WO2012171322A1 - 高强度气体放电灯结构 - Google Patents

高强度气体放电灯结构 Download PDF

Info

Publication number
WO2012171322A1
WO2012171322A1 PCT/CN2012/000636 CN2012000636W WO2012171322A1 WO 2012171322 A1 WO2012171322 A1 WO 2012171322A1 CN 2012000636 W CN2012000636 W CN 2012000636W WO 2012171322 A1 WO2012171322 A1 WO 2012171322A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
electrode
intensity
gas
lamp structure
Prior art date
Application number
PCT/CN2012/000636
Other languages
English (en)
French (fr)
Inventor
卢志宇
Original Assignee
Lu Zhiyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lu Zhiyu filed Critical Lu Zhiyu
Publication of WO2012171322A1 publication Critical patent/WO2012171322A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr

Definitions

  • the present invention relates to a high-intensity gas discharge lamp, and more particularly to a high-intensity gas discharge lamp tube structure which can eliminate the situation of audio resonance generated when the discharge lamp is lit.
  • the high intensity discharge lamp does not need to be equipped with a tungsten wire, so there is no tungsten filament bulb which is easy to be broken and worn, and thus has a long
  • the service life can reach more than 10,000 hours.
  • the luminous efficiency of high-intensity gas discharge lamps varies according to different luminescent elements, which can reach 60 ⁇ 150 lumens per watt, which is 3 ⁇ 10 times that of tungsten light bulbs. It is said that it is currently the most energy-efficient and practical lighting source. Based on the above advantages, high-intensity gas discharge lamps have been widely used in parks, sports fields, shops, and lighting on roads, and have recently been used in large amounts on headlights of vehicles.
  • the discharge lamp also has a very large frequency range that produces audio resonance.
  • the audio resonance is formed, the pressure wave is strengthened, and the discharge arc is pressed into the lamp tube, so that the discharge arc is bent, shaken, and the discharge voltage and current fluctuate, and the light output fluctuates or flickers. It also causes the discharge arc to go out, even the burst of the lamp.
  • Taiwan Patent Publication No. 201038134 discloses that a high frequency (above 500 kHz) current can be used, or a low frequency (less than 1 kHz) square wave current can be used to drive the lamp. Tube, thereby avoiding the audio resonance frequency, which will increase the complexity of the electronic ballast circuit design, In turn, the cost is increased.
  • a solution for different high-intensity gas discharge lamps with a specific size ballast is proposed, or the sound resonance characteristics of the lamps produced by different manufacturers are set to some of the ballast frequency of the ballast.
  • the main technical problem to be solved by the present invention is that, in order to overcome the existing high-intensity gas discharge lamp, it is necessary to use a ballast of a specific frequency specification designed at a higher cost to avoid the problem of audio resonance and provide a high-intensity gas discharge.
  • the lamp structure which greatly reduces the chance of forming an audio resonance, and solves problems such as the discharge arc being extinguished or the lamp tube being broken due to the occurrence of audio resonance,
  • a high-intensity gas discharge lamp structure characterized in that it comprises:
  • a lamp tube having a discharge space for accommodating the ionizable gas and an inner wall surface
  • a first electrode and a second electrode are located in the discharge space, the first electrode and the second electrode are separated from each other by a discharge interval, and the ionizable gas forms a discharge arc between the discharge intervals;
  • a plurality of projections project from the inner wall surface of the bulb toward the discharge space, and the projections include a reflection surface that radiates pressure waves emitted from the discharge arc to the discharge space.
  • the high-intensity gas discharge lamp structure according to the present invention further includes a plurality of recessed portions respectively formed between the projections.
  • the high-intensity discharge lamp structure of the present invention wherein the projection extends in a direction parallel to an inner wall surface of the tube.
  • the reflecting surface of the projection is formed into a curved curved surface.
  • the outer diameter of the projection is tapered along an axial direction in which the projection protrudes.
  • the high-intensity gas discharge lamp structure of the present invention wherein the reflecting surface of the protruding portion comprises a first inclined surface and a second inclined surface, and the first inclined surface and the second inclined surface are sandwiched by a top angle .
  • the lamp tube further has a first port and a second port that are oppositely disposed and respectively embedded in the first electrode and the second electrode.
