut at a section where the first flow path 21 can be seen continuously.
  • An arrow X indicating the stacking direction goes from the front to the back. That is, the side of the front reinforcing side plate 1 is the front, and the side of the rear reinforcing side plate 4 is the back.
  • a plurality of plates are arranged in parallel, and a rectifier / distributor 201 is inserted into a first stacking direction flow path 41 configured by flow paths L1 to Ln based on the holes 13 of each plate.
  • the rectifier / distributor 201 has a configuration in which a plurality of slave pipes 220 (distribution pipes) are arranged in a plate parallel direction (stacking direction X) on a master pipe 210.
  • the secondary tube 220 uses a thin tube (FIG. 9B described later), a flat tube 18 (FIG. 9C described later), or the like.
  • the first fluid A is uniformly dispersed in the heat exchange flow path between the plates by the rectifier / distributor 201.
  • FIG. 4 is a diagram showing a rectifier / distributor 201 using a flat tube, which will be described later with reference to FIG. As shown in FIG. 9C, the flat tube has a plurality of through holes 221 formed substantially parallel to the longitudinal direction.
  • FIG. 5 is a diagram showing a rectifier / distributor 201 using a hollow cylindrical thin tube as the secondary tube 220.
  • the rectifier / distributor 201 communicates with the main pipe 210 inserted into the first lamination direction flow path 41 so that the longitudinal direction thereof is the lamination direction X, and the internal space of the main pipe 210, And a secondary pipe 220 disposed in the main pipe 210 at the position of each first flow path 21.
  • the secondary tube 220 at least one of a thin tube having a circular inner diameter as shown in FIG. 5 and a flat tube shown in FIG. 4 is used. That is, in FIG. 4, only a flat tube is used, but a thin tube and a flat tube may be mixed and used.
  • each of the plurality of sub pipes 220 is inserted into a through hole 211 that has one end portion penetrating inward from the outer side surface of the main pipe 210.
  • the main pipe 210 is disposed.
  • Each of the plurality of sub-tubes 220 protrudes from the surface on the inner diameter side of the main tube 210 to the internal space of the main tube 210 as a protruding portion 223.
  • the liquid distribution in the parallel direction can be adjusted by the insertion amount a of the protruding portion 223 into the internal space of the main tube 210 of the slave tube 220 (the protruding length of the protruding portion 223). That is, the protruding portion 223 becomes a resistance against the first refrigerant A that extends in the longitudinal direction from the end portion on the near side (front reinforcing side plate 1 side) of the main pipe 210. At this time, the resistance to the first refrigerant A can be adjusted by adjusting the insertion amount a of each protrusion 223.
  • the insertion amount a is a dimension a in which the end portion of the secondary tube 220 protrudes from the inner diameter side surface of the main tube 210 into the internal space of the main tube 210 as shown in FIG.
  • FIG. 3B shows the amount of insertion “a” of the slave tube 220 on the most front side.
  • the insertion amount a of the subordinate pipe 220 on the near side is increased (longer), and the insertion amount a is decreased toward the back ( (Short).
  • the insertion amount a of each protrusion part 223 is non-uniform
  • Non-uniform means that the insertion amount a of the protrusion 223 is not uniform. That is, it is “non-uniform” except when the insertion amounts a of all the protrusions 223 have substantially the same length.
  • the insertion amount a of the secondary tube 220 on the front side may be reduced, or the insertion amount a between the front side and the rear side may be increased.
  • the insertion amount a of the sub pipe 220 is determined in accordance with the liquid amount or the flow mode of the fluid flowing into the main pipe 210.
  • the flat tube used as the secondary tube 220 includes an elliptical tube, a plate-shaped flat tube, an electric sewing tube, a connecting tube in which a plurality of circular tubes are connected, and a flat tube formed by narrowing the circular tube.
  • any pipe that has a flat cross section and can distribute the first refrigerant from the internal space of the main pipe 210 to the first flow path 21 is included in the flat pipe.
  • the follower tube 220 has a convex shape.
  • the “convex shape” means that it protrudes from the outer surface of the main pipe 210 toward the first flow path 21 between the plates. Because of this “convex shape”, alignment of the follower tube 220 and the first flow path 21 corresponding to the follower tube 220 is also easy. That is, when temporarily assembled and brazed, some deformation occurs during brazing. However, because of the “convex shape”, the slave tube 220 does not move to the first flow channel adjacent to the corresponding first flow channel even if some deformation occurs.
  • the main pipe 210 is simply formed with “holes and slits” (referred to as concave shapes), the “holes and slits” may be displaced from the corresponding first flow paths due to deformation during brazing. There is. When this deviation occurs, the first fluid A flowing out from the “hole or slit” hits the plate, and uniform distribution to the first flow path becomes impossible.
  • the main pipe 210 if only “holes and slits” are formed in the main pipe 210, if there is a distance between the “holes and slits” and the first flow path, the main pipe 210 will stall when the flow rate of the first fluid is small, and the space between the plates May not reach the flow path.
  • inconveniences such as “holes and slits” (concave shape) do not occur.
  • FIG. 6 is a diagram illustrating a state in which a plurality of resistors 225 are arranged on the main pipe 210.
  • FIG. 6A is a view of the main pipe 210 in which the resistor 225 is disposed as viewed from the X direction (FIG. 1A).
  • FIG. 6B is a cross-sectional view corresponding to FIG.
  • the protruding portion 223 (insertion amount a) of the follower tube 220 extends from the end of the front side (front reinforcing side plate 1 side) to the back side ( The case where it functions as a resistance to the first refrigerant A toward the rear reinforcing side plate 4 side) has been described.
  • FIG. 3B the protruding portion 223 (insertion amount a) of the follower tube 220 extends from the end of the front side (front reinforcing side plate 1 side) to the back side ( The case where it functions as a resistance to the first refrigerant A toward the rear reinforcing side plate 4
  • 3B is an example, and as shown in FIG. 6, a plurality of resistors 225 may be sequentially arranged inside the main pipe 210 from the front side of the main pipe 210 toward the back side. 3 to 5 can be said to correspond to the case where each of the plurality of resistors 225 in FIG. 6 also serves as the protruding portion 223 of the follower tube 220.
  • FIG. 7 is a diagram showing a case where only the protruding portion 223 of the follower tube 220 is formed in a flat shape.
  • FIG. 7A corresponds to FIG. 6A
  • FIG. 7B corresponds to FIG. 6B.
  • FIG. 7B is not a cross section.
  • the follower tube 220 may form at least the protrusion 223 in a flat shape.
  • the protrusion 223 is formed in a flat shape corresponding to a shape crushed from two directions of the insertion direction X of the main pipe 210 and the direction Y opposite to the insertion direction of the main pipe 210.
  • the resistance to the first refrigerant A is adjusted by the amount of insertion a of the protrusion 223.
  • the entire follower tube 220 may have a flat shape.
  • the projection area of a flat shape may enlarge (expand) the protrusion part 223 of the near side, and may make it small (narrow) as it goes back.
  • the follower tube 220 is formed in the convex shape. Therefore, it substantially coincides with the flow path formed between the plates, or the first fluid A is superimposed on this flow path. For this reason, the 1st refrigerant
  • coolant A can be reliably distributed to each 1st flow path. Further, as described above, it is easy to align the first flow path 21 and the corresponding follower pipe 220 when the rectifier distributor 201 is assembled.
  • the freezing capacity is improved by the uniform distribution of the fluid by the rectifier distributor 201. It is difficult for the liquid to flow into the flow path formed between the plates on the front side of the main pipe 210 due to the inertial force, and high-speed steam tends to flow. For this reason, evaporation is promoted in these flow paths, and freezing occurs due to a rapid temperature drop of the plate.
  • the fluid distribution in the main pipe 210 can be made uniform by adjusting the insertion amount a of the sub pipe 220, so that freezing can be suppressed.
  • the required number of plates of the heat exchanger for the required capacity of the air conditioner can be minimized by improving the heat exchange performance. Furthermore, since freezing in the heat exchanger can be suppressed, a highly reliable plate heat exchanger can be provided while reducing costs.
  • Embodiment 2 FIG.
  • the second embodiment will be described with reference to FIGS.
