WO2012164630A1 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
WO2012164630A1
WO2012164630A1 PCT/JP2011/003151 JP2011003151W WO2012164630A1 WO 2012164630 A1 WO2012164630 A1 WO 2012164630A1 JP 2011003151 W JP2011003151 W JP 2011003151W WO 2012164630 A1 WO2012164630 A1 WO 2012164630A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
relay
state
controller
Prior art date
Application number
PCT/JP2011/003151
Other languages
English (en)
French (fr)
Inventor
勇二 西
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/119,963 priority Critical patent/US20140103859A1/en
Priority to JP2013517702A priority patent/JP5682708B2/ja
Priority to CN201180071207.2A priority patent/CN103563206A/zh
Priority to EP11866542.1A priority patent/EP2717415A4/en
Priority to PCT/JP2011/003151 priority patent/WO2012164630A1/ja
Publication of WO2012164630A1 publication Critical patent/WO2012164630A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage system in which a first power storage device and a second power storage device are connected in parallel.
  • a difference in electromotive voltage may occur between the two assembled batteries.
  • a circulating current inrush current
  • the relay provided in each assembled battery may be deteriorated.
  • the power storage system of the present invention includes a first power storage device and a second power storage device that perform charging and discharging, a first relay and a second relay, and a controller.
  • the first relay switches between an on state that allows charging / discharging of the first power storage device and an off state that prohibits charging / discharging of the first power storage device.
  • the second relay switches between an on state that allows charging / discharging of the second power storage device and an off state that prohibits charging / discharging of the second power storage device.
  • the first power storage device and the first relay, and the second power storage device and the second relay are connected in parallel.
  • the controller switches the first relay and the second relay from the on state to the off state after allowing the circulating current flowing between the first power storage device and the second power storage device.
  • the controller can allow the circulating current until the difference in electromotive voltage between the first power storage device and the second power storage device is equal to or lower than the rated voltage of each relay. Thereby, it can suppress that the difference of an electromotive voltage exceeds the rated voltage of a relay, and degradation of a relay can be prevented.
  • a third relay can be provided in the power storage system.
  • the third relay switches between an on state that allows charging / discharging of the first power storage device and the second power storage device and an off state that prohibits charging / discharging of the first power storage device and the second power storage device.
  • the controller can switch the first relay and the second relay from the on state to the off state after switching the third relay from the on state to the off state. If the third relay is switched to the off state, the first power storage device and the second power storage device can be disconnected from the connection with the load. At this time, the first relay and the second relay remain in the ON state, and a circulating current flows between the first power storage device and the second power storage device.
  • a current sensor for detecting circulating current can be provided.
  • the controller can switch the first relay and the second relay from the on state to the off state in response to the current value detected by the current sensor being equal to or less than the threshold value. By reducing the circulating current, the difference in electromotive voltage between the first power storage device and the second power storage device can be made equal to or lower than the rated voltage of the relay.
  • the threshold value can be determined based on the following formula (I).
  • Ith Vr / (R1 + R2) (I)
  • Ith is a threshold value
  • Vr is a rated voltage of the relay
  • R1 and R2 are internal resistances of the first power storage device and the second power storage device, respectively.
  • the internal resistances R1 and R2 can be the maximum value of the internal resistance that changes in each power storage device. Since the internal resistance changes, setting the threshold value Ith using the maximum value of the change range as the internal resistances R1 and R2, it is easy to ensure a state in which the difference in electromotive voltage is less than or equal to the rated voltage of the relay.
  • the internal resistances R1, R2 can be changed according to at least one of the temperature and SOC of each power storage device. Since the internal resistances R1 and R2 may depend on the temperature and the SOC, the internal resistances R1 and R2 can be changed according to the temperature and the SOC. Thereby, the threshold value Ith corresponding to the actual internal resistances R1 and R2 can be set.
  • the time during which the circulating current flows until the difference in electromotive voltage becomes less than the rated voltage of the relay can be determined in advance, and this time (set time) can be stored in the memory.
  • the controller can switch the first relay and the second relay from the on state to the off state after the set time has elapsed since the circulation current began to flow. If the set time described above is determined in advance, the first relay and the second relay can be turned off only by counting the time.
  • the set time can be calculated from, for example, the maximum value of the difference in electromotive voltage and the maximum value of the difference in internal resistance between the first power storage device and the second power storage device. If the maximum value of the difference between the electromotive voltages and the maximum value of the difference between the internal resistances are determined, the time until the difference between the electromotive voltages becomes less than the rated voltage of the relay can be calculated.
  • the first power storage device a power storage device that can be charged and discharged with a larger current than the second power storage device can be used.
  • the second power storage device can be a power storage device having a larger storage capacity than the first power storage device.
  • Each power storage device can output energy used to travel the vehicle.
  • the vehicle can be driven by using at least one of the first power storage device and the second power storage device.
  • an assembled battery in which a plurality of single cells are connected in series can be used as each power storage device.
  • the first relay and the second relay after flowing a circulating current between the first power storage device and the second power storage device, the first relay and the second relay are switched from the on state to the off state. Thereby, the difference in electromotive voltage between the first power storage device and the second power storage device can be reduced. Even if the first relay and the second relay are switched on again, the circulating current (inrush current) flowing between the first power storage device and the second power storage device can be suppressed, and the relay current (inrush current) is reduced. Deterioration can be suppressed.
  • Example 1 It is a figure which shows the structure of the battery system which is Example 1.
  • FIG. 1 is a diagram showing the configuration of the battery system of this example.
  • the battery system of the present embodiment can be mounted on a vehicle.
  • the battery system of this embodiment has two assembled batteries 10 and 20 connected in parallel.
  • the assembled battery (corresponding to the first power storage device) 10 includes a plurality of unit cells 11 connected in series.
  • the assembled battery (corresponding to the second power storage device) 20 includes a plurality of unit cells 21 connected in series.
  • secondary batteries such as nickel metal hydride batteries and lithium ion batteries can be used.
  • An electric double layer capacitor can be used instead of the secondary battery.
  • the number of the cells 11 and 21 constituting the assembled batteries 10 and 20 can be set as appropriate based on the required output. Moreover, at least one of the assembled batteries 10 and 20 may include the single cells 11 and 21 connected in parallel. Note that the single cells 11 and 21 may be used one by one, and the single cells 11 and 21 may be connected in parallel.
  • the assembled batteries 10 and 20 have service plugs (current breakers) 12 and 22, respectively.
  • the service plugs 12 and 22 are used to cut off the current flowing through the assembled batteries 10 and 20.
  • the current paths in the assembled batteries 10 and 20 can be interrupted by removing the service plugs 12 and 22 from the assembled batteries 10 and 20.
  • the assembled batteries 10 and 20 have fuses 13 and 23.
  • the voltage sensor 31 detects the voltage (total voltage) between the terminals of the assembled battery 10 and outputs the detection result to the controller 40.
  • the voltage sensor 32 detects the inter-terminal voltage (total voltage) of the assembled battery 20 and outputs the detection result to the controller 40.
  • the controller 40 includes a memory 40a. In the present embodiment, the memory 40 a is built in the controller 40, but the memory 40 a may be provided outside the controller 40.
  • the assembled battery 10 and system main relay SMR-B1, and the assembled battery 20 and system main relay SMR-B2 are connected in parallel.
  • System main relay (corresponding to the first relay) SMR-B1 permits charging / discharging of the assembled battery 10 in the on state, and prohibits charging / discharging of the assembled battery 10 in the off state.
