WO2012165071A1 - Charger and charging device for charging electric vehicle - Google Patents

Charger and charging device for charging electric vehicle Download PDF

Info

Publication number
WO2012165071A1
WO2012165071A1 PCT/JP2012/060322 JP2012060322W WO2012165071A1 WO 2012165071 A1 WO2012165071 A1 WO 2012165071A1 JP 2012060322 W JP2012060322 W JP 2012060322W WO 2012165071 A1 WO2012165071 A1 WO 2012165071A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
value
current
charger
control data
Prior art date
Application number
PCT/JP2012/060322
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 敏之
全良 尾崎
森 正樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012165071A1 publication Critical patent/WO2012165071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention is a charger for supplying a charging current to a storage battery (secondary battery) mounted on a battery-powered electric vehicle, and charging the electric vehicle used in a charging stand provided separately from the electric vehicle.
  • the present invention relates to a battery charger and a charging device that accepts a supply of charging current from the battery charger and charges an in-vehicle storage battery on the electric vehicle side.
  • CVCC constant voltage constant voltage
  • charge control is normally performed in the sequence of 1) constant current charge (rapid charge), 2) constant voltage charge, and 3) full charge determination.
  • the battery voltage rises to near the full charge voltage after starting the constant current charge, switching to the constant voltage charge is performed.
  • constant voltage charging the charging current decreases as the charging capacity of the storage battery increases.
  • the current value of the charging current decreases to a predetermined threshold, it is determined that the battery is fully charged, and charging is terminated.
  • the CHAdeMO Association has decided on the CHAdeMO protocol as a standard.
  • CAN Controller Area Network
  • the quick charger and the electric vehicle to transmit the operation status from the quick charger side to the electric vehicle side, and then from the electric vehicle side to the quick charger side.
  • the charging permission signal and the current instruction value are transmitted, and the quick charger performs DC charging with a constant current on the electric vehicle based on the received current instruction value.
  • the quick charger includes an AC / DC converter that converts an AC input of a commercial AC power supply (for example, three-phase 200V) into DC, but from the necessity of outputting a DC current of a large current and a constant current / constant voltage,
  • a configuration including a DC / DC converter for maintaining the output current or the output voltage constant at the subsequent stage of the AC / DC converter is employed.
  • the quick charger is equipped with an AC / DC converter that can output a large capacity of 50 kW and a DC / DC converter with a large capacity in order to suppress charging current ripple by controlling the DC / DC converter. This is necessary and the cost of the quick charger is high, which is an obstacle to the spread of charging stations using the quick charger.
  • Patent Documents 1 and 2 propose a charging device that does not include an AC / DC converter and a DC / DC converter separately, reduces the DC / DC converter, and charges the storage battery by pulsating current. ing.
  • a charging device when a charging device is mounted on an electric vehicle, a film capacitor having a large capacity and a high withstand voltage cannot be satisfied due to environmental resistance problems of an electrolytic capacitor used as a smoothing capacitor. It is pointed out that the use of the battery increases the size of the charging device, and it is described that the use of pulsating charging can provide a small charging device while ensuring environmental resistance.
  • the charger side and the electric vehicle side are connected via an inductive coupler, and the electric vehicle side receives AC power from the charger side by the secondary coil of the inductive coupler.
  • the storage battery is charged with a pulsating flow obtained by receiving and full-wave rectifying. Therefore, although it is assumed that the charger is used separately from the electric vehicle, the charging current is not directly supplied from the charger to the storage battery of the electric vehicle.
  • JP 2009-247101 A Japanese Patent Laid-Open No. 2001-103585
  • a pulse current that directly supplies a pulsating charging current from the charger side is used instead of the CVCC DC charging.
  • the direct current charging method adopted, the current value of the charging current input to the storage battery changes periodically, and the voltage applied to the storage battery also changes periodically due to the charging current, so it is necessary to solve the following problems There is.
  • the maximum charging current for the storage battery to be charged The current upper limit is not fixed. Therefore, unless the charging current, which is a pulsating current, is appropriately controlled, it may occur that the charging current is supplied to the storage battery exceeding the maximum current upper limit value. There is a risk of ignition due to.
  • Patent Documents 1 and 2 disclose a charging device that charges a storage battery by a pulsating current, but both are configured to directly supply a pulsating charging current from a charger to an unspecified number of electric vehicles. Therefore, there is no description or suggestion about the above problem and its solution.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an inexpensive charger of a pulsating charging method that does not have a risk of a life reduction and ignition of a storage battery, and further, the pulsating charging.
  • An electric vehicle-side charging device that conforms to the above will be provided.
  • the present invention provides a first communication unit that communicates control data used for charging control with an electric vehicle to be charged, and a pulsating current in a storage battery mounted on the electric vehicle.
  • a charging circuit unit that supplies a charging current; and a control circuit unit that controls the current supply of the charging circuit unit based on the control data, and the first communication unit includes at least the charging current before starting charging.
  • the control data including the maximum current upper limit value is acquired from the electric vehicle, and the control circuit unit controls the charging current to be equal to or lower than the maximum current upper limit value based on the control data.
  • a charger for charging an electric vehicle is provided.
  • the charger having the above characteristics, regardless of whether an unspecified number of chargers are connected in an arbitrary combination to an unspecified number of electric vehicles, in any charger, depending on the power supply capability on the charger side.
  • the vehicle-mounted storage battery can be charged with the charging current controlled to be equal to or less than the maximum current upper limit value instructed by the electric vehicle according to the type and state of charge of the storage battery to be charged. Thereby, the danger of the lifetime reduction of a storage battery resulting from pulsating charge, ignition, etc. is prevented, and the charger of the pulsating charge system which is safe and cheap can be provided.
  • the electric vehicle to which the charger having the above characteristics can be applied is a battery-powered electric vehicle that runs by driving a motor with electric power charged in the storage battery, and the storage battery can be charged by supplying a charging current from the outside. All electric vehicles such as plug-in hybrid cars are included.
  • the electric vehicle to which the charger having the above characteristics can be applied is not necessarily limited to a four-wheeled vehicle, and may be, for example, a two-wheeled vehicle or limited to an electric vehicle traveling on a public road. For example, it may be an electric vehicle that travels on a track.
  • the first communication unit sequentially acquires the control data updated as the storage battery progresses from the electric vehicle, and the control circuit unit Then, the charging current is controlled to be equal to or less than the maximum current upper limit value included in the control data acquired sequentially.
  • the maximum current upper limit value decreases with the progress of charging of the storage battery, an instruction value for an appropriate maximum current upper limit value is received from the electric vehicle side. It can be maintained and charged continuously. Therefore, the pulsating charging method without danger such as a reduction in the life of the storage battery and ignition can be more reliably performed.
  • the first communication unit transmits information to the electric vehicle that the charging circuit unit is pulsating charging for supplying a pulsating charging current. Then, the control data is received from the electric vehicle.
  • the control data suitable for the charging method of the charger can be transmitted to the charger side separately from the control data of the CVCC method.
  • the control circuit unit directs the peak value of the charging current (the maximum value for each repetition period of the ripple) toward the maximum current upper limit value in a certain period immediately after the start of charging. Control to increase gradually. If the charging state of the storage battery is close to full charge, suddenly supplying a charging current whose peak value is near the maximum current upper limit value will cause an error in the battery voltage or internal impedance of the storage battery used to set the maximum current upper limit value. If the maximum current upper limit value transmitted from the electric vehicle is instructed to be higher, the voltage applied to the storage battery may exceed the allowable value, but the peak value of the charging current is gradually increased. Such a situation can be avoided in advance by performing the control to be increased.
  • the charging circuit unit includes an LC type low-pass filter in the final stage.
  • the AC component in the high frequency range included in the charging current is removed, so the bottom value (minimum value) of the charging current does not decrease to 0, and a current value (instantaneous value) that is always greater than the measurement error is ensured. Therefore, the measurement accuracy of the charging current is improved, and as a result, the control accuracy of the charging current is improved.
  • the accuracy of charging current measurement improves, the accuracy of the calculation result of the charge current integrated value or average value, which will be described later, improves. The calculation accuracy of is improved.
  • the control circuit unit has an on / off duty ratio of a switching element constituting a booster circuit provided in the charging circuit unit based on a control value adjusted based on the control data. If the peak value of the charging current is equal to or exceeds the maximum current upper limit value within a predetermined error range, the control value is adjusted so that the peak value decreases. Perform feedback control. Thereby, control which makes charging current below a maximum current upper limit is implement
  • the control data includes an indication value of a current index value given as an integrated value or an average value of the charging current for each predetermined time unit, and the control circuit unit includes the charging circuit.
  • the current index value is calculated from the measured current value, and the supply of the charging current is stopped when the calculated value of the current index value deviates from the indicated value of the current index value beyond a predetermined error range. Control. In the case of pulsating charge, it is difficult to determine whether or not the charging power supplied from the charger side and the charging power received from the electric vehicle side are the same only by controlling the charging current to be equal to or less than the maximum current upper limit value.
  • the control data includes a charge stop lower limit value with respect to a current determination value given as a peak value, a bottom value, or an integrated value or an average value for each predetermined time unit.
  • the control circuit unit calculates the current determination value from the measured value of the charging current, and when the current determination value is less than or equal to the charging stop lower limit value, the supply of the charging current is stopped and charging is performed. Control to end the operation.
  • pulsating charge unlike the CVCC method, even if the storage battery approaches full charge, it does not become constant voltage charge, but the peak value of the voltage applied to the storage battery does not exceed the predetermined upper limit value on the electric vehicle side.
  • the charger side controls the charging current so that it is not more than the maximum current upper limit value instructed by the electric vehicle side. Since the charging current decreases as it approaches, the full charge determination can be performed in the same manner as in the CVCC method by monitoring the current determination value of the charging current.
  • the control circuit unit when the first communication unit receives a charge stop instruction from the electric vehicle, the control circuit unit performs control to stop the supply of the charging current. Since the above-described calculation value of the current index value and the indicated value are compared and determined or the full charge determination can be performed not on the charger side but on the electric vehicle side, for example, when the determination is performed on the electric vehicle side On the charger side, by receiving a charge stop instruction based on the determination from the electric vehicle, the supply of the charging current can be stopped as in the case where the determination is performed on the charger side.
  • the charge stop instruction may be generated as a result of abnormality determination other than the above two determinations.
  • the present invention provides an in-vehicle charging device for charging an in-vehicle storage battery on the electric vehicle side by a charging current supplied from the charger having the above characteristics, and communication of the control data with the charger.
  • a second communication unit that performs the operation, obtains the internal state of the storage battery before the start of charging, calculates a set value included in the control data based on the internal state, and changes the internal state after the start of charging
  • a control data setting unit that sequentially updates the set value.
  • the control data including at least the maximum current upper limit value of the charging current according to the internal state of the storage battery can be transmitted to the charger having the above characteristics. It can be controlled to be below the maximum current upper limit value according to the internal state.
  • supply of a pulsating charging current can be received from the charger side, and charging of the storage battery can be performed by a safe pulsating charging method that does not have a risk of life reduction and ignition of the storage battery.
  • the control data setting unit sequentially acquires the latest internal state of the storage battery before and after the start of charging, and is included in the control data based on the internal state.
  • the set value to be calculated is calculated, and the second communication unit sequentially transmits the calculated control data to the charger before and after the start of charging.
  • the charging device of the above feature includes a voltmeter that measures a charging voltage applied to the storage battery by the charging current, and the control data setting unit sets a peak value of the charging voltage to a predetermined threshold value.
  • the control data setting unit sets a peak value of the charging voltage to a predetermined threshold value.
  • control data setting unit is configured to calculate a product of the maximum current upper limit value and the internal impedance and a battery voltage based on a battery voltage and an internal impedance which are internal states of the storage battery.
  • the maximum current upper limit value is set so that the sum does not exceed the upper limit value of the battery voltage and the maximum current upper limit value does not exceed the allowable maximum current value of the storage battery.
  • the CVCC method controls the voltage drop at the internal impedance as the difference between the charging voltage value of the constant voltage and the battery voltage by switching from constant current charging to constant voltage charging. By doing so, the current value of the charging current can be suppressed. That is, the charging current decreases as the battery voltage increases.
  • constant voltage control is not performed on the charger side. Control is performed so that the peak value of the current decreases, and the peak value of the voltage applied to the storage battery can be controlled to be equal to or lower than the upper limit value of the battery voltage, and the same effect as the constant voltage charging period in the CVCC method can be obtained. .
  • the control data setting unit confirms that the charger is a pulsating charging type charger that supplies a pulsating charging current before starting charging, A set value of control data is calculated and transmitted to the charger via the second communication unit.
  • the charger to connect is a charger of a pulsating charge system, and can transmit the control data suitable for a pulsating charge system to the charger side. Therefore, when the charger to be connected is a CVCC charger, the CVCC control data can be transmitted to the charger side separately from the pulsating charge control data.
  • the charging device having the above characteristics includes an ammeter for measuring the charging current supplied from the charger side, and the control data setting unit is configured to determine the charging current based on the measured value of the charging current.
  • the current index value given as an integrated value or an average value for each predetermined time unit is calculated, and the second communication unit uses the current index value calculated by the control data setting unit as an indication value of the current index value.
  • the charging device having the above characteristics includes an ammeter that measures the charging current supplied from the charger side, and the second communication unit is based on the measured value of the charging current on the charger side.
  • the current index value given as an integrated value or an average value for each predetermined time unit of the charging current calculated in the above is received, and the control data setting unit determines the current based on the charging current measured on the electric vehicle side.
  • An index value is calculated, compared with the current index value calculated on the charger side, and when the current index values of both deviate beyond a predetermined error range, the supply of the charging current is stopped
  • An instruction to stop charging is transmitted to the charger via the second communication unit.
  • the charging power cannot be accurately grasped simply by controlling the charging current below the maximum current upper limit value.Therefore, it is possible to predict the charging end time and the travelable distance when charging is stopped during charging. Calculation becomes difficult.
  • the control data setting unit calculates the current index value, it is possible to predict the charging end time, calculate the travelable distance, and the like. Furthermore, the calculated value of the current index value is transmitted to the charger side as an instruction value, or the current index value calculated on the charger side is received, so that both on the charger side or on the electric vehicle side, respectively. It is possible to compare the calculated current index values.
  • the battery life is reduced due to pulsating charging, and dangers such as ignition are prevented, and the in-vehicle storage battery is inexpensively and safely charged by the pulsating charging method. it can.
  • the block diagram which shows schematic structure of one Embodiment of the charger and charging device which concern on this invention
  • the circuit block diagram which shows an example of the circuit structure of the charging circuit part and control circuit part of the charger which concerns on this invention
  • the flowchart which shows the sequence of the charge control in the charger and charging device which concern on this invention
  • Current waveform diagram explaining the difference in charging current with and without the low-pass filter circuit in the charging circuit section
  • charger for charging an electric vehicle according to the present invention
  • charger in-vehicle charging device according to the present invention
  • charger in-vehicle charging device
  • FIG. 1 is a block diagram showing a schematic configuration of the charger 10 and the charging device 20.
  • the charger 10 includes a charging circuit unit 11, a control circuit unit 12, a first communication unit 13, ammeters 14 and 15, and a voltmeter 16. It is mounted on an electric vehicle and includes a storage battery 21, a second communication unit 22, a control data setting unit 23, an ammeter 24, and a voltmeter 25. Further, the charger 10 is provided with a charging cable 17 and a charging connector 18 connected to the tip thereof, and the electric vehicle is provided with a charging socket 26.
  • a power supply cable 17 a that supplies the charging current output from the charging circuit unit 11 to the storage battery 21, and communication for performing data communication between the first communication unit 13 and the second communication unit 22.
  • a cable 17b is provided.
  • the charging circuit unit 11 includes a power factor improving AC / DC converter as shown in FIG.
  • the charging circuit unit 11 includes a choke coil 31 and 32, a switching element 34, and a bridge circuit of four diodes used as a chopper circuit for high frequency noise removal and power factor improvement, as shown in FIG.
  • a commercial AC power supply 30 is connected to each input terminal of the pair of choke coils 31 and 32. 1 and 2 illustrate a case where a single-phase three-wire system 200V is connected.
  • the current that has passed through the full-wave rectifier circuit 34 is removed from the high-frequency AC component (ripple) by the low-pass filter circuit, but has a period that is half that of the AC input. It is output with the pulsating flow of Tm.
  • the circuit constants of the coil 37 and the capacitor 38 are determined in consideration of the ripple rate, the size and cost of the filter circuit.
  • the charging current is output as a pulsating current, it is necessary to provide a DC / DC converter and a large-capacity smoothing capacitor for controlling the charging current to a constant current or a constant voltage after the charging circuit unit 11. There is no.
  • the control circuit unit 12 controls the duty ratio of the on and off times of the switching element 34 so that the charging current output from the charging circuit unit 11 does not exceed the maximum current upper limit value instructed from the charging device 20 side.
  • the control circuit unit 12 includes absolute value calculation units 41 and 42, a control value setting unit 43, a multiplier 44, a subtracter 45, a PI calculation unit 46, a control pulse signal output unit 47, and a current integrator. 48 and a comparator 49.
  • the control circuit unit 12 includes a user interface that includes an operation unit 19 a that is installed in the charger 10 and receives a user operation input, and a display unit 19 b that displays information necessary for the user. The unit 19 is connected.
  • the ammeter 14 is provided between the connection node N1 of the choke coil 31 and the switching element 34, for example, and measures the instantaneous value Iin of the input current.
  • the instantaneous value Iin is AD (analog / digital) converted at a predetermined sampling period and input to the absolute value calculation unit 41.
  • the AD conversion function is built in a digital arithmetic processing device (for example, a digital signal processor) described later, and is performed by inputting an analog signal to an AD conversion port of the digital arithmetic processing device.
  • the AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
  • the ammeter 15 is provided, for example, between the output terminal T1 on the positive electrode side and the coil 37, and measures the instantaneous value Iout of the output current.
  • the instantaneous value Iout is AD-converted at a predetermined sampling period and input to the control value setting unit 43 and the current integrator 48.
  • the AD conversion is performed by, for example, an ammeter 15.
  • the AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
  • the voltmeter 16 measures the instantaneous value Vin of the input voltage between the two voltage lines of the commercial AC power supply 30.
  • the instantaneous value Vin is AD-converted at a predetermined sampling period and input to the absolute value calculation unit 42.
  • the AD conversion function is built in, for example, the voltmeter 16 or a digital arithmetic processing device (for example, a digital signal processor) described later, and is performed by inputting an analog signal to the AD conversion port of the digital arithmetic processing device.
  • the AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
  • the absolute value calculation units 41 and 42 calculate the absolute values
  • the control value setting unit 43 sets and adjusts the control value A in the manner described later.
  • the multiplier 44 multiplies the absolute value
  • of the instantaneous value Vin of the input voltage calculated by the absolute value calculator 42 and the control value A, and outputs the product B (
  • the subtracter 45 subtracts the absolute value
  • of the instantaneous value Iin of the input current calculated by the absolute value calculation unit 41 from the product B output from the multiplier 44 to obtain an error C ( B ⁇
  • the PI calculation unit 46 calculates the duty ratio D by performing PI compensation calculation on the input error C based on the calculation formula shown in the following equation (1).
  • P is a constant and Ti is an integration period.
  • the duty ratio D calculated by the PI calculation unit 46 is DA converted and input to the control pulse signal output unit 47 as a voltage value Vd.
  • the control pulse signal output unit 47 includes a sawtooth wave generator 47a and a comparator 47b.
  • the voltage value Vd is input to the non-inverting input of the comparator 47b, and the sawtooth wave of the sawtooth wave generator 47a is inverted by the comparator 47b. Enter in the input.
  • the sawtooth wave (or triangular wave) is such that the voltage value changes linearly between a voltage value Vd0 when the duty ratio D is 0 and a voltage value Vd1 when the duty ratio D is 1 at a predetermined switching frequency. Is set. Set the switching frequency to an audible frequency or higher. However, from the viewpoint of noise regulation by EMC (electromagnetic environment compatibility), it is preferable to set the switching frequency within a range of 20 to 50 kHz. In the configuration example shown in FIG. 2, 50 kHz is assumed as an example
  • the comparator 47b outputs a control pulse signal S that repeatedly turns on and off at the switching frequency and the duty ratio D, and the switching operation of the switching element 34 that uses the control pulse signal S as a gate input is controlled. .
  • the control value A starts from the initial value 0, and executes, for example, a soft start operation that sequentially increases, for example, 1, 2, 3,... At a predetermined time interval. .
  • the peak value of the pulsating charging current output from the charging circuit unit 11 gradually increases.
  • the control value setting unit 43 calculates the peak value Ipk for each cycle Tm from the instantaneous value Iout measured by the ammeter 15, and the latest instruction value of the maximum current upper limit value sequentially transmitted from the charging device 20 in the manner described later.
  • the peak value Ipk is compared with the instruction value Imax, and the control value A is determined as described above while the peak value Ipk is below the instruction value Imax (Ipk ⁇ Imax). Increase gradually.
  • the peak value Ipk reaches, for example, 97% of the instruction value Imax, the soft start operation is terminated and the increase of the control value A is stopped.
  • the control value A is adjusted so that the peak value Ipk does not exceed 97% of the instruction value Imax, for example.
  • the peak value Ipk exceeds 97% of the instruction value Imax, for example, ((Imax ⁇ 0.97) / Ipk) is represented by the control value A set at that time.
  • the control value A is updated by reducing the set value of the control value A by multiplying by the reduction ratio.
  • Such feedback control enables control so that the peak value Ipk of the charging current does not exceed the latest instruction value Imax of the maximum current upper limit value.
