WO2012161262A1 - 移動体の制御装置および制御方法 - Google Patents

移動体の制御装置および制御方法 Download PDF

Info

Publication number
WO2012161262A1
WO2012161262A1 PCT/JP2012/063346 JP2012063346W WO2012161262A1 WO 2012161262 A1 WO2012161262 A1 WO 2012161262A1 JP 2012063346 W JP2012063346 W JP 2012063346W WO 2012161262 A1 WO2012161262 A1 WO 2012161262A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioning
moving body
brake
load
Prior art date
Application number
PCT/JP2012/063346
Other languages
English (en)
French (fr)
Inventor
小田 篤史
佐藤 裕
努 宮内
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2013516435A priority Critical patent/JP5937584B2/ja
Publication of WO2012161262A1 publication Critical patent/WO2012161262A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • B60H2001/00733Computational models modifying user-set values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a control device for a moving body that includes an energy conversion device that converts kinetic energy into electric energy, such as a railway vehicle, and has a brake that uses regenerative energy during braking.
  • a moving body driven by an electric motor as a power source for example, in a railway vehicle
  • the cylinder is operated using the pressure of compressed air, and the friction force generated by pressing the brake against the brake disc or the wheel tread is used.
  • a regenerative brake that converts kinetic energy during braking of railway vehicles into electrical energy is provided for the purpose of saving energy and reducing maintenance costs.
  • the regenerative brake generates braking force by using a driving motor as a generator during braking, and uses the generated power for acceleration of nearby railway vehicles through overhead lines. It is related to energy saving and air braking. From the viewpoint of saving maintenance, it is preferable that the braking force of the moving body is borne by the regenerative brake as much as possible among these two brakes.
  • the regenerative brake cannot exhibit the braking force unless there is a regenerative load that consumes the generated regenerative power.
  • the railway vehicle in the neighboring acceleration state becomes a load that consumes regenerative energy, so if the acceleration timing of the neighboring railway vehicle and the brake timing of the own vehicle are not synchronized, the regenerative power Nowhere to go. If the regeneration is continued as it is, the overhead wire voltage rises, and there is a risk of damaging the drive unit and the substation equipment. Therefore, the control for reducing the regenerative braking force is performed. As a result, the air brake cannot compensate for the inability to exhibit the regenerative braking force, leading to a decrease in regenerative efficiency.
  • the regenerative power is also collected by the secondary battery mounted on the railway vehicle, but the system is complicated and expensive, including charge / discharge control, and the charging characteristics of the secondary battery, From the viewpoint of preventing deterioration, there is a limit to the responsiveness when recovering regenerative power.
  • Patent Document 1 describes a technology that uses the air conditioning of the own vehicle as a regenerative load in order to reduce the influence of the acceleration state of a nearby railway vehicle on the regeneration efficiency.
  • the overhead line voltage is measured, and when the overhead line voltage rises, it is judged that the regenerative load is insufficient, the air conditioning load of the own vehicle is increased, and the regenerative power is consumed by the air conditioning. It is improving.
  • the present invention has been made in view of such problems, and increases the regenerative power consumed by the load mounted on the vehicle while maintaining the state quantity of the control target of the load mounted on the moving body within an allowable range.
  • the purpose is to improve the regeneration efficiency.
  • the mobile body when an air conditioning load is used as the load, the mobile body itself efficiently generates the regenerative power by maximizing the air conditioning load recovered by the regenerative power while maintaining the vehicle interior temperature near the target temperature. It is intended to consume and improve the regeneration efficiency.
  • the present invention includes, for example, a device control device that adjusts the load of a device mounted on the moving body, and the device control device loads the device load during a predetermined period before the brake operation of the moving body. And a means for operating the device with a load larger than a predetermined period and consuming regenerative power during the braking operation of the moving body. Or in the case of a railway vehicle, even if the air conditioning is turned off before the brake start point, the point where the vehicle interior temperature is within the allowable temperature range is calculated at the brake start point, and the air conditioning is performed when the rail vehicle reaches this point. Turn off (zero air conditioner load).
  • the air conditioning load When the railway vehicle reaches the brake start point, the air conditioning load is turned on to maximize the air conditioning load that is a regenerative load while controlling the vehicle interior temperature in the vicinity of the target value. More specifically, the following technical means were taken in the control device of the present invention. That is, (1) In a control device for a moving body provided with an energy conversion device that converts kinetic energy into electric energy, an air conditioner that controls a room temperature of the moving body, and a brake start position for grasping a brake start position of the moving body Grasping means, and at a point before the brake start position, the load of the air conditioner is set to zero in advance, and the electric energy regenerated by the energy conversion device in the period from the brake start position to the brake end is The air conditioner was used for consumption.
  • a first allowable temperature deviation having a large deviation between the allowable minimum temperature and the allowable maximum temperature of the indoor by the air conditioner, and between the two A second allowable temperature deviation with a small deviation is set, the room temperature is controlled within the second allowable temperature deviation until a point where the load of the air conditioner is preliminarily reached, and the load of the air conditioner is preliminarily zero.