  • the system main relay SMR-B1 is connected to the positive terminal of the assembled battery 10.
  • System main relay SMR-B1 receives a control signal from controller 40 and switches between an on state and an off state.
  • the controller 40 can connect the assembled battery 10 to the inverter 41 by switching the system main relay SMR-B1 from the off state to the on state.
  • System main relay (corresponding to the second relay) SMR-B2 allows charging / discharging of the assembled battery 20 in the on state, and prohibits charging / discharging of the assembled battery 20 in the off state.
  • the system main relay SMR-B2 is connected to the positive terminal of the assembled battery 20.
  • System main relay SMR-B2 receives a control signal from controller 40 and switches between an on state and an off state.
  • the controller 40 can connect the assembled battery 20 to the inverter 41 by switching the system main relay SMR-B2 from the off state to the on state.
  • the current sensor 33 detects the charge / discharge current flowing through the assembled battery 10 and outputs the detection result to the controller 40.
  • the current sensor 34 detects the charge / discharge current flowing through the assembled battery 20 and outputs the detection result to the controller 40.
  • the system main relay (corresponding to the third relay) SMR-G is connected to the negative terminals of the assembled batteries 10 and 20.
  • System main relay SMR-G receives a control signal from controller 40 and switches between an on state and an off state.
  • the system main relay SMR-P and the limiting resistor 35 are connected in parallel with the system main relay SMR-G.
  • System main relay SMR-P receives a control signal from controller 40 and switches between an on state and an off state.
  • the limiting resistor 35 is used to suppress the inrush current from flowing when the assembled batteries 10 and 20 are connected to the inverter 41.
  • the inverter 41 converts the DC power from the assembled batteries 10 and 20 into AC power and outputs the AC power to the motor / generator 42.
  • a three-phase AC motor can be used as the motor / generator 42.
  • the motor / generator 42 receives AC power from the inverter 41 and generates kinetic energy for running the vehicle. The kinetic energy generated by the motor generator 42 is transmitted to the wheels.
  • the motor / generator 42 converts kinetic energy generated during braking of the vehicle into electrical energy.
  • the AC power generated by the motor / generator 42 is converted into DC power by the inverter 41 and then supplied to the assembled batteries 10 and 20.
  • the assembled batteries 10 and 20 can store regenerative power.
  • the assembled batteries 10 and 20 can also be charged using a charger.
  • the charger can charge the assembled batteries 10 and 20 by supplying electric power from an external power source (for example, a commercial power supply) to the assembled batteries 10 and 20.
  • the assembled batteries 10 and 20 are connected to the inverter 41, but the present invention is not limited to this.
  • at least one of the assembled batteries 10 and 20 can be connected to a booster circuit (not shown), and the booster circuit can be connected to the inverter 41.
  • the booster circuit By using the booster circuit, the output voltage of the assembled batteries 10 and 20 can be boosted and the boosted power can be supplied to the inverter 41. Further, the output voltage of the inverter 41 can be stepped down, and the electric power after the step-down can be supplied to the assembled batteries 10 and 20.
  • step S101 the controller 40 determines whether or not the ignition switch of the vehicle has been switched from OFF to ON. Information relating to turning on and off the ignition switch is input to the controller 40. When the ignition switch is switched from OFF to ON, the process proceeds to step S102.
  • step S102 the controller 40 switches the system main relays SMR-B1 and SMR-B2 from off to on.
  • System main relays SMR-B1 and SMR-B2 can be switched on at different timings.
  • step S103 the controller 40 switches the system main relay SMR-P from off to on.
  • the assembled batteries 10 and 20 are connected to the inverter 41 when the system main relay SMR-P is turned on.
  • the charging / discharging current of the assembled batteries 10 and 20 flows through the limiting resistor 35.
  • the controller 40 switches the system main relay SMR-G from off to on in step S104, and switches the system main relay SMR-P from on to off in step S105. Thereby, the connection of the assembled batteries 10 and 20 and the inverter 41 is completed.
  • both the assembled batteries 10 and 20 are connected to the inverter 41, but the present invention is not limited to this. Specifically, only one of the assembled batteries 10 and 20 can be connected to the inverter 41. In this case, the system main relay SMR-B1 (or system main relay SMR-B2) corresponding to the assembled battery 10 (or assembled battery 20) connected to the inverter 41 may be switched from off to on.
  • step S106 the controller 40 controls charging / discharging of the assembled battery 10.20.
  • charge / discharge control of the assembled batteries 10 and 20 known control can be appropriately employed.
  • charging / discharging of the assembled batteries 10 and 20 can be controlled so that the voltages of the assembled batteries 10 and 20 change within a range of preset upper limit voltage and lower limit voltage.
  • step S201 the controller 40 determines whether or not the ignition switch of the vehicle has been switched from on to off. When the ignition switch is switched from on to off, the process proceeds to step S202.
  • step S202 the controller 40 switches the system main relay SMR-G from on to off. Thereby, the connection between the assembled batteries 10 and 20 and the inverter 41 is cut off.
  • the system main relays SMR-B1 and SMR-B2 remain on, and the assembled batteries 10 and 20 remain connected in parallel. For this reason, if the electromotive voltage of the assembled battery 10 and the electromotive voltage (OCV; Open Circuit Voltage) of the assembled battery 20 are different, a current (circulating current) may flow between the assembled battery 10 and the assembled battery 20. Specifically, a current may flow from an assembled battery having a higher electromotive voltage to an assembled battery having a lower electromotive voltage.
  • OCV Open Circuit Voltage
  • step S203 the controller 40 detects the current (circulating current) Ij flowing between the assembled battery 10 and the assembled battery 20 based on the outputs of the current sensors 33 and 34. Possible causes for the difference in OCV between the assembled battery 10 and the assembled battery 20 are as follows.
  • CCVs Current Circuit Voltage
  • OCV Open Circuit Voltage
  • CCV OCV + IR (1)
  • I indicates the current flowing through each of the assembled batteries 10 and 20
  • R indicates the internal resistance of each of the assembled batteries 10.20.
  • OCV of the assembled batteries 10 and 20 may differ from each other by the independent equalization process.
  • inrush current flows through the system main relays SMR-B1 and SMR-B2, and the system main relays SMR-B1 and SMR-B2 are prevented from deteriorating. .
  • step S204 the controller 40 determines whether or not the circulating current Ij detected in step S203 is smaller than the threshold value Ith.
  • the controller 40 determines whether or not the circulating current Ij detected in step S203 is smaller than the threshold value Ith.
  • a circulating current Ij flows between the assembled batteries 10 and 20.
  • the circulating current Ij decreases with time.
  • the threshold value Ith is determined based on the OCV difference ⁇ V between the assembled batteries 10 and 20 and the rated voltage Vr of the system main relays SMR-B1 and SMR-B2. Specifically, the threshold value Ith is determined as described below.
  • the OCV difference ⁇ V between the assembled batteries 10 and 20 is expressed by the following formula (2).
  • ⁇ V Ij (R1 + R2) (2)
  • R1 represents the internal resistance of the assembled battery 10
  • R2 represents the internal resistance of the assembled battery 20.
  • ⁇ V is lower than the rated voltage Vr of the system main relays SMR-B1 and SMR-B2, even if a circulating current flows between the assembled batteries 10 and 20, the system main relays SMR-B1 and SMR-B2 are deteriorated. Can be suppressed. Specifically, the condition of the following formula (3) may be satisfied. ⁇ V ⁇ Vr (3)
  • the threshold value Ith can be specified if the values of the resistors R1 and R2 are determined in advance.
  • a specific numerical value of the threshold value Ith can be set as appropriate within a range that satisfies Expression (4). According to Expression (4), the minimum value of the threshold value Ith is Vr / (R1 + R2).
  • resistors R1 and R2 resistance values that the assembled batteries 10 and 20 can take are measured in advance in various usage environments, and the maximum value of these resistance values can be used.
  • the resistances R1 and R2 can be specified based on the temperature of the battery packs 10 and 20 and the state of charge (SOC; State of charge).
  • the resistance R1 can be specified by preparing in advance a map showing the correspondence relationship between the temperature of the battery pack 10, the SOC, and the resistance R1, and acquiring information on the temperature of the battery pack 10 and the SOC.
  • the map described above can be stored in the memory 40a. If the resistor R1 can be expressed as a function of the temperature of the battery pack 10 and the SOC, the resistor R1 can be specified by calculation using this function.