  • the soft start operation period is assumed to be about 1 second to several seconds.
  • the duty ratio control shown in Equation 1 is performed to control the charging current, so that the alternating current input voltage Vin and the alternating current input current Iin have the same phase and the same waveform.
  • the harmonic component contained in the input current Iin is reduced, and the power factor is improved.
  • the current integrator 48 calculates the instantaneous value Iout of the charging current (output current of the charging circuit unit 11) measured by the ammeter 15 for each pulsating current cycle Tm (for example, a half cycle from zero cross to zero cross of the input AC voltage). Is calculated (corresponding to the current index value).
  • the comparator 49 includes the current integrated value Ia1 calculated by the current integrator 48 and the current integrated value Ia2 for each cycle Tm of the charging current calculated on the charging device 20 side included in the control data transmitted from the charging device 20 side. And a charge stop signal S1 is output when there is a discrepancy greater than or equal to a predetermined error (eg, 3%).
  • a predetermined error eg, 3%
  • the absolute value calculation units 41 and 42, the control value setting unit 43, the multiplier 44, the subtractor 45, the PI calculation unit 46, the current integrator 48, and the comparator 49 of the control circuit unit 12 It comprises a digital arithmetic processing device such as a processor or a digital signal processor, and the functions of each part are realized by digital arithmetic processing.
  • the first communication unit 13 is connected to the second communication unit 22 on the charging device 20 side via the communication cable 17b, and performs control data necessary for pulsating charge, for example, by CAN communication.
  • the communication protocol is not limited to the CAN protocol.
  • Examples of the charging cable 17, the charging connector 18, and the charging socket 26 include a standard product standardized by the Japan Automobile Research Institute (JEVS G105), a standard product standardized by SAE J1772, IEC62196-2 Type1, etc. Can be used.
  • JEVS G105 Japan Automobile Research Institute
  • SAE J1772, IEC62196-2 Type1, etc. Can be used.
  • the second communication unit 22 is connected to the charger 10 via the communication cable 17b, thereby transferring control data necessary for pulsating charge by, for example, CAN communication.
  • the control data setting unit 23 is configured in, for example, an electronic control unit mounted on an electric vehicle, acquires internal states such as the battery voltage and internal impedance of the storage battery 21, and is charged by digital arithmetic processing based on the internal state. The setting value included in the control data transmitted to the device 10 side is calculated.
  • the control data setting unit 23 estimates the internal impedance Zi of the storage battery 21 based on the battery temperature, the open circuit battery voltage Vb, and the degree of battery deterioration before starting charging.
  • the charging device 20 may be provided with an internal impedance measuring device, and may be measured every predetermined time, and the result may be stored and calculated.
  • the internal impedance may be measured from the impedance data at the time of previous charging and the discharge data at the time of driving the vehicle, and stored for use.
  • the internal impedance is a value obtained by dividing a voltage increased at a predetermined charging current from an open circuit battery voltage by a predetermined charging current at that time. The degree of deterioration of the battery is calculated based on the accumulated amount of charge before the start of charging.
  • the open circuit battery voltage is measured by the voltmeter 25 in the state where there is no input of the charging current before the start of charging and the storage battery 21 is not connected to the load.
  • the voltmeter 25 measures the voltage between the terminals of the storage battery 21.
  • the control data setting unit 23 sets the maximum current upper limit value Imax0 of the charging current at a predetermined time interval (for example, 100 msec) before the start of charging and after the start of charging in the manner shown in the following formula 2. Calculation is based on the battery voltage Vb and the internal impedance Zi. Vbmax on the right side of Equation 2 is the upper limit value of the battery voltage Vb.
  • the allowable maximum current value Ibmax is set as the maximum current upper limit value instruction value Imax, and the allowable maximum current
  • the calculated maximum current upper limit value Imax0 is set as the instruction value Imax for the maximum current upper limit value.
  • the battery voltage Vb increases with the progress of charging, but the voltage value in the closed state is the instantaneous value (or peak value) of the charging current flowing into the storage battery 21 measured by the ammeter 24 and the voltmeter. 25, the instantaneous value (or peak value) of the charging voltage between the terminals of the storage battery 21 and the internal impedance Zi calculated before the start of charging.
  • the instantaneous value of the charging current measured by the ammeter 24 and the instantaneous value of the voltage between the terminals of the storage battery 21 measured by the voltmeter 25 are AD-converted at a predetermined sampling period, respectively, and control data setting is performed. Input to the unit 23.
  • the AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
  • the maximum current upper limit value Imax0 calculated based on Equation 2 is compared with the allowable maximum current value Ibmax, and the maximum current upper limit value instruction value Imax is calculated.
  • the instruction value Imax calculated or updated before that is If may be employed ((Vcmax ⁇ 0.97) / Vcpk) multiplied by the reduction ratio represented by the update process (the second updating method) for a new instruction value Imax.
  • the second update method the process of calculating the internal state of the storage battery 21 each time after the start of charging can be omitted.
  • the smaller one of the instruction values Imax updated by the two update methods is set as a new instruction value Imax.
  • the control data setting unit 23 further includes a current integration function for calculating an integrated value Ia2 for each cycle Tm of the charging current with respect to an instantaneous value of the charging current flowing into the storage battery 21 measured by the ammeter 24. The same processing as that of the current accumulator 48 on the device 10 side is performed.
  • control data setting unit 23 charges the maximum allowable voltage (charge voltage upper limit value Vcmax) between the terminals of the storage battery 21 and the charging current based on the internal state or type of the storage battery 21 before starting charging.
  • the stop lower limit value Istp, the state of charge (SOC) before the start of charging, the charging end time Tstp, and the like are calculated or set.
  • the charge stop lower limit Istp set in the control data setting unit 23 is set within a range that can be measured without sufficient error from the measurement accuracy of the current sensor 24 owned by the electric vehicle. For example, if a 100A sensor is used, about 5A is preferable.
  • the actual set value changes according to the definition of a later-described current determination value Ij to be compared with the charge stop lower limit value Istp. Further, when the current determination value Ij is an integrated value for each cycle Tm, for example, a value obtained by multiplying the current value by the cycle Tm or an integrated value (unit: ampere second) between the current values in the cycle Tm.
  • the control data setting unit 23 controls the maximum current upper limit instruction value Imax, the charging current integrated value Ia2, the charging voltage upper limit value Vcmax, the charging stop lower limit value Istp, the charging end time Tstp, the state of charge (SOC), and the like.
  • the data is transmitted to the charger 10 side via the second communication unit 22.
  • the maximum current upper limit instruction value Imax and the charging current integrated value Ia2 are calculated at a predetermined time interval (for example, 100 milliseconds) after the start of charging, and the same time interval via the second communication unit 22.
  • the trigger signal of the sampling timing of each current measurement value is synchronized on the charger 10 side and the charging device 20 side, and sampling is performed simultaneously. Furthermore, the control data setting unit 23 performs charge abnormality determination described later.
  • the charging connector 18 of the charger 10 is inserted into the charging socket 26 of the electric vehicle, and both are connected (step A1).
  • the user presses the charge start button on the operation unit 19a installed in the charger 10 to instruct the start of charging (step A2).
  • the control circuit unit 12 receives the start instruction and transmits a charge start notification to the control data setting unit 23 of the charging device 20 via the first communication unit 13, the communication cable 17b, and the second communication unit 22 ( Step A3).
  • the control data setting unit 23 receives the charging start notification and returns a notification to that effect, thereby establishing a communication path between the charger 10 and the charging device 20 (step B1), and then transmitting and receiving control data in the following manner. I do.
  • the control data setting unit 23 determines whether the charging start notification transmitted from the charger 10 in Step A3 or the newly transmitted message includes information indicating pulsating charge (Step B2). When the information is included, it is determined that the storage battery 21 is charged by pulsating charge (YES in step B2). In step B2, if the information indicating that the charging is pulsating charge is not included, or if the information indicating that the charging is based on the CVCC method is included, it is determined that the storage battery 21 is charged by the CVCC method. (NO in step B2). In the latter case, a charging sequence based on the normal CVCC method is executed, but the description is omitted because it is not related to the gist of the present invention. Hereinafter, a charging sequence when it is determined as pulsating charging will be described.
  • the control data setting unit 23 acquires the internal state such as the battery voltage and internal impedance of the storage battery 21, and based on the type of the storage battery 21 and the internal state, the maximum charging current included in the control data
  • the current upper limit value Imax, the charging voltage upper limit value Vcmax, the charging current lower limit value Istp, the state of charge (SOC) before the start of charging, the charging end time Tstp, etc. are calculated or set (step B3).
  • the control data setting unit 23 transmits each set value of the calculated control data to the control circuit unit 12 of the charger 10 (step B4).
  • the control circuit unit 12 displays the charging state (SOC) before the start of charging, the charging end time Tstp, and the like among the set values of the received control data on the display unit 19b and notifies the user, and pulsating charging And the charging current is controlled based on the received maximum current upper limit value Imax and the charging current stopping lower limit value Istp.
  • the control value A is increased stepwise every certain period (for example, 100 milliseconds) so that the peak value Ipk of the charging current gradually increases toward the instruction value Imax of the maximum current upper limit value. Is performed (step A4).
  • a soft start end condition for example, the peak value Ipk exceeds 97% of the instruction value Imax
  • the control value A is adjusted so that the peak value Ipk does not exceed, for example, 97% of the instruction value Imax (step A6).
  • control circuit unit 12 sequentially executes the calculation of the current integrated value Ia1 of the charging current by the current integrator 48 through each operation period of the soft start operation and the steady control operation (step A7).
  • the control data setting unit 23 determines the battery voltage Vb based on the instantaneous value (or peak value) of the charging current and the charging voltage and the internal impedance at a constant cycle (for example, 100 ms cycle).
  • the battery voltage Vb is updated by recalculation, and the maximum current upper limit value Imax is newly calculated and updated based on the updated battery voltage Vb (step B5).
  • the maximum current upper limit value Imax is updated by the first update method.
  • the maximum current upper limit value Imax may be updated by the second update method, and the first and second update values may be updated.
  • the smaller one of the instruction values Imax updated by the method may be updated as a new instruction value Imax.
  • control data setting unit 23 calculates a current integrated value Ia2 for each charging current cycle Tm with respect to the instantaneous value of the charging current measured by the ammeter 24 in parallel with Step B5. (Step B6).
  • the maximum current upper limit value Imax updated in step B5 and the integrated value Ia2 calculated in step B6 are sequentially updated every predetermined period (for example, 100 msec period) as update data for the set value of the control data. (Step B7).
  • the integrated value Ia2 is calculated for 10 periods, so the current integrated value Ia2 for 10 periods may be transmitted as control data, respectively, or You may transmit those average values or total values as control data.
  • Step B8 the control data setting unit 23 sequentially performs the following charging abnormality determination for every fixed period (for example, 100 msec period) (Step B8).
  • one charge abnormality determination first, when the instantaneous value (or peak value) of the charging current flowing into the storage battery 21 measured by the ammeter 24 exceeds the maximum current upper limit value Imax. The charging is determined to be abnormal (first determination).
  • the instantaneous value (or peak value) of the charging current is 103, which is the maximum current upper limit instruction value Imax, in order to allow a measurement error of about 3%.
  • The% value and the instantaneous value (or peak value) of the charging voltage are respectively compared with the 103% value of the upper limit value Vcmax of the charging voltage.
  • the instruction value Imax of the maximum current upper limit value gradually decreases as the charging progresses, so the effect of reducing the instruction value is not reflected instantaneously on the charging device 20 side, Since it is reflected with a certain time delay, the instruction value Imax set before a certain time (for example, about 1 to 3 seconds) may be used as a comparison target.
  • the charge stop signal S2 is sent via the second communication unit 22. Then, the data is transmitted to the charger 10 side (step B9), and the processing of steps B5 to B8 is stopped (step B10).
  • step B8 If it is not determined to be abnormal in step B8 (No in step B8), the charging operation is continued, and steps B5 to B8 are repeatedly and continuously performed. In addition, when it is determined that there is an abnormality in one charge abnormality determination, the charge stop signal S2 is not transmitted immediately and the processing of steps B5 to B8 is not stopped. When the charging abnormality (first determination or second determination) continues, it is determined that the charging is abnormal, and the processing of steps B5 to B8 may be stopped by transmitting the charging stop signal S2. Further, from the viewpoint of safety, in the present invention, charging is performed while performing feedback control so that the peak current of the ammeter 15 becomes a value of 97% of Imax. When the peak current deviates from a value of 97% of Imax for a predetermined time or longer (for example, 1 second or longer), it may be determined that the control system of the charger has malfunctioned and charging may be stopped.
  • a predetermined time or longer for example, 1 second or longer
  • the control data update data (maximum current upper limit value Imax and current integrated value Ia2) transmitted at the above-mentioned fixed intervals in step B7 are sequentially received through the respective operation periods of the soft start operation and the steady control operation.
  • Step A8 the soft start end condition is determined as described above based on the maximum current upper limit value Imax of the updated control data.
  • the control value setting unit 43 adjusts the control value A so that the peak value Ipk of the charging current does not exceed the maximum current upper limit value Imax based on the updated maximum current upper limit value Imax of the control data. This is done as described above.
  • the comparator 49 performs, for example, the current integrated value Ia2 sequentially received in step A8 and the current integrated value Ia1 calculated in step A7 at each fixed period throughout the operation periods of the soft start operation and the steady control operation.
  • the total value (or average value) is compared (step A9).
  • step A9 when there is a discrepancy greater than or equal to a predetermined error (for example, 3%) between the current integrated values Ia1 and Ia2, the comparator 49 outputs a charge stop signal S1 (step A10).
  • the calculation or comparison of the current integrated values Ia1 and Ia2 may be started after the peak value Ipk of the charging current exceeds the lower limit value of the measurable range of the ammeter 15 and the ammeter 24 by a certain level or more.
  • the control circuit unit 12 performs the following abnormal termination determination (step A11), and in the determination, the output of the charge stop signal S1 in step A10, or step
  • the charging circuit unit 11 stops the charging current supply operation, and the charge stop notification S3 is sent to the charging device 20.
  • the control data setting unit 23 step A12
  • the control circuit unit 12 accepts the charge end instruction. (YES in step A13), the charging current supply operation of the charging circuit unit 11 is stopped, and a charging stop notification S3 is transmitted to the control data setting unit 23 of the charging device 20 (step A14).
  • the current determination value Ij defined by is calculated for each cycle Tm and compared with the charge stop lower limit value Istp (step A15).
  • the charging circuit unit 11 stops the charging current supply operation, and the charge stop notification S3 is charged. It transmits to the control data setting part 23 of the apparatus 20 (step A16). If the current determination value Ij is not less than or equal to the charge stop lower limit value Istp in step A15 (NO in step A12), the adjustment of the control value A in the steady control operation (step A6) is continued.
  • the control data setting unit 23 determines whether or not the charge stop notification S3 transmitted in step A12, A14 or A16 is received (step B11). If the charge stop notification S3 is received (YES in step B11), The processing of B5 to B8 is stopped (step B10). If the charging abnormality determination has been made on the charging device 20 side (YES in step B8), the processing in steps B5 to B8 stops regardless of whether or not the charging stop notification S3 has been received (step S8). B10).
  • FIG. 4 shows an example of the simulation result of the output waveform of each charging current Iout with and without the low-pass filter circuit, together with the input AC voltage waveform Vin. From FIG. 4, when the low-pass filter circuit is not provided, the charging current Iout decreases to 0 A although the current amplitude is large. In this case, the bottom value Ibt cannot be used as the current determination value Ij in the comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp.
  • the low-pass filter circuit when the low-pass filter circuit is provided, the current amplitude is suppressed, the peak value Ipk of the charging current Iout decreases, and the bottom value Ibt increases. Therefore, since the charging current Iout is always within the measurable range of the ammeter 15 and the ammeter 24, the measurement accuracy of each instantaneous value used for the charge control is maintained, and the charge control can be performed with high accuracy.
  • the circuit constants of the coil 37 and the capacitor 38 are sufficient if the bottom value Ibt is equal to or greater than the lower limit value of the measurable range of the ammeter 15 and the ammeter 24, and need not be unnecessarily large. Further, in the comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp, the bottom value Ibt can be used as the current determination value Ij.
  • the charging circuit unit 11 has the circuit configuration shown in FIG. 2, but the charging circuit unit 11 is not limited to the circuit configuration shown in FIG.
  • the charging circuit unit 11 is not limited to the circuit configuration shown in FIG.
  • FIG. 1 of Patent Document 2 after full-wave rectification of the AC input of the commercial AC power supply 30, it is connected to the primary side of the transformer via an inverter circuit of a switching element having a full bridge configuration.
  • a full-wave rectifier circuit may be further provided on the secondary side of the transformer.
  • the primary coil of the transformer may be used also as a choke coil constituting the chopper circuit instead of the inverter circuit.
  • the charging current so as to perform the power factor correction operation while insulating at one stage of the AC / DC converter.
  • on / off control of the switching elements constituting the inverter circuit or chopper circuit may be performed in the same manner as described in the above embodiment.
  • the output side and the input side (commercial AC power supply 30 side) of the charging circuit unit 11 can be insulated by a transformer. Safety is improved.
  • the commercial AC power supply 30 is not limited to the single-phase three-wire type 200V, for example, when the commercial AC power supply 30 is a three-phase 200V, the circuit configuration of the charging circuit unit 11 is also the commercial AC power supply 30. It will be changed according to. While performing the power factor correction operation, the control for the charging current in the pulsating flow can be performed in the same manner as in the case of the single phase.
  • the switching element 34 has a configuration in which two IGBTs (insulated gate bipolar transistors) are connected in series with a common collector, and can be completely turned on and off in both directions.
  • IGBTs insulated gate bipolar transistors
  • a power MOSFET or the like may be used instead of the IGBT, or a single switching element that can be completely turned on and off in both directions may be used.
  • control value setting unit 43 performs the second update process in the update process of the maximum current upper limit value Imax in step B5 in the process on the charging device 20 side.
  • the setting unit 43 may perform only the first update process, and the charger 10 may perform a process corresponding to the second update process.
  • a voltmeter for measuring the instantaneous value Vout of the output voltage between the output terminals is separately provided, the peak value Voutpk of the instantaneous value Vout is calculated, and the upper limit value Vcmax of the charging voltage included in the control data
  • the control value A is multiplied by the reduction ratio represented by ((Vcmax ⁇ 0.97) / Voutpk) to obtain the control value A May be reduced.
  • the control value A is controlled based on both the peak value Voutpk of the charging voltage and the peak value Ipk of the charging current.
  • the storage battery peak voltage measured on the charging device 20 side is received on the charger 10 side, and the voltage reading value on the charger 10 side and the voltage reading on the charging device 20 side are constantly read (for example, updated every 100 ms). You may make it perform abnormality determination whether the difference
  • step B8 In the charging abnormality determination (step B8) of the above embodiment, instead of or in addition to at least one of the first and second determinations, on the charger 10 side for each cycle Tm of pulsating flow The peak value of the measured charging current is received each time, and compared with the peak value of the charging current measured on the charging device 20 side at the same period Tm, both peak values deviate by more than a predetermined error range (for example, ⁇ 3%). In this case, it is also preferable to determine that the charging is abnormal (third determination). In this case, in order to ensure that the two peak values to be compared are peak values based on the instantaneous value of the charging current sampled within the same pulsating cycle, for example, the input AC voltage on the charger 10 side.
  • the zero-crossing point is detected and the detection timing is used as a synchronization signal in common on the charger 10 side and the charging device 20 side, and the pulsating flow period Tm on the charger 10 side and the pulsating flow on the charging device 20 side It is preferable to match the periods Tm. Thereby, the peak values detected within the same period Tm can be compared.
  • the peak value of the charging current measured on the charging device 20 side may be received on the charger 10 side.
  • the synchronization signal may be generated based on the output of the timer element by providing a timer element on either the charger 10 side or the charging device 20 side without depending on the detection timing.
  • the synchronization signal is used when the current integrator 48 and the control data setting unit 23 calculate the integrated values Ia1 and Ia2 for each charging current cycle Tm on the charger 10 side and the charging device 20 side, respectively.
  • the periods Tm used for calculation of the integrated values Ia1 and Ia2 are matched.
  • control circuit unit 12 is configured to control the duty ratio of the on and off times of the switching element 34, but the control pulse signal output unit 47 is based on the output value of the PI calculation unit 46.
  • a circuit such as a voltage frequency converter circuit in which the output frequency of the control pulse signal S changes may be used, and the duty ratio of the control pulse signal S may change substantially with the change in frequency.
  • the duty ratio is calculated by the PI correction calculation shown in Formula 1 using the PI calculation unit 46, but by the PID correction calculation in which the differential term is added in parentheses on the right side of the calculation formula of Formula 1.
  • the duty ratio may be calculated.
  • the charging abnormality determination (step B8) is performed on the charging device 20 side, and a charging stop signal S2 as a result thereof is transmitted to the charger 10 side.
  • S2 is received (YES in step A11)
  • the charging current supply operation of the charging circuit unit 11 is stopped.
  • the charging abnormality determination is executed on the charger 10 side, and the charging stop signal S2 as a result is received. It is good also as a structure which transmits to the charging device 20 side.
  • the said embodiment is set as the structure which performs the comparison (step A9) of electric current integrated value Ia1, Ia2 in the charger 10 side, and transmits the charge stop signal S1 which is the result to the charging device 20 side.
  • the current integrated value Ia1 may be transmitted to the charging device 20 side and the comparison process may be performed on the charging device 20 side.
  • the comparison process may be included in the charging abnormality determination.
  • the integrated values Ia1 and Ia2 for each charging current cycle Tm are used as the current index values, but instead of the integrated current values Ia1 and Ia2, the average for each charging current cycle Tm is used.
  • a comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit Istp is executed on the charger 10 side, and a charge stop notification is sent to the charging device 20 side.
  • the calculation of the current determination value Ij and the comparison determination between the current determination value Ij and the charge stop lower limit Istp are executed on the charging device 20 side, and as a result, the charge stop signal S1 is transmitted to the charger 10 side. It is good also as a structure which transmits to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a charger for charging an electric vehicle, said charger being provided with the following: a first communication unit that exchanges control data with the electric vehicle to be charged, said control data being used to control charging; a charging circuit unit that supplies a pulsating charging current to a rechargeable battery on board the electric vehicle; and a control circuit unit that, on the basis of the aforementioned control data, controls the current provided by the charging circuit unit. The first communication unit acquires the aforementioned control data from the electric vehicle before charging is started, said control data including at least an upper limit on the charging current, and on the basis of said control data, the control circuit unit controls the charging current so as to not exceed said upper limit.

