WO2012176276A1 - Organic electric field light emitting element - Google Patents

Organic electric field light emitting element Download PDF

Info

Publication number
WO2012176276A1
WO2012176276A1 PCT/JP2011/064121 JP2011064121W WO2012176276A1 WO 2012176276 A1 WO2012176276 A1 WO 2012176276A1 JP 2011064121 W JP2011064121 W JP 2011064121W WO 2012176276 A1 WO2012176276 A1 WO 2012176276A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
light emitting
organic
electroluminescent element
Prior art date
Application number
PCT/JP2011/064121
Other languages
French (fr)
Japanese (ja)
Inventor
隆介 小島
浩 大畑
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/064121 priority Critical patent/WO2012176276A1/en
Publication of WO2012176276A1 publication Critical patent/WO2012176276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present invention is a thin-film solid-state device, which is a product that has a problem of a sealing failure due to occurrence of a short circuit at a non-light emitting point that is difficult to detect and repair by laser light irradiation (laser repair), such as a display panel or a lighting panel
  • laser repair such as a display panel or a lighting panel
  • the present invention relates to an organic EL (electroluminescence) element, that is, an organic electroluminescence element.
  • an organic electroluminescent element using an EL organic compound material is a current injection type element having diode characteristics.
  • a display panel in which a plurality of organic electroluminescent elements are arranged in a matrix, a surface-emitting illumination panel using the thinness, and the like have been developed.
  • a sealing layer provided to cover the entire device is replaced with a defective portion.
  • Providing at least two layers of a buffer layer to be covered and a barrier layer made of a thin film laminated thereon to suppress expansion of a non-light-emitting region of a dark spot has been proposed (see Patent Document 1). .
  • a capping layer is provided between the organic EL element and the protective layer to prevent generation of pinholes in the protective film.
  • a structure that can efficiently extract emitted light to the outside has been proposed (see Patent Document 2).
  • the element sealing ability that is, the factor that degrades the organic electroluminescent element such as water and oxygen is focused on preventing contact with the element and causing the degradation reaction.
  • it is an object to suppress the occurrence of a defect that becomes a penetration source of the deterioration factor called a pinhole in a barrier layer (protective layer) covering the element.
  • the reliability of the element is lowered.
  • the defect of the barrier film due to the repair is that the capping layer and the buffer layer are heat-treated in the manufacturing process, become thermally stable and difficult to melt during laser repair, and obtain sealing performance. For this reason, the thickness of each layer provided on the element is too thick.
  • the barrier layer needs to cover the organic electroluminescent element in order to obtain sealing performance.
  • a metal barrier layer is used as the barrier layer, a short circuit occurs in the non-light emitting portion. In such a case, the short-circuit location cannot be specified in the light emitting state of the element, and much labor is involved in specifying the short-circuit location.
  • the present invention has been made in view of such circumstances, and makes it easy to find a short circuit that causes light emission failure and element destruction due to leakage current and the like, and even if a short circuit repair by laser repair is performed, the reliability of the element is improved.
  • One of the problems is to provide an organic electroluminescent element that does not deteriorate the properties.
  • the organic electroluminescent device wherein the organic layer is composed of one or more organic materials including a first electrode formed on a transparent substrate and a light emitting layer laminated on the first electrode, and the organic layer.
  • An organic electroluminescent element having a second electrode laminated thereon and an overlapping portion between the first and second electrodes as a light emitting region, wherein the organic electroluminescent element is made of an organic material laminated on the second electrode.
  • a metal protective layer made of a metal or an alloy laminated on the buffer layer, and the metal protective layer is provided at least in the light emitting region.
  • the metal protective layer is formed on at least the first electrode other than the light emitting region on the first electrode and the region in which insulation is ensured by the insulating layer on the first electrode. Is preferably not provided.
  • the organic electroluminescence device of the present invention since the heat treatment of the entire device is not performed, the amorphous nature of the buffer layer is maintained, so that the sealing performance can be maintained even when laser repair is performed, and the light emission is performed. Since the short circuit does not occur in the non-light emitting region because it is provided on the region and on the buffer layer in which insulation with the first electrode is ensured, it is easy to identify the short circuit part, and an improvement in yield can be expected. . Furthermore, since there is no process for heat-treating the entire device, the manufacturing process is simplified.
  • FIG. 1 is a schematic partially cutaway perspective view showing an organic electroluminescent element of an embodiment according to the present invention. It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of embodiment by this invention. It is a schematic sectional drawing which shows the organic electroluminescent element in the laser repair process in the organic electroluminescent element of embodiment by this invention. It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention.
  • FIG. 1 is a schematic partially cutaway perspective view showing an example of a bottom emission type organic electroluminescent device 100 according to an embodiment of the present invention.
  • the organic electroluminescent device 100 includes a first electrode 121 formed on a transparent substrate 110, an organic layer 122 made of one or more organic materials including a light emitting layer stacked on the transparent first electrode 121, an organic And a second electrode 123 stacked on the layer 122.
  • the organic electroluminescent element 100 the overlapping portion between the first electrode 121 and the second electrode 123 becomes the light emitting region 150.
  • An insulating layer BK is formed so as to surround the light emitting region 150 on the first electrode 121.
  • the organic electroluminescent element 100 has a laser repair layer 130 stacked on the second electrode 123.
  • the laser repair layer 130 is provided at least on the light emitting region 150, and also on the insulating layer upper region M in which insulation between the first electrode 121 and the laser repair layer is secured by the insulating layer BK on the first electrode 121. It is spread out.
  • FIG. 1 shows a state of the organic electroluminescent element 100 in which the insulating layer BK and a part of the second electrode 123 are cut out to expose the first electrode 121 and the organic layer 122, and the laser repair layer 130 is indicated by a broken line. ing.
  • FIG. 2 shows a minimum necessary stacked structure of the organic electroluminescent element 100 showing the concept of the first embodiment.
  • the organic electroluminescent element 100 includes an element body 120 and a laser repair layer 130 that are formed on a substrate 110 and contribute to the light emitting function of the organic electroluminescent element.
  • a first electrode 121 made of an electrically conductive material having high light transmittance, an organic layer 122 (organic semiconductor layer) made of a multilayer organic material, and an electrically conductive second electrode 123 are laminated in this order.
  • the laser repair layer 130 directly formed on the element body 120 is configured by sequentially stacking a buffer layer 131 and a metal protective layer 132.
  • the buffer layer 131 can be selected from organic materials having a glass transition temperature, for example, organic materials that are heated and melted to a temperature higher than the glass transition temperature by heat generated during laser repair.
  • TPD N, N′-bis ( 3-methylphenyl) -N, N′-diphenyl- [1,1-biphenyl] -4,4′-diamine
  • TPD N, N′-bis ( 3-methylphenyl) -N, N′-diphenyl- [1,1-biphenyl] -4,4′-diamine
  • the buffer layer 131 melts at the time of laser repair, alleviates the impact received by the second electrode 123, prevents the second electrode 123 and the metal protective layer 132 from being destroyed, and suppresses deformation that occurs in the second electrode 123 due to laser repair. It does not need fluidity.
  • the buffer layer 131 is provided for the purpose of melting by heat at the time of laser repair to develop fluidity and curing after cooling. Therefore, for the buffer layer 131, for example, a material having a glass transition temperature is selected as a standard for selecting the material.
  • the metal protective layer 132 can be selected from metals or alloy materials having properties such as ductility and malleability, and for example, aluminum can be used.
  • the metal protective layer 132 needs to be plastically deformed by being deformed by the second electrode 123 at the same time as not being destroyed by an impact during laser repair.
  • the metal protective layer 132 and the second electrode 123 with the same material, it is possible to form a film by vapor deposition using a common mask, and it is possible to suppress various costs of processes, facilities, and materials.
  • a region where the first electrode 121, the organic layer 122, and the second electrode 123 are all overlapped and stacked is a light emitting region 150, and the laser repair layer 130 is formed to overlap the light emitting region 150.
  • the metal protective layer 132 is provided in the light emitting region 150 (including on the first electrode 121) in which insulation is ensured by an insulating material. That is, the overlapping portion of the organic layer 122 between the first and second electrodes 121 and 123 serves as the light emitting region 150, and the metal protective layer 132 is formed on the buffer layer 131 on the second electrode 123 so as not to cover other than the light emitting region 150. Is provided.
  • the thin film may be formed using a printing technique such as an inkjet method or flexographic printing.
  • the organic electroluminescent element produced at the end deteriorates due to outside air, sealing is performed.
  • an example is one in which an adhesive is applied to the edge of a concave glass cap provided with a desiccant inside, and the organic electroluminescent element is surrounded by the glass cap.
  • the effect of the present embodiment can be obtained except for a sealing structure in which a solid that suppresses the shape change of the laser repair layer is provided immediately above the laser repair layer 130 of the organic electroluminescent element 100.
  • the concave portion of the glass cap may be filled with a material that does not affect the element, such as various inert gases and inert liquids, and sealed.
  • the buffer layer 131 is formed of an organic material having fluidity that does not inhibit the deformation of the second electrode and the metal protective film due to heat during laser repair.
  • an organic material having fluidity that does not inhibit the deformation of the second electrode and the metal protective film due to heat during laser repair.
  • TPD ⁇ -NPB, m-MTDATA, Spiro An amorphous solid organic material such as TPD is selected.
  • TPD amorphous solid organic material
  • Laser repair is executed from the substrate 110 side to the found defect location.
  • the laser light is irradiated with a wavelength that allows the organic layer 122 to absorb the laser light.
  • a wavelength that allows the organic layer 122 to absorb the laser light For example, as shown in FIG. 3A, when a light beam having a predetermined laser wavelength, power, and irradiation spot diameter is irradiated to a defective portion (an area sufficiently wider than the foreign matter P), any one of the organic layers 122 is The laser beam is absorbed and heated to evaporate and expand (vaporization), and the buffer layer 131 is also heated through the second electrode 123 but fluidizes without evaporating (liquefaction) and deforms together with the metal protective layer 132. To do.
  • the film shape of the second electrode 123 is deformed only in the laser irradiation region, and the second electrode 123, flow
  • the buffer layer 131 and the metal protective layer 132 that have been converted are also lifted away from the first electrode 121, and the occurrence of leakage is eliminated, and the repaired space S is formed by the deformed second electrode 123 and the metal protective layer 132.
  • the buffer layer 131 must isolate the second electrode 123 and the metal protective layer 132 and exhibit fluidity by heat during laser repair. Therefore, the thickness of the buffer layer 131 is desirably 0.05 ⁇ m to 1 ⁇ m, preferably 0.1 to 0.5 ⁇ m.
  • the shape is actually closer than in the case of the first embodiment, and as shown in FIG. 4A, the first electrode 121 and the second electrode 123 are in contact with the wiring, respectively.
  • the second embodiment is the same as the first embodiment except that extended portions 121B and 123B extending outside the light emitting region 150 are provided.
  • the area of the organic layer 122 can be made slightly larger than the light emitting region (enlarged portion 122B).
  • the edge part of the 2nd electrode 123 is provided inside the organic layer 122, and it avoids that the 1st electrode 121 and the 2nd electrode 123 contact directly, and short-circuit.
  • a buffer layer 131 and a metal protective layer 132 are provided in a region that coincides and overlaps with the light emitting region 150 defined by the first electrode 121 and the second electrode 123.
  • an insulating layer BK is formed in a portion (for example, a region 122C under the edge of the organic layer 122) excluding the light emitting region 150 on the first electrode 121.
  • the insulating layer BK is present on the electrical extraction portion of the first electrode 121, thereby ensuring insulation from the first electrode 121 and the metal protective layer 132.
  • a film can be formed by expanding to a part of the insulating layer BK.
  • the metal protective layer 132 cannot be placed on the first electrode 121 outside the light emitting region 150 in order to avoid a short circuit with the first electrode 121.
  • the insulating layer BK is provided in order to define the light emitting region of the element and to avoid a short circuit at the end of the first electrode 121, the insulating property is ensured on the insulating film BK.
  • the metal protective layer 132 may be enlarged and formed on the insulating layer BK.
  • a metal protective layer can be freely installed even outside the light emitting region 150 at a location where the possibility of short-circuiting with the first electrode 121 is extremely low.
  • the buffer layer 131 is formed wider than the light emitting region if at least on the light emitting region 150, and an enlarged portion 131B is provided.
  • the process can be simplified in manufacturing.
  • the metal protective layer 132 has the same area as the second electrode 123 and overlaps with the same area (that is, the metal protective layer enlarged portion extending on the second electrode 123 in addition to the light emitting region 150).
  • 132B) is the same as the second embodiment (FIG. 4A) except that the film is formed.
  • the location where the first electrode 121 is located below the metal protective layer 132 is always the light emitting region 150, the location can be easily identified even if a short circuit occurs.
  • the metal protective layer 132 is formed in the same pattern as the second electrode 123.
  • the film formation region of the buffer layer 131 is made equal to the organic layer 122 as compared with the third embodiment so that a part thereof covers the edge of the second electrode 123.
  • the third embodiment is the same as the third embodiment except that the enlarged portion 131B is formed.
  • the metal protective layer enlarged portion 132 ⁇ / b> B extending beyond the light emitting region 150 is formed on the second electrode 123. In this case, not only can the facilities be shared between the organic layer 122 and the buffer layer 131 in the manufacturing process, but also the end of the second electrode 123 is covered with the buffer layer 131, so the second electrode 123 and the organic layer Intrusion of moisture from the interface of the layer 122 can be suppressed.
  • a bank BK made of an insulating organic material is formed before the element body 120 is formed, and a plurality of organic electroluminescent elements are partitioned on the substrate 110 by the banks. It has. At least one layer of the organic layer 122 is formed in the bank partition region by an inkjet method.
  • the bank BK is formed of, for example, a photosensitive composition.
  • the photosensitive composition is made of a material that can be patterned by exposure and development using, for example, photosensitive polyimide or novolac resin.
  • the metal protective layer 132 is not provided on the first electrode 121 that is not the light emitting region 150.
  • the metal protective layer 132 may be formed on a wider film. Good. That is, since an insulating layer such as the bank BK is partially provided in the light emitting region 150 on the first electrode 121 and the insulating property is ensured, a margin M (region in which insulating property is ensured) in an upper layer than that is ensured.
  • a laser repair layer 130 can be provided. As a result, the restriction of the process margin of the laser repair layer can be expanded.
  • the metal protective layer 132 is provided at least on the light emitting region 150 on the first electrode 121, and further, at least the insulating layer BK formed on the first electrode 121 (see FIG. 1, FIG. 4 (b), FIG. 7) are formed. Furthermore, in the organic electroluminescent element 100, the metal protective layer 132 is formed on at least the region where the organic layer 122 and the second electrode 123 on the first electrode 121 are laminated and the light emitting region 150 and the first electrode 121. It is assumed that the insulating layer BK is not provided on the first electrode 121 other than the region M in which the insulating property is ensured.
  • the substrate 110 is a bottom emission type organic EL element
  • a transparent material such as a quartz or glass plate, a resin substrate to be bent, a plastic film or a sheet is used.
  • a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • gas barrier properties it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, it is preferable to provide a gas barrier property by providing a dense silicon oxide film or the like on one or both surfaces of the synthetic resin substrate.
  • the anode (first electrode 121) for supplying holes to the layers up to the light emitting layer is usually a metal such as gold, nickel, palladium, platinum, indium and / or tin, zinc oxide (ITO (Indium Tin Oxide)). And metal oxides such as IZO (Indium Zinc Oxide), metal halides such as copper iodide, carbon black, or conductive polymers such as poly (3-methylthiophene), polypyrrole, and polyaniline. .
  • the anode is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution is used.
  • the anode can also be formed by dispersing and applying it onto a substrate by an inkjet method or the like.
  • a conductive polymer a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. Further, different conductive materials may be laminated.
  • the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
  • a material used for the cathode (second electrode 123) for supplying electrons to the layers up to the light emitting layer a material used for the anode can be used.
  • the work function is low.
  • suitable metals such as tin, magnesium, indium, calcium, aluminum, silver, or alloys thereof are used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the material of a cathode 2nd electrode 123
  • 2 or more types may be used together by arbitrary combinations and a ratio.
  • the thickness of the cathode is usually the same as that of the anode.
  • a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the anode and the cathode are the first electrode and the second electrode, but the film formation order may be reversed. Further, when the anode and the cathode are on the light emission side, they are transparent or translucent. The material and film thickness are selected so that In particular, it is preferable to select a material in which either one or both of the anode and the cathode has a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material. These electrodes may be patterned as necessary. A transmissive electrically conductive material is used for the first electrode 121 on the laser light irradiation side.
  • an example of the element body 120 includes a transparent anode (first electrode 121), a hole injection layer 223, a hole transport layer 224, and a light emitting layer 225 in order on a substrate 110 such as glass.
  • a hole blocking layer 226, an electron transport layer 227, an electron injection layer 228, and a cathode made of metal (second electrode 123) are laminated.
  • the organic layer 122 of the hole injection layer 223, the hole transport layer 224, the light emitting layer 225, the hole blocking layer 226, and the electron transport layer 227 is an organic semiconductor layer.
  • a plurality of organic layers stacked between a pair of opposed anodes and cathodes are formed as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, Includes an electron injection layer.
  • anode (first electrode 121) / hole injection layer 223 / hole transport layer 224 / light emitting layer 225 / hole blocking layer 226 / electron transport layer 227 is shown.
  • anode (first electrode 121) / hole injection layer 223 / light emitting layer 225 / electron transport layer 227 / electron injection layer 228 / Cathode (second electrode 123) / Hole transport layer 224 and hole blocking layer 226 are omitted, and although not shown, anode (first electrode 121) / hole transport layer 224 / light emitting layer 225 /
  • a structure in which the hole injection layer 223 and the hole blocking layer 226 of the electron transport layer 227 / electron injection layer 228 / cathode (second electrode 123) / are omitted, or the anode (first electrode 121) / light-emitting layer is not shown.
  • the anode and the cathode are used as the first electrode and the second electrode, but it is also possible to constitute the components other than the substrate in a layered structure with the film formation order reversed. Further, the present invention is not limited to these stacked structures, and includes a structure including at least a light emitting layer or a charge transport layer that can also be used.
  • Organic layer An example of the organic layer configuration of the organic electroluminescence device will be described below, but is not limited to the following configuration, and the effect of the present invention is not limited by the device configuration, and the device configuration can be freely selected. Can do.
  • the hole injection layer 223 is preferably a layer containing an electron accepting compound.
  • the film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • a composition for film formation is usually prepared by mixing the material constituting the hole injection layer with an appropriate solvent (solvent for the hole injection layer).
  • solvent solvent for the hole injection layer
  • This hole injection layer forming composition is coated on the anode by an appropriate method to form a film, followed by drying to form the hole injection layer.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • a solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic electroluminescence device, and may be a polymer compound or the like, a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • hole transporting compounds include aromatic amine derivatives such as NPB (N, N-dinaphthalene-N, N-diphenylbenzidene), phthalocyanine derivatives such as copper phthalocyanine, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives , A benzylphenyl derivative, a compound in which a tertiary amine is linked with a fluorene group, a hydrazone derivative, a silazane derivative, a silanamine derivative, a phosphamine derivative, a quinacridone derivative, a polyaniline derivative, a polypyrrole derivative, a polyphenylene vinylene derivative, a polythienylene vinylene derivative, a polyquinoline derivative, Examples thereof
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. When two or more hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or two other hole transporting compounds are used. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron accepting compound, and may further contain other components in addition to the hole transporting compound and the electron accepting compound.
  • other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
  • the material of the hole transport layer 224 may be any organic material that has been conventionally used as a constituent material of the hole transport layer, and is exemplified as the hole transport compound used in the above-described hole injection layer, for example. The thing which was done is mentioned.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • the material for the hole transport layer include polyarylene derivatives described in JP-A-2008-98619.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then heated and dried after the wet film formation. .
  • the composition for forming a hole transport layer contains a solvent in addition to the hole transport compound.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the hole transport layer may be a layer containing a polymer obtained by crosslinking an amine-based crosslinkable compound.
  • the light emitting layer 225 contains at least a material having a light emitting property (light emitting material) as a constituent organic material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron. Contains a compound having a transporting property (electron transporting compound).
  • a light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material.
  • the light-emitting material There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used.
  • any known material can be applied as the light emitting material.
  • a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferable from the viewpoint of internal quantum efficiency.
  • blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
  • a composition for forming a light emitting layer is prepared in the same manner as the above layer formation, followed by heat drying after wet film forming.
  • fluorescent light emitting materials blue fluorescent dyes
  • examples of fluorescent light emitting materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent light-emitting material green fluorescent dye
  • quinacridone derivatives coumarin derivatives
  • aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of the fluorescent light emitting material that emits yellow light include rubrene and perimidone derivatives.
  • fluorescent light emitting materials examples include DCM (4- (dicyanomethyrene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
  • a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
  • the molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably.
  • the range is 400 or more. If the molecular weight of the luminescent material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be reduced when the film is formed, or the morphology of the organic electroluminescent element will be changed due to migration, etc. Sometimes come. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
  • any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the ratio of the light emitting material in the light emitting layer is usually in the range of 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of luminescent material, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain a hole transporting compound as a constituent material.
  • the low-molecular-weight hole-transporting compound among the hole-transporting compounds include various compounds exemplified as the hole-transporting compound in the above-described hole injection layer, for example, 4, 4
  • a hole transportable compound in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the hole transporting compound in the light emitting layer is usually in the range of 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven.
  • 2 or more types of hole transportable compounds it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9-carbazole) -biphenyl (CBP), etc.
  • BND 2,5-bis (1-naphthyl) -1,3,4-o
  • the light emitting layer is preferably formed in the bank partition region, particularly by an ink jet method.
  • the light emitting layer material is dissolved in an appropriate solvent to prepare a light emitting layer forming composition, and the film is formed using the composition.
  • any solvent can be used as long as the light emitting layer can be formed.
  • the suitable example of the solvent for light emitting layers is the same as that used for the composition for hole injection layer formation.
  • the ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less.
  • the solid content concentration of the light emitting material, hole transporting compound, electron transporting compound, etc. in the composition for forming a light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. If this concentration is too large, film thickness unevenness may occur, and if it is too small, defects may occur in the film.
  • the light emitting layer forming composition is wet-formed, the resulting coating film is dried and the solvent is removed to form the light emitting layer.
  • the light emitting layer is preferably formed by a wet film forming method from the viewpoint of reducing dark spots.
  • the film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer.
  • the hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
  • the physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive.
  • Examples of the material for the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, and the like.
  • Triazole derivatives such as styryl compounds (JP-A-11-242996) and 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (JP-A-7 -41759), phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-79297) And the like.
  • compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
  • the material of a hole-blocking layer may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the wet film-forming method it is preferable to form by the wet film-forming method from a viewpoint of dark spot reduction.
  • the film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 227 is provided for the purpose of further improving the light emission efficiency of the device, and can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from compounds.
  • the electron transporting compound used for the electron transport layer usually, the electron injection efficiency from the cathode (second electrode 123) or the electron injection layer 228 is high, and the injected electrons having high electron mobility are efficient.
  • a compound that can be transported well is used.
  • the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No.
  • the formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 228 serves to efficiently inject electrons injected from the cathode into the light emitting layer.
  • the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
  • an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( (As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, etc.), which makes it possible to improve the electron injecting and transporting properties and achieve both excellent film quality.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • 1 type may be used for the material of an electron injection layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • a wet film formation method such as an inkjet method, a vapor deposition method, or other methods.
  • the organic electroluminescent element has been described.
  • the organic electroluminescent element of the present invention is not limited to an organic EL display that forms a film by wet coating, an organic EL illumination, an organic TFT using an organic semiconductor layer, or an organic TFT.
  • the present invention can be applied to the case of a solar cell.
  • ITO Indium Tin Oxide
  • TPD was formed by 100 nm resistance heating vapor deposition to obtain a buffer layer.
  • film formation was performed using a metal mask so that the film was formed on the light emitting region defined by the anode, the organic layer, and the cathode.
  • press molding is used to fix the desiccant CaO to the concave portion of the glass cap provided with the concave portion with an adhesive, and an epoxy adhesive is used around the cap so as to cover the light emitting region of the organic electroluminescent element. I stopped.
  • the anode, cathode, and metal protective layer made of an electrically conductive material do not overlap outside the light emitting region. For this reason, a short circuit does not occur outside the light emitting region.
  • repair by laser light irradiation was performed in the light emitting region.
  • a laser beam with a laser beam wavelength of 1064 nm and a predetermined spot diameter was irradiated from the substrate 110 side to a rectangular area of 18 ⁇ m ⁇ 18 ⁇ m for 7 nsec (total irradiation intensity 330 mJ / cm 2 ).
  • the deformation of the cathode reached the metal protective layer, and was fused while deforming the metal protective layer to maintain its shape.
  • FIG. 9 shows an optical micrograph when laser repair is performed at five locations under the above conditions.
  • the deformation of the second electrode is confirmed, and in the dark-field photograph (FIG. 9B), the rectangular shape of the laser light irradiation region and the reflected light are in the center. It has been confirmed.
  • the dark field image when the light is substantially perpendicular to the optical axis of the lens (parallel to the substrate), the reflected light looks dark without being seen, that is, the second electrode is greatly deformed at the rectangular shape portion and the central portion thereof, It can be seen that the other portions are substantially parallel to the substrate.
  • the second electrode has a very beautiful repair mark as can be seen from FIG. 9B.
  • the bright spot that can be seen at the center of the repair mark in FIG. 9B is the place where the deformed second electrode and the metal protective film are in contact with each other.
  • the repair shape (repair space S) is maintained in addition to the physical properties unique to the metal. There is also an effect of joining by contact. Moreover, it can be seen from the photograph at the time of light emission from the substrate side (FIG. 9C) that the laser repair portion is insulated and no current flows and no light is emitted.
  • the present invention it is possible to repair a short circuit by laser repair, and further, since the metal protective layer at that location is not destroyed, it is possible to prevent the deterioration factor of the organic electroluminescent element from entering the laser repair location. .
  • SYMBOLS 100 Organic electroluminescent element 110 Substrate 120 Element main body 121 First electrode (anode) 122 Organic layer 123 Second electrode (cathode) DESCRIPTION OF SYMBOLS 130 Laser repair layer 131 Buffer layer 132 Metal protective layer 150 Light emission area

