WO2012175334A2 - Verfahren und vorrichtung zum abscheiden von oleds insbesondere verdampfungsvorrichtung dazu - Google Patents

Verfahren und vorrichtung zum abscheiden von oleds insbesondere verdampfungsvorrichtung dazu Download PDF

Info

Publication number
WO2012175334A2
WO2012175334A2 PCT/EP2012/060645 EP2012060645W WO2012175334A2 WO 2012175334 A2 WO2012175334 A2 WO 2012175334A2 EP 2012060645 W EP2012060645 W EP 2012060645W WO 2012175334 A2 WO2012175334 A2 WO 2012175334A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
evaporator
heat transfer
transfer surface
starting material
Prior art date
Application number
PCT/EP2012/060645
Other languages
English (en)
French (fr)
Other versions
WO2012175334A3 (de
Inventor
Michael Long
Markus Gersdorff
Original Assignee
Aixtron Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron Se filed Critical Aixtron Se
Priority to KR1020147001649A priority Critical patent/KR101956829B1/ko
Priority to JP2014516262A priority patent/JP5989107B2/ja
Priority to CN201280030857.7A priority patent/CN103620086B/zh
Priority to KR1020187022191A priority patent/KR102035813B1/ko
Publication of WO2012175334A2 publication Critical patent/WO2012175334A2/de
Publication of WO2012175334A3 publication Critical patent/WO2012175334A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material using a porous body
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to a method for depositing a layer of an organic starting material on a substrate, wherein the organic starting material is brought in the form of suspended particles with a carrier gas stream as an inlet gas stream in an evaporator, which suspended particles there in contact with a heated heat transfer surface and after one of evaporate the temperature of the heat transfer surface dependent average residence time, wherein the vapor thus generated is brought from the carrier gas as the starting gas stream from the evaporator in a process chamber, where it condenses on the surface of a substrate forming the layer.
  • the invention further relates to a device for vaporizing transported in a carrier gas stream organic suspended particles, in the form of an inlet for an inlet gas stream, an outlet for a source gas stream and a heat transfer surface having inside container, wherein the heat transfer surface by means of a heating giepound heatable to a temperature in that the suspended particles introduced into the container through the inlet opening, when in contact with the heat transfer surface, evaporate to an organic vapor emerging from the container from the outlet opening.
  • the invention further relates to a device for depositing OLEDs with such an evaporator.
  • a generic method or a generic device describes the US 7,238,389 B2.
  • an aerosol is generated by an aerosol generator. This consists of a charge of a carrier gas stream. tes powder.
  • the aerosol particles are brought as suspended particles with the carrier gas stream from the aerosol generator to an evaporator.
  • the evaporator consists of a solid-state foam, which is brought to an evaporation temperature. By a surface contact of the suspended particles with the pore walls of the solid-state foam, a heat of vaporization is supplied to them. The evaporation rate depends on the temperature of the heat transfer surfaces.
  • the mass of organic starting material fed to the evaporator per unit of time corresponds to the mass of vapor emitted per unit time by the evaporator.
  • different temperatures essentially only result in a different average residence time of the unvaporized organic starting material in the evaporator.
  • the vapor thus generated is fed by means of the carrier gas into a process chamber in which the substrate is located. This is coated with the organic starting material.
  • the substrate only needs to be kept at a corresponding low temperature, so that the vapor is deposited on the substrate surface as condensate.
  • US Pat. No. 6,037,241 describes a solid-state evaporator which has an electrically heatable solid-state foam which has the shape of a hollow cylinder.
  • DE 10 2006 026 576 A1 describes a solid-state evaporator in which the aerosol is generated by an ultrasonic exciter by stirring up a powder.
  • US Pat. No. 7,501,152 B2 describes a transport device for transporting a pulverulent starting material to a nozzle, with which the pulverulent starting material can be introduced into a stream of carrier gas.
  • DE 88 08 098 Ul describes a method in which a vapor is generated by melting a solid with the aid of an electron beam.
  • a control circuit is provided with which the steam generation rate can be regulated by means of a sensor.
  • a plurality of the electron beams are used, which heat the surface at different points.
  • US 2002/0192375 AI describes an aerosol generator with downstream evaporation chamber. In the evaporation chamber, the aerosol is sprayed so that it evaporates there. Larger drops can evaporate on the heated walls.
  • US 2010/0173067 Al describes a CVD reactor in which the process gas is generated by evaporation of a liquid in a bubbler. Control of the evaporation temperature controls the mass flow.
  • Evaporators in which the mass flow rate of the vaporized material are controlled by controlling the evaporation temperature also describe EP 0982411 A2 and WO 2010/060646 AI. It is also known to produce aerosols by means of brush wheels.
  • the brushes of the brush wheel carry material from a pressed powder, which is transported as suspended particles in a carrier gas stream.
  • Aerosol generators of the prior art have the property of producing a time-varying mass flow of solid or liquid suspended particles.
  • the invention has for its object to provide measures to reduce the temporal fluctuation rates of a vaporized by an aerosol-generated vapor.
  • the object is achieved by the invention specified in the claims.
  • the time fluctuations of the mass flow in the outlet gas flow be reacted by a rapid change in the temperature of the heat transfer surfaces.
  • the heat transfer surfaces can be heated by varying the supply of energy controlled to different temperatures.
  • This temperature control is a response to a temporal change in the mass flow of the generated vapor in the exit gas stream.
  • An essential parameter is the surface temperature of the heat transfer surfaces. These essentially determine the ratio of the partial pressure of the vapor formed to the solid partial pressure. Essential for the evaporation rate is also the size of the free surface. This depends not only on the temporally non-changing total area of the heat transfer surface, but also of their degree of coverage with unvaporized organic material. This degree of coverage is subject to temporal fluctuations.
  • the process according to the invention is carried out below the saturation conditions, which means that the partial pressure of the vapor produced by the evaporator in the starting gas stream is lower than the saturation vapor pressure of the vaporized organic material.
  • a contribution to the temporal fluctuation of the mass flow in the starting gas stream is provided not only by the time-varying mean particle number, which is brought into the evaporator via the input gas stream.
  • the particle size also has an influence.
  • the suspended particles entering the evaporator via an inlet opening come into surface contact with the heat transfer surface and absorb heat there. They thus linger for a certain time within the evaporation chamber until they have completely evaporated.
  • the higher the surface temperature of the heat transfer surface the lower the residence time of the unvaporized organic material in the evaporator.
  • the unevaporated organic material, which is inside the evaporator forms a kind of buffer mass. By lowering the temperature of the heat transfer surfaces, the evaporation rate changes and the buffer mass increases.
  • the storage mass or the storage volume and thus also the size increase in the medium term with a lowering of the temperature the free surface.
  • lowering the temperature and thus increasing the average residence time causes a reduction in the mass flow of evaporated organic starting material leaving the evaporator. If, however, the temperature of the heat transfer surfaces is raised, this leads to an increase in the evaporation rate and a decrease in the mean residence time of the unvaporized organic starting material within the evaporator.
  • the above-mentioned storage mass or the storage volume decreases.
  • the free surface also decreases, so that in the long term a stationary state is reached, in which the mass flow of the organic material entering the evaporator is equal to the mass flow leaving the evaporator.
  • an increase in temperature leads to an increase in the mass flow of vaporized organic starting material leaving the evaporator.
  • the rate of change of the temperature of the heat transfer surface which leads to a significant influence on the effective evaporation rate, however, are in the range of tenths of a second, preferably of hundredths of a second and particularly preferably of milliseconds.
  • a change in the temperature of the heat transfer surface of, for example, one degree manifests itself in a change in the evaporation rate by five percent.
  • a control loop in particular a PID controller, is used to change the temperature of the heat transfer surfaces.
  • a sensor is used with which the partial pressure of the vapor of the organic starting material in the output gas flow can be determined.
  • a sensor can be used which determines the mass flow of the vapor of the organic starting material in the starting gas stream.
  • the sensor signals of this sensor provide values that are fed to the control loop as a controlled variable.
  • the manipulated variable of the control loop is the heating energy flow, with which the temperature of the heat transfer surface is changed.
  • the response time of the control loop is essentially determined by the temporal temperature change rate of the heat exit surface.
  • the temperature change rate of the heat transfer surface is at least 5 ° C / s. During heating, higher temperature change rates can be achieved, which are at least 10 ° C / s.
  • suitable shaping it is even possible to achieve temperature change rates with which the temperature can be changed by one degree upwards or downwards within 4 ms. It is sufficient if the temperature of the heat transfer surface is changed by ⁇ 10 ° from an average value ranging between 300 ° C and 400 ° C.
  • the heat transfer surface is formed by the pores of a solid state foam. It is an open-celled solid-state foam as it is mentioned in the introduction and as it is described in the related, cited therein publications.
  • the device according to the invention has a sensor arranged in the outlet gas flow, which is able to determine either the partial pressure of the vapor of the organic starting material or its mass flow through a steam line.
  • the thus determined, steam pressure-dependent sensor signal is fed as a controlled variable to a PID controller.
  • the PID controller provides a control value for the heating energy flow, with which the heat transfer surface is tempered.
  • the heat transfer surface is preferably formed by a container wall, wherein the container forming the evaporator has a gas inlet opening and a gas outlet opening.
  • a gas distributor Downstream of the gas inlet opening may be arranged a gas distributor, for example with one or more baffles, in order to fluidize the gas flow entering the container in order to bring the particles of air transported by the gas stream, which may be solid or liquid, into contact with the container wall.
  • the heat transfer surfaces are preferably formed by the pore walls of an open-celled solid-state foam. Typical sizes for suspended particles are about 100 ⁇ . Typical dimensions for the width of the pore openings are about 1 mm.
  • the solid state foam can have a pore volume of more than 95 percent of its total volume.
  • the container has the shape of a hollow cylinder whose wall of a cylindrical solid-state foam is formed.
  • the solid state foam may consist of a ceramic material.
  • the solid-state foam preferably consists of an electrically conductive material, for example of graphite or one of the abovementioned metals, tungsten, rhenium, tantalum, niobium, molybdenum.
  • a solid state foam made of graphite or ceramic may be coated with these metals or with carbides of these metals.
  • the hollow-cylindrical solid-state foam is preferably thin-walled and is in a heat-conducting connection with a container jacket, which can be tempered.
  • the container shell can be cooled for the purpose of heat dissipation.
  • An electrically conductive solid state foam has two electrodes via which a current can be passed through the solid state foam. By varying the current, the heating power supplied to the solid-state foam can be varied. It is sufficient if the temperature of the solid-state foam is at least 50 ° higher than the temperature of the surrounding jacket.
  • the short-term increase in the temperature of the heat transfer surface is possible by feeding a correspondingly high current into the evaporation body formed by the solid-state foam.
  • a short-term reduction in the temperature of the evaporation body is achieved by heat dissipation.
  • the heat dissipation takes place via a heat-conducting contact to a colder jacket. Cooling but also acts absorbed by the suspended particles evaporation heat or the heating of the cold introduced into the container carrier gases.
  • the carrier gas stream is passed in pulses through the aerosol generator by connecting appropriate valves.
  • the pulse rate is significantly higher than the reciprocal dwell time. Typical pulse rates are 10 to 20 hertz.
  • the pulse lengths are thus significantly shorter than the average residence time, which is in the range of about one second.