Description

電気自動車充電用の充電器及び充電装置Battery charger and charging device for electric vehicle charging
 本発明は、電池式の電気自動車に搭載される蓄電池(2次電池)に充電電流を供給する充電器であって、電気自動車から分離して設けられた充電スタンド等で使用される電気自動車充電用の充電器、及び、当該充電器から充電電流の供給を受け付けて車載蓄電池への充電を電気自動車側において行う充電装置に関する。 The present invention is a charger for supplying a charging current to a storage battery (secondary battery) mounted on a battery-powered electric vehicle, and charging the electric vehicle used in a charging stand provided separately from the electric vehicle. The present invention relates to a battery charger and a charging device that accepts a supply of charging current from the battery charger and charges an in-vehicle storage battery on the electric vehicle side.
 電池式の電気自動車に搭載された蓄電池の充電方式としては、定電流定電圧(CVCC:Constant Voltage Constant Current)方式が一般的である。当該CVCC方式では、通常、1)定電流充電(急速充電)、2)定電圧充電、3)満充電判定、というシーケンスで充電制御が行われる。定電流充電開始後、電池電圧が満充電電圧付近まで上昇すると、定電圧充電に切り替える。定電圧充電では、蓄電池の充電容量が上昇するに従い充電電流が減少する。当該充電電流の電流値が所定の閾値まで減少すると満充電であると判定し充電を終了する。 As a charging method for a storage battery mounted on a battery-powered electric vehicle, a constant voltage constant voltage (CVCC) method is generally used. In the CVCC method, charge control is normally performed in the sequence of 1) constant current charge (rapid charge), 2) constant voltage charge, and 3) full charge determination. When the battery voltage rises to near the full charge voltage after starting the constant current charge, switching to the constant voltage charge is performed. In constant voltage charging, the charging current decreases as the charging capacity of the storage battery increases. When the current value of the charging current decreases to a predetermined threshold, it is determined that the battery is fully charged, and charging is terminated.
 また、車載型の充電器ではなく、充電スタンド等で使用する電気自動車から分離して設けられた充電器を用いて、不特定多数の電気自動車を対象として上記CVCC方式での急速充電を行うために、一例として、チャデモ協議会では、標準規格としてチャデモ・プロトコルを取り決めている。当該チャデモ・プロトコルでは、急速充電器と電気自動車間でCAN(Contoroller Area Network)通信を用い、急速充電器側から電気自動車側へ動作ステータスを送信し、引き続き、電気自動車側から急速充電器側へ、充電許可信号と電流指示値を送信し、急速充電器は受信した電流指示値に基づき、電気自動車に対して定電流で直流充電を行う。これにより、当該規格に準拠した急速充電器であれば、当該規格に準拠した如何なる電気自動車に対しても急速充電が可能となり、電気自動車の普及に資することとなる。 Also, in order to perform rapid charging with the above-mentioned CVCC method for a large number of unspecified electric vehicles using a charger provided separately from an electric vehicle used at a charging stand or the like instead of an in-vehicle charger. As an example, the CHAdeMO Association has decided on the CHAdeMO protocol as a standard. In the CHAdeMO protocol, CAN (Controller Area Network) communication is used between the quick charger and the electric vehicle to transmit the operation status from the quick charger side to the electric vehicle side, and then from the electric vehicle side to the quick charger side. Then, the charging permission signal and the current instruction value are transmitted, and the quick charger performs DC charging with a constant current on the electric vehicle based on the received current instruction value. Thereby, if it is a quick charger based on the said standard, quick charge will be attained with respect to any electric vehicle based on the said standard, and it will contribute to the spread of an electric vehicle.
 充電スタンド等で使用される直流充電用の急速充電器では、短時間で急速充電を行う必要から大電力充電が行われる。当該急速充電器は、商用交流電源(例えば、三相200V)の交流入力を直流に変換するAC/DCコンバータを備えるが、大電流且つ定電流・定電圧の直流電流を出力する必要性から、AC/DCコンバータの後段に更に出力電流または出力電圧を一定に維持するためのDC/DCコンバータを備える構成が一般的に採用されている。しかし、急速充電器は50kWの大容量の出力が可能なAC/DCコンバータと、DC/DCコンバータの制御によって、充電電流のリップルを抑制するため、大容量のDC/DCコンバータを搭載することが必要であり、急速充電器が高コストとなるため、急速充電器を使用する充電スタンドの普及に対する一つの阻害要因となる。 In a quick charger for DC charging used in a charging stand or the like, high power charging is performed because it is necessary to perform quick charging in a short time. The quick charger includes an AC / DC converter that converts an AC input of a commercial AC power supply (for example, three-phase 200V) into DC, but from the necessity of outputting a DC current of a large current and a constant current / constant voltage, In general, a configuration including a DC / DC converter for maintaining the output current or the output voltage constant at the subsequent stage of the AC / DC converter is employed. However, the quick charger is equipped with an AC / DC converter that can output a large capacity of 50 kW and a DC / DC converter with a large capacity in order to suppress charging current ripple by controlling the DC / DC converter. This is necessary and the cost of the quick charger is high, which is an obstacle to the spread of charging stations using the quick charger.
 一方、下記の特許文献1及び2等において、AC/DCコンバータとDC/DCコンバータを各々、別々に備えず、DC/DCコンバータを削減し、脈流により蓄電池の充電を行う充電装置が提案されている。特許文献1では、充電装置を電気自動車に搭載する場合、平滑コンデンサに使用する電解コンデンサの耐環境性の問題により、特性安定性や寿命特性を満足できないことから、大容量且つ高耐圧のフィルムコンデンサを使用すると、充電装置が大型化してしまう点が指摘され、脈流充電を採用することで、耐環境性を担保しつつ小型の充電装置が提供できることが記載されている。特許文献2に開示されている充電器は、充電器側と電気自動車側が誘導性結合器を介して接続し、電気自動車側は、誘導性結合器の2次コイルにより充電器側から交流電力を受け取り、全波整流して得られた脈流で蓄電池を充電する構成となっている。従って、充電器は電気自動車から分離して用いられることが想定されているものの、充電器から電気自動車の蓄電池に脈流の充電電流を直接供給する構成とはなっていない。 On the other hand, the following Patent Documents 1 and 2 propose a charging device that does not include an AC / DC converter and a DC / DC converter separately, reduces the DC / DC converter, and charges the storage battery by pulsating current. ing. In Patent Document 1, when a charging device is mounted on an electric vehicle, a film capacitor having a large capacity and a high withstand voltage cannot be satisfied due to environmental resistance problems of an electrolytic capacitor used as a smoothing capacitor. It is pointed out that the use of the battery increases the size of the charging device, and it is described that the use of pulsating charging can provide a small charging device while ensuring environmental resistance. In the charger disclosed in Patent Document 2, the charger side and the electric vehicle side are connected via an inductive coupler, and the electric vehicle side receives AC power from the charger side by the secondary coil of the inductive coupler. The storage battery is charged with a pulsating flow obtained by receiving and full-wave rectifying. Therefore, although it is assumed that the charger is used separately from the electric vehicle, the charging current is not directly supplied from the charger to the storage battery of the electric vehicle.
特開2009-247101号公報JP 2009-247101 A 特開2001-103685号公報Japanese Patent Laid-Open No. 2001-103585
 電気自動車から分離して設けられた充電スタンド等で使用される電気自動車充電用の充電器の充電方式として、CVCC方式の直流充電ではなく、充電器側から脈流の充電電流を直接供給する脈流充電方式を採用する場合、蓄電池に入力する充電電流の電流値が周期的に変化し、当該充電電流によって蓄電池に印加される電圧も周期的に変化するため、以下に示す課題を解決する必要がある。 As a charging method for a charger for charging an electric vehicle used in a charging stand or the like provided separately from the electric vehicle, a pulse current that directly supplies a pulsating charging current from the charger side is used instead of the CVCC DC charging. When the direct current charging method is adopted, the current value of the charging current input to the storage battery changes periodically, and the voltage applied to the storage battery also changes periodically due to the charging current, so it is necessary to solve the following problems There is.
 車載充電器でない場合、不特定多数の電気自動車に対応する必要があり、また、電気自動車に搭載されている蓄電池の種類、充電状態等も様々であるため、充電対象の蓄電池に対する充電電流の最大電流上限値も一定に定まらない。従って、脈流である充電電流を、適切に制御しない限り、当該最大電流上限値を超えて蓄電池に充電電流を供給することが起こり得るため、過熱による蓄電池の寿命低下の問題、或いは、過充電による発火等の危険性がある。 If it is not an in-vehicle charger, it is necessary to support an unspecified number of electric vehicles, and since there are various types of storage batteries mounted on the electric vehicles, various charging conditions, etc., the maximum charging current for the storage battery to be charged The current upper limit is not fixed. Therefore, unless the charging current, which is a pulsating current, is appropriately controlled, it may occur that the charging current is supplied to the storage battery exceeding the maximum current upper limit value. There is a risk of ignition due to.
 上記特許文献1及び2では、脈流により蓄電池の充電を行う充電装置が開示されているが、何れも、充電器から不特定多数の電気自動車に対して脈流の充電電流を直接供給する構成とはなっていないため、上記課題及びその解決策については、何らの記載も示唆もされていない。 Patent Documents 1 and 2 disclose a charging device that charges a storage battery by a pulsating current, but both are configured to directly supply a pulsating charging current from a charger to an unspecified number of electric vehicles. Therefore, there is no description or suggestion about the above problem and its solution.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、蓄電池の寿命低下及び発火等の危険性のない脈流充電方式の安価な充電器を提供し、更に、当該脈流充電に適合した電気自動車側の充電装置を提供することになる。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an inexpensive charger of a pulsating charging method that does not have a risk of a life reduction and ignition of a storage battery, and further, the pulsating charging. An electric vehicle-side charging device that conforms to the above will be provided.
 上記目的を達成するため、本発明は、充電対象の電気自動車との間で充電制御に使用する制御データの通信を行う第1通信部と、前記電気自動車に搭載されている蓄電池に脈流の充電電流を供給する充電回路部と、前記充電回路部の電流供給を前記制御データに基づいて制御する制御回路部と、を備え、前記第1通信部が、充電開始前に、少なくとも前記充電電流の最大電流上限値を含む前記制御データを、前記電気自動車から取得し、前記制御回路部が、前記制御データに基づいて前記充電電流を前記最大電流上限値以下となるように制御することを特徴とする電気自動車充電用の充電器を提供する。 In order to achieve the above object, the present invention provides a first communication unit that communicates control data used for charging control with an electric vehicle to be charged, and a pulsating current in a storage battery mounted on the electric vehicle. A charging circuit unit that supplies a charging current; and a control circuit unit that controls the current supply of the charging circuit unit based on the control data, and the first communication unit includes at least the charging current before starting charging. The control data including the maximum current upper limit value is acquired from the electric vehicle, and the control circuit unit controls the charging current to be equal to or lower than the maximum current upper limit value based on the control data. A charger for charging an electric vehicle is provided.
 上記特徴の充電器によれば、不特定多数の電気自動車に対して、不特定多数の充電器を任意に組み合わせて接続しても、何れの充電器においても、充電器側の給電能力に応じて、また、充電対象の蓄電池の種類及び充電状態に応じて、電気自動車から指示された最大電流上限値以下に制御された充電電流による車載蓄電池への充電が可能となる。これにより、脈流充電に起因する蓄電池の寿命低下及び発火等の危険性が防止され、安全且つ安価な脈流充電方式の充電器を提供することができる。 According to the charger having the above characteristics, regardless of whether an unspecified number of chargers are connected in an arbitrary combination to an unspecified number of electric vehicles, in any charger, depending on the power supply capability on the charger side. In addition, the vehicle-mounted storage battery can be charged with the charging current controlled to be equal to or less than the maximum current upper limit value instructed by the electric vehicle according to the type and state of charge of the storage battery to be charged. Thereby, the danger of the lifetime reduction of a storage battery resulting from pulsating charge, ignition, etc. is prevented, and the charger of the pulsating charge system which is safe and cheap can be provided.
 尚、上記特徴の充電器が適応可能な電気自動車は、蓄電池に充電された電力によりモータを駆動して走行する電池式電動車両であって、外部からの充電電流の供給により蓄電池の充電が可能な全ての電動車両が対象となり、例えば、プラグイン・ハイブリッドカーが含まれる。また、上記特徴の充電器が適応可能な電気自動車は、必ずしも4輪自動車に限定されるものではなく、例えば、2輪自動車であっても良く、また、公道を走行する電気自動車に限定されるものではなく、例えば、軌道上を走行する電動車両であっても良い。 The electric vehicle to which the charger having the above characteristics can be applied is a battery-powered electric vehicle that runs by driving a motor with electric power charged in the storage battery, and the storage battery can be charged by supplying a charging current from the outside. All electric vehicles such as plug-in hybrid cars are included. The electric vehicle to which the charger having the above characteristics can be applied is not necessarily limited to a four-wheeled vehicle, and may be, for example, a two-wheeled vehicle or limited to an electric vehicle traveling on a public road. For example, it may be an electric vehicle that travels on a track.
 更に好ましくは、上記特徴の充電器は、充電開始後に、前記第1通信部が、前記蓄電池の充電の進行に伴い更新される前記制御データを前記電気自動車から順次取得し、前記制御回路部が、順次取得した前記制御データに含まれる前記最大電流上限値以下となるように前記充電電流を制御する。これにより、蓄電池の充電の進行に伴い最大電流上限値が低下した場合でも、電気自動車側から適正な最大電流上限値の指示値を受信するため、常に充電電流を適正な最大電流上限値以下に維持して充電を継続することができる。よって、蓄電池の寿命低下及び発火等の危険性のない脈流充電方式がより確実に実行可能となる。 More preferably, in the charger having the above characteristics, after the start of charging, the first communication unit sequentially acquires the control data updated as the storage battery progresses from the electric vehicle, and the control circuit unit Then, the charging current is controlled to be equal to or less than the maximum current upper limit value included in the control data acquired sequentially. As a result, even when the maximum current upper limit value decreases with the progress of charging of the storage battery, an instruction value for an appropriate maximum current upper limit value is received from the electric vehicle side. It can be maintained and charged continuously. Therefore, the pulsating charging method without danger such as a reduction in the life of the storage battery and ignition can be more reliably performed.
 更に好ましくは、上記特徴の充電器は、前記第1通信部が、充電開始前に、前記充電回路部が脈流の充電電流を供給する脈流充電である旨の情報を前記電気自動車に送信した後、前記制御データを前記電気自動車から受信する。これにより、脈流の充電電流を受け付ける電気自動車側では、接続する充電器が、脈流充電方式で充電を行うのか、或いは、例えばCVCC方式で充電を行うかが事前に分かるので、接続する充電器の充電方式に適した制御データを、CVCC方式の制御データと区別して充電器側に送信することができる。 More preferably, in the charger having the above characteristics, before the start of charging, the first communication unit transmits information to the electric vehicle that the charging circuit unit is pulsating charging for supplying a pulsating charging current. Then, the control data is received from the electric vehicle. As a result, on the side of the electric vehicle that accepts the charging current of the pulsating current, it can be known in advance whether the charger to be connected is charged by the pulsating charging method or is charged by, for example, the CVCC method. The control data suitable for the charging method of the charger can be transmitted to the charger side separately from the control data of the CVCC method.
 更に好ましくは、上記特徴の充電器は、前記制御回路部が、充電開始直後の一定期間において、前記充電電流のピーク値(リップルの繰り返し周期毎の極大値)を前記最大電流上限値に向けて徐々に増加させる制御を行う。蓄電池の充電状態が満充電に近い場合等において、いきなり、ピーク値が最大電流上限値付近の充電電流を供給すると、仮に最大電流上限値の設定に使用された蓄電池の電池電圧或いは内部インピーダンスに誤差があって、電気自動車側から送信された最大電流上限値が高めに指示されていると、蓄電池に印加される電圧が許容値を超える可能性があるが、上記の充電電流のピーク値を徐々に増加させる制御を行うことで、斯かる事態を未然に回避することができる。 More preferably, in the charger having the above characteristics, the control circuit unit directs the peak value of the charging current (the maximum value for each repetition period of the ripple) toward the maximum current upper limit value in a certain period immediately after the start of charging. Control to increase gradually. If the charging state of the storage battery is close to full charge, suddenly supplying a charging current whose peak value is near the maximum current upper limit value will cause an error in the battery voltage or internal impedance of the storage battery used to set the maximum current upper limit value. If the maximum current upper limit value transmitted from the electric vehicle is instructed to be higher, the voltage applied to the storage battery may exceed the allowable value, but the peak value of the charging current is gradually increased. Such a situation can be avoided in advance by performing the control to be increased.
 更に好ましくは、上記特徴の充電器は、前記充電回路部が、最終段にLC型の低域通過フィルタを備える。これにより、充電電流に含まれている高周波域の交流成分が除去されるため、充電電流のボトム値(極小値)が0まで低下せず、常に計測誤差以上の電流値(瞬時値)が確保されるようになるため、充電電流の測定精度が向上し、その結果として、充電電流の制御精度が向上する。また、電気自動車側においても、充電電流の測定精度が向上することで、後述する充電電流の積算値或いは平均値の算出結果の精度が向上することから、充電終了時間の予測精度や走行可能距離の計算精度が向上する。 More preferably, in the charger having the above characteristics, the charging circuit unit includes an LC type low-pass filter in the final stage. As a result, the AC component in the high frequency range included in the charging current is removed, so the bottom value (minimum value) of the charging current does not decrease to 0, and a current value (instantaneous value) that is always greater than the measurement error is ensured. Therefore, the measurement accuracy of the charging current is improved, and as a result, the control accuracy of the charging current is improved. In addition, on the electric vehicle side, since the accuracy of charging current measurement improves, the accuracy of the calculation result of the charge current integrated value or average value, which will be described later, improves. The calculation accuracy of is improved.
 更に好ましくは、上記特徴の充電器は、前記制御回路部が、前記制御データに基づいて調整される制御値によって、前記充電回路部に設けられた昇圧回路を構成するスイッチング素子のオンオフのデューティ比を制御するように構成され、前記充電電流のピーク値が前記最大電流上限値と所定の誤差範囲内で等しいか、或いは、超過する場合は、前記ピーク値が低下するように前記制御値を調整するフィードバック制御を行う。これにより、充電電流を最大電流上限値以下とする制御が前記制御値を調整するフィードバック制御によって実現される。 More preferably, in the charger having the above characteristics, the control circuit unit has an on / off duty ratio of a switching element constituting a booster circuit provided in the charging circuit unit based on a control value adjusted based on the control data. If the peak value of the charging current is equal to or exceeds the maximum current upper limit value within a predetermined error range, the control value is adjusted so that the peak value decreases. Perform feedback control. Thereby, control which makes charging current below a maximum current upper limit is implement | achieved by the feedback control which adjusts the said control value.