  • the room temperature is controlled within the first allowable temperature deviation in the period from the point to the end of the brake.
  • the present invention it is possible to improve the regeneration efficiency while maintaining the in-vehicle temperature within the allowable temperature range.
  • the regenerative brake is operated to the maximum extent and the possibility of regenerative expiration is reduced, the frequency of switching between the regenerative brake and the air brake is reduced, which contributes to an improvement in riding comfort.
  • FIG. 1 is a system configuration diagram of Embodiment 1.
  • FIG. In Example 1, the flowchart of the process performed within a vehicle control apparatus. In Example 1, it is explanatory drawing for performing the determination of the point which should make the load of an air conditioner zero beforehand before the brake start position.
  • FIG. 3 is a comparison diagram of the behavior of the in-vehicle temperature according to the first embodiment and a known technique.
  • FIG. In Example 2 the flowchart of the process performed within a vehicle control apparatus.
  • Example 2 the flowchart of the process performed within an air-conditioning control apparatus.
  • FIG. 6 is a system configuration diagram of Embodiment 3.
  • Example 3 it is a flowchart of the process performed within a vehicle control apparatus.
  • Example 10 is a system configuration diagram of Embodiment 4.
  • Example 4 it is a flowchart of the process performed within a vehicle control apparatus.
  • Example 4 the flowchart of the process performed in an air-conditioning control apparatus.
  • FIG. 10 shows the behavior of the vehicle interior temperature and air-conditioning load by Example 4.
  • Example 1 First, an example of the circuit configuration of the moving body in the present invention will be described.
  • an AC motor that drives a railway vehicle, an inverter device that supplies AC power to the AC motor, and a power source that is connected to the inverter device and supplies power to a load such as an air conditioner or a lighting device.
  • An auxiliary power supply is provided.
  • the mounted air conditioner (102) can continuously adjust the air conditioning load, and the vehicle controller (101) holds the vehicle temperature monitoring and the air conditioning load determination. Will be described.
  • the air conditioner (102) has only the cooling and heating functions, and the timing of turning on and off the cooling and heating and the determination of the load amount are not performed by the air conditioner (102) itself. This is performed by a command from the control device (101).
  • a vehicle control device (101) that manages functions related to the operation of the railway vehicle obtains in-vehicle temperature information (151) from a temperature sensor (103) installed in the passenger car.
  • This temperature sensor (103) measures the temperature in the passenger compartment using, for example, a thermocouple, but various temperature sensors can be used as long as the temperature inside the vehicle can be measured.
  • the vehicle control device (101) acquires the current position information (152) from the current position estimating means (104).
  • the current position estimating means (104) estimates the current position based on, for example, vehicle speed information (153) from a TG (speed generator) (105).
  • the vehicle speed information (153) may be obtained from other than the TG (speed generator) (105). For example, measurement by image recognition using a camera, measurement using GPS, measurement using a Doppler sensor, optical sensor, etc. May be used.
  • the current position in the current position estimation means (104) may be estimated by using information other than the vehicle speed information (153) as long as the current position can be estimated.
  • the vehicle speed information (153) is a position from the ground unit.
  • a correction method based on information, a method based on image recognition using a camera, a method using GPS, a method using only a ground unit, and the like can be employed.
  • the vehicle control device (101) acquires the brake start point information (154) from the travel pattern database (106) storing the brake start point of the railway vehicle.
  • the brake start point information (154) may be obtained from other than the travel pattern database (106). For example, there is a method of transmitting the brake start point information (154) to the railway vehicle using wireless communication from the ground.
  • brake notch information (155) indicating the state of the brake is acquired from the master controller (107).
  • the brake notch information (155) may be obtained from other than the master controller (107), and can be obtained from, for example, a security device or an ATO device.
  • the information indicating that the vehicle is in the brake state may be information other than the brake notch information (155). For example, a brake force command value may be used.
  • the vehicle control device (101) determines the air conditioning load information (156) from the in-vehicle temperature information (151), the current position information (152), the brake start point information (154), and the brake notch information (155), and the air conditioning load information (156) is transmitted to the air conditioner (102).
  • a processing flow performed in the vehicle control apparatus (101) in the first embodiment is shown in FIG. Steps 201 to 210 in FIG. 2 ensure improvement in regeneration efficiency and maintenance of the interior temperature in the vicinity of the target value.
  • Step 201 Obtain the current position information (152) from the current position estimating means (104), and proceed to Step 202.
  • Step 202 The brake start point information (154) is acquired from the travel pattern database (106), and the process proceeds to Step 203.
  • Step 203 It is determined from the current position information (152) and the brake start point information (154) whether or not the air conditioning load should be zero. If the air conditioning load is not about a kilometer, the process proceeds to step 208.
  • Step 204 Acquire brake notch information (155) from the master controller (107), and proceed to Step 205.
  • Step 205 It is determined whether or not the brake notch information (155) indicates that the brake is being applied. If the brake is being applied, the process proceeds to Step 208. If not, the routine proceeds to step 206.
  • Step 206 Air conditioning load information (156) is set to zero.