  • a temperature sensor may be provided in the assembled battery 10. Further, in order to obtain the SOC information of the assembled battery 10, the SOC of the assembled battery 10 is estimated using the detection result of the voltage sensor 31, or the assembled battery 10 is based on the integrated value of the charge / discharge current of the assembled battery 10. The SOC can be estimated. The integrated value of the charge / discharge current can be specified based on the output of the current sensor 33.
  • the resistor R1 can be identified based on at least one of the temperature of the assembled battery 10 and the SOC.
  • the resistance R2 can be specified in the same manner as the resistance R1.
  • the resistors R1 and R2 may depend on the temperature and SOC of the assembled batteries 10 and 20, and therefore, accurate values can be used as the resistors R1 and R2 by considering the temperature and SOC.
  • step S205 the controller 40 switches the system main relays SMR-B1, SMR-B2 from on to off.
  • System main relays SMR-B1 and SMR-B2 can be switched from on to off at different timings.
  • the two assembled batteries 10 and 20 are connected in parallel, but the present invention is not limited to this.
  • the present invention can also be applied to a configuration in which three or more assembled batteries are connected in parallel.
  • a system main relay corresponding to the system main relays SMR-B1 and SMR-B2 is connected to each assembled battery.
  • the OCV difference ⁇ V is set to be equal to or lower than the rated voltage Vr, but the present invention is not limited to this. That is, it is only necessary to reduce the OCV difference ⁇ V by flowing a circulating current between the assembled batteries 10 and 20 before switching the system main relays SMR-B1 and SMR-B2 from on to off. By reducing the OCV difference ⁇ V in this way, it is possible to suppress the circulation current from flowing between the assembled batteries 10 and 20 when the system main relays SMR-B1 and SMR-B2 are turned on again. it can.
  • the assembled batteries 10 and 20 having the same characteristics are used, but the present invention is not limited to this.
  • a high-power assembled battery can be used as the assembled battery 10
  • a high-capacity assembled battery can be used as the assembled battery 20.
  • the high-power assembled battery 10 is an assembled battery that can be charged and discharged with a larger current than the high-capacity assembled battery 20.
  • the high-capacity assembled battery 20 is an assembled battery having a larger storage capacity than the high-power assembled battery 10.
  • lithium ion batteries are used as the single cells 11 and 21, for example, hard carbon (non-graphitizable carbon material) is used as the negative electrode active material of the single cell 11, and lithium manganese system is used as the positive electrode active material of the single cell 11.
  • a composite oxide can be used.
  • graphite graphite
  • lithium / nickel composite oxide can be used as the positive electrode active material of the single battery 21.
  • the single battery 11 of the high-power assembled battery 10 and the single battery 21 of the high-capacity assembled battery 20 have the relationship shown in Table 1 below when compared with each other.
  • the output of the cells 11 and 21 is, for example, the power per unit mass of the cells 11 and 21 (unit [W / kg]) or the power per unit volume of the cells 11 and 21 (unit [ W / L]).
  • the unit cell 11 is higher than the unit cell 21.
  • the output [W] of the unit cell 11 is higher than the output [W] of the unit cell 21.
  • the capacity of the unit cells 11 and 21 is, for example, the capacity per unit mass of the unit cells 11 and 21 (unit [Wh / kg]) or the capacity per unit volume of the unit cells 11 and 21 (unit [Wh / L]). ).
  • the unit cell 21 is larger than the unit cell 11.
  • the capacity [Wh] of the unit cell 21 is larger than the capacity [Wh] of the unit cell 11.
  • the output of the electrodes of the unit cells 11 and 21 can be expressed, for example, as a current value per unit area of the electrode (unit [mA / cm ⁇ 2]).
  • the cell 11 is higher than the cell 21 in terms of electrode output.
  • the value of the current flowing through the electrode of the unit cell 11 is larger than the value of the current flowing through the electrode of the unit cell 21.
  • the capacity of the electrodes of the unit cells 11 and 21 can be expressed as, for example, the capacity per unit mass of the electrode (unit [mAh / g]) or the capacity per unit volume of the electrode (unit [mAh / cc]). .
  • the cell 21 is larger than the cell 11 in terms of electrode capacity.
  • the capacity of the electrode of the unit cell 21 is larger than the capacity of the electrode of the unit cell 11.
  • a battery system that is Embodiment 2 of the present invention will be described.
  • the present embodiment is different from the first embodiment (FIG. 3) with respect to the processing when the ignition switch is switched from on to off.
  • FIG. 3 A battery system that is Embodiment 2 of the present invention.
  • FIG. 3 A battery system that is Embodiment 2 of the present invention.
  • FIG. 3 A battery system that is Embodiment 2 of the present invention.
  • FIG. 3 A battery system that is Embodiment 2 of the present invention.
  • the present embodiment is different from the first embodiment (FIG. 3) with respect to the processing when the ignition switch is switched from on to off.
  • FIG. 3 A battery system that is Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart showing an operation when the connection between the assembled batteries 10 and 20 and the inverter 41 is cut off in the battery system of this embodiment. The process shown in FIG. 4 is executed by the controller 40.
  • step S301 the controller 40 determines whether or not the ignition switch of the vehicle has been switched from on to off. When the ignition switch is switched from on to off, the process proceeds to step S302.
  • step S302 the controller 40 switches the system main relay SMR-G from on to off. Thereby, the connection between the assembled batteries 10 and 20 and the inverter 41 is cut off.
  • system main relays SMR-B1 and SMR-B2 remain on, assembled battery 10 and assembled battery 20 remain connected in parallel.
  • step S303 the controller 40 starts counting time using a timer.
  • the controller 40 includes a timer.
  • step S304 the controller 40 determines whether or not the count time Tj of the timer is longer than the threshold value Tth. That is, the controller 40 stands by until the count time Tj becomes longer than the threshold value Tth.
  • the controller 40 stands by until the count time Tj becomes longer than the threshold value Tth.
  • Threshold value Tth can be set as described below, for example.
  • a value ⁇ Vmax when the difference in OCV between the assembled batteries 10 and 20 is maximized is predicted.
  • the voltage difference ⁇ Vmax occurs, for example, the deterioration state of the assembled battery 10 may be maximum, and the deterioration state of the assembled battery 20 may be minimum.
  • the resistance of the assembled battery 10 is Rmax
  • the resistance of the assembled battery 20 is Rmin. If the resistances Rini of the assembled batteries 10 and 20 in the initial state (immediately after manufacture) are equal to each other, the amount of change in the resistance Rmax with respect to the resistor Rini is the largest, and the amount of change in the resistance Rmin with respect to the resistor Rini is the smallest.
  • the system main relays SMR-B1, SMR-B2 are caused by the circulating current (rush current) flowing between the assembled batteries 10.20. Can be prevented from deteriorating.
  • the time until the voltage difference ⁇ Vmax reaches the rated voltage Vr is measured in advance, this time becomes the threshold value Tth. Since the current I flowing between the assembled batteries 10 and 20 decreases with time, the time until the voltage difference ⁇ Vmax reaches the rated voltage Vr can be specified in advance.
  • the threshold value Tth specified in advance can be stored in the memory 40a.
  • the voltage difference ⁇ V of the OCV between the assembled batteries 10 and 20 can be expressed by the following formula (6).
  • ⁇ V ⁇ Vmax ⁇ e ⁇ ( ⁇ 2 kt / (Rmax + Rmin)) (6)
  • ⁇ Vmax is a value when the difference in OCV between the assembled batteries 10 and 20 is maximized.
  • ⁇ Vmax is a difference in OCV when the system main relay SMR-G is switched from on to off.
  • k is a constant and t is time.
  • Rmax is the resistance of the assembled battery 10 at which the deterioration state is maximized
  • Rmin is the resistance of the assembled battery 20 at which the deterioration state is minimum.
  • the time t until the voltage difference ⁇ V reaches the rated voltage Vr can be calculated. This time t becomes the threshold value Tth.
  • the threshold value Tth can be specified by the two methods (examples) described above, but is not limited thereto. That is, the threshold value Tth may be set as the time until the OCV difference between the assembled batteries 10 and 20 becomes equal to or lower than the rated voltage Vr of the system main relays SMR-B1 and SMR-B2.
  • step S305 the controller 40 switches the system main relays SMR-B1, SMR-B2 from on to off.
  • System main relays SMR-B1 and SMR-B2 can be switched from on to off at different timings.
  • the system main relay SMR-B1 and SMR-B2 can be switched from on to off.
  • the system main relays SMR-B1 and SMR-B2 are switched from off to on in response to the next ignition switch on, the system main relays SMR-B1 and SMR-B2 deteriorate due to the circulating current. Can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 第1蓄電装置および第2蓄電装置の間を流れる循環電流によって、第1リレーや第2リレーが劣化してしまうことがある。 【解決手段】 蓄電システムは、充放電を行う第1蓄電装置および第2蓄電装置と、第1リレーおよび第2リレーと、コントローラとを有する。第1リレーは、第1蓄電装置の充放電を、オン状態で許容し、オフ状態で禁止する。第2リレーは、第2蓄電装置の充放電を、オン状態で許容し、オフ状態で禁止する。第1蓄電装置および第1リレーと、第2蓄電装置および第2リレーとは、並列に接続されている。コントローラは、第1蓄電装置および第2蓄電装置の間で流れる循環電流を許容した後に、第1リレーおよび第2リレーをオン状態からオフ状態に切り替える。