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[Problem] To provide an organic electric field light emitting element with which short-circuit restoration by laser repair is easy. [Solution] An organic electric field light emitting element comprises a first electrode which is formed upon a transparent substrate, an organic layer formed from one or more layers of an organic material which includes a light emitting layer which is layered upon the first electrode, and a second electrode which is layered upon the organic layer, said light emitting element having a portion wherein the first and second electrodes overlap is treated as a light emitting region. The organic electric field light emitting element further comprises; a buffer formed from an organic material which is layered upon the second electrode; and a metallic protective layer formed from either a metal or an alloy and which is layered upon the buffer. The metallic protective layer is disposed at least upon the light emitting region.

Description

有機電界発光素子Organic electroluminescence device
 本発明は、薄膜固体デバイスであって、検出が難しい非発光箇所での短絡の発生とレーザ光照射による修復(レーザーリペア)による封止不良を課題とする製品、例えば、ディスプレイパネルや照明パネルなどに用いられる有機EL(エレクトロルミネセンス)素子すなわち有機電界発光素子に関する。 The present invention is a thin-film solid-state device, which is a product that has a problem of a sealing failure due to occurrence of a short circuit at a non-light emitting point that is difficult to detect and repair by laser light irradiation (laser repair), such as a display panel or a lighting panel The present invention relates to an organic EL (electroluminescence) element, that is, an organic electroluminescence element.
 一般に、EL有機化合物材料を用いた有機電界発光素子は、ダイオード特性を有する電流注入型の素子である。複数の有機電界発光素子をマトリクス状に配列したディスプレイパネルや、その薄さを利用した面発光照明パネルなどが開発されている。 Generally, an organic electroluminescent element using an EL organic compound material is a current injection type element having diode characteristics. A display panel in which a plurality of organic electroluminescent elements are arranged in a matrix, a surface-emitting illumination panel using the thinness, and the like have been developed.
 有機電界発光素子におけるダークスポットの拡大が実用化の大きな妨げとなっていた問題を解決するために、素子封止目的で、素子全体を被覆するように設けられた封止層を、欠陥部を被覆するバッファ層とその上に積層された薄膜からなるバリア層との少なくとも二層から構成することにより、ダークスポットの非発光領域拡大を抑制することが提案されている(特許文献1、参照)。 In order to solve the problem that the expansion of dark spots in organic electroluminescence devices has been a major obstacle to practical use, for the purpose of device sealing, a sealing layer provided to cover the entire device is replaced with a defective portion. Providing at least two layers of a buffer layer to be covered and a barrier layer made of a thin film laminated thereon to suppress expansion of a non-light-emitting region of a dark spot has been proposed (see Patent Document 1). .
 また、素子上の異物に起因して保護膜に発生するピンホールを防ぐため、有機EL素子と保護層との間にキャッピング層を設け、保護膜のピンホール発生を防ぎ、且つ有機EL素子の発する光を外部に効率良く取り出せる構造が提案されている(特許文献2、参照)。 Further, in order to prevent pinholes generated in the protective film due to foreign matters on the element, a capping layer is provided between the organic EL element and the protective layer to prevent generation of pinholes in the protective film. A structure that can efficiently extract emitted light to the outside has been proposed (see Patent Document 2).
特許3290375号公報Japanese Patent No. 3290375 特開2008-108628号公報JP 2008-108628 A
 いずれの従来技術においても素子封止能力、すなわち水や酸素等の有機電界発光素子を劣化させる因子が素子と接触し、劣化反応を引き起こすことを防ぐことに重きを置いているので、有機電界発光素子本体の製造において、前記素子を覆うバリア層(保護層)にピンホールと呼ばれる前記劣化因子の侵入源となる欠陥が発生することを抑制することを課題としている。 In any conventional technology, the element sealing ability, that is, the factor that degrades the organic electroluminescent element such as water and oxygen is focused on preventing contact with the element and causing the degradation reaction. In manufacturing an element body, it is an object to suppress the occurrence of a defect that becomes a penetration source of the deterioration factor called a pinhole in a barrier layer (protective layer) covering the element.
 そこで従来技術では、素子全体に熱処理を実施し、前記素子とバリア層(保護層)間に設けたキャッピング層及びバッファ層を溶融させ、表面の異物を覆い平滑化し、前記課題の対策を行っている。 Therefore, in the prior art, heat treatment is performed on the entire device, the capping layer and the buffer layer provided between the device and the barrier layer (protective layer) are melted, the surface foreign matter is covered and smoothed, and the above-mentioned problem is taken. Yes.
 しかし、前記素子において短絡が発生し、レーザー照射による短絡箇所の修復(以下、レーザーリペア)を試みた場合、従来技術では素子上の各層の存在によりリペア効果が得られないことや、レーザー照射部の電気伝導性材料の残渣によるレーザーリペア起因の短絡が生じてしまうだけでなく、レーザーリペアによりバリア膜(保護膜)に欠陥が出来てしまう等の問題が発生する。つまり、リペア不良という問題だけでなく、従来技術の本来の目的である封止性能が失われるという問題が発生する。特にレーザーリペアによりバリア層(保護層)に生じた欠陥部からの劣化因子の侵入速度は、バリア膜の成膜不良であるピンホール型の欠陥と比べると著しく速く、このリペア起因の欠陥は著しく前記素子の信頼性を低下させてしまう。このリペアに起因するバリア膜の欠陥は、キャッピング層及びバッファ層が製造工程において熱処理されたことにより、熱的に安定した状態となりレーザーリペア時に溶融し難くなっていることや、封止性能を得る為に素子上に設けた各層の膜厚が厚すぎることが、原因である。 However, when a short circuit occurs in the element, and repair of the short-circuited part by laser irradiation (hereinafter referred to as laser repair) is attempted, the repair effect cannot be obtained due to the presence of each layer on the element. In addition to the short circuit caused by the laser repair due to the residue of the electrically conductive material, problems such as a defect may occur in the barrier film (protective film) due to the laser repair. That is, not only the problem of repair failure but also the problem of loss of the sealing performance, which is the original purpose of the prior art, occurs. In particular, the penetration rate of deterioration factors from the defects generated in the barrier layer (protective layer) due to laser repair is significantly faster than pinhole type defects, which are defective film formation of the barrier film. The reliability of the element is lowered. The defect of the barrier film due to the repair is that the capping layer and the buffer layer are heat-treated in the manufacturing process, become thermally stable and difficult to melt during laser repair, and obtain sealing performance. For this reason, the thickness of each layer provided on the element is too thick.
 さらに、従来技術では素子全体に熱処理を行うため、前記素子の製造工程が煩雑となり短絡発生率が上昇することや、素子の熱劣化に配慮しなければならない等の課題が発生する。 Furthermore, in the prior art, since the entire element is subjected to heat treatment, the manufacturing process of the element becomes complicated, resulting in an increase in short-circuit occurrence rate and problems such as consideration for thermal deterioration of the element.
 加えて、特許文献1開示の技術では、封止性能を得る為にバリア層が有機電界発光素子を覆う必要があるが、このバリア層として金属のバリア層を用いた場合、非発光部で短絡が発生する可能性が有り、その場合、素子の発光状態ではその短絡場所を特定することができず、短絡箇所の特定に多大な労力を伴うことになる。 In addition, in the technique disclosed in Patent Document 1, the barrier layer needs to cover the organic electroluminescent element in order to obtain sealing performance. When a metal barrier layer is used as the barrier layer, a short circuit occurs in the non-light emitting portion. In such a case, the short-circuit location cannot be specified in the light emitting state of the element, and much labor is involved in specifying the short-circuit location.
 本発明は、このような事情に鑑みてなされたものであり、リーク電流などによる発光不良、素子破壊の原因となる短絡の発見を容易にし、且つレーザーリペアによる短絡修復を行っても素子の信頼性を低下させない有機電界発光素子を提供することが課題の1つとして挙げられる。 The present invention has been made in view of such circumstances, and makes it easy to find a short circuit that causes light emission failure and element destruction due to leakage current and the like, and even if a short circuit repair by laser repair is performed, the reliability of the element is improved. One of the problems is to provide an organic electroluminescent element that does not deteriorate the properties.
 請求項1に記載の有機電界発光素子は、透明基板上に形成された第一電極と前記第一電極上に積層された発光層を含む1層以上の有機材料からなる有機層と前記有機層上に積層された第二電極とを有し且つ前記第一及び第二電極の間の重なる部分を発光領域とする有機電界発光素子であって、前記第二電極上に積層された有機材料からなる緩衝層と前記緩衝層上に積層された金属または合金からなる金属保護層とを有し、前記金属保護層は、少なくとも前記発光領域に設けられていることを特徴とする。 The organic electroluminescent device according to claim 1, wherein the organic layer is composed of one or more organic materials including a first electrode formed on a transparent substrate and a light emitting layer laminated on the first electrode, and the organic layer. An organic electroluminescent element having a second electrode laminated thereon and an overlapping portion between the first and second electrodes as a light emitting region, wherein the organic electroluminescent element is made of an organic material laminated on the second electrode. And a metal protective layer made of a metal or an alloy laminated on the buffer layer, and the metal protective layer is provided at least in the light emitting region.
 上記の有機電界発光素子において、前記金属保護層は、少なくとも、第一電極上の前記発光領域及び、第一電極上の絶縁層により絶縁性が確保されている領域、以外の第一電極上には設けられていないことが好ましい。 In the organic electroluminescent element, the metal protective layer is formed on at least the first electrode other than the light emitting region on the first electrode and the region in which insulation is ensured by the insulating layer on the first electrode. Is preferably not provided.
 本発明の有機電界発光素子によれば、素子全体の熱処理を実行しない為、緩衝層のアモルファス性が保たれるので、レーザーリペアを実施しても封止性能を維持することができると共に、発光領域上及び第一電極との絶縁性が確保されている緩衝層上に設けられているので、短絡が非発光領域で起きない為、短絡箇所の特定作業が容易になり、歩留まり向上が期待できる。さらに、素子全体を熱処理する工程がないので、製造工程が簡素化する。 According to the organic electroluminescence device of the present invention, since the heat treatment of the entire device is not performed, the amorphous nature of the buffer layer is maintained, so that the sealing performance can be maintained even when laser repair is performed, and the light emission is performed. Since the short circuit does not occur in the non-light emitting region because it is provided on the region and on the buffer layer in which insulation with the first electrode is ensured, it is easy to identify the short circuit part, and an improvement in yield can be expected. . Furthermore, since there is no process for heat-treating the entire device, the manufacturing process is simplified.
本発明による実施形態の有機電界発光素子を示す概略部分切欠斜視図である。1 is a schematic partially cutaway perspective view showing an organic electroluminescent element of an embodiment according to the present invention. 本発明による実施形態の有機電界発光素子の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of embodiment by this invention. 本発明による実施形態の有機電界発光素子におけるレーザーリペア工程における有機電界発光素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic electroluminescent element in the laser repair process in the organic electroluminescent element of embodiment by this invention. 本発明による他の実施形態の有機電界発光素子の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. 本発明による他の実施形態の有機電界発光素子の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. 本発明による他の実施形態の有機電界発光素子の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. 本発明による他の実施形態の有機電界発光素子の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. 本発明による他の実施形態の有機電界発光素子の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of the organic electroluminescent element of other embodiment by this invention. 本発明による実施例の有機電界発光素子をレーザーリペアした際の光学顕微鏡写真である。It is an optical microscope photograph at the time of carrying out the laser repair of the organic electroluminescent element of the Example by this invention.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明による実施形態のボトムエミッション型の有機電界発光素子100の一例を示す概略部分切欠斜視図である。 FIG. 1 is a schematic partially cutaway perspective view showing an example of a bottom emission type organic electroluminescent device 100 according to an embodiment of the present invention.
 有機電界発光素子100は、透明基板110上に形成された第一電極121と、透明な第一電極121上に積層された発光層を含む1層以上の有機材料からなる有機層122と、有機層122上に積層された第二電極123と、を有している。有機電界発光素子100では、第一電極121及び第二電極123の間の重なる部分が発光領域150となる。第一電極121上の発光領域150を囲むように絶縁層BKが形成されている。さらに、有機電界発光素子100は、第二電極123上に積層されたレーザーリペア層130を有している。レーザーリペア層130は、少なくとも発光領域150上に設けられ、第一電極121上の絶縁層BKにより第一電極121とレーザーリペア層との絶縁性が確保されている絶縁層上部領域M上にも広げて設けられている。なお、図1は絶縁層BK及び第二電極123の一部を切り欠いて、第一電極121及び有機層122が露出した有機電界発光素子100の様子を示し、レーザーリペア層130を破線で示している。 The organic electroluminescent device 100 includes a first electrode 121 formed on a transparent substrate 110, an organic layer 122 made of one or more organic materials including a light emitting layer stacked on the transparent first electrode 121, an organic And a second electrode 123 stacked on the layer 122. In the organic electroluminescent element 100, the overlapping portion between the first electrode 121 and the second electrode 123 becomes the light emitting region 150. An insulating layer BK is formed so as to surround the light emitting region 150 on the first electrode 121. Further, the organic electroluminescent element 100 has a laser repair layer 130 stacked on the second electrode 123. The laser repair layer 130 is provided at least on the light emitting region 150, and also on the insulating layer upper region M in which insulation between the first electrode 121 and the laser repair layer is secured by the insulating layer BK on the first electrode 121. It is spread out. FIG. 1 shows a state of the organic electroluminescent element 100 in which the insulating layer BK and a part of the second electrode 123 are cut out to expose the first electrode 121 and the organic layer 122, and the laser repair layer 130 is indicated by a broken line. ing.