  • a temperature sensor to be provided within the evaporator with which the average temperature of the heat transfer surface can be measured.
  • This, preferably second sensor cooperates with a control loop.
  • the latter is preferably a second PID controller whose controlled variable is the temperature of the sensor signal of the second sensor and whose manipulated variable has an influence on the aerosol generation rate.
  • the response of the second control loop to a changing temperature of the heat transfer surface may be a variation of the rate of aerosol formation.
  • the second loop While the first loop reacts in the short term to changes in the mass flow of the generated steam, and thereby briefly changes the power supplied to the heater of the evaporator, the second loop is inertly responsive to a changing average temperature of the heat transfer surface.
  • a long-term increase or decrease in the average temperature of the heat transfer surface is the result of a sub-supply or an over-supply of the evaporator with suspended particles, so unevaporated starting material.
  • the second control loop thus results in an increase in the average temperature of the heat transfer surface increases the aerosol formation rate and with a decrease in the average temperature of the heat transfer surface, the aerosol generation rate is lowered. This ensures that the first control loop can change the temperature of the heat transfer surface only in the range of a predetermined temperature window.
  • the temperature sensor measures the mean temperature of the heat transfer surfaces.
  • the controlled variable is the temperature signal. With the mass flow as a manipulated variable, a heat dissipation can be used as a manipulated variable become. This especially if the temperature of the gas is significantly lower than the temperature of the heat transfer surfaces.
  • FIG. 1 is a block diagram of a first device according to the invention
  • Fig. 2 is a longitudinal section through an evaporator according to the invention.
  • FIG. 3 shows schematically the time profile of the mass concentration of the aerosol particles in the inlet gas flow a, the supplied heating power b and the mass flow in the outlet gas flow of the vaporized organic starting material c,
  • Fig. 4 is a block diagram of a second device according to the invention.
  • FIG. 1 shows a coating device in order to coat a substrate 11 consisting of glass, for example, with a thin light-emitting organic layer in order to produce so-called OLEDs.
  • a coating device in order to coat a substrate 11 consisting of glass, for example, with a thin light-emitting organic layer in order to produce so-called OLEDs.
  • the device of the invention has a source not shown in detail for a carrier gas, which may be nitrogen, hydrogen or a suitable inert gas.
  • a carrier gas which may be nitrogen, hydrogen or a suitable inert gas.
  • the carrier gas optionally also in the form of short pulses, is supplied to an aerosol generator 2, which has a storage container 2 ', in which the organic component stockpiled.
  • the aerosol generator 2 may include a brush wheel, a screw, or other shaped conveying means to direct the powder stored in the reservoir into the carrier gas stream. Instead of a powder but also a liquid can be sprayed into the carrier gas stream.
  • evaporator 1 Suspended particles form, which are brought by an aerosol line 4 from the gas stream into an evaporator 1.
  • the evaporator 1 will be described in detail in FIG.
  • the aerosol particles are brought into a gaseous form.
  • the relevant steam is fed together with the carrier gas through a steam line 5, which is heated by a heating jacket 6, a CVD reactor.
  • a gas inlet element in the form of a shower head fed by the steam line 5, which has a gas outlet surface which has a multiplicity of gas outlet openings arranged in a sieve-like manner.
  • the gas outlet surface points vertically downwards and forms the ceiling of a process chamber 10, the bottom of which forms a surface of a susceptor 9 facing upwards to the gas inlet element 8.
  • On the cooled susceptor 9 is to be coated substrate 11, on which the vapor formed in the evaporator 1 can be deposited as a layer.
  • the reactor housing 7 is furthermore connected to a vacuum pump 12 in order to set a total gas pressure within the range of 1 to 10 mbar within the process chamber 10 or within the evaporator 1. But it is also possible to set higher total gas pressures, for example in the range of 10 to 100 mbar. About control valves, not shown, the total pressure is kept constant.
  • a PID controller 14 is provided, which cooperates with a sensor 13 which measures the partial pressure of the vapor of the organic starting material in the steam line 5.
  • the sensor 13 may also be designed as a mass flow meter in order to measure the mass flow of the fuel through the steam line.
  • the sensor signal delivers a value which is proportional to the vapor pressure or mass flow or depends on this in accordance with a characteristic curve which forms the controlled variable of the PID controller 14.
  • the manipulated variable of the PID controller 14 is the heat output, with which a heat transfer surface 15 is tempered, the temperature of which influences the mean residence time of the un-vaporized suspended particles of the organic starting material in the evaporator 1.
  • the evaporator shown in detail in FIG. 2 has a connection to the aerosol line 4 with an inlet opening 18, which may have the shape of an inlet nozzle. Downstream of the inlet opening 18 there is a gas distributor 19. This is shown only schematically in FIG. It has a plurality of baffles 19 'oriented obliquely, in particular, at an angle to the gas flow, against which the inlet gas flow containing the suspended particles to be evaporated occurs. With the aid of the gas distributor 19, a turbulence is generated within the container forming the evaporator 1, which causes the suspended particles to be supplied to an evaporation body forming the wall of the container.
  • the evaporation body forms the aforementioned heat transfer surface 15.
  • the evaporation body is an open-pored solid-state foam having a pore width of about 1 mm.
  • the pore volume corresponds to more than 95 percent of the total volume of the solid foam.
  • the suspended particles enter the solid-state foam and attach themselves to the pore walls.
  • the thus formed evaporation body 15 has two electrodes 22, 23.
  • the electrode 22 is connected to ground.
  • the electrode 23 is connected to an electrical current supplied by the PID controller 14.
  • heat is supplied to the evaporation body, so that the heat transfer surfaces have a temperature of 300 ° C to 400 ° C.
  • the hollow cylindrical evaporation body 15 is surrounded by a hollow cylindrical shell 16. Between the jacket 16 and the evaporation body 15 is an insulating layer 17.
  • the insulating layer 17 is electrically insulating but heat-permeable. While the material thickness of the solid-state foam 15 is in the range of 4 to 5 mm, the material thickness of the insulation layer 17 is approximately 0.1 mm.
  • the jacket 16 may be made of metal. But it can also be formed from a solid state foam. It may also have two electrodes to temper the jacket 16. However, the temperature of the jacket 16 is lower than the average temperature of the evaporation body 15. Preferably, a temperature difference of about 50 ° C is set here.
  • the outlet opening 20 has a larger diameter than the inlet opening 18. Through the outlet opening 20, an output gas stream enters the steam line 5.
  • the outlet gas stream contains the vapor of the vaporized organic starting material.
  • a cavity 21 Immediately downstream of the outlet opening 20 is a cavity 21, in which the above-mentioned sensor 13 is located, with which either the partial pressure of the vaporized organic starting material in the carrier gas or its mass flow can be determined.
  • the temporal rate of the mass flow of aerosol generator 2 transported by the aerosol generator 4 to the evaporator 1 suspended particulate varies on the one hand because of design-related fluctuations in the delivery rate of the powder and on the other hand because of the non-uniform particle size.
  • the time-varying mass flow of suspended particles is introduced into the evaporator, where it passes through the inlet opening 18 into the container volume, where it is swirled by the gas distributor 19, so that the suspended particles penetrate into the pores of the evaporation body 15.
  • the suspended particles By contact with the surface of the heat transfer surface 15 of the heat transfer body, the suspended particles are heated, whereby they reach their evaporation temperature and evaporate at different rates depending on their particle size and on the temperature of the heat transfer surface 15.
  • the vapor thus formed emerges from the outlet opening 20 into the steam line 5.
  • the partial pressure of the steam that is to say its concentration in the starting gas stream, is determined by means of the sensor 13.
  • the supply of the suspended particles in the aerosol generator 2 is selected such that the steam generated at this mass flow rate has a partial pressure in the carrier gas which is below the saturation vapor pressure.
  • the evaporator 1 operates in a steady state, in which the average mass introduced into the evaporator 1 per time unit corresponds to the average mass released with time from the evaporator 1 by the starting gas flow.
  • this equilibrium can be changed in the short term.
  • Increasing mass flow of organic starting material can be increased and reduced by lowering the temperature. As a result, a fluctuation compensation of the output mass flow is carried out by means of the PID controller 14.
  • a is a typical curve of the mass flow of a powder production rate over time.
  • the curve a thus essentially represents the feed rate with which the evaporator 1 is fed with organic starting material to be evaporated.
  • the horizontal time axis lies on a value that corresponds to the time-averaged mass flow.
  • the sensor 13 is able to detect deviations of the partial pressure in the starting gas flow from the time average. If the deviation is directed upward, the PID controller reduces the heat output with which the heat transfer surface 15 is heated.
  • the PID controller 14 controls by increasing the heating power. Also Here, the temperature can be changed by up to 10 ° C.
  • the non-evaporated material adhering to the heat transfer surface 15 for the mean residence time thus forms a buffer mass which can be varied by changing the evaporation temperature.
  • FIG. 4 schematically shows a further device for depositing a layer of an organic starting material, which differs from the device according to FIG. 1 essentially in that a second sensor 24 is provided. With this sensor 24, the average temperature of the heat transfer surface 15 can be measured.
  • the temperature sensor 24 provides a control variable for a PID controller 25 which changes the rate of aerosol delivery in response to the long term temperature change of the heat transfer surface 15.
  • a mass flow controller 26 is additionally shown with which the mass flow of the carrier gas can be set to a predetermined value.
  • Time-averaged temperature is understood as meaning temperatures which are averaged over several seconds.
  • the period of time within which the average temperature is averaged can be ten times the period within which the first control loop 14 responds to a change in the partial pressure of the vapor in the carrier gas.
  • the control circuit 25 thus reacts to long-term changes in the temperature of the heat transfer surface 15. Such changes have a too low or too high aerosol generation rate as the cause.
  • the controller 25 responds to a long-term increase in the average temperature of the heat transfer surface 15 by increasing the aerosol production rate through the aerosol generator 2. Upon a long-term decrease in the average temperature of the heat transfer surface 15, the controller 25 reacts by reducing the aerosol production rate in the aerosol generator 2.
  • the temperature of the heat-driven evaporator 1 that is to say the temperature of the heat transfer surface 15, can only change within a predetermined temperature range.
  • the buffer mass within the evaporator 1 to organic starting material thus remains substantially constant over time. Since the two control circuits 14, 25 operate with strongly different time constants, mutual interference is minimized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electroluminescent Light Sources (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Die Erfindung betrifft zunächst ein Verfahren zum Abscheiden einer Schicht aus einem organischen Ausgangsstoff auf einem Substrat (11), wobei der organische Ausgangsstoff als Aerosol in Form von Schwebeteilchen in einen Trägergasstrom in einen Verdampfer (1) gebracht wird, wobei die Schwebeteilchen dort in Kontakt zu einer durch Temperatursteuerung beheizten Wärmeübertragungsfläche (15) treten und nach einer auch von der Temperatur der Wärmeübertragungsfläche (15) abhängigen mittleren Verweildauer verdampfen, wobei der so erzeugte Dampf vom Trägergas als Ausgangsgasstrom aus dem Verdampfer (1) heraus in die Prozesskammer (10) gebracht wird, wo er auf der Oberfläche des Substrates (11), die Schicht bildend kondensiert. Um die zeitlichen Schwankungsraten eines durch Verdampfen eines aerosolerzeugten Dampfes zu vermindern, wird vorgeschlagen, dass die Temperatur der Wärmeübertragungsfläche (15) als Antwort auf eine zeitliche Änderung des Massenflusses des erzeugten Dampfes (c) im Ausgangsgasstrom verändert wird. Des Weiteren betrifft die Erfindung eine Vorrichtung zum Verdampfen von in einem Trägergasstrom transportierten organischen Schwebeteilchen, sowie eine Vorrichtung zum Abscheiden von OLEDs.