Description

蓄電システム
 本発明は、第1蓄電装置および第2蓄電装置が並列に接続された蓄電システムに関する。
 2つの組電池を並列に接続したシステムがある。このシステムでは、各組電池に対して、リレーが設けられている。このようにリレーを設けることにより、並列に接続された2つの組電池を負荷と接続したり、2つの組電池の一方だけを負荷と接続したりすることができる。
特開2009-291016号公報 特開2006-325286号公報 特開2011-003385号公報
 2つの組電池を並列に接続するシステムでは、2つの組電池の間において、起電圧の差が発生することがある。ここで、2つの組電池を並列に接続すると、起電圧が高い側の組電池から、起電圧が低い側の組電池に、循環電流(突入電流)が流れることがある。循環電流が流れると、各組電池に設けられたリレーが劣化してしまうおそれがある。
 本発明の蓄電システムは、充放電を行う第1蓄電装置および第2蓄電装置と、第1リレーおよび第2リレーと、コントローラとを有する。第1リレーは、第1蓄電装置の充放電を許容するオン状態と、第1蓄電装置の充放電を禁止するオフ状態の間で切り替わる。第2リレーは、第2蓄電装置の充放電を許容するオン状態と、第2蓄電装置の充放電を禁止するオフ状態の間で切り替わる。第1蓄電装置および第1リレーと、第2蓄電装置および第2リレーとは、並列に接続されている。コントローラは、第1蓄電装置および第2蓄電装置の間で流れる循環電流を許容した後に、第1リレーおよび第2リレーをオン状態からオフ状態に切り替える。
 コントローラは、第1蓄電装置および第2蓄電装置における起電圧の差が各リレーの定格電圧以下となるまで、循環電流を許容することができる。これにより、起電圧の差がリレーの定格電圧を超えるのを抑制でき、リレーの劣化を防止することができる。
 蓄電システムには、第3リレーを設けることができる。第3リレーは、第1蓄電装置および第2蓄電装置の充放電を許容するオン状態と、第1蓄電装置および第2蓄電装置の充放電を禁止するオフ状態の間で切り替わる。コントローラは、第3リレーをオン状態からオフ状態に切り替えた後に、第1リレーおよび第2リレーをオン状態からオフ状態に切り替えることができる。第3リレーをオフ状態に切り替えれば、第1蓄電装置および第2蓄電装置を、負荷との接続から遮断することができる。このとき、第1リレーおよび第2リレーがオン状態のままであり、第1蓄電装置および第2蓄電装置の間には、循環電流が流れることになる。
 循環電流を検出する電流センサを設けることができる。コントローラは、電流センサによって検出された電流値が閾値以下となることに応じて、第1リレーおよび第2リレーをオン状態からオフ状態に切り替えることができる。循環電流を低下させることにより、第1蓄電装置および第2蓄電装置の間における起電圧の差を、リレーの定格電圧以下にすることができる。
 閾値としては、下記式(I)に基づいて決定することができる。
 Ith=Vr/(R1+R2) ・・・(I)
 ここで、Ithは、閾値であり、Vrは、リレーの定格電圧であり、R1およびR2は、第1蓄電装置および第2蓄電装置のそれぞれの内部抵抗である。内部抵抗R1,R2は、各蓄電装置で変化する内部抵抗の最大値とすることができる。内部抵抗は変化するため、変化の範囲の最大値を、内部抵抗R1,R2として用いて閾値Ithを設定すれば、起電圧の差がリレーの定格電圧以下となる状態を確保しやすい。
 また、内部抵抗R1,R2は、各蓄電装置の温度およびSOCの少なくとも一方に応じて、変更することができる。内部抵抗R1,R2は、温度やSOCに依存することがあるため、温度やSOCに応じて内部抵抗R1,R2を変更することができる。これにより、実際の内部抵抗R1,R2に対応した閾値Ithを設定することができる。
 起電圧の差がリレーの定格電圧以下となるまでの間において、循環電流が流れる時間を予め決めておき、この時間(設定時間)をメモリに格納させておくことができる。ここで、コントローラは、循環電流を流し始めてから、設定時間が経過した後に、第1リレーおよび第2リレーをオン状態からオフ状態に切り替えることができる。上述した設定時間を予め決めておけば、時間をカウントするだけで、第1リレーおよび第2リレーをオフ状態にすることができる。
 設定時間は、例えば、起電圧の差の最大値と、第1蓄電装置および第2蓄電装置における内部抵抗の差の最大値と、から算出することができる。起電圧の差の最大値や、内部抵抗の差の最大値を決めておけば、起電圧の差がリレーの定格電圧以下となるまでの時間を算出することができる。
 第1蓄電装置としては、第2蓄電装置よりも大きな電流で充放電を行うことができる蓄電装置を用いることができる。また、第2蓄電装置は、第1蓄電装置よりも蓄電容量が大きい蓄電装置を用いることができる。各蓄電装置は、車両の走行に用いられるエネルギを出力することができる。これにより、第1蓄電装置および第2蓄電装置の少なくとも一方を用いることにより、車両を走行させることができる。各蓄電装置としては、複数の単電池が直列に接続された組電池を用いることができる。
 本発明によれば、第1蓄電装置および第2蓄電装置の間で循環電流を流してから、第1リレーおよび第2リレーをオン状態からオフ状態に切り替えている。これにより、第1蓄電装置および第2蓄電装置の間における起電圧の差を縮めることができる。そして、第1リレーおよび第2リレーを再びオン状態に切り替えても、第1蓄電装置および第2蓄電装置の間で流れる循環電流(突入電流)を抑制でき、循環電流(突入電流)によるリレーの劣化を抑制することができる。
実施例1である電池システムの構成を示す図である。 実施例1において、組電池をインバータと接続するときの動作を示すフローチャートである。 実施例1において、組電池およびインバータの接続を遮断するときの動作を示すフローチャートである。 実施例2の電池システムにおいて、組電池およびインバータの接続を遮断するときの動作を示すフローチャートである。
 以下、本発明の実施例について説明する。
 本発明の実施例1である電池システム(蓄電システムに相当する)について説明する。図1は、本実施例の電池システムの構成を示す図である。本実施例の電池システムは、車両に搭載することができる。
 本実施例の電池システムは、並列に接続された2つの組電池10,20を有する。組電池(第1蓄電装置に相当する)10は、直列に接続された複数の単電池11を有する。組電池(第2蓄電装置に相当する)20は、直列に接続された複数の単電池21を有する。単電池11,21としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタを用いることができる。
 組電池10,20を構成する単電池11,21の数は、要求出力などに基づいて、適宜設定することができる。また、組電池10,20の少なくとも一方は、並列に接続された単電池11,21を含んでいてもよい。なお、単電池11,21を一つずつ用い、これらの単電池11,21を並列に接続するだけでもよい。
 組電池10,20は、サービスプラグ(電流遮断器)12,22をそれぞれ有する。サービスプラグ12,22は、組電池10,20に流れる電流を遮断するために用いられる。具体的には、サービスプラグ12,22を組電池10,20から取り外すことにより、組電池10,20における電流経路を遮断することができる。また、組電池10,20は、ヒューズ13,23を有する。
 電圧センサ31は、組電池10の端子間電圧(総電圧)を検出し、検出結果をコントローラ40に出力する。電圧センサ32は、組電池20の端子間電圧(総電圧)を検出し、検出結果をコントローラ40に出力する。コントローラ40は、メモリ40aを備えている。本実施例では、メモリ40aがコントローラ40に内蔵されているが、コントローラ40の外部にメモリ40aが設けられていてもよい。
 組電池10およびシステムメインリレーSMR-B1と、組電池20およびシステムメインリレーSMR-B2とは、並列に接続されている。
 システムメインリレー(第1リレーに相当する)SMR-B1は、オン状態において、組電池10の充放電を許容し、オフ状態において、組電池10の充放電を禁止する。本実施例において、システムメインリレーSMR-B1は、組電池10の正極端子と接続されている。システムメインリレーSMR-B1は、コントローラ40からの制御信号を受けて、オン状態およびオフ状態の間で切り替わる。コントローラ40は、システムメインリレーSMR-B1をオフ状態からオン状態に切り替えることにより、組電池10をインバータ41と接続することができる。
 システムメインリレー(第2リレーに相当する)SMR-B2は、オン状態において、組電池20の充放電を許容し、オフ状態において、組電池20の充放電を禁止する。本実施例において、システムメインリレーSMR-B2は、組電池20の正極端子と接続されている。システムメインリレーSMR-B2は、コントローラ40からの制御信号を受けて、オン状態およびオフ状態の間で切り替わる。コントローラ40は、システムメインリレーSMR-B2をオフ状態からオン状態に切り替えることにより、組電池20をインバータ41と接続することができる。
 電流センサ33は、組電池10に流れる充放電電流を検出し、検出結果をコントローラ40に出力する。電流センサ34は、組電池20に流れる充放電電流を検出し、検出結果をコントローラ40に出力する。
 システムメインリレー(第3リレーに相当する)SMR-Gは、組電池10,20の負極端子と接続されている。システムメインリレーSMR-Gは、コントローラ40からの制御信号を受けて、オン状態およびオフ状態の間で切り替わる。システムメインリレーSMR-Pおよび制限抵抗35は、システムメインリレーSMR-Gと並列に接続されている。システムメインリレーSMR-Pは、コントローラ40からの制御信号を受けて、オン状態およびオフ状態の間で切り替わる。制限抵抗35は、組電池10,20をインバータ41と接続するときに、突入電流が流れるのを抑制するために用いられる。