  • the air conditioning ON / OFF timing is controlled depending on whether the air conditioning load information (156) is 0 or a value other than 0, and the process proceeds to step 207.
  • Step 207 The air conditioning load information (156) determined in step 206 is transmitted to the air conditioner (102).
  • Step 208 The in-vehicle temperature information (151) is acquired from the temperature sensor (103), and the process proceeds to Step 209.
  • Air conditioning load information (156) is determined from the in-vehicle temperature information (151), and the process proceeds to step 210.
  • the air conditioning load information (156) may be determined using information other than the in-vehicle temperature information (151), for example, in-vehicle humidity, outside air temperature, boarding rate, and the like. In this embodiment, it is only necessary that the in-vehicle temperature can be controlled in the vicinity of the target value, and the air-conditioning load amount determining means necessary for controlling the in-vehicle temperature in the vicinity of the target value is not specified.
  • Step 210 The air conditioning load information (156) determined in step 209 is transmitted to the air conditioner (102).
  • a method for determining a point where the air conditioning load should be zero based on the brake start point information (154) will be described with reference to FIG. Now, the case where the target value of the vehicle interior temperature is higher than the outside air temperature, that is, the heating control will be described.
  • the target value of the vehicle interior temperature is higher than the outside air temperature, that is, the heating control.
  • an upper limit value and a lower limit value are set for the target value within a range in which passengers do not feel uncomfortable, and a certain deviation is allowed.
  • the behavior of the in-vehicle temperature is the allowable maximum temperature. It is controlled between (301) and the allowable minimum temperature (302).
  • the brake start kilometer distance (303) is grasped from the brake start point information (154), and then the current kilometer distance is grasped from the current position information (152).
  • the current kilometer distance is the kilometer distance (304) before the brake start kilometer distance (303)
  • the behavior of the in-vehicle temperature is a dotted line (305) when the air conditioning load is zero (air conditioning OFF).
  • the kilometer (306) where the in-vehicle temperature is equal to or lower than the allowable minimum temperature (302) is calculated.
  • the vehicle interior temperature is the allowable minimum temperature in the brake start kilometer (303). (302).
  • the air-conditioning load is set to zero and the vehicle interior temperature is expected to be lower than the allowable minimum temperature (302), it is determined that the air-conditioning load is not about zero kilometer.
  • the interior temperature is the allowable minimum temperature ( 302)
  • a kilometer (309) that is equal to or smaller than that is calculated. If the kilometer (309) calculated from the brake start kilometer (303) is the kilometer advanced in the traveling direction of the railway vehicle, even if the air conditioning load is zero in the kilometer (307), the brake start kilometer ( In 303), the vehicle interior temperature does not fall below the allowable minimum temperature (302). In this way, when the air-conditioning load is zero, if it is expected that the vehicle interior temperature will not fall below the allowable minimum temperature (302), it is determined that the air-conditioning load should be about zero kilometers.
  • a model representing the behavior of the in-vehicle temperature when the air conditioning load is zero which is indicated by the dotted line (305) and the dotted line (308), is created from a result of a simulation or an actual machine test, or a period when the air conditioning load is zero. It can be created from the behavior of the temperature inside the vehicle. If the behavior of the interior temperature changes depending on the boarding rate, improve the accuracy of the model by holding multiple models according to the boarding rate or correcting the basic model according to the boarding rate. Is preferred.
  • the determination of the kilometer about which the air conditioning load should be zero may be other than a method using a model. For example, there are a method of specifying by a distance and a method of specifying by a time. These specified values may be changed by a crew member or a staff member on the ground using communication between the ground and the railway vehicle.
  • the target value of the vehicle interior temperature is lower than the outside air temperature, that is, during cooling, the vehicle interior temperature does not exceed the allowable maximum temperature (302) in the brake start kilometer (303) when the air conditioning load is zero. Therefore, it may be determined that the kilometer is expected to be a kilometer where the air conditioning load should be zero, and if it is greater than the kilometer, the air conditioning load should be zero.
  • FIG. 4 shows a comparison between the in-vehicle temperature and the behavior of the air-conditioning load when Example 1 is implemented and the known technique as disclosed in Patent Document 1 is performed, taking heating as an example.
  • the in-vehicle temperature (405) decreases to the vicinity of the allowable minimum temperature (402) immediately before the brake start point (403).
  • the regenerative power is used together with the start of the brake to control the air conditioning so that the allowable maximum temperature (401) is not exceeded.
  • the behavior of the in-vehicle temperature (405) during the brake period (404) rises from the brake start point (403), and is controlled so as not to exceed the allowable maximum temperature (401), so that the regenerative power can be utilized to the maximum extent possible. It becomes possible.
  • the vehicle interior temperature (406) is controlled to the vicinity of the target value until the brake is started, and rises by operating the air conditioning using the regenerative electric power when the brake is started. Assuming that the control is performed so as not to exceed the maximum allowable temperature (401), the range from the vehicle interior temperature (406) at the start of braking to the maximum allowable temperature (401) is the regenerative electric power that can be recovered by the air conditioning load. It will be what was done.