 図2は第1の実施形態の概念を示す有機電界発光素子100の必要最小限の積層構成を示す。有機電界発光素子100は、基板110上に形成された、有機電界発光素子の発光機能に寄与する素子本体120及びレーザーリペア層130により構成されている。 FIG. 2 shows a minimum necessary stacked structure of the organic electroluminescent element 100 showing the concept of the first embodiment. The organic electroluminescent element 100 includes an element body 120 and a laser repair layer 130 that are formed on a substrate 110 and contribute to the light emitting function of the organic electroluminescent element.
 素子本体120は、光透過性の高い電気伝導材料からなる第一電極121、多層の有機材料からなる有機層122(有機半導体層)、電気伝導性の第二電極123が順に積層されている。 In the element body 120, a first electrode 121 made of an electrically conductive material having high light transmittance, an organic layer 122 (organic semiconductor layer) made of a multilayer organic material, and an electrically conductive second electrode 123 are laminated in this order.
 素子本体120(第二電極123)上に直接形成されたレーザーリペア層130は、緩衝層131と金属保護層132が順に積層されて構成される。緩衝層131はガラス転移温度を有する有機材料、例えばレーザーリペア実施時に発生する熱により、ガラス転移温度以上に加熱され溶融する有機材料から選択することができ、例えばTPD(N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1-ビフェニル]-4,4’-ジアミン)を用いることができる。緩衝層131は、レーザーリペア時に溶融し、第二電極123が受ける衝撃を緩和し、第二電極123及び金属保護層132の破壊を防止するとともに、レーザーリペアにより第二電極123に生じる変形を抑制しない流動性が必要である。緩衝層131は、レーザーリペア時の熱により溶融して流動性を発現し、冷却後に硬化することを目的として設けられたものである。したがって、緩衝層131は、その材料の選択の目安は、例えばガラス転移温度を有する材料を選ぶ。金属保護層132は延性、展性などの性質を持つ金属または合金材料から選択することができ、例えばアルミニウムを用いることができる。金属保護層132は、レーザーリペア時の衝撃により破壊しないことと同時に第二電極123の変形を受け、塑性変形することが必要である。また、金属保護層132と第二電極123を同一材料で形成することで、共通マスクを用いた蒸着などで成膜ができ、プロセス・設備・材料の各種コストを抑えることもできる。 The laser repair layer 130 directly formed on the element body 120 (second electrode 123) is configured by sequentially stacking a buffer layer 131 and a metal protective layer 132. The buffer layer 131 can be selected from organic materials having a glass transition temperature, for example, organic materials that are heated and melted to a temperature higher than the glass transition temperature by heat generated during laser repair. For example, TPD (N, N′-bis ( 3-methylphenyl) -N, N′-diphenyl- [1,1-biphenyl] -4,4′-diamine) can be used. The buffer layer 131 melts at the time of laser repair, alleviates the impact received by the second electrode 123, prevents the second electrode 123 and the metal protective layer 132 from being destroyed, and suppresses deformation that occurs in the second electrode 123 due to laser repair. It does not need fluidity. The buffer layer 131 is provided for the purpose of melting by heat at the time of laser repair to develop fluidity and curing after cooling. Therefore, for the buffer layer 131, for example, a material having a glass transition temperature is selected as a standard for selecting the material. The metal protective layer 132 can be selected from metals or alloy materials having properties such as ductility and malleability, and for example, aluminum can be used. The metal protective layer 132 needs to be plastically deformed by being deformed by the second electrode 123 at the same time as not being destroyed by an impact during laser repair. In addition, by forming the metal protective layer 132 and the second electrode 123 with the same material, it is possible to form a film by vapor deposition using a common mask, and it is possible to suppress various costs of processes, facilities, and materials.
 有機電界発光素子100では第一電極121、有機層122、第二電極123が全て重なり積層されている領域が発光領域150となり、レーザーリペア層130はこの発光領域150上に重なるように形成される。金属保護層132は、絶縁材料により絶縁性が確保されている発光領域150(第一電極121上を含む)に設けられる。すなわち、第一及び第二電極121、123の間の有機層122の重なる部分を発光領域150とし、金属保護層132は発光領域150以外を覆わないように第二電極123上の緩衝層131上に設けられている。 In the organic electroluminescent element 100, a region where the first electrode 121, the organic layer 122, and the second electrode 123 are all overlapped and stacked is a light emitting region 150, and the laser repair layer 130 is formed to overlap the light emitting region 150. . The metal protective layer 132 is provided in the light emitting region 150 (including on the first electrode 121) in which insulation is ensured by an insulating material. That is, the overlapping portion of the organic layer 122 between the first and second electrodes 121 and 123 serves as the light emitting region 150, and the metal protective layer 132 is formed on the buffer layer 131 on the second electrode 123 so as not to cover other than the light emitting region 150. Is provided.
 以上の両電極や有機層122及びレーザーリペア層130の成膜方法として、抵抗加熱蒸着法や電子ビーム蒸着法、スパッタリング法など各種薄膜形成方式を用いて成膜することができるが、可溶性材料の場合はインクジェット法やフレキソ印刷などの印刷技術を用いて薄膜を形成しても良い。 As a method for forming both the electrodes, the organic layer 122, and the laser repair layer 130, various thin film forming methods such as resistance heating evaporation, electron beam evaporation, and sputtering can be used. In some cases, the thin film may be formed using a printing technique such as an inkjet method or flexographic printing.
 最後に作製された有機電界発光素子は、外気により劣化するため、封止が行われる。例えば、図示していないが、乾燥剤が内側に設けられた凹形状のガラスキャップの縁に接着剤を塗布し、ガラスキャップで有機電界発光素子を囲うというものが一例として挙げられる。有機電界発光素子100のレーザーリペア層130直上にレーザーリペア層の形状変化を抑制してしまうような固体が設けられる封止構造以外であれば、本実施形態の効果を得ることができる。例えば、ガラスキャップの凹部内部に各種不活性ガスや不活性液体など素子に影響を与えない材料を充填して封止することも可能である。 Since the organic electroluminescent element produced at the end deteriorates due to outside air, sealing is performed. For example, although not shown in the figure, an example is one in which an adhesive is applied to the edge of a concave glass cap provided with a desiccant inside, and the organic electroluminescent element is surrounded by the glass cap. The effect of the present embodiment can be obtained except for a sealing structure in which a solid that suppresses the shape change of the laser repair layer is provided immediately above the laser repair layer 130 of the organic electroluminescent element 100. For example, the concave portion of the glass cap may be filled with a material that does not affect the element, such as various inert gases and inert liquids, and sealed.
 緩衝層131は、レーザーリペア時の熱により第二電極及び金属保護膜の変形を阻害しない程度の流動性を持つ有機材料によって形成され、例えばTPDの他に、α-NPB、m-MTDATA、Spiro-TPDなどの非晶質固体有機材料が選択される。このようにして形成された有機電界発光素子に、例えば、第一電極121上にゴミが付着していると、ゴミが付着している所がリーク箇所となるため、例えば顕微鏡などで観察し、発見された欠陥箇所に基板110側よりレーザーリペアを実行する。 The buffer layer 131 is formed of an organic material having fluidity that does not inhibit the deformation of the second electrode and the metal protective film due to heat during laser repair. For example, in addition to TPD, α-NPB, m-MTDATA, Spiro An amorphous solid organic material such as TPD is selected. In the organic electroluminescent element formed in this way, for example, if dust is attached on the first electrode 121, the place where the dust is attached becomes a leaked location, so, for example, observe with a microscope, Laser repair is executed from the substrate 110 side to the found defect location.
 レーザ光は有機層122でレーザ光が吸収される波長のものを照射する。例えば、図3(a)に示すように、所定のレーザ波長、パワー、照射スポット径の光ビームを欠陥箇所(異物Pなどよりも十分広い領域に)に照射すると、有機層122のいずれかがレーザ光を吸収して加熱され蒸発して膨張して(気化)、緩衝層131も第二電極123を介して加熱されるが蒸発せずに流動化して(液化)、金属保護層132と共に変形する。 The laser light is irradiated with a wavelength that allows the organic layer 122 to absorb the laser light. For example, as shown in FIG. 3A, when a light beam having a predetermined laser wavelength, power, and irradiation spot diameter is irradiated to a defective portion (an area sufficiently wider than the foreign matter P), any one of the organic layers 122 is The laser beam is absorbed and heated to evaporate and expand (vaporization), and the buffer layer 131 is also heated through the second electrode 123 but fluidizes without evaporating (liquefaction) and deforms together with the metal protective layer 132. To do.
 図3(b)に示されるように、有機層122が蒸発して膨張する場合、第二電極123の膜形状に変形が生じるのは、ほぼレーザー照射域のみであり、第二電極123、流動化した緩衝層131及び金属保護層132も押し上げられて第一電極121より離れ、リークの発生が解消されると共に、変形した第二電極123と金属保護層132により修復空間Sが形成される。 As shown in FIG. 3 (b), when the organic layer 122 evaporates and expands, the film shape of the second electrode 123 is deformed only in the laser irradiation region, and the second electrode 123, flow The buffer layer 131 and the metal protective layer 132 that have been converted are also lifted away from the first electrode 121, and the occurrence of leakage is eliminated, and the repaired space S is formed by the deformed second electrode 123 and the metal protective layer 132.
 したがって、緩衝層131は、第二電極123と金属保護層132とを隔離し、且つレーザーリペア時の熱により流動性を発現しなければならない。そのため、緩衝層131の厚さは0.05μm~1μm好ましくは0.1~0.5μmの範囲であることが望ましい。 Therefore, the buffer layer 131 must isolate the second electrode 123 and the metal protective layer 132 and exhibit fluidity by heat during laser repair. Therefore, the thickness of the buffer layer 131 is desirably 0.05 μm to 1 μm, preferably 0.1 to 0.5 μm.
 第2実施形態では、上記の第1の実施形態の場合よりも実際に近い形であって、図4(a)に示すように、第一電極121、第二電極123にはそれぞれ配線と接触するために発光領域150外へ延在させた延在部121B、123Bを設けた以外、第1の実施形態と同一である。有機層122の面積は発光領域より若干大きくすることができる(拡大部122B)。第二電極123の縁部は有機層122よりも内側に設けられ、第一電極121と第二電極123とが直接接触し、短絡することを避ける。第一電極121と第二電極123により規定された発光領域150と同一面積で一致して重なる領域に緩衝層131及び金属保護層132が設けられる。 In the second embodiment, the shape is actually closer than in the case of the first embodiment, and as shown in FIG. 4A, the first electrode 121 and the second electrode 123 are in contact with the wiring, respectively. For this purpose, the second embodiment is the same as the first embodiment except that extended portions 121B and 123B extending outside the light emitting region 150 are provided. The area of the organic layer 122 can be made slightly larger than the light emitting region (enlarged portion 122B). The edge part of the 2nd electrode 123 is provided inside the organic layer 122, and it avoids that the 1st electrode 121 and the 2nd electrode 123 contact directly, and short-circuit. A buffer layer 131 and a metal protective layer 132 are provided in a region that coincides and overlaps with the light emitting region 150 defined by the first electrode 121 and the second electrode 123.
 第2実施形態では、素子の電気取り出し部、特に第一電極121が露出するので、そこでの短絡発生を防ぐ為に、第一電極121との絶縁性が確保されていない露出した第一電極121の部分上には第二電極123及び金属保護層132を設けることは避けなければならない。そこで、図4(b)に示すように、第一電極121上の発光領域150を除く部分(例えば有機層122の縁部下の領域122C)に絶縁層BKを形成する。図4(b)に示す変形例によれば、絶縁層BKが第一電極121の電気取り出し部上に存在することにより、第一電極121との絶縁性を確保するとともに、金属保護層132を絶縁層BKの一部上まで拡大して成膜できるようになる。 In the second embodiment, since the electrical extraction portion of the element, in particular, the first electrode 121 is exposed, in order to prevent the occurrence of a short circuit there, the exposed first electrode 121 whose insulation with the first electrode 121 is not ensured. It is necessary to avoid providing the second electrode 123 and the metal protective layer 132 on this portion. Therefore, as shown in FIG. 4B, an insulating layer BK is formed in a portion (for example, a region 122C under the edge of the organic layer 122) excluding the light emitting region 150 on the first electrode 121. According to the modification shown in FIG. 4B, the insulating layer BK is present on the electrical extraction portion of the first electrode 121, thereby ensuring insulation from the first electrode 121 and the metal protective layer 132. A film can be formed by expanding to a part of the insulating layer BK.
 図4(a)の場合、第一電極121との短絡を避ける為に、金属保護層132は発光領域150より外の第一電極121上に設置することはできないが、図4(b)のように素子の発光領域の規定や、第一電極121端部における短絡を回避するために絶縁層BKが設けられている場合には、絶縁膜BK上は絶縁性が確保されているので、発光領域150より外の第一電極121上であっても絶縁層BK上であれば金属保護層132を拡大して成膜しても良い。第一電極121と短絡する可能性が極めて低い箇所であれば、発光領域150外であっても自由に金属保護層を設置することが出来る。 In the case of FIG. 4A, the metal protective layer 132 cannot be placed on the first electrode 121 outside the light emitting region 150 in order to avoid a short circuit with the first electrode 121. Thus, when the insulating layer BK is provided in order to define the light emitting region of the element and to avoid a short circuit at the end of the first electrode 121, the insulating property is ensured on the insulating film BK. Even on the first electrode 121 outside the region 150, the metal protective layer 132 may be enlarged and formed on the insulating layer BK. A metal protective layer can be freely installed even outside the light emitting region 150 at a location where the possibility of short-circuiting with the first electrode 121 is extremely low.
 さらに、第2実施形態の更なる変形例においては、図4(c)に示すように、緩衝層131は少なくとも発光領域150上にあれば発光領域よりも広く形成して拡大部131Bを設けてもよく、例えば、有機層122(発光層)と同パターンにすれば製造においてプロセスを簡略化することもできる。 Furthermore, in a further modification of the second embodiment, as shown in FIG. 4C, the buffer layer 131 is formed wider than the light emitting region if at least on the light emitting region 150, and an enlarged portion 131B is provided. For example, if the same pattern as that of the organic layer 122 (light emitting layer) is used, the process can be simplified in manufacturing.