 インバータ41は、組電池10,20からの直流電力を交流電力に変換して、モータ・ジェネレータ42に出力する。モータ・ジェネレータ42としては、三相交流モータを用いることができる。モータ・ジェネレータ42は、インバータ41からの交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータ42によって生成された運動エネルギは、車輪に伝達される。
 車両を減速させたり、停止させたりするとき、モータ・ジェネレータ42は、車両の制動時に発生する運動エネルギを電気エネルギに変換する。モータ・ジェネレータ42によって生成された交流電力は、インバータ41によって直流電力に変換された後に、組電池10,20に供給される。組電池10,20は、回生電力を蓄えることができる。ここで、充電器を用いて、組電池10,20を充電することもできる。充電器は、外部電源(例えば、商用電源)からの電力を組電池10,20に供給することにより、組電池10,20を充電することができる。
 本実施例では、組電池10,20がインバータ41に接続されているが、これに限るものではない。具体的には、組電池10,20の少なくとも一方を昇圧回路(図示せず)に接続し、昇圧回路をインバータ41に接続することができる。昇圧回路を用いることにより、組電池10,20の出力電圧を昇圧して、昇圧後の電力をインバータ41に供給することができる。また、インバータ41の出力電圧を降圧して、降圧後の電力を組電池10,20に供給することができる。
 次に、組電池10,20をインバータ41と接続するときの動作について、図2に示すフローチャートを用いて説明する。図2に示す処理は、コントローラ40によって実行される。図2に示す処理を開始するとき、システムメインリレーSMR-B1,SMR-B2,SMR-G,SMR-Pはオフである。
 ステップS101において、コントローラ40は、車両のイグニッションスイッチがオフからオンに切り替わったか否かを判別する。イグニッションスイッチのオンおよびオフに関する情報は、コントローラ40に入力される。イグニッションスイッチがオフからオンに切り替わると、ステップS102に進む。
 ステップS102において、コントローラ40は、システムメインリレーSMR-B1,SMR-B2をオフからオンに切り替える。システムメインリレーSMR-B1,SMR-B2は、互いに異なるタイミングにおいて、オンに切り替えることができる。
 ステップS103において、コントローラ40は、システムメインリレーSMR-Pをオフからオンに切り替える。システムメインリレーSMR-Pがオンになることで、組電池10,20は、インバータ41と接続される。ここで、組電池10,20の充放電電流は、制限抵抗35を流れる。
 コントローラ40は、ステップS104において、システムメインリレーSMR-Gをオフからオンに切り替えるとともに、ステップS105において、システムメインリレーSMR-Pをオンからオフに切り替える。これにより、組電池10,20およびインバータ41の接続が完了する。
 本実施例では、組電池10,20の両者をインバータ41と接続しているが、これに限るものではない。具体的には、組電池10,20の一方だけを、インバータ41と接続することもできる。この場合には、インバータ41と接続される組電池10(又は組電池20)に対応するシステムメインリレーSMR-B1(又はシステムメインリレーSMR-B2)をオフからオンに切り替えればよい。
 ステップS106において、コントローラ40は、組電池10.20の充放電を制御する。組電池10,20の充放電制御としては、公知の制御を適宜採用することができる。例えば、各組電池10,20の電圧が、予め設定された上限電圧および下限電圧の範囲内で変化するように、組電池10,20の充放電を制御することができる。
 次に、組電池10,20およびインバータ41の接続を遮断するときの動作について、図3に示すフローチャートを用いて説明する。図2に示す処理が行われた後に、図3に示す処理が行われる。図3に示す処理は、コントローラ40によって実行される。
 ステップS201において、コントローラ40は、車両のイグニッションスイッチがオンからオフに切り替わったか否かを判別する。イグニッションスイッチがオンからオフに切り替わると、ステップS202に進む。
 ステップS202において、コントローラ40は、システムメインリレーSMR-Gをオンからオフに切り替える。これにより、組電池10,20およびインバータ41の接続が遮断される。
 ここで、システムメインリレーSMR-B1,SMR-B2は、オンのままであり、組電池10,20は、並列に接続されたままである。このため、組電池10の起電圧と、組電池20の起電圧(OCV;Open Circuit Voltage)が異なっていると、組電池10および組電池20の間で電流(循環電流)が流れることがある。具体的には、起電圧が高い側の組電池から、起電圧が低い側の組電池に、電流が流れることがある。
 ステップS203において、コントローラ40は、電流センサ33,34の出力に基づいて、組電池10および組電池20の間で流れる電流(循環電流)Ijを検出する。組電池10および組電池20の間でOCVの差が発生してしまう原因としては、以下のことが考えられる。
 組電池10および組電池20の間では、温度の差や、単電池11,22の劣化状態の差などにより、抵抗の差が発生してしまう。一方、組電池10,20が並列に接続されているときには、組電池10.20のCCV(Closed Circuit Voltage)は、互いに等しくなる。ここで、CCVおよびOCVは、下記式(1)の関係を有する。
 CCV=OCV+IR ・・・(1)
 ここで、Iは、各組電池10,20に流れる電流を示し、Rは、各組電池10.20の内部抵抗を示す。
 組電池10,20の間で抵抗Rの差が発生すると、組電池10,20のCCVが互いに等しくても、組電池10,20のOCVが互いに異なってしまう。また、組電池10,20のそれぞれにおいて、電圧を均等化させる処理を行う構成では、独立した均等化処理によって、組電池10,20のOCVが互いに異なってしまうことがある。
 OCVの差が発生していると、OCVの高い側の組電池から、OCVの低い側の組電池に循環電流Ijが流れる。OCVの差が発生しているままで、システムメインリレーSMR-B1,SMR-B2をオンからオフに切り替えると、以下に説明する不具合が発生するおそれがある。
 すなわち、次回のイグニッションスイッチのオンに応じて、システムメインリレーSMR-B1,SMR-B2をオフからオンに切り替えたときに、システムメインリレーSMR-B1,SMR-B2に突入電流が流れてしまう。突入電流が流れることによって、システムメインリレーSMR-B1,SMR-B2は、熱的負荷を受けて劣化してしまうおそれがある。互いに異なるタイミングにおいて、システムメインリレーSMR-B1,SMR-B2をオフからオンに切り替えるときには、最後にオフからオンに切り替えるシステムメインリレーが、突入電流によって熱的負荷を受けてしまう。
 そこで、本実施例では、以下に説明するように、システムメインリレーSMR-B1,SMR-B2に突入電流が流れて、システムメインリレーSMR-B1,SMR-B2が劣化するのを抑制している。
 ステップS204において、コントローラ40は、ステップS203で検出された循環電流Ijが閾値Ithよりも小さいか否かを判別する。組電池10,20の間でOCVの差が発生しているときには、組電池10,20の間で循環電流Ijが流れる。循環電流Ijは、時間の経過とともに低下する。
 コントローラ40は、循環電流Ijが閾値Ithよりも小さいと判別すれば、ステップS205に進み、そうでなければ、ステップS203に戻る。閾値Ithは、組電池10,20の間におけるOCVの差ΔVと、システムメインリレーSMR-B1,SMR-B2の定格電圧Vrとに基づいて決定される。具体的には、以下に説明するように、閾値Ithが決定される。
 組電池10,20の間におけるOCVの差ΔVは、下記式(2)で表される。
 ΔV=Ij(R1+R2) ・・・(2)
 式(2)において、R1は、組電池10の内部抵抗を示し、R2は、組電池20の内部抵抗を示す。
 ΔVが、システムメインリレーSMR-B1,SMR-B2の定格電圧Vrよりも低ければ、組電池10,20の間で循環電流が流れても、システムメインリレーSMR-B1,SMR-B2の劣化を抑制することができる。具体的には、下記式(3)の条件を満たせばよい。
 ΔV≦Vr ・・・(3)
 式(2)および式(3)から、下記式(4)が導かれる。
 Ij≦Vr/(R1+R2)=Ith ・・・(4)
 システムメインリレーSMR-B1,SMR-B2の定格電圧Vrは、予め特定しておくことができるため、抵抗R1,R2の値を予め決めておけば、閾値Ithを特定することができる。閾値Ithの具体的な数値は、式(4)を満たす範囲内において、適宜設定することができる。式(4)によれば、閾値Ithの最小値としては、Vr/(R1+R2)となる。
 抵抗R1,R2の具体的な値としては、様々な使用環境において、組電池10,20が取り得る抵抗値を予め測定しておき、これらの抵抗値の最大値を用いることができる。一方、組電池10,20の温度や充電状態(SOC;State of Charge)に基づいて、抵抗R1,R2を特定することもできる。
 例えば、組電池10の温度、SOCおよび抵抗R1の対応関係を示すマップを予め用意しておき、組電池10の温度およびSOCの情報を取得することにより、抵抗R1を特定することができる。上述したマップは、メモリ40aに格納しておくことができる。抵抗R1を、組電池10の温度およびSOCの関数として表すことができれば、この関数を用いた演算によって、抵抗R1を特定することもできる。
 組電池10の温度情報を取得するためには、例えば、組電池10に温度センサを設けておけばよい。また、組電池10のSOC情報を取得するためには、電圧センサ31の検出結果を用いて組電池10のSOCを推定したり、組電池10の充放電電流の積算値に基づいて組電池10のSOCを推定したりすることができる。充放電電流の積算値は、電流センサ33の出力に基づいて特定することができる。