  • the in-vehicle temperature (406) when the in-vehicle temperature (406) is at the allowable maximum temperature (401) at the brake start point (403), if the regenerative power is consumed by the air conditioning load, the in-vehicle temperature (406) is equal to or higher than the allowable maximum temperature (401). Inevitably, the in-vehicle temperature (406) rises to a temperature at which the passenger feels uncomfortable, making it impossible to consume the regenerative power with the air conditioning load.
  • the air conditioning load immediately before the start of braking may be set to a value lower than usual such as when stopping at a station or during power running.
  • the air conditioning load immediately before the start of braking is set to a value larger than zero, the utilization rate of regenerative power is reduced as compared with the embodiment in which the air conditioning load is zero, but the fluctuation speed of the in-vehicle temperature is reduced. There is an effect that the fluctuation range of the temperature can be reduced.
  • FIG. 5 shows the system configuration of the second embodiment.
  • the air conditioning control device (502) receives an air conditioning ON command from the vehicle control device (501) and can continuously adjust the air conditioning load.
  • the air conditioning control device (502) holds monitoring and air conditioning load determination.
  • a vehicle control device (501) for managing functions related to the operation of the railway vehicle acquires in-vehicle temperature information (551) from a temperature sensor (503) installed in the railway vehicle cabin, and then present position estimation means Current position information (552) is acquired from (504).
  • the temperature sensor (503) and the current position estimating means (504) are the same as the temperature sensor (103) and the current position estimating means (104) of the first embodiment.
  • the vehicle control device (501) obtains the brake start point information (554) from the travel pattern database (506) storing the brake start point of the railway vehicle, and then brakes from the master controller (507).
  • Brake notch information (555) indicating the state of is acquired.
  • the brake start point information (554) may be obtained by the same means as the brake start point information (154) of the first embodiment.
  • the brake force command value is used as information indicating the brake state. May be used.
  • the vehicle control device (501) determines the air conditioning ON command (556) from the in-vehicle temperature information (551), the current position information (552), the brake start point information (554), and the brake notch information (555), and the air conditioning ON command (556) is transmitted to the air conditioning control device (502).
  • the air conditioning control device (502) controls air conditioning based on the in-vehicle temperature information (551) from the temperature sensor (503) and the air conditioning ON command (556) from the vehicle control device (501).
  • FIG. 6 shows a flow of processing in the vehicle control device (501) in the second embodiment. Steps 601 to 608 in FIG. 6 ensure improvement in regeneration efficiency and maintenance of the vehicle interior temperature in the vicinity of the target value.
  • Step 601 The current position information (552) is acquired from the current position estimating means (504), and the process proceeds to Step 602.
  • Step 602 Brake start point information (554) is acquired from the travel pattern database (506), and the process proceeds to Step 603.
  • Step 603 Acquire in-vehicle temperature information (551) from the temperature sensor (503), and proceed to Step 604.
  • Step 604 From the current position information (552) and the brake start point information (554), it is determined whether or not the air conditioning load should be zero by the same processing as in the first embodiment, and the air conditioning load is zero. If it is about a kilometer to be set, the process proceeds to step 605. If it is not about a kilometer where the air conditioning load is to be zero, the process proceeds to step 606.
  • Step 605 Brake notch information (555) is acquired from the master controller (507). Proceed to step 607.
  • Step 606 An air conditioning ON command (556) is transmitted to the air conditioning controller (502).
  • Step 607 It is determined whether or not the brake notch information (555) indicates that the brake is being applied. If the brake is being applied, the process proceeds to step 608. If the brake is not being applied, the process is terminated.
  • Step 608 An air conditioning ON command (556) is transmitted to the air conditioning controller (502).
  • FIG. 7 shows a processing flow in the air conditioning control device (502) in the second embodiment.
  • Step 701 In-vehicle temperature information (551) is acquired from the temperature sensor (503), and the process proceeds to Step 702.
  • Step 702 The air conditioning load is determined from the in-vehicle temperature information (551), and the process proceeds to Step 703.
  • the air conditioning load may be determined using information other than the vehicle interior temperature information (551), such as vehicle interior humidity, outside air temperature, and boarding rate. In short, it is only necessary that the in-vehicle temperature can be controlled in the vicinity of the target value, and the air-conditioning load amount determining means necessary for controlling the in-vehicle temperature in the vicinity of the target value is not specified.
  • Step 703 Confirm reception of the air-conditioning ON command (556) from the vehicle control device (501), and proceed to Step 704.
  • Step 704 It is determined whether or not the air conditioning ON command (556) commands air conditioning ON. If the air conditioning ON is commanded, the process proceeds to step 706, and if the air conditioning ON is not commanded, the process proceeds to step 705.
  • Step 705 Air conditioning load is set to zero.
  • Step 706 The air conditioner is controlled based on the air conditioning load determined in step 702, and the ON / OFF timing of the air conditioner is controlled based on a command for setting the air conditioning load determined in step 705 to zero.
  • the in-vehicle temperature can be controlled near the target value while improving the regeneration efficiency.