Description

Verfahren und Vorrichtung zum Abscheiden von OLEDs insbesondere Verdampfungsvorrichtung dazu
Die Erfindung betrifft ein Verfahren zum Abscheiden einer Schicht aus einem organischen Ausgangsstoff auf einem Substrat, wobei der organische Ausgangsstoff in Form von Schwebeteilchen mit einem Trägergasstrom als Eingangsgasstrom in einen Verdampfer gebracht wird, welche Schwebeteilchen dort in Kontakt zu einer beheizten Wärmeübertragungsfläche treten und nach einer von der Temperatur der Wärmeübertragungsfläche abhängigen mittleren Verweildauer verdampfen, wobei der so erzeugte Dampf vom Trägergas als Ausgangsgasstrom aus dem Verdampfer heraus in eine Prozesskammer gebracht wird, wo er auf der Oberfläche eines Substrates, die Schicht bildend kondensiert. Die Erfindung betrifft darüber hinaus eine Vorrichtung zum Verdampfen von in einem Trägergasstrom transportierten organischen Schwebeteilchen, in Form eines eine Eintrittsöffnung für einen Einganggasstrom, eine Austrittsöffnung für einen Ausgangsgasstrom und eine Wärmeübertragungsfläche im Inneren aufweisenden Behälter, wobei die Wärmeübertragungsfläche mittels eines Heizener giefluss auf eine Temperatur aufheizbar ist, bei der die durch die Eintrittsöffnung in den Behälter gebrachten Schwebeteilchen bei in Kontakt treten mit der Wärmeübertragungsfläche zu einem organischen Dampf verdampfen, der aus der Austrittsöffnung aus dem Behälter heraustritt. Die Erfindung betrifft darüber hinaus eine Vorrichtung zum Abscheiden von OLEDs mit einem derartigen Verdampfer.
Ein gattungsgemäßes Verfahren beziehungsweise eine gattungsgemäße Vorrichtung beschreibt die US 7,238,389 B2. Dort wird von einem Aerosol-Erzeuger ein Aerosol erzeugt. Dieses besteht aus einem in einen Trägergasstrom gebrach- tes Pulver. Die Aerosolteilchen werden als Schwebeteilchen mit dem Trägergasstrom vom Aerosol-Erzeuger zu einem Verdampfer gebracht. Der Verdampfer besteht aus einem Festkörperschaum, der auf eine Verdampfungstemperatur gebracht wird. Durch einen Oberflächenkontakt der Schwebeteilchen mit den Porenwänden des Festkörperschaums wird ihnen eine Verdampfungswärme zugeführt. Die Verdampfungsrate hängt von der Temperatur der Wärmeübertragungsflächen ab. Wird der Prozess unterhalb des Sättigungsbereichs durchgeführt, so entspricht die dem Verdampfer zugeführte Masse an organischem Ausgangsstoff pro Zeiteinheit der vom Verdampfer abgegebenen Masse an Dampf pro Zeiteinheit. Verschiedene Temperaturen haben in einem gewissen Bereich im Wesentlichen nur eine jeweils andere mittlere Verweildauer des un- verdampften organischen Ausgangsstoffs im Verdampfer zur Folge. Der so erzeugte Dampf wird mittels des Trägergases in eine Prozesskammer eingespeist, in der sich das Substrat befindet. Dieses wird mit dem organischen Ausgangs- stoff beschichtet. Im einfachsten Fall braucht das Substrat lediglich auf einer entsprechenden niedrigen Temperatur gehalten zu werden, so dass sich der Dampf auf der Substratoberfläche als Kondensat abscheidet.
Die Verwendung eines Festkörperschaums insbesondere aus Wolfram, Rheni- um, Tantal, Niob, Molybdän oder Kohlenstoff oder eines beschichteten Werkstoffs zum Verdampfen eines organischen Ausgangsstoffs beschreibt auch die US 2009/0039175 AI.
Die US 6,037,241 beschreibt einen Festkörperverdampfer, der einen elektrisch beheizbaren Festkörperschaum aufweist, der die Form eines Hohlzylinders besitzt.
Ferner beschreibt die DE 10 2006 026 576 AI einen Festkörperverdampfer, bei dem das Aerosol von einem Ultraschall-Erreger durch Aufwirbeln eines Pul- vers erzeugt wird. Die US 7,501,152 B2 beschreibt eine Transportvorrichtung zum Transport eines pulverförmigen Ausgangsstoffs zu einer Düse, mit der der pulverförmige Ausgangsstoff in einen Trägergasstrom einbringbar ist.
Die DE 88 08 098 Ul beschreibt ein Verfahren, bei dem durch Aufschmelzen eines Festkörpers mit Hilfe eines Elektronenstrahls ein Dampf erzeugt wird. Es ist ein Regelkreis vorgesehen, mit dem die Dampferzeugungsrate mittels eines Sensors geregelt werden kann. Hierzu wird eine Mehrzahl von den Elektronen- strahlen verwendet, die an unterschiedlichen Stellen die Oberfläche aufheizen.
Die US 2002/ 0192375 AI beschreibt einen Aerosol-Generator mit nachgeordneter Verdampfungskammer. In die Verdampfungskammer wird das Aerosol eingesprüht, so dass es dort verdampft. Größere Tropfen können an den beheiz- ten Wänden verdampfen.
Die US 2010/0173067 AI beschreibt einen CVD-Reaktor, bei dem das Prozessgas durch Verdampfen einer Flüssigkeit in einem Bubbler erzeugt wird. Über eine Steuerung der Verdampfungstemperatur wird der Massenfluss geregelt.
Verdampfer, bei denen die Massenflussrate des verdampften Materials durch Steuerung der Verdampfungstemperatur geregelt werden, beschreiben auch die EP 0 982411 A2 und die WO 2010/060646 AI. Es ist ferner bekannt, Aerosole mittels Bürstenräder zu erzeugen. Die Bürsten des Bürstenrades tragen von einem gepressten Pulver Material ab, das als Schwebeteilchen in einem Trägergasstrom transportiert wird.
Es sind ferner Vorrichtungen bekannt, die in Form eines Zerstäubers Flüssigkeiten in ein Trägergas einbringen. Aerosol-Erzeuger des Standes der Technik haben die Eigenschaft, einen zeitlich variierenden Massenfluss an festen oder flüssigen Schwebeteilchen zu erzeugen.
Der Erfindung liegt die Aufgabe zugrunde, Maßnahmen anzugeben, mit denen die zeitlichen Schwankungsraten eines durch Verdampfen eines aerosolerzeugten Dampfes vermindert werden. Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung.
Zunächst und im Wesentlichen wird vorgeschlagen, dass auf die zeitlichen Schwankungen des Massenflusses im Ausgangsgasstrom durch eine schnelle Veränderung der Temperatur der Wärmeübertragungsflächen reagiert wird. Die Wärmeübertragungsflächen können durch die Variation der Zufuhr von Energie kontrolliert auf unterschiedliche Temperaturen aufgeheizt werden. Diese Temperatursteuerung ist eine Antwort auf eine zeitliche Änderung des Massenflusses des erzeugten Dampfes im Ausgangsgasstrom. Mit diesem Verfahren können nicht nur die zeitlichen Schwankungen des Massenflusses im Ausgangsgasstrom, die von zeitlichen Schwankungen des Massenflusses der Schwebeteilchen im Eingangsgasstrom verursacht werden, kompensiert werden. Das Verfahren erlaubt es auch, Schwankungen der Verdampfungsrate innerhalb des Verdampfers auszugleichen. Die Verdampfungsrate wird sowohl von den thermodynamischen als auch von den kinetischen Verhältnissen in- nerhalb des Verdampfers bestimmt. Ein wesentlicher Parameter ist dabei die Oberflächentemperatur der Wärmeübertragungsflächen. Diese bestimmen im Wesentlichen das Verhältnis des Partialdrucks des gebildeten Dampfs zum Festkörperpartialdruck. Wesentlich für die Verdampfungsrate ist darüber hinaus die Größe der freien Oberfläche. Diese hängt nicht nur von der sich zeitlich nicht verändernden Gesamtfläche der Wärmeübertragungsfläche ab, sondern auch von deren Bedeckungsgrad mit unverdampftem organischen Material. Dieser Bedeckungsgrad unterliegt zeitlichen Schwankungen. Das erfindungsgemäße Verfahren wird unterhalb der Sättigungsbedingungen durchgeführt, was bedeutet, dass der Partialdruck des vom Verdampfer erzeugten Dampfs im Ausgangsgasstrom geringer ist als der Sättigungsdampfdruck des verdampften organischen Materials. Einen Beitrag zur zeitlichen Schwankung des Massenflusses im Ausgangsgasstrom liefert nicht nur die sich zeitlich verändernde mittlere Partikelzahl, die über den Eingangsgasstrom in den Verdampfer gebracht wird. Auch die Partikelgröße hat einen Einfluss. Die über eine Eintritts- Öffnung in den Verdampfer eintretenden Schwebeteilchen treten in einen Oberflächenkontakt zu der Wärmeübertragungsfläche und nehmen dort Wärme auf. Sie verweilen somit eine gewisse Zeit innerhalb der Verdampfungskammer, bis sie vollständig verdampft sind. Je höher die Oberflächentemperatur der Wärmeübertragungsfläche ist, desto geringer ist die Verweilzeit des unverdampften organischen Materials im Verdampfer. Das unverdampfte organische Material, welches sich innerhalb des Verdampfers