 更に好ましくは、上記特徴の充電器は、前記制御データが、前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値の指示値を含み、前記制御回路部が、前記充電電流の測定値から前記電流指標値を算出し、前記電流指標値の算出値が前記電流指標値の指示値から所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する制御を行う。脈流充電の場合、充電電流が最大電流上限値以下とする制御だけでは、充電器側から供給された充電電力と、電気自動車側で受電した充電電力が同じかどうかの判定が困難であるが、上記のように、電流指標値の算出値と指示値を比較することで、両者の充電電力が同じか否かの確認が行えるようになる。また、両者の充電電力の差が生じている場合には、充電器側または電気自動車側において短絡電流が発生している可能性があり、当該短絡電流による発火等の事故が生じる可能性があるが、当該事故の発生を未然に防止することができる。また、電気料金の請求に関しても、実際の受電電力と、供給電力に差があった場合、不当な支払いを強いられる可能性があるが、本発明により、防ぐことができる。 More preferably, in the charger having the above characteristics, the control data includes an indication value of a current index value given as an integrated value or an average value of the charging current for each predetermined time unit, and the control circuit unit includes the charging circuit. The current index value is calculated from the measured current value, and the supply of the charging current is stopped when the calculated value of the current index value deviates from the indicated value of the current index value beyond a predetermined error range. Control. In the case of pulsating charge, it is difficult to determine whether or not the charging power supplied from the charger side and the charging power received from the electric vehicle side are the same only by controlling the charging current to be equal to or less than the maximum current upper limit value. As described above, by comparing the calculated value of the current index value with the indicated value, it is possible to confirm whether or not the charging power of both is the same. Further, when there is a difference between the charging powers of the two, there is a possibility that a short-circuit current has occurred on the charger side or the electric vehicle side, and an accident such as ignition due to the short-circuit current may occur. However, the occurrence of the accident can be prevented in advance. In addition, regarding the billing of the electricity bill, if there is a difference between the actual received power and the supplied power, there is a possibility that unreasonable payment may be forced, but this can be prevented by the present invention.
 更に好ましくは、上記特徴の充電器は、前記制御データが、前記充電電流のピーク値、ボトム値、或いは、所定時間単位毎の積算値または平均値で与えられる電流判定値に対する充電停止下限値を含み、前記制御回路部が、前記充電電流の測定値から前記電流判定値を算出し、前記電流判定値が、前記充電停止下限値以下である場合に、前記充電電流の供給を停止して充電動作を終了する制御を行う。脈流充電の場合、CVCC方式と異なり、蓄電池が満充電に近付いても、定電圧充電とはならないが、電気自動車側で、蓄電池に印加される電圧のピーク値が所定の上限値を超過しないように、最大電流上限値を逐次低下しながら充電器側に送信すると、充電器側では、電気自動車側から指示された最大電流上限値以下となるように充電電流を制御するため、満充電に近付くに従い充電電流は減少するため、充電電流の上記電流判定値をモニタすることで、満充電判定がCVCC方式と同様に可能となる。 More preferably, in the charger having the above characteristics, the control data includes a charge stop lower limit value with respect to a current determination value given as a peak value, a bottom value, or an integrated value or an average value for each predetermined time unit. The control circuit unit calculates the current determination value from the measured value of the charging current, and when the current determination value is less than or equal to the charging stop lower limit value, the supply of the charging current is stopped and charging is performed. Control to end the operation. In the case of pulsating charge, unlike the CVCC method, even if the storage battery approaches full charge, it does not become constant voltage charge, but the peak value of the voltage applied to the storage battery does not exceed the predetermined upper limit value on the electric vehicle side. Thus, if the maximum current upper limit value is transmitted to the charger side while sequentially decreasing, the charger side controls the charging current so that it is not more than the maximum current upper limit value instructed by the electric vehicle side. Since the charging current decreases as it approaches, the full charge determination can be performed in the same manner as in the CVCC method by monitoring the current determination value of the charging current.
 更に好ましくは、上記特徴の充電器は、前記第1通信部が前記電気自動車から充電停止指示を受信すると、前記制御回路部が前記充電電流の供給を停止する制御を行う。上述の電流指標値の算出値と指示値を比較判定、或いは、満充電判定は、充電器側ではなく、電気自動車側で行うこともできるため、例えば、電気自動車側で当該判定を行った場合は、充電器側では、当該判定に基づく充電停止指示を電気自動車から受信することで、充電器側で当該判定を行った場合と同様に、充電電流の供給を停止することができる。尚、充電停止指示は、上記の2つの判定以外の異常判定の結果として発生しても良い。 More preferably, in the charger having the above characteristics, when the first communication unit receives a charge stop instruction from the electric vehicle, the control circuit unit performs control to stop the supply of the charging current. Since the above-described calculation value of the current index value and the indicated value are compared and determined or the full charge determination can be performed not on the charger side but on the electric vehicle side, for example, when the determination is performed on the electric vehicle side On the charger side, by receiving a charge stop instruction based on the determination from the electric vehicle, the supply of the charging current can be stopped as in the case where the determination is performed on the charger side. The charge stop instruction may be generated as a result of abnormality determination other than the above two determinations.
 上記目的を達成するため、本発明は、上記特徴の充電器から供給される充電電流により、電気自動車側において車載蓄電池の充電を行う車載充電装置であって、前記充電器と前記制御データの通信を行う第2通信部と、充電開始前に前記蓄電池の内部状態を取得して、前記内部状態に基づき前記制御データに含まれる設定値を算出し、充電開始後に前記内部状態の変化に応じて逐次前記設定値を更新する制御データ設定部と、を備えることを特徴とする充電装置を提供する。 In order to achieve the above object, the present invention provides an in-vehicle charging device for charging an in-vehicle storage battery on the electric vehicle side by a charging current supplied from the charger having the above characteristics, and communication of the control data with the charger. A second communication unit that performs the operation, obtains the internal state of the storage battery before the start of charging, calculates a set value included in the control data based on the internal state, and changes the internal state after the start of charging And a control data setting unit that sequentially updates the set value.
 上記特徴の充電装置によれば、蓄電池の内部状態に応じた少なくとも充電電流の最大電流上限値を含む制御データを上記特徴の充電器に対して送信できるため、充電器側では、充電電流を蓄電池の内部状態に応じた最大電流上限値以下となるように制御できる。この結果、電気自動車側では、充電器側から脈流の充電電流の供給を受け付け、蓄電池の寿命低下及び発火等の危険性のない安全な脈流充電方式で、蓄電池の充電を実行できる。 According to the charging device having the above characteristics, the control data including at least the maximum current upper limit value of the charging current according to the internal state of the storage battery can be transmitted to the charger having the above characteristics. It can be controlled to be below the maximum current upper limit value according to the internal state. As a result, on the electric vehicle side, supply of a pulsating charging current can be received from the charger side, and charging of the storage battery can be performed by a safe pulsating charging method that does not have a risk of life reduction and ignition of the storage battery.
 更に好ましくは、上記特徴の充電装置は、前記制御データ設定部が、充電開始前及び充電開始後において順次、前記蓄電池の最新の内部状態を取得して、前記内部状態に基づき前記制御データに含まれる設定値を算出し、前記第2通信部が、充電開始前及び充電開始後において順次、算出された前記制御データを前記充電器に送信する。これにより、蓄電池の充電の進行に伴い最大電流上限値が低下した場合でも、充電器側へ適正な最大電流上限値の指示値を送信できるため、充電器側から常に適正な最大電流上限値以下に維持された充電電流を受け付け、安全な充電を継続することができる。よって、蓄電池の寿命低下及び発火等の危険性のない脈流充電方式がより確実に実行可能となる。 More preferably, in the charging device having the above characteristics, the control data setting unit sequentially acquires the latest internal state of the storage battery before and after the start of charging, and is included in the control data based on the internal state. The set value to be calculated is calculated, and the second communication unit sequentially transmits the calculated control data to the charger before and after the start of charging. As a result, even when the maximum current upper limit value decreases as the storage battery progresses, an appropriate maximum current upper limit value can be transmitted to the charger side. Thus, the charging current maintained in the above can be received and safe charging can be continued. Therefore, the pulsating charging method without danger such as a reduction in the life of the storage battery and ignition can be more reliably performed.
 更に好ましくは、上記特徴の充電装置は、前記充電電流によって前記蓄電池に印加される充電電圧を測定する電圧計を備え、前記制御データ設定部が、前記充電電圧のピーク値が、所定の閾値を超える場合は、前記制御データに含まれる前記設定値の内の少なくとも前記最大電流上限値の設定値を低下させる。これにより、充電電圧のピーク値が充電電圧の上限値を超えないようにする制御がより確実になる。 More preferably, the charging device of the above feature includes a voltmeter that measures a charging voltage applied to the storage battery by the charging current, and the control data setting unit sets a peak value of the charging voltage to a predetermined threshold value. When exceeding, at least the set value of the maximum current upper limit value among the set values included in the control data is lowered. As a result, the control for preventing the peak value of the charging voltage from exceeding the upper limit value of the charging voltage becomes more reliable.
 更に好ましくは、上記特徴の充電装置は、前記制御データ設定部が、前記蓄電池の内部状態である電池電圧と内部インピーダンスに基づいて、前記最大電流上限値と前記内部インピーダンスの積と前記電池電圧の和が、前記電池電圧の上限値を超えないように、且つ、前記最大電流上限値が前記蓄電池の許容最大電流値を超えないように、前記最大電流上限値を設定する。 More preferably, in the charging device having the above characteristics, the control data setting unit is configured to calculate a product of the maximum current upper limit value and the internal impedance and a battery voltage based on a battery voltage and an internal impedance which are internal states of the storage battery. The maximum current upper limit value is set so that the sum does not exceed the upper limit value of the battery voltage and the maximum current upper limit value does not exceed the allowable maximum current value of the storage battery.
 蓄電池の電池電圧が一定レベルを超えて上昇した場合、CVCC方式では、定電流充電から定電圧充電に切り替えることで、内部インピーダンスでの電圧降下を定電圧の充電電圧値と電池電圧の差として制御することで、充電電流の電流値を抑制することができる。つまり、電池電圧の上昇とともに充電電流は減少する。一方、脈流充電方式の場合、充電器側で定電圧制御を行わないため、電気自動車側で、電池電圧と内部インピーダンスに基づいて最大電流上限値を設定することで、電池電圧の上昇とともに充電電流のピーク値が低下するように制御し、蓄電池に印加される電圧のピーク値を電池電圧の上限値以下に制御可能となり、CVCC方式における定電圧充電期間と同様の作用効果を得ることができる。 When the battery voltage of the storage battery rises above a certain level, the CVCC method controls the voltage drop at the internal impedance as the difference between the charging voltage value of the constant voltage and the battery voltage by switching from constant current charging to constant voltage charging. By doing so, the current value of the charging current can be suppressed. That is, the charging current decreases as the battery voltage increases. On the other hand, in the case of the pulsating charging method, constant voltage control is not performed on the charger side. Control is performed so that the peak value of the current decreases, and the peak value of the voltage applied to the storage battery can be controlled to be equal to or lower than the upper limit value of the battery voltage, and the same effect as the constant voltage charging period in the CVCC method can be obtained. .
 更に好ましくは、上記特徴の充電装置は、前記制御データ設定部は、充電開始前に、前記充電器が脈流の充電電流を供給する脈流充電方式の充電器であること確認した後、前記制御データの設定値を算出して、前記第2通信部を介して前記充電器に送信する。これにより、接続する充電器が脈流充電方式の充電器であることを確認して、脈流充電方式に適した制御データを充電器側に送信することができる。従って、接続する充電器がCVCC方式の充電器である場合は、CVCC方式の制御データを脈流充電方式の制御データと区別して充電器側に送信することができる。 More preferably, in the charging device having the above characteristics, the control data setting unit confirms that the charger is a pulsating charging type charger that supplies a pulsating charging current before starting charging, A set value of control data is calculated and transmitted to the charger via the second communication unit. Thereby, it can confirm that the charger to connect is a charger of a pulsating charge system, and can transmit the control data suitable for a pulsating charge system to the charger side. Therefore, when the charger to be connected is a CVCC charger, the CVCC control data can be transmitted to the charger side separately from the pulsating charge control data.
 更に好ましくは、上記特徴の充電装置は、前記充電器側から供給される前記充電電流を測定する電流計を備え、前記制御データ設定部が、前記充電電流の測定値に基づいて、前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値を算出し、前記第2通信部が、前記制御データ設定部が算出した前記電流指標値を、前記電流指標値の指示値として、前記充電器に送信する。 More preferably, the charging device having the above characteristics includes an ammeter for measuring the charging current supplied from the charger side, and the control data setting unit is configured to determine the charging current based on the measured value of the charging current. The current index value given as an integrated value or an average value for each predetermined time unit is calculated, and the second communication unit uses the current index value calculated by the control data setting unit as an indication value of the current index value. , To the charger.
 更に好ましくは、上記特徴の充電装置は、前記充電器側から供給される前記充電電流を測定する電流計を備え、前記第2通信部が、前記充電器側において前記充電電流の測定値に基づいて算出された前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値を受信し、前記制御データ設定部が、電気自動車側で測定した前記充電電流に基づいて、前記電流指標値を算出し、前記充電器側で算出された前記電流指標値と比較し、両者の前記電流指標値が所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する充電停止指示を、前記第2通信部を介して、前記充電器に送信する。 More preferably, the charging device having the above characteristics includes an ammeter that measures the charging current supplied from the charger side, and the second communication unit is based on the measured value of the charging current on the charger side. The current index value given as an integrated value or an average value for each predetermined time unit of the charging current calculated in the above is received, and the control data setting unit determines the current based on the charging current measured on the electric vehicle side. An index value is calculated, compared with the current index value calculated on the charger side, and when the current index values of both deviate beyond a predetermined error range, the supply of the charging current is stopped An instruction to stop charging is transmitted to the charger via the second communication unit.
 脈流充電の場合、充電電流が最大電流上限値以下に制御されているだけでは、充電電力を正確に把握できないため、充電終了時間の予測や充電途中で充電を停止した場合の走行可能距離の算出等が困難となる。制御データ設定部が電流指標値を算出することで、充電終了時間の予測や走行可能距離の算出等が可能となる。更に、電流指標値の算出値を指示値として充電器側に送信するか、或いは、充電器側で算出された電流指標値を受信することで、充電器側或いは電気自動車側で、両者で夫々算出した電流指標値の比較が可能となる。比較結果に齟齬が生じている場合には、充電器側または電気自動車側において短絡電流が発生している可能性があり、当該短絡電流による発火等の事故が生じる可能性がある。従って、当該比較結果に基づいて充電動作を停止することで、当該事故の発生を未然に防止することができる。 In the case of pulsating charging, the charging power cannot be accurately grasped simply by controlling the charging current below the maximum current upper limit value.Therefore, it is possible to predict the charging end time and the travelable distance when charging is stopped during charging. Calculation becomes difficult. When the control data setting unit calculates the current index value, it is possible to predict the charging end time, calculate the travelable distance, and the like. Furthermore, the calculated value of the current index value is transmitted to the charger side as an instruction value, or the current index value calculated on the charger side is received, so that both on the charger side or on the electric vehicle side, respectively. It is possible to compare the calculated current index values. If there is a flaw in the comparison result, a short-circuit current may have occurred on the charger side or the electric vehicle side, and an accident such as ignition due to the short-circuit current may occur. Therefore, the occurrence of the accident can be prevented in advance by stopping the charging operation based on the comparison result.
 上記特徴の充電器及び充電装置によれば、脈流充電に起因する蓄電池の寿命低下及び発火等の危険性が防止して、車載蓄電池に対して脈流充電方式による安価且つ安全な充電が実現できる。 According to the charger and the charging device having the above-described features, the battery life is reduced due to pulsating charging, and dangers such as ignition are prevented, and the in-vehicle storage battery is inexpensively and safely charged by the pulsating charging method. it can.
本発明に係る充電器と充電装置の一実施形態の概略構成を示すブロック図The block diagram which shows schematic structure of one Embodiment of the charger and charging device which concern on this invention 本発明に係る充電器の充電回路部と制御回路部の回路構成の一例を示す回路ブロック図The circuit block diagram which shows an example of the circuit structure of the charging circuit part and control circuit part of the charger which concerns on this invention 本発明に係る充電器と充電装置における充電制御のシーケンスを示すフローチャートThe flowchart which shows the sequence of the charge control in the charger and charging device which concern on this invention 充電回路部に低域通過フィルタ回路を設ける場合と設けない場合の充電電流の違いを説明する電流波形図Current waveform diagram explaining the difference in charging current with and without the low-pass filter circuit in the charging circuit section
 本発明に係る電気自動車充電用の充電器(以下、適宜「充電器」という。)及び本発明に係る車載充電装置(以下、適宜「充電装置」という。)の実施の形態につき、図面に基づいて説明する。 An embodiment of a charger for charging an electric vehicle according to the present invention (hereinafter referred to as “charger” as appropriate) and an in-vehicle charging device according to the present invention (hereinafter referred to as “charger” as appropriate) are based on the drawings. I will explain.
 図1は、充電器10と充電装置20の概略構成を示すブロック図である。図1に示すように、充電器10は、充電回路部11、制御回路部12、第1通信部13、電流計14,15、及び、電圧計16を備えて構成され、充電装置20は、電気自動車に搭載され、蓄電池21、第2通信部22、制御データ設定部23、電流計24、及び、電圧計25を備えて構成される。また、充電器10には、充電ケーブル17とその先端に接続する充電コネクタ18が設けられており、電気自動車には、充電ソケット26が設けられている。充電ケーブル17内には、充電回路部11から出力される充電電流を、蓄電池21に供給する電源ケーブル17a、及び、第1通信部13と第2通信部22間のデータ通信を行うための通信ケーブル17bが設けられている。充電コネクタ18が充電ソケット26に挿入されて接続することで、充電回路部11と蓄電池21が電気的に接続し、第1通信部13と第2通信部22が相互に通信可能に接続する。 FIG. 1 is a block diagram showing a schematic configuration of the charger 10 and the charging device 20. As shown in FIG. 1, the charger 10 includes a charging circuit unit 11, a control circuit unit 12, a first communication unit 13, ammeters 14 and 15, and a voltmeter 16. It is mounted on an electric vehicle and includes a storage battery 21, a second communication unit 22, a control data setting unit 23, an ammeter 24, and a voltmeter 25. Further, the charger 10 is provided with a charging cable 17 and a charging connector 18 connected to the tip thereof, and the electric vehicle is provided with a charging socket 26. In the charging cable 17, a power supply cable 17 a that supplies the charging current output from the charging circuit unit 11 to the storage battery 21, and communication for performing data communication between the first communication unit 13 and the second communication unit 22. A cable 17b is provided. When the charging connector 18 is inserted into the charging socket 26 and connected, the charging circuit unit 11 and the storage battery 21 are electrically connected, and the first communication unit 13 and the second communication unit 22 are connected to be communicable with each other.