  • the second embodiment has a configuration in which a plurality of slave pipes 220 are arranged at the positions of the respective first flow paths.
  • the plate heat exchanger 100 including the rectifying distributor 201 inserted into the first stacking direction flow path 41 has been described.
  • the rectifier / distributor 201 according to the first embodiment is configured to be inserted in the parallel direction of the follower 220 plate.
  • the second embodiment shows a configuration in which a plurality of slave tubes 220 are inserted in the circumferential direction of the main tube 210 at each position of the slave tubes 220 arranged in the plate parallel direction.
  • FIG. 8 is a diagram illustrating the rectifier / distributor 202 according to the second embodiment.
  • FIG. 9 is a diagram for explaining the effect of the rectifier / distributor 202.
  • FIG. 8A is a view of the rectifier / distributor 200 in the X direction.
  • a plurality of secondary pipes 220 are inserted into the main pipe 210 in the circumferential direction of the main pipe 210 at each position of the secondary pipe 220. That is, in FIG. 8B, at the position 51 of the slave pipe 220 corresponding to the first flow path 21-1, three slave pipes 220 are inserted in the pipe circumferential direction of the main pipe 210 as shown in FIG. It is. At the position 52 of the slave pipe 220 corresponding to the first flow path 21-2, as in the position 51, three slave pipes 220 are inserted. The same applies to the other positions 53 to 56. As shown in FIG. 8B, the plurality of sub pipes 220 are arranged in the substantially circumferential direction of the main pipe 210 at the positions of the respective first flow paths.
  • the first fluid A flowing through the main pipe 210 can be expanded in the pipe circumferential direction of the main pipe 210.
  • the secondary pipe 220 distributed pipe
  • the pressure loss is generated in the first flow path.
  • the pressure loss can be adjusted by changing the size and inner diameter of the follower tube 220 and the number at each position (position 51, position 52, etc.).
  • the inner diameter of the flat tube ((c) in FIG. 11) having a plurality of holes is changed, or the flow direction of the first fluid A is changed to the insertion angle ⁇ in the pipe circumferential direction (in FIG. 8). Adjustment is possible in (a)). By these adjustments, it is possible to force the fluid to flow into the region 19 (FIG. 9) on the opposite side to the hole 12 where the fluid is likely to stagnate.
  • the flow pattern of the main pipe 210, the shape of the heat transfer plate, and the position of the fluid inlet / outlet on the heat transfer plate, the number of the sub pipes 220 in the parallel direction, the number of the sub pipes 220 in the pipe circumferential direction, or The dimension of the follower tube 220 may be changed.
  • Embodiment 3 The third embodiment will be described with reference to FIG.
  • the rectifier / distributor 202 of the second embodiment described above a configuration in which a plurality of slave pipes 220 are inserted in the pipe circumferential direction of the main pipe 210 is shown.
  • the rectifier / distributor 203 of Embodiment 3 shows a case where the main pipe 210 has a predetermined pipe diameter (inner diameter).
  • FIG. 10 is a graph showing the relationship between the refrigerant flow rate (horizontal axis; kg / h) flowing into the main pipe 210 and the inner diameter (vertical axis; mm) of the main pipe 210 of the rectifier distributor 203.
  • the hole 13 of the heat transfer plate has a large inner diameter and is easy to form a separated flow.
  • gas-liquid deviation occurs in the flow path between the plates, and the effective heat transfer area is reduced or frozen.
  • the fluid is R410A
  • the flow pattern in the main pipe 210 is an annular flow within the range of the inner diameter indicated by the oblique lines in FIG. 10, and a liquid film of fluid is formed around the pipe.
  • the main pipe 210 of the rectifier / distributor 203 has an inner diameter where the incoming first fluid A becomes an annular flow. For this reason, the fluid in which the gas and liquid are evenly mixed easily flows in the flow path between the plates. Therefore, it is possible to provide a highly reliable heat exchanger that not only improves heat exchange performance but also prevents freezing.
  • R410A in addition to this refrigerant
  • the insertion amount a of the slave pipe 220 into the main pipe 210, the dimension to the flow path side, the inner diameter, the number in the pipe circumferential direction and the parallel direction Adjustment enables detailed flow rate adjustment to each flow path. Therefore, a higher uniform distribution effect of the first fluid A can be obtained.
  • FIG. A rectifier / distributor 204 according to the fourth embodiment will be described with reference to FIG.
  • the rectifier / distributor 203 of the third embodiment described above the case where the main pipe 210 has a predetermined pipe diameter (inner diameter) has been described.
  • the rectifier / distributor 204 of the fourth embodiment a case where a longitudinal groove is formed on the inner surface of the main pipe 210 or the sub pipe 220 will be described.
  • FIG. 11 is a diagram showing grooves between the main pipe 210 and the sub pipe 220 in the fourth embodiment.
  • (A) of FIG. 11 is an X direction arrow view (equivalent to (a) of FIG. 8) of the rectifying / distributing device 204 of the fourth embodiment.
  • the main pipe 210 has a plurality of grooves 212 extending in the longitudinal direction on the inner surface.
  • FIG. 11B is a diagram showing a thin tube used as the secondary tube 220.
  • FIG. 11C is a view showing a flat tube used as the slave tube 220.
  • a plurality of grooves 222 extending in the longitudinal direction are formed on the inner surface of the slave tubes 220. Although a plurality of slave pipes 220 are used, the grooves 222 may be formed in all the slave pipes 220, or the grooves 222 may be formed only in some of the slave pipes 220.
  • Grooves are formed in the main pipe 210 and the follower pipe 220 of the rectifier distributor 200, and an annular flow of the first fluid A is easily formed due to the liquid retention effect between the grooves and the increased centrifugal force due to the twist of the groove. Thereby, the same effect as in the third embodiment can be obtained.
  • detailed flow rate adjustment to each flow path is possible, and thus a higher uniform distribution effect can be obtained.
  • Embodiment 5 FIG.
  • the case where grooves are formed on the inner surfaces of the main pipe 210 and the secondary pipe 220 of the rectifier distributor 204 has been described.
  • an embodiment of a refrigeration cycle apparatus including a plate heat exchanger 100 including any of the rectifying distributors 201 to 204 of the first to fourth embodiments will be described.
  • the refrigeration cycle apparatus in which a compressor, a condenser, an expansion valve, and an evaporator (heat radiator) are sequentially connected by a refrigerant pipe, the refrigeration cycle apparatus is at least one of a condenser and an evaporator.
  • the plate heat exchanger provided with the rectifier / distributor according to any one of the first to fourth embodiments is used. According to the refrigeration cycle apparatus of the fifth embodiment, a highly reliable refrigeration cycle apparatus excellent in heat exchange performance can be obtained.
  • the refrigeration cycle apparatus has been described as an application example of the plate heat exchanger 100 including the rectifier / distributor according to any of Embodiments 1 to 4.
  • the plate heat exchanger 100 can be used in many industrial and household devices equipped with a plate heat exchanger such as air conditioning, power generation, and food sterilization equipment.
  • the air conditioner equipped with the plate heat exchanger 100 the amount of power consumption can be suppressed, and the amount of CO 2 emission can also be reduced.
  • the pressure loss of the fluid can be reduced, it is possible to use a fluid having a large pressure loss such as a hydrocarbon or a low GWP refrigerant.
  • the plate heat exchanger 100 described in the above embodiment includes any one of the rectifier distributors 201 to 204.
  • (1) Thereby, the heat exchange with the 1st fluid A and the 2nd fluid B in each flow path is performed uniformly, and an effective heat-transfer area can be utilized without waste. For this reason, a heat exchanger with high heat exchange efficiency can be provided.
  • the distribution pipe between the plates is a circular tube or a substantially flat tube and has a convex shape. For this reason, the fluid can flow out to the flow path inlet between the plates.
  • the air conditioner equipped with the plate heat exchanger 100 the power consumption can be suppressed and the CO2 emission can be reduced. Therefore, an inexpensive and highly reliable refrigeration cycle apparatus and air conditioner can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 プレート式熱交換器において、流入した流体を、それぞれの熱交換流路に均等に分配するプレート式熱交換器の提供を目的とする。プレート式熱交換器100は、第1積層方向流路41に長手方向が積層方向Xとなるように差し込まれた主たる管である主管210と、主管210の内部空間と連通し、それぞれの第1流路21の位置で主管210に配置された従たる管である従管220とを備えた。複数の従管のそれぞれは、第1積層方向流路41における主管210の差し込み方向Xに進むほど、主管210の内径側の表面から主管210の内部空間へ突き出す突出部223の長さが短い。