 組電池10の温度およびSOCの少なくとも一方に基づいて、抵抗R1を特定することができる。抵抗R2についても、抵抗R1と同様に特定することができる。抵抗R1,R2は、組電池10,20の温度やSOCに依存することもあるため、温度やSOCを考慮することにより、抵抗R1,R2として、精度の良い値を用いることができる。
 循環電流Ijが、閾値Ithよりも小さいときには、組電池10および組電池20の間で循環電流が流れたとしても、システムメインリレーSMR-B1,SMR-B2の劣化を抑制することができる。
 ステップS205において、コントローラ40は、システムメインリレーSMR-B1,SMR-B2をオンからオフに切り替える。システムメインリレーSMR-B1,SMR-B2は、互いに異なるタイミングにおいて、オンからオフに切り替えることができる。
 本実施例では、2つの組電池10,20を並列に接続しているが、これに限るものではない。3つ以上の組電池を並列に接続した構成であっても、本発明を適用することができる。ここで、各組電池には、システムメインリレーSMR-B1,SMR-B2に相当するシステムメインリレーが接続されている。
 3つ以上の組電池が並列に接続された構成であっても、3つ以上の組電池において、OCVの差が発生しているときには、OCVが高い側の組電池からOCVの低い側の組電池に循環電流が流れてしまう。このため、循環電流が流れる2つの組電池において、図3で説明した処理を行えば、突入電流によるシステムメインリレーの劣化を抑制することができる。
 本実施例では、OCVの差ΔVが定格電圧Vr以下となるようにしているが、これに限るものではない。すなわち、システムメインリレーSMR-B1,SMR-B2をオンからオフに切り替える前に、組電池10,20の間で循環電流を流すことにより、OCVの差ΔVを縮めることができればよい。このようにOCVの差ΔVを縮めておけば、システムメインリレーSMR-B1,SMR-B2を再びオンにしたときに、組電池10,20の間で、循環電流が流れるのを抑制することができる。
 本実施例では、同一特性の組電池10,20を用いているが、これに限るものではない。例えば、組電池10として、高出力型組電池を用い、組電池20として、高容量型組電池を用いることができる。高出力型組電池10は、高容量型組電池20よりも大きな電流で充放電を行うことができる組電池である。高容量型組電池20は、高出力型組電池10よりも大きな蓄電容量を有する組電池である。
 単電池11,21として、リチウムイオン電池を用いるとき、例えば、単電池11の負極活物質として、ハードカーボン(難黒鉛化炭素材料)を用い、単電池11の正極活物質として、リチウム・マンガン系複合酸化物を用いることができる。また、単電池21の負極活物質として、グラファイト(黒鉛)を用い、単電池21の正極活物質として、リチウム・ニッケル系複合酸化物を用いることができる。
 高出力型組電池10の単電池11および高容量型組電池20の単電池21は、互いに比較したときに、以下の表1に示す関係を有する。
Figure JPOXMLDOC01-appb-T000001
 表1において、単電池11,21の出力は、例えば、単電池11,21の単位質量当たりの電力(単位[W/kg])や、単電池11,21の単位体積当たりの電力(単位[W/L])として表すことができる。単電池の出力に関して、単電池11は、単電池21よりも高い。ここで、単電池11,21の質量又は体積を等しくしたとき、単電池11の出力[W]は、単電池21の出力[W]よりも高くなる。
 単電池11,21の容量は、例えば、単電池11,21の単位質量当たりの容量(単位[Wh/kg])や、単電池11,21の単位体積当たりの容量(単位[Wh/L])として表すことができる。単電池の容量に関して、単電池21は、単電池11よりも大きい。ここで、単電池11,21の質量又は体積を等しくしたとき、単電池21の容量[Wh]は、単電池11の容量[Wh]よりも大きくなる。
 表1において、単電池11,21の電極の出力は、例えば、電極の単位面積当たりの電流値(単位[mA/cm^2])として表すことができる。電極の出力に関して、単電池11は、単電池21よりも高い。ここで、電極の面積が等しいとき、単電池11の電極に流れる電流値は、単電池21の電極に流れる電流値よりも大きくなる。
 単電池11,21の電極の容量は、例えば、電極の単位質量当たりの容量(単位[mAh/g])や、電極の単位体積当たりの容量(単位[mAh/cc])として表すことができる。電極の容量に関して、単電池21は、単電池11よりも大きい。ここで、電極の質量又は体積が等しいとき、単電池21の電極の容量は、単電池11の電極の容量よりも大きくなる。
 本発明の実施例2である電池システムについて説明する。本実施例は、イグニッションスイッチがオンからオフに切り替えられたときの処理に関して、実施例1(図3)と異なる。以下、実施例1と異なる点について、主に説明する。ここで、実施例1で説明した構成と同一の構成については、同一符号を用いて説明を省略する。
 図4は、本実施例の電池システムにおいて、組電池10,20およびインバータ41の接続を遮断するときの動作を示すフローチャートである。図4に示す処理は、コントローラ40によって実行される。
 ステップS301において、コントローラ40は、車両のイグニッションスイッチがオンからオフに切り替わったか否かを判別する。イグニッションスイッチがオンからオフに切り替わると、ステップS302に進む。
 ステップS302において、コントローラ40は、システムメインリレーSMR-Gをオンからオフに切り替える。これにより、組電池10,20およびインバータ41の接続が遮断される。ここで、システムメインリレーSMR-B1,SMR-B2は、オンのままであるため、組電池10および組電池20は、並列に接続されたままとなる。
 ステップS303において、コントローラ40は、タイマを用いて、時間のカウントを開始する。本実施例において、コントローラ40は、タイマを備えている。
 ステップS304において、コントローラ40は、タイマのカウント時間Tjが閾値Tthよりも長いか否かを判別する。すなわち、コントローラ40は、カウント時間Tjが閾値Tthよりも長くなるまで、待機する。ここで、組電池10,20の間において、OCVの差が発生しているときには、OCVの高い側の組電池から、OCVの低い側の組電池に循環電流が流れる。
 閾値Tthは、例えば、以下に説明するように設定することができる。
 まず、組電池10,20の間におけるOCVの差が最大となるときの値ΔVmaxを予測しておく。電圧差ΔVmaxが発生する場合としては、例えば、組電池10の劣化状態が最大であり、組電池20の劣化状態が最小となる場合がある。この場合において、組電池10の抵抗をRmaxとし、組電池20の抵抗をRminとする。初期状態(製造直後)における組電池10,20の抵抗Riniが互いに等しいとすると、抵抗Riniに対する抵抗Rmaxの変化量が最も大きく、抵抗Riniに対する抵抗Rminの変化量が最も小さくなる。
 組電池10,20に電流Iが流れるとき、電圧差ΔVmaxは、下記式(5)で表すことができる。
 ΔVmax=I(Rmax-Rmin)/2 ・・・(5)
 電圧差ΔVmaxがシステムメインリレーSMR-B1,SMR-B2の定格電圧Vr以下であれば、組電池10.20の間で流れる循環電流(突入電流)によって、システムメインリレーSMR-B1,SMR-B2が劣化してしまうのを抑制することができる。
 電圧差ΔVmaxが定格電圧Vrに到達するまでの時間を予め測定しておけば、この時間が閾値Tthとなる。組電池10,20の間に流れる電流Iは、時間の経過とともに減少するため、電圧差ΔVmaxが定格電圧Vrに到達するまでの時間を予め特定しておくことができる。予め特定された閾値Tthは、メモリ40aに格納しておくことができる。
 一方、組電池10,20の間におけるOCVの電圧差ΔVは、下記式(6)で表すことができる。
 ΔV=ΔVmax×e^(-2kt/(Rmax+Rmin)) ・・・(6)
 ここで、ΔVmaxは、組電池10,20の間におけるOCVの差が最大となるときの値である。また、ΔVmaxは、システムメインリレーSMR-Gをオンからオフに切り替えたときのOCVの差である。kは定数であり、tは時間である。Rmaxは、劣化状態が最大となる組電池10の抵抗であり、Rminは、劣化状態が最小となる組電池20の抵抗である。
 抵抗Rmax,Rminおよび電圧差ΔVmaxを予め決めておけば、電圧差ΔVが定格電圧Vrに到達するまでの時間tを算出することができる。この時間tが閾値Tthとなる。
 上述した2つの方法(例示)によって、閾値Tthを特定することができるが、これに限るものではない。すなわち、組電池10,20の間におけるOCVの差が、システムメインリレーSMR-B1,SMR-B2の定格電圧Vr以下となるまでの時間として、閾値Tthが設定されていればよい。
 タイマのカウント時間Tjが閾値Tthよりも長くなったときには、ステップS305に進む。ステップS305において、コントローラ40は、システムメインリレーSMR-B1,SMR-B2をオンからオフに切り替える。システムメインリレーSMR-B1,SMR-B2は、互いに異なるタイミングにおいて、オンからオフに切り替えることができる。
 本実施例においても、実施例1と同様に、組電池10,20の間におけるOCVの差が、システムメインリレーSMR-B1,SMR-B2の定格電圧Vr以下となったときに、システムメインリレーSMR-B1,SMR-B2をオンからオフに切り替えることができる。これにより、次回のイグニッションスイッチのオンに応じて、システムメインリレーSMR-B1,SMR-B2をオフからオンに切り替えたときに、循環電流によってシステムメインリレーSMR-B1,SMR-B2が劣化してしまうのを抑制することができる。
 