befindet, bildet eine Art Puffermasse. Durch Absenken der Temperatur der Wärmeübertragungsflächen verändert sich die Verdampfungsrate und erhöht sich die Puffermasse. Da der Verdamp- fungsprozess langfristig einen stationären Zustand anstrebt, bei dem der in den Verdampfer eintretende Massenfluss pro Zeiteinheit gleich dem aus dem Verdampfer austretenden Massenfluss pro Zeiteinheit ist, vergrößert sich bei einem Absenken der Temperatur mittelfristig die Speichermasse beziehungsweise das Speichervolumen und damit auch die Größe der freien Oberfläche. Kurzfristig verursacht das Absenken der Temperatur und damit die Vergrößerung der mittleren Verweilzeit eine Reduzierung des aus dem Verdampfer austretenden Massenfluss an verdampftem organischen Ausgangsstoff. Wird hingegen die Temperatur der Wärmeübertragungsflächen angehoben, so führt dies zu einem Anstieg der Verdampfungsrate und einer Abnahme der mittleren Verweilzeit des unverdampften organischen Ausgangsstoffes innerhalb des Verdampfers. Die oben erwähnte Speichermasse beziehungsweise das Speichervolumen ver- mindert sich. Einhergehend damit vermindert sich auch die freie Oberfläche, so dass langfristig ein stationärer Zustand erreicht wird, bei dem der in den Verdampfer eintretende Massenstrom des organischen Materials gleich dem aus dem Verdampfer austretenden Massenfluss ist. Kurzfristig wird mit einer Tem- peraturerhöhung aber eine Steigerung des aus dem Verdampfer austretenden Massenfluss an verdampftem organischen Ausgangsstoff erreicht. Durch Variation der Temperatur der Wärmeübertragungsflächen lässt sich somit bei einer Erhöhung der Temperatur der Dampfdruck des organischen Ausgangsstoffs im Ausgangsstrom steigern und bei einer Verminderung der Temperatur absen- ken. Mit dem erfindungsgemäßen Verfahren werden die zeitlichen Schwankungen des Massenflusses durch eine schnelle Veränderung der Temperatur der Wärmeübertragungsflächen ausgeglichen. Die mittleren Verweilzeiten liegen im Bereich von Sekunden. Die Änderungsrate der Temperatur der Wärmeübertragungsfläche, die zu einer signifikanten Beeinflussung der wirksamen Verdampfungsrate führen, liegen hingegen im Bereich von Zehntelsekunden, bevorzugt von Hundertstelsekunden und besonders bevorzugt von Millisekunden. Eine Änderung der Temperatur der Wärmeübertragungsfläche von beispielsweise einem Grad äußert sich in einer Änderung der Verdampfungsrate um fünf Prozent. Erfindungsgemäß wird ein Regelkreis, insbesondere ein PID-Regler verwendet, um die Temperatur der Wärmeübertragungsflächen zu verändern. Hierzu wird ein Sensor benutzt, mit dem der Partialdruck des Dampfes des organischen Ausgangsstoffs im Ausgangsgasstrom ermittelbar ist. Alternativ dazu kann auch ein Sensor verwendet werden, der den Massenfluss des Dampfes des organischen Ausgangsstoffs im Ausgangsgasstrom ermittelt. Die Sensorsignale dieses Sensors liefern Werte, die als Regelgröße dem Regelkreis zugeführt werden. Die Stellgröße des Regelkreises ist der Heizenergie- fluss, mit dem die Temperatur der Wärmeübertragungsfläche verändert wird. Die Antwortzeit des Regelkreises wird im Wesentlichen durch die zeitliche Temperaturänderungsrate der Wärmeaustrittsfläche bestimmt. Die Tempera- turänderungsrate der Wärmeübertragungsfläche liegt bei mindestens 5° C/s. Beim Aufheizen können auch höhere Temperaturänderungsraten erreicht werden, die mindestens bei 10° C/s liegen. Durch eine geeignete Formgebung können sogar Temperaturänderungsraten erreicht werden, mit denen innerhalb von 4 ms die Temperatur um ein Grad nach oben oder nach unten verändert werden kann. Es reicht aus, wenn die Temperatur der Wärmeübertragungsfläche von einem mittleren Wert, der im Bereich zwischen 300° C und 400° C liegt, um ± 10° verändert wird. Bevorzugt wird die Wärmeübertragungsfläche von den Poren eines Festkörperschaums gebildet. Es handelt sich dabei um einen offenporigen Festkörperschaum wie er eingangs erwähnt wird und wie er in den diesbezüglichen, dort zitierten Druckschriften beschrieben wird.
Die erfindungsgemäße Vorrichtung besitzt einen im Ausgangsgasstrom angeordneten Sensor, der in der Lage ist, entweder den Partialdruck des Dampfes des organischen Ausgangsstoffes oder dessen Massenfluss durch eine Dampf- leitung zu ermitteln. Das so ermittelte, dampfdruckabhängige Sensorsignal wird als Regelgröße einem PID-Regler zugeführt. Der PID-Regler liefert eine Stellgröße für den Heizenergiefluss, mit dem die Wärmeübertragungsfläche temperiert wird. Die Wärmeübertragungsfläche wird vorzugsweise von einer Behälterwand ausgebildet, wobei der den Verdampfer ausbildende Behälter eine Gaseintritts Öffnung und eine Gasaustrittsöffnung aufweist. Stromabwärts der Gaseintrittsöffnung kann ein Gasverteiler, beispielsweise mit ein oder mehreren Prallflächen angeordnet sein, um den in den Behälter eintretenden Gasstrom zu verwirbeln, um die vom Gasstrom transportierten Schwebeteilchen, die fest oder flüssig sein können, in den Kontakt zur Behälterwand zu bringen. Die Wärmeübertragungsflächen werden vorzugsweise von den Porenwandungen eines offenporigen Festkörperschaums ausgebildet. Typische Größen für Schwebeteilchen liegen bei etwa 100 μιη. Typische Maße für die Weite der Porenöffnungen liegen bei etwa 1 mm. Der Festkörperschaum kann ein Porenvolumen von mehr als 95 Prozent seines Gesamtvolumens aufweisen. Bevorzugt hat der Behälter die Form eines Hohlzylinders, dessen Wandung von einem zylinderförmigen Festkörperschaum ausgebildet wird. Der Festkörperschaum kann aus einem keramischen Material bestehen. Bevorzugt besteht der Festkörperschaum aber aus einem elektrisch leitenden Material, beispielsweise aus Graphit oder einem der eingangs genannten Metalle, Wolfram, Rhenium, Tan- tal, Niob, Molybdän. Ein aus Graphit oder Keramik bestehender Festkörperschaum kann mit diesen Metallen oder mit Karbiden dieser Metalle beschichtet sein. Bevorzugt ist der hohlzylinderf örmige Festkörperschaum dünnwandig und steht in einer Wärmeleitverbindung mit einem Behältermantel, der temperiert werden kann. Beispielsweise kann der Behältermantel zum Zwecke der Wärmeabfuhr gekühlt werden. Ein elektrisch leitender Festkörper schäum besitzt zwei Elektroden über welche ein Strom durch den Festkörperschaum geleitet werden kann. Durch Variation des Stromes kann die dem Festkörperschaum zugeführte Heizleistung variiert werden. Es reicht aus, wenn die Temperatur des Festkörperschaums um mindestens 50° höher ist als die Temperatur des ihn umgebenden Mantels.
Die kurzfristige Erhöhung der Temperatur der Wärmeübertragungsfläche ist durch Einspeisung eines entsprechend hohen Stroms in den vom Festkörperschaum gebildeten Verdampfungskörper möglich. Eine kurzfristige Verminde- rung der Temperatur des Verdampfungskörpers erfolgt durch Wärmeableitung. Die Wärmeabfuhr erfolgt dabei über einen wärmeleitenden Kontakt zu einem kälteren Mantel. Abkühlend wirkt aber auch die von den Schwebeteilchen aufgenommene Verdampfungswärme beziehungsweise das Aufheizen des kalt in den Behälter eingebrachten Träger gases.
In einer Weiterbildung der Erfindung ist vorgesehen, dass durch Vorschalten geeigneter Ventile der Trägergasstrom pulsweise durch den Aerosol-Erzeuger geleitet wird. Die Pulsfrequenz liegt dabei deutlich höher als die reziproke Verweilzeit. Typische Pulsraten liegen bei 10 bis 20 Hertz. Die Pulslängen sind somit deutlich kürzer als die mittlere Verweilzeit, die im Bereich von etwa einer Sekunde liegt.
In einer Weiterbildung der Erfindung ist vorgesehen, dass innerhalb des Ver- dampfers ein Temperatursensor vorgesehen ist, mit dem die mittlere Temperatur der Wärmeübertragungsfläche gemessen werden kann. Dieser, bevorzugt zweite Sensor wirkt mit einem Regelkreis zusammen. Es handelt sich bevorzugt bei letzterem um einen zweiten PID-Regler, dessen Regelgröße die Temperatur also das Sensorsignal des zweiten Sensors ist und dessen Stellgröße einen Ein- fluss auf die Aerosolerzeugungsrate besitzt. So kann beispielsweise die Antwort des zweiten Regelkreises auf eine sich ändernde Temperatur der Wärmeübertragungsfläche eine Variation der Aerosolbildungsrate sein.