 第3実施形態では、図5に示すように、金属保護層132が第二電極123と同一面積で一致して重なる領域(すなわち発光領域150以外に第二電極123上で伸びる金属保護層拡大部132B)に成膜されている以外、第2実施形態(図4(a))と同一である。ただし、金属保護層132下部に第一電極121がある箇所は必ず発光領域150となっているため、短絡が発生してもその位置の特定が容易である。第3実施形態では、マスクを用いた蒸着に代表される気相成長法などで第二電極123と金属保護層132とを成膜する場合、金属保護層132を第二電極123と同一パターンにより形成することで、同じ共通マスクを用いて成膜することができ、マスク交換や、搬送などによる基板への異物の付着などを低減することができる。 In the third embodiment, as shown in FIG. 5, the metal protective layer 132 has the same area as the second electrode 123 and overlaps with the same area (that is, the metal protective layer enlarged portion extending on the second electrode 123 in addition to the light emitting region 150). 132B) is the same as the second embodiment (FIG. 4A) except that the film is formed. However, since the location where the first electrode 121 is located below the metal protective layer 132 is always the light emitting region 150, the location can be easily identified even if a short circuit occurs. In the third embodiment, when the second electrode 123 and the metal protective layer 132 are formed by a vapor deposition method typified by vapor deposition using a mask, the metal protective layer 132 is formed in the same pattern as the second electrode 123. By forming the film, it is possible to form a film using the same common mask, and it is possible to reduce adhesion of foreign matters to the substrate due to mask exchange or transportation.
 第4実施形態では、図6に示すように、第3実施形態と比べて緩衝層131の成膜領域を有機層122と等しくすることで一部が第二電極123の縁部を覆うように拡大部131Bを形成している以外、第3実施形態と同一である。ここでも、第二電極123上に発光領域150以外に伸びる金属保護層拡大部132Bが形成されている。この場合、製造工程において有機層122と緩衝層131とで設備の共有化を行うことが出来るだけでなく、第二電極123端部を緩衝層131が覆っているため、第二電極123と有機層122界面からの水分の進入を抑制することができる。 In the fourth embodiment, as shown in FIG. 6, the film formation region of the buffer layer 131 is made equal to the organic layer 122 as compared with the third embodiment so that a part thereof covers the edge of the second electrode 123. The third embodiment is the same as the third embodiment except that the enlarged portion 131B is formed. Also here, the metal protective layer enlarged portion 132 </ b> B extending beyond the light emitting region 150 is formed on the second electrode 123. In this case, not only can the facilities be shared between the organic layer 122 and the buffer layer 131 in the manufacturing process, but also the end of the second electrode 123 is covered with the buffer layer 131, so the second electrode 123 and the organic layer Intrusion of moisture from the interface of the layer 122 can be suppressed.
 第5実施形態では、図7に示すように、素子本体120の成膜前に絶縁性の有機材料からなるバンクBKを形成して基板110上にて複数の有機電界発光素子をバンクで区切る構成を備えている。有機層122の少なくとも1層はインクジェット法によりバンク区画領域内に形成される。バンクBKは例えば感光性組成物により形成される。感光性組成物は、例えば感光性のポリイミドやノボラック系樹脂などを使用し、露光、現像によりパターニングできる材料から構成される。 In the fifth embodiment, as shown in FIG. 7, a bank BK made of an insulating organic material is formed before the element body 120 is formed, and a plurality of organic electroluminescent elements are partitioned on the substrate 110 by the banks. It has. At least one layer of the organic layer 122 is formed in the bank partition region by an inkjet method. The bank BK is formed of, for example, a photosensitive composition. The photosensitive composition is made of a material that can be patterned by exposure and development using, for example, photosensitive polyimide or novolac resin.
 基本的には金属保護層132を発光領域150でない第一電極121上には設けないが、バンクBKなどの絶縁膜使用時は、その上も金属保護層132の成膜範囲を拡大してもよい。すなわち、第一電極121上にバンクBKなど絶縁層を発光領域150内に部分的に設け絶縁性が確保されているので、それよりも上層のマージンM(絶縁性が確保されている領域)にレーザーリペア層130を設けることができる。これによりレーザーリペア層のプロセスマージンの制約を広げることができる。 Basically, the metal protective layer 132 is not provided on the first electrode 121 that is not the light emitting region 150. However, when an insulating film such as the bank BK is used, the metal protective layer 132 may be formed on a wider film. Good. That is, since an insulating layer such as the bank BK is partially provided in the light emitting region 150 on the first electrode 121 and the insulating property is ensured, a margin M (region in which insulating property is ensured) in an upper layer than that is ensured. A laser repair layer 130 can be provided. As a result, the restriction of the process margin of the laser repair layer can be expanded.
 このように、有機電界発光素子100においては、金属保護層132は、少なくとも第一電極121上の発光領域150上に設けられ、さらに、少なくとも第一電極121上に形成された絶縁層BK(図1、図4(b)、図7)が形成されている。さらに、有機電界発光素子100においては、金属保護層132は、少なくとも、第一電極121上の有機層122及び第二電極123が積層され発光領域150となっている領域及び第一電極121上に絶縁層BKが形成され絶縁性が確保されている領域M、以外の第一電極121上には設けられていないこととする。 As described above, in the organic electroluminescent element 100, the metal protective layer 132 is provided at least on the light emitting region 150 on the first electrode 121, and further, at least the insulating layer BK formed on the first electrode 121 (see FIG. 1, FIG. 4 (b), FIG. 7) are formed. Furthermore, in the organic electroluminescent element 100, the metal protective layer 132 is formed on at least the region where the organic layer 122 and the second electrode 123 on the first electrode 121 are laminated and the light emitting region 150 and the first electrode 121. It is assumed that the insulating layer BK is not provided on the first electrode 121 other than the region M in which the insulating property is ensured.
 [基板]
 基板110としては、ボトムエミッション型の有機EL素子であるため、石英やガラスの板、曲げられる樹脂基板、プラスチックフィルムやシートなど透明材料が用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の片面または両面に緻密なシリコン酸化膜などを設けてガスバリア性を確保することが好ましい。
[substrate]
Since the substrate 110 is a bottom emission type organic EL element, a transparent material such as a quartz or glass plate, a resin substrate to be bent, a plastic film or a sheet is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, it is preferable to provide a gas barrier property by providing a dense silicon oxide film or the like on one or both surfaces of the synthetic resin substrate.
 [陽極及び陰極]
 発光層までの層に正孔を供給する陽極(第一電極121)は、通常、金、ニッケル、パラジウム、白金などの金属、インジウム及び/またはスズ、亜鉛の酸化物(ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide))などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリンなどの導電性高分子などにより構成される。
[Anode and cathode]
The anode (first electrode 121) for supplying holes to the layers up to the light emitting layer is usually a metal such as gold, nickel, palladium, platinum, indium and / or tin, zinc oxide (ITO (Indium Tin Oxide)). And metal oxides such as IZO (Indium Zinc Oxide), metal halides such as copper iodide, carbon black, or conductive polymers such as poly (3-methylthiophene), polypyrrole, and polyaniline. .
 陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、インクジェット法などによって基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる。 The anode is usually formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate binder resin solution is used. The anode can also be formed by dispersing and applying it onto a substrate by an inkjet method or the like. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
 陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。さらには、異なる導電材料が積層されたものであってもよい。 The thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. Further, different conductive materials may be laminated.
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。 The surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
 発光層までの層に電子を供給する陰極(第二電極123)の材料としては、陽極に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。 As a material for the cathode (second electrode 123) for supplying electrons to the layers up to the light emitting layer, a material used for the anode can be used. However, in order to efficiently inject electrons, the work function is low. Metals are preferred, for example, suitable metals such as tin, magnesium, indium, calcium, aluminum, silver, or alloys thereof are used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 なお、陰極(第二電極123)の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。陰極の膜厚は、通常、陽極と同様である。 In addition, only 1 type may be used for the material of a cathode (2nd electrode 123), and 2 or more types may be used together by arbitrary combinations and a ratio. The thickness of the cathode is usually the same as that of the anode.
 さらに、低仕事関数金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Further, for the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 また、上記では陽極及び陰極を第一電極及び第二電極としているが、成膜順序を上下反対としてもよく、さらに、陽極及び陰極は、発光の取り出し側となる場合は、透明または半透明となるように材料、膜厚を選択する。特に陽極及び陰極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。これら電極は、必要に応じてパターニングしても良い。レーザ光照射側の第一電極121には透過性の電気伝導材料を用いる。 In the above, the anode and the cathode are the first electrode and the second electrode, but the film formation order may be reversed. Further, when the anode and the cathode are on the light emission side, they are transparent or translucent. The material and film thickness are selected so that In particular, it is preferable to select a material in which either one or both of the anode and the cathode has a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material. These electrodes may be patterned as necessary. A transmissive electrically conductive material is used for the first electrode 121 on the laser light irradiation side.
 [素子本体]
 素子本体120の一例は、図8に示すように、ガラスなどの基板110上にて、順に、透明な陽極(第一電極121)、正孔注入層223、正孔輸送層224、発光層225、正孔阻止層226、電子輸送層227、電子注入層228及び金属からなる陰極(第二電極123)が積層されて得られるものである。正孔注入層223、正孔輸送層224、発光層225、正孔阻止層226、及び電子輸送層227の有機層122は有機半導体層である。すなわち、有機電界発光素子において、対向する1対の陽極及び陰極の間に積層配置された複数の有機層が正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層を包含する。
[Element body]
As shown in FIG. 8, an example of the element body 120 includes a transparent anode (first electrode 121), a hole injection layer 223, a hole transport layer 224, and a light emitting layer 225 in order on a substrate 110 such as glass. , A hole blocking layer 226, an electron transport layer 227, an electron injection layer 228, and a cathode made of metal (second electrode 123) are laminated. The organic layer 122 of the hole injection layer 223, the hole transport layer 224, the light emitting layer 225, the hole blocking layer 226, and the electron transport layer 227 is an organic semiconductor layer. That is, in the organic electroluminescent element, a plurality of organic layers stacked between a pair of opposed anodes and cathodes are formed as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, Includes an electron injection layer.
 図8に示す各層の区切りを「/」で表すものとして、陽極(第一電極121)/正孔注入層223/正孔輸送層224/発光層225/正孔阻止層226/電子輸送層227/電子注入層228/陰極(第二電極123)/の構成の他に、図示しないが、陽極(第一電極121)/正孔注入層223/発光層225/電子輸送層227/電子注入層228/陰極(第二電極123)/の正孔輸送層224、正孔阻止層226を省いた構成や、図示しないが、陽極(第一電極121)/正孔輸送層224/発光層225/電子輸送層227/電子注入層228/陰極(第二電極123)/の正孔注入層223、正孔阻止層226を省いた構成や、図示しないが、陽極(第一電極121)/発光層225/電子輸送層227/電子注入層228/陰極(第二電極123)/の正孔注入層223、正孔輸送層224、正孔阻止層226を省いた構成も本発明に含まれる。また、上記では陽極及び陰極を第一電極及び第二電極としているが、基板以外の構成要素を成膜順序を上下反対として層構成することも可能である。さらに、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む構成は本発明に含まれる。 8 is represented by “/”, and the anode (first electrode 121) / hole injection layer 223 / hole transport layer 224 / light emitting layer 225 / hole blocking layer 226 / electron transport layer 227 is shown. In addition to the structure of / electron injection layer 228 / cathode (second electrode 123) /, although not shown, anode (first electrode 121) / hole injection layer 223 / light emitting layer 225 / electron transport layer 227 / electron injection layer 228 / Cathode (second electrode 123) / Hole transport layer 224 and hole blocking layer 226 are omitted, and although not shown, anode (first electrode 121) / hole transport layer 224 / light emitting layer 225 / A structure in which the hole injection layer 223 and the hole blocking layer 226 of the electron transport layer 227 / electron injection layer 228 / cathode (second electrode 123) / are omitted, or the anode (first electrode 121) / light-emitting layer is not shown. 225 / electron transport layer 227 / electron injection layer 228 Cathode (second electrode 123) / hole injection layer 223, hole transport layer 224, also included in the present invention configured by omitting the hole blocking layer 226. In the above description, the anode and the cathode are used as the first electrode and the second electrode, but it is also possible to constitute the components other than the substrate in a layered structure with the film formation order reversed. Further, the present invention is not limited to these stacked structures, and includes a structure including at least a light emitting layer or a charge transport layer that can also be used.
 [有機層]
 有機電界発光素子の有機層構成の例を以下に説明するが、下記構成に限ったものでなく、本発明の効果はその素子構成によって制限されることはなく、自由に素子構成を選択することができる。
[Organic layer]
An example of the organic layer configuration of the organic electroluminescence device will be described below, but is not limited to the following configuration, and the effect of the present invention is not limited by the device configuration, and the device configuration can be freely selected. Can do.
 (正孔注入層)
 正孔注入層223は、電子受容性化合物を含有する層とすることが好ましい。
(Hole injection layer)
The hole injection layer 223 is preferably a layer containing an electron accepting compound.
 正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。正孔注入層の形成方法はダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. The hole injection layer is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 インクジェット法など湿式成膜法によって正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。 When a hole injection layer is formed by a wet film formation method such as an inkjet method, a composition for film formation is usually prepared by mixing the material constituting the hole injection layer with an appropriate solvent (solvent for the hole injection layer). (Hole injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate method to form a film, followed by drying to form the hole injection layer. .