Description

プレート式熱交換器及び冷凍サイクル装置
 この発明は、プレート式熱交換器に関するものである。
 従来のプレート式熱交換器の整流分配部品は、プレート並列方向で各プレート間の熱交換流路へ流体を均一に分散流入させるため、主管に小孔またはスリットを設けたもの、流れ方向へ管路を絞り流路断面積を小さくしたものがある(例えば、特許文献1、2、3)。
特開平11-101588号公報(第3頁、第2図) 特開2001-050611号公報(第3頁、第2図、第3図) 特開平5-264126号公報(第4頁、第1図、第6図) 特開2001-280888号公報(第1図、第3図)
 従来、プレート式熱交換器が冷媒(第1流体)と水(第2流体)とが流れる蒸発器として使われる場合、流入口孔をプレート並列方向へ流れる第1流体(冷媒)は二相流となる。この場合、液は慣性力のため奥へ流れやすく、プレート間の熱交換流路へ均一に分散され難い。また、流入口孔では分離流が形成されやすく、この流動様式(分離流の形成)によっても、各プレート間への均一分散が妨げられる。このため、全数のプレートで有効に熱交換が行われず、熱交換量の低下、気液不均一分布による凍結発生といった課題があった。特にこれらの現象はプレート枚数が多い場合に顕著に見られる。
 これらの対策として、従来(例えば、特許文献1、2)では、整流分配部品が設けられるけれども、従来のように、主管に小孔またはスリットを設けた構成の場合には、並列方向の抵抗が無いため、並列方向において流体は均一化されず、このため流体は奥へ流れやすい傾向は変わらない。各プレート間への分配孔が凹形(単に主管に孔が形成)であるため(特許文献1)、プレート間の流路内において、プレート長軸方向への流体到達距離が短くプレート短軸方向の分配が難しい。また、ろう付けによるプレート式熱交換器組み立て時、プレート間の流路と分配孔の位置合わせも困難である。特許文献3は、流入口孔の流入口側から流路断面積を逐次小さくしている。この場合、流入口から奥へ行くほど流速が大きくなるため、プレートの積層枚数が100枚で流路数が50といった多流路である場合、液流体が手前に流れ難いという傾向は変わらない。また、特許文献4では、特許文献4の図3に示すような中空部材21を用いている。しかし、中空部材21を用いたとしても、同様に、液流体が手前に流れ難いという傾向は依然として残る。
 この発明は、プレート式熱交換器において、流入した流体を、それぞれの熱交換流路に均等に分配するプレート式熱交換器の提供を目的とする。
 この発明のプレート式熱交換器は、
 第1流体又は第2流体の流出入口となる孔が四隅に設けられた複数の矩形のプレートが積層され、各プレートの間に前記第1流体が流れる第1流路と、前記第2流体が流れる第2流路とが交互に形成されると共に、前記四隅における位置を同じくし積層方向に連続する複数の前記孔から形成される前記積層方向の前記第1流体の流路であって、それぞれの前記第1流路に前記第1流体が分岐する流路である第1積層方向流路が形成されたプレート式熱交換器において、
 前記第1積層方向流路に長手方向が前記積層方向となるように差し込まれ、差し込み方向において手間側の端部から前記第1流体が流入する管であって、前記端部から前記長手方向へ向かう前記第1流体に対して抵抗となる複数の抵抗体が、前記端部側から前記長手方向に向かって順次配置された主たる管である主管と、
 前記主管の内部空間と連通し、それぞれの前記第1流路の位置で前記主管に配置された従たる管である複数の従管と
を備えた流体分配器
を備えたことを特徴とする。
 この発明のプレート式熱交換器は主管と複数の従管とを有する流体分配器を備えたので、流入した流体を、それぞれの熱交換流路に均等に分配することができる。
実施の形態1におけるプレート式熱交換器100を示す図。 実施の形態1におけるプレート式熱交換器100の構成概要を示す分解斜視図。 実施の形態1における整流分配器201を説明する図。 実施の形態1における従管220に扁平管を用いた整流分配器201を示す図。 実施の形態1における従管220に細管を用いた整流分配器201を示す図。 実施の形態1における主管210に複数の抵抗体225が配置された状態を示す図。 実施の形態1における従管220の突出部223の部分のみを扁平形状に形成した場合を示す図。 実施の形態2における整流分配器202を説明する図。 実施の形態2における整流分配器202の効果を説明する図。 実施の形態3における主管210に流入する冷媒流量と、主管210の内径との関係を示す図。 実施の形態4における主管210と従管220との溝を示す図。
 実施の形態1.
 図1は、実施の形態1におけるプレート式熱交換器100を示す。
(1)図1の(a)は、プレート式熱交換器100の側面図である。
(2)図1の(b)は、正面図((a)のX矢視)である。また、図1の(a)の矢印X方向がプレートの積層方向である。図1の(b)の前側補強用サイドプレート1は最も外側に位置する。前側補強用サイドプレート1は、第1流体Aの流出入管5、第1流体Aの流出入管7、第2流体Bの流入管6、第2流体Bの流出管8を備えている。なお、第1流体Aの流出入管5、第1流体Aの流出入管7を「流出入管」と呼ぶのは、次の理由による。プレート式熱交換器100を蒸発器(吸熱器)として用いる場合は、冷媒(第1流体)は、後述する図2の流出入管7から流入し、流出入管5から流出する。また、プレート式熱交換器100を凝縮器(放熱器)として用いる場合は、冷媒(第1流体)は、流出入管5から流入し、流出入管7から流出する。このように、蒸発器、凝縮器としての使用により流体が流出、あるいは流入する。このため、流出入管5、流出入管7を「流出入管」と呼んでいる。なお、第2流体Bは、例えば水であり、また、流入管6へは、蒸発器、凝縮器としてのいずれの使用の場合も第2流体Bが流入する。流出管8は、第2流体が流出する。
(3)図1の(c)は、V字の波形状9が形成され、第1流体Aと第2流体Bとの流路(後述の第1流路21及び第2流路22)を構成する前側伝熱プレート2を示す。前側伝熱プレート2は、第1流体A又は第2流体Bの流出入口となる孔11~14が四隅に形成されている。
(4)図1の(d)は、V字の波形状10が前側伝熱プレート2と対向した形で置かれ(V字形状が互いに交差するように)、第1流体Aと第2流体Bの流路を構成する後側伝熱プレート3を示す。前側伝熱プレート2と後側伝熱プレート3とを交互に並べることにより、第1流体Aと第2流体Bの流路が交互に繰り返し形成される。第1流体Aの流れる流路を第1流路21と呼び、第2流体Bの流れる流路を第2流路22と呼ぶ。すなわち、前側伝熱プレート2と後側伝熱プレート3とを交互に並べることにより、第1流路21と第2流路22とが交互に形成される。なお、前側伝熱プレート2、後側伝熱プレート3の区別が必要のない場合は、単にプレートという。
(5)図1の(e)は、最も外側に位置する後側補強用サイドプレート4を示す。プレート式熱交換器100の背面図である。
(6)図1の(f)は、前側伝熱プレート2と後側伝熱プレート3とを重ね合わせた状態を示した図である。図1の(f)は両者を重ねた状態において図1の(a)のX方向矢視でみた場合に、現実に見える前側伝熱プレート2の形状を実線で示し、実際には見えない後側伝熱プレート3の波形状を点線で示した。
 図2は、プレート式熱交換器100の構成の概要を示す分解斜視図である。なお、図2には、後述する整流分配器201を記載していない。図2はプレートの積層状態及び第1流体A、第2流体Bの流れを示すための図である。図2は、プレート式熱交換器100を、蒸発器として使用する場合を示している。よって第1流体Aは、流出入管7から流入し、第1流路21を流れ、流出入管5から流出する。なお、第2流体Bは、流入管6から流入し、第2流路22を流れ、流出管8から流出する。図2に示すように、各プレートの間に、第1流体Aが流れる第1流路21と、第2流体Bが流れる第2流路22とが交互に形成されている。また、第1積層方向流路41が形成されている。第1積層方向流路41は、四隅における位置を同じくし、積層方向Xに連続する複数の孔13から形成される積層方向Xの第1流体Aの流路であって、それぞれの第1流路21に第1流体Aが分岐する流路である。
 図3は、プレート式熱交換器100の備える整流分配器201を説明する図である。図3の(a)は、図1の(b)に相当する、流出入管7付近の正面図である。図3の(b)は、(a)のA-A断面を示す。なお、A-A断面は、第1流路21が連続して見える断面で切断している。積層方向を示す矢印Xは、手前から奥に向かう。つまり、前側補強用サイドプレート1の側が手前であり、後側補強用サイドプレート4の側が奥である。