  • the outer diameter of the tube is tapered toward the first port and the second port, respectively.
  • the ionizable gas comprises an inert gas
  • the inert gas is a group selected from the group consisting of ruthenium, argon, osmium and iridium.
  • the ionizable gas further comprises a halogen gas
  • the halogen gas is a group selected from the group consisting of chlorine, bromine and iodine.
  • the invention only needs to mechanically process the lamp tube to obtain the structure having the protruding portion, or to form the protruding portion together when the lamp tube is manufactured, thereby avoiding the problem of subsequent use of the upper audio resonance. There is no need to involve the design of circuit components, and therefore, the production cost can be drastically reduced.
  • FIG. 1A is a schematic cross-sectional view showing a first embodiment of the present invention
  • FIG. 1B is a partially enlarged schematic view showing a first embodiment of the present invention
  • FIG. 2 is a schematic view of a pressure wave path according to a first embodiment of the present invention
  • 3A is a schematic cross-sectional view showing a second embodiment of the present invention.
  • 3B is a partially enlarged schematic view showing a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pressure wave path according to a second embodiment of the present invention.
  • Fig. 5 is a schematic view showing pressure wave reflection according to a second embodiment of the present invention. detailed description
  • FIG. 1A is a cross-sectional structural view of a first embodiment of the present invention.
  • the present invention provides a high-intensity gas discharge lamp structure including a lamp tube 10 , a first electrode 20 , a second electrode 30 , and a plurality of Projection portion 13.
  • the lamp tube 10 has a discharge space 11 and an inner wall surface 12, and the discharge space 11 houses an ionizable gas (not shown).
  • the ionizable gas is helium;
  • the electrode 20 and the second electrode 30 are disposed in the discharge space 11.
  • the first electrode 20 has a first discharge end 21, the second electrode 30 has a second discharge end 31, and the first discharge end 21 is spaced apart from the second discharge end 31 by a discharge interval, and the first discharge end 21 and the second discharge end 31 generate a discharge arc by applying external power.
  • the shape of the lamp tube 10 is a long ellipsoidal shape.
  • the shape of the lamp tube 10 may be a spherical shape, a cylindrical shape, or an irregular long ellipsoid according to practical application requirements.
  • the bulb 10 and the material of the tube 10 can be alumina ceramic or quartz glass.
  • the ionizable gas may be an inert gas or a mixture thereof with a halogen, and the inert gas may be neon, argon, krypton, neon or a mixture thereof, and the halogen may be chlorine, bromine, iodine or a mixture thereof, wherein a halogen is added.
  • the purpose is to increase the service life of the discharge lamp.
  • the ionizable gas may further comprise any one of lithium, sodium, aluminum, barium, zinc, gallium, selenium, indium, tin, antimony, bismuth, antimony, bismuth, antimony, bismuth, antimony, mercury, antimony, bismuth. Or a mixture or compound of more than one kind thereof, so that the discharge lamp can emit light of different colors for various use occasions.
  • the material of the first electrode 20 and the second electrode 30 may be a metal or an alloy of tungsten, tantalum tungsten, tantalum tungsten or tantalum tungsten, and the surface shape of the protrusion 13 It can be conical, pyramidal or arcuate.
  • the lamp tube 10 has a first port 15 and a second port 16 disposed opposite to each other, and the outer diameter of the lamp tube 10 faces the first port 15 and the second port, respectively. 16 is shrinking.
  • the first port 15 and the second port 16 are configured to be embedded and fixed by the first electrode 20 and the second electrode 30. Accordingly, the first port 15 and the second electrode 30 respectively close the first port 15 and the first port 15
  • the second port 16 is such that the closed discharge space 11 can be formed in the bulb 10 to fill the ionizable gas therein.
  • 1B is a partially enlarged schematic view of the first embodiment of the present invention.
  • the protruding portion 13 protrudes from the inner wall surface 12 of the lamp tube 10 toward the discharge space 11 and between the adjacent two protrusions 13 .
  • a recessed portion 14 is formed.
  • Each of the protruding portions 13 includes a reflective surface 131.
  • the reflective surface 131 includes a first inclined surface 132 and a second inclined surface 133.
  • the first inclined surface 132 is formed.
  • An apex angle ⁇ is sandwiched between the second inclined surface 133.
  • the first electrode 20 and the second electrode 30 receive a high voltage external power, and A discharge arc is formed between the first discharge end 21 and the second discharge end 31 to emit light. While forming the discharge arc, the ionizable gas in the bulb 10 is periodically heated and cooled by the discharge arc frequency, thereby generating a wave of uninterrupted pressure waves 40, as shown in FIG.
  • the pressure wave 40 includes a a transmitting wave 41, a first reflected wave 42 and a second reflected wave 43.
  • the emitted wave 41 first hits one of the protruding portions. 13, the reflecting surface 131 of the protruding portion 13 will reflect the emitted wave 41 to an orientation different from the traveling direction of the transmitting wave 41, that is, the first reflected wave 42 is formed, and then the first reflected wave 42 is formed.
  • the first reflected wave 42 After encountering the reflective surface 131 of the other protruding portion 13, the first reflected wave 42 will reflect to another orientation different from the traveling direction of the first reflected wave 42, that is, the second reflected wave 43 is formed, thus The reflecting surface 131 of the protruding portion 13 can diverge the pressure wave 40 in the discharge space 11 without repeatedly returning the pressure wave 40 on the same axis, thereby avoiding the situation of audio resonance.
  • the pressure wave 40 touches the reflective surface 131 of the protruding portion 13, it is reflected and diverged by the reflecting surface 131, and its reflection divergence direction is based on the physical principle that the incident angle is equal to the exit angle, so that the intensity of the pressure wave 40 is also However, the dispersion is weakened, and after multiple reflections, it disappears.
  • the transmitted wave 41 is sequentially converted into the first reflected wave 42 and the second reflected wave 43, and the intensity of the pressure wave 40 is gradually weakened.
  • the intensity of the second reflected wave 43 is smaller than the first reflected wave 42
  • the intensity of the first reflected wave 42 is smaller than the emitted wave 41, and after a plurality of reflections, the transmitted wave 41 will eventually lose strength.
  • FIG. 3A and FIG. 3B are cross-sectional structures and partial enlarged views of the second embodiment of the present invention.
  • the outer diameter of the protruding portion 13 is along an axis protruding from the protruding portion 13. The direction is tapered, and the reflecting surface 131 of the projection 13 is shaped into a curved curved surface 134.
  • FIG. 4 a schematic diagram of a pressure wave path according to a second embodiment of the present invention. Similarly, after the pressure wave 40 is generated, the emitted wave 41 will collide with the protruding portion 13 and be successively converted into the first reflection with different directions. The wave 42 and the second reflected wave 43 are gradually weakened by the intensity of the pressure wave 40, so that the audio resonance is avoided.
  • FIG. 5 a schematic diagram of pressure wave reflection according to a second embodiment of the present invention is shown.
  • the projection 13 is formed into a tapered shape (as shown in FIGS. 1A and 1B of the first embodiment) or a half-spherical shape (as shown in FIGS. 3A and 3B of the second embodiment).
  • the reflective surface 131 is illustrated as a plane or a curved curved surface 134.
  • the present invention is not limited thereto, and the protruding portion 13 may also have various geometric shapes according to actual application requirements or manufacturing considerations. Such as a rectangular or irregular protruding structure.
  • the protrusions 13 of the above embodiment are arranged regularly, but in other embodiments, the protrusions 13 may also be arranged in a random manner; or placed in a specific pattern.
  • the protruding portion 13 may extend in a direction parallel to the inner wall surface 12 of the bulb 10, that is, the protruding portion 13 has a ridge shape and is distributed on the inner wall surface 12 of the bulb 10.
  • the present invention provides a plurality of protrusions through the inner wall surface of the lamp tube and utilizes reflection of a plurality of reflection surfaces of the protrusion portion to disperse the pressure wave reflection path, the intensity of the pressure wave is reduced, thereby avoiding The occurrence of audio resonance further solves the problem of flickering, extinction, and even bursting of the lamp due to audio resonance of the high-intensity discharge lamp.
  • the present invention only needs to mechanically process the lamp tube to obtain the structure having the protruding portion, or to form the protruding portion when manufacturing the lamp tube, thereby avoiding the problem of subsequent use of the audio resonance, without the need for The design of the circuit components is involved, so that the production and use cost of the lamps can be greatly reduced.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

一种高强度气体放电灯结构,包括灯管(10)、第一电极(20)、第二电极(30)以及多个凸出部(13);该灯管(10)具有容置可离子化气体的放电空间(11)以及内壁面(12),第一电极(20)与第二电极(30)位于该放电空间(11)内且之间相隔一放电间距,在点灯时,可离子化气体于该放电间距形成一放电电弧,该凸出部(13)自该内壁面(12)突向该放电空间(11),其中该凸出部(13)的反射表面(131)可将第一电极(20)与第二电极(30)之间的该放电电弧发出的压力波(40)发散至该放电空间(11)。通过该凸出部(13)的设置,将该压力波(40)分散并减弱其强度,以避免发生音频共振的情形。

Description

说明书 高强度气体放电灯结构 技术领域
本发明涉及一种高强度气体放电灯,尤其涉及一种可消除该放电灯点灯时所产生 的音频共振的情形的高强度气体放电灯灯管结构。
背景技术
相较于传统钨丝灯泡, 高强度气体放电灯 (high intensity discharge lamp , HID) 不需装设钨丝, 故不会有钨丝灯泡其钨丝容易断裂、 损耗的情形, 因而 具有较长的使用寿命, 可达 10000小时以上, 同时, 高强度气体放电灯的发光效率根 据充填不同的发光元素而异, 分别可达每瓦 60〜150 流明以上, 是钨丝灯泡的 3〜10 倍, 可说是目前节能效益最高且实用化的照明光源。基于上述优点, 高强度气体放电 灯已广泛应用如公园、运动场、商店以及道路上的照明, 近来尤其是大量使用在车辆 的头灯上。
然而, 现今的高强度气体放电灯, 在使用高频电子式安定器点灯时, 因放电频 率的关系,使灯管内的气体被周期性的加热及冷却, 其结果使该气体于灯管内产生了 同步的压力张弛, 从而形成一压力波而在灯管内来回震荡,此震荡的压力波与灯管内 壁反射回来的压力波同相位时, 会产生共振, 因其共振频率在音频范围内, 因此称为 音频共振,而发生音频共振的频率会因灯管构造不同而异, 且灯管内壁不同的位置也 会形成不同的共振频率, 由于这些共振彼此混合, 使得即使同一颗高强度气体放电灯 也会有非常多会产生音频共振的频率范围。 当形成音频共振时, 该压力波会被加强, 而压迫到灯管内的放电电弧, 使得放电电弧产生弯曲、抖动以及放电电压、 电流的高 低起伏, 进而使光输出起伏波动或闪烁, 严重时还会造成放电电弧熄灭, 甚至是灯管 的爆裂。
为解决此种因压力波而产生的不稳定音频共振的情形, 中国台湾专利公开第 201038134号揭示可以高频 (高于 500kHz) 电流, 或是以低频 (低于 1 kHz) 方波电 流驱动灯管, 由此避开音频共振频率, 如此将增加电子式安定器电路设计的复杂度, 进而提高成本。此外, 另有提出一种将不同的高强度气体放电灯搭配特定规格的安定 器的解决方法, 或是针对不同厂家制作的灯管的音频共振特性,把安定器的点灯频率 设定在某些不会产生音频共振的频率窗口,然此举将限制不同厂商生产的安定器与高 强度气体放电灯彼此间搭配使用的相容性,也增加电子式安定器设计上的困难。综上, 当前仍无较符合经济效益的技术, 可解决高强度气体放电灯易发生音频共振的问题。 发明内容
本发明所要解决的主要技术问题在于, 克服现有高强度气体放电灯,必须搭配使 用较高成本设计的特定频率规格的安定器,才可避免音频共振的问题, 而提供一种高 强度气体放电灯结构, 其大幅降低形成音频共振的机会, 解决因发生音频共振而导致 放电电弧熄灭或灯管破裂等问题,
大幅减低生产成本。
本发明解决其技术问题所采用的技术方案是:
一种高强度气体放电灯结构, 其特征在于, 包括:
一灯管, 该灯管具有一容置可离子化气体的放电空间与一内壁面;
一第一电极与一第二电极,位于该放电空间内, 该第一电极与该第二电极彼此相 隔一放电间距, 该可离子化气体于该放电间距之间形成一放电电弧;
多个凸出部, 自该灯管的内壁面突向该放电空间, 该凸出部包括一将该放电电弧 发出的压力波发散至该放电空间的反射表面。
本发明所述的高强度气体放电灯结构, 其中, 还包括多个分别形成于该凸出部之 间的凹陷部。
本发明所述的高强度气体放电灯结构,其中,该凸出部为沿一平行于该灯管的内 壁面的方向延伸。
本发明所述的高强度气体放电灯结构,其中, 该凸出部的反射表面成形为一弧形 曲面。
本发明所述的高强度气体放电灯结构,其中,该凸出部的外径沿该凸出部突出的 一轴向渐缩。
本发明所述的高强度气体放电灯结构,其中, 该凸出部的反射表面包括一第一倾 斜面及一第二倾斜面, 该第一倾斜面与该第二倾斜面间夹一顶角。 本发明所述的高强度气体放电灯结构,其中,该灯管还具有相对设置且分别供该 第一电极与该第二电极嵌入的一第一端口及一第二端口。
本发明所述的高强度气体放电灯结构,其中, 该灯管的外径分别朝该第一端口与 该第二端口渐缩。
本发明所述的高强度气体放电灯结构, 其中, 该可离子化气体包含惰性气体, 该 惰性气体为选自氖、 氩、 氪及氙所组成的群组。
本发明所述的高强度气体放电灯结构, 其中, 该可离子化气体还包含卤素气体, 该卤素气体为选自氯、 溴及碘所组成的群组。
由以上可知, 本发明相较于已知技术可达到的有益效果在于:
一、 由于该灯管的内壁面设置有该凸出部, 当该压力波于放电电弧形成瞬间在该 灯管内产生时,该压力波将碰撞该凸出部的反射表面而朝向不同于原先入射方向的反 射方向行进, 因此, 该压力波将因此而被凸出部反射表面发散而大幅降低其形成音频 共振的机会;
二、 同时, 当该压力波通过多次反射及发散后, 该压力波的强度将逐渐下降, 终 使该压力波消失于该灯管内, 避免形成音频共振, 从而解决因发生音频共振而导致放 电电弧熄灭或灯管破裂等问题;
三、 本发明仅需对该灯管进行机械加工而得到具有该凸出部的结构, 或是于灯管 制造时一并成形该凸出部, 即可避免后续使用上音频共振的问题, 而毋须牵涉电路元 件的设计, 因此, 可大幅减低生产成本。
附图说明
下面结合附图和实施例对本发明进一步说明。
图 1A为本发明第一实施例的剖面结构示意图;
图 1B为本发明第一实施例的局部放大示意图;
图 2为本发明第一实施例的压力波路径示意图;
图 3A为本发明第二实施例的剖面结构示意图;
图 3B为本发明第二实施例的局部放大示意图;
图 4为本发明第二实施例的压力波路径示意图;
图 5为本发明第二实施例的压力波反射示意图。 具体实施方式
请先参阅图 1A, 为本发明第一实施例的剖面结构示意图, 本发明提供一种高强 度气体放电灯结构, 包括一灯管 10、 一第一电极 20、 一第二电极 30以及多个凸出部 13。 该灯管 10具有一放电空间 11以及一内壁面 12, 该放电空间 11容置有可离子化 气体(图中未示), 于本实施例中, 该可离子化气体为氙气; 该第一电极 20与该第二 电极 30设置于该放电空间 11内, 其中, 该第一电极 20具有一第一放电端 21, 该第 二电极 30具有一第二放电端 31, 且该第一放电端 21与该第二放电端 31之间相距一 放电间距,该第一放电端 21及该第二放电端 31通过施加外部电力而产生一放电电弧。
于本实施例中, 该灯管 10的外形为长椭球型, 然而本发明并不限于此, 依实际 应用需求, 该灯管 10的外形可为圆球形、 圆柱型或不规则的长椭球形, 且该灯管 10 的材质可为氧化铝陶瓷或石英玻璃。此外, 该可离子化气体可为惰性气体或其与卤素 的混合物, 惰性气体可为氖、 氩、 氪、 氙或其混合物, 卤素可为氯、 溴、 碘或其混合 物, 其中, 添加卤素的目的在于增加该放电灯的使用寿命。 该可离子化气体可进一步 包含锂、 钠、 铝、 钪、 锌、 镓、 硒、 铟、 锡、 铈、 镨、 钷、 镝、 钬、 铥、 铪、 汞、 铊、 钍中的任一种或其一种以上的混合物或化合物, 以使该放电灯可发出不同颜色的光 线, 因应各种使用场合。 除此之外, 在本实施例中, 该第一电极 20及该第二电极 30 的材料可为钨、 镧钨、 钍钨或铈钨的金属或合金, 且该凸出部 13的表面形状可为圆 锥形、 角锥形或圆弧形。
如图 1A所示, 在此实施例中, 该灯管 10具有相对设置的第一端口 15及第二端 口 16, 且该灯管 10的外径分别朝该第一端口 15与该第二端口 16渐缩。 该第一端口 15与该第二端口 16供该第一电极 20与该第二电极 30嵌入固定, 据此, 通过该第一 电极 20及该第二电极 30分别封闭该第一端口 15及该第二端口 16, 使该灯管 10内 可形成封闭的该放电空间 11, 以填充可离子化气体于其中。 请搭配参阅图 1B, 为本 发明第一实施例的局部放大示意图, 该凸出部 13自该灯管 10的内壁面 12突向该放 电空间 11, 并于相邻两凸出部 13之间形成一凹陷部 14, 该凸出部 13各包含一反射 表面 131, 在此实施例中, 该反射表面 131, 包括一第一倾斜面 132及一第二倾斜面 133, 该第一倾斜面 132与该第二倾斜面 133间夹一顶角 α。