 正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。溶媒としては、限定されるものではないが、例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)などの脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 The composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer. Examples of the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like. Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like. Examples of the ester solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate. Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Can be mentioned. Examples of the amide solvent include N, N-dimethylformamide and N, N-dimethylacetamide. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
 正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。 The hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic electroluminescence device, and may be a polymer compound or the like, a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、NPB(N,N-ジナフタレン-N,N-ジフェニルベンジデン)などの芳香族アミン誘導体、銅フタロシアニンなどのフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。 The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of hole transporting compounds include aromatic amine derivatives such as NPB (N, N-dinaphthalene-N, N-diphenylbenzidene), phthalocyanine derivatives such as copper phthalocyanine, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives , A benzylphenyl derivative, a compound in which a tertiary amine is linked with a fluorene group, a hydrazone derivative, a silazane derivative, a silanamine derivative, a phosphamine derivative, a quinacridone derivative, a polyaniline derivative, a polypyrrole derivative, a polyphenylene vinylene derivative, a polythienylene vinylene derivative, a polyquinoline derivative, Examples thereof include polyquinoxaline derivatives and carbon.
 尚、ここで誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 Here, the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種または2種以上と、その他の正孔輸送性化合物1種または2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。具体的には、国際公開第2005/089024号パンフレットに記載のものが挙げられる。 The hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. When two or more hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or two other hole transporting compounds are used. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレートなどでキャップしたものであってもよい。 As the hole transporting compound, a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
 正孔注入層形成用組成物は、電子受容性化合物を含有することが好ましく、正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The composition for forming a hole injection layer preferably contains an electron accepting compound, and may further contain other components in addition to the hole transporting compound and the electron accepting compound. Examples of other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
 (正孔輸送層)
 正孔輸送層224の材料としては、従来、正孔輸送層の構成材料として用いられている有機材料であればよく、例えば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体またはグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
(Hole transport layer)
The material of the hole transport layer 224 may be any organic material that has been conventionally used as a constituent material of the hole transport layer, and is exemplified as the hole transport compound used in the above-described hole injection layer, for example. The thing which was done is mentioned. In addition, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatics Group derivatives, metal complexes and the like. Also, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like. These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
 正孔輸送層の材料としては、特開2008-98619号公報に記載のポリアリーレン誘導体の具体例などが挙げられる。 Specific examples of the material for the hole transport layer include polyarylene derivatives described in JP-A-2008-98619.
 インクジェット法など湿式成膜法によって正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。 When the hole transport layer is formed by a wet film formation method such as an inkjet method, a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then heated and dried after the wet film formation. .
 正孔輸送層形成用組成物には、正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件なども正孔注入層の形成の場合と同様である。 The composition for forming a hole transport layer contains a solvent in addition to the hole transport compound. The solvent used is the same as that used for the composition for forming the hole injection layer. The film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer.
 正孔輸送層は、正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層の形成方法は真空蒸着法でも、湿式成膜法でもよいが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 正孔輸送層は、アミン系架橋性化合物を架橋して得られたポリマーを含有する層であってもよい。 The hole transport layer may be a layer containing a polymer obtained by crosslinking an amine-based crosslinkable compound.
 (発光層)
 発光層225は、その構成有機材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。なお、湿式成膜法で発光層を形成する場合は、何れも低分子量の材料を使用することが好ましい。
(Light emitting layer)
The light emitting layer 225 contains at least a material having a light emitting property (light emitting material) as a constituent organic material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron. Contains a compound having a transporting property (electron transporting compound). A light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material. There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used. In addition, when forming a light emitting layer with a wet film-forming method, it is preferable to use a low molecular weight material in any case.
 発光材料としては、任意の公知の材料を適用可能である。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また、青色は蛍光発光材料を用い、緑色や赤色は燐光発光材料を用いるなど、組み合わせて用いてもよい。 Any known material can be applied as the light emitting material. For example, a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferable from the viewpoint of internal quantum efficiency. Alternatively, blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
 インクジェット法など湿式成膜法によって発光層を形成する場合は、上記の層の形成と同様にして、発光層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。 In the case of forming a light emitting layer by a wet film forming method such as an inkjet method, a composition for forming a light emitting layer is prepared in the same manner as the above layer formation, followed by heat drying after wet film forming.
 なお、溶媒への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。 For the purpose of improving the solubility in a solvent, it is preferable to reduce the symmetry and rigidity of the molecule of the luminescent material, or to introduce a lipophilic substituent such as an alkyl group.
 青色発光を与える蛍光発光材料(青色蛍光色素)としては、例えば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体などが挙げられる。 Examples of fluorescent light emitting materials (blue fluorescent dyes) that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
 緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris(8-hydroxy-quinoline)aluminum)などのアルミニウム錯体などが挙げられる。 Examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
 黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。 Examples of the fluorescent light emitting material (yellow fluorescent dye) that emits yellow light include rubrene and perimidone derivatives.
 赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。 Examples of fluorescent light emitting materials (red fluorescent dyes) that emit red light include DCM (4- (dicyanomethyrene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
 燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。 As the phosphorescent material, for example, a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。 Specific examples of phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
 発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、溶媒に溶解させる際に時間を要したりする傾向がある。 The molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. The range is 400 or more. If the molecular weight of the luminescent material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be reduced when the film is formed, or the morphology of the organic electroluminescent element will be changed due to migration, etc. Sometimes come. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
 なお、発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。発光層における発光材料の割合は、通常0.05重量%以上、通常35重量%以下の範囲である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 In addition, any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio. The ratio of the light emitting material in the light emitting layer is usually in the range of 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of luminescent material, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層における正孔輸送性化合物として例示した各種の化合物のほか、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミンなどのスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence, 1997, Vol.72-74, pp.985)、トリフェニルアミンの四量体からなる芳香族アミン化合物(Chemical Communications, 1996, pp.2175)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレンなどのスピロ化合物(Synthetic Metals, 1997, Vol.91, pp.209)などが挙げられる。 The light emitting layer may contain a hole transporting compound as a constituent material. Here, examples of the low-molecular-weight hole-transporting compound among the hole-transporting compounds include various compounds exemplified as the hole-transporting compound in the above-described hole injection layer, for example, 4, 4 An aromatic diamine represented by '-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, which contains two or more tertiary amines and has two or more condensed aromatic rings substituted with nitrogen atoms ( JP-A-5-234681), aromatic amine compounds having a starburst structure such as 4,4 ′, 4 ″ -tris (1-naphthylphenylamino) triphenylamine (Journal of Luminescence, 1997, Vol. 72- 74, pp. 985), an aromatic amine compound comprising a tetramer of triphenylamine (Chemical Communicat). ons, 1996, pp. 2175), 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene and other spiro compounds (Synthetic Metals, 1997, Vol. 91, pp. 199). 209).
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下の範囲である。正孔輸送性化合物が少なすぎると短絡の影響を受け易くなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 In addition, in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio. The ratio of the hole transporting compound in the light emitting layer is usually in the range of 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)や、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)や、4,4’-ビス(9-カルバゾール)-ビフェニル(CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The light emitting layer may contain an electron transporting compound as a constituent material. Here, among the electron transporting compounds, examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9-carbazole) -biphenyl (CBP), etc. In the light emitting layer, only one type of electron transporting compound may be used, or two or more types may be used in any combination. It may be used in combination with the combined ratio.
 発光層はバンク区画領域内に形成され、特にインクジェット法により形成されることが好ましい。この場合、発光層材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。 The light emitting layer is preferably formed in the bank partition region, particularly by an ink jet method. In this case, the light emitting layer material is dissolved in an appropriate solvent to prepare a light emitting layer forming composition, and the film is formed using the composition.
 発光層をインクジェット法など湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶媒としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶媒の好適な例は、正孔注入層形成用組成物に用いたものと同様である。 As the light emitting layer solvent to be contained in the light emitting layer forming composition for forming the light emitting layer by a wet film forming method such as an inkjet method, any solvent can be used as long as the light emitting layer can be formed. The suitable example of the solvent for light emitting layers is the same as that used for the composition for hole injection layer formation.
 発光層を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。 The ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. In addition, when using 2 or more types of solvents mixed as a solvent for light emitting layers, it is made for the sum total of these solvents to satisfy | fill this range.
 また、発光層形成用組成物中の発光材料、正孔輸送性化合物、電子輸送性化合物などの固形分濃度としては、通常0.01重量%以上、通常70重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると膜に欠陥が生じる可能性がある。 The solid content concentration of the light emitting material, hole transporting compound, electron transporting compound, etc. in the composition for forming a light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. If this concentration is too large, film thickness unevenness may occur, and if it is too small, defects may occur in the film.
 発光層形成用組成物を湿式成膜した後、得られた塗膜を乾燥し、溶媒を除去することにより、発光層が形成される。発光層は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 After the light emitting layer forming composition is wet-formed, the resulting coating film is dried and the solvent is removed to form the light emitting layer. The light emitting layer is preferably formed by a wet film forming method from the viewpoint of reducing dark spots.
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。 The film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
 (正孔阻止層)
 正孔阻止層6は、発光層の上に、発光層の陰極側の界面に接するように積層される層である。正孔阻止層は、陽極から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送する役割とを有する。
(Hole blocking layer)
The hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer. The hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
 正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウムなどの混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体などの金属錯体、ジスチリルビフェニル誘導体などのスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾールなどのトリアゾール誘導体(特開平7-41759号公報)、バソクプロインなどのフェナントロリン誘導体(特開平10-79297号公報)などが挙げられる。更に、国際公開第2005-022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。 The physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive. Examples of the material for the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, and the like. Mixed ligand complexes of, such as metal complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolato) aluminum binuclear metal complexes, distyryl biphenyl derivatives, etc. Triazole derivatives such as styryl compounds (JP-A-11-242996) and 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (JP-A-7 -41759), phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-79297) And the like. Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
 なお、正孔阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正孔阻止層の形成方法に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
In addition, the material of a hole-blocking layer may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
Although there is no restriction | limiting in the formation method of a hole-blocking layer, It is preferable to form by the wet film-forming method from a viewpoint of dark spot reduction.
 正孔阻止層の膜厚は、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。 The film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
 (電子輸送層)
 電子輸送層227は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。
(Electron transport layer)
The electron transport layer 227 is provided for the purpose of further improving the light emission efficiency of the device, and can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from compounds.
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極(第二電極123)または電子注入層228からの電子注入効率が高く、且つ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 As the electron transporting compound used for the electron transport layer, usually, the electron injection efficiency from the cathode (second electrode 123) or the electron injection layer 228 is high, and the injected electrons having high electron mobility are efficient. A compound that can be transported well is used. Examples of the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives Distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compounds ( JP-A-6-207169), phenanthroline derivatives (JP-A-5-331459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine, n-type hydrogenated amorphous silicon carbide , N-type zinc sulfide, n-type zinc Such as emissions of zinc, and the like.
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, only 1 type may be used for the material of an electron carrying layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
 電子輸送層の形成方法に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。 The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 (電子注入層)
 電子注入層228は、陰極から注入された電子を効率良く発光層へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、Cs2CO3、Li2O、LiF)などが用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
(Electron injection layer)
The electron injection layer 228 serves to efficiently inject electrons injected from the cathode into the light emitting layer. In order to perform electron injection efficiently, the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
 更に、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報などに記載)ことにより、電子注入輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。 Furthermore, an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( (As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, etc.), which makes it possible to improve the electron injecting and transporting properties and achieve both excellent film quality. . In this case, the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
 なお、電子注入層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。電子注入層の形成方法に制限はない。従って、インクジェット法など湿式成膜法、蒸着法や、その他の方法で形成することができる。 In addition, only 1 type may be used for the material of an electron injection layer, and 2 or more types may be used together by arbitrary combinations and a ratio. There is no restriction | limiting in the formation method of an electron injection layer. Therefore, it can be formed by a wet film formation method such as an inkjet method, a vapor deposition method, or other methods.
 本実施形態では有機電界発光素子を説明したが、本発明の有機電界発光素子は、湿式塗布により膜形成を実施する有機ELディスプレイ、有機EL照明の他に、有機半導体層を用いる有機TFTや有機太陽電池の場合でも適用することができることは言うまでもない。 In the present embodiment, the organic electroluminescent element has been described. However, the organic electroluminescent element of the present invention is not limited to an organic EL display that forms a film by wet coating, an organic EL illumination, an organic TFT using an organic semiconductor layer, or an organic TFT. Needless to say, the present invention can be applied to the case of a solar cell.
 以下に実施例の有機電界発光素子の製造プロセスを述べる。 The manufacturing process of the organic electroluminescence device of the example will be described below.
 まず、ガラス基板上に第一電極の陽極としてITO(Indium Tin Oxide)をスパッタ法により形成し、ウェットエッチング法により、所望の電極形状を形成した。 First, ITO (Indium Tin Oxide) was formed on a glass substrate as an anode of the first electrode by a sputtering method, and a desired electrode shape was formed by a wet etching method.
 次に、陽極上に、銅フタロシアニン、NPB、Alq3を抵抗加熱蒸着法、LiFを電子ビーム蒸着法により順次積層し、有機層を形成した。このとき、有機層は陽極の配線と接続される箇所以外の端部を覆うように、金属マスクを用い成膜した。 Next, on the anode, copper phthalocyanine, NPB, and Alq3 were sequentially laminated by resistance heating vapor deposition and LiF by electron beam vapor deposition to form an organic layer. At this time, the organic layer was formed using a metal mask so as to cover the end portion other than the portion connected to the wiring of the anode.
 次に、有機層上に、第二電極の陰極としてアルミニウムを100nm抵抗加熱蒸着法により形成した。このとき、陰極は陽極の配線箇所と接触しないよう金属マスクによるマスキングを行い成膜した。 Next, aluminum was formed as a cathode of the second electrode on the organic layer by a 100 nm resistance heating vapor deposition method. At this time, a film was formed by masking the cathode with a metal mask so as not to contact the wiring portion of the anode.
 次にTPDを100nm抵抗加熱蒸着法により形成し緩衝層を得た。このとき、陽極、有機層、陰極により既定された発光領域上に成膜されるよう金属マスクを用い成膜を行った。 Next, TPD was formed by 100 nm resistance heating vapor deposition to obtain a buffer layer. At this time, film formation was performed using a metal mask so that the film was formed on the light emitting region defined by the anode, the organic layer, and the cathode.
 次に、アルミニウムを100nm抵抗加熱蒸着法により成膜し、金属保護層を形成した。このとき、緩衝層と同様に成膜領域を選択した。以上により、レーザーリペア層130の形成が完了し、有機電界発光素子を得た。 Next, aluminum was formed into a film by 100 nm resistance heating vapor deposition to form a metal protective layer. At this time, the film formation region was selected in the same manner as the buffer layer. Thus, formation of the laser repair layer 130 was completed, and an organic electroluminescent element was obtained.
 最後に、プレス成形により、凹部を設けたガラスキャップの凹部に乾燥剤CaOを粘着剤で固定し、周囲にエポキシ系接着材を用い、有機電界発光素子の発光領域を覆うようにキャップし、封止を行った。 Finally, press molding is used to fix the desiccant CaO to the concave portion of the glass cap provided with the concave portion with an adhesive, and an epoxy adhesive is used around the cap so as to cover the light emitting region of the organic electroluminescent element. I stopped.
 本発明における有機電界発光素子では、発光領域外において電気伝導性材料よりなる陽極、陰極、金属保護層が重なっていない。このため、発光領域以外での短絡が発生することはない。 In the organic electroluminescence device of the present invention, the anode, cathode, and metal protective layer made of an electrically conductive material do not overlap outside the light emitting region. For this reason, a short circuit does not occur outside the light emitting region.
 これにより、有機電界発光素子の発光状態から容易に短絡箇所の特定を行うことができるようになり、素子の短絡検査に所要する時間を短縮できるようになった。 As a result, it is possible to easily identify a short-circuit portion from the light emission state of the organic electroluminescence device, and it is possible to shorten the time required for the short-circuit inspection of the device.
 また、短絡の発生を想定し、発光領域内にてレーザ光照射による修復(レーザーリペア)を実施した。レーザ波長1064nmの所定スポット径のレーザ光を7n秒(総照射強度330mJ/cm2)で18μm×18μmの矩形領域に基板110側から照射した。 In addition, assuming the occurrence of a short circuit, repair (laser repair) by laser light irradiation was performed in the light emitting region. A laser beam with a laser beam wavelength of 1064 nm and a predetermined spot diameter was irradiated from the substrate 110 side to a rectangular area of 18 μm × 18 μm for 7 nsec (total irradiation intensity 330 mJ / cm 2 ).
 結果、レーザ光照射箇所において以下のような挙動が確認された。 As a result, the following behavior was confirmed at the laser beam irradiation spot.
 第1に、レーザ光照射箇所にレーザ光吸収による熱が発生した。 First, heat was generated due to laser beam absorption at the laser beam irradiation site.
 第2に、発生した熱により、有機層が膨張、同時に緩衝層が溶解した。 Second, due to the generated heat, the organic layer expanded and at the same time the buffer layer dissolved.
 第3に、有機層の膨張により陰極が変形、溶解した緩衝層により膨張の衝撃が緩和された。 Third, the impact of expansion was mitigated by the buffer layer in which the cathode was deformed and dissolved by the expansion of the organic layer.
 第4に、陰極の変形は、金属保護層まで到達し金属保護層を変形させながら融着し、その形状を保持した。 Fourth, the deformation of the cathode reached the metal protective layer, and was fused while deforming the metal protective layer to maintain its shape.
 第5に、結果、レーザ光照射箇所の陽極と陰極とは物理的に離され、その箇所で短絡が発生していた場合、該当箇所を絶縁化できた。 Fifth, as a result, the anode and the cathode at the laser beam irradiation location were physically separated, and when a short circuit occurred at that location, the corresponding location could be insulated.
 図9は上記の条件で5箇所レーザーリペアした際の光学顕微鏡写真を示している。基板側からの明視野写真(図9(a))では第二電極の変形が確認され、暗視野写真(図9(b))ではレーザ光照射領域の矩形形状とその中心部に反射光が確認されている。暗視野像ではレンズの光軸に対して略垂直(基板に平行)の場合は反射光が視認されず暗く見える、つまり、矩形形状部とその中心部で第二電極が大きく変形しており、そのほかの箇所では基板に対して略平行であることが分かる。第二電極は形状変化が生じるのみで膜が破損することなく、図9(b)を見ても分かるように非常に綺麗なリペア痕となっている。図9(b)のリペア痕中心に見える明るい点は、変形した第二電極と金属保護膜とが接触している箇所で、リペア形状(修復空間S)の保持は金属特有の物性に加えこの接触による接合の効果もある。また、基板側からの発光時の写真(図9(c))ではレーザーリペア箇所が絶縁化され電流が流れず非発光となっていることがわかる。 FIG. 9 shows an optical micrograph when laser repair is performed at five locations under the above conditions. In the bright-field photograph from the substrate side (FIG. 9A), the deformation of the second electrode is confirmed, and in the dark-field photograph (FIG. 9B), the rectangular shape of the laser light irradiation region and the reflected light are in the center. It has been confirmed. In the dark field image, when the light is substantially perpendicular to the optical axis of the lens (parallel to the substrate), the reflected light looks dark without being seen, that is, the second electrode is greatly deformed at the rectangular shape portion and the central portion thereof, It can be seen that the other portions are substantially parallel to the substrate. The second electrode has a very beautiful repair mark as can be seen from FIG. 9B. The bright spot that can be seen at the center of the repair mark in FIG. 9B is the place where the deformed second electrode and the metal protective film are in contact with each other. The repair shape (repair space S) is maintained in addition to the physical properties unique to the metal. There is also an effect of joining by contact. Moreover, it can be seen from the photograph at the time of light emission from the substrate side (FIG. 9C) that the laser repair portion is insulated and no current flows and no light is emitted.
 金属保護層側からの明視野写真(図9(d))では、金属保護層であるアルミニウムがレーザーリペア時の衝撃を受け変形していることが分かる。また、その暗視野写真(図9(e))ではその変形に対応する像が全く確認されていないことから、生じた変形が滑らかな変形で金属保護層が破損していないことが分かる。 In the bright-field photograph from the metal protective layer side (FIG. 9 (d)), it can be seen that aluminum, which is the metal protective layer, is deformed by the impact during laser repair. Moreover, since the image corresponding to the deformation | transformation is not confirmed at all in the dark field photograph (FIG.9 (e)), it turns out that the produced deformation | transformation is smooth and the metal protective layer is not damaged.
 つまり本発明を用いることで、レーザーリペアによる短絡の修復が可能で、さらにその箇所の金属保護層が破壊されないことで、レーザーリペア箇所からの有機電界発光素子の劣化因子の侵入を防ぐことができる。 In other words, by using the present invention, it is possible to repair a short circuit by laser repair, and further, since the metal protective layer at that location is not destroyed, it is possible to prevent the deterioration factor of the organic electroluminescent element from entering the laser repair location. .
 100 有機電界発光素子
 110 基板
 120 素子本体
 121 第一電極(陽極)
 122 有機層
 123 第二電極(陰極)
 130 レーザーリペア層
 131 緩衝層
 132 金属保護層
 150 発光領域
 223 正孔注入層
 224 正孔輸送層
 225 発光層
 226 正孔阻止層
 227 電子輸送層
 228 電子注入層
DESCRIPTION OF SYMBOLS 100 Organic electroluminescent element 110 Substrate 120 Element main body 121 First electrode (anode)
122 Organic layer 123 Second electrode (cathode)
DESCRIPTION OF SYMBOLS 130 Laser repair layer 131 Buffer layer 132 Metal protective layer 150 Light emission area | region 223 Hole injection layer 224 Hole transport layer 225 Light emission layer 226 Hole blocking layer 227 Electron transport layer 228 Electron injection layer