 複数のプレートを並列に並べて、各プレートの孔13に基づく流路L1~Lnで構成された第1積層方向流路41に、整流分配器201が挿入されている。整流分配器201は、主となる主管210に、従となる複数の従管220(分配管)をプレート並列方向(積層方向X)に配置した成である。従管220は、細管(後述の図9の(b))や扁平管18(後述の図9の(c))などを用いる。整流分配器201により、各プレート間の熱交換流路へ、第1流体Aを均一に分散する。
 図4は、従管220に、図9の(c)で後述する扁平管を用いた整流分配器201を示す図である。扁平管は、図9の(c)に示すように、長手方向に略平行に形成された複数の貫通孔221を有する。
 図5は、従管220に、中空円筒形状の細管を用いた整流分配器201を示す図である。
 図3~図5に示すように、整流分配器201は、第1積層方向流路41に長手方向が積層方向Xとなるように差し込まれた主管210と、主管210の内部空間と連通し、それぞれの第1流路21の位置で主管210に配置された従管220とを備えている。また、従管220は、図5に示すように内径が円形状の細管と、図4に示す扁平管との少なくともいずれかが使用される。すなわち、図4では扁平管のみを使用しているが、細管と扁平管とを混在させて用いてもよい。
 また、図3~図5に示すように、複数の従管220のそれぞれは、一方の端部が、主管210の外側の側面から内側へ貫通して開けられた貫通孔211へ差し込まれることで、主管210に配置される。複数の従管220のそれぞれは、一方の端部が主管210の内径側の表面から主管210の内部空間に突出部223として突き出している。
(差込量a)
 従来では、図3の(b)の流路Lnが20以上(プレート枚数40相当以上)になると、第1冷媒A(第1流体)の各第1流路21への分散が悪化し易かった。すなわち、液は、慣性力のため、並列方向奥側(後側補強用サイドプレート4側)に多く向かい、手前側(前側補強用サイドプレート1側)では少なくなって、偏りが生じる。しかし、実施の形態1の整流分配器201は、細管や扁平管が使用される従管220の端部を、突出部223として主管210に挿し込んでいる。これら従管220の主管210の内部空間への突出部223の差込量a(突出部223の突き出し長さ)で並列方向(積層方向)の液分布を調整することが可能である。すなわち、突出部223が、主管210の手前側(前側補強用サイドプレート1側)の端部から長手方向へ向かう第1冷媒Aに対して抵抗となる。この際に、それぞれの突出部223の差込量aを調整することで、第1冷媒Aに対する抵抗を加減することができる。差込量aとは、図3の(b)に示すように、従管220の端部が、主管210の内径側表面から主管210の内部空間に突き出る寸法aである。図3の(b)は、最も手前側の従管220の差込量aを示している。例えば図3の(b)のように、並列方向奥側へ液が流れ込む場合、手前側の従管220の差込量aを大きく(長く)し、奥へ行くほど差込量aを小さく(短く)しても良い。このように、それぞれの突出部223の差込量aは、不均一である。「不均一」とは、突出部223の差込量aが、一様ではないことを意味する。すなわち全部の突出部223の差込量aが略同じ長さの場合以外は、「不均一」である。液量の調整によっては、手前側の従管220の差込量aを小さくしてもよいし、あるいは手前と奥側との差込量aを長めにしてもよい。
 このように、液量または主管210へ流れ込む流体の流動様式に合わせて、従管220の差し込量aを決定する。
(従管の種類)
 なお従管220として使用する扁平管は、楕円管、板状扁平管、電縫管、複数の円管を連結した連結管や、円管を絞って扁平形状としたものも含む。すなわち、断面が扁平しており、主管210の内部空間から第1流路21へ第1冷媒を分配できる管であれば、扁平管に含まれる。
 図3の(b)に示すように、従管220は凸形状である。ここで「凸形状」とは、主管210の外側表面から各プレート間の第1流路21側へ突き出ているという意味である。この「凸形状」のため、従管220と、この従管220に対応する第1流路21との位置合わせも容易である。すなわち、仮組して、ろう付けする場合には、ろう付け時に多少の変形が生じる。しかし、「凸形状」のため、従管220は、多少の変形が生じた場合でも、対応する第1流路の隣の第1流路へ移動することはない。しかし主管210に、単に「孔やスリット」(凹形状と呼ぶ)が形成されたのみでは、ろう付け時の変形により「孔やスリット」と、これに対応する第1流路とがずれる可能性がある。このずれが生じると、「孔やスリット」から流出した第1流体Aがプレートに当たり、第1流路への均一分配が不可能となる。また、主管210に、単に「孔やスリット」が形成されたのみでは、「孔やスリット」と第1流路とに距離があると、第1位流体の流量が少ない時には失速しプレート間の流路まで届かない可能性がある。整流分配器201では、従管220を凸形状に構成したので「孔やスリット」(凹形状)のような不都合は生じない。
(抵抗体)
 図6は、主管210に、複数の抵抗体225が配置された状態を示す図である。図6の(a)は、抵抗体225が配置された主管210をX方向(図1の(a))から見た図である。図6の(b)は、図3の(b)に相当する断面図である。以上の説明では、図3の(b)に示したように、従管220の突出部223(差込量a)が、手前側(前側補強用サイドプレート1側)の端部から奥側(後側補強用サイドプレート4側)へ向かう第1冷媒Aに対して抵抗として機能する場合を説明した。しかし図3の(b)は、一例であり、図6に示すように、主管210の内部に、主管210の手前側から奥側に向かって複数の抵抗体225を順次配置してもよい。図3~図5の場合は、図6における複数の抵抗体225のそれぞれを、従管220の突出部223が兼ねる場合に相当するとも言える。
(扁平形状)
 図7は、従管220の突出部223の部分のみを扁平形状に形成した場合を示す図である。図7の(a)は、図6の(a)に対応し、図7の(b)は、図6の(b)に対応する。図7の(b)は断面とはしていない。以上の実施の形態1では、図4に示すように、全体が扁平形状である扁平管を従管220として使用する場合を説明したが、これは一例である。図7に示すように、従管220は、少なくとも突出部223を扁平形状に形成してもよい。図7の(b)に示すように、突出部223は、主管210の差し込み方向Xと、主管210の差し込み方向と反対方向Yとの2方向からつぶされた形状に相当する扁平形状に形成されており、この突出部223の差込量aによって、第1冷媒Aに対する抵抗を調整する。なお、図4のように、従管220の全体を扁平形状にしてもよいことはもちろんである。
(投影面積)
 また、突出部223として扁平形状を採用する場合、差込量aに限らず、扁平形状の、積層方向X(図3の(b))を法線とする面への投影面積の大きさを変えてもよい。すなわち、図3の(b)に対応して説明すれば、扁平形状の投影面積は、手前側の突出部223ほど大きく(広く)し、奥へ行くほど小さく(狭く)してもよい。
 本実施の形態1の整流分配器201であれば、従管220が前記凸形状で形成されている。よって、プレート間で形成される流路とほぼ一致またはこの流路に第1流体Aを重ねられる。このため、確実に各第1流路へ第1冷媒Aを分配可能である。また、上述のように、整流分配器201の組み立て時における第1流路21と、これに対応する従管220との位置合わせも容易である。
 また、整流分配器201による流体の均一分配により、凍結耐力も向上する。液は慣性力により主管210の手前側にあるプレート間で形成する流路へ流れ難く、速度の速い蒸気が流れやすい。このため、これらの流路で蒸発が促進されプレートの急激な温度低下により凍結が生じすい。本実施の形態1の整流分配器201であれば、従管220の差込量aの調整により主管210の流体分布を均一化できるため、凍結も抑制できる。また、整流分配器201によれば、熱交換性能向上により、空調機の必要能力に対する熱交換器の必要プレート枚数を最小限に構成できる。さらに、熱交換器内の凍結を抑えられるので、コストを抑えつつ信頼性の高いプレート式熱交換器を提供できる。
 実施の形態2.