  • the air conditioning load is not necessarily set to zero, and the air conditioning load immediately before the start of braking is set to the station. It is good also as a value lower than usual at the time of a stop or power running.
  • FIG. 8 shows an example of the system configuration of this embodiment.
  • the air conditioning control device (802) does not have a function of continuously adjusting the air conditioning load, and the adjustment of the interior temperature is performed by turning on / off the air conditioning. Is going on.
  • the vehicle control device (801) that manages the functions related to the operation of the railway vehicle acquires the in-vehicle temperature information (851) from the temperature sensor (803) installed in the passenger room of the railway vehicle.
  • the vehicle control device (801) acquires current position information (852) from the current position estimating means (804).
  • the temperature sensor (803) and the current position estimating means (804) are the same as the temperature sensor (103) and the current position estimating means (104) of the first embodiment.
  • the vehicle control device (801) obtains the brake start point information (854) from the travel pattern database (806) storing the brake start point of the railcar, and then brakes from the master controller (807).
  • Brake notch information (855) indicating the state of is acquired.
  • the brake start point information (854) may be acquired by the same means as the brake start point information (154) of the first embodiment. For example, a brake force command value is unexpectedly provided as information indicating the brake state. May be used.
  • the vehicle control device (801) determines the air conditioning ON command (856) and the air conditioning OFF command (857) from the in-vehicle temperature information (851), the current position information (852), the brake start point information (854), and the brake notch information (855). ) And an air conditioning ON command (856) and an air conditioning OFF command (857) are transmitted to the air conditioning control device (802).
  • the air conditioning control device (802) determines air conditioning ON / OFF based on the in-vehicle temperature information (851) from the temperature sensor (803) so that the in-vehicle temperature becomes a target value. However, when the air conditioning ON command (856) and the air conditioning OFF command (857) are received from the vehicle control device (501), the air conditioning ON command (856) and the air conditioning OFF command (857) from the vehicle control device (501) are received. Control based on.
  • FIG. 9 shows a processing flow in the vehicle control device (801) in the third embodiment. Improvement of regeneration efficiency is ensured by steps 901 to 907 in FIG.
  • Step 901 Current position information (852) is acquired from the current position estimating means (804), and the process proceeds to Step 902.
  • Step 902 The brake start point information (854) is acquired from the travel pattern database (806), and the process proceeds to Step 903.
  • Step 903 From the current position information (852) and the brake start point information (854), it is determined whether or not the air conditioning load is about zero kilometer by the same processing as in the first embodiment. If the air conditioning load is about a kilometer, the process proceeds to step 904, and if the air conditioning load is not a kilometer, the process ends.
  • Step 904 The brake notch information (855) is acquired from the master controller (807), and the process proceeds to Step 905.
  • Step 905 It is determined whether or not the brake notch information (855) indicates that the brake is being applied. If the brake is being applied, the process proceeds to step 906, and if not, the process proceeds to step 907.
  • Step 906 An air conditioning ON command (856) is transmitted to the air conditioning control device (802).
  • Step 907 An air conditioning OFF command (856) is transmitted to the air conditioning control device (802).
  • the in-vehicle temperature can be controlled near the target value while improving the regeneration efficiency.
  • FIG. 10 shows an example of the system configuration of the fourth embodiment.
  • the air conditioning control device (1002) can continuously adjust the air conditioning load, and the air conditioning control device (1002) holds monitoring of the interior temperature and determination of the air conditioning load. is doing.
  • a second allowable temperature deviation (1057) smaller than the first allowable temperature deviation (1056) is set.
  • a vehicle control device (1001) that manages functions related to the operation of the railway vehicle acquires in-vehicle temperature information (1051) from a temperature sensor (1003) installed in the passenger room of the railway vehicle, and then the vehicle control device. (1001) obtains the current position information (1052) from the current position estimating means (1004).
  • the temperature sensor (1003) and the current position estimating means (1004) are the same as the temperature sensor (103) and the current position estimating means (104) of the first embodiment.
  • the vehicle control device (1001) obtains the brake start point information (1054) from the travel pattern database (1006) storing the brake start point of the railway vehicle, and then from the master controller (1007).
  • the brake notch information (1055) indicating the brake state is acquired.
  • the brake start point information (1054) may be acquired by the same means as the brake start point information (154) of the first embodiment.
  • a brake force command value may be used as the information to be indicated.
  • the vehicle control device (1001) determines an allowable temperature deviation from the in-vehicle temperature information (1051), the current position information (1052), the brake start point information (1054), and the brake notch information (1055), and the first allowable temperature deviation ( 1056) or the second allowable temperature deviation (1057) is transmitted to the air conditioning controller (1002).
  • the air conditioning control device (1002) is based on the in-vehicle temperature information (1051) from the temperature sensor (1003) and the first allowable temperature deviation (1056) or the second allowable temperature deviation (1057) from the vehicle control device (1001). Control air conditioning.
  • FIG. 11 shows a processing flow in the vehicle control apparatus (1001) in the fourth embodiment. Steps 1101 to 1107 in FIG. 11 ensure improvement in regeneration efficiency and maintenance of the in-vehicle temperature near the target value.