 先ず、充電器10側の構成について説明する。充電回路部11は、一例として、図2に示すような力率改善AC/DCコンバータで構成される。図2に示す構成例では、充電回路部11は、図2に示すように、高周波ノイズ除去用と力率改善用チョッパ回路として用いるチョークコイル31,32、スイッチング素子34、4つのダイオードのブリッジ回路で構成される全波整流回路35、平滑コンデンサ36、及び、コイル37とコンデンサ38で構成される低域通過フィルタ回路を備えて構成される。1対のチョークコイル31,32の各入力端には、商用交流電源30が接続する。図1及び図2では、単相3線式200Vが接続している場合を例示している。図2に示す充電回路部11では、全波整流回路34を通過した電流は、低域通過フィルタ回路で高周波域の交流成分(リップル)は除去されるが、交流入力の2分の1の周期Tmの脈流のままで出力される。コイル37とコンデンサ38の各回路定数は、リップル率、フィルタ回路の大きさやコストを勘案して決定される。本実施形態では、充電電流は脈流として出力されるため、充電回路部11の後段に、充電電流を定電流或いは定電圧に制御するためのDC/DCコンバータ及び大容量の平滑コンデンサを設ける必要がない。 First, the configuration on the charger 10 side will be described. As an example, the charging circuit unit 11 includes a power factor improving AC / DC converter as shown in FIG. In the configuration example shown in FIG. 2, the charging circuit unit 11 includes a choke coil 31 and 32, a switching element 34, and a bridge circuit of four diodes used as a chopper circuit for high frequency noise removal and power factor improvement, as shown in FIG. A full-wave rectifier circuit 35, a smoothing capacitor 36, and a low-pass filter circuit including a coil 37 and a capacitor 38. A commercial AC power supply 30 is connected to each input terminal of the pair of choke coils 31 and 32. 1 and 2 illustrate a case where a single-phase three-wire system 200V is connected. In the charging circuit unit 11 shown in FIG. 2, the current that has passed through the full-wave rectifier circuit 34 is removed from the high-frequency AC component (ripple) by the low-pass filter circuit, but has a period that is half that of the AC input. It is output with the pulsating flow of Tm. The circuit constants of the coil 37 and the capacitor 38 are determined in consideration of the ripple rate, the size and cost of the filter circuit. In this embodiment, since the charging current is output as a pulsating current, it is necessary to provide a DC / DC converter and a large-capacity smoothing capacitor for controlling the charging current to a constant current or a constant voltage after the charging circuit unit 11. There is no.
 制御回路部12は、充電回路部11から出力される充電電流が、充電装置20側から指示された最大電流上限値を超えないように、スイッチング素子34のオン及びオフ時間のデューティ比を制御する。制御回路部12は、図2に示すように、絶対値演算部41,42、制御値設定部43、乗算器44、減算器45、PI演算部46、制御パルス信号出力部47、電流積算器48、及び、比較器49を備えて構成される。また、図1に示すように、制御回路部12は、充電器10に設置されたユーザの操作入力を受け付ける操作部19aとユーザに必要な情報を表示するための表示部19bを備えたユーザインターフェース部19と接続している。 The control circuit unit 12 controls the duty ratio of the on and off times of the switching element 34 so that the charging current output from the charging circuit unit 11 does not exceed the maximum current upper limit value instructed from the charging device 20 side. . As shown in FIG. 2, the control circuit unit 12 includes absolute value calculation units 41 and 42, a control value setting unit 43, a multiplier 44, a subtracter 45, a PI calculation unit 46, a control pulse signal output unit 47, and a current integrator. 48 and a comparator 49. As shown in FIG. 1, the control circuit unit 12 includes a user interface that includes an operation unit 19 a that is installed in the charger 10 and receives a user operation input, and a display unit 19 b that displays information necessary for the user. The unit 19 is connected.
 電流計14は、例えば、チョークコイル31とスイッチング素子34の接続ノードN1の間に設けられ、入力電流の瞬時値Iinを測定する。当該瞬時値Iinは、所定のサンプリング周期でAD(アナログ・ディジタル)変換されて、絶対値演算部41に入力する。当該AD変換機能は、後述するディジタル演算処理装置(例えば、ディジタルシグナルプロセッサ等)に内蔵されており、アナログ信号をディジタル演算処理装置のAD変換ポートに入力して行われる。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。 The ammeter 14 is provided between the connection node N1 of the choke coil 31 and the switching element 34, for example, and measures the instantaneous value Iin of the input current. The instantaneous value Iin is AD (analog / digital) converted at a predetermined sampling period and input to the absolute value calculation unit 41. The AD conversion function is built in a digital arithmetic processing device (for example, a digital signal processor) described later, and is performed by inputting an analog signal to an AD conversion port of the digital arithmetic processing device. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
 電流計15は、例えば、正極側の出力端子T1とコイル37の間に設けられ、出力電流の瞬時値Ioutを測定する。当該瞬時値Ioutは、所定のサンプリング周期でAD変換されて、制御値設定部43及び電流積算器48に入力する。当該AD変換は、例えば、電流計15で行われる。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。 The ammeter 15 is provided, for example, between the output terminal T1 on the positive electrode side and the coil 37, and measures the instantaneous value Iout of the output current. The instantaneous value Iout is AD-converted at a predetermined sampling period and input to the control value setting unit 43 and the current integrator 48. The AD conversion is performed by, for example, an ammeter 15. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
 電圧計16は、商用交流電源30の2本の電圧線の間の入力電圧の瞬時値Vinを測定する。当該瞬時値Vinは、所定のサンプリング周期でAD変換されて、絶対値演算部42に入力する。当該AD変換機能は、例えば、電圧計16または後述するディジタル演算処理装置(例えば、ディジタルシグナルプロセッサ等)に内蔵されており、アナログ信号をディジタル演算処理装置のAD変換ポートに入力して行われる。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。 The voltmeter 16 measures the instantaneous value Vin of the input voltage between the two voltage lines of the commercial AC power supply 30. The instantaneous value Vin is AD-converted at a predetermined sampling period and input to the absolute value calculation unit 42. The AD conversion function is built in, for example, the voltmeter 16 or a digital arithmetic processing device (for example, a digital signal processor) described later, and is performed by inputting an analog signal to the AD conversion port of the digital arithmetic processing device. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
 絶対値演算部41,42は、夫々に入力される瞬時値Iin,Vinの絶対値|Iin|,|Vin|を演算する。 The absolute value calculation units 41 and 42 calculate the absolute values | Iin | and | Vin | of the instantaneous values Iin and Vin respectively input.
 制御値設定部43は、後述する要領で制御値Aの設定及び調整を行う。乗算器44は、絶対値演算部42で演算された入力電圧の瞬時値Vinの絶対値|Vin|と制御値Aの乗算を行い、その積B(=|Vin|×A)を出力する。 The control value setting unit 43 sets and adjusts the control value A in the manner described later. The multiplier 44 multiplies the absolute value | Vin | of the instantaneous value Vin of the input voltage calculated by the absolute value calculator 42 and the control value A, and outputs the product B (= | Vin | × A).
 減算器45は、乗算器44から出力された積Bから、絶対値演算部41で演算された入力電流の瞬時値Iinの絶対値|Iin|を減算して、誤差C(=B-|Iin|)をPI演算部46に出力する。 The subtracter 45 subtracts the absolute value | Iin | of the instantaneous value Iin of the input current calculated by the absolute value calculation unit 41 from the product B output from the multiplier 44 to obtain an error C (= B− | Iin |) Is output to the PI calculation unit 46.
 PI演算部46は、以下の数1に示す演算式に基づいて、入力した誤差Cに対しPI補償演算を施して、デューティ比Dを演算する。尚、以下の演算式において、Pは定数、Tiは積分期間である。 The PI calculation unit 46 calculates the duty ratio D by performing PI compensation calculation on the input error C based on the calculation formula shown in the following equation (1). In the following arithmetic expression, P is a constant and Ti is an integration period.
 (数1)
Figure JPOXMLDOC01-appb-I000001
(Equation 1)
Figure JPOXMLDOC01-appb-I000001
 PI演算部46で算出したデューティ比Dは、DA変換され電圧値Vdとして制御パルス信号出力部47に入力される。制御パルス信号出力部47は、ノコギリ波発生器47aと比較器47bで構成され、電圧値Vdは比較器47bの非反転入力に入力し、ノコギリ波発生器47aのノコギリ波は比較器47bの反転入力に入力する。ノコギリ波(または三角波)は、所定のスイッチング周波数で、電圧値が、デューティ比Dが0の時の電圧値Vd0とデューティ比Dが1の時の電圧値Vd1の間で線形に変化するように設定されている。スイッチング周波数は可聴周波数以上に設定する。但し、EMC(電磁環境適合性)によるノイズ規制の観点から、スイッチング周波数は20~50kHzの範囲内で設定するのが好ましく、図2に示す構成例では、一例として50kHzを想定している。 The duty ratio D calculated by the PI calculation unit 46 is DA converted and input to the control pulse signal output unit 47 as a voltage value Vd. The control pulse signal output unit 47 includes a sawtooth wave generator 47a and a comparator 47b. The voltage value Vd is input to the non-inverting input of the comparator 47b, and the sawtooth wave of the sawtooth wave generator 47a is inverted by the comparator 47b. Enter in the input. The sawtooth wave (or triangular wave) is such that the voltage value changes linearly between a voltage value Vd0 when the duty ratio D is 0 and a voltage value Vd1 when the duty ratio D is 1 at a predetermined switching frequency. Is set. Set the switching frequency to an audible frequency or higher. However, from the viewpoint of noise regulation by EMC (electromagnetic environment compatibility), it is preferable to set the switching frequency within a range of 20 to 50 kHz. In the configuration example shown in FIG. 2, 50 kHz is assumed as an example.
 斯かる構成により、比較器47bからは、当該スイッチング周波数及びデューティ比Dでオンオフを繰り返す制御パルス信号Sが出力され、当該制御パルス信号Sをゲート入力とするスイッチング素子34のスイッチング動作が制御される。 With this configuration, the comparator 47b outputs a control pulse signal S that repeatedly turns on and off at the switching frequency and the duty ratio D, and the switching operation of the switching element 34 that uses the control pulse signal S as a gate input is controlled. .
 次に、制御値設定部43による制御値Aの設定及び調整方法について説明する。後述するシーケンスで充電動作が開始すると、制御値Aは、初期値0から出発して、例えば、所定の時間間隔で、例えば、1,2,3…と順番に増加させるソフトスタート動作を実行する。ソフトスタート動作の開始後、充電回路部11から出力される脈流の充電電流のピーク値が徐々に上昇する。制御値設定部43は、電流計15で測定された瞬時値Ioutから周期Tm毎のピーク値Ipkを算出し、後述する要領で充電装置20から逐次送信される最大電流上限値の最新の指示値Imaxを、第1通信部13で受信し、ピーク値Ipkと指示値Imaxを比較して、ピーク値Ipkが指示値Imaxを下回っている(Ipk<Imax)の間は、制御値Aを上記要領で徐々に増加させる。ピーク値Ipkが指示値Imaxの例えば97%まで到達した時点で、ソフトスタート動作を終了し、制御値Aの増加を停止する。ソフトスタート動作の終了後は、ピーク値Ipkが指示値Imaxの例えば97%を超過しないように、制御値Aを調整する。具体的には、ピーク値Ipkが指示値Imaxの例えば97%を超過した場合は、その時点で設定されている制御値Aに、例えば、((Imax×0.97)/Ipk)で表わされる縮小率を乗じて制御値Aの設定値を低下させて、制御値Aの更新を行う。斯かるフィードバック制御により、充電電流のピーク値Ipkが最大電流上限値の最新の指示値Imaxを超過しないようにする制御が可能となる。尚、ソフトスタート動作期間は、1秒から数秒程度を想定している。 Next, a method for setting and adjusting the control value A by the control value setting unit 43 will be described. When the charging operation starts in a sequence to be described later, the control value A starts from the initial value 0, and executes, for example, a soft start operation that sequentially increases, for example, 1, 2, 3,... At a predetermined time interval. . After the start of the soft start operation, the peak value of the pulsating charging current output from the charging circuit unit 11 gradually increases. The control value setting unit 43 calculates the peak value Ipk for each cycle Tm from the instantaneous value Iout measured by the ammeter 15, and the latest instruction value of the maximum current upper limit value sequentially transmitted from the charging device 20 in the manner described later. Imax is received by the first communication unit 13, and the peak value Ipk is compared with the instruction value Imax, and the control value A is determined as described above while the peak value Ipk is below the instruction value Imax (Ipk <Imax). Increase gradually. When the peak value Ipk reaches, for example, 97% of the instruction value Imax, the soft start operation is terminated and the increase of the control value A is stopped. After the end of the soft start operation, the control value A is adjusted so that the peak value Ipk does not exceed 97% of the instruction value Imax, for example. Specifically, when the peak value Ipk exceeds 97% of the instruction value Imax, for example, ((Imax × 0.97) / Ipk) is represented by the control value A set at that time. The control value A is updated by reducing the set value of the control value A by multiplying by the reduction ratio. Such feedback control enables control so that the peak value Ipk of the charging current does not exceed the latest instruction value Imax of the maximum current upper limit value. The soft start operation period is assumed to be about 1 second to several seconds.
 また、制御回路部12では、数1に示すデューティ比制御が行われて充電電流が制御されるため、交流入力電圧Vinと交流入力電流Iinは同位相及び同波形が得られるようになり、交流入力電流Iinに含まれる高調波成分が低減され、力率が改善される。 Further, in the control circuit unit 12, the duty ratio control shown in Equation 1 is performed to control the charging current, so that the alternating current input voltage Vin and the alternating current input current Iin have the same phase and the same waveform. The harmonic component contained in the input current Iin is reduced, and the power factor is improved.
 電流積算器48は、電流計15で測定された充電電流(充電回路部11の出力電流)の瞬時値Ioutを脈流の周期Tm(例えば、入力交流電圧のゼロクロスからゼロクロスまでの半周期)毎の積算値(電流指標値に相当)を算出する。 The current integrator 48 calculates the instantaneous value Iout of the charging current (output current of the charging circuit unit 11) measured by the ammeter 15 for each pulsating current cycle Tm (for example, a half cycle from zero cross to zero cross of the input AC voltage). Is calculated (corresponding to the current index value).
 比較器49は、電流積算器48で算出された電流積算値Ia1と、充電装置20側から送信される制御データに含まれる充電装置20側で算出した充電電流の周期Tm毎の電流積算値Ia2を比較して、所定の誤差(例えば3%)以上の不一致が存在する場合に、充電停止信号S1を出力する。 The comparator 49 includes the current integrated value Ia1 calculated by the current integrator 48 and the current integrated value Ia2 for each cycle Tm of the charging current calculated on the charging device 20 side included in the control data transmitted from the charging device 20 side. And a charge stop signal S1 is output when there is a discrepancy greater than or equal to a predetermined error (eg, 3%).
 本実施形態では、制御回路部12の絶対値演算部41,42、制御値設定部43、乗算器44、減算器45、PI演算部46、電流積算器48、及び、比較器49は、マイクロプロセッサやディジタルシグナルプロセッサ等のディジタル演算処理装置で構成され、各部の機能は、ディジタル演算処理により実現される。 In the present embodiment, the absolute value calculation units 41 and 42, the control value setting unit 43, the multiplier 44, the subtractor 45, the PI calculation unit 46, the current integrator 48, and the comparator 49 of the control circuit unit 12 It comprises a digital arithmetic processing device such as a processor or a digital signal processor, and the functions of each part are realized by digital arithmetic processing.
 第1通信部13は、充電装置20側の第2通信部22と、通信ケーブル17bを介して接続することにより、例えば、CAN通信により、脈流充電に必要な制御データの授受を行う。通信プロトコルは、CANプロトコルに限定されるものではない。 The first communication unit 13 is connected to the second communication unit 22 on the charging device 20 side via the communication cable 17b, and performs control data necessary for pulsating charge, for example, by CAN communication. The communication protocol is not limited to the CAN protocol.
 充電ケーブル17、充電コネクタ18及び充電ソケット26としては、例えば、財団法人日本自動車研究所で規格化された標準品(JEVS G105)や、SAE J1772、IEC62196-2 Type1で規格化された標準品等を利用できる。 Examples of the charging cable 17, the charging connector 18, and the charging socket 26 include a standard product standardized by the Japan Automobile Research Institute (JEVS G105), a standard product standardized by SAE J1772, IEC62196-2 Type1, etc. Can be used.
 次に、充電装置20側の構成について説明する。蓄電池21は、特に限定されるものではないが、例えば、リチウムイオン2次電池等の使用を想定する。第2通信部22は、充電器10のと、通信ケーブル17bを介して接続することにより、例えば、CAN通信により、脈流充電に必要な制御データの授受を行う。 Next, the configuration on the charging device 20 side will be described. Although the storage battery 21 is not specifically limited, For example, use of a lithium ion secondary battery etc. is assumed. The second communication unit 22 is connected to the charger 10 via the communication cable 17b, thereby transferring control data necessary for pulsating charge by, for example, CAN communication.
 制御データ設定部23は、例えば、電気自動車に搭載される電子制御ユニット内に構成され、蓄電池21の電池電圧及び内部インピーダンス等の内部状態を取得し、当該内部状態に基づき、ディジタル演算処理により充電器10側に送信する制御データに含まれる設定値を算出する。本実施形態では、制御データ設定部23は、充電開始前に、電池温度、開路電池電圧Vb、及び電池の劣化度に基づいて、蓄電池21の内部インピーダンスZiを推定する。例えば、充電装置20は内部インピーダンス測定装置を備えていても良く、所定時間毎に測定し、その結果を保存して演算するようにして良い。また、前回の充電時のインピーダンスデータ、自動車駆動時の放電のデータから内部インピーダンスを測定し、保存しておいて使用しても良い。簡単には内部インピーダンスは開路電池電圧から、所定の充電電流時に増加した電圧を、その時の所定の充電電流で割った値である。電池の劣化度は、充電開始前までの累積充電電気量等により算定する。開路電池電圧は、充電開始前の充電電流の入力がなく、且つ、蓄電池21が負荷に接続されていない状態で、電圧計25によって測定される。電圧計25は、蓄電池21の端子間の電圧を測定する。 The control data setting unit 23 is configured in, for example, an electronic control unit mounted on an electric vehicle, acquires internal states such as the battery voltage and internal impedance of the storage battery 21, and is charged by digital arithmetic processing based on the internal state. The setting value included in the control data transmitted to the device 10 side is calculated. In the present embodiment, the control data setting unit 23 estimates the internal impedance Zi of the storage battery 21 based on the battery temperature, the open circuit battery voltage Vb, and the degree of battery deterioration before starting charging. For example, the charging device 20 may be provided with an internal impedance measuring device, and may be measured every predetermined time, and the result may be stored and calculated. Further, the internal impedance may be measured from the impedance data at the time of previous charging and the discharge data at the time of driving the vehicle, and stored for use. In brief, the internal impedance is a value obtained by dividing a voltage increased at a predetermined charging current from an open circuit battery voltage by a predetermined charging current at that time. The degree of deterioration of the battery is calculated based on the accumulated amount of charge before the start of charging. The open circuit battery voltage is measured by the voltmeter 25 in the state where there is no input of the charging current before the start of charging and the storage battery 21 is not connected to the load. The voltmeter 25 measures the voltage between the terminals of the storage battery 21.
 制御データ設定部23は、充電開始前、及び、充電開始後には所定の時間間隔(例えば、100m秒)で、充電電流の最大電流上限値Imax0を、以下の数2に示す要領で、開回路時の電池電圧Vb及び内部インピーダンスZiに基づいて算出する。数2の右辺のVbmaxは電池電圧Vbの上限値である。 The control data setting unit 23 sets the maximum current upper limit value Imax0 of the charging current at a predetermined time interval (for example, 100 msec) before the start of charging and after the start of charging in the manner shown in the following formula 2. Calculation is based on the battery voltage Vb and the internal impedance Zi. Vbmax on the right side of Equation 2 is the upper limit value of the battery voltage Vb.
 (数2)