Während der erste Regelkreis kurzfristig auf Änderungen des Massenflusses des erzeugten Dampfes reagiert, und dadurch kurzfristig die der Heizung des Verdampfers zugeführte Leistung variiert, reagiert der zweite Regelkreis träge auf eine sich ändernde mittlere Temperatur der Wärmeübertragungsfläche. Ein derartiges, langfristiges Ansteigen oder Absinken der mittleren Temperatur der Wärmeübertragungsfläche ist die Folge einer Unter Versorgung oder einer Über- Versorgung des Verdampfers mit Schwebeteilchen, also unverdampftem Ausgangsstoff. Der zweite Regelkreis führt somit dazu, dass bei einem Anstieg der mittleren Temperatur der Wärmeübertragungsfläche die Aerosolbildungsrate erhöht und bei einem Absinken der mittleren Temperatur der Wärmeübertragungsfläche die Aerosolerzeugungsrate abgesenkt wird. Hierdurch wird er- reicht, dass der erste Regelkreis die Temperatur der Wärmeübertragungsfläche nur im Bereich eines vorgegebenen Temperaturfensters ändern kann. Mit dem Temperatursensor wird die mittlere Temperatur der Wärmeübertragungsflächen gemessen. Die Regelgröße ist das Temperatursignal. Mit dem Massenfluss als Stellgröße kann gewissermaßen ein Wärmeabtransport als Stellgröße verwendet werden. Dies insbesondere dann, wenn die Temperatur des Gases deutlich geringer ist als die Temperatur der Wärmeübertragungsflächen.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand beigefügter Zeichnungen erläutert. Es zeigen:
Fig. 1 ein Blockschaltbild einer ersten erfindungsgemäßen Vorrichtung,
Fig. 2 einen Längsschnitt durch einen erfindungsgemäßen Verdampfer und
Fig. 3 schematisch den zeitlichen Verlauf der Massenkonzentration der Aerosol-Teilchen im Eingangsgasstrom a, die zugeführte Heizleistung b und den Massenfluss im Ausgangsgasstrom des verdampften organischen Ausgangsstoffs c,
Fig. 4 ein Blockschaltbild einer zweiten erfindungsgemäßen Vorrichtung.
Die Figur 1 zeigt eine Beschichtungsvorrichtung, um ein beispielsweise aus Glas bestehendes Substrat 11 mit einer dünnen lichtemittierenden organischen Schicht zu beschichten, um sogenannte OLEDs zu erzeugen. Hinsichtlich des Schichtaufbaus und der verwendeten organischen Ausgangsstoffe wird auf die eingangs zitierte Literatur und insbesondere auf die US 7, 238,389 B2 verwiesen, deren diesbezüglicher Offenbarungsgehalt vollinhaltlich mit in diese Anmeldung einbezogen wird.
Die erfindungsgemäße Vorrichtung besitzt eine nicht näher dargestellte Quelle für ein Trägergas, bei dem es sich um Stickstoff, Wasserstoff oder ein geeignetes Edelgas handeln kann. Mittels einer Trägergasleitung 3 wird das Trägergas, gegebenenfalls auch in Form von kurzen Pulsen, einem Aerosol-Erzeuger 2 zu- geleitet, der einen Vorratsbehälter 2' aufweist, in dem der organische Aus- gangsstoff bevorratet wird. Der Aerosol-Erzeuger 2 kann ein Bürstenrad, eine Schnecke oder anders gestaltete Fördermittel aufweisen, um das im Vorratsbehälter bevorratete Pulver in den Trägergasstrom zu leiten. Anstelle eines Pulvers kann aber auch eine Flüssigkeit in den Trägergasstrom gesprüht werden.
Es bilden sich Schwebeteilchen aus, die durch eine Aerosolleitung 4 vom Gasstrom in einen Verdampfer 1 gebracht werden. Der Verdampfer 1 wird im Detail in der Figur 2 beschrieben. Wie unten noch im Detail erläutert werden wird, werden im Verdampfer 1 die Aerosolteilchen in eine Gasform gebracht. Der diesbezügliche Dampf wird zusammen mit dem Träger gas durch eine Dampfleitung 5, die über eine Heizmanschette 6 beheizt ist, einem CVD-Reaktor zugeleitet. Innerhalb des CVD-Reaktorgehäuses 7 befindet sich ein von der Dampfleitung 5 gespeistes Gaseinlassorgan in Form eines shower head, der eine Gas- austrittsfläche aufweist, die eine Vielzahl siebförmig angeordneter Gasaustritts- Öffnungen aufweist. Die Gasaustrittsfläche weist vertikal nach unten und bildet die Decke einer Prozesskammer 10, deren Boden eine nach oben zum Gaseinlassorgan 8 weisende Oberfläche eines Suszeptors 9 ausbildet. Auf dem gekühlten Suszeptor 9 liegt das zu beschichtende Substrat 11, auf dem sich der im Verdampfer 1 gebildete Dampf als Schicht abscheiden kann. Das Reaktorge- häuse 7 ist darüber hinaus mit einer Vakuumpumpe 12 verbunden, um innerhalb der Prozesskammer 10 beziehungsweise innerhalb des Verdampfers 1 einen Totalgasdruck im Bereich von 1 bis 10 mbar einzustellen. Es ist aber auch möglich, höhere Totalgasdrücke, beispielsweise im Bereich von 10 bis 100 mbar einzustellen. Über nicht dargestellte Regelventile wird der Totaldruck konstant gehalten.
Es ist ein PID-Regler 14 vorgesehen, der mit einem Sensor 13 zusammenwirkt, der den Partialdruck des Dampfes des organischen Ausgangsstoffs in der Dampfleitung 5 misst. Alternativ dazu kann der Sensor 13 aber auch als Mas- senflussmesser ausgebildet sein, um den Massenfluss des durch die Dampflei-
BERICHTIGTES BLATT (REGEL 91)
ISA/EP tung 5 hindurch fließenden Dampfes des organischen Ausgangsstoffes zu bestimmen.
Das Sensorsignal liefert einen zum Dampfdruck beziehungsweise Massenfluss proportionalen oder von diesem entsprechend einer Kennlinie abhängigen Wert, der die Regelgröße des PID-Reglers 14 bildet. Die Stellgröße des PID- Reglers 14 ist die Heizleistung, mit der eine Wärmeübertragungsfläche 15 temperiert wird, deren Temperatur die mittlere Verweildauer der un verdampften Schwebeteilchen des organischen Ausgangsstoffs im Verdampfer 1 beeinflusst.
Der in der Figur 2 im Detail dargestellte Verdampfer besitzt einen Anschluss zur Aerosolleitung 4 mit einer Eintrittsöffnung 18, die die Form einer Eintrittsdüse aufweisen kann. Stromabwärts der Eintrittsöffnung 18 befindet sich ein Gas Verteiler 19. Dieser ist in der Figur 2 nur schematisch dargestellt. Er besitzt mehrere insbesondere schräg zum Gasstrom ausgerichtete Prallflächen 19', gegen die der Eingangsgasstrom, der die zu verdampfenden Schwebeteilchen enthält, tritt. Mit Hilfe des Gas Verteilers 19 wird innerhalb des den Verdampfer 1 bildenden Behälters eine Verwirbelung erzeugt, die dazu führt, dass die Schwebeteilchen einem die Wandung des Behälters bildenden Verdampfungs- körper zugeführt werden.
Der Verdampfungskörper bildet die zuvor erwähnte Wärmeübertragungsflä- che 15 aus. Beim Ausführungsbeispiel handelt es sich bei dem Verdampfungskörper um einen offenporigen Festkörperschaum mit einer Porenweite von et- wa 1 mm. Das Porenvolumen entspricht mehr als 95 Prozent des Gesamtvolumens des Festkörper schaums. Die Schwebeteilchen treten in den Festkörperschaum hinein und lagern sich an den Porenwänden an.
Der so ausgebildete Verdampfungskörper 15 besitzt zwei Elektroden 22, 23. Die Elektrode 22 ist mit Erde verbunden. Die Elektrode 23 wird mit einem elektri- sehen Strom gespeist, der vom PID-Regler 14 bereitgestellt wird. Über den elektrischen Strom, der durch den elektrisch leitenden Festkörper schäum 15 fließt, wird dem Verdampfungskörper Wärme zugeführt, so dass die Wärmeübertragungsflächen eine Temperatur von 300° C bis 400 ° C haben.
Der hohlzylinderförmige Verdampfungskörper 15 ist von einem hohlzylindrischen Mantel 16 umgeben. Zwischen dem Mantel 16 und dem Verdampfungskörper 15 befindet sich eine Isolierschicht 17. Die Isolierschicht 17 ist elektrisch isolierend jedoch wärmedurchlässig. Während die Materialstärke des Festkör- perschaums 15 im Bereich von 4 bis 5 mm liegt, liegt die Materialstärke der Isolationsschicht 17 bei etwa 0,1 mm.
Der Mantel 16 kann aus Metall sein. Er kann aber ebenfalls aus einem Festkörperschaum ausgebildet sein. Er kann ebenso zwei Elektroden aufweisen, um den Mantel 16 zu temperieren. Die Temperatur des Mantels 16 ist aber geringer, als die mittlere Temperatur des Verdampfungskörpers 15. Bevorzugt wird hier ein Temperaturunterschied von etwa 50° C eingestellt.
Der Eintrittsöffnung 18, die etwa in der Mitte der Zylinderstirnwand liegt, liegt eine Austrittsöffnung 20, die ebenfalls in der Zylinderstirnwand liegt, gegenüber. Die Austrittsöffnung 20 hat einen größeren Durchmesser als die Eintrittsöffnung 18. Durch die Austrittsöffnung 20 gelangt ein Ausgangsgasstrom in die Dampfleitung 5. Der Ausgangsgasstrom enthält den Dampf des verdampften organischen Ausgangsstoffes.