Claims (6)

  1.  透明基板上に形成された第一電極と
    前記第一電極上に積層された発光層を含む1層以上の有機材料からなる有機層と
    前記有機層上に積層された第二電極とを有し且つ
    前記第一及び第二電極の間の重なる部分を発光領域とする有機電界発光素子であって、
     前記第二電極上に積層された有機材料からなる緩衝層と前記緩衝層上に積層された金属または合金からなる金属保護層とを有し、
     前記金属保護層は、少なくとも前記発光領域に設けられていることを特徴とする有機電界発光素子。
    A first electrode formed on a transparent substrate; an organic layer composed of one or more organic materials including a light emitting layer stacked on the first electrode; and a second electrode stacked on the organic layer. And the organic electroluminescent element which makes the overlapping part between said 1st and 2nd electrodes the light emission area,
    A buffer layer made of an organic material laminated on the second electrode and a metal protective layer made of a metal or an alloy laminated on the buffer layer;
    The organic electroluminescent element, wherein the metal protective layer is provided at least in the light emitting region.
  2.  前記緩衝層を形成する工程と、前記金属保護層を形成する工程との間に、前記緩衝層が溶融する温度における熱処理工程を実施しないことを特徴とする請求項1に記載の有機電界発光素子。 2. The organic electroluminescence device according to claim 1, wherein a heat treatment step at a temperature at which the buffer layer melts is not performed between the step of forming the buffer layer and the step of forming the metal protective layer. .
  3.  前記緩衝層の膜厚が0.1μm~0.5μmであることを特徴とする請求項1または2に記載の有機電界発光素子。 3. The organic electroluminescent element according to claim 1, wherein the buffer layer has a thickness of 0.1 μm to 0.5 μm.
  4.  前記非晶質固体有機材料がガラス転移温度を有する有機材料であることを特徴とする請求項1乃至3のいずれか1に記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 1 to 3, wherein the amorphous solid organic material is an organic material having a glass transition temperature.
  5.  前記金属保護層が前記第二電極と同一材料から形成されることを特徴とする請求項1から4のいずれかに記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 1 to 4, wherein the metal protective layer is formed of the same material as the second electrode.
  6.  前記金属保護層が前記第二電極と同一パターンにより形成されることを特徴とする請求項1に記載の有機電界発光素子。 The organic electroluminescence device according to claim 1, wherein the metal protective layer is formed in the same pattern as the second electrode.
PCT/JP2011/064121 2011-06-21 2011-06-21 Organic electric field light emitting element WO2012176276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064121 WO2012176276A1 (en) 2011-06-21 2011-06-21 Organic electric field light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064121 WO2012176276A1 (en) 2011-06-21 2011-06-21 Organic electric field light emitting element