  • Step 1101 The current position information (1052) is acquired from the current position estimating means (1004), and the process proceeds to Step 1102.
  • Step 1102 Brake start point information (1054) is acquired from the travel pattern database (1006), and the process proceeds to Step 1103.
  • Step 1103 The in-vehicle temperature information (1051) is acquired from the temperature sensor (1003), and the process proceeds to Step 1103.
  • Step 1104 Brake notch information (1055) is acquired from the master controller (1007), and the process proceeds to Step 1105.
  • Step 1105 From the current position information (1052), the brake start point information (1054), and the brake notch information (1055), it is determined whether the air conditioning load is about zero kilometer by the same processing as in the first embodiment. Alternatively, it is determined whether the brake is being applied. If the air-conditioning load should be zero kilometer or braking, the process proceeds to step 1106; otherwise, the process proceeds to step 1107.
  • Step 1106 The first allowable temperature deviation (1056) is transmitted to the air conditioning control device (1002).
  • Step 1107 The second allowable temperature deviation (1057) is transmitted to the air conditioning control device (1002).
  • FIG. 12 shows a processing flow in the air conditioning control device (1002) in the fourth embodiment.
  • Step 1201 The in-vehicle temperature information (1051) is acquired from the temperature sensor (1003), and the process proceeds to Step 1202.
  • Step 1202 The first allowable temperature deviation (1056) is received from the vehicle control device (1001), and the process proceeds to Step 1203.
  • Step 1203 The second allowable temperature deviation (1057) is received from the vehicle control device (1001), and the process proceeds to Step 1204.
  • Step 1204 An air conditioning load necessary for controlling the in-vehicle temperature near the target value is determined from the in-vehicle temperature information (1051), and the process proceeds to Step 1205.
  • the air conditioning load may be determined using information other than the vehicle interior temperature information (1051), such as vehicle interior humidity, outside air temperature, and boarding rate. In short, it is only necessary that the in-vehicle temperature can be controlled in the vicinity of the target value, and no means for determining the air conditioning load necessary for controlling the in-vehicle temperature in the vicinity of the target value is specified.
  • the target value of the temperature inside the vehicle may be a value prescribed in advance according to the date and season, etc., or it may be a value determined by a crew member or a person on the ground using communication between the ground and the railway vehicle. Good.
  • Step 1205 It is determined which one of the first allowable temperature deviation (1056) and the second allowable temperature deviation (1057) is received from the vehicle control device (1001). If the first allowable temperature deviation (1056) has been received, the process proceeds to step 1207, and if the first allowable temperature deviation (1056) has not been received, the process proceeds to step 1206.
  • Step 1206 The air conditioner is controlled based on the air conditioning load determined in step 1204.
  • Step 1207 Zero the air conditioning load.
  • Step 1208 The air conditioner is controlled based on the air conditioning load determined in step 1207.
  • Step 1209 It is determined whether the deviation between the in-vehicle temperature information (1051) and the target value of the in-vehicle temperature is larger than the first allowable temperature deviation (1056). If it is larger, the process proceeds to Step 1210, and if smaller, the process proceeds to Step 1207.
  • Step 1210 The air conditioning load is determined by performing the same process as in step 1204.
  • Step 1211 The air conditioner is controlled based on the air conditioning load determined in Step 1210.
  • a value obtained by adding the allowable first allowable temperature deviation (1056) to the target value is a first allowable maximum temperature (1301), and a value obtained by subtracting the allowable first allowable temperature deviation (1056) from the target value.
  • Each is defined as a first allowable minimum temperature (1302).
  • the second allowable temperature deviation (1057) smaller than the first allowable temperature deviation (1056) with respect to the target value Is defined as the second allowable maximum temperature (1303), and the subtracted value is defined as the second allowable minimum temperature (1304).
  • the deviation between the first allowable maximum temperature (1301) and the first allowable minimum temperature (1302) is defined as Deviations of the first allowable temperature deviation, the second allowable maximum temperature (1303), and the second allowable minimum temperature (1304) are defined as a second allowable temperature deviation, and the first allowable temperature deviation is a value greater than the second allowable temperature deviation.
  • the allowable temperature deviation is the second allowable temperature deviation in the period (1305) when the air conditioning load should be zero or during braking (1305), the behavior of the interior temperature (1308) is the second allowable maximum temperature (1303). It is controlled during the second allowable minimum temperature (1304). In the period (1306) when the air-conditioning load is zero and during braking (1307), the allowable temperature deviation is changed to the first allowable temperature deviation larger than the second allowable temperature deviation.
  • the air conditioning load (1309) becomes zero.
  • the condition for setting the air conditioning load (1309) to zero during the cooling control is when the in-vehicle temperature (1308) is lower than the first allowable maximum temperature (1301).
  • the air conditioning control device (1002) increases the air conditioning load (1309) so that the in-vehicle temperature (1308) becomes the target value, and the in-vehicle temperature (1308) rises to the first allowable maximum temperature (1301). It will be. Whether the air-conditioning control device (1002) is in braking (1307), which is a condition for increasing the air-conditioning load (1309) during cooling control, is determined based on whether the vehicle interior temperature (1308) is the maximum allowable temperature (1301). ).
  • whether or not the brake is being performed may be determined using a relationship other than the relationship between the in-vehicle temperature (1308) and the first allowable maximum temperature (1301) or the first allowable minimum temperature (1302).
  • the brake notch information (1055) may be obtained from other than the master controller (1007), and includes, for example, a security device and an ATO device. In the present invention, it is only necessary to determine that the vehicle is in the brake state, and the means is not specified.
  • Example 4 when the air conditioning load reaches about kilometer, the in-vehicle temperature (1308) is small between the second allowable maximum temperature (1303) and the second allowable minimum temperature (1304). Since the temperature deviation is controlled to an allowable temperature deviation, it is possible to accurately select the kilometer where the air conditioning load should be zero, and to further increase the air conditioning load consumed by regenerative power during braking. Further, during the period (1306) when the air conditioning load is zero and during braking (1307), the allowable temperature deviation is changed to the first allowable temperature deviation larger than the second allowable temperature deviation, so the air conditioning load is zero. It is possible to maximize the period (1306) and maximize the regenerative power consumed by the air conditioner during braking (1307).
  • the temperature deviation allowed for the target value is changed based on the brake start point information and the brake notch information.
  • the target value is changed based on the brake start point information and the brake notch information. But the effect does not change.
  • the vehicle control apparatus performs the determination about the kilometer where the air-conditioning load should be zero and the brake is performed, but the effect is not changed even if this determination is performed by the air-conditioning control apparatus.
  • the functions necessary for air conditioning control can be realized in the entire railway vehicle, and the functions necessary for air conditioning control may be shared by the vehicle control device, the air conditioning control device, or the air conditioning device.
  • the air conditioning load is not necessarily set to zero, and the air conditioning load immediately before the start of braking is reduced when the station stops or powering. It is good also as a value lower than usual, such as time.
  • control of the air conditioning load has been described as an example.
  • the type of load is not necessarily limited to air conditioning, and may be a device that is desired to keep the state quantity of the controlled object within a certain range. It ’s fine.
  • the present invention is applied to a railway vehicle as a mobile body provided with an energy conversion device that converts kinetic energy into electric energy.
  • the present invention can also be applied to various moving bodies that can specify a deceleration start position in advance, such as an automobile such as a route bus that can acquire a deceleration section in advance by an individually mounted elevator, car navigation, or the like.