Unmittelbar stromabwärts der Austrittsöffnung 20 befindet sich eine Höhlung 21, in der sich der oben bereits erwähnte Sensor 13 befindet, mit dem entweder der Partialdruck des verdampften organischen Ausgangsstoffs im Trägergas oder dessen Massenfluss ermitteln lässt. Mit der so beschriebenen Vorrichtung wird das wie folgt beschriebene Verfahren durchgeführt:
Die zeitliche Rate des im Aerosol-Erzeuger 2 erzeugten Massenflusses von durch die Aerosolleitung 4 zum Verdampfer 1 transportierten Schwebeteilchen variiert einerseits wegen Bauart bedingter Schwankungen in der Förderrate des Pulvers und andererseits wegen der uneinheitlichen Teilchengröße.
Der derart zeitlich variierende Massenstrom an Schwebeteilchen wird in den Verdampfer eingeleitet, tritt dort durch die Eintrittsöffnung 18 in das Behältervolumen, wird dort vom Gas Verteiler 19 verwirbelt, so dass die Schwebeteilchen in die Poren des Verdampfungskörpers 15 eindringen. Über Kontakt mit der Oberfläche der Wärmeübertragungsfläche 15 des Wärmeübertragungskörpers werden die Schwebeteilchen aufgeheizt, wobei sie ihre Verdampfungs- temperatur erreichen und abhängig von ihrer Partikelgröße und von der Temperatur der Wärmeübertragungsfläche 15 unterschiedlich schnell verdampfen. Der so gebildete Dampf tritt aus der Austrittsöffnung 20 in die Dampfleitung 5. Der Partialdruck des Dampfes, also dessen Konzentration im Ausgangsgasstrom wird mittels des Sensors 13 ermittelt.
Die Zuführung der Schwebeteilchen im Aerosol-Erzeuger 2 ist so gewählt, dass der bei dieser Massenflussrate erzeugte Dampf einen Partialdruck im Trägergas besitzt, der unterhalb des Sättigungsdampfdrucks liegt. Langfristig arbeitet der Verdampfer 1 in einem stationären Zustand, bei dem die mittlere in den Ver- dampfer 1 eingebrachte Masse pro Zeiteinheit der mittleren mit dem Ausgangsgasstrom aus dem Verdampfer 1 herausgebrachten Masse pro Zeiteinheit entspricht. Durch eine Änderung der Verweilzeit des unverdampften organischen Ausgangsstoffes innerhalb des Verdampfers 1 kann kurzfristig dieses Gleichgewicht verändert werden. Durch eine Erhöhung der Temperatur der Wärmeübertragungsfläche kann kurzfristig der aus dem Verdampfer heraustre- tende Massenfluss des organischen Ausgangsstoffes erhöht und durch eine Absenkung der Temperatur vermindert werden. Hierdurch wird mittels des PID- Reglers 14 eine Schwankungskompensation des Ausgangsmassenflusses vorgenommen.
Die ohne Massenflusskompensation in der Dampfleitung 5 beobachteten Schwankungen des Massenflusses besitzen Schwankungszeiten, die größer als eine Sekunde sind. In der Figur 3 ist mit a ein typischer Verlauf des Massenflusses einer Pulvererzeugungsrate über die Zeit aufgetragen. Die Kurve a reprä- sentiert somit im Wesentlichen die Speiserate, mit dem der Verdampfer 1 mit zu verdampfenden organischen Ausgangsstoff gespeist wird. Die horizontale Zeitachse liegt dabei auf einem Wert, der dem zeitlich gemittelten Massenfluss entspricht. Der Sensor 13 ist in der Lage, Abweichungen des Partialdrucks im Ausgangsgasstrom vom zeitlichen Mittelwert zu detektieren. Ist die Abweichung nach oben gerichtet, so vermindert der PID-Regler die Heizleistung, mit der die Wärmeübertragungsfläche 15 beheizt wird. Da sich deren Temperatur mit mindestens 100° C/s verändern kann und bereits eine Änderung der Temperatur zu einer Änderung der Verdampfungsrate um fünf Prozent führt, bewirkt die sehr schnelle Temperaturabsenkung von bis zu 10° C eine augenblickliche Erhöhung der Verweilzeit des unverdampften Materials an der Oberfläche des Verdampfungskörpers 15. Dies führt dazu, dass der Ausgangsmassenfluss (Kurve c in Figur 3) weit weniger steigt, als beispielsweise der Eingangsmassen- fluss. Sobald der PID-Regler über den Sensor 13 feststellt, dass sich der Ausgangsmassenfluss (Kurve c) nicht mehr ändert, beginnt er, die Heizleistung (Kurve b) wieder zu steigern.
Ermittelt der Sensor 13 eine Abweichung vom mittleren Massenfluss nach un- ten, steuert der PID-Regler 14 durch Erhöhung der Heizleistung gegen. Auch hier kann die Temperatur um bis zu 10° C verändert werden. Die sich durch die Temperaturerhöhung verringernde mittlere Verweilzeit des unverdampften Materials im Verdampfer 1 führt zu einer kurzfristigen Steigerung des Massenflusses im Ausgangsgasstrom. Das für die mittlere Verweilzeit an der Wärme- Übertragungsfläche 15 anhaftende unverdampfte Material bildet somit eine durch Änderung der Verdampfungstemperatur variierbare Puffermasse.
Die Figur 4 zeigt schematisch eine weitere Vorrichtung zum Abscheiden einer Schicht aus einem organischen Ausgangsstoff, die sich von der Vorrichtung gemäß Figur 1 im Wesentlichen dadurch unterscheidet, dass ein zweiter Sensor 24 vorgesehen ist. Mit diesem Sensor 24 kann die mittlere Temperatur der Wärmeübertragungsfläche 15 gemessen werden. Der Temperatursensor 24 liefert eine Regelgröße für einen PID-Regler 25, der als Antwort auf die langfristige Temperaturänderung der Wärmeübertragungsfläche 15 die Aerosolerzeu- gungsrate verändert. Bei dem in der Figur 4 dargestellten Ausführungsbeispiel ist zusätzlich ein Massenflussregler 26 dargestellt, mit dem der Massenfluss des Trägergases auf einen vorgegebenen Wert eingestellt werden kann.
Während mit dem Sensor 13 kurzfristige, also im Sekunden- beziehungsweise im Sub-Sekundenbereich liegende Änderungen des Massenflusses erkannt werden, um innerhalb dieser Zeitspannen die Temperatur der Wärmeübertragungsfläche 15 entweder zu erhöhen oder zu vermindern, erfasst der Temperatursensor 24 die Änderung einer zeitlich gemittelten Temperatur der Wärmeübertragungsfläche 15. Unter zeitlich gemittelter Temperatur werden hier Tem- peraturen verstanden, die über mehrere Sekunden gemittelt werden. Beispielsweise kann die Zeitspanne innerhalb der die mittlere Temperatur gemittelt wird das zehnfache der Zeitspanne betragen, innerhalb der der erste Regelkreis 14 auf eine Änderung des Partialdrucks des Dampfes im Trägergas reagiert. Der Regelkreis 25 reagiert somit auf langfristige Änderungen der Tempe- ratur der Wärmeübertragungsfläche 15. Derartige Änderungen haben eine zu geringe oder eine zu hohe Aerosolerzeugungsrate als Ursache. Dementsprechend wird durch den Regler 25 auf eine langfristige Steigerung der mittleren Temperatur der Wärmeübertragungsfläche 15 durch eine Steigerung der Aerosolerzeugungsrate durch den Aerosol-Erzeuger 2 reagiert. Auf ein langfristiges Absinken der mittleren Temperatur der Wärmeübertragungsfläche 15 reagiert der Regler 25 durch eine Reduktion der Aerosolerzeugungsrate im Aerosol- Erzeuger 2.
Diese Maßnahmen haben zur Folge, dass sich die Temperatur des heizleis- tungsgesteuerten Verdampfers 1, also die Temperatur der Wärmeübertragungsfläche 15 nur innerhalb eines vorbestimmten Temperaturbereichs ändern kann. Die Puffermasse innerhalb des Verdampfers 1 an organischem Ausgangsstoff bleibt somit im zeitlichen Mittel im Wesentlichen konstant. Da die beiden Regelkreise 14, 25 mit stark voneinander verschiedenen Zeitkonstanten arbeiten ist eine wechselseitige Beeinflussung minimiert.
Es ist auch möglich, die Vorrichtung gemäß Figur 4 ohne den PID-Regler 14 beziehungsweise den Sensor 13 zu betreiben.
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen. Die Unteransprüche charakterisieren in ihrer fakultativ nebengeordneten Fassung eigenständige erfinderische Weiterbildung des Standes der Technik, insbesondere um auf Basis dieser Ansprüche Teilanmeldungen vorzunehmen. Bezugszeichenliste
1 Verdampfer
2 Aerosol-Erzeuger 2' Vorratsbehälter
3 Trägergasleitung
4 Aerosolleitung
5 Dampfleitung
6 Heizmanschette
7 CVD-Reaktorgehäuse
8 Gaseinlassorgan (shower head)
9 Suszeptor
10 Prozesskammer
11 Substrat
12 Vakuumpumpe
13 Sensor
14 PID-Regler
15 Wärmeübertragungsfläche
16 Mantel
17 Isolationsschicht
18 Eintrittsöffnung/ -düse
19 Gasverteiler 19' Prallfläche
20 Austrittsöffnung
21 Höhlung
22 Elektrode
23 Elektrode
24 Temperatursensor Massenfluss Aerosolteilchen
25 PID-Regler Heizenergie
26 Massenflussregler Massenfluss Dampf