Publications (1)

Publication Number Publication Date
WO2012176276A1 true WO2012176276A1 (en) 2012-12-27

Family

ID=47422158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064121 WO2012176276A1 (en) 2011-06-21 2011-06-21 Organic electric field light emitting element

Country Status (1)

Country Link
WO (1) WO2012176276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531132A (en) * 2019-12-18 2021-03-19 固安翌光科技有限公司 Organic electroluminescent device
US11910696B2 (en) * 2020-11-09 2024-02-20 Jdi Design And Development G.K. Self-luminous display panel and self-luminous display panel manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290375B2 (en) * 1997-05-12 2002-06-10 松下電器産業株式会社 Organic electroluminescent device
JP2009009792A (en) * 2007-06-27 2009-01-15 Kyocera Corp Organic el-display and its manufacturing method
JP2009076437A (en) * 2007-08-31 2009-04-09 Toshiba Matsushita Display Technology Co Ltd Display device
JP2009245734A (en) * 2008-03-31 2009-10-22 Rohm Co Ltd Organic el element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290375B2 (en) * 1997-05-12 2002-06-10 松下電器産業株式会社 Organic electroluminescent device
JP2009009792A (en) * 2007-06-27 2009-01-15 Kyocera Corp Organic el-display and its manufacturing method
JP2009076437A (en) * 2007-08-31 2009-04-09 Toshiba Matsushita Display Technology Co Ltd Display device
JP2009245734A (en) * 2008-03-31 2009-10-22 Rohm Co Ltd Organic el element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531132A (en) * 2019-12-18 2021-03-19 固安翌光科技有限公司 Organic electroluminescent device
CN112531133A (en) * 2019-12-18 2021-03-19 固安翌光科技有限公司 Organic electroluminescent device
CN112531133B (en) * 2019-12-18 2022-11-04 固安翌光科技有限公司 Organic electroluminescent device
CN112531132B (en) * 2019-12-18 2023-07-04 固安翌光科技有限公司 Organic electroluminescent device
EP4050674A4 (en) * 2019-12-18 2023-12-06 Gu'an Yeolight Technology Co., Ltd. Organic electroluminescent device
US11910696B2 (en) * 2020-11-09 2024-02-20 Jdi Design And Development G.K. Self-luminous display panel and self-luminous display panel manufacturing method

Similar Documents

Publication Publication Date Title
JP5757244B2 (en) Organic electroluminescent device manufacturing method, organic electroluminescent device, display device, and illumination device
KR102122188B1 (en) Organic electroluminescent element and organic electroluminescent device
JP5499482B2 (en) Organic electroluminescence device, organic EL display and organic EL lighting
JP5884213B2 (en) Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL display, and organic EL lighting
JP5757370B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP2009266814A (en) Method of manufacturing organic electroluminescent device, organic electroluminescent device, organic el display, and organic el illumination
JP5321700B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP2010239125A (en) Organic electroluminescent element, organic el display, and organic el illumination
JP2010199296A (en) Organic electroluminescence element, organic el display and organic el lighting
JP2010209320A (en) Composition for organic electroluminescent element, method for producing organic electroluminescent element, organic electroluminescent element, organic el display and organic el lighting
WO2012176276A1 (en) Organic electric field light emitting element
JP5423064B2 (en) Composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
WO2012090560A1 (en) Organic electroluminescent element and manufacturing method thereof
WO2011019025A1 (en) Organic electroluminescent element, organic el display device, and organic el lighting device
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
WO2013035143A1 (en) Method for manufacturing organic electroluminescent panel
JP2010235708A (en) Fluorescent light emitting material, composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
JP5456282B2 (en) Organic electroluminescence device
WO2013150593A1 (en) Organic electroluminescent panel and method for producing same
JP2010209143A (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
JP2010192474A (en) Organic electroluminescent element, organic el display, and organic el lighting
JP2010238606A (en) Organic electroluminescent element, organic el display, and organic el illumination
JP2018117035A (en) Organic electroluminescent element
WO2013190656A1 (en) Organic electroluminescence element
JP2010192476A (en) Organic electric-field light emitting device, organic el display, organic el illumination, and organic el signal apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP