WO2012169389A1 - 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 - Google Patents

熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 Download PDF

Info

Publication number
WO2012169389A1
WO2012169389A1 PCT/JP2012/063824 JP2012063824W WO2012169389A1 WO 2012169389 A1 WO2012169389 A1 WO 2012169389A1 JP 2012063824 W JP2012063824 W JP 2012063824W WO 2012169389 A1 WO2012169389 A1 WO 2012169389A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
layer
mass
compound layer
Prior art date
Application number
PCT/JP2012/063824
Other languages
English (en)
French (fr)
Inventor
三好 達也
中島 清次
裕樹 中丸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011126863A external-priority patent/JP5187413B2/ja
Priority claimed from JP2011126941A external-priority patent/JP5187414B2/ja
Priority to US14/123,872 priority Critical patent/US10100381B2/en
Priority to RU2013158293/02A priority patent/RU2591905C2/ru
Priority to CN201280028256.2A priority patent/CN103597117B/zh
Priority to MX2013014294A priority patent/MX344422B/es
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP12796728.9A priority patent/EP2719796B1/en
Priority to AU2012268278A priority patent/AU2012268278B2/en
Priority to CA2836119A priority patent/CA2836119C/en
Priority to KR1020147015264A priority patent/KR101789366B1/ko
Priority to KR1020137030642A priority patent/KR101447408B1/ko
Publication of WO2012169389A1 publication Critical patent/WO2012169389A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • Y10T428/273Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.] of coating

Definitions

  • the present invention relates to a steel plate for hot pressing suitable for manufacturing an automobile undercarriage member, a vehicle body structural member, and the like by hot pressing, and a method for manufacturing a hot pressing member using the same.
  • Patent Document 1 discloses a process called a hot press that enables both easy processing and high strength by simultaneously processing a heated steel sheet using a die and a punch and simultaneously cooling it.
  • Technology has been proposed.
  • the steel plate is heated to a high temperature of around 950 ° C. before hot pressing, so scale (iron oxide) is generated on the surface of the steel plate and the scale peels off during hot pressing.
  • the mold is damaged or the surface of the member after hot pressing is damaged.
  • the scale remaining on the surface of the member also causes poor appearance and poor paint adhesion.
  • the scale on the surface of the member is usually removed by processing such as pickling or shot blasting, but this complicates the manufacturing process and causes a decrease in productivity.
  • excellent corrosion resistance is required for automobile undercarriage members and vehicle body structural members, hot press members manufactured by the above-described processes are not provided with a rust preventive film such as a plating layer. Therefore, the corrosion resistance is very insufficient.
  • Patent Document 2 discloses a hot press member having excellent corrosion resistance in which a steel sheet coated with Zn or a Zn base alloy is hot pressed and a Zn—Fe base compound or a Zn—Fe—Al base compound is provided on the surface.
  • Patent Document 3 discloses a process in which an alloyed hot-dip Zn-plated steel sheet is heated at 700 to 1000 ° C. for 2 to 20 minutes and then hot pressed to provide a plating layer containing a Fe—Zn solid solution phase on the surface.
  • a hot press-formed product (member) having excellent properties, weldability, and corrosion resistance is disclosed.
  • the hot-pressed member manufactured by the method described in Patent Document 2 may cause poor appearance and reduced paint adhesion due to scale formation, leading to corrosion resistance deterioration due to ZnO formation.
  • the hot press members described in Patent Documents 2 and 3 have a problem that they are inferior in corrosion resistance against perforation corrosion (hereinafter referred to as perforation corrosion resistance) that tends to occur in a portion where the chemical conversion treatment film or the electrodeposition coating film does not adhere. There is.
  • Scale generation is likely to occur at a local portion such as a crack generated from a defective portion of a plating layer or a Zn-Fe metal compound formed during heating by hot pressing.
  • Scale and ZnO are likely to occur in a low Zn-based plating layer having a melting point of less than 700 ° C.
  • iii) In order to suppress the generation of scale and ZnO, it is effective to form a plating layer containing 10 to 25% by mass of Ni having a high melting point, with the balance being Zn and inevitable impurities.
  • the present invention has been made on the basis of such knowledge, and the steel sheet surface contains, in order, 10 to 25% by mass of Ni, the balance is made of Zn and inevitable impurities, and the adhesion amount is 10 to 90 g / m 2.
  • a hot-press steel sheet characterized by having a plating layer of the above and a lubricating layer containing a solid lubricant.
  • At least one kind selected from a Si-containing compound layer, a Ti-containing compound layer, an Al-containing compound layer, and a Zr-containing compound layer is further provided between the plating layer and the lubricating layer. It is preferable to have a compound layer.
  • the present invention also includes a plating layer containing, in order, 10 to 25% by mass of Ni on the steel sheet surface, the balance being Zn and inevitable impurities, and an adhesion amount of 10 to 90 g / m 2 , and a solid lubricant.
  • a steel sheet for hot pressing comprising: at least one compound layer selected from a Si-containing compound layer, a Ti-containing compound layer, an Al-containing compound layer, and a Zr-containing compound layer.
  • the base steel sheet for the plating layer in the hot-press steel sheet of the present invention is, in mass%, C: 0.15 to 0.5%, Si: 0.05 to 2.0%, Mn: 0.5 to 3 %, P: 0.1% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.01% or less, with the balance being composed of Fe and inevitable impurities
  • a steel plate can be used.
  • the base steel sheet further includes at least one selected from Cr: 0.01 to 1%, Ti: 0.2% or less, and B: 0.0005 to 0.08% by mass%, or Sb: It is preferable that 0.003% to 0.03% is contained individually or simultaneously.
  • the present invention further relates to a hot press member characterized in that the hot press steel sheet as described above is hot pressed after being cold-pressed and then heated to a temperature range of Ac 3 transformation point to 1000 ° C.
  • a manufacturing method is provided.
  • the surface of the steel sheet contains, in order, 60% by mass or more of Ni, the balance being Zn and unavoidable impurities, and an adhesion amount of 0.01 to 5 g / m 2.
  • Hot having a plating layer II containing 25% by mass of Ni, the balance being Zn and inevitable impurities and having an adhesion amount of 10 to 90 g / m 2 , and a lubricating layer containing a solid lubricant Provide steel sheet for press.
  • the steel sheet for hot pressing according to the present invention, at least one selected from a Si-containing compound layer, a Ti-containing compound layer, an Al-containing compound layer, and a Zr-containing compound layer is further provided between the plating layer II and the lubricating layer. It is preferable to have the compound layer.
  • the surface of the steel sheet contains, in order, 60% by mass or more of Ni, the balance being Zn and unavoidable impurities, and an adhesion amount of 0.01 to 5 g / m 2.
  • a steel sheet for hot pressing comprising at least one compound layer selected from a containing compound layer and a Zr-containing compound layer.
  • the base steel sheet for the plating layer in the hot-press steel sheet of the present invention is, in mass%, C: 0.15 to 0.5%, Si: 0.05 to 2.0%, Mn: 0.5 to 3 %, P: 0.1% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.01% or less, with the balance being composed of Fe and inevitable impurities
  • a steel plate can be used.
  • the base steel sheet further includes at least one selected from Cr: 0.01 to 1%, Ti: 0.2% or less, and B: 0.0005 to 0.08% by mass%, or Sb: It is preferable that 0.003% to 0.03% is contained individually or simultaneously.
  • the present invention further provides a hot press member, wherein the hot press steel sheet as described above is hot pressed after being cold pressed to a temperature range of Ac 3 transformation point to 1000 ° C.
  • a manufacturing method is provided. In the method for producing a member for hot pressing according to the present invention, when heating to a temperature range of Ac 3 transformation point to 1000 ° C., it is preferable to further heat at an average temperature rising rate of 100 ° C./s or more.
  • the present invention it is possible to produce a steel sheet for hot pressing that can suppress the generation of scale and ZnO during hot pressing, has excellent oxidation resistance, and is excellent in cold pressability.
  • a steel sheet for hot pressing that is excellent in perforated corrosion resistance after hot pressing and also excellent in cold pressability.
  • the hot press member manufactured by the hot press member manufacturing method of the present invention using the hot press steel plate of the present invention has a good appearance and has excellent paint adhesion and corrosion resistance. It is suitable for the underbody member and the vehicle body structural member.
  • Embodiment A A-1 Steel Sheet for Hot Pressing A-1-1) Plating Layer
  • the steel sheet surface contains 10 to 25% by mass or more of Ni.
  • a plating layer is formed with the balance being Zn and inevitable impurities.
  • a ⁇ phase having a melting point of 881 ° C. and a crystal structure of any of Ni 2 Zn 11 , NiZn 3 , and Ni 5 Zn 21 is formed. Scale and ZnO formation reaction during heating can be minimized.
  • the ⁇ phase of Ni 2 Zn 11 , NiZn 3 and Ni 5 Zn 21 can be confirmed by an X-ray diffraction method or an electron beam diffraction method using TEM (Transmission Electron Microscopy). Further, although the ⁇ phase is formed as described above by setting the Ni content of the plating layer to 10 to 25% by mass, some ⁇ phase may be mixed depending on the conditions of electroplating. At this time, in order to minimize the zinc oxide formation reaction on the surface of the plating layer in the heating process, the amount of ⁇ phase is preferably 5% by mass or less. The amount of the ⁇ phase is defined by the weight ratio of the ⁇ phase to the total weight of the plating layer, and can be quantified by, for example, the anodic dissolution method.
  • the adhesion amount per side of the plating layer is less than 10 g / m 2 , the sacrificial anticorrosive effect of Zn will not be sufficiently exerted, and if it exceeds 90 g / m 2 , the effect will be saturated and the cost will be increased. / M 2 .
  • the method for forming such a plating layer is not particularly limited, but a known electroplating method is suitable.
  • A-1-2) Lubricating layer In order to provide excellent cold pressability, a lubricating layer containing a solid lubricant is provided on the plating layer. By providing the lubricating layer, the dynamic friction coefficient is reduced, and the cold press property can be improved.
  • solid lubricant examples include the following, and at least one of them can be used.
  • Polyolefin wax, paraffin wax For example, polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, etc.
  • Fluororesin For example, polyfluoroethylene resin (polytetrafluoroethylene resin, etc.)
  • Fatty acid amide compounds such as stearic acid amide, palmitic acid amide, methylene bisstearamide, ethylene bisstearamide, oleic acid amide, esylic acid amide, alkylene bis Fatty acid amide, etc.
  • Metal soaps For example, calcium stearate, lead stearate, calcium laurate, calcium palmitate, etc.
  • Metal sulfides For example, molybdenum disulfide, tungsten disulfide, etc. (6) Other: graphite, graphite fluoride, boron nitride, borax, polyalkylene glycols, among these solid lubricants, such as alkali metal sulfates, in particular, polyethylene waxes, fluororesin is preferable.
  • polyethylene waxes include Clariant Japan Co., Ltd. Selidust 9615A, Selidust 3715, Selidust 3620, Selidust 3910 (all trade names), Sanyo Chemical Co., Ltd. Sun Wax 131-P, Sun Wax 161-P.
  • Chemipearl W-100, Chemipearl W-200, Chemipearl W-500, Chemipearl W-800, Chemipearl W-950 (all are trade names) manufactured by Mitsui Chemicals, Inc. can be used.
  • fluororesin polytetrafluoroethylene resin is most preferable.
  • Lubron L-2, Lubron L-5 both trade names) manufactured by Daikin Industries, Ltd.
  • Mitsui Dubon MP1100, MP1200 all are trade names
  • Asahi Glass Co., Ltd. full-on dispersion AD1, full-on dispersion AD2, full-on L141J, full-on L150J, full-on L170J (all are trade names), etc. are suitable.
  • a composition in which a solid lubricant is added using an organic resin as a binder may be deposited on the plating layer, and then heated and dried without washing.
  • the outstanding coating adhesiveness is also obtained by using organic resin as a binder.
  • Such an adhesion treatment of the composition may be any of a coating method, a dipping method, and a spray method, and a roll coater, a squeeze coater, a die coater, or the like can be used. At this time, after applying, dipping, and spraying with a squeeze coater or the like, it is possible to adjust the coating amount, uniform appearance, and uniform thickness by an air knife method or roll drawing method.
  • organic resins that are binders for the lubricating layer include epoxy resins, modified epoxy resins, polyhydroxy polyether resins, polyalkylene glycol-modified epoxy resins, urethane-modified epoxy resins, and resins obtained by further modifying these resins, polyester resins, and urethane resins. It is appropriate to use at least one selected from acrylic resins and polyolefin resins. Moreover, you may use together well-known hardening
  • the blending amount of the solid lubricant in the lubricating layer is preferably 1 to 20 parts by weight (solid content) and preferably 1 to 10 parts by weight (solid) with respect to 100 parts by weight (solid content) of the composition using an organic resin as a binder. Min) is more preferred. If the blending amount of the solid lubricant is 1 part by mass or more, the lubricating effect is high, and if it is 20 parts by mass or less, the coating adhesion does not decrease.
  • the layer thickness after drying of the lubricating layer is preferably 0.1 to 2.0 ⁇ m. If the layer thickness is 0.1 ⁇ m or more, the effect of improving the cold press property is sufficient, and if it is 2.0 ⁇ m or less, many thermal decomposition products of the organic resin component are not generated during hot pressing.
  • A-1-3) Compound layer At least one compound selected from a Si-containing compound layer, a Ti-containing compound layer, an Al-containing compound layer, and a Zr-containing compound layer is further provided between the plating layer and the lubricating layer.
  • the thickness of the compound layer is preferably 0.1 ⁇ m or more. If the thickness of the compound layer exceeds 3.0 ⁇ m, the compound layer may become brittle and the coating adhesion may be lowered. Therefore, the thickness is preferably 3.0 ⁇ m or less. More preferably, it is 0.4 to 2.0 ⁇ m.
  • Si-containing compound for example, silicone resin, lithium silicate, sodium silicate, colloidal silica, silane coupling agent and the like can be applied.
  • Ti-containing compound for example, a titanate such as lithium titanate or calcium titanate, a titanium coupling agent mainly composed of titanium alkoxide or a chelate-type titanium compound can be applied.
  • Al-containing compound for example, an aluminate such as sodium aluminate or calcium aluminate, an aluminum coupling agent mainly composed of an aluminum alkoxide or a chelate-type aluminum compound can be applied.
  • a zirconate such as lithium zirconate or calcium zirconate
  • a zirconium coupling agent mainly composed of a zirconium alkoxide or a chelate-type zirconium compound can be applied.
  • the adhesion treatment of these compounds may be any of a coating method, a dipping method, and a spray method, and a roll coater, a squeeze coater, a die coater, or the like may be used.
  • a coating method a dipping method, and a spray method
  • a roll coater, a squeeze coater, a die coater, or the like may be used.
  • the heat drying is preferably performed so that the maximum temperature of the steel sheet is 40 to 200 ° C. More preferably, it is carried out at 60 to 160 ° C.
  • such a compound layer on the plating layer contains at least one kind of cation selected from Si, Ti, Al, and Zr, and is selected from among phosphate ions, fluoric acid ions, and fluoride ions. It is also possible to perform a reactive treatment in which a steel sheet having a plating layer is immersed in an acidic aqueous solution containing at least one kind of anion, and then wash with water or heat and dry without washing.
  • the compounding amount of the solid lubricant in the compound layer is preferably 1 to 20 parts by mass (solid content), more preferably 1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the compound. If the blending amount of the solid lubricant is 1 part by mass or more, the lubricating effect is excellent, and if it is 20 parts by mass or less, the coating adhesion does not deteriorate.
  • A-1-4 Underlying steel plate
  • C 0.15 to 0.5%
  • Si 0 0.05 to 2.0%
  • Mn 0.5 to 3%
  • P 0.1% or less
  • S 0.05% or less
  • Al 0.1% or less
  • N 0.01% or less
  • % representing the content of a component means “% by mass” unless otherwise specified.
  • C 0.15-0.5% C is an element that improves the strength of steel. In order to increase the TS of the hot pressed member to 980 MPa or more, the amount needs to be 0.15% or more. On the other hand, when the amount of C exceeds 0.5%, the blanking workability of the raw steel plate is significantly lowered. Therefore, the C content is 0.15 to 0.5%.
  • Si 0.05 to 2.0% Si, like C, is an element that improves the strength of steel.
  • the amount In order to increase the TS of the hot pressed member to 980 MPa or more, the amount needs to be 0.05% or more.
  • the amount of Si exceeds 2.0%, the occurrence of surface defects called red scales during hot rolling is remarkably increased, the rolling load is increased, and the ductility of the hot-rolled steel sheet is deteriorated.
  • the Si content exceeds 2.0%, the plating processability may be adversely affected when a plating process for forming a plating film mainly composed of Zn on the steel sheet surface is performed. Therefore, the Si content is 0.05 to 2.0%.
  • Mn 0.5 to 3%
  • Mn is an element effective for suppressing the ferrite transformation and improving the hardenability, and also reduces the Ac 3 transformation point, so that it is an effective element for lowering the heating temperature before hot pressing. is there. In order to exhibit such an effect, the amount needs to be 0.5% or more.
  • the amount of Mn exceeds 3%, it segregates and the uniformity of the characteristics of the raw steel plate and the hot press member decreases. Therefore, the amount of Mn is 0.5 to 3%.
  • P 0.1% or less
  • the amount of P exceeds 0.1%, segregation occurs and the uniformity of the characteristics of the steel plate and the hot pressed member is reduced, and the toughness is also significantly reduced. Therefore, the P content is 0.1% or less.
  • Al 0.1% or less When the Al amount exceeds 0.1%, blanking workability and hardenability of the steel plate as a material are lowered. Therefore, the Al content is 0.1% or less.
  • N 0.01% or less
  • the N content exceeds 0.01%, a nitride of AlN is formed during hot rolling or heating before hot pressing, and the blanking workability and hardenability of the raw steel sheet are improved. Reduce. Therefore, the N content is 0.01% or less.
  • the balance is Fe and inevitable impurities, but at least selected from Cr: 0.01 to 1%, Ti: 0.2% or less, and B: 0.0005 to 0.08% for the following reasons.
  • One kind or Sb: 0.003 to 0.03% is preferably contained individually or simultaneously.
  • Cr 0.01 to 1% Cr is an element effective for strengthening steel and improving hardenability.
  • the Cr content is preferably 0.01% or more.
  • the upper limit is preferably 1%.
  • Ti 0.2% or less Ti is an element effective for strengthening steel and improving toughness by refining. Further, it is also an element effective for forming a nitride in preference to B described below and exhibiting the effect of improving hardenability by solid solution B. However, if the amount of Ti exceeds 0.2%, the rolling load during hot rolling increases extremely, and the toughness of the hot pressed member decreases, so the upper limit may be 0.2%. preferable.
  • B 0.0005 to 0.08%
  • B is an element effective for improving the hardenability during hot pressing and toughness after hot pressing.
  • the B content is preferably 0.0005% or more.
  • the upper limit is preferably 0.08%.
  • Sb 0.003 to 0.03%
  • Sb has an effect of suppressing a decarburized layer generated in the steel sheet surface layer portion between the time when the steel plate is heated before hot pressing and the time when the steel plate is cooled by a series of processes of hot pressing. In order to exhibit such an effect, the amount needs to be 0.003% or more. On the other hand, if the Sb content exceeds 0.03%, the rolling load increases and the productivity is lowered. Therefore, the Sb content is preferably 0.003 to 0.03%.
  • A-2 Manufacturing Method of Hot Press Member The above-described steel sheet for hot press according to the present invention is hot pressed and then hot pressed to a temperature range of Ac 3 transformation point to 1000 ° C. Become.
  • the heating above Ac 3 transformation point before hot pressing is the rapid cooling during hot pressing to form a hard phase such as martensite phase, in order to achieve high strength of the member.
  • the upper limit of the heating temperature is set to 1000 ° C. because when the temperature exceeds 1000 ° C., a large amount of ZnO is generated on the surface of the plating layer.
  • the heating temperature here means the highest temperature reached of the steel sheet.
  • the average temperature increase rate during heating before hot pressing is not particularly limited, but is preferably 2 to 200 ° C./s, for example.
  • the generation of ZnO on the surface of the plating layer and the generation of local scale in the defective portion of the plating layer increase as the high-temperature residence time during which the steel sheet is exposed to high temperature conditions increases.
  • the holding time at the maximum attained plate temperature is not particularly limited. However, a shorter time is preferable for the same reason as described above, preferably 300 s or less, more preferably 120 s or less, and even more preferably 10 s or less.
  • heating by an electric furnace or a gas furnace flame heating, current heating, high frequency heating, induction heating, etc. can be exemplified.
  • the electroplating process was carried out with a change of ⁇ 100 A / dm 2 to form a plating layer having a Ni content (the balance is Zn and unavoidable impurities), adhesion amount and ⁇ phase content as shown in Tables 1 and 2. .
  • the steel sheet temperature reached after applying a composition (solid content ratio 15%) comprising the solid lubricant and the compound or organic binder shown in Tables 1 and 2 and the remaining solvent on the plating layer. was dried at 140 ° C.
  • the steel plate No. Nos. 1 to 11 and 16 to 22 are examples in which a compound layer containing a solid lubricant is provided.
  • Nos. 12 and 13 are examples in which a lubricating layer is provided.
  • No. 14 is an example in which a lubricating layer is provided on the compound layer.
  • No. 15 is an example in which neither a compound layer nor a lubricating layer is provided.
  • Silicone resin KR-242A manufactured by Shin-Etsu Chemical Co., Ltd.
  • Polyethylene wax 1 Celi dust 3620 manufactured by Clariant Japan Fluororesin: Polytetrafluoroethylene resin Asahi Glass Co., Ltd. Fullon L170J Molybdenum disulfide: LM-13 manufactured by Daito Lubrication Co., Ltd.
  • Graphite GP-60S manufactured by Hitachi Chemical Co., Ltd. Boron nitride: FS-1 manufactured by Mizushima Alloy Iron Co., Ltd.
  • Diethanol-modified epoxy resin ER-007 manufactured by Kansai Paint Co., Ltd.
  • Block isocyanate Duranate MF-K60X manufactured by Asahi Kasei Corporation
  • Ethylene ionomer Chemipearl S650 manufactured by Mitsui Chemicals, Inc.
  • Polyethylene wax 2 Chemipearl W950 manufactured by Mitsui Chemicals, Inc.
  • Silane coupling agent Shin-Etsu Chemical Co., Ltd. KBE-403
  • the hot press was simulated by heating under the heating conditions shown in Tables 1 and 2 by an electric furnace or direct energization, and then sandwiching with an Al mold and cooling at a cooling rate of 50 ° C./s.
  • Cold pressability The dynamic pressurization coefficient was measured using the friction coefficient measuring apparatus schematically shown in FIG. 1 to evaluate the cold pressability. First, the sample 1 collected from the as-prepared steel plate is placed on the sample stage 2 fixed to the upper surface of the slide table 3. The slide table 3 can be moved horizontally by a roller 4 provided on the upper surface of the slide table support 5 below the slide table 3. Next, the sample 1 is pressed against the lower surface of the bead 6 having the shape shown in FIG.
  • the pressing load N to the sample 1 is measured by the first load cell 7 attached to the slide table support 5.
  • cleaning oil Preton R352L for press made from Sugimura Chemical Industry Co., Ltd. was apply
  • the calculated ⁇ was evaluated according to the following criteria, and if it was ⁇ or ⁇ , it was considered that the cold press property was excellent.
  • Oxidation resistance After heating under the heating conditions shown in Tables 1 and 2, the weight of the steel sheet was measured and the change in weight before heating was measured.
  • the weight change is the sum of the weight increase due to the scale and ZnO generation and the weight decrease due to the scattering of the generated ZnO, but the smaller the absolute value, the better the oxidation resistance, and the evaluation based on the following criteria: If ⁇ or ⁇ , the object of the present invention was satisfied.
  • a plating layer I containing 60% by mass or more of Ni and the balance of Zn and inevitable impurities is provided. If the amount of Ni in the plating layer I is less than 60% by mass, the Zn in the plating layer cannot be sufficiently prevented from diffusing into the underlying steel sheet, and excellent perforated corrosion resistance cannot be obtained.
  • the amount of Ni in the plating layer I is preferably 100% by mass, but when it is less than 100% by mass, the balance is Zn and a unavoidable impurity having a sacrificial anticorrosive effect.
  • the adhesion amount per one side of the plating layer I is less than 0.01 g / m 2 , the effect of suppressing the diffusion of Zn into the underlying steel sheet is not sufficiently exhibited, and if it exceeds 5 g / m 2 , the effect is saturated. In addition, the cost is increased, so 0.01 to 5 g / m 2 is set.
  • the plating layer II is provided on the plating layer I in order to suppress the formation of a large amount of zinc oxide on the surface of the plating layer and to obtain excellent perforated corrosion resistance.
  • the plating layer II is a plating layer containing 10 to 25% by mass of Ni, with the balance being Zn and inevitable impurities. Since the amount of Ni in the plating layer II is 10 to 25% by mass, a ⁇ phase having a high melting point of 881 ° C. having a crystal structure of Ni 2 Zn 11 , NiZn 3 , or Ni 5 Zn 21 is formed. Zinc oxide formation reaction on the surface of the plating layer in the heating process can be minimized.
  • the plating layer II remains as a ⁇ phase even after the hot pressing is completed, excellent perforated corrosion resistance is exhibited due to the sacrificial anticorrosive effect of Zn.
  • the formation of the ⁇ phase when the Ni content is 10 to 25% by mass does not necessarily match the equilibrium diagram of the Ni—Zn alloy. This is probably because the formation reaction of the plating layer performed by electroplating or the like proceeds in a non-equilibrium manner.
  • the ⁇ phase of Ni 2 Zn 11 , NiZn 3 and Ni 5 Zn 21 can be confirmed by an X-ray diffraction method or an electron beam diffraction method using TEM (Transmission Electron Microscopy).
  • the ⁇ phase is formed as described above by setting the Ni content of the plating layer II to 10 to 25% by mass. Some ⁇ phase may be mixed depending on electroplating conditions. At this time, in order to minimize the zinc oxide formation reaction on the surface of the plating layer in the heating process, the amount of ⁇ phase is preferably 5% by mass or less. The amount of the ⁇ phase is defined by the weight ratio of the ⁇ phase to the total weight of the plating layer II, and can be quantified by, for example, the anodic dissolution method.
  • the adhesion amount per one side of the plating layer II is less than 10 g / m 2 , the sacrificial anticorrosive effect of Zn is not sufficiently exhibited, and if it exceeds 90 g / m 2 , the effect is saturated and the cost is increased. 90 g / m 2 .
  • the formation method of the plating layer I and the plating layer II is not particularly limited, but a known electroplating method is preferable.
  • the lubricating layer containing a solid lubricant is provided on the plating layer II.
  • the dynamic friction coefficient is reduced, and the cold press property can be improved.
  • solid lubricant examples include the following, and at least one of them can be used.
  • Polyolefin wax, paraffin wax For example, polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, etc.
  • Fluororesin For example, polyfluoroethylene resin (polytetrafluoroethylene resin, etc.)
  • Fatty acid amide compounds such as stearic acid amide, palmitic acid amide, methylene bisstearamide, ethylene bisstearamide, oleic acid amide, esylic acid amide, alkylene bis Fatty acid amide, etc.
  • Metal soaps For example, calcium stearate, lead stearate, calcium laurate, calcium palmitate, etc.
  • Metal sulfides For example, molybdenum disulfide, tungsten disulfide, etc. (6) Other: graphite, graphite fluoride, boron nitride, borax, polyalkylene glycols, among these solid lubricants, such as alkali metal sulfates, in particular, polyethylene waxes, fluororesin is preferable.
  • polyethylene waxes include Clariant Japan Co., Ltd. Selidust 9615A, Selidust 3715, Selidust 3620, Selidust 3910 (all trade names), Sanyo Chemical Co., Ltd. Sun Wax 131-P, Sun Wax 161-P.
  • Chemipearl W-100, Chemipearl W-200, Chemipearl W-500, Chemipearl W-800, Chemipearl W-950 (all are trade names) manufactured by Mitsui Chemicals, Inc. can be used.
  • fluororesin polytetrafluoroethylene resin is most preferable.
  • Lubron L-2, Lubron L-5 both trade names) manufactured by Daikin Industries, Ltd., Mitsui DuPont Co., Ltd. MP1100, MP1200 (all are trade names), Asahi Glass Co., Ltd. full-on dispersion AD1, full-on dispersion AD2, full-on L141J, full-on L150J, full-on L170J (all are trade names), etc. are suitable.
  • a composition to which a solid lubricant is added using an organic resin as a binder is deposited on the plating layer II, and then heated and dried without washing.
  • the outstanding coating adhesiveness is also obtained by using organic resin as a binder.
  • Such an adhesion treatment of the composition may be any of a coating method, a dipping method, and a spray method, and a roll coater, a squeeze coater, a die coater, or the like can be used. At this time, after applying, dipping, and spraying with a squeeze coater or the like, it is possible to adjust the coating amount, uniform appearance, and uniform thickness by an air knife method or roll drawing method.
  • organic resins that are binders for the lubricating layer include epoxy resins, modified epoxy resins, polyhydroxy polyether resins, polyalkylene glycol-modified epoxy resins, urethane-modified epoxy resins, and resins obtained by further modifying these resins, polyester resins, and urethane resins. It is appropriate to use at least one selected from acrylic resins and polyolefin resins. Moreover, you may use together well-known hardening
  • the blending amount of the solid lubricant in the lubricating layer is preferably 1 to 20 parts by weight (solid content) and preferably 1 to 10 parts by weight (solid) with respect to 100 parts by weight (solid content) of the composition using an organic resin as a binder. Min) is more preferred. If the blending amount of the solid lubricant is 1 part by mass or more, the lubricating effect is high, and if it is 20 parts by mass or less, the coating adhesion does not decrease.
  • the layer thickness after drying of the lubricating layer is preferably 0.1 to 2.0 ⁇ m. If the layer thickness is 0.1 ⁇ m or more, the effect of improving the cold press property is sufficient, and if it is 2.0 ⁇ m or less, many thermal decomposition products of the organic resin component are not generated during hot pressing.
  • the thickness of the compound layer is preferably 0.1 ⁇ m or more. If the thickness of the compound layer is 3.0 ⁇ m or less, the compound layer is not fragile and there is no case where the coating adhesion is lowered. Therefore, the thickness is preferably 3.0 ⁇ m or less. More preferably, it is 0.4 to 2.0 ⁇ m.
  • Si-containing compound for example, silicone resin, lithium silicate, sodium silicate, colloidal silica, silane coupling agent and the like can be applied.
  • Ti-containing compound for example, a titanate such as lithium titanate or calcium titanate, a titanium coupling agent mainly composed of titanium alkoxide or a chelate-type titanium compound can be applied.
  • Al-containing compound for example, an aluminate such as sodium aluminate or calcium aluminate, an aluminum coupling agent mainly composed of an aluminum alkoxide or a chelate-type aluminum compound can be applied.
  • a zirconate such as lithium zirconate or calcium zirconate
  • a zirconium coupling agent mainly composed of a zirconium alkoxide or a chelate-type zirconium compound can be applied.
  • the plating layer II In order to form such a compound layer on the plating layer II, at least one compound selected from the Si-containing compound, the Ti-containing compound, the Al-containing compound, and the Zr-containing compound was attached on the plating layer II. Then, it may be heat-dried without washing with water.
  • the adhesion treatment of these compounds may be any of a coating method, a dipping method, and a spray method, and a roll coater, a squeeze coater, a die coater, or the like may be used. At this time, after applying, dipping, and spraying with a squeeze coater or the like, it is possible to adjust the coating amount, uniform appearance, and uniform thickness by an air knife method or roll drawing method. Further, the heat drying is preferably performed so that the maximum temperature of the steel sheet is 40 to 200 ° C. More preferably, it is carried out at 60 to 160 ° C.
  • such a compound layer on the plating layer II contains at least one cation selected from Si, Ti, Al, and Zr, and includes phosphate ions, fluoric acid ions, and fluoride ions. Even after a reactive treatment in which a steel sheet having a plating layer I and a plating layer II is immersed in an acidic aqueous solution containing at least one kind of anion selected from the above, it is washed with water or heated and dried without washing. Is possible.
  • the compounding amount of the solid lubricant in the compound layer is preferably 1 to 20 parts by mass (solid content), more preferably 1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the compound. If the blending amount of the solid lubricant is 1 part by mass or more, the lubricating effect is excellent, and if it is 20 parts by mass or less, the coating adhesion does not deteriorate.
  • the above-described steel sheet for hot press according to the present invention is cold pressed, it is heated to a temperature range of Ac 3 transformation point to 1000 ° C. and hot pressed. Can be manufactured.
  • the heating above Ac 3 transformation point before hot pressing is the rapid cooling during hot pressing to form a hard phase such as martensite phase, in order to achieve high strength of the member.
  • the upper limit of the heating temperature is set to 1000 ° C., because when the temperature exceeds 1000 ° C., a large amount of zinc oxide is formed on the surface of the plating layer, and excellent perforated corrosion resistance cannot be obtained.
  • the heating temperature here means the highest temperature reached of the steel sheet.
  • the average temperature rising rate during heating before hot pressing is 100 ° C./s or more, the formation of zinc oxide on the surface of the plating layer can be further suppressed, and the perforated corrosion resistance can be further improved.
  • the generation of zinc oxide on the surface of the plating layer increases as the high-temperature residence time during which the steel sheet is exposed to high-temperature conditions increases. Therefore, the higher the average heating rate, the shorter the high-temperature residence time. This is because the production of zinc oxide on the surface can be suppressed.
  • the holding time at the maximum plate temperature is not particularly limited. In order to suppress the production of zinc oxide, a shorter time is preferable, preferably 300 s or less, more preferably 60 s or less, and still more preferably 10 s or less.
  • heating by an electric furnace or a gas furnace flame heating, current heating, high frequency heating, induction heating, etc. can be exemplified.
  • flame heating current heating, high frequency heating, induction heating, etc.
  • current heating high frequency heating, induction heating, and the like are suitable.
  • the electroplating process was performed while changing to ⁇ 100 A / dm 2 to form a plating layer I having the Ni content and the adhesion amount shown in Tables 1 and 2.
  • the current density was 5 to 100 A / dm 2 in a plating bath containing 200 g / L nickel sulfate hexahydrate and 10 to 100 g / L zinc sulfate heptahydrate at pH 1.5 and a temperature of 50 ° C.
  • the plating layer II having the Ni content, the adhesion amount, and the ⁇ phase content shown in Tables 1 and 2 was formed by performing electroplating treatment. Furthermore, except in some cases, a steel sheet after applying a composition (solid content ratio 15%) comprising a solid lubricant and a compound or an organic binder shown in Tables 4 and 5 and comprising the remaining solvent on the plating layer II was obtained. Drying is performed under the condition that the temperature is 140 ° C., and a compound layer or a lubricating layer having a thickness shown in Tables 4 and 5 is formed. 1 to 25 were produced.
  • the solvent was ethylene glycol monobutyl ether: petroleum naphtha, 55:45 (mass ratio) thinner.
  • the solvent when using a silane coupling agent as a compound and when using an ethylene ionomer as an organic binder, the solvent was deionized water.
  • the steel plate No. Nos. 1 to 11 and 16 to 25 are examples in which a compound layer containing a solid lubricant is provided.
  • Nos. 12 and 13 are examples in which a lubricating layer is provided.
  • No. 14 is an example in which a lubricating layer is provided on the compound layer.
  • No. 15 is an example in which neither a compound layer nor a lubricating layer is provided.
  • Silicone resin KR-242A manufactured by Shin-Etsu Chemical Co., Ltd.
  • Polyethylene wax 1 Celi dust 3620 manufactured by Clariant Japan Fluororesin: Polytetrafluoroethylene resin Asahi Glass Co., Ltd. Fullon L170J Molybdenum disulfide: LM-13 manufactured by Daito Lubrication Co., Ltd.
  • Graphite GP-60S manufactured by Hitachi Chemical Co., Ltd. Boron nitride: FS-1 manufactured by Mizushima Alloy Iron Co., Ltd.
  • Diethanol-modified epoxy resin ER-007 manufactured by Kansai Paint Co., Ltd.
  • Block isocyanate Duranate MF-K60X manufactured by Asahi Kasei Corporation
  • Ethylene ionomer Chemipearl S650 manufactured by Mitsui Chemicals, Inc.
  • Polyethylene wax 2 Chemipearl W950 manufactured by Mitsui Chemicals, Inc.
  • Silane coupling agent Shin-Etsu Chemical Co., Ltd. KBE-403
  • the hot press was simulated by heating under the heating conditions shown in Tables 4 and 5 by an electric furnace or direct energization, and then sandwiching with an Al mold and cooling at the cooling rate shown in Tables 1 and 2.
  • Cold pressability The dynamic pressurization coefficient was measured using the friction coefficient measuring apparatus schematically shown in FIG. 1 to evaluate the cold pressability. First, the sample 1 collected from the as-prepared steel plate is placed on the sample stage 2 fixed to the upper surface of the slide table 3. The slide table 3 can be moved horizontally by a roller 4 provided on the upper surface of the slide table support 5 below the slide table 3. Next, the sample 1 is pressed against the lower surface of the bead 6 having the shape shown in FIG.
  • the pressing load N to the sample 1 is measured by the first load cell 7 attached to the slide table support 5.
  • cleaning oil Preton R352L for press made from Sugimura Chemical Industry Co., Ltd. was apply
  • Perforated corrosion resistance is evaluated on the assumption that the chemical conversion coating or electrodeposition coating is not attached, so samples are taken from the steel plate after heat treatment, and the non-evaluated and end surfaces of the sample are sealed with tape After that, salt spray (5 mass% NaCl aqueous solution, 35 ° C., 2 h) ⁇ drying (60 ° C., relative humidity 20-30%, 4 h) ⁇ wet (50 ° C., relative humidity 95%, 2 h) is one cycle.
  • the composite corrosion test was carried out for 150 cycles, the maximum thickness reduction value of the sample after the test was measured, and evaluated according to the following criteria. If ⁇ , ⁇ , or ⁇ , the object of the present invention was satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

熱間プレス時にスケールやZnOの生成を抑制可能で耐酸化性に優れるとともに、冷間プレス性にも優れる熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法を提供する。鋼板表面に、順に、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のめっき層と、固形潤滑剤を含む潤滑層とを有することを特徴とする熱間プレス用鋼板。

Description

熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
 本発明は、自動車の足廻り部材や車体構造部材などを熱間プレスで製造するのに適した熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法に関する。
 従来から、自動車の足廻り部材や車体構造部材などの多くは、所定の強度を有する鋼板をプレス加工して製造されている。近年、地球環境の保全という観点から、自動車車体の軽量化が熱望され、使用する鋼板を高強度化して、その板厚を低減する努力が続けられている。しかし、鋼板の高強度化に伴ってそのプレス加工性が低下するため、鋼板を所望の部材形状に加工することが困難になる場合が多くなっている。
 そのため、特許文献1には、ダイとパンチからなる金型を用いて加熱された鋼板を加工すると同時に急冷することにより加工の容易化と高強度化の両立を可能にした熱間プレスと呼ばれる加工技術が提案されている。しかし、この熱間プレスでは、熱間プレス前に鋼板を950℃前後の高い温度に加熱するため、鋼板表面にはスケール(鉄酸化物)が生成し、そのスケールが熱間プレス時に剥離して、金型を損傷させる、または熱間プレス後の部材表面を損傷させるという問題がある。また、部材表面に残ったスケールは、外観不良や塗装密着性の低下の原因にもなる。このため、通常は酸洗やショットブラストなどの処理を行って部材表面のスケールは除去されるが、これは製造工程を複雑にし、生産性の低下を招く。さらに、自動車の足廻り部材や車体構造部材などには優れた耐食性も必要とされるが、上述のような工程により製造された熱間プレス部材ではめっき層などの防錆皮膜が設けられていないため、耐食性が甚だ不十分である。
 このようなことから、熱間プレス前の加熱時にスケールの生成を抑制するとともに、熱間プレス後の部材の耐食性を向上させることが可能な熱間プレス技術が要望され、表面にめっき層などの皮膜を設けた鋼板やそれを用いた熱間プレス方法が提案されている。例えば、特許文献2には、ZnまたはZnベース合金で被覆された鋼板を熱間プレスし、Zn−Feベース化合物またはZn−Fe−Alベース化合物を表面に設けた耐食性に優れる熱間プレス部材の製造方法が開示されている。また、特許文献3には、合金化溶融Znめっき鋼板を700~1000℃で2~20分加熱してから熱間プレスを行い、Fe−Zn固溶相を含むめっき層を表面に設けた加工性、溶接性、耐食性に優れる熱間プレス成形品(部材)が開示されている。
英国特許第1490535号公報 特許第3663145号公報 特許第4039548号公報
 しかしながら、特許文献2に記載の方法で製造された熱間プレス部材では、スケールの生成に起因する外観不良や塗装密着性低下を引き起こし、ZnOの生成に起因する耐食性劣化を招く場合がある。また、特許文献2や3に記載の熱間プレス部材では、化成処理皮膜や電着塗膜が付き回らない部位で起きやすい穴あき腐食に対する耐食性(以後、穴あき耐食性と呼ぶ)に劣るという問題がある。
 また、最近では、熱間プレス前に冷間プレスを加えて所望の形状に加工する熱間プレス技術も検討されており、冷間プレス性に優れる熱間プレス用鋼板への要望も高まっている。
 本発明の一つの目的は、熱間プレス時にスケールやZnOの生成を抑制可能で耐酸化性に優れるとともに、冷間プレス性にも優れる熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法を提供することである。
 また、本発明のもう一つの目的は、熱間プレス後の穴あき耐食性に優れるとともに、冷間プレス性にも優れる熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法を提供することである。
 本発明者らは、上記の目的とする熱間プレス用鋼板について鋭意検討を行った結果、以下の知見を得た。
i)スケールの生成は、めっき層の欠陥部や、熱間プレスにより加熱時に形成されたZn−Fe金属化合物を起点に発生したクラックのような局所的な部位で起きやすい。
ii)スケールやZnOの生成は、融点が700℃未満の低いZn系めっき層で起きやすい。
iii)スケールやZnOの生成を抑制するには、融点が高い10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなるめっき層とすることが効果的である。
iv)優れた冷間プレス性を付与するには、めっき層上に、固形潤滑剤を含む潤滑層を設けることが効果的である。
v)特許文献2や3に記載のZnまたはZnベース合金めっき層を設けた鋼板を用いて製造した熱間プレス部材が穴あき耐食性に劣る原因は、熱間プレス前の加熱時にめっき層のZnが、下地鋼板に拡散してFe−Zn固溶相中に取り込まれたり、めっき層表面において多量の酸化亜鉛を形成するため、Znが本来有する犠牲防食効果が著しく低下したことによる。
vi)めっき層のZnが下地鋼板に拡散することを抑制するには、鋼板表面に60質量%以上のNiを含み、残部がZnおよび不可避的不純物からなるめっき層Iを設けることが、また、めっき層表面における多量の酸化亜鉛形成を抑制するには、このめっき層I上に、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなるめっき層IIを設けることが効果的である。
vii)優れた冷間プレス性を付与するには、めっき層II上に、固形潤滑剤を含む潤滑層を設けることが効果的である。
 本発明は、このような知見に基づきなされたもので、鋼板表面に、順に、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層と、固形潤滑剤を含む潤滑層とを有することを特徴とする熱間プレス用鋼板を提供する。
 本発明の熱間プレス用鋼板では、めっき層と潤滑層との間に、さらに、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層を有することが好ましい。
 本発明は、また、鋼板表面に、順に、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層と、固形潤滑剤を含み、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層とを有することを特徴とする熱間プレス用鋼板を提供する。
 本発明の熱間プレス用鋼板におけるめっき層の下地鋼板としては、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることができる。この下地鋼板には、さらに、質量%で、Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種やSb:0.003~0.03%が、個別にあるいは同時に含有されることが好ましい。
 本発明は、さらに、上記のような熱間プレス用鋼板を、冷間プレス後、Ac変態点~1000℃の温度範囲に加熱後、熱間プレスすることを特徴とする熱間プレス部材の製造方法を提供する。
 本発明は、また、鋼板表面に、順に、60質量%以上のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が0.01~5g/mのめっき層Iと、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層IIと、固形潤滑剤を含む潤滑層とを有することを特徴とする熱間プレス用鋼板を提供する。
 本発明の熱間プレス用鋼板では、めっき層IIと潤滑層との間に、さらに、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層を有することが好ましい。
 本発明は、また、鋼板表面に、順に、60質量%以上のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が0.01~5g/mのめっき層Iと、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層IIと、固形潤滑剤を含み、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層とを有することを特徴とする熱間プレス用鋼板を提供する。
 本発明の熱間プレス用鋼板におけるめっき層の下地鋼板としては、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることができる。この下地鋼板には、さらに、質量%で、Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種やSb:0.003~0.03%が、個別にあるいは同時に含有されることが好ましい。
 本発明は、さらに、上記のような熱間プレス用鋼板を、冷間プレス後、Ac変態点~1000℃の温度範囲に加熱し、熱間プレスすることを特徴とする熱間プレス部材の製造方法を提供する。
 本発明の熱間プレス用部材の製造方法では、Ac変態点~1000℃の温度範囲に加熱するとき、さらに、100℃/s以上の平均昇温速度で加熱することが好ましい。
 本発明により、熱間プレス時にスケールやZnOの生成を抑制可能で耐酸化性に優れるとともに、冷間プレス性にも優れる熱間プレス用鋼板を製造できるようになった。また、本発明により、熱間プレス後の穴あき耐食性に優れるとともに、冷間プレス性にも優れる熱間プレス用鋼板を製造できるようになった。本発明である熱間プレス用鋼板を用い、本発明である熱間プレス部材の製造方法で製造した熱間プレス部材は、外観が良好であり、優れた塗装密着性や耐食性を有するので、自動車の足廻り部材や車体構造部材に好適である。
実施例で用いた摩擦係数測定装置を示す図である。 図1のビード6の形状を示す図である。
(実施形態A)
A−1熱間プレス用鋼板
A−1−1)めっき層
 本実施形態Aでは、熱間プレス時にスケールやZnOの生成を抑制するために、鋼板表面に10~25質量%以上のNiを含み、残部がZnおよび不可避的不純物からなるめっき層を設ける。めっき層のNi含有率を10~25質量%とすることによりNiZn11、NiZn、NiZn21のいずれかの結晶構造を有する融点が881℃と高いγ相が形成されるので、加熱時におけるスケールやZnOの生成反応を最小限に抑制することができる。また、加熱時にはZn−Fe金属化合物が形成されないため、クラックの発生に伴うスケールの生成も抑制される。さらには、熱間プレス完了後にも、めっき層はγ相として残存するため、Znの犠牲防食効果により優れた耐食性を発揮する。なお、Ni量が10~25質量%におけるγ相の形成は、Ni−Zn合金の平衡状態図とは必ずしも一致しない。これは電気めっき法などで行われるめっき層の形成反応が非平衡で進行するためと考えられる。NiZn11、NiZn、NiZn21のγ相は、X線回折法やTEM(Transmission Electron Microscopy)を用いた電子線回折法により確認できる。また、めっき層のNi量を10~25質量%とすることにより上述のとおりγ相が形成されるが、電気めっきの条件等によっては多少のη相が混在することがある。このとき、加熱過程におけるめっき層表面での酸化亜鉛形成反応を最小限に抑制するために、η相の量は5質量%以下であることが好ましい。η相の量は、めっき層の全重量に対するη相の重量比で定義され、例えばアノード溶解法などにより定量することができる。
 めっき層の片面当たりの付着量は、10g/m未満ではZnの犠牲防食効果が十分に発揮されず、90g/mを超えるとその効果が飽和し、コストアップを招くので、10~90g/mとする。
 こうしためっき層の形成方法は特に限定されるものではないが、公知の電気めっき法が好適である。
 A−1−2)潤滑層
 優れた冷間プレス性を付与するために、めっき層上に固形潤滑剤を含む潤滑層を設ける。潤滑層を設けることにより、動摩擦係数が低下し、冷間プレス性の向上が図れる。
 固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの少なくとも一種を用いることができる。
(1)ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2)フッ素樹脂:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
(3)脂肪酸アミド系化合物:例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど
(4)金属石けん類:例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど
(5)金属硫化物:例えば、二硫化モリブデン、二硫化タングステンなど
(6)その他:グラファイト、フッ化黒鉛、窒化ホウ素、ホウ砂、ポリアルキレングリコール、アルカリ金属硫酸塩など
 こうした固形潤滑剤の中でも、特に、ポリエチレンワックス、フッ素樹脂が好適である。ポリエチレンワックスとしては、例えば、クラリアントジャパン(株)製のセリダスト9615A、セリダスト3715、セリダスト3620、セリダスト3910(いずれも商品名)、三洋化成(株)製のサンワックス131−P、サンワックス161−P(いずれも商品名)、三井化学(株)製のケミパールW−100、ケミパールW−200、ケミパールW−500、ケミパールW−800、ケミパールW−950(いずれも商品名)などを用いることができる。また、フッ素樹脂としては、ポリ4フッ化エチレン樹脂が最も好ましく、例えば、ダイキン工業(株)製のルブロンL−2、ルブロンL−5(いずれも商品名)、三井・デュボン(株)製のMP1100、MP1200(いずれも商品名)、旭硝子(株)製のフルオンディスパージョンAD1、フルオンディスパージョンAD2、フルオンL141J、フルオンL150J、フルオンL170J(いずれも商品名)などが好適である。
 こうした固形潤滑剤を含む潤滑層を形成するには、有機樹脂をバインダーとして固形潤滑剤を添加した組成物をめっき層上に付着処理した後、水洗することなく加熱乾燥すればよい。なお、有機樹脂をバインダーとして用いることにより優れた塗装密着性も得られる。このような組成物の付着処理は塗布法、浸漬法、スプレー法のいずれでもよく、ロールコーター、スクイズコーター、ダイコーターなどを用いることができる。このとき、スクイズコーターなどによる塗布、浸漬、スプレーの処理後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、厚みの均一化を行うことも可能である。
 潤滑層のバインダーである有機樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、ポリアルキレングリコール変性エポキシ樹脂、ウレタン変性エポキシ樹脂、およびこれらをさらに変性させた樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリオレフィン樹脂から選ばれた少なくとも一種を用いることが適当である。また、これらの樹脂にメラミン樹脂、イソシアネート樹脂などの公知の硬化剤を併用してもよい。また、有機樹脂の末端にOH基を付加し、冷間プレス後にアルカリ水溶液で溶解・脱層できるものでもよい。
 潤滑層中の固形潤滑剤の配合量は、有機樹脂をバインダーとした組成物100質量部(固形分)に対して、1~20質量部(固形分)が好ましく、1~10質量部(固形分)がより好ましい。固形潤滑剤の配合量が1質量部以上であれば潤滑効果が高く、20質量部以下であれば塗装密着性が低下することがない。
 潤滑層の乾燥後の層厚は0.1~2.0μmとすることが好ましい。層厚が0.1μm以上であれば冷間プレス性の向上効果が十分となり、2.0μm以下であれば熱間プレスの際に有機樹脂成分の熱分解生成物が多く発生することがない。
 A−1−3)化合物層
 めっき層と潤滑層との間には、さらに、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層を設けると優れた塗装密着性が得られる。こうした効果を得るには、化合物層の厚みを0.1μm以上にすることが好ましい。化合物層の厚みは、3.0μmを超えると化合物層が脆くなって塗装密着性の低下を招く場合があるので、3.0μm以下にすることが好ましい。より好ましくは0.4~2.0μmである。
 Si含有化合物としては、例えば、シリコーン樹脂、リチウムシリケート、珪酸ソーダ、コロイダルシリカ、シランカップリング剤などを適用できる。Ti含有化合物としては、例えば、チタン酸リチウムやチタン酸カルシウムなどのチタン酸塩、チタンアルコキシドやキレート型チタン化合物を主剤とするチタンカップリング剤などを適用できる。Al含有化合物としては、例えば、アルミン酸ナトリウムやアルミン酸カルシウムなどのアルミン酸塩、アルミニウムアルコキシドやキレート型アルミニウム化合物を主剤とするアルミニウムカップリング剤などを適用できる。Zr含有化合物としては、例えば、ジルコン酸リチウムやジルコン酸カルシウムなどのジルコン酸塩、ジルコニウムアルコキシドやキレート型ジルコニウム化合物を主剤とするジルコニウムカップリング剤などを適用できる。
 めっき層上にこうした化合物層を形成するには、上記のSi含有化合物、Ti含有化合物、Al含有化合物、Zr含有化合物のうちから選ばれた少なくとも一種の化合物をめっき層上に付着処理した後、水洗することなく加熱乾燥すればよい。これらの化合物の付着処理は塗布法、浸漬法、スプレー法のいずれでもよく、ロールコーター、スクイズコーター、ダイコーターなどを用いればよい。このとき、スクイズコーターなどによる塗布処理、浸漬処理、スプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、厚みの均一化を行うことも可能である。また、加熱乾燥は鋼板最高到達温度が40~200℃となるように行うことが好ましい。60~160℃で行うことがより好ましい。
 また、めっき層上にこうした化合物層を形成するには、Si、Ti、Al、Zrのうちから選ばれた少なくとも一種のカチオンを含有し、リン酸イオン、フッ素酸イオン、フッ化物イオンのうちから選ばれた少なくとも一種のアニオンを含有する酸性の水溶液にめっき層を有する鋼板を浸漬する反応型処理を行った後、水洗するかまたは水洗することなく加熱乾燥する方法によっても可能である。
 なお、潤滑層を設ける代わりに、上記のような固形潤滑剤をこの化合物層に含有させても、優れた冷間プレス性を付与できる。
 化合物層中への固形潤滑剤の配合量は、化合物100質量部(固形分)に対して、1~20質量部(固形分)が好ましく、1~10質量部(固形分)がより好ましい。固形潤滑剤の配合量が1質量部以上であれば潤滑効果が優れ、20質量部以下であれば塗装密着性が低下することがない。
 A−1−4)下地鋼板
 980MPa以上の強度を有する熱間プレス部材を得るには、めっき層の下地鋼板として、例えば、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する熱延鋼板や冷延鋼板を用いることができる。各成分元素の限定理由を、以下に説明する。ここで、成分の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
 C:0.15~0.5%
 Cは、鋼の強度を向上させる元素であり、熱間プレス部材のTSを980MPa以上にするには、その量を0.15%以上とする必要がある。一方、C量が0.5%を超えると、素材の鋼板のブランキング加工性が著しく低下する。したがって、C量は0.15~0.5%とする。
 Si:0.05~2.0%
 Siは、C同様、鋼の強度を向上させる元素であり、熱間プレス部材のTSを980MPa以上にするには、その量を0.05%以上とする必要がある。一方、Si量が2.0%を超えると、熱間圧延時に赤スケールと呼ばれる表面欠陥の発生が著しく増大するとともに、圧延荷重が増大したり、熱延鋼板の延性の劣化を招く。さらに、Si量が2.0%を超えると、Znを主体としためっき皮膜を鋼板表面に形成するめっき処理を施す際に、めっき処理性に悪影響を及ぼす場合がある。したがって、Si量は0.05~2.0%とする。
 Mn:0.5~3%
 Mnは、フェライト変態を抑制して焼入れ性を向上させるのに効果的な元素であり、また、Ac変態点を低下させるので、熱間プレス前の加熱温度を低下するにも有効な元素である。このような効果の発現のためには、その量を0.5%以上とする必要がある。一方、Mn量が3%を超えると、偏析して素材の鋼板および熱間プレス部材の特性の均一性が低下する。したがって、Mn量は0.5~3%とする。
 P:0.1%以下
 P量が0.1%を超えると、偏析して素材の鋼板および熱間プレス部材の特性の均一性が低下するとともに、靭性も著しく低下する。したがって、P量は0.1%以下とする。
 S:0.05%以下
 S量が0.05%を超えると、熱間プレス部材の靭性が低下する。したがって、S量は0.05%以下とする。
 Al:0.1%以下
 Al量が0.1%を超えると、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、Al量は0.1%以下とする。
 N:0.01%以下
 N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、N量は0.01%以下とする。
 残部はFeおよび不可避的不純物であるが、以下の理由により、Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種や、Sb:0.003~0.03%が、個別にあるいは同時に含有されることが好ましい。
 Cr:0.01~1%
 Crは、鋼を強化するとともに、焼入れ性を向上させるのに有効な元素である。こうした効果の発現のためには、Cr量を0.01%以上とすることが好ましい。一方、Cr量が1%を超えると、著しいコスト高を招くため、その上限は1%とすることが好ましい。
 Ti:0.2%以下
 Tiは、鋼を強化するとともに、細粒化により靭性を向上させるのに有効な元素である。また、次に述べるBよりも優先して窒化物を形成して、固溶Bによる焼入れ性の向上効果を発揮させるのに有効な元素でもある。しかし、Ti量が0.2%を超えると、熱間圧延時の圧延荷重が極端に増大し、また、熱間プレス部材の靭性が低下するので、その上限は0.2%とすることが好ましい。
 B:0.0005~0.08%
 Bは、熱間プレス時の焼入れ性や熱間プレス後の靭性向上に有効な元素である。こうした効果の発現のためには、B量を0.0005%以上とすることが好ましい。一方、B量が0.08%を超えると、熱間圧延時の圧延荷重が極端に増大し、また、熱間圧延後にマルテンサイト相やベイナイト相が生じて鋼板の割れなどが生じるので、その上限は0.08%とすることが好ましい。
 Sb:0.003~0.03%
 Sbは、熱間プレス前に鋼板を加熱してから熱間プレスの一連の処理によって鋼板を冷却するまでの間に鋼板表層部に生じる脱炭層を抑制する効果を有する。このような効果の発現のためにはその量を0.003%以上とする必要がある。一方、Sb量が0.03%を超えると、圧延荷重の増大を招き、生産性を低下させる。したがって、Sb量は0.003~0.03%とすることが好ましい。
 A−2 熱間プレス部材の製造方法
 上記した本発明の熱間プレス用鋼板は、冷間プレス後、Ac変態点~1000℃の温度範囲に加熱後熱間プレスされて熱間プレス部材となる。熱間プレス前にAc変態点以上に加熱するのは、熱間プレス時の急冷でマルテンサイト相などの硬質相を形成し、部材の高強度化を図るためである。また、加熱温度の上限を1000℃としたのは、1000℃を超えるとめっき層表面に多量のZnOが生成するためである。なお、ここでいう加熱温度とは鋼板の最高到達温度のことをいう。
 熱間プレス前の加熱時の平均昇温速度は、特に限定されるものではないが、例えば2~200℃/sが好適である。めっき層表面におけるZnOの生成やめっき層の欠陥部における局所的なスケールの生成は、鋼板が高温条件下に晒される高温滞留時間が長くなるほど増大するため、平均昇温速度が速いほど好適である。また、最高到達板温における保持時間についても特に限定されるものではない。しかし、上記と同じ理由により短時間とする方が好適であり、好ましくは300s以下、より好ましくは120s以下、さらに好ましくは10s以下とする。
 熱間プレス前の加熱方法としては、電気炉やガス炉などによる加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱などを例示できる。
実施例 A
 下地鋼板として、質量%で、C:0.23%、Si:0.25%、Mn:1.2%、P:0.01%、S:0.01%、Al:0.03%、N:0.005%、Cr:0.2%、Ti:0.02%、B:0.0022%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Ac変態点が820℃で、板厚1.6mmの冷延鋼板を用いた。この冷延鋼板の表面に、200g/Lの硫酸ニッケル六水和物および10~100g/Lの硫酸亜鉛七水和物を含有するpH1.5、温度50℃のめっき浴中で電流密度を5~100A/dmと変化させて電気めっき処理を施して、表1、2に示すようなNi含有量(残部はZnおよび不可避的不純物)と付着量およびη相含有量のめっき層を形成した。さらに、一部の場合を除き、めっき層上に、表1、2に示す固形潤滑剤と化合物または有機バインダーを含み残部溶媒からなる組成物(固形分割合15%)を塗布後、到達鋼板温度が140℃となる条件で乾燥し、表1、2に示す厚みの化合物層または潤滑層を形成し、鋼板No.1~22を作製した。なお、化合物としてシリコーン樹脂を使用する場合および有機バインダーとしてジエタノール変性エポキシ樹脂を使用する場合の溶媒はエチレングリコールモノブチルエーテル:石油系ナフサを55:45(質量比)のシンナーとした。また、化合物としてシランカップリング剤を使用する場合および有機バインダーとしてエチレンアイオノマーを使用する場合の溶媒は脱イオン水とした。ここで、鋼板No.1~11、16~22は固形潤滑剤を含む化合物層を設けた例、鋼板No.12、13は潤滑層を設けた例、鋼板No.14は化合物層上に潤滑層を設けた例、鋼板No.15は化合物層も潤滑層も設けてない例である。
 なお、潤滑層の固形潤滑剤、有機樹脂バインダー、化合物層の化合物として以下のものを用いた。
シリコーン樹脂:信越化学(株)製 KR−242A
ポリエチレンワックス1:クラリアントジャパン(株)製 セリダスト3620
フッ素樹脂:ポリ4フッ化エチレン樹脂 旭硝子(株)製 フルオンL170J
二硫化モリブデン:大東潤滑(株)製 LM−13
グラファイト:日立化成工業(株)製 GP−60S
窒化ホウ素:水島合金鉄(株)製 FS−1
ジエタノール変性エポキシ樹脂:関西ペイント(株)製 ER−007
ブロックイソシアネート:旭化成工業(株)製 デュラネートMF−K60X
エチレンアイオノマー:三井化学工業(株)製 ケミパールS650
ポリエチレンワックス2:三井化学工業(株)製 ケミパールW950
シランカップリング剤:信越化学(株)製 KBE−403
 このようにして得られた表1、2に示す鋼板No.1~22について、次に示す冷間プレス性、熱間プレス時の耐酸化性および熱間プレス後の塗装密着性の評価を行った。ここで、熱間プレスは、電気炉または直接通電により表1、2に示す加熱条件で加熱後、Al製金型で挟み込んで冷却速度50℃/sで冷却してシミュレートした。
冷間プレス性:図1に模式的に示した摩擦係数測定装置を用いて動摩擦係数を測定して、冷間プレス性を評価した。まず、作製されたままの鋼板から採取したサンプル1を、スライドテーブル3の上面に固定されている試料台2に設置する。スライドテーブル3は、その下方にあるスライドテーブル支持台5上面に設けられたローラ4により水平移動可能である。次に、上下移動可能なスライドテーブル支持台5を上方へ移動させることにより上方に設けられた図2に示す形状のビード6の下面にサンプル1を押し付ける。このとき、スライドテーブル支持台5に取り付けられている第一ロードセル7によりサンプル1への押し付け荷重Nを測定する。最後に、一定の押し付け荷重N(=400kgf)を作用させた状態でスライドテーブル3を移動速度100cm/minでレール9上を水平移動させ、スライドテーブル3の一方の端部に取り付けられている第二ロードセル8により摺動抵抗力Fを測定し、室温(25℃)での動摩擦係数μ=F/Nを求める。なお、潤滑油としてスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lをサンプル1の表面に塗布して試験を行った。算出したμを以下の基準で評価し、◎、○であれば、冷間プレス性に優れるとした。
◎:μ<0.1
○:0.1≦μ<0.15
△:0.15≦μ<0.2
×:0.2≦μ
耐酸化性:表1、2に示す加熱条件で加熱後、鋼板の重量を測定し、加熱前との重量変化を測定した。ここで、重量変化は、スケールやZnOの生成による重量増加と生成したZnOの飛散による重量減少の和であるが、その絶対値が小さいほど耐酸化性に優れるとし、以下の基準で評価し、◎、○であれば本発明の目的を満足しているとした。
◎:重量変化の絶対値≦3g/m
○:3g/m<重量変化の絶対値≦5g/m
×:5g/m<重量変化の絶対値
塗装密着性:熱処理後の鋼板からサンプルを採取し、日本パーカライジング(株)製PB−SX35を使用して標準条件で化成処理を施した後、関西ペイント(株)製電着塗料GT−10HTグレーを170℃×20分間の焼付け条件で膜厚20μm成膜して、塗装試験片を作製した。そして、作製した試験片の化成処理および電着塗装を施した面に対してカッターナイフで碁盤目(10×10個、1mm間隔)の鋼素地まで到達するカットを入れ、接着テープにより貼着・剥離する碁盤目テープ剥離試験を行った。以下の基準で評価し、◎、○であれば塗装密着性に優れるとした。
◎:剥離なし
○:1~10個の碁盤目で剥離
△:11~30個の碁盤目で剥離
×:31個以上の碁盤目で剥離
 結果を表3に示す。本発明例では、冷間プレス性、熱間プレス時の耐酸化性に優れるとともに、熱間プレス後の塗装密着性にも優れていることがわかる。
 なお、本実施例では実際に冷間プレスや熱間プレスによる加工を行っていない。しかし、上述したように、耐酸化性や塗装密着性は熱間プレス前の加熱によるめっき層の変化、特にめっき層中のZnの挙動に左右されるので、本実施例の結果で耐酸化性や塗装密着性を評価できることになる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施形態B)
 B−1熱間プレス用鋼板
 B−1−1)めっき層
 本実施形態Bでは、めっき層のZnが下地鋼板に拡散することを抑制し、優れた穴あき耐食性を得るために、鋼板表面に60質量%以上のNiを含み、残部がZnおよび不可避的不純物からなるめっき層Iを設ける。めっき層IのNi量が60質量%未満では、めっき層のZnが下地鋼板に拡散することを十分に抑制できず、優れた穴あき耐食性が得られない。めっき層IのNi量は100質量%であることが好ましいが、100質量%未満の場合は、残部は犠牲防食効果を有するZnおよび不可避的不純物とする。また、めっき層Iの片面当たりの付着量は、0.01g/m未満ではZnの下地鋼板への拡散を抑制する効果が十分に発揮されず、5g/mを超えるとその効果が飽和し、コストアップを招くので、0.01~5g/mとする。
 また、本実施形態Bでは、めっき層表面における多量の酸化亜鉛形成を抑制し、優れた穴あき耐食性を得るために、上記のめっき層I上にめっき層IIを設ける。このとき、めっき層IIは、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなるめっき層とする。めっき層IIのNi量を10~25質量%とすることによりNiZn11、NiZn、NiZn21のいずれかの結晶構造を有する融点が881℃と高いγ相が形成されるので、加熱過程におけるめっき層表面での酸化亜鉛形成反応を最小限に抑制することができる。さらに、熱間プレス完了後にも、めっき層IIはγ相として残存するため、Znの犠牲防食効果により優れた穴あき耐食性を発揮する。なお、Ni量が10~25質量%におけるγ相の形成は、Ni−Zn合金の平衡状態図とは必ずしも一致しない。これは電気めっき法などで行われるめっき層の形成反応が非平衡で進行するためと考えられる。NiZn11、NiZn、NiZn21のγ相は、X線回折法やTEM(Transmission Electron Microscopy)を用いた電子線回折法により確認できる。また、めっき層IIのNi量を10~25質量%とすることにより上述のとおりγ相が形成される。電気めっきの条件等によっては多少のη相が混在することがある。このとき、加熱過程におけるめっき層表面での酸化亜鉛形成反応を最小限に抑制するために、η相の量は5質量%以下であることが好ましい。η相の量は、めっき層IIの全重量に対するη相の重量比で定義され、例えばアノード溶解法などにより定量することができる。
 めっき層IIの片面当たりの付着量は、10g/m未満ではZnの犠牲防食効果が十分に発揮されず、90g/mを超えるとその効果が飽和し、コストアップを招くので、10~90g/mとする。
 こうしためっき層Iやめっき層IIの形成方法は特に限定されるものではないが、公知の電気めっき法が好適である。
 B−1−2)潤滑層
 優れた冷間プレス性を付与するために、本実施形態では、めっき層II上に固形潤滑剤を含む潤滑層を設ける。潤滑層を設けることにより、動摩擦係数が低下し、冷間プレス性の向上が図れる。
 固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの少なくとも一種を用いることができる。
(1)ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2)フッ素樹脂:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
(3)脂肪酸アミド系化合物:例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど
(4)金属石けん類:例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど
(5)金属硫化物:例えば、二硫化モリブデン、二硫化タングステンなど
(6)その他:グラファイト、フッ化黒鉛、窒化ホウ素、ホウ砂、ポリアルキレングリコール、アルカリ金属硫酸塩など
 こうした固形潤滑剤の中でも、特に、ポリエチレンワックス、フッ素樹脂が好適である。ポリエチレンワックスとしては、例えば、クラリアントジャパン(株)製のセリダスト9615A、セリダスト3715、セリダスト3620、セリダスト3910(いずれも商品名)、三洋化成(株)製のサンワックス131−P、サンワックス161−P(いずれも商品名)、三井化学(株)製のケミパールW−100、ケミパールW−200、ケミパールW−500、ケミパールW−800、ケミパールW−950(いずれも商品名)などを用いることができる。また、フッ素樹脂としては、ポリ4フッ化エチレン樹脂が最も好ましく、例えば、ダイキン工業(株)製のルブロンL−2、ルブロンL−5(いずれも商品名)、三井・デュポン(株)製のMP1100、MP1200(いずれも商品名)、旭硝子(株)製のフルオンディスパージョンAD1、フルオンディスパージョンAD2、フルオンL141J、フルオンL150J、フルオンL170J(いずれも商品名)などが好適である。
 こうした固形潤滑剤を含む潤滑層を形成するには、有機樹脂をバインダーとして固形潤滑剤を添加した組成物をめっき層II上に付着処理した後、水洗することなく加熱乾燥すればよい。なお、有機樹脂をバインダーとして用いることにより優れた塗装密着性も得られる。このような組成物の付着処理は塗布法、浸漬法、スプレー法のいずれでもよく、ロールコーター、スクイズコーター、ダイコーターなどを用いることができる。このとき、スクイズコーターなどによる塗布、浸漬、スプレーの処理後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、厚みの均一化を行うことも可能である。
 潤滑層のバインダーである有機樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、ポリアルキレングリコール変性エポキシ樹脂、ウレタン変性エポキシ樹脂、およびこれらをさらに変性させた樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリオレフィン樹脂から選ばれた少なくとも一種を用いることが適当である。また、これらの樹脂にメラミン樹脂、イソシアネート樹脂などの公知の硬化剤を併用してもよい。また、有機樹脂の末端にOH基を付加し、冷間プレス後にアルカリ水溶液で溶解・脱層できるものでもよい。
 潤滑層中の固形潤滑剤の配合量は、有機樹脂をバインダーとした組成物100質量部(固形分)に対して、1~20質量部(固形分)が好ましく、1~10質量部(固形分)がより好ましい。固形潤滑剤の配合量が1質量部以上であれば潤滑効果が高く、20質量部以下であれば塗装密着性が低下することがない。
 潤滑層の乾燥後の層厚は0.1~2.0μmとすることが好ましい。層厚が0.1μm以上であれば冷間プレス性の向上効果が十分となり、2.0μm以下であれば熱間プレスの際に有機樹脂成分の熱分解生成物が多く発生することがない。
 B−1−3)化合物層
 めっき層IIと潤滑層との間には、さらに、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層を設けると優れた塗装密着性が得られる。こうした効果を得るには、化合物層の厚みを0.1μm以上にすることが好ましい。化合物層の厚みが3.0μm以下であれば化合物層が脆くなって塗装密着性の低下を招く場合がないので、3.0μm以下にすることが好ましい。より好ましくは0.4~2.0μmである。
 Si含有化合物としては、例えば、シリコーン樹脂、リチウムシリケート、珪酸ソーダ、コロイダルシリカ、シランカップリング剤などを適用できる。Ti含有化合物としては、例えば、チタン酸リチウムやチタン酸カルシウムなどのチタン酸塩、チタンアルコキシドやキレート型チタン化合物を主剤とするチタンカップリング剤などを適用できる。Al含有化合物としては、例えば、アルミン酸ナトリウムやアルミン酸カルシウムなどのアルミン酸塩、アルミニウムアルコキシドやキレート型アルミニウム化合物を主剤とするアルミニウムカップリング剤などを適用できる。Zr含有化合物としては、例えば、ジルコン酸リチウムやジルコン酸カルシウムなどのジルコン酸塩、ジルコニウムアルコキシドやキレート型ジルコニウム化合物を主剤とするジルコニウムカップリング剤などを適用できる。
 めっき層II上にこうした化合物層を形成するには、上記のSi含有化合物、Ti含有化合物、Al含有化合物、Zr含有化合物のうちから選ばれた少なくとも一種の化合物をめっき層II上に付着処理した後、水洗することなく加熱乾燥すればよい。これらの化合物の付着処理は塗布法、浸漬法、スプレー法のいずれでもよく、ロールコーター、スクイズコーター、ダイコーターなどを用いればよい。このとき、スクイズコーターなどによる塗布、浸漬、スプレーの処理後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、厚みの均一化を行うことも可能である。また、加熱乾燥は鋼板最高到達温度が40~200℃となるように行うことが好ましい。60~160℃で行うことがより好ましい。
 また、めっき層II上にこうした化合物層を形成するには、Si、Ti、Al、Zrのうちから選ばれた少なくとも一種のカチオンを含有し、リン酸イオン、フッ素酸イオン、フッ化物イオンのうちから選ばれた少なくとも一種のアニオンを含有する酸性の水溶液にめっき層Iとめっき層IIを有する鋼板を浸漬する反応型処理を行った後、水洗するかまたは水洗することなく加熱乾燥する方法によっても可能である。
 なお、潤滑層を設ける代わりに、上記のような固形潤滑剤をこの化合物層に含有させても、優れた冷間プレス性を付与できる。
 化合物層中への固形潤滑剤の配合量は、化合物100質量部(固形分)に対して、1~20質量部(固形分)が好ましく、1~10質量部(固形分)がより好ましい。固形潤滑剤の配合量が1質量部以上であれば潤滑効果が優れ、20質量部以下であれば塗装密着性が低下することがない。
 B−1−4)下地鋼板
 980MPa以上の強度を有する熱間プレス部材を得るには、めっき層の下地鋼板として、例えば、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する熱延鋼板や冷延鋼板を用いることができる。下地鋼板の各成分元素の限定理由は、上記実施形態Aにおける限定理由と同じであるため、説明を省略する。
 B−2 熱間プレス部材の製造方法
 上記した本発明の熱間プレス用鋼板を、冷間プレス後、Ac変態点~1000℃の温度範囲に加熱し、熱間プレスすれば熱間プレス部材を製造できる。熱間プレス前にAc変態点以上に加熱するのは、熱間プレス時の急冷でマルテンサイト相などの硬質相を形成し、部材の高強度化を図るためである。また、加熱温度の上限を1000℃としたのは、1000℃を超えるとめっき層表面において多量の酸化亜鉛が形成し、優れた穴あき耐食性が得られなくなるためである。なお、ここでいう加熱温度とは鋼板の最高到達温度のことをいう。
 また、熱間プレス前の加熱時の平均昇温速度を100℃/s以上にすると、めっき層表面における酸化亜鉛の生成をより抑制でき、穴あき耐食性をより向上できる。めっき層表面における酸化亜鉛の生成は、鋼板が高温条件下に晒される高温滞留時間が長くなるほど増大するため、平均昇温速度が速いほど、高温滞留時間を短くすることができ、この結果めっき層表面での酸化亜鉛の生成を抑制できるからである。なお、最高到達板温における保持時間は特に限定されるものではない。酸化亜鉛の生成を抑制するためには短時間とする方が好適であり、好ましくは300s以下、より好ましくは60s以下、さらに好ましくは10s以下とする。
 熱間プレス前の加熱方法としては、電気炉やガス炉などによる加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱などを例示できる。特に、平均昇温速度を100℃/s以上にするには、通電加熱、高周波加熱、誘導加熱などが好適である。
実施例B
 下地鋼板として、質量%で、C:0.23%、Si:0.25%、Mn:1.2%、P:0.01%、S:0.01%、Al:0.03%、N:0.005%、Cr:0.2%、Ti:0.02%、B:0.0022%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Ac変態点が820℃で、板厚1.6mmの冷延鋼板を用いた。この冷延鋼板の表面に、200g/Lの硫酸ニッケル六水和物および0~50g/Lの硫酸亜鉛七水和物を含有するpH3.0、温度50℃のめっき浴中で電流密度を5~100A/dmと変化させて電気めっき処理を施して表1、2に示すNi含有量と付着量のめっき層Iを形成した。次に、200g/Lの硫酸ニッケル六水和物および10~100g/Lの硫酸亜鉛七水和物を含有するpH1.5、温度50℃のめっき浴中で電流密度を5~100A/dmと変化させて電気めっき処理を施して表1、2に示すNi含有量と付着量およびη相含有量のめっき層IIを形成した。さらに、一部の場合を除き、めっき層II上に、表4、5に示す固形潤滑剤と化合物または有機バインダーを含み残部溶媒からなる組成物(固形分割合15%)を塗布後、到達鋼板温度が140℃となる条件で乾燥し、表4、5に示す厚みの化合物層または潤滑層を形成し、鋼板No.1~25を作製した。なお、化合物としてシリコーン樹脂を使用する場合および有機バインダーとしてジエタノール変性エポキシ樹脂を使用する場合の溶媒はエチレングリコールモノブチルエーテル:石油系ナフサを55:45(質量比)のシンナーとした。また、化合物としてシランカップリング剤を使用する場合および有機バインダーとしてエチレンアイオノマーを使用する場合の溶媒は脱イオン水とした。ここで、鋼板No.1~11、16~25は固形潤滑剤を含む化合物層を設けた例、鋼板No.12、13は潤滑層を設けた例、鋼板No.14は化合物層上に潤滑層を設けた例、鋼板No.15は化合物層も潤滑層も設けてない例である。
 なお、潤滑層の固形潤滑剤、有機樹脂バインダー、化合物層の化合物として以下のものを用いた。
シリコーン樹脂:信越化学(株)製 KR−242A
ポリエチレンワックス1:クラリアントジャパン(株)製 セリダスト3620
フッ素樹脂:ポリ4フッ化エチレン樹脂 旭硝子(株)製 フルオンL170J
二硫化モリブデン:大東潤滑(株)製 LM−13
グラファイト:日立化成工業(株)製 GP−60S
窒化ホウ素:水島合金鉄(株)製 FS−1
ジエタノール変性エポキシ樹脂:関西ペイント(株)製 ER−007
ブロックイソシアネート:旭化成工業(株)製 デュラネートMF−K60X
エチレンアイオノマー:三井化学工業(株)製 ケミパールS650
ポリエチレンワックス2:三井化学工業(株)製 ケミパールW950
シランカップリング剤:信越化学(株)製 KBE−403
 このようにして得られた表4、5に示す鋼板No.1~25について、次に示す冷間プレス性、熱間プレス後の穴あき耐食性および塗装密着性評価を行った。ここで、熱間プレスは、電気炉または直接通電により表4、5に示す加熱条件で加熱後、Al製金型で挟み込んで表1、2に示す冷却速度で冷却してシミュレートした。
冷間プレス性:図1に模式的に示した摩擦係数測定装置を用いて動摩擦係数を測定して、冷間プレス性を評価した。まず、作製されたままの鋼板から採取したサンプル1を、スライドテーブル3の上面に固定されている試料台2に設置する。スライドテーブル3は、その下方にあるスライドテーブル支持台5上面に設けられたローラ4により水平移動可能である。次に、上下移動可能なスライドテーブル支持台5を上方へ移動させることにより上方に設けられた図2に示す形状のビード6の下面にサンプル1を押し付ける。このとき、スライドテーブル支持台5に取り付けられている第一ロードセル7によりサンプル1への押し付け荷重Nを測定する。最後に、一定の押し付け荷重N(=400kgf)を作用させた状態でスライドテーブル3を移動速度100cm/minでレール9上を水平移動させ、スライドテーブル3の一方の端部に取り付けられている第二ロードセル8により摺動抵抗力Fを測定し、室温(25℃)での動摩擦係数μ=F/Nを求める。なお、潤滑油としてスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lをサンプル1の表面に塗布して試験を行った。算出したμを以下の基準で評価し、◎、○であれば、冷間プレス性に優れるとした。
◎:μ<0.1
○:0.1≦μ<0.15
△:0.15≦μ<0.2
×:0.2≦μ
穴あき耐食性:穴あき耐食性は化成処理皮膜や電着塗膜が付き回らない部位を想定した評価を行うため、熱処理後の鋼板からサンプルを採取し、サンプルの非評価面および端面をテープでシールした後、塩水噴霧(5質量%NaCl水溶液、35℃、2h)→乾燥(60℃、相対湿度20~30%、4h)→湿潤(50℃、相対湿度95%、2h)を1サイクルとする複合腐食試験を150サイクル実施し、試験後のサンプルの最大板厚減少値を測定し、以下の基準で評価し、◎、○、△であれば本発明の目的を満足しているとした。
◎:最大板厚減少値≦0.1mm
○:0.1mm<最大板厚減少値≦0.2mm
△:0.2mm<最大板厚減少値≦0.3mm
×:0.3mm<最大板厚減少値
塗装密着性:熱処理後の鋼板からサンプルを採取し、日本パーカライジング(株)製PB−SX35を使用して標準条件で化成処理を施した後、関西ペイント(株)製電着塗料GT−10HTグレーを170℃×20分間の焼付け条件で膜厚20μm成膜して、塗装試験片を作製した。そして、作製した試験片の化成処理および電着塗装を施した面に対してカッターナイフで碁盤目(10×10個、1mm間隔)の鋼素地まで到達するカットを入れ、接着テープにより貼着・剥離する碁盤目テープ剥離試験を行った。以下の基準で評価し、◎、○であれば塗装密着性に優れるとした。
◎:剥離なし
○:1~10個の碁盤目で剥離
△:11~30個の碁盤目で剥離
×:31個以上の碁盤目で剥離
 結果を表6に示す。本発明例では、冷間プレス性、熱間プレス後の穴あき耐食性に優れるとともに、塗装密着性にも優れていることがわかる。
 なお、本実施例では実際に冷間プレスや熱間プレスによる加工を行っていない。しかし、上述したように、穴あき耐食性や塗装密着性は熱間プレス前の加熱によるめっき層の変化、特にめっき層中のZnの挙動に左右されるので、本実施例の結果で熱間プレス部材の穴あき耐食性や塗装密着性を評価できることになる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1 サンプル(鋼板)
 2 試料台
 3 スライドテーブル
 4 ローラ
 5 スライドテーブル支持台
 6 ビード
 7 第一ロードセル
 8 第二ロードセル
 9 レール

Claims (15)

  1.  鋼板表面に、順に、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層と、固形潤滑剤を含む潤滑層とを有することを特徴とする熱間プレス用鋼板。
  2.  めっき層と潤滑層との間に、さらに、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層を有することを特徴とする請求項1に記載の熱間プレス用鋼板。
  3.  鋼板表面に、順に、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層と、固形潤滑剤を含み、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層とを有することを特徴とする熱間プレス用鋼板。
  4.  めっき層の下地鋼板が、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1から3のいずれか一項に記載の熱間プレス用鋼板。
  5.  めっき層の下地鋼板が、さらに、質量%で、Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種を含有することを特徴とする請求項4に記載の熱間プレス用鋼板。
  6.  めっき層の下地鋼板が、さらに、質量%で、Sb:0.003~0.03%を含有することを特徴とする請求項4または5に記載の熱間プレス用鋼板。
  7.  請求項1から6のいずれか一項に記載の熱間プレス用鋼板を、冷間プレス後、Ac変態点~1000℃の温度範囲に加熱後、熱間プレスすることを特徴とする熱間プレス部材の製造方法。
  8.  鋼板表面に、順に、60質量%以上のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が0.01~5g/mのめっき層Iと、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層IIと、固形潤滑剤を含む潤滑層とを有することを特徴とする熱間プレス用鋼板。
  9.  めっき層IIと潤滑層との間に、さらに、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層を有することを特徴とする請求項8に記載の熱間プレス用鋼板。
  10.  鋼板表面に、順に、60質量%以上のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が0.01~5g/mのめっき層Iと、10~25質量%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10~90g/mのめっき層IIと、固形潤滑剤を含み、Si含有化合物層、Ti含有化合物層、Al含有化合物層、Zr含有化合物層のうちから選ばれた少なくとも一種の化合物層とを有することを特徴とする熱間プレス用鋼板。
  11.  めっき層の下地鋼板が、質量%で、C:0.15~0.5%、Si:0.05~2.0%、Mn:0.5~3%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項8から10のいずれか一項に記載の熱間プレス用鋼板。
  12.  めっき層の下地鋼板が、さらに、質量%で、Cr:0.01~1%、Ti:0.2%以下、B:0.0005~0.08%のうちから選ばれた少なくとも一種を含有することを特徴とする請求項11に記載の熱間プレス用鋼板。
  13.  めっき層の下地鋼板が、さらに、質量%で、Sb:0.003~0.03%を含有することを特徴とする請求項11または12に記載の熱間プレス用鋼板。
  14.  請求項8から13のいずれか一項に記載の熱間プレス用鋼板を、冷間プレス後、Ac変態点~1000℃の温度範囲に加熱し、熱間プレスすることを特徴とする熱間プレス部材の製造方法。
  15.  Ac変態点~1000℃の温度範囲に加熱するとき、100℃/s以上の平均昇温速度で加熱することを特徴とする請求項14に記載の熱間プレス部材の製造方法。
PCT/JP2012/063824 2011-06-07 2012-05-23 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 WO2012169389A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020137030642A KR101447408B1 (ko) 2011-06-07 2012-05-23 열간 프레스용 강판 및 그것을 사용한 열간 프레스 부재의 제조 방법
KR1020147015264A KR101789366B1 (ko) 2011-06-07 2012-05-23 열간 프레스용 강판 및 그것을 사용한 열간 프레스 부재의 제조 방법
RU2013158293/02A RU2591905C2 (ru) 2011-06-07 2012-05-23 Стальной лист для горячей штамповки и способ изготовления детали из стального листа горячей штамповкой
CN201280028256.2A CN103597117B (zh) 2011-06-07 2012-05-23 热压用钢板以及使用该热压用钢板的热压部件的制造方法
MX2013014294A MX344422B (es) 2011-06-07 2012-05-23 Lamina de acero para prensado en caliente y procedimiento para la fabricación de un miembro prensado en caliente utilizando la lamina de acero.
US14/123,872 US10100381B2 (en) 2011-06-07 2012-05-23 Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
EP12796728.9A EP2719796B1 (en) 2011-06-07 2012-05-23 Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
AU2012268278A AU2012268278B2 (en) 2011-06-07 2012-05-23 Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
CA2836119A CA2836119C (en) 2011-06-07 2012-05-23 Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-126863 2011-06-07
JP2011-126941 2011-06-07
JP2011126863A JP5187413B2 (ja) 2011-06-07 2011-06-07 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2011126941A JP5187414B2 (ja) 2011-06-07 2011-06-07 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Publications (1)

Publication Number Publication Date
WO2012169389A1 true WO2012169389A1 (ja) 2012-12-13

Family

ID=47295957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063824 WO2012169389A1 (ja) 2011-06-07 2012-05-23 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Country Status (12)

Country Link
US (1) US10100381B2 (ja)
EP (1) EP2719796B1 (ja)
KR (2) KR101789366B1 (ja)
CN (2) CN105908226B (ja)
AR (1) AR086681A1 (ja)
AU (1) AU2012268278B2 (ja)
CA (1) CA2836119C (ja)
MX (1) MX344422B (ja)
MY (1) MY154406A (ja)
RU (1) RU2591905C2 (ja)
TW (1) TWI441960B (ja)
WO (1) WO2012169389A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339106A (zh) * 2013-07-02 2016-02-17 杰富意钢铁株式会社 热压部件的制造方法
US20180030568A1 (en) * 2015-03-05 2018-02-01 Jfe Steel Corporation Hot-pressed member and manufacturing method therefor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849186B2 (ja) * 2009-10-28 2012-01-11 Jfeスチール株式会社 熱間プレス部材およびその製造方法
JP5949680B2 (ja) * 2013-06-25 2016-07-13 Jfeスチール株式会社 熱間プレス部材の製造方法
WO2016164803A1 (en) * 2015-04-08 2016-10-13 Aviation Devices & Electronic Components, L.L.C. A metal mesh with a low electrical resistance conversion coating for use with aircraft structures
MX2018001125A (es) * 2015-07-29 2018-05-23 Jfe Steel Corp Metodo para fabricar un miembro prensado en caliente.
JP6222198B2 (ja) * 2015-10-19 2017-11-01 Jfeスチール株式会社 ホットプレス部材およびその製造方法
WO2019122956A1 (en) * 2017-12-19 2019-06-27 Arcelormittal A coated steel substrate
WO2019122957A1 (en) * 2017-12-19 2019-06-27 Arcelormittal A coated steel substrate
US20220170128A1 (en) * 2019-05-31 2022-06-02 Nippon Steel Corporation Steel sheet for hot stamping
KR20230012817A (ko) * 2021-07-16 2023-01-26 현대자동차주식회사 하이브리드 부품의 제조 방법 및 제조 시스템
DE102022108111A1 (de) * 2022-04-05 2023-10-05 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen gehärteter Stahlbauteile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124207A (ja) * 2002-10-04 2004-04-22 Nippon Steel Corp 熱間プレス用Zn系めっき鋼板及びこれを使用した高強度自動車部品
JP2005240072A (ja) * 2004-02-24 2005-09-08 Nippon Steel Corp 亜鉛系めっきが施された熱間プレス鋼材
JP2011074409A (ja) * 2009-09-29 2011-04-14 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU260061A (ja) *
SE435527B (sv) 1973-11-06 1984-10-01 Plannja Ab Forfarande for framstellning av en detalj av herdat stal
SU1764753A1 (ru) * 1989-12-04 1992-09-30 Научно-производственное объединение "АНИТИМ" Способ изготовлени изделий гор чей обработкой давлением
US5525431A (en) * 1989-12-12 1996-06-11 Nippon Steel Corporation Zinc-base galvanized sheet steel excellent in press-formability, phosphatability, etc. and process for producing the same
KR100318649B1 (ko) * 1996-06-06 2002-02-19 고지마 마따오 가공후 내식성이 우수한 표면 처리 강판
DE19840019C1 (de) 1998-09-02 2000-03-16 Atotech Deutschland Gmbh Wäßriges alkalisches cyanidfreies Bad zur galvanischen Abscheidung von Zink- oder Zinklegierungsüberzügen sowie Verfahren
JP4300607B2 (ja) * 1998-11-08 2009-07-22 Jfeスチール株式会社 耐食性に優れた表面処理鋼板の製造方法
JP2001026899A (ja) * 1999-05-13 2001-01-30 Sumitomo Metal Ind Ltd 高耐食性燃料タンク用鋼板及びその製造方法
FR2807447B1 (fr) 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
WO2003074760A1 (fr) * 2000-09-07 2003-09-12 Jfe Steel Corporation Feuille en acier traitee en surface et son procede de production
JP3582504B2 (ja) 2001-08-31 2004-10-27 住友金属工業株式会社 熱間プレス用めっき鋼板
JP4039548B2 (ja) 2001-10-23 2008-01-30 住友金属工業株式会社 耐食性に優れた熱間プレス成形品
TWI258517B (en) 2002-06-28 2006-07-21 Jfe Steel Corp Surface-treated zinc based metal plated steel plate and method for production thereof
JP2005113233A (ja) * 2003-10-09 2005-04-28 Nippon Steel Corp 熱間プレス用Zn系めっき鋼材
KR100711358B1 (ko) * 2005-12-09 2007-04-27 주식회사 포스코 성형성, 소부경화성 및 도금특성이 우수한 고강도 냉연강판및 용융아연도금강판, 그리고 이들의 제조방법
JP5338226B2 (ja) * 2008-09-26 2013-11-13 Jfeスチール株式会社 熱間プレス用亜鉛系めっき鋼板
JP5709151B2 (ja) * 2009-03-10 2015-04-30 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5663915B2 (ja) 2009-03-31 2015-02-04 Jfeスチール株式会社 亜鉛系めっき鋼板
JP2011032497A (ja) * 2009-07-30 2011-02-17 Jfe Steel Corp 熱間プレス用表面処理鋼板およびそれを用いた熱間プレス部材の製造方法
JP4849186B2 (ja) * 2009-10-28 2012-01-11 Jfeスチール株式会社 熱間プレス部材およびその製造方法
JP4883240B1 (ja) 2010-08-04 2012-02-22 Jfeスチール株式会社 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124207A (ja) * 2002-10-04 2004-04-22 Nippon Steel Corp 熱間プレス用Zn系めっき鋼板及びこれを使用した高強度自動車部品
JP2005240072A (ja) * 2004-02-24 2005-09-08 Nippon Steel Corp 亜鉛系めっきが施された熱間プレス鋼材
JP2011074409A (ja) * 2009-09-29 2011-04-14 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719796A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339106A (zh) * 2013-07-02 2016-02-17 杰富意钢铁株式会社 热压部件的制造方法
US10384254B2 (en) 2013-07-02 2019-08-20 Jfe Steel Corporation Method of manufacturing hot-pressed member
US20180030568A1 (en) * 2015-03-05 2018-02-01 Jfe Steel Corporation Hot-pressed member and manufacturing method therefor
US11168378B2 (en) * 2015-03-05 2021-11-09 Jfe Steel Corporation Hot-pressed member and manufacturing method therefor

Also Published As

Publication number Publication date
EP2719796A1 (en) 2014-04-16
MX344422B (es) 2016-12-15
CN105908226A (zh) 2016-08-31
MX2013014294A (es) 2014-03-21
US20140120365A1 (en) 2014-05-01
CA2836119C (en) 2016-02-09
KR101789366B1 (ko) 2017-10-23
CN103597117B (zh) 2016-11-09
AU2012268278B2 (en) 2016-02-04
AU2012268278A1 (en) 2013-11-14
RU2013158293A (ru) 2015-07-20
KR101447408B1 (ko) 2014-10-06
CA2836119A1 (en) 2012-12-13
KR20140084334A (ko) 2014-07-04
RU2591905C2 (ru) 2016-07-20
EP2719796B1 (en) 2020-05-06
AR086681A1 (es) 2014-01-15
KR20140002802A (ko) 2014-01-08
CN105908226B (zh) 2018-07-17
TW201309854A (zh) 2013-03-01
TWI441960B (zh) 2014-06-21
MY154406A (en) 2015-06-16
EP2719796A4 (en) 2015-01-07
US10100381B2 (en) 2018-10-16
CN103597117A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2012169389A1 (ja) 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP5884151B2 (ja) 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP4883240B1 (ja) 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP5834587B2 (ja) 温間プレス部材の製造方法
WO2014068939A1 (ja) 熱間プレス用鋼板、熱間プレス部材及び熱間プレス部材の製造方法
JP6028843B2 (ja) 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP5187413B2 (ja) 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP5187414B2 (ja) 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2836119

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012268278

Country of ref document: AU

Date of ref document: 20120523

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137030642

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123872

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014294

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013158293

Country of ref document: RU

Kind code of ref document: A