Claims (12)

  1.  充放電を行う第1蓄電装置および第2蓄電装置と、
     前記第1蓄電装置の充放電を許容するオン状態と、前記第1蓄電装置の充放電を禁止するオフ状態の間で切り替わる第1リレーと、
     前記第2蓄電装置の充放電を許容するオン状態と、前記第2蓄電装置の充放電を禁止するオフ状態の間で切り替わる第2リレーと、
     前記第1リレーおよび前記第2リレーのオン状態およびオフ状態を制御するコントローラと、を有し、
     前記第1蓄電装置および前記第1リレーと、前記第2蓄電装置および前記第2リレーとは、並列に接続されており、
     前記コントローラは、前記第1蓄電装置および前記第2蓄電装置の間で流れる循環電流を許容した後に、前記第1リレーおよび前記第2リレーをオン状態からオフ状態に切り替えることを特徴とする蓄電システム。
  2.  前記コントローラは、前記第1蓄電装置および前記第2蓄電装置における起電圧の差が前記各リレーの定格電圧以下となるまで、前記循環電流を許容することを特徴とする請求項1に記載の蓄電システム。
  3.  前記第1蓄電装置および前記第2蓄電装置の充放電を許容するオン状態と、前記第1蓄電装置および前記第2蓄電装置の充放電を禁止するオフ状態の間で切り替わる第3リレーを有し、
     前記コントローラは、前記第3リレーをオン状態からオフ状態に切り替えた後に、前記第1リレーおよび前記第2リレーをオン状態からオフ状態に切り替えることを特徴とする請求項1又は2に記載の蓄電システム。
  4.  前記循環電流を検出する電流センサを有しており、
     前記コントローラは、前記電流センサによって検出された電流値が閾値以下となることに応じて、前記第1リレーおよび前記第2リレーをオン状態からオフ状態に切り替えることを特徴とする請求項2に記載の蓄電システム。
  5.  前記閾値は、下記式(I)で表される、
     Ith=Vr/(R1+R2) ・・・(I)
     ここで、Ithは、前記閾値であり、Vrは、前記リレーの定格電圧であり、R1およびR2は、前記第1蓄電装置および前記第2蓄電装置のそれぞれの内部抵抗である、ことを特徴とする請求項4に記載の蓄電システム。
  6.  前記内部抵抗R1,R2は、前記各蓄電装置の温度およびSOCの少なくとも一方に応じて変化することを特徴とする請求項5に記載の蓄電システム。
  7.  前記内部抵抗R1,R2は、前記各蓄電装置で変化する内部抵抗の最大値であることを特徴とする請求項5に記載の蓄電システム。
  8.  前記起電圧の差が前記リレーの定格電圧以下となるまでの間で前記循環電流が流れる時間を、設定時間として記憶するメモリを有し、
     前記コントローラは、前記循環電流を流し始めてから、前記設定時間が経過した後に、前記第1リレーおよび前記第2リレーをオン状態からオフ状態に切り替えることを特徴とする請求項2に記載の蓄電システム。
  9.  前記設定時間は、前記起電圧の差の最大値と、前記第1蓄電装置および前記第2蓄電装置における内部抵抗の差の最大値と、から算出された時間であることを特徴とする請求項8に記載の蓄電システム。
  10.  前記第1蓄電装置は、前記第2蓄電装置よりも大きな電流で充放電を行うことができ、
     前記第2蓄電装置は、前記第1蓄電装置よりも蓄電容量が大きいことを特徴とする請求項1から9のいずれか1つに記載の蓄電システム。
  11.  前記各蓄電装置は、車両の走行に用いられるエネルギを出力することを特徴とする請求項1から10のいずれか1つに記載の蓄電システム。
  12.  前記各蓄電装置は、複数の単電池が直列に接続された組電池であることを特徴とする請求項1から11のいずれか1つに記載の蓄電システム。
     
PCT/JP2011/003151 2011-06-03 2011-06-03 蓄電システム WO2012164630A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/119,963 US20140103859A1 (en) 2011-06-03 2011-06-03 Electric storage system
JP2013517702A JP5682708B2 (ja) 2011-06-03 2011-06-03 蓄電システム
CN201180071207.2A CN103563206A (zh) 2011-06-03 2011-06-03 蓄电***
EP11866542.1A EP2717415A4 (en) 2011-06-03 2011-06-03 POWER STORAGE SYSTEM
PCT/JP2011/003151 WO2012164630A1 (ja) 2011-06-03 2011-06-03 蓄電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003151 WO2012164630A1 (ja) 2011-06-03 2011-06-03 蓄電システム

Publications (1)

Publication Number Publication Date
WO2012164630A1 true WO2012164630A1 (ja) 2012-12-06

Family

ID=47258521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003151 WO2012164630A1 (ja) 2011-06-03 2011-06-03 蓄電システム

Country Status (5)