 図8、図9を参照して実施の形態2を説明する。実施の形態2は、それぞれの第1流路の位置で、従管220を複数個、配置する構成である。
 以上の実施の形態1では、第1積層方向流路41に差し込まれた整流分配器201を備えた、プレート式熱交換器100を説明した。実施の形態1の整流分配器201は、従管220プレート並列方向に挿し込まれた構成であった。
 実施の形態2では、プレート並列方向に配置された従管220のそれぞれの位置において、複数の従管220が、主管210の管周方向に差し込まれた構成を示す。
 図8は、実施の形態2の整流分配器202を示す図である。
 図9は、整流分配器202の効果を説明する図である。
 図8の(b)は、図3の(b)に対応する断面である。図8の(a)は、整流分配器200のX方向矢視である。主管210には、従管220のそれぞれの位置において、複数の従管220が、主管210の管周方向に差し込まれている。すなわち、図8の(b)において、第1流路21-1に対応する従管220の位置51では、(a)に示すように、3つの従管220が主管210の管周方向に差し込まれている。第1流路21-2に対応する従管220の位置52では、位置51と同様に、3つの従管220が差し込まれている。その他の位置53~56でも同様である。図8の(b)に示すように、複数の従管220は、それぞれの第1流路の位置で、複数個が主管210の略円周方向に配置されている。
 このように、従管220を、主管210の管周方向に複数個挿し込むことにより、主管210を流れる第1流体Aを主管210の管周方向に広げることが可能である。整流分配器200では従管220(分配管)を細管や扁平管で形成しているので、第1流体Aの圧力損失や方向を調整しやすい。このことを図9を参照して説明する。例えば、図9では、第1流体Aの経路X~Zの長さが、
 「X>Z>Y」
の順になっており、圧力損失もこの順に小さくなる。よって、この第1流路内には圧力分布が生じる。この場合に、従管220の寸法や内径、各位置(位置51や位置52等)における本数を変えることで圧力損失を調整できる。
 整流分配器202では、複数の孔がある扁平管(図11の(c))の内径を変化させたり、あるいは第1流体Aの流れ方向を、管周方向の挿し込み角度θ(図8の(a))で調整可能である。これらの調整により、流体のよどみやすい、孔12と短軸方向逆側の領域19(図9)へ、強制的に流体を流すことも可能となる。
 これにより流体のよどみも改善できるため、有効伝熱面積増加により熱交換量が増加し、流体が流れる領域と、よどみ領域との速度差低減により、圧力損失低減も可能となる。流体の種類、主管210の流動様式、伝熱プレートの形状、伝熱プレート上の流体の流出入口位置によって、並列方向の従管220の本数や、管周方向の従管220の本数や、あるいは従管220の寸法を変更しても良い。
 実施の形態3.
 図10を参照して実施の形態3を説明する。以上の実施の形態2の整流分配器202では、従管220を主管210の管周方向に複数挿し込んだ構成を示した。実施の形態3の整流分配器203は、主管210が所定の管径(内径)である場合を示す。
 図10は、主管210に流入する冷媒流量(横軸;kg/h)と、整流分配器203の主管210の内径(縦軸;mm)の関係を示すグラフである。一般的に伝熱プレートの孔13は内径が大きく、分離流を形成しやすい。分離流の場合、プレート間の流路で気液の偏りが生じ、有効伝熱面積の減少や凍結が生じる。例えば流体がR410Aの場合、図10の斜線で示す内径の範囲であれば、主管210内の流動様式が環状流となり、管周囲に流体の液膜が形成される。整流分配器203の主管210は、入流する第1流体Aが環状流となる内径を有する。このため、気液が均等に混合された流体がプレート間の流路において流動しやすくなる。よって、熱交換性能向上のみでなく、凍結防止といった信頼性の高い熱交換器を提供できる。
 なお、R410Aに関して述べたが、この冷媒に限らず従来使用されるフロン系冷媒に加え、HC系、自然系、R1234yfといった低GWP冷媒にも所定の管内径に調整することにより対応できる。また実施の形態1および実施の形態2で述べた構成と合わせて用いると、従管220の主管210への差込量a、流路側への寸法、内径、管周方向や並列方向の本数の調整により、詳細な各流路への流量調整が可能となる。よって、第1流体Aの、より高い均一分配の効果が得られる。
 実施の形態4.
 図11を参照して実施の形態4の整流分配器204を説明する。以上の実施の形態3の整流分配器203では、主管210が所定の管径(内径)を有する場合を説明した。実施の形態4の整流分配器204は、主管210や従管220の管内面に、長手方向の溝が形成された場合を説明する。
 図11は、実施の形態4における主管210と従管220との溝を示す図である。図11の(a)は、実施の形態4の整流分配器204のX方向矢視(図8の(a)に相当)である。主管210は、内側表面に、長手方向に延びる複数の溝212が形成されている。図11の(b)は、従管220として使用する細管を示す図である。図11の(c)は、従管220として使用する扁平管を示す図である。これら従管220には、内側表面に、長手方向に延びる複数の溝222が形成されている。従管220は複数使用されるが、すべての従管220に溝222が形成されてもよいし、一部の従管220にのみ溝222が形成されてもよい。
 整流分配器200の主管210や従管220に溝を形成し、溝間による液の保持効果や溝のねじれによる遠心力増大により、第1流体Aの環状流を形成しやすくする。これにより実施の形態3と同様の効果が得られる。実施の形態1および実施の形態2の構成と合わせて用いると、各流路への詳細な流量調整が可能となるため、より高い均一分配の効果が得られる。
 実施の形態5.
 以上の実施の形態4では、整流分配器204の主管210や従管220の管内面に溝を形成した場合を説明した。実施の形態5では、実施の形態1~4の整流分配器201~204のいずれかを備えたプレート式熱交換器100を備え持つ、冷凍サイクル装置の実施の形態を説明する。
 本実施の形態5では、圧縮機、凝縮器、膨張弁及び蒸発器(放熱器)が、冷媒配管によって順次連結された冷凍サイクル装置において、この冷凍サイクル装置は、凝縮器、蒸発器の少なくとも一方に、実施の形態1~4のいずれかの整流分配器を備えたプレート式熱交換器を用いる。実施の形態5の冷凍サイクル装置によれば、熱交換性能にすぐれた信頼性の高い冷凍サイクル装置を得ることができる。
 実施の形態1~4のいずれかの整流分配器を備えたプレート式熱交換器100の活用例として、冷凍サイクル装置について述べた。しかし、プレート式熱交換器100は、空調、発電、食品の加熱殺菌処理機器等、プレート式熱交換器を搭載した多くの産業、家庭用機器に利用可能である。プレート式熱交換器100を搭載した空調機器によれば、消費電力量が抑えられ、またCO排出量も低減できる。また流体の圧力損失を低減できるため、炭化水素、低GWP冷媒といった圧力損失の大きな流体の使用も可能である。
 以上の実施の形態で述べたプレート式熱交換器100は、整流分配器201~204のいずれかを備えている。
(1)これにより、各流路における第1流体Aと第2流体Bとの熱交換が一様に行われ、有効伝熱面積を無駄なく活かせる。このため、熱交換効率の高い熱交換器を提供できる。
(2)流路内に気相が偏ると凍結が発生するが、液流体の均一分配により凍結発生を抑制できるため、凍結による熱交換器破壊を防止できる。
(3)各プレート間への分配管が円管または略扁平管であり凸形状である。このため、各プレート間の流路入口へ流体を流出できる。よって、従管220(分配管)と流路との位置調整が容易であり、ロ付け等の製造においても、品質の安定した熱交換器を生産できる。
(4)プレート式熱交換器100を搭載した空調機器によれば、消費電力量が抑えられ、CO2排出量も低減できる。よって安価で信頼性の高い冷凍サイクル装置や空調機器を提供できる。
 1 前側補強用サイドプレート、2 前側伝熱プレート、3 後側伝熱プレート、4 後側補強用サイドプレート、5 流出入管、7 流出入管、6 流入管、8 流出管、9 波形状、10 波形状、11,12,13,14 孔、21 第1流路、22 第2流路、23 第1流体流れ方向、41 第1積層方向流路、100 プレート式熱交換器、201,202,203,204 整流分配器、210 主管、211 貫通孔、212 溝、220 従管、221 貫通孔、222 溝、223 突出部、225 抵抗体。