Claims

ANSPRÜCHE
1. Verfahren zum Abscheiden einer Schicht aus einem organischen Ausgangsstoff auf einem Substrat (11), wobei der organische Ausgangsstoff als Aerosol in Form von Schwebeteilchen in einen Trägergasstrom in einen
Verdampfer (1) gebracht wird, wobei die Schwebeteilchen dort in Kontakt zu einer durch Temperatursteuerung beheizten Wärmeübertragungsflä- che (15) treten und nach einer auch von der Temperatur der Wärmeübertragungsfläche (15) abhängigen mittleren Verweildauer verdampfen, wo- bei der so erzeugte Dampf vom Trägergas als Ausgangsgasstrom aus dem
Verdampfer (1) heraus in die Prozesskammer (10) gebracht wird, wo er auf der Oberfläche des Substrates (11), die Schicht bildend kondensiert, dadurch gekennzeichnet, dass die Temperatur der Wärmeübertragungsfläche (15) als Antwort auf eine zeitliche Änderung des Massenflusses des erzeugten Dampfes (c) im Ausgangsgasstrom verändert wird.
2. Verfahren nach Anspruch 1 oder insbesondere danach, dadurch gekennzeichnet, dass die während der Verweildauer im Verdampfer (1) enthaltene Masse des insbesondere unverdampften Ausgangsstoffes eine Puffer- masse bildet, die durch die Temperaturänderung derart variiert wird, dass zeitlich Schwankungen des in den Verdampfer (1) eintretenden Massenflusses des Ausgangsstoffes ausgeglichen werden.
3. Verfahren nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass ein unter Benutzung eines Sensors (13) im Ausgangsgasstrom ermittelter, dem Fluss oder dem Partialdruck des Dampfes im Trägergas entsprechender Wert als Regelgröße einem Regelkreis (14) zugeführt wird, der als Stellgröße den Heizener giefluss zur Wärmeübertragungsfläche (15) verändert.
BERICHTIGTES BLATT (REGEL 91)
ISA/EP Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Antwortzeit des Regelkreises (14) kürzer ist, insbesondere um mindestens einen Faktor 5 oder 10, als die mittlere Verweilzeit des un verdampften organischen Ausgangsstoffs im Verdampfer (1).
Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Temperaturänderungsrate der Wärmeübertragungsfläche (15) bei mindestens 5° C/s bevorzugt bei mindestens 10 C/s liegt und die Temperatur durch Variation des Heizenergiefluss um ± 10° veränderbar ist.
Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch einen gepulsten Eingangsgasstrom, wobei die Zeit zwischen den Pulsen geringer ist als die mittlere Verweildauer.
Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Wärmeübertragungsfläche (15) von den die Wände offener Zellen bildenden Stege definierten Poren eines offenporigen Festkörperschaums gebildet werden, der insbesondere die Wand eines Verdampfer (1) bildenden Behälter ausbildet.
Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Festkörperschaum (15) oder eine Beschichtung des Festkörperschaums elektrisch leitend ist und durch Stromfluss durch den Festkörperschaum (15) beziehungsweise die Beschichtung widerstandsbeheizt wird. Vorrichtung zum Verdampfen von in einem Trägergasstrom transportierten organischen Schwebeteilchen, in Form eines eine Eintrittsöffnung (18) für einen Einganggasstrom, eine Austrittsöffnung (20) für einen Ausgangsgasstrom und eine Wärmeübertragungsfläche (15) im Inneren aufweisenden Behälter (1), wobei die Wärmeübertragungsfläche (15) mittels eines veränderbaren Heizenergiefluss auf eine dynamisch steuerbare Temperatur aufheizbar ist, bei der die durch die Eintrittsöffnung in den Behälter (1) gebrachten Schwebeteilchen bei in Kontakt treten mit der Wärmeübertragungsfläche (15) zu einem organischen Dampf verdampfen, der aus der Austrittsöffnung (20) aus dem Behälter (1) heraustritt, gekennzeichnet durch einen im Ausgangsgasstrom angeordneten Sensor (13), der ein vom Fluss oder vom partiellen Dampfdruck des organischen Dampfes abhängiges Sensorsignal liefert, und einen Regelkreis (14), dem als Regelgröße das Sensorsignal zugeführt ist und der als Stellgröße den Heizenergiefluss verändert, um durch einen veränderbaren Wärmeenergiefluss die Temperatur dynamisch zu steuern.
Vorrichtung nach Anspruch 9 oder insbesondere danach, dadurch gekennzeichnet, dass der Verdampfer (1) so ausgebildet ist, dass der darin eintretende Ausgangsstoff für eine durch Temperaturvariation beeinflussbare Verweildauer im Verdampfer (1) verbleibt, so dass er eine Puffermasse bildet, die durch Temperaturänderung derart variierbar ist, dass zeitliche Schwankungen des in den Verdampfer (1) eintretenden Massenflusses des Ausgangsstoffes ausgleichbar sind.
Vorrichtung nach einem oder mehreren der Ansprüche 9 oder 10 oder insbesondere danach, dadurch gekennzeichnet, dass die Wärmeübertragungsfläche (15) von einem insbesondere die Behälterwand bildenden offenporigen Festkörperschaum gebildet wird. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche 9 bis 11 oder insbesondere danach, dadurch gekennzeichnet, dass der Festkörperschaum elektrisch leitend ist und mit zwei Elektroden (22, 23) zusammenwirkt, durch welche ein Heizstrom durch den Festkörperschaum bringbar ist, um Wärme innerhalb des Festkörperschaums zu erzeugen.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche 9 bis 12 oder insbesondere danach, dadurch gekennzeichnet, dass der Festkörperschaum derart mit einer kälteren Umgebung (16) gekoppelt ist, dass die Temperatur des Festkörperschaums gegenüber einer mittleren Temperatur um ± 10° C mit einer Temperaturänderungsrate von mindestens 5° C/s veränderbar ist.
14. Vorrichtung zum Abscheiden eines organischen Ausgangsstoffs als
Schicht auf einem Substrat (11), mit einem Aerosol-Erzeuger (2) zum Erzeugen eines dosierten Massenflusses des Ausgangsstoffes in Form von in einem Trägergasstrom zu einem Verdampfer (1) transportierten Schwebeteilchen, welcher Verdampfer (1) eine Wärmeübertragungsfläche (15) aufweist, die auf eine Verdampfungstemperatur aufheizbar ist, um die Schwebeteilchen zu verdampfen, mit einer Prozesskammer (10) zur Aufnahme des Substrates (11), der der vom Verdampfer (1) erzeugte Dampf durch eine Dampfleitung (5) zugeführt wird, gekennzeichnet durch einen Verdampfer gemäß einem oder mehreren der vorgehenden Ansprüche.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch einen Temperatursensor (24) zur Messung der mittleren Temperatur der Wärmeübertragungsfläche (15) und einen Regelkreis (25), dem als Regelgröße das Temperatursensorsignal zugeführt ist und der als Stellgröße den Massenfluss des or- ganischen Ausgangsstoffs zum Verdampfer (1) als Funktion des Temperatursensorsignal ändert.
PCT/EP2012/060645 2011-06-22 2012-06-06 Verfahren und vorrichtung zum abscheiden von oleds insbesondere verdampfungsvorrichtung dazu WO2012175334A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147001649A KR101956829B1 (ko) 2011-06-22 2012-06-06 증착 방법 및 장치
JP2014516262A JP5989107B2 (ja) 2011-06-22 2012-06-06 有機出発物質の堆積方法、蒸発装置および堆積装置
CN201280030857.7A CN103620086B (zh) 2011-06-22 2012-06-06 沉积方法及装置
KR1020187022191A KR102035813B1 (ko) 2011-06-22 2012-06-06 증착 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011051261A DE102011051261A1 (de) 2011-06-22 2011-06-22 Verfahren und Vorrichtung zum Abscheiden von OLEDs insbesondere Verdampfungsvorrichtung dazu
DE102011051261.6 2011-06-22

Publications (2)

Publication Number Publication Date
WO2012175334A2 true WO2012175334A2 (de) 2012-12-27
WO2012175334A3 WO2012175334A3 (de) 2013-04-11

Family

ID=46210260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060645 WO2012175334A2 (de) 2011-06-22 2012-06-06 Verfahren und vorrichtung zum abscheiden von oleds insbesondere verdampfungsvorrichtung dazu

Country Status (6)