于点灯启动时, 该第一电极 20与该第二电极 30接收高电压的外部电力,而于该 第一放电端 21及该第二放电端 31之间形成一放电电弧,进而发出光线。在形成该放 电电弧的同时, 该灯管 10内的该可离子化气体受到因放电电弧频率产生的周期性加 热及冷却, 从而产生一波一波不间断的压力波 40, 请参阅图 2所示, 为本发明第一 实施例的压力波路径示意图。 图 2显示该压力波 40形成后于该灯管 10中的路径,在 此实施例中, 以该压力波 40于该灯管 10 内经过两次反射做为举例说明, 该压力波 40包括一发射波 41、 一第一反射波 42与一第二反射波 43, 当该第一电极 20与该第 二电极 30之间建立该放电电弧后, 该发射波 41先碰撞其中一该凸出部 13, 而该凸 出部 13的反射表面 131将使该发射波 41反射至一与该发射波 41行进方向相异的方 位, 即形成该第一反射波 42, 接着, 该第一反射波 42遇到另一该凸出部 13的反射 表面 131后,该第一反射波 42将反射至另一与该第一反射波 42行进方向相异的方位, 即形成该第二反射波 43, 因此, 该凸出部 13的反射表面 131可将该压力波 40发散 于该放电空间 11内, 而不让该压力波 40于同一轴线重复折返, 因此避免了音频共振 的情形。
此外, 当压力波 40碰触该凸出部 13的反射表面 131 时, 会被该反射表面 131 反射发散, 其反射发散方向依入射角等于出射角的物理原则, 从而使压力波 40强度 也因此而被分散减弱, 经多次反射后终至消失, 例如该发射波 41依序转换为该第一 反射波 42及该第二反射波 43的同时, 该压力波 40的强度也将逐渐减弱, 换言之, 该第二反射波 43的强度小于该第一反射波 42, 而该第一反射波 42的强度小于该发 射波 41, 当经过多次反射后, 该发射波 41最终将失去强度。
请继续参阅图 3A与图 3B所示,为本发明第二实施例的剖面结构及局部放大示意 图, 在此实施例中, 该凸出部 13的外径沿该凸出部 13突起的一轴向渐缩, 并使该凸 出部 13的反射表面 131成形为一弧形曲面 134。请参阅图 4, 为本发明第二实施例的 压力波路径示意图, 同样的, 该压力波 40产生后, 该发射波 41将碰撞该凸出部 13, 陆续转换为方向不同的该第一反射波 42及该第二反射波 43, 且该压力波 40的强度 渐渐渐弱, 故避免音频共振的情形。 再请搭配参阅图 5, 为本发明第二实施例的压力 波反射示意图, 当多个方向一致的压力波 50射向该反射表面 131, 由于该弧形曲面 134上相异位置的切面互不平行, 故该压力波 50将分别反射至不同的方向, 即转换 为多个方向分散的反射波 51。 于上述实施例中, 该凸出部 13 以成形为一尖锥状 (如第一实施例的图 1A与图 1B所示) 或一半球状(如第二实施例的图 3A与图 3B所示), 且该反射表面 131呈一 平面或一弧形曲面 134做为举例说明,然而本发明并不限于此,依据实际应用需求或 制造考量, 该凸出部 13也可为各种几何形状, 如矩形或不规则的凸出结构。 此外, 上述实施例的该凸出部 13为呈规则排列,但于其他实施例中, 该凸出部 13也可呈散 乱排列; 或依特定图样摆置。或者, 该凸出部 13可为沿一平行于该灯管 10的内壁面 12的方向延伸, 即该凸出部 13呈一山脊状, 并分布于该灯管 10的内壁面 12。
综上所述, 由于本发明通过灯管的内壁面设置多个凸出部, 并利用多个该凸出部 反射表面的反射, 分散压力波反射路径, 削减了压力波的强度, 从而避免了音频共振 的发生, 进而解决了高强度气体放电灯因音频共振而造成的闪烁、熄灭, 甚至是灯管 爆裂的问题。 同时, 本发明仅需对该灯管进行机械加工, 得到具有该凸出部的结构, 或是于制造该灯管时成形该凸出部, 即可避免后续使用上音频共振的问题, 而毋须牵 涉电路元件的设计, 故可大幅减低灯具的生产及使用成本。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的限制, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰, 均 仍属于本发明技术方案的范围内。