Claims (11)

  1.  第1流体又は第2流体の流出入口となる孔が四隅に設けられた複数の矩形のプレートが積層され、各プレートの間に前記第1流体が流れる第1流路と、前記第2流体が流れる第2流路とが交互に形成されると共に、前記四隅における位置を同じくし積層方向に連続する複数の前記孔から形成される前記積層方向の前記第1流体の流路であって、それぞれの前記第1流路に前記第1流体が分岐する流路である第1積層方向流路が形成されたプレート式熱交換器において、
     前記第1積層方向流路に長手方向が前記積層方向となるように差し込まれ、差し込み方向において手間側の端部から前記第1流体が流入する管であって、前記端部から前記長手方向へ向かう前記第1流体に対して抵抗となる複数の抵抗体が、前記端部側から前記長手方向に向かって順次配置された主たる管である主管と、
     前記主管の内部空間と連通し、それぞれの前記第1流路の位置で前記主管に配置された従たる管である複数の従管と
    を備えた流体分配器
    を備えたことを特徴とするプレート式熱交換器。
  2.  前記複数の従管のそれぞれは、
     一方の端部が前記主管に開けられた孔に差し込まれることで前記主管に配置されると共に、前記一方の端部が前記主管の内径側の表面から前記主管の内部空間に突出部として突き出し、
     前記複数の抵抗体のそれぞれは、
     前記従管の前記突出部が兼ねることを特徴とする請求項1記載のプレート式熱交換器。
  3.  前記複数の従管のそれぞれは、
     前記主管の内径側の表面から前記主管の前記内部空間へ突き出す前記突出部の長さが、不均一であることを特徴とする請求項2記載のプレート式熱交換器。
  4.  前記複数の従管のそれぞれは、
     前記第1積層方向流路における前記主管の差し込み方向に進むほど、前記主管の内径側の表面から前記主管の前記内部空間へ突き出す前記突出部の長さが短いことを特徴とする請求項3記載のプレート式熱交換器。
  5.  前記複数の従管の少なくともいずれかは、
     少なくとも前記突出部が、
     前記主管の差し込み方向と、前記主管の差し込み方向と反対方向との2方向からつぶされた形状に相当する扁平形状に形成されていることを特徴とする請求項2記載のプレート式熱交換器。
  6.  少なくとも前記突出部が前記扁平形状に形成された前記従管は、
     長手方向に略平行に形成された複数の貫通孔を有する扁平管が使用されることを特徴とする請求項5記載のプレート式熱交換器。
  7.  前記主管は、
     それぞれの前記第1流路の位置で、複数の前記従管が前記主管の略周方向に配置されたことを特徴とする請求項2記載のプレート式熱交換器。
  8.  前記主管は、
     所定の流量の前記第1流体が前記端部から流入すると共に、前記端部から入流する所定の流量の前記第1流体が環状流となる内径を有することを特徴とする請求項2記載のプレート式熱交換器。
  9.  前記主管は、
     内径側表面に、長手方向に延びる複数の溝が形成されたことを特徴とする請求項2記載のプレート式熱交換器。
  10.  前記複数の従管の少なくともいずれかは、
     内径側表面に、長手方向に延びる複数の溝が形成されたことを特徴とする請求項2記載のプレート式熱交換器。
  11.  圧縮機と、第1の熱交換器と、膨張機構と、第2の熱交換器とが配管で接続された冷凍サイクル装置において、
     前記第1の熱交換器、前記第2の熱交換器の少なくともいずれかとして、
     第1流体又は第2流体の流出入口となる孔が四隅に設けられた複数の矩形のプレートが積層され、各プレートの間に前記第1流体が流れる第1流路と、前記第2流体が流れる第2流路とが交互に形成されると共に、前記四隅における位置を同じくし積層方向に連続する複数の前記孔から形成される前記積層方向の前記第1流体の流路であって、それぞれの前記第1流路に前記第1流体が分岐する流路である第1積層方向流路が形成されたプレート式熱交換器において、
     前記第1積層方向流路に長手方向が前記積層方向となるように差し込まれ、差し込み方向において手間側の端部から前記第1流体が流入する管であって、前記端部から前記長手方向へ向かう前記第1流体に対して抵抗となる複数の抵抗体が、前記端部側から前記長手方向に向かって順次配置された主たる管である主管と、
     前記主管の内部空間と連通し、それぞれの前記第1流路の位置で前記主管に配置された従たる管である複数の従管と
    を備えた流体分配器
    を備えたことを特徴とするプレート式熱交換器。
PCT/JP2011/064580 2011-06-24 2011-06-24 プレート式熱交換器及び冷凍サイクル装置 WO2012176336A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180071866.6A CN103649668B (zh) 2011-06-24 2011-06-24 板式换热器和冷冻循环装置
PCT/JP2011/064580 WO2012176336A1 (ja) 2011-06-24 2011-06-24 プレート式熱交換器及び冷凍サイクル装置
GB1322314.4A GB2505829B (en) 2011-06-24 2011-06-24 Plate heat exchanger and refrigeration cycle apparatus
JP2013521401A JP5665983B2 (ja) 2011-06-24 2011-06-24 プレート式熱交換器及び冷凍サイクル装置
US14/124,324 US9772145B2 (en) 2011-06-24 2011-06-24 Flat plate heat exchanger having fluid distributor inside manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064580 WO2012176336A1 (ja) 2011-06-24 2011-06-24 プレート式熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2012176336A1 true WO2012176336A1 (ja) 2012-12-27