Country Link
US (1) US20140103859A1 (ja)
EP (1) EP2717415A4 (ja)
JP (1) JP5682708B2 (ja)
CN (1) CN103563206A (ja)
WO (1) WO2012164630A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128941A1 (ja) * 2013-02-25 2014-08-28 株式会社 日立製作所 並列接続蓄電システム
JP2014193094A (ja) * 2013-03-28 2014-10-06 Mazda Motor Corp 車両用電源制御装置
CN104908600A (zh) * 2015-05-25 2015-09-16 金龙联合汽车工业(苏州)有限公司 一种电动车电池组的安全控制***
WO2015137222A1 (ja) * 2014-03-12 2015-09-17 三菱電機株式会社 電源システム
JP2016208588A (ja) * 2015-04-16 2016-12-08 日産自動車株式会社 電池のスイッチ制御システム及びスイッチ制御方法
WO2018056263A1 (ja) * 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 電源システム
JP2018160960A (ja) * 2017-03-22 2018-10-11 株式会社豊田自動織機 蓄電装置
JPWO2018056262A1 (ja) * 2016-09-21 2019-04-25 オートモーティブエナジーサプライ株式会社 電源システム
WO2019093048A1 (ja) * 2017-11-13 2019-05-16 株式会社日立製作所 複合蓄電システム
JPWO2021162077A1 (ja) * 2020-02-12 2021-08-19
WO2022054367A1 (ja) * 2020-09-11 2022-03-17 本田技研工業株式会社 電力供給装置
WO2022070715A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2022070716A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119143B2 (ja) * 2011-11-01 2017-04-26 日産自動車株式会社 電源の制御装置
DE102013221113A1 (de) * 2013-10-17 2015-05-07 Robert Bosch Gmbh Elektrische Energiespeichervorrichtung
WO2016153215A1 (ko) * 2015-03-24 2016-09-29 이승규 용융 스위치, 이를 포함하는 배터리 제어장치 및 제어방법
JP6409203B2 (ja) * 2016-03-25 2018-10-24 本田技研工業株式会社 電源装置、輸送機器、電源制御方法、および制御装置
US11233419B2 (en) * 2017-08-10 2022-01-25 Zoox, Inc. Smart battery circuit
DE102017216486A1 (de) * 2017-09-18 2019-03-21 Robert Bosch Gmbh Elektrisches Parallelschalten einer Mehrzahl von elektrischen Energiespeichern
US11230205B2 (en) * 2018-01-30 2022-01-25 Panasonic Intellectual Property Management Co., Ltd. Vehicular power supply system, and management device
KR102530940B1 (ko) * 2018-04-23 2023-05-11 현대자동차주식회사 차량용 에너지저장장치 시스템
US10761530B2 (en) * 2018-06-20 2020-09-01 Faraday & Future Inc. Redundant low-voltage battery system operation in electric vehicles
EP3994023B1 (en) * 2019-07-04 2024-01-17 Volvo Truck Corporation A method for controlling electrical connection of battery packs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033936A (ja) * 2007-07-30 2009-02-12 Toshiba Corp 並列接続蓄電システム
JP2009081078A (ja) * 2007-09-27 2009-04-16 Hitachi Ltd 蓄電池保管装置および蓄電池保管方法
JP2011072153A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 車両用電源装置及びこれを備える車両並びに車両用電源装置の容量均等化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143713A (ja) * 2001-11-05 2003-05-16 Komatsu Ltd ハイブリッド電源システム
CN100581024C (zh) * 2008-09-19 2010-01-13 哈尔滨工业大学 蓄电池组或超级电容器组充放电快速均衡装置
EP2272722B1 (en) * 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle
JP4893804B2 (ja) * 2009-11-05 2012-03-07 トヨタ自動車株式会社 車両用電源装置
JP5664446B2 (ja) * 2011-04-28 2015-02-04 トヨタ自動車株式会社 電池システム
JP5440708B2 (ja) * 2011-06-07 2014-03-12 トヨタ自動車株式会社 電池システムおよび、電池システムの制御方法
CN103181053B (zh) * 2011-10-24 2014-11-12 丰田自动车株式会社 蓄电***
JP5605401B2 (ja) * 2012-07-20 2014-10-15 トヨタ自動車株式会社 蓄電システムおよび制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033936A (ja) * 2007-07-30 2009-02-12 Toshiba Corp 並列接続蓄電システム
JP2009081078A (ja) * 2007-09-27 2009-04-16 Hitachi Ltd 蓄電池保管装置および蓄電池保管方法
JP2011072153A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 車両用電源装置及びこれを備える車両並びに車両用電源装置の容量均等化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717415A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128941A1 (ja) * 2013-02-25 2014-08-28 株式会社 日立製作所 並列接続蓄電システム
JP5965538B2 (ja) * 2013-02-25 2016-08-10 株式会社日立製作所 並列接続蓄電システム
US9627718B2 (en) 2013-02-25 2017-04-18 Hitachi, Ltd. Parallel-connected electricity storage system
JP2014193094A (ja) * 2013-03-28 2014-10-06 Mazda Motor Corp 車両用電源制御装置
WO2015137222A1 (ja) * 2014-03-12 2015-09-17 三菱電機株式会社 電源システム
JPWO2015137222A1 (ja) * 2014-03-12 2017-04-06 三菱電機株式会社 電源システム
US9711979B2 (en) 2014-03-12 2017-07-18 Mitsubishi Electric Corporation Power supply system
JP2016208588A (ja) * 2015-04-16 2016-12-08 日産自動車株式会社 電池のスイッチ制御システム及びスイッチ制御方法
CN104908600A (zh) * 2015-05-25 2015-09-16 金龙联合汽车工业(苏州)有限公司 一种电动车电池组的安全控制***
CN107863789A (zh) * 2016-09-21 2018-03-30 汽车能源供应公司 电源***
WO2018056263A1 (ja) * 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 電源システム
JPWO2018056262A1 (ja) * 2016-09-21 2019-04-25 オートモーティブエナジーサプライ株式会社 電源システム
JPWO2018056263A1 (ja) * 2016-09-21 2019-06-24 オートモーティブエナジーサプライ株式会社 電源システム
CN107863789B (zh) * 2016-09-21 2021-03-02 远景Aesc日本有限公司 电源***
JP2018160960A (ja) * 2017-03-22 2018-10-11 株式会社豊田自動織機 蓄電装置
WO2019093048A1 (ja) * 2017-11-13 2019-05-16 株式会社日立製作所 複合蓄電システム
JPWO2021162077A1 (ja) * 2020-02-12 2021-08-19
JP7176156B2 (ja) 2020-02-12 2022-11-21 古河電気工業株式会社 蓄電池システムの劣化判定装置、蓄電池システムの劣化判定方法、蓄電池システム及び蓄電池監視装置
WO2022054367A1 (ja) * 2020-09-11 2022-03-17 本田技研工業株式会社 電力供給装置
WO2022070715A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2022070716A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
CN115916575A (zh) * 2020-09-29 2023-04-04 松下知识产权经营株式会社 管理装置和电源***
CN115916575B (zh) * 2020-09-29 2024-05-14 松下知识产权经营株式会社 管理装置和电源***

Also Published As

Publication number Publication date
EP2717415A4 (en) 2015-07-22
CN103563206A (zh) 2014-02-05
JPWO2012164630A1 (ja) 2014-07-31
EP2717415A1 (en) 2014-04-09
JP5682708B2 (ja) 2015-03-11
US20140103859A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5682708B2 (ja) 蓄電システム
JP5440708B2 (ja) 電池システムおよび、電池システムの制御方法
US9933491B2 (en) Electric storage system
JP6445190B2 (ja) 電池制御装置
JP5862631B2 (ja) 蓄電システム
JP5621818B2 (ja) 蓄電システムおよび均等化方法
US20110089905A1 (en) Power supply device
JP5738784B2 (ja) 蓄電システム
JP7043944B2 (ja) 蓄電装置
WO2013061358A1 (ja) 蓄電システム
JP5796457B2 (ja) バッテリシステムおよびバッテリシステムの制御方法
JP5626190B2 (ja) 蓄電システム
JP2012234697A (ja) 電池システム
JP5891604B2 (ja) 電池システム
JP6017790B2 (ja) 蓄電システム
JP5609807B2 (ja) バッテリ装置のヒステリシス低減システム
JP5999048B2 (ja) 蓄電システム
JP5772615B2 (ja) 蓄電システム
WO2013105139A1 (ja) 二次電池の制御装置および制御方法
JP2012165580A (ja) 蓄電装置の制御装置
JP2013243869A (ja) 二次電池の制御装置
JP2013099160A (ja) セル均等化制御システム
JP6919302B2 (ja) 車両用蓄電装置
WO2012172592A1 (ja) 蓄電システムおよび蓄電装置の制御方法
JP5257173B2 (ja) 車載電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517702

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14119963

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011866542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011866542

Country of ref document: EP