Country Link
JP (1) JP5989107B2 (de)
KR (2) KR101956829B1 (de)
CN (1) CN103620086B (de)
DE (1) DE102011051261A1 (de)
TW (1) TWI572728B (de)
WO (1) WO2012175334A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519908A (ja) * 2014-07-01 2017-07-20 アイクストロン、エスイー Cvdまたはpvd装置のための蒸気発生装置および蒸気発生方法
DE102017112668A1 (de) * 2017-06-08 2018-12-13 Aixtron Se Verfahren zum Abscheiden von OLEDs
WO2022109516A1 (en) * 2020-11-19 2022-05-27 Eugenus, Inc. Liquid precursor injection for thin film deposition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014102484A1 (de) 2014-02-26 2015-08-27 Aixtron Se Verwendung eines QCM-Sensors zur Bestimmung der Dampfkonzentration beim OVPD-Verfahren beziehungsweise in einem OVPD-Beschichtungssystem
DE102014109196A1 (de) 2014-07-01 2016-01-07 Aixtron Se Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung
DE102014109195A1 (de) 2014-07-01 2016-01-07 Aixtron Se Vorrichtung und Verfahren zum Erzeugen eines Dampfes aus mehreren flüssigen oder festen Ausgangsstoffen für eine CVD- oder PVD-Einrichtung
DE102014115497A1 (de) * 2014-10-24 2016-05-12 Aixtron Se Temperierte Gaszuleitung mit an mehreren Stellen eingespeisten Verdünnungsgasströmen
DE102016100625A1 (de) 2016-01-15 2017-07-20 Aixtron Se Vorrichtung zum Bereitstellen eines Prozessgases in einer Beschichtungseinrichtung
DE102017103047A1 (de) 2016-11-29 2018-05-30 Aixtron Se Aerosolverdampfer
DE102017106431A1 (de) * 2017-03-24 2018-09-27 Aixtron Se Vorrichtung und Verfahren zum Herabsetzen des Wasserpartialdrucks in einer OVPD-Beschichtungseinrichtung
DE102017123233A1 (de) * 2017-10-06 2019-04-11 Aixtron Se Vorrichtung und Verfahren zur Erzeugung eines in einem Trägergas transportierten Dampfes
DE102017126126A1 (de) * 2017-11-08 2019-05-09 Aixtron Se Verfahren und Vorrichtung zum Erzeugen eines Dampfes durch die Verwendung von in einem Regelmodus gewonnenen Steuerdaten
DE102020122800A1 (de) 2020-09-01 2022-03-03 Apeva Se Vorrichtung zum Abscheiden von OLED-Schichten mit einer Run-/Vent-Leitung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8808098U1 (de) 1988-06-23 1988-11-10 Balzers Hochvakuum Gmbh, 6200 Wiesbaden Vorrichtung zum Verdampfen von Stoffen im Vakuum
EP0982411A2 (de) 1998-08-26 2000-03-01 TDK Corporation Verdampfungsquelle, Apparat und Verfahren zur Herstellung einer organischen elektrolumineszenten Vorrichtung
US6037241A (en) 1998-02-19 2000-03-14 First Solar, Llc Apparatus and method for depositing a semiconductor material
US20020192375A1 (en) 1997-06-02 2002-12-19 Sun James J. Method and apparatus for vapor generation and film deposition
US7238389B2 (en) 2004-03-22 2007-07-03 Eastman Kodak Company Vaporizing fluidized organic materials
DE102006026576A1 (de) 2006-06-06 2008-01-10 Aixtron Ag Vorrichtung und Verfahren zum Aufdampfen eines pulverförmigen organischen Ausgangsstoffs
US20090039175A1 (en) 2007-08-06 2009-02-12 Michael Long Vaporization of thermally sensitive materials
US7501152B2 (en) 2004-09-21 2009-03-10 Eastman Kodak Company Delivering particulate material to a vaporization zone
WO2010060646A1 (de) 2008-11-28 2010-06-03 Volker Probst Verfahren zum herstellen von halbleiterschichten bzw. von mit elementarem selen und/oder schwefel behandelten beschichteten substraten, insbesondere flächigen substraten
US20100173067A1 (en) 2009-01-07 2010-07-08 Canon Kabushiki Kaisha Film forming apparatus and film forming method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800754B1 (fr) * 1999-11-08 2003-05-09 Joint Industrial Processors For Electronics Dispositif evaporateur d'une installation de depot chimique en phase vapeur
US6701066B2 (en) * 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
US20060185597A1 (en) * 2004-11-29 2006-08-24 Kenji Suzuki Film precursor evaporation system and method of using
DE102005013875A1 (de) * 2005-03-24 2006-11-02 Creaphys Gmbh Heizeinrichtung, Beschichtungsanlage und Verfahren zur Verdampfung oder Sublimation von Beschichtungsmaterialien
JP4974504B2 (ja) 2005-10-13 2012-07-11 株式会社半導体エネルギー研究所 成膜装置、発光装置の作製方法
FR2900070B1 (fr) * 2006-04-19 2008-07-11 Kemstream Soc Par Actions Simp Dispositif d'introduction ou d'injection ou de pulverisation d'un melange de gaz vecteur et de composes liquides et procede de mise en oeuvre dudit dispositif.
JP5200551B2 (ja) * 2008-01-18 2013-06-05 東京エレクトロン株式会社 気化原料供給装置、成膜装置及び気化原料供給方法
DE102008026974A1 (de) * 2008-06-03 2009-12-10 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden dünner Schichten aus polymeren Para-Xylylene oder substituiertem Para-Xylylene
US7972443B2 (en) * 2008-11-14 2011-07-05 Global Oled Technology Llc Metering of particulate material and vaporization thereof
JP5341986B2 (ja) * 2009-04-24 2013-11-13 東京エレクトロン株式会社 蒸着処理装置および蒸着処理方法
KR20110004081A (ko) * 2009-07-07 2011-01-13 삼성모바일디스플레이주식회사 증착 장치용 캐니스터, 이를 이용한 증착 장치 및 증착 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8808098U1 (de) 1988-06-23 1988-11-10 Balzers Hochvakuum Gmbh, 6200 Wiesbaden Vorrichtung zum Verdampfen von Stoffen im Vakuum
US20020192375A1 (en) 1997-06-02 2002-12-19 Sun James J. Method and apparatus for vapor generation and film deposition
US6037241A (en) 1998-02-19 2000-03-14 First Solar, Llc Apparatus and method for depositing a semiconductor material
EP0982411A2 (de) 1998-08-26 2000-03-01 TDK Corporation Verdampfungsquelle, Apparat und Verfahren zur Herstellung einer organischen elektrolumineszenten Vorrichtung
US7238389B2 (en) 2004-03-22 2007-07-03 Eastman Kodak Company Vaporizing fluidized organic materials
US7501152B2 (en) 2004-09-21 2009-03-10 Eastman Kodak Company Delivering particulate material to a vaporization zone
DE102006026576A1 (de) 2006-06-06 2008-01-10 Aixtron Ag Vorrichtung und Verfahren zum Aufdampfen eines pulverförmigen organischen Ausgangsstoffs
US20090039175A1 (en) 2007-08-06 2009-02-12 Michael Long Vaporization of thermally sensitive materials
WO2010060646A1 (de) 2008-11-28 2010-06-03 Volker Probst Verfahren zum herstellen von halbleiterschichten bzw. von mit elementarem selen und/oder schwefel behandelten beschichteten substraten, insbesondere flächigen substraten
US20100173067A1 (en) 2009-01-07 2010-07-08 Canon Kabushiki Kaisha Film forming apparatus and film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519908A (ja) * 2014-07-01 2017-07-20 アイクストロン、エスイー Cvdまたはpvd装置のための蒸気発生装置および蒸気発生方法
DE102017112668A1 (de) * 2017-06-08 2018-12-13 Aixtron Se Verfahren zum Abscheiden von OLEDs
WO2022109516A1 (en) * 2020-11-19 2022-05-27 Eugenus, Inc. Liquid precursor injection for thin film deposition
US11459654B2 (en) 2020-11-19 2022-10-04 Eugenus, Inc. Liquid precursor injection for thin film deposition

Also Published As

Publication number Publication date
KR102035813B1 (ko) 2019-10-23
JP5989107B2 (ja) 2016-09-07
KR20140043791A (ko) 2014-04-10
KR20180090391A (ko) 2018-08-10
KR101956829B1 (ko) 2019-03-11
JP2014520210A (ja) 2014-08-21
TWI572728B (zh) 2017-03-01
CN103620086A (zh) 2014-03-05
DE102011051261A1 (de) 2012-12-27
WO2012175334A3 (de) 2013-04-11
TW201305366A (zh) 2013-02-01
CN103620086B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2012175334A2 (de) Verfahren und vorrichtung zum abscheiden von oleds insbesondere verdampfungsvorrichtung dazu
EP0361171B1 (de) Verfahren und Vorrichtung zum Verdampfen von bei Raumtemperatur flüssigen Monomeren
WO2012175307A1 (de) Verfahren und vorrichtung zum abscheiden von oled's
EP3111205B1 (de) Vorrichtung und verfahren zur bestimmung der konzentration eines dampfes mittels eines schwingkörpersensors
DE4124018C1 (de)
DE3878328T2 (de) Vorrichtung zur verdampfungsregelung.
WO2016000958A1 (de) Vorrichtung und verfahren zum erzeugen eines dampfes für eine cvd- oder pvd-einrichtung
WO2013010864A2 (de) Vorrichtung und verfahren zum bestimmen des dampfdrucks eines in einem trägergasstrom verdampften ausgangsstoffes
DE102011089501B4 (de) Vorrichtung und Verfahren zum Verdampfen von Material aus einer Metallschmelze
DE102006026576A1 (de) Vorrichtung und Verfahren zum Aufdampfen eines pulverförmigen organischen Ausgangsstoffs
WO2019068609A1 (de) Vorrichtung und verfahren zur erzeugung eines in einem trägergas transportierten dampfes
EP1872637B1 (de) Vorrichtung und verfahren zur plasmabeschichtung
EP0923985B1 (de) Vorrichtung zum Verdampfen von Flüssigkeiten und zum Herstellen von Gas/Dampfgemischen
WO2018224454A1 (de) VERFAHREN ZUM ABSCHEIDEN VON OLEDs
DE102007035518A1 (de) Vorrichtung zur Plasmabeschichtung von länglichen, zylindrischen Bauteilen
EP2820165B1 (de) Verfahren zum abscheiden einer lipon-schicht auf einem substrat
DE69709270T2 (de) Verfahren zur Verdampfung flüssiger Beschickungen und Verdampfer dafür
EP1625631A1 (de) Pulverisierte organische halbleiter und verfahren zum aufdampfen auf einen tr ger
DE102010003661A1 (de) Verfahren und Vorrichtung zur Elektronenstrahlverdampfung dielektrischer Materialien
EP0664839B1 (de) Verfahren und einrichtung zur prozessstabilisierung beim elektronenstrahlverdampfen
WO2018178036A2 (de) Verfahren zur bestimmung des partialdrucks oder einer konzentration eines dampfes
DE102009029236B4 (de) Verdampfer, Anordnung von Verdampfern sowie Beschichtungsanlage
EP3296012B1 (de) Verfahren und vorrichtung zur erzeugung eines kontinuierlichen traegergas/dampf-gemisch-stromes
DE102012014915B4 (de) Verfahren zum Abscheiden eines Aufdampfmaterials auf einem Substrat über eine druckgesteuerte Abscheiderate
WO2014029845A1 (de) Verfahren zur beschichtung eines substrats mit mehreren materialschichten und mehrmaterialienabgabeeinrichtung dafür

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726106

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014516262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147001649

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12726106

Country of ref document: EP

Kind code of ref document: A2