 Imax0×Zi+Vb≦Vbmax
(Equation 2)

Imax0 × Zi + Vb ≦ Vbmax
 上記要領で算出された最大電流上限値Imax0が、蓄電池21に固有の許容最大電流値Ibmaxを超えている場合は、当該許容最大電流値Ibmaxを最大電流上限値の指示値Imaxとし、許容最大電流値Ibmaxを超えていない場合は、算出された最大電流上限値Imax0を最大電流上限値の指示値Imaxとする。尚、電池電圧Vbは、充電の進行とともに上昇するが、閉路状態での電圧値は、電流計24で測定される蓄電池21に流入する充電電流の瞬時値(或いは、ピーク値)と、電圧計25で測定される蓄電池21の端子間の充電電圧の瞬時値(或いは、ピーク値)と、充電開始前に算出した内部インピーダンスZiによって算出できる。尚、電流計24で測定された充電電流の瞬時値、及び、電圧計25で測定される蓄電池21の端子間の電圧の瞬時値は、夫々所定のサンプリング周期でAD変換されて、制御データ設定部23に入力される。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。 When the maximum current upper limit value Imax0 calculated in the above manner exceeds the allowable maximum current value Ibmax unique to the storage battery 21, the allowable maximum current value Ibmax is set as the maximum current upper limit value instruction value Imax, and the allowable maximum current When the value Ibmax is not exceeded, the calculated maximum current upper limit value Imax0 is set as the instruction value Imax for the maximum current upper limit value. The battery voltage Vb increases with the progress of charging, but the voltage value in the closed state is the instantaneous value (or peak value) of the charging current flowing into the storage battery 21 measured by the ammeter 24 and the voltmeter. 25, the instantaneous value (or peak value) of the charging voltage between the terminals of the storage battery 21 and the internal impedance Zi calculated before the start of charging. The instantaneous value of the charging current measured by the ammeter 24 and the instantaneous value of the voltage between the terminals of the storage battery 21 measured by the voltmeter 25 are AD-converted at a predetermined sampling period, respectively, and control data setting is performed. Input to the unit 23. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.
 尚、充電開始後においても、充電開始前と同様に、数2に基づいて算出した最大電流上限値Imax0と許容最大電流値Ibmaxを比較して、最大電流上限値の指示値Imaxを算出して、それ以前に設定した最大電流上限値の指示値Imaxを更新する方法(第1の更新方法)を説明したが、当該第1の更新方法によって、結局は、蓄電池21に印加される充電電圧のピーク値が、当該充電電圧の上限値を超えないようにする制御であることから、制御データ設定部23は、電圧計25で測定される瞬時値からピーク電圧を算出し、当該算出値Vcpkと上記充電電圧の上限値Vcmaxとを比較し、例えば、当該算出値Vcpkが上限値Vcmaxの97%値を超過する場合に、それ以前に算出または更新した指示値Imaxに、例えば、((Vcmax×0.97)/Vcpk)で表わされる縮小率を乗じて、新たな指示値Imaxとする更新方法(第2の更新方法)を採用しても良い。第2の更新方法の場合は、充電開始後において蓄電池21の内部状態を都度算出する処理を省略できる。更に、上記2つの更新方法で更新した指示値Imaxの内のより小さい方を新たな指示値Imaxとするのも好ましい。 Even after the start of charging, the maximum current upper limit value Imax0 calculated based on Equation 2 is compared with the allowable maximum current value Ibmax, and the maximum current upper limit value instruction value Imax is calculated. The method (first update method) of updating the instruction value Imax of the maximum current upper limit value set before that has been described, but the charge voltage applied to the storage battery 21 is eventually reduced by the first update method. Since the control is performed so that the peak value does not exceed the upper limit value of the charging voltage, the control data setting unit 23 calculates the peak voltage from the instantaneous value measured by the voltmeter 25, and calculates the calculated value Vcpk. The charge voltage upper limit value Vcmax is compared. For example, when the calculated value Vcpk exceeds 97% of the upper limit value Vcmax, the instruction value Imax calculated or updated before that is If, may be employed ((Vcmax × 0.97) / Vcpk) multiplied by the reduction ratio represented by the update process (the second updating method) for a new instruction value Imax. In the case of the second update method, the process of calculating the internal state of the storage battery 21 each time after the start of charging can be omitted. Furthermore, it is also preferable that the smaller one of the instruction values Imax updated by the two update methods is set as a new instruction value Imax.
 制御データ設定部23は、更に、電流計24で測定される蓄電池21に流入する充電電流の瞬時値に対して、充電電流の周期Tm毎の積算値Ia2を算出する電流積算機能を備え、充電器10側の電流積算器48と同じ処理を行う。 The control data setting unit 23 further includes a current integration function for calculating an integrated value Ia2 for each cycle Tm of the charging current with respect to an instantaneous value of the charging current flowing into the storage battery 21 measured by the ammeter 24. The same processing as that of the current accumulator 48 on the device 10 side is performed.
 制御データ設定部23は、上記以外にも、充電開始前に、蓄電池21の内部状態或いは種類等に基づき、蓄電池21の端子間の最大許容電圧(充電電圧の上限値Vcmax)、充電電流の充電停止下限値Istp、充電開始前の充電状態(SOC)、及び、充電終了時間Tstp等を算出または設定する。尚、制御データ設定部23において設定される充電停止下限値Istpは、電気自動車側が所有する電流センサ24の測定精度から、十分に誤差無く測定できる範囲に設定されることが好ましい。例えば、100Aのセンサを用いているのであれば、5A程度が好ましい。尚、充電停止下限値Istpとの比較対象となる後述する電流判定値Ijの定義に応じて、実際の設定値は変化する。また、電流判定値Ijが周期Tm毎の積算値である場合は、例えば、電流値に周期Tmを乗じた値、または、電流値の周期Tm間の積分値(単位:アンペア秒)となる。 In addition to the above, the control data setting unit 23 charges the maximum allowable voltage (charge voltage upper limit value Vcmax) between the terminals of the storage battery 21 and the charging current based on the internal state or type of the storage battery 21 before starting charging. The stop lower limit value Istp, the state of charge (SOC) before the start of charging, the charging end time Tstp, and the like are calculated or set. In addition, it is preferable that the charge stop lower limit Istp set in the control data setting unit 23 is set within a range that can be measured without sufficient error from the measurement accuracy of the current sensor 24 owned by the electric vehicle. For example, if a 100A sensor is used, about 5A is preferable. The actual set value changes according to the definition of a later-described current determination value Ij to be compared with the charge stop lower limit value Istp. Further, when the current determination value Ij is an integrated value for each cycle Tm, for example, a value obtained by multiplying the current value by the cycle Tm or an integrated value (unit: ampere second) between the current values in the cycle Tm.
 制御データ設定部23は、最大電流上限値の指示値Imax、充電電流の積算値Ia2、充電電圧の上限値Vcmax、充電停止下限値Istp、充電終了時間Tstp、充電状態(SOC)等を、制御データとして、第2通信部22を介して、充電器10側に送信する。尚、最大電流上限値の指示値Imaxと充電電流の積算値Ia2は、充電開始後に所定の時間間隔(例えば、100m秒)で算出したものを同じ時間間隔で、第2通信部22を介して、充電器10側に送信する。この際、充電器10側と充電装置20側で夫々の電流測定値のサンプリングタイミングのトリガー信号を同期させ、同時にサンプリングを行う。更に、制御データ設定部23は、後述する充電異常判定を行う。 The control data setting unit 23 controls the maximum current upper limit instruction value Imax, the charging current integrated value Ia2, the charging voltage upper limit value Vcmax, the charging stop lower limit value Istp, the charging end time Tstp, the state of charge (SOC), and the like. The data is transmitted to the charger 10 side via the second communication unit 22. It should be noted that the maximum current upper limit instruction value Imax and the charging current integrated value Ia2 are calculated at a predetermined time interval (for example, 100 milliseconds) after the start of charging, and the same time interval via the second communication unit 22. To the charger 10 side. At this time, the trigger signal of the sampling timing of each current measurement value is synchronized on the charger 10 side and the charging device 20 side, and sampling is performed simultaneously. Furthermore, the control data setting unit 23 performs charge abnormality determination described later.
 次に、充電器10と充電装置20による蓄電池21の充電シーケンスについて、図3のフローチャートを参照して説明する。尚、図3において、充電器10と充電装置20における各処理の流れは実線で示し、データまたは信号の流れは破線で示す。 Next, a charging sequence of the storage battery 21 by the charger 10 and the charging device 20 will be described with reference to the flowchart of FIG. In FIG. 3, the flow of each process in the charger 10 and the charging device 20 is indicated by a solid line, and the flow of data or signals is indicated by a broken line.
 先ず、充電器10の充電コネクタ18を、電気自動車の充電ソケット26に挿入して、両者を接続する(ステップA1)。ユーザは、充電器10に設置された操作部19aにおいて充電開始ボタンを押下して、充電開始を指示する(ステップA2)。制御回路部12は、当該開始指示を受け付け、充電開始通知を第1通信部13、通信ケーブル17b、及び、第2通信部22を介して、充電装置20の制御データ設定部23に送信する(ステップA3)。制御データ設定部23が充電開始通知を受信し、その旨を返信することで、充電器10と充電装置20間の通信路が確立し(ステップB1)、その後、下記の要領で制御データの送受信を行う。 First, the charging connector 18 of the charger 10 is inserted into the charging socket 26 of the electric vehicle, and both are connected (step A1). The user presses the charge start button on the operation unit 19a installed in the charger 10 to instruct the start of charging (step A2). The control circuit unit 12 receives the start instruction and transmits a charge start notification to the control data setting unit 23 of the charging device 20 via the first communication unit 13, the communication cable 17b, and the second communication unit 22 ( Step A3). The control data setting unit 23 receives the charging start notification and returns a notification to that effect, thereby establishing a communication path between the charger 10 and the charging device 20 (step B1), and then transmitting and receiving control data in the following manner. I do.
 制御データ設定部23は、ステップA3で充電器10から送信された充電開始通知、或いは、新たに送信されたメッセージに、脈流充電である旨の情報が含まれているかを判定し(ステップB2)、当該情報が含まれている場合、脈流充電により蓄電池21の充電を行うことを判定する(ステップB2のYES)。ステップB2において、脈流充電である旨の情報が含まれていない場合、或いは、CVCC方式の充電である旨の情報が含まれている場合は、CVCC方式により蓄電池21の充電を行うことを判定する(ステップB2のNO)。後者の場合は、通常のCVCC方式による充電シーケンスが実行されるが、本発明の本旨とは関係ないので説明は省略する。以下、脈流充電と判定された場合の充電シーケンスについて説明する。 The control data setting unit 23 determines whether the charging start notification transmitted from the charger 10 in Step A3 or the newly transmitted message includes information indicating pulsating charge (Step B2). When the information is included, it is determined that the storage battery 21 is charged by pulsating charge (YES in step B2). In step B2, if the information indicating that the charging is pulsating charge is not included, or if the information indicating that the charging is based on the CVCC method is included, it is determined that the storage battery 21 is charged by the CVCC method. (NO in step B2). In the latter case, a charging sequence based on the normal CVCC method is executed, but the description is omitted because it is not related to the gist of the present invention. Hereinafter, a charging sequence when it is determined as pulsating charging will be described.
 充電開始前において、制御データ設定部23が、蓄電池21の電池電圧及び内部インピーダンス等の内部状態を取得し、蓄電池21の種類、及び、当該内部状態に基づき、制御データに含まれる充電電流の最大電流上限値Imax、充電電圧の上限値Vcmax、充電電流の充電停止下限値Istp、充電開始前の充電状態(SOC)、及び、充電終了時間Tstp等を夫々算出または設定する(ステップB3)。 Before the start of charging, the control data setting unit 23 acquires the internal state such as the battery voltage and internal impedance of the storage battery 21, and based on the type of the storage battery 21 and the internal state, the maximum charging current included in the control data The current upper limit value Imax, the charging voltage upper limit value Vcmax, the charging current lower limit value Istp, the state of charge (SOC) before the start of charging, the charging end time Tstp, etc. are calculated or set (step B3).
 制御データ設定部23は、算出した制御データの各設定値を、充電器10の制御回路部12に送信する(ステップB4)。 The control data setting unit 23 transmits each set value of the calculated control data to the control circuit unit 12 of the charger 10 (step B4).
 制御回路部12は、受信した制御データの各設定値の内、充電開始前の充電状態(SOC)及び充電終了時間Tstp等は、表示部19bに表示してユーザに通知するとともに、脈流充電を開始し、受信した最大電流上限値Imaxと充電電流の充電停止下限値Istpに基づいて、充電電流の制御を行う。 The control circuit unit 12 displays the charging state (SOC) before the start of charging, the charging end time Tstp, and the like among the set values of the received control data on the display unit 19b and notifies the user, and pulsating charging And the charging current is controlled based on the received maximum current upper limit value Imax and the charging current stopping lower limit value Istp.
 先ず、充電開始直後は、上述のソフトスタート動作を実行する。ソフトスタート動作では、充電電流のピーク値Ipkが最大電流上限値の指示値Imaxに向けて徐々に増加するように、制御値Aを一定期間(例えば、100m秒)毎に段階的に増加させる制御が行われる(ステップA4)。ソフトスタート動作開始後、ソフトスタートの終了条件(例えば、ピーク値Ipkが指示値Imaxの97%値を超過)の判定を行い(ステップA5)、当該条件が満足されると(ステップA5のYES)、制御値Aの増加を停止して、充電電流の定常制御動作に移行する。定常制御動作では、制御値設定部43がピーク値Ipkを算出する度に、ピーク値Ipkが指示値Imaxの例えば97%を超過しないように、制御値Aが調整される(ステップA6)。 First, immediately after the start of charging, the above-described soft start operation is executed. In the soft start operation, the control value A is increased stepwise every certain period (for example, 100 milliseconds) so that the peak value Ipk of the charging current gradually increases toward the instruction value Imax of the maximum current upper limit value. Is performed (step A4). After the soft start operation starts, a soft start end condition (for example, the peak value Ipk exceeds 97% of the instruction value Imax) is determined (step A5), and when the condition is satisfied (YES in step A5) Then, the increase of the control value A is stopped, and the routine proceeds to the steady control operation of the charging current. In the steady control operation, every time the control value setting unit 43 calculates the peak value Ipk, the control value A is adjusted so that the peak value Ipk does not exceed, for example, 97% of the instruction value Imax (step A6).
 更に、制御回路部12は、ソフトスタート動作及び定常制御動作の各動作期間を通じて、電流積算器48で充電電流の電流積算値Ia1の算出を逐次実行する(ステップA7)。 Further, the control circuit unit 12 sequentially executes the calculation of the current integrated value Ia1 of the charging current by the current integrator 48 through each operation period of the soft start operation and the steady control operation (step A7).
 一方、充電装置20側では、蓄電池21の充電の進行とともに、電池電圧Vbが上昇するため、充電開始前に設定した充電電流の最大電流上限値Imaxが、上記数2の判定式を満足しなくなっている可能性があるため、制御データ設定部23は、一定周期(例えば、100m秒周期)で、充電電流及び充電電圧の瞬時値(或いは、ピーク値)と内部インピーダンスに基づいて電池電圧Vbを算出し直して電池電圧Vbの更新を行い、更新された電池電圧Vbに基づき、最大電流上限値Imaxを新たに算出し直して更新する(ステップB5)。更に、上記ステップB5では、第1の更新方法により最大電流上限値Imaxを更新したが、第2の更新方法で最大電流上限値Imaxを更新しても良く、また、第1及び第2の更新方法で夫々更新した指示値Imaxの内のより小さい方を新たな指示値Imaxとして更新しても良い。 On the other hand, on the charging device 20 side, as the charging of the storage battery 21 progresses, the battery voltage Vb increases. Therefore, the maximum current upper limit value Imax of the charging current set before the start of charging does not satisfy the determination formula of Equation 2 above. Therefore, the control data setting unit 23 determines the battery voltage Vb based on the instantaneous value (or peak value) of the charging current and the charging voltage and the internal impedance at a constant cycle (for example, 100 ms cycle). The battery voltage Vb is updated by recalculation, and the maximum current upper limit value Imax is newly calculated and updated based on the updated battery voltage Vb (step B5). Further, in step B5, the maximum current upper limit value Imax is updated by the first update method. However, the maximum current upper limit value Imax may be updated by the second update method, and the first and second update values may be updated. The smaller one of the instruction values Imax updated by the method may be updated as a new instruction value Imax.
 更に、制御データ設定部23は、充電開始後、ステップB5と並行して、電流計24で測定される充電電流の瞬時値に対して、充電電流の周期Tm毎の電流積算値Ia2を算出する(ステップB6)。 Further, after starting charging, the control data setting unit 23 calculates a current integrated value Ia2 for each charging current cycle Tm with respect to the instantaneous value of the charging current measured by the ammeter 24 in parallel with Step B5. (Step B6).
 ステップB5で更新された最大電流上限値ImaxとステップB6で算出された積算値Ia2は、制御データの設定値の更新データとして、上記一定周期(例えば、100m秒周期)毎に順次、充電器10側に送信される(ステップB7)。上記一定周期が100m秒で、周期Tmが10m秒の場合は、積算値Ia2は10周期分算出されるので、10周期分の電流積算値Ia2を夫々制御データとして送信しても良く、或いは、それらの平均値または合計値を制御データとして送信しても良い。 The maximum current upper limit value Imax updated in step B5 and the integrated value Ia2 calculated in step B6 are sequentially updated every predetermined period (for example, 100 msec period) as update data for the set value of the control data. (Step B7). When the fixed period is 100 milliseconds and the period Tm is 10 milliseconds, the integrated value Ia2 is calculated for 10 periods, so the current integrated value Ia2 for 10 periods may be transmitted as control data, respectively, or You may transmit those average values or total values as control data.
 更に、ステップB5及びB6と並行して、制御データ設定部23は、一定周期(例えば、100m秒周期)毎に順次、以下に示す充電異常判定を行う(ステップB8)。1回の充電異常判定では、第1に、電流計24で測定される蓄電池21に流入する充電電流の瞬時値(またはピーク値)が、最大電流上限値の指示値Imaxを超えている場合に、充電異常と判定する(第1判定)。第2に、電圧計25で測定される蓄電池21に印加される充電電圧の瞬時値(またはピーク値)が、充電電圧の上限値Vcmaxを超えている場合に、充電異常と判定する(第2判定)。尚、上記第1及び第2判定の実際の判定処理では、3%程度の測定誤差を許容すべく、例えば、充電電流の瞬時値(またはピーク値)は最大電流上限値の指示値Imaxの103%値と、充電電圧の瞬時値(またはピーク値)は充電電圧の上限値Vcmaxの103%値と夫々比較する。更に、上記第1判定では、充電の進行とともに、最大電流上限値の指示値Imaxは徐々に低下するため、当該指示値を低下させた効果が、充電装置20側で瞬時に反映されずに、一定の時間遅れで反映されるため、一定時間(例えば、1~3秒程度)前に設定された指示値Imaxを比較対象とするようにしても良い。1回の充電異常判定において、上記第1判定及び第2判定の少なくとも何れか一方において、異常と判定された場合に(ステップB8のYES)、充電停止信号S2を、第2通信部22を介して、充電器10側に送信し(ステップB9)、ステップB5~B8の処理を停止する(ステップB10)。ステップB8で異常と判定されなかった場合は(ステップB8のNo)、充電動作は継続され、ステップB5~B8が繰り返し継続的に実施される。尚、1回の充電異常判定で異常と判定された場合に即座に充電停止信号S2を送信してステップB5~B8の処理を停止するのではなく、連続する複数回の充電異常判定において、同じ充電異常(第1判定または第2判定)が連続した場合に、充電異常と確定し、充電停止信号S2を送信してステップB5~B8の処理を停止するようにしても良い。また、安全面の観点から、本発明では、電流計15のピーク電流はImaxの97%の値となるようにフィードバック制御しながら充電している。所定時間以上(例えば、1秒以上)、ピーク電流がImaxの97%の値からずれる場合は、充電器の制御系が異常をきたしていると判断し、充電を停止するようにしても良い。 Further, in parallel with Steps B5 and B6, the control data setting unit 23 sequentially performs the following charging abnormality determination for every fixed period (for example, 100 msec period) (Step B8). In one charge abnormality determination, first, when the instantaneous value (or peak value) of the charging current flowing into the storage battery 21 measured by the ammeter 24 exceeds the maximum current upper limit value Imax. The charging is determined to be abnormal (first determination). Second, when the instantaneous value (or peak value) of the charging voltage applied to the storage battery 21 measured by the voltmeter 25 exceeds the upper limit value Vcmax of the charging voltage, it is determined that the charging is abnormal (second). Judgment). In the actual determination process of the first and second determinations described above, for example, the instantaneous value (or peak value) of the charging current is 103, which is the maximum current upper limit instruction value Imax, in order to allow a measurement error of about 3%. The% value and the instantaneous value (or peak value) of the charging voltage are respectively compared with the 103% value of the upper limit value Vcmax of the charging voltage. Furthermore, in the first determination, the instruction value Imax of the maximum current upper limit value gradually decreases as the charging progresses, so the effect of reducing the instruction value is not reflected instantaneously on the charging device 20 side, Since it is reflected with a certain time delay, the instruction value Imax set before a certain time (for example, about 1 to 3 seconds) may be used as a comparison target. In one charge abnormality determination, when it is determined as abnormal in at least one of the first determination and the second determination (YES in Step B8), the charge stop signal S2 is sent via the second communication unit 22. Then, the data is transmitted to the charger 10 side (step B9), and the processing of steps B5 to B8 is stopped (step B10). If it is not determined to be abnormal in step B8 (No in step B8), the charging operation is continued, and steps B5 to B8 are repeatedly and continuously performed. In addition, when it is determined that there is an abnormality in one charge abnormality determination, the charge stop signal S2 is not transmitted immediately and the processing of steps B5 to B8 is not stopped. When the charging abnormality (first determination or second determination) continues, it is determined that the charging is abnormal, and the processing of steps B5 to B8 may be stopped by transmitting the charging stop signal S2. Further, from the viewpoint of safety, in the present invention, charging is performed while performing feedback control so that the peak current of the ammeter 15 becomes a value of 97% of Imax. When the peak current deviates from a value of 97% of Imax for a predetermined time or longer (for example, 1 second or longer), it may be determined that the control system of the charger has malfunctioned and charging may be stopped.