Family

ID=47422207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064580 WO2012176336A1 (ja) 2011-06-24 2011-06-24 プレート式熱交換器及び冷凍サイクル装置

Country Status (5)

Country Link
US (1) US9772145B2 (ja)
JP (1) JP5665983B2 (ja)
CN (1) CN103649668B (ja)
GB (1) GB2505829B (ja)
WO (1) WO2012176336A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759474A (zh) * 2014-01-28 2014-04-30 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
WO2015084027A1 (ko) * 2013-12-03 2015-06-11 한국원자력연구원 피동격납건물냉각계통 및 이를 구비하는 원전
WO2015102348A1 (ko) * 2014-01-06 2015-07-09 한국원자력연구원 피동잔열제거계통 및 이를 구비하는 원전
KR101540668B1 (ko) * 2014-01-06 2015-07-31 한국원자력연구원 피동안전계통 및 이를 구비하는 원전
WO2015120804A1 (zh) * 2014-02-12 2015-08-20 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
JP2018189352A (ja) * 2017-04-28 2018-11-29 株式会社前川製作所 熱交換器
WO2019216183A1 (ja) * 2018-05-11 2019-11-14 株式会社デンソー プレート積層型の熱交換器
WO2024121984A1 (ja) * 2022-12-07 2024-06-13 三菱電機株式会社 熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150002980A (ko) * 2013-06-28 2015-01-08 삼성전자주식회사 공기조화기
US20160040942A1 (en) * 2014-08-08 2016-02-11 Halla Visteon Climate Control Corp. Heat exchanger with integrated noise suppression
EP3348946B1 (en) * 2015-09-07 2020-03-25 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
WO2017201252A1 (en) * 2016-05-20 2017-11-23 Modine Manufacturing Company Heat exchanger and heat exchange system
EP3290822B1 (en) * 2016-08-30 2019-11-20 Alfa Laval Corporate AB Plate heat exchanger for solar heating
FR3059408A1 (fr) * 2016-11-30 2018-06-01 Valeo Systemes Thermiques Dispositif de distribution d'un fluide refrigerant a l'interieur d'une boite collectrice d'un echangeur thermique
FR3059407B1 (fr) * 2016-11-30 2019-10-18 Valeo Systemes Thermiques Dispositif de mixage d'un fluide refrigerant a l'interieur d'une boite collectrice d'un echangeur thermique
JP7244293B2 (ja) * 2019-02-19 2023-03-22 東芝キヤリア株式会社 分配管ユニット、プレート式熱交換器および冷凍サイクル装置
CN109945700B (zh) * 2019-03-26 2024-03-29 深圳大学 一种紧凑式换热结构及热伏发电装置
TWI712771B (zh) * 2019-05-29 2020-12-11 國立中央大學 用於板式熱交換器之入口分佈器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297899A (ja) * 1988-09-30 1990-04-10 Matsushita Refrig Co Ltd 熱交換器
JPH03244995A (ja) * 1990-02-22 1991-10-31 Sanden Corp 熱交換器の製造方法
JPH0545487U (ja) * 1991-10-16 1993-06-18 東洋ラジエーター株式会社 熱交換器
JPH07151488A (ja) * 1993-11-29 1995-06-16 Sanden Corp 熱交換器及びその製造方法
JP2001355981A (ja) * 1993-11-08 2001-12-26 Sharp Corp 熱交換器
JP2002062082A (ja) * 2000-08-10 2002-02-28 Daikin Ind Ltd プレート型熱交換器
JP2008190863A (ja) * 2008-03-27 2008-08-21 Mitsubishi Electric Corp プレート熱交換器及びそれを備えた冷凍サイクルシステム
JP2010261662A (ja) * 2009-05-08 2010-11-18 Hisaka Works Ltd プレート式熱交換器、及びこれを備えた熱交換ユニット