Claims

权利要求书
1、 一种高强度气体放电灯结构, 其特征在于, 包括:
一灯管 (10), 该灯管 (10) 具有一容置可离子化气体的放电空间 (11 ) 与一内 壁面 (12 );
一第一电极 (20) 与一第二电极 (30), 位于该放电空间 (11 ) 内, 该第一电极 (20)与该第二电极(30)彼此相隔一放电间距, 该可离子化气体于该放电间距之间 形成一放电电弧; 以及
多个凸出部 (13), 自该灯管(10) 的内壁面(12 )突向该放电空间 (11 ), 该凸 出部(13)包括一将该放电电弧发出的压力波(40)发散至该放电空间 (11 ) 的反射 表面 (131 )。
2、 根据权利要求 1所述的高强度气体放电灯结构, 其特征在于, 还包括多个分 别形成于该凸出部 (13) 之间的凹陷部 (14)。
3、根据权利要求 1所述的高强度气体放电灯结构,其特征在于,所述凸出部(13) 为沿一平行于该灯管 (10) 的内壁面 (12) 的方向延伸。
4、根据权利要求 1所述的高强度气体放电灯结构,其特征在于,所述凸出部(13) 的反射表面 (131 ) 成形为一弧形曲面 (134)。
5、根据权利要求 1所述的高强度气体放电灯结构,其特征在于,所述凸出部(13) 的外径沿该凸出部 (13 ) 突出的一轴向渐缩。
6、根据权利要求 1所述的高强度气体放电灯结构,其特征在于,所述凸出部(13) 的反射表面(131 )包括一第一倾斜面(132)及一第二倾斜面(133), 该第一倾斜面
( 132) 与该第二倾斜面 (133) 间夹一顶角 (α )。
7、 根据权利要求 1所述的高强度气体放电灯结构, 其特征在于, 所述灯管(10) 还具有相对设置且分别供该第一电极(20)与该第二电极(30)嵌入的一第一端口(15) 及一第二端口 (16)。
8、 根据权利要求 7所述的高强度气体放电灯结构, 其特征在于, 所述灯管(10) 的外径分别朝该第一端口 (15) 与该第二端口 (16) 渐缩。
9、 根据权利要求 1所述的高强度气体放电灯结构, 其特征在于, 所述可离子化 气体包含惰性气体, 该惰性气体为选自氖、 氩、 氪及氙所组成的群组。
10、 根据权利要求 1 所述的高强度气体放电灯结构, 其特征在于, 所述可离子 化气体还包含卤素气体, 该卤素气体为选自氯、 溴及碘所组成的群组。
PCT/CN2012/000636 2011-06-16 2012-05-11 高强度气体放电灯结构 WO2012171322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101672958A CN102832100A (zh) 2011-06-16 2011-06-16 高强度气体放电灯结构
CN201110167295.8 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012171322A1 true WO2012171322A1 (zh) 2012-12-20