 充電器10側では、ソフトスタート動作及び定常制御動作の各動作期間を通じて、ステップB7で上記一定周期毎に送信された制御データの更新データ(最大電流上限値Imaxと電流積算値Ia2)を順次受信する(ステップA8)。ステップA5では、更新された制御データの最大電流上限値Imaxに基づいて、ソフトスタートの終了条件の判定が上述の要領で行われる。ステップA6では、更新された制御データの最大電流上限値Imaxに基づいて、充電電流のピーク値Ipkが、最大電流上限値Imaxを超過しないように、制御値設定部43において制御値Aの調整が上述の要領で行われる。一方、比較器49は、ソフトスタート動作及び定常制御動作の各動作期間を通して、上記一定周期毎に、例えば、ステップA8で順次受信した電流積算値Ia2と、ステップA7で算出した電流積算値Ia1の合計値(或いは平均値)を比較する(ステップA9)。ステップA9において、電流積算値Ia1,Ia2間に、所定の誤差(例えば3%)以上の不一致が存在する場合に、比較器49は充電停止信号S1を出力する(ステップA10)。但し、電流積算値Ia1,Ia2の算出或いは比較は、充電電流のピーク値Ipkが電流計15及び電流計24の測定可能範囲の下限値を一定レベル以上超えてから開始するようにしても良い。 On the charger 10 side, the control data update data (maximum current upper limit value Imax and current integrated value Ia2) transmitted at the above-mentioned fixed intervals in step B7 are sequentially received through the respective operation periods of the soft start operation and the steady control operation. (Step A8). In step A5, the soft start end condition is determined as described above based on the maximum current upper limit value Imax of the updated control data. In step A6, the control value setting unit 43 adjusts the control value A so that the peak value Ipk of the charging current does not exceed the maximum current upper limit value Imax based on the updated maximum current upper limit value Imax of the control data. This is done as described above. On the other hand, the comparator 49 performs, for example, the current integrated value Ia2 sequentially received in step A8 and the current integrated value Ia1 calculated in step A7 at each fixed period throughout the operation periods of the soft start operation and the steady control operation. The total value (or average value) is compared (step A9). In step A9, when there is a discrepancy greater than or equal to a predetermined error (for example, 3%) between the current integrated values Ia1 and Ia2, the comparator 49 outputs a charge stop signal S1 (step A10). However, the calculation or comparison of the current integrated values Ia1 and Ia2 may be started after the peak value Ipk of the charging current exceeds the lower limit value of the measurable range of the ammeter 15 and the ammeter 24 by a certain level or more.
 更に、ソフトスタート動作及び定常制御動作の各動作期間を通じて、制御回路部12は、以下の異常終了判定を行い(ステップA11)、当該判定において、ステップA10の充電停止信号S1の出力、または、ステップB9で送信される充電停止信号S2の受信の少なくとも何れか一方を確認すると(ステップA11のYES)、充電回路部11の充電電流の供給動作を停止するとともに、充電停止通知S3を、充電装置20の制御データ設定部23に送信する(ステップA12)。 Furthermore, through each operation period of the soft start operation and the steady control operation, the control circuit unit 12 performs the following abnormal termination determination (step A11), and in the determination, the output of the charge stop signal S1 in step A10, or step When at least one of the reception of the charge stop signal S2 transmitted in B9 is confirmed (YES in Step A11), the charging circuit unit 11 stops the charging current supply operation, and the charge stop notification S3 is sent to the charging device 20. To the control data setting unit 23 (step A12).
 また、ソフトスタート動作及び定常制御動作の各動作期間を通じて、ユーザが充電器10に設置された操作部19aにおいて充電終了ボタンを押下した場合には、制御回路部12は、当該充電終了指示を受け付け(ステップA13のYES)、充電回路部11の充電電流の供給動作を停止するとともに、充電停止通知S3を、充電装置20の制御データ設定部23に送信する(ステップA14)。 In addition, when the user presses the charge end button on the operation unit 19a installed in the charger 10 during each operation period of the soft start operation and the steady control operation, the control circuit unit 12 accepts the charge end instruction. (YES in step A13), the charging current supply operation of the charging circuit unit 11 is stopped, and a charging stop notification S3 is transmitted to the control data setting unit 23 of the charging device 20 (step A14).
 ソフトスタート動作から定常制御動作に移行した後、ステップA11の異常終了判定において、充電停止信号S1の出力及び充電停止信号S2の受信の何れも確認せず(ステップA11のNO)、充電終了ボタンの押下による充電終了指示も受け付けずに(ステップA13のNO)、充電動作が順調に進行すると、上述のように、最大電流上限値の指示値Imaxが徐々に低下するため、充電電流のピーク値Ipkも同様に徐々に低下するように制御される。従って、定常制御動作では、充電動作の進行とともに、充電電流のピーク値Ipkが低下するため、充電電流の周期Tm毎のピーク値Ipk、ボトム値Ibt、平均値Iave、及び、積算値Ia1の何れかで定義される電流判定値Ijを、周期Tm毎に算出し、充電停止下限値Istpとの比較判定を行う(ステップA15)。ステップA15において、電流判定値Ijが充電停止下限値Istp以下と判定された場合に(ステップA15のYES)、充電回路部11の充電電流の供給動作を停止するとともに、充電停止通知S3を、充電装置20の制御データ設定部23に送信する(ステップA16)。ステップA15において、電流判定値Ijが充電停止下限値Istp以下でない場合は(ステップA12のNO)、定常制御動作における制御値Aの調整(ステップA6)が引き続き継続される。 After the transition from the soft start operation to the steady control operation, in the abnormal end determination in step A11, neither the output of the charge stop signal S1 nor the reception of the charge stop signal S2 is confirmed (NO in step A11). When the charging operation proceeds smoothly without accepting the charging end instruction by pressing (NO in step A13), the instruction value Imax of the maximum current upper limit value gradually decreases as described above, and therefore the peak value Ipk of the charging current. Is also controlled so as to gradually decrease. Accordingly, in the steady control operation, as the charging operation proceeds, the peak value Ipk of the charging current decreases. Therefore, any of the peak value Ipk, the bottom value Ibt, the average value Iave, and the integrated value Ia1 for each charging current cycle Tm. The current determination value Ij defined by is calculated for each cycle Tm and compared with the charge stop lower limit value Istp (step A15). When it is determined in step A15 that the current determination value Ij is equal to or less than the charge stop lower limit value Istp (YES in step A15), the charging circuit unit 11 stops the charging current supply operation, and the charge stop notification S3 is charged. It transmits to the control data setting part 23 of the apparatus 20 (step A16). If the current determination value Ij is not less than or equal to the charge stop lower limit value Istp in step A15 (NO in step A12), the adjustment of the control value A in the steady control operation (step A6) is continued.
 制御データ設定部23は、ステップA12、A14またはA16で送信される充電停止通知S3の受信の有無を判定し(ステップB11)、充電停止通知S3を受信した場合は(ステップB11のYES)、ステップB5~B8の処理を停止する(ステップB10)。尚、充電装置20側で、先に充電異常判定が行われている場合は(ステップB8のYES)、充電停止通知S3の受信の有無に関係なく、ステップB5~B8の処理は停止する(ステップB10)。 The control data setting unit 23 determines whether or not the charge stop notification S3 transmitted in step A12, A14 or A16 is received (step B11). If the charge stop notification S3 is received (YES in step B11), The processing of B5 to B8 is stopped (step B10). If the charging abnormality determination has been made on the charging device 20 side (YES in step B8), the processing in steps B5 to B8 stops regardless of whether or not the charging stop notification S3 has been received (step S8). B10).
 次に、充電回路部11の最終段に、コイル37とコンデンサ38で構成される低域通過フィルタ回路を設ける場合の効果について、簡単に説明する。図4に、低域通過フィルタ回路を設けた場合と設けてない場合の各充電電流Ioutの出力波形のシミュレーション結果の一例を、入力交流電圧波形Vinとともに、表示する。図4より、低域通過フィルタ回路を設けない場合は、充電電流Ioutは、電流振幅は大きいものの、0Aまで低下する。この場合、充電電流の電流判定値Ijと充電停止下限値Istpとの比較判定(ステップA15)において、電流判定値Ijとしてボトム値Ibtは使用できない。一方、低域通過フィルタ回路を設けた場合は、電流振幅は抑圧され、充電電流Ioutのピーク値Ipkは低下し、ボトム値Ibtは上昇する。従って、充電電流Ioutが、電流計15及び電流計24の測定可能範囲内に常時収まるため、充電制御に使用する各瞬時値の測定精度が維持され、高精度に充電制御可能になる。コイル37とコンデンサ38の回路定数は、ボトム値Ibtが、電流計15及び電流計24の測定可能範囲の下限値以上となれば十分であるので、不必要に大きな値とする必要は無い。また、充電電流の電流判定値Ijと充電停止下限値Istpとの比較判定(ステップA15)において、電流判定値Ijとしてボトム値Ibtを使用できる。 Next, the effect of providing a low-pass filter circuit composed of a coil 37 and a capacitor 38 in the final stage of the charging circuit unit 11 will be briefly described. FIG. 4 shows an example of the simulation result of the output waveform of each charging current Iout with and without the low-pass filter circuit, together with the input AC voltage waveform Vin. From FIG. 4, when the low-pass filter circuit is not provided, the charging current Iout decreases to 0 A although the current amplitude is large. In this case, the bottom value Ibt cannot be used as the current determination value Ij in the comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp. On the other hand, when the low-pass filter circuit is provided, the current amplitude is suppressed, the peak value Ipk of the charging current Iout decreases, and the bottom value Ibt increases. Therefore, since the charging current Iout is always within the measurable range of the ammeter 15 and the ammeter 24, the measurement accuracy of each instantaneous value used for the charge control is maintained, and the charge control can be performed with high accuracy. The circuit constants of the coil 37 and the capacitor 38 are sufficient if the bottom value Ibt is equal to or greater than the lower limit value of the measurable range of the ammeter 15 and the ammeter 24, and need not be unnecessarily large. Further, in the comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp, the bottom value Ibt can be used as the current determination value Ij.
 次に、上記実施形態の別実施形態につき説明する。 Next, another embodiment of the above embodiment will be described.
 〈1〉上記実施形態では、充電回路部11として、図2の回路構成のものを例示したが、充電回路部11は、図2の回路構成に限定されるものではない。例えば、特許文献2の図1に開示されているように、商用交流電源30の交流入力を全波整流した後に、フルブリッジ構成のスイッチング素子のインバータ回路を介してトランスの1次側に接続し、当該トランスの2次側に更に全波整流回路を設ける構成としても良い。更に、絶縁型のAC/DCコンバータとする場合、インバータ回路に代えて、トランスの1次側コイルを、チョッパ回路を構成するチョークコイルと兼用させても良い。AC/DCコンバータの1段で絶縁しつつ、力率改善動作を行うように充電電流を制御することが好ましい。何れの回路構成においてもインバータ回路またはチョッパ回路を構成するスイッチング素子のオンオフ制御は、上記実施形態で説明したものと同様にすれば良い。絶縁型のAC/DCコンバータを使用する場合、充電回路部11の出力側と入力側(商用交流電源30側)をトランスにより絶縁でき、出力側(電池側)の地絡の問題や、感電に対する安全性が向上する。 <1> In the above embodiment, the charging circuit unit 11 has the circuit configuration shown in FIG. 2, but the charging circuit unit 11 is not limited to the circuit configuration shown in FIG. For example, as disclosed in FIG. 1 of Patent Document 2, after full-wave rectification of the AC input of the commercial AC power supply 30, it is connected to the primary side of the transformer via an inverter circuit of a switching element having a full bridge configuration. A full-wave rectifier circuit may be further provided on the secondary side of the transformer. Further, in the case of an insulating AC / DC converter, the primary coil of the transformer may be used also as a choke coil constituting the chopper circuit instead of the inverter circuit. It is preferable to control the charging current so as to perform the power factor correction operation while insulating at one stage of the AC / DC converter. In any circuit configuration, on / off control of the switching elements constituting the inverter circuit or chopper circuit may be performed in the same manner as described in the above embodiment. When using an insulation type AC / DC converter, the output side and the input side (commercial AC power supply 30 side) of the charging circuit unit 11 can be insulated by a transformer. Safety is improved.
 また、商用交流電源30は単相3線式200Vに限定されるものではないので、例えば、商用交流電源30が三相200Vの場合には、充電回路部11の回路構成も、商用交流電源30に応じて変更となる。力率改善動作をさせながら、脈流での充電電流に対する制御を単相の場合と同様に行うことができる。 Further, since the commercial AC power supply 30 is not limited to the single-phase three-wire type 200V, for example, when the commercial AC power supply 30 is a three-phase 200V, the circuit configuration of the charging circuit unit 11 is also the commercial AC power supply 30. It will be changed according to. While performing the power factor correction operation, the control for the charging current in the pulsating flow can be performed in the same manner as in the case of the single phase.
 また、スイッチング素子34は、図2に示す構成例では、2つのIGBT(絶縁ゲートバイポーラトランジスタ)を、コレクタ同士を共通にして直列接続し、双方向に完全にオンオフ動作可能な構成としたが、例えば、IGBTに代えてパワーMOSFET等を使用して構成されていても良く、また、双方向に完全にオンオフ動作可能な単体のスイッチング素子を用いても良い。 In the configuration example shown in FIG. 2, the switching element 34 has a configuration in which two IGBTs (insulated gate bipolar transistors) are connected in series with a common collector, and can be completely turned on and off in both directions. For example, a power MOSFET or the like may be used instead of the IGBT, or a single switching element that can be completely turned on and off in both directions may be used.
 〈2〉上記実施形態では、充電装置20側の処理において、制御値設定部43がステップB5の最大電流上限値Imaxの更新処理において、第2の更新処理を行う場合を説明したが、制御値設定部43で第1の更新処理だけを行い、充電器10側において、第2の更新処理に相当する処理を行うようにしても良い。つまり、充電器10側において、出力端子間の出力電圧の瞬時値Voutを測定する電圧計を別途設け、当該瞬時値Voutのピーク値Voutpkを算出し、制御データに含まれる充電電圧の上限値Vcmaxと比較し、例えば、ピーク値Voutpkが上限値Vcmaxの97%値を超過する場合に、制御値Aに((Vcmax×0.97)/Voutpk)で表わされる縮小率を乗じて、制御値Aを低下させるようにしても良い。この場合、制御値Aは、充電電圧のピーク値Voutpkと充電電流のピーク値Ipkの両方に基づいて制御されることになる。更に、充電装置20側で測定した蓄電池のピーク電圧を充電器10側で受信し、常に(例えば100ms毎に更新)で充電器10側の電圧の読み取り値と、充電装置20側の電圧の読み取り値の間で相互にズレが生じていないか、異常判定を行うようにしても良い。 <2> In the above embodiment, the case where the control value setting unit 43 performs the second update process in the update process of the maximum current upper limit value Imax in step B5 in the process on the charging device 20 side has been described. The setting unit 43 may perform only the first update process, and the charger 10 may perform a process corresponding to the second update process. That is, on the charger 10 side, a voltmeter for measuring the instantaneous value Vout of the output voltage between the output terminals is separately provided, the peak value Voutpk of the instantaneous value Vout is calculated, and the upper limit value Vcmax of the charging voltage included in the control data For example, when the peak value Voutpk exceeds the 97% value of the upper limit value Vcmax, the control value A is multiplied by the reduction ratio represented by ((Vcmax × 0.97) / Voutpk) to obtain the control value A May be reduced. In this case, the control value A is controlled based on both the peak value Voutpk of the charging voltage and the peak value Ipk of the charging current. Further, the storage battery peak voltage measured on the charging device 20 side is received on the charger 10 side, and the voltage reading value on the charger 10 side and the voltage reading on the charging device 20 side are constantly read (for example, updated every 100 ms). You may make it perform abnormality determination whether the difference | shift has produced between the values.
 〈3〉上記実施形態の充電異常判定(ステップB8)において、上記第1及び第2判定の少なくとも何れか一方に代えて、または、追加して、脈流の周期Tm毎に充電器10側で測定した充電電流のピーク値を都度受信し、同じ周期Tm毎に充電装置20側で測定した充電電流のピーク値と比較し、所定の誤差範囲(例えば、±3%)以上両ピーク値が乖離している場合に、充電異常と判定する(第3の判定)のも好ましい。この場合、比較対象となる2つのピーク値が、同じ脈流周期内でサンプリングされた充電電流の瞬時値に基づくピーク値であることを確実にするため、例えば、充電器10側で入力交流電圧のゼロクロス点を検出し、その検出タイミングを同期信号として、充電器10側と充電装置20側で共通に利用して、充電器10側における脈流の周期Tmと充電装置20側における脈流の周期Tmを一致させるのが好ましい。これにより、同じ周期Tm内で検出されたピーク値同士を比較できる。尚、当該第3の判定を充電器10側で行う場合は、充電装置20側で測定した充電電流のピーク値を充電器10側で受信すれば良い。 <3> In the charging abnormality determination (step B8) of the above embodiment, instead of or in addition to at least one of the first and second determinations, on the charger 10 side for each cycle Tm of pulsating flow The peak value of the measured charging current is received each time, and compared with the peak value of the charging current measured on the charging device 20 side at the same period Tm, both peak values deviate by more than a predetermined error range (for example, ± 3%). In this case, it is also preferable to determine that the charging is abnormal (third determination). In this case, in order to ensure that the two peak values to be compared are peak values based on the instantaneous value of the charging current sampled within the same pulsating cycle, for example, the input AC voltage on the charger 10 side. The zero-crossing point is detected and the detection timing is used as a synchronization signal in common on the charger 10 side and the charging device 20 side, and the pulsating flow period Tm on the charger 10 side and the pulsating flow on the charging device 20 side It is preferable to match the periods Tm. Thereby, the peak values detected within the same period Tm can be compared. When the third determination is performed on the charger 10 side, the peak value of the charging current measured on the charging device 20 side may be received on the charger 10 side.
 更に、上記同期信号は、上記検出タイミングに依らずに、充電器10側と充電装置20側の何れかにタイマー素子を設けて、当該タイマー素子の出力に基づいて生成するようにしても良い。また、上記同期信号は、電流積算器48と制御データ設定部23が、夫々充電器10側と充電装置20側において、充電電流の周期Tm毎の積算値Ia1,Ia2を算出する場合において利用することで、各積算値Ia1,Ia2の算出に使用する周期Tmを一致させるのも好ましい。 Furthermore, the synchronization signal may be generated based on the output of the timer element by providing a timer element on either the charger 10 side or the charging device 20 side without depending on the detection timing. The synchronization signal is used when the current integrator 48 and the control data setting unit 23 calculate the integrated values Ia1 and Ia2 for each charging current cycle Tm on the charger 10 side and the charging device 20 side, respectively. Thus, it is also preferable that the periods Tm used for calculation of the integrated values Ia1 and Ia2 are matched.
 〈4〉上記実施形態では、制御回路部12は、スイッチング素子34のオン及びオフ時間のデューティ比を制御する構成としたが、制御パルス信号出力部47が、PI演算部46の出力値に基づいて制御パルス信号Sの出力周波数が変化する回路(電圧周波数コンバータ回路等)とし、周波数の変化に伴い制御パルス信号Sのデューティ比が実質的に変化する構成としても良い。 <4> In the above embodiment, the control circuit unit 12 is configured to control the duty ratio of the on and off times of the switching element 34, but the control pulse signal output unit 47 is based on the output value of the PI calculation unit 46. Thus, a circuit (such as a voltage frequency converter circuit) in which the output frequency of the control pulse signal S changes may be used, and the duty ratio of the control pulse signal S may change substantially with the change in frequency.
 また、上記実施形態では、PI演算部46を用いて、数1に示すPI補正演算によりデューティ比を算出したが、数1の演算式の右辺の括弧内に微分項を追加したPID補正演算によりデューティ比を算出しても良い。 Further, in the above embodiment, the duty ratio is calculated by the PI correction calculation shown in Formula 1 using the PI calculation unit 46, but by the PID correction calculation in which the differential term is added in parentheses on the right side of the calculation formula of Formula 1. The duty ratio may be calculated.
 〈5〉上記実施形態では、充電異常判定(ステップB8)は充電装置20側で実行され、その結果である充電停止信号S2を充電器10側に送信し、充電器10側において、充電停止信号S2を受信すると(ステップA11のYES)、充電回路部11の充電電流の供給動作を停止する構成としたが、充電異常判定を充電器10側において実行し、その結果である充電停止信号S2を充電装置20側に送信する構成としても良い。 <5> In the above embodiment, the charging abnormality determination (step B8) is performed on the charging device 20 side, and a charging stop signal S2 as a result thereof is transmitted to the charger 10 side. When S2 is received (YES in step A11), the charging current supply operation of the charging circuit unit 11 is stopped. However, the charging abnormality determination is executed on the charger 10 side, and the charging stop signal S2 as a result is received. It is good also as a structure which transmits to the charging device 20 side.
 〈6〉更に、上記実施形態では、電流積算値Ia1,Ia2の比較(ステップA9)を充電器10側において実行し、その結果である充電停止信号S1を充電装置20側に送信する構成としたが、電流積算値Ia1を充電装置20側に送信し、当該比較処理を充電装置20側で行う構成としても良い。この場合、充電異常判定(ステップB8)が充電装置20側で実行される構成では、当該比較処理を充電異常判定に含めても良い。 <6> Furthermore, in the said embodiment, it is set as the structure which performs the comparison (step A9) of electric current integrated value Ia1, Ia2 in the charger 10 side, and transmits the charge stop signal S1 which is the result to the charging device 20 side. However, the current integrated value Ia1 may be transmitted to the charging device 20 side and the comparison process may be performed on the charging device 20 side. In this case, in the configuration in which the charging abnormality determination (step B8) is performed on the charging device 20 side, the comparison process may be included in the charging abnormality determination.
 〈7〉更に、上記実施形態では、電流指標値として、充電電流の周期Tm毎の積算値Ia1,Ia2を使用したが、電流積算値Ia1,Ia2に代えて、充電電流の周期Tm毎の平均値Ib1,Ib2(Ib1=Ia1/Tm,Ib2=Ia2/Tm)を用いても良い。 <7> Furthermore, in the above embodiment, the integrated values Ia1 and Ia2 for each charging current cycle Tm are used as the current index values, but instead of the integrated current values Ia1 and Ia2, the average for each charging current cycle Tm is used. Values Ib1 and Ib2 (Ib1 = Ia1 / Tm, Ib2 = Ia2 / Tm) may be used.
 〈8〉更に、上記実施形態では、充電電流の電流判定値Ijと充電停止下限値Istpとの比較判定(ステップA15)を充電器10側において実行し、充電停止通知を、充電装置20側に送信する構成としたが、電流判定値Ijの算出及び電流判定値Ijと充電停止下限値Istpとの比較判定を充電装置20側において実行し、その結果として、充電停止信号S1を充電器10側に送信する構成としても良い。 <8> Further, in the above-described embodiment, a comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit Istp is executed on the charger 10 side, and a charge stop notification is sent to the charging device 20 side. Although it is configured to transmit, the calculation of the current determination value Ij and the comparison determination between the current determination value Ij and the charge stop lower limit Istp are executed on the charging device 20 side, and as a result, the charge stop signal S1 is transmitted to the charger 10 side. It is good also as a structure which transmits to.
 10: 充電器
 11: 充電回路部
 12: 制御回路部
 13: 第1通信部
 14,15,24: 電流計
 16,25: 電圧計
 17: 充電ケーブル
 17a: 電源ケーブル
 17b: 通信ケーブル
 18: 充電コネクタ
 19: ユーザインターフェース部
 19a: 操作部
 19b: 表示部
 20: 車載充電装置
 21: 蓄電池
 22: 第2通信部
 23: 制御データ設定部
 26: 充電ソケット
 30: 商用交流電源
 31,32: チョークコイル
 34: スイッチング素子
 35: 全波整流回路
 36: 平滑コンデンサ
 37: コイル
 38: コンデンサ
 41,42: 絶対値演算部
 43: 制御値設定部
 44: 乗算器
 45: 減算器
 46: PI演算部
 47: 制御パルス信号出力部
 47a: ノコギリ波発生器
 47b: 比較器
 48: 電流積算器
 49: 比較器
 N1: 接続ノード
 S: 制御パルス信号
 S1,S2: 充電停止信号
 S3: 充電停止通知
 T1: 出力端子
 