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357156A (en) * 1942-03-02 1944-08-29 Mcquay Inc Radiator
US2648527A (en) * 1948-05-25 1953-08-11 Orson A Carnahan Heat exchanger
US2710443A (en) * 1949-06-07 1955-06-14 Babcock & Wilcox Co Method of making a restricted orifice tube joint
US3731734A (en) * 1971-05-03 1973-05-08 Ecodyne Corp Adjustable selective orificing steam condenser
GB2159431B (en) * 1984-05-29 1988-04-27 Shell Int Research Reactor for non-isothermic reactions and process for the preparation of hydrocarbons using such a reactor
US4705103A (en) * 1986-07-02 1987-11-10 Carrier Corporation Internally enhanced tubes
JP3210062B2 (ja) 1992-03-23 2001-09-17 松下冷機株式会社 冷媒分流器
IL107850A0 (en) 1992-12-07 1994-04-12 Multistack Int Ltd Improvements in plate heat exchangers
JPH11101588A (ja) 1997-09-29 1999-04-13 Hisaka Works Ltd プレート式熱交換器
US6179051B1 (en) * 1997-12-24 2001-01-30 Delaware Capital Formation, Inc. Distributor for plate heat exchangers
JP2001050611A (ja) 1999-08-10 2001-02-23 Ebara Corp プレート式熱交換器
JP2001141379A (ja) * 1999-11-11 2001-05-25 Showa Alum Corp 複式熱交換器
JP4454779B2 (ja) 2000-03-31 2010-04-21 株式会社日阪製作所 プレート式熱交換器
SE516416C2 (sv) * 2000-05-19 2002-01-15 Alfa Laval Ab Plattpaket, värmeöverföringsplatta, plattvärmeväxlaresamt anv ändning av värmeöverföringsplatta
SE516537C2 (sv) * 2000-05-19 2002-01-29 Alfa Laval Ab Plattpaket och plattvärmeväxlare
US20030010483A1 (en) * 2001-07-13 2003-01-16 Yasuo Ikezaki Plate type heat exchanger
US20030116310A1 (en) * 2001-12-21 2003-06-26 Wittmann Joseph E. Flat tube heat exchanger core with internal fluid supply and suction lines
CN2572309Y (zh) 2002-06-18 2003-09-10 广东科龙电器股份有限公司 大过冷度的蒸汽压缩制冷循环的冷水机组
US7051540B2 (en) * 2003-01-27 2006-05-30 Battelle Memorial Institute Methods for fluid separations, and devices capable of separating fluids
CN100398970C (zh) 2003-10-30 2008-07-02 乐金电子(天津)电器有限公司 把支管的***深度做得各不相同的超细管道热交换器
US20060101849A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with variable channel insertion depth
JP2006200852A (ja) * 2005-01-24 2006-08-03 Hitachi Zosen Corp 吸収式冷凍機における吸収器
US20060174611A1 (en) * 2005-02-07 2006-08-10 Dilley Roland L Exhaust gas cooler
CN101639304A (zh) * 2009-08-17 2010-02-03 三花丹佛斯(杭州)微通道换热器有限公司 一种换热器及包括该换热器的热交换装置
CN102042772B (zh) * 2010-05-14 2013-03-06 南京工业大学 具有介质均分器的层叠板翅结构换热器
JP5585543B2 (ja) * 2011-06-17 2014-09-10 株式会社デンソー 車両用冷却装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297899A (ja) * 1988-09-30 1990-04-10 Matsushita Refrig Co Ltd 熱交換器
JPH03244995A (ja) * 1990-02-22 1991-10-31 Sanden Corp 熱交換器の製造方法
JPH0545487U (ja) * 1991-10-16 1993-06-18 東洋ラジエーター株式会社 熱交換器
JP2001355981A (ja) * 1993-11-08 2001-12-26 Sharp Corp 熱交換器
JPH07151488A (ja) * 1993-11-29 1995-06-16 Sanden Corp 熱交換器及びその製造方法
JP2002062082A (ja) * 2000-08-10 2002-02-28 Daikin Ind Ltd プレート型熱交換器
JP2008190863A (ja) * 2008-03-27 2008-08-21 Mitsubishi Electric Corp プレート熱交換器及びそれを備えた冷凍サイクルシステム
JP2010261662A (ja) * 2009-05-08 2010-11-18 Hisaka Works Ltd プレート式熱交換器、及びこれを備えた熱交換ユニット

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10706974B2 (en) 2013-12-03 2020-07-07 Korea Atomic Energy Research Institute Passive cooling system of containment building and nuclear power plant comprising same
WO2015084027A1 (ko) * 2013-12-03 2015-06-11 한국원자력연구원 피동격납건물냉각계통 및 이를 구비하는 원전
KR101529529B1 (ko) * 2013-12-03 2015-06-18 한국원자력연구원 피동격납건물냉각계통 및 이를 구비하는 원전
WO2015102348A1 (ko) * 2014-01-06 2015-07-09 한국원자력연구원 피동잔열제거계통 및 이를 구비하는 원전
KR101535478B1 (ko) * 2014-01-06 2015-07-09 한국원자력연구원 피동잔열제거계통 및 이를 구비하는 원전
KR101540668B1 (ko) * 2014-01-06 2015-07-31 한국원자력연구원 피동안전계통 및 이를 구비하는 원전
US10811147B2 (en) 2014-01-06 2020-10-20 Korea Atomic Energy Research Institute Passive residual heat removal system and atomic power plant comprising same
WO2015113496A1 (zh) * 2014-01-28 2015-08-06 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
CN103759474B (zh) * 2014-01-28 2018-01-02 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
CN103759474A (zh) * 2014-01-28 2014-04-30 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
WO2015120804A1 (zh) * 2014-02-12 2015-08-20 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
JP2018189352A (ja) * 2017-04-28 2018-11-29 株式会社前川製作所 熱交換器
JP7045195B2 (ja) 2017-04-28 2022-03-31 株式会社前川製作所 熱交換器
WO2019216183A1 (ja) * 2018-05-11 2019-11-14 株式会社デンソー プレート積層型の熱交換器
WO2024121984A1 (ja) * 2022-12-07 2024-06-13 三菱電機株式会社 熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置

Also Published As

Publication number Publication date
US20140123697A1 (en) 2014-05-08
CN103649668A (zh) 2014-03-19
JPWO2012176336A1 (ja) 2015-02-23
JP5665983B2 (ja) 2015-02-04
US9772145B2 (en) 2017-09-26
GB201322314D0 (en) 2014-01-29
GB2505829B (en) 2017-12-27
CN103649668B (zh) 2016-02-17
GB2505829A (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5665983B2 (ja) プレート式熱交換器及び冷凍サイクル装置
US10852075B2 (en) Refrigerant distributor of micro-channel heat exchanger
US8167029B2 (en) Plate heat exchanger
US8113270B2 (en) Tube insert and bi-flow arrangement for a header of a heat pump
JP6214789B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
US10605534B2 (en) Plate heat exchanger
WO2013191056A1 (ja) 熱交換器
JP2010216754A (ja) プレート式熱交換器及び冷凍空調装置
JP7045195B2 (ja) 熱交換器
WO2015045073A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JPWO2020100276A1 (ja) プレート式熱交換器、ヒートポンプ装置およびヒートポンプ式冷暖房給湯システム
JP6188926B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
US10161659B2 (en) Refrigerant evaporator
JP5295330B2 (ja) プレート式熱交換器及び冷凍空調装置
EP3314191B1 (en) Two phase distributor evaporator
EP2990749B1 (en) Heat exchanger
JP4879292B2 (ja) プレート式熱交換器及び冷凍空調装置
JP6281422B2 (ja) 積層型熱交換器
KR20190075679A (ko) 쉘앤플레이트 열교환기용 쉘 및 이를 구비한 쉘앤플레이트 열교환기
EP4067800A1 (en) Heat exchanger
KR20170093513A (ko) 냉매 분배판, 이를 구비한 냉동 및 공조 시스템 증발기용 판형 열교환기
JP2019066132A (ja) 多パス型熱交換器およびそれを用いた冷凍システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180071866.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14124324

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1322314

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110624

WWE Wipo information: entry into national phase

Ref document number: 1322314.4

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868286

Country of ref document: EP

Kind code of ref document: A1