Family

ID=47335182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000636 WO2012171322A1 (zh) 2011-06-16 2012-05-11 高强度气体放电灯结构

Country Status (2)

Country Link
CN (1) CN102832100A (zh)
WO (1) WO2012171322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010020A1 (de) * 2013-06-14 2014-12-18 Audi Ag Gasentladungslampe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885181A (en) * 1972-04-19 1975-05-20 Gen Electric Co Ltd Electric discharge lamps
JPS60258843A (ja) * 1984-06-04 1985-12-20 Matsushita Electric Works Ltd 高圧放電灯
JPS6171541A (ja) * 1984-09-17 1986-04-12 Matsushita Electric Works Ltd 高圧放電灯
JPS61165944A (ja) * 1985-01-17 1986-07-26 Matsushita Electric Works Ltd 高圧放電灯
JPS63301458A (ja) * 1987-06-02 1988-12-08 Koji Haruta けい光ランプ
JPH03280348A (ja) * 1990-03-28 1991-12-11 Toshiba Lighting & Technol Corp セラミック放電灯

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19749908A1 (de) * 1997-11-11 1999-05-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrodenbauteil für Entladungslampen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885181A (en) * 1972-04-19 1975-05-20 Gen Electric Co Ltd Electric discharge lamps
JPS60258843A (ja) * 1984-06-04 1985-12-20 Matsushita Electric Works Ltd 高圧放電灯
JPS6171541A (ja) * 1984-09-17 1986-04-12 Matsushita Electric Works Ltd 高圧放電灯
JPS61165944A (ja) * 1985-01-17 1986-07-26 Matsushita Electric Works Ltd 高圧放電灯
JPS63301458A (ja) * 1987-06-02 1988-12-08 Koji Haruta けい光ランプ
JPH03280348A (ja) * 1990-03-28 1991-12-11 Toshiba Lighting & Technol Corp セラミック放電灯

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010020A1 (de) * 2013-06-14 2014-12-18 Audi Ag Gasentladungslampe
DE102013010020B4 (de) * 2013-06-14 2020-12-24 Audi Ag Gasentladungslampe mit Verwirbelungselement

Also Published As

Publication number Publication date
CN102832100A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
US8629616B2 (en) Arc tube device and stem structure for electrodeless plasma lamp
JP2001266803A (ja) 無電極放電ランプ
US8847488B2 (en) Fill combination and method for high intensity lamps
US7411350B2 (en) Small arc tube, low-pressure mercury lamp, lighting apparatus, mandrel for forming the arc tube, and production method of the arc tube
US8680756B2 (en) Optical system for a luminaire
WO2012171322A1 (zh) 高强度气体放电灯结构
JP3157901B2 (ja) メタルハライドランプ
TW201250767A (en) High intensity discharge lamp structure
US8344624B2 (en) Plasma lamp with dielectric waveguide having a dielectric constant of less than two
US20120194092A1 (en) Discharge lamp with long life
JP2006202668A (ja) 蛍光ランプ、蛍光ランプ装置及び照明器具
KR101332331B1 (ko) 초고주파 발광 램프 장치
JP2008288025A (ja) マイクロ波放電ランプ装置
CN203367233U (zh) 一种圆柱双锥形hid氙气灯泡
JPH113688A (ja) 反射形管球および照明装置
US20110204782A1 (en) Plasma Lamp with Dielectric Waveguide Body Having a Width Greater Than a Length
CN202065888U (zh) 无极灯
JP2009277406A (ja) 高圧放電ランプ、その高圧放電ランプを用いたランプユニット、およびそのランプユニットを用いたプロジェクタ
JP2013527586A (ja) 高強度放電アーク管および関連のランプ組立体
KR20220000157U (ko) 차열판이 설치된 메탈 할라이드 램프
JP5392639B1 (ja) シールドビーム形放電ランプ
JP5307498B2 (ja) 高圧放電ランプの点灯装置
JP2008234953A (ja) 高圧水銀ランプ
JP2011060505A (ja) マイクロ波ランプ用の筐体、マイクロ波ランプ、光源装置、プロジェクター
JPH11329349A (ja) 蛍光ランプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800802

Country of ref document: EP

Kind code of ref document: A1