DESCRIPTION OF SYMBOLS 10: Charger 11: Charging circuit part 12: Control circuit part 13: 1st communication part 14,15,24: Ammeter 16,25: Voltmeter 17: Charging cable 17a: Power supply cable 17b: Communication cable 18: Charging connector 19: User interface unit 19a: Operation unit 19b: Display unit 20: On-vehicle charging device 21: Storage battery 22: Second communication unit 23: Control data setting unit 26: Charging socket 30: Commercial AC power supply 31, 32: Choke coil 34: Switching element 35: Full wave rectifier circuit 36: Smoothing capacitor 37: Coil 38: Capacitor 41, 42: Absolute value calculation unit 43: Control value setting unit 44: Multiplier 45: Subtractor 46: PI calculation unit 47: Control pulse signal Output unit 47a: sawtooth wave generator 47b: comparator 48: current accumulator 49 Comparator N1: connection node S: control pulse signal S1, S2: charge stop signal S3: charging stop notification T1: Output terminal

Claims (16)

  1.  充電対象の電気自動車との間で充電制御に使用する制御データの通信を行う第1通信部と、
     前記電気自動車に搭載されている蓄電池に脈流の充電電流を供給する充電回路部と、
     前記充電回路部の電流供給を前記制御データに基づいて制御する制御回路部と、を備え、
     前記第1通信部は、充電開始前に、少なくとも前記充電電流の最大電流上限値を含む前記制御データを、前記電気自動車から取得し、
     前記制御回路部は、前記制御データに基づいて前記充電電流を前記最大電流上限値以下となるように制御することを特徴とする電気自動車充電用の充電器。
    A first communication unit for communicating control data used for charging control with an electric vehicle to be charged;
    A charging circuit unit for supplying a pulsating charging current to a storage battery mounted on the electric vehicle;
    A control circuit unit for controlling the current supply of the charging circuit unit based on the control data,
    The first communication unit acquires the control data including at least the maximum current upper limit value of the charging current from the electric vehicle before starting charging,
    The control circuit unit controls the charging current to be equal to or less than the maximum current upper limit value based on the control data.
  2.  充電開始後に、前記第1通信部が、前記蓄電池の充電の進行に伴い更新される前記制御データを前記電気自動車から順次取得し、
     前記制御回路部が、順次取得した前記制御データに含まれる前記最大電流上限値以下となるように前記充電電流を制御することを特徴とする請求項1に記載の充電器。
    After the start of charging, the first communication unit sequentially acquires the control data updated as the storage battery progresses from the electric vehicle,
    The charger according to claim 1, wherein the control circuit unit controls the charging current so as to be equal to or less than the maximum current upper limit value included in the control data acquired sequentially.
  3.  前記第1通信部は、充電開始前に、前記充電回路部が脈流の充電電流を供給する脈流充電である旨の情報を前記電気自動車に送信した後、前記制御データを前記電気自動車から受信することを特徴とする請求項1または2に記載の充電器。 The first communication unit transmits information indicating that the charging circuit unit is a pulsating charge supplying a pulsating charging current to the electric vehicle before starting charging, and then transmits the control data from the electric vehicle. The charger according to claim 1, wherein the charger is received.
  4.  前記制御回路部は、充電開始直後の一定期間において、前記充電電流のピーク値を前記最大電流上限値に向けて徐々に増加させる制御を行うことを特徴とする請求項1~3の何れか1項に記載の充電器。 4. The control circuit unit according to claim 1, wherein the control circuit unit performs control to gradually increase the peak value of the charging current toward the maximum current upper limit value in a certain period immediately after the start of charging. The charger according to item.
  5.  前記充電回路部は、最終段にLC型の低域通過フィルタを備えることを特徴とする請求項1~4の何れか1項に記載の充電器。 The charger according to any one of claims 1 to 4, wherein the charging circuit unit includes an LC type low-pass filter in a final stage.
  6.  前記制御回路部は、前記制御データに基づいて調整される制御値によって、前記充電回路部に設けられた昇圧回路を構成するスイッチング素子のオンオフのデューティ比を制御するように構成され、前記充電電流のピーク値が前記最大電流上限値と所定の誤差範囲内で等しいか、或いは、超過する場合は、前記ピーク値が低下するように前記制御値を調整するフィードバック制御を行うことを特徴とする請求項1~5の何れか1項に記載の充電器。 The control circuit unit is configured to control an on / off duty ratio of a switching element included in the booster circuit provided in the charging circuit unit according to a control value adjusted based on the control data, and the charging current When the peak value is equal to or exceeds the maximum current upper limit value within a predetermined error range, feedback control is performed to adjust the control value so that the peak value decreases. Item 6. The charger according to any one of Items 1 to 5.
  7.  前記制御データは、前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値の指示値を含み、
     前記制御回路部は、前記充電電流の測定値から前記電流指標値を算出し、前記電流指標値の算出値が、前記電流指標値の指示値から所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する制御を行うことを特徴とする請求項1~6の何れか1項に記載の充電器。
    The control data includes an indication value of a current index value given as an integrated value or an average value for each predetermined time unit of the charging current,
    The control circuit unit calculates the current index value from the measured value of the charging current, and the calculated value of the current index value deviates from the indicated value of the current index value beyond a predetermined error range The charger according to any one of claims 1 to 6, wherein control for stopping the supply of the charging current is performed.
  8.  前記制御データは、前記充電電流のピーク値、ボトム値、或いは、所定時間単位毎の積算値または平均値で与えられる電流判定値に対する充電停止下限値を含み、
     前記制御回路部は、前記充電電流の測定値から前記電流判定値を算出し、前記電流判定値が、前記充電停止下限値以下である場合に、前記充電電流の供給を停止して充電動作を終了する制御を行うことを特徴とする請求項1~7の何れか1項に記載の充電器。
    The control data includes a charge stop lower limit value for a current determination value given as a peak value, a bottom value, or an integrated value or an average value for each predetermined time unit,
    The control circuit unit calculates the current determination value from the measured value of the charging current, and when the current determination value is equal to or lower than the charging stop lower limit value, stops the supply of the charging current and performs a charging operation. The charger according to any one of claims 1 to 7, characterized in that control for termination is performed.
  9.  前記第1通信部が前記電気自動車から充電停止指示を受信すると、前記制御回路部は、前記充電電流の供給を停止する制御を行うことを特徴とする請求項1~8の何れか1項に記載の充電器。 9. The control circuit unit according to claim 1, wherein when the first communication unit receives a charge stop instruction from the electric vehicle, the control circuit unit performs control to stop the supply of the charge current. The charger described.
  10.  請求項1~9の何れか1項に記載の充電器から供給される充電電流により、電気自動車側において車載蓄電池の充電を行う車載充電装置であって、
     前記充電器と前記制御データの通信を行う第2通信部と、
     充電開始前に前記蓄電池の内部状態を取得して、前記内部状態に基づき前記制御データに含まれる設定値を算出し、充電開始後に前記内部状態の変化に応じて逐次前記設定値を更新する制御データ設定部と、を備えることを特徴とする充電装置。
    An in-vehicle charging device for charging an in-vehicle storage battery on an electric vehicle side by a charging current supplied from the charger according to any one of claims 1 to 9,
    A second communication unit for communicating the control data with the charger;
    Control that acquires an internal state of the storage battery before starting charging, calculates a set value included in the control data based on the internal state, and sequentially updates the set value according to a change in the internal state after starting charging And a data setting unit.
  11.  前記制御データ設定部は、充電開始前及び充電開始後において順次、前記蓄電池の最新の内部状態を取得して、前記内部状態に基づき前記制御データに含まれる設定値を算出し、
     前記第2通信部は、充電開始前及び充電開始後において順次、算出された前記制御データの設定値を前記充電器に送信することを特徴とする請求項10に記載の充電装置。
    The control data setting unit sequentially obtains the latest internal state of the storage battery before and after charging, and calculates a setting value included in the control data based on the internal state.
    The charging device according to claim 10, wherein the second communication unit sequentially transmits the set value of the calculated control data to the charger before and after the start of charging.
  12.  前記充電電流によって前記蓄電池に印加される充電電圧を測定する電圧計を備え、
     前記制御データ設定部は、前記充電電圧のピーク値が、所定の閾値を超える場合は、前記制御データに含まれる前記設定値の内の少なくとも前記最大電流上限値の設定値を低下させることを特徴とする請求項10または11に記載の充電装置。
    A voltmeter for measuring a charging voltage applied to the storage battery by the charging current;
    When the peak value of the charging voltage exceeds a predetermined threshold, the control data setting unit reduces at least a set value of the maximum current upper limit value among the set values included in the control data. The charging device according to claim 10 or 11.
  13.  前記制御データ設定部は、前記蓄電池の内部状態である電池電圧と内部インピーダンスに基づいて、前記最大電流上限値と前記内部インピーダンスの積と前記電池電圧の和が、前記電池電圧の上限値を超えないように、且つ、前記最大電流上限値が前記蓄電池の許容最大電流値を超えないように、前記最大電流上限値を設定することを特徴とする請求項10~12の何れか1項に記載の充電装置。 The control data setting unit, based on the battery voltage and the internal impedance that are the internal state of the storage battery, the product of the maximum current upper limit value and the internal impedance and the sum of the battery voltage exceeds the upper limit value of the battery voltage The maximum current upper limit value is set so that the maximum current upper limit value does not exceed an allowable maximum current value of the storage battery. Charging device.
  14.  前記制御データ設定部は、充電開始前に、前記充電器が脈流の充電電流を供給する脈流充電方式の充電器であること確認した後、前記制御データの設定値を算出して、前記第2通信部を介して前記充電器に送信することを特徴とする請求項10~13の何れか1項に記載の充電装置。 The control data setting unit calculates a set value of the control data after confirming that the charger is a pulsating charging type charger that supplies a pulsating charging current before starting charging, The charging device according to any one of claims 10 to 13, wherein the charging device is transmitted to the charger via a second communication unit.
  15.  前記充電器側から供給される前記充電電流を測定する電流計を備え、
     前記制御データ設定部は、前記充電電流の測定値に基づいて、前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値を算出し、
     前記第2通信部は、前記制御データ設定部が算出した前記電流指標値を、前記電流指標値の指示値として、前記充電器に送信することを特徴とする請求項10~14の何れか1項に記載の充電装置。
    An ammeter for measuring the charging current supplied from the charger side;
    The control data setting unit calculates a current index value given as an integrated value or an average value for each predetermined time unit of the charging current based on the measured value of the charging current,
    15. The method according to claim 10, wherein the second communication unit transmits the current index value calculated by the control data setting unit to the charger as an instruction value of the current index value. The charging device according to item.
  16.  前記充電器側から供給される前記充電電流を測定する電流計を備え、
     前記第2通信部は、前記充電器側において前記充電電流の測定値に基づいて算出された前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値を受信し、
     前記制御データ設定部は、電気自動車側で測定した前記充電電流に基づいて、前記電流指標値を算出し、前記充電器側で算出された前記電流指標値と比較し、両者の前記電流指標値が所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する充電停止指示を、前記第2通信部を介して、前記充電器に送信することを特徴とする請求項10~14の何れか1項に記載の充電装置。
    An ammeter for measuring the charging current supplied from the charger side;
    The second communication unit receives a current index value given as an integrated value or an average value for each predetermined time unit of the charging current calculated based on the measured value of the charging current on the charger side,
    The control data setting unit calculates the current index value based on the charging current measured on the electric vehicle side, compares it with the current index value calculated on the charger side, and both the current index values The charging stop instruction for stopping the supply of the charging current is transmitted to the charger via the second communication unit when the battery is deviating beyond a predetermined error range. 15. The charging device according to any one of 10 to 14.
PCT/JP2012/060322 2011-05-27 2012-04-17 Charger and charging device for charging electric vehicle WO2012165071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-118802 2011-05-27
JP2011118802A JP2012249410A (en) 2011-05-27 2011-05-27 Electric vehicle charger and charging system

Publications (1)

Publication Number Publication Date
WO2012165071A1 true WO2012165071A1 (en) 2012-12-06

Family

ID=47258935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060322 WO2012165071A1 (en) 2011-05-27 2012-04-17 Charger and charging device for charging electric vehicle

Country Status (2)

Country Link
JP (1) JP2012249410A (en)
WO (1) WO2012165071A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048016A (en) * 2015-08-09 2015-11-11 安徽普为智能科技有限责任公司 Charging method of direct-current charging pile
CN106274528A (en) * 2016-08-26 2017-01-04 朱利东 There is pre-charge circuit and the method for automatic control function
EP3101767A4 (en) * 2014-01-28 2017-10-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device and power adapter therefor
EP3101755A4 (en) * 2014-01-28 2017-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery charging apparatus and battery charging protection control method
CN107508335A (en) * 2017-08-04 2017-12-22 北京新能源汽车股份有限公司 Current limiting method and device of charging equipment
US10211656B2 (en) 2014-01-28 2019-02-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power adapter, terminal, and method for processing exception of charging loop
US10525835B2 (en) 2015-11-26 2020-01-07 Kabushiki Kaisha Toshiba Power control apparatus and power control system
CN110999021A (en) * 2017-07-27 2020-04-10 远景Aesc能源元器件有限公司 Battery pack
CN113794249A (en) * 2021-08-24 2021-12-14 浙江杭可科技股份有限公司 Digital power box charge-discharge control algorithm and control system
AU2021221903B2 (en) * 2020-09-22 2023-03-09 Saic Motor Corporation Limited Charging Circuit of Electric Vehicle and Electric Vehicle

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942838B2 (en) * 2012-12-20 2016-06-29 住友電気工業株式会社 Relay machine, connector device, charging cable and power supply system
JP6020247B2 (en) * 2013-02-20 2016-11-02 株式会社豊田自動織機 Charging system
DE102013207906A1 (en) * 2013-04-30 2014-10-30 Bayerische Motoren Werke Aktiengesellschaft Guided vehicle positioning for inductive charging with the help of a vehicle camera
KR101854218B1 (en) * 2013-10-22 2018-05-03 삼성에스디아이 주식회사 Battery pack, energy storage system, and method of charging the battery pack
JP2015144554A (en) 2013-12-24 2015-08-06 パナソニックIpマネジメント株式会社 Power conversion equipment
JP2015220801A (en) * 2014-05-15 2015-12-07 長野日本無線株式会社 Power transmission device, power reception device, and non-contact power transmission system
JP6052228B2 (en) 2014-05-19 2016-12-27 株式会社デンソー In-vehicle control system
KR101821007B1 (en) * 2014-09-01 2018-01-22 엘에스산전 주식회사 Recharging device and recharging method for vehicle
JP6400407B2 (en) * 2014-09-18 2018-10-03 Ntn株式会社 Charger
CN105048559A (en) * 2015-08-09 2015-11-11 安徽普为智能科技有限责任公司 Rapid charging method of charging pile
CN111211609B (en) * 2016-02-05 2021-06-25 Oppo广东移动通信有限公司 Charging method, adapter and mobile terminal
JP6503138B2 (en) 2016-02-05 2019-04-17 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charge control method
CN107947252B (en) * 2016-10-12 2020-09-22 Oppo广东移动通信有限公司 Terminal and equipment
CN209488195U (en) 2016-10-12 2019-10-11 Oppo广东移动通信有限公司 Mobile terminal
CN109787325B (en) 2017-04-07 2023-06-27 Oppo广东移动通信有限公司 Wireless charging system, device and method and equipment to be charged
CN110178283B (en) 2017-04-07 2023-07-25 Oppo广东移动通信有限公司 Equipment to be charged, wireless charging device, wireless charging method and system
EP3462564A4 (en) * 2017-04-07 2019-05-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging system, apparatus and method, and device to be charged
CN109478791A (en) 2017-04-13 2019-03-15 Oppo广东移动通信有限公司 Charging equipment and charging method
WO2020166087A1 (en) * 2019-02-15 2020-08-20 株式会社日立製作所 Charge-discharge control system and charge-discharge control method
KR102581998B1 (en) * 2022-12-01 2023-09-22 주식회사 미림씨스콘 System for sequential multi-charging detection of electric vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147729A (en) * 1993-11-24 1995-06-06 Toyota Motor Corp Controller for battery charger
JP2007336778A (en) * 2006-06-19 2007-12-27 Tokyo Electric Power Co Inc:The Charging system and control method thereof
JP2008276950A (en) * 2007-04-25 2008-11-13 Toshiba Corp Secondary battery system
JP2010136488A (en) * 2008-12-03 2010-06-17 Lecip Corp Charging device
JP2011036117A (en) * 2009-07-31 2011-02-17 Toshiba It & Control Systems Corp Boost charger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147729A (en) * 1993-11-24 1995-06-06 Toyota Motor Corp Controller for battery charger
JP2007336778A (en) * 2006-06-19 2007-12-27 Tokyo Electric Power Co Inc:The Charging system and control method thereof
JP2008276950A (en) * 2007-04-25 2008-11-13 Toshiba Corp Secondary battery system
JP2010136488A (en) * 2008-12-03 2010-06-17 Lecip Corp Charging device
JP2011036117A (en) * 2009-07-31 2011-02-17 Toshiba It & Control Systems Corp Boost charger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Denki Jidosha-yo Eco Station Kyusoku Juden System no Tsushin Protocol", NIPPON DENDO SHARYO KYOKAI KIKAKU, JEVS G 104, ZAIDAN HOJIN NIPPON DENDO SHARYO KYOKAI, 22 September 1995 (1995-09-22) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218192B2 (en) 2014-01-28 2019-02-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device and power adapter, including main control circuit, therefor
EP3902093A1 (en) * 2014-01-28 2021-10-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power adapter for an electronic device
EP3101767A4 (en) * 2014-01-28 2017-10-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device and power adapter therefor
EP3101755A4 (en) * 2014-01-28 2017-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery charging apparatus and battery charging protection control method
US11545843B2 (en) 2014-01-28 2023-01-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery charging apparatus and battery charging protection control method
US10211656B2 (en) 2014-01-28 2019-02-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power adapter, terminal, and method for processing exception of charging loop
US11342765B2 (en) 2014-01-28 2022-05-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal, power adapter and method for handling charging anomaly
US10461561B2 (en) 2014-01-28 2019-10-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery charging apparatus and battery charging protection control method
CN105048016A (en) * 2015-08-09 2015-11-11 安徽普为智能科技有限责任公司 Charging method of direct-current charging pile
US10525835B2 (en) 2015-11-26 2020-01-07 Kabushiki Kaisha Toshiba Power control apparatus and power control system
CN106274528A (en) * 2016-08-26 2017-01-04 朱利东 There is pre-charge circuit and the method for automatic control function
CN110999021A (en) * 2017-07-27 2020-04-10 远景Aesc能源元器件有限公司 Battery pack
CN107508335A (en) * 2017-08-04 2017-12-22 北京新能源汽车股份有限公司 Current limiting method and device of charging equipment
AU2021221903B2 (en) * 2020-09-22 2023-03-09 Saic Motor Corporation Limited Charging Circuit of Electric Vehicle and Electric Vehicle
CN113794249A (en) * 2021-08-24 2021-12-14 浙江杭可科技股份有限公司 Digital power box charge-discharge control algorithm and control system

Also Published As

Publication number Publication date
JP2012249410A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2012165071A1 (en) Charger and charging device for charging electric vehicle
JP5097289B1 (en) Battery charger and charging device for electric vehicle charging
US9428177B2 (en) Vehicle
US9937805B2 (en) Battery charging system and charging method using same
CN109690337B (en) Battery diagnosis method, battery diagnosis program, battery management device, and power storage system
US8466655B2 (en) Charging system for vehicle
US20130093394A1 (en) Charging device for electromotive vehicle
US9315105B2 (en) Electrically-driven vehicle and method for controlling the same
JP4900496B2 (en) Remaining capacity calculation device
JPWO2010061465A1 (en) Vehicle charging system
JP2014143817A (en) Vehicular power system
WO2014060812A2 (en) Power supply system for vehicle
JP6456843B2 (en) Power supply
CN111907373A (en) Charging method for dynamically adjusting charging current of electric automobile
WO2018073961A1 (en) Power supply system and method for controlling same
US20130193917A1 (en) Charging device and charging method for power storage device
JP5108076B2 (en) Vehicle charging device
JP5958361B2 (en) Vehicle power supply device and vehicle equipped with the same
US9979219B2 (en) Charging device for an energy store and method for operating a charging device
US8704496B2 (en) Charge control system
JP5673504B2 (en) Vehicle charging device
WO2012073350A1 (en) Power supply system of vehicle
KR102155117B1 (en) An integrated multi battery charging system having an active power decoupling capability for an electric vehicle
US8598738B2 (en) Power assist device
US11289934B2 (en) Charger and method for controlling charger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793043

Country of ref document: EP

Kind code of ref document: A1