  • the electric energy regenerated by the energy conversion device in the period from the brake start position to the end of the brake is set to zero in advance at the point before the brake start position. Because the air conditioner is used, the regenerative efficiency can be significantly improved while maintaining the in-vehicle temperature within the allowable temperature range, and it is excellent without complicating the system and increasing the cost. Therefore, it can be expected to be widely adopted for various mobile objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 移動体の車内温度を目標温度近傍に維持しながら、回生電力により回収される空調負荷を最大化することにより、移動体自身で回生電力を効率よく消費し、回生効率を大幅に向上させる。 運動エネルギーを電気エネルギーに変換するエネルギー変換装置を備えた移動体の制御装置において、移動体の室内温度を制御する空調装置と、移動体のブレーキ開始位置を把握するブレーキ開始位置把握手段とを設ける。そして、ブレーキ開始位置の手前の地点において、空調装置の負荷を予め零とし、ブレーキ開始位置において、暖房時であれば室温が最低許容温度に、冷房時であれば、室温が最高許容温度になるよう制御する。これにより、ブレーキ開始からブレーキ終了までの期間において、エネルギー変換装置による回生される電気エネルギーを、空調装置で最大限消費されるようにする。

Description

移動体の制御装置および制御方法
 本発明は、鉄道車両等、運動エネルギーを電気エネルギーに変換するエネルギー変換装置を備え、制動時に回生エネルギーを利用したブレーキを備えた移動体の制御装置に関する。
 電動機を動力源として駆動される移動体、例えば、鉄道車両においては、圧縮空気の圧力を利用してシリンダを動作させ、制輪子をブレーキディスクまたは車輪踏面に押し当てることにより発生した摩擦力を利用する空気ブレーキに加え、省エネルギー、保守費用の低減を目的として、鉄道車両制動時の運動エネルギーを電気エネルギーに変換する回生ブレーキが設けられている。回生ブレーキは、制動時、駆動用の電動機を発電機として利用することにより制動力を発生させ、発生した電力を架線を通じて近隣の鉄道車両の加速などに使用するもので、省エネルギー及び空気ブレーキに関わる省保守の観点から、移動体の制動力は、これら二つのブレーキのうち、可能な限り回生ブレーキで負担させる方が好ましい。
 しかし、回生ブレーキは、生成した回生電力を消費する回生負荷がなければブレーキ力を発揮できない。特に、鉄道車両においては、近隣の加速状態にある鉄道車両が、回生エネルギーを消費する負荷となるため、近隣の鉄道車両の加速タイミングと自車のブレーキタイミングが同期しなかった場合は、回生電力の行き場がなくなってしまう。
 そのまま回生を続行した場合、架線電圧が上昇し、駆動装置や変電設備に損傷を与える恐れがあるため、回生ブレーキ力を絞り込む制御が行われる。この結果、回生ブレーキ力を発揮できない分を、空気ブレーキで補わざる得ないこととなり、回生効率の低下を招いていた。なお、回生電力を、鉄道車両に搭載した二次電池に回収させることも行われているが、充放電制御を含めシステムの複雑化、高コスト化を招き、また、二次電池の充電特性、劣化防止の観点から、回生電力の回収する際の応答性に限界がある。
 下記特許文献1には、近隣の鉄道車両の加速状態が回生効率に与える影響を少なくするため、自車の空調を回生負荷として活用する技術が記載されている。
 この公知技術では、架線電圧を測定し、架線電圧が上昇した場合は回生負荷が不足していると判断して自車の空調負荷を増大させ、回生電力を空調で消費することで回生効率を向上させている。
特開2009-225630号公報
 しかしながら、架線電圧のみの計測結果に基づいて空調負荷等の負荷消費電力を増大させた場合、各負荷出力が制御目標値よりも増大するという問題があった。例えば、空調負荷の場合は、回生電力量に応じて車内温度が変化するため、車内温度を目標値に制御するという空調本来の働きが果たせないという問題点があった。
 本発明はこのような問題点に鑑みてなされたもので、移動体に搭載された負荷の制御対象の状態量を許容範囲内に維持しつつ、車両に搭載した負荷で消費する回生電力を増大させて、回生効率を向上させることを目的とする。
 また、負荷として空調負荷を用いた場合は、移動体の車内温度を目標温度近傍に維持しながら、回生電力により回収される空調負荷を最大化することにより、移動体自身で回生電力を効率よく消費し、回生効率を向上させることを目的とする。
 この目的を達成するため、本発明では、例えば、移動体に搭載される機器の負荷を調整する機器制御装置を備え、機器制御装置は、移動体のブレーキ動作前の所定期間に、機器の負荷を減少または停止させる手段と、移動体のブレーキ動作中に、機器を所定期間よりも大きな負荷で動作させて回生電力を消費させる手段と、を備える。
 または鉄道車両の場合、ブレーキ開始地点の手前から空調をオフしても、ブレーキ開始地点において、車内温度が許容温度範囲内に収まる地点を算出し、鉄道車両がこの地点に到達した時点で空調をオフ(空調装置の負荷を零)にする。
 そして、鉄道車両がブレーキ開始地点に到達した場合は、空調装置をオンすることにより、車内温度を目標値近傍に制御しつつ、回生負荷となる空調負荷を最大化するものである。
 より具体的には、本発明の制御装置では、次のような技術的手段を講じた。すなわち、
(1)運動エネルギーを電気エネルギーに変換するエネルギー変換装置を備えた移動体の制御装置において、前記移動体の室内温度を制御する空調装置と、前記移動体のブレーキ開始位置を把握するブレーキ開始位置把握手段とを備え、前記ブレーキ開始位置の手前の地点において、前記空調装置の負荷を予め零とし、ブレーキ開始位置からブレーキ終了までの期間において、前記エネルギー変換装置による回生される電気エネルギーを、前記空調装置で消費するようにした。
(2)(1)の制御装置において、前記空調装置の負荷を予め零とする地点において、前記空調装置の負荷を予め零としたとき、前記ブレーキ開始位置において、暖房時は室温が最低許容温度に、冷房時は室温が最高許容温度になるよう、前記空調装置の負荷を予め零とする地点を演算する手段を備えた。
(3)(1)または(2)の制御装置において、前記空調装置による室内の許容最低温度及び許容最高温度の許容温度偏差に、両者間の偏差が大きい第1許容温度偏差と、両者間の偏差が小さい第2許容温度偏差を設定し、前記空調装置の負荷を予め零とする地点に到るまで、前記第2許容温度偏差内に室内温度を制御し、前記空調装置の負荷を予め零とする地点からブレーキ終了までの期間において、前記第1許容温度偏差内に室内温度を制御するようにした。
 本発明によれば、車内温度を許容温度範囲に維持しつつ、回生効率を向上させることが可能である。
 また、回生ブレーキを最大限有効に作動させ、回生失効する可能性を低下させることから、回生ブレーキと空気ブレーキへの切り替え頻度が少なくなり、乗り心地の向上にも寄与する。
実施例1のシステム構成図。 実施例1において、車両制御装置内で行われる処理のフロー図。 実施例1において、ブレーキ開始位置の手前において、空調装置の負荷を予め零とすべき地点の判定を行うための説明図。 実施例1と公知技術に係る車内温度の挙動の対比図。 実施例2のシステム構成図。 実施例2において、車両制御装置内で行われる処理のフロー図。 実施例2において、空調制御装置内で行われる処理のフロー図。 実施例3のシステム構成図。 実施例3において、車両制御装置内で行われる処理のフロー図。 実施例4のシステム構成図。 実施例4において、車両制御装置内で行われる処理のフロー図。 実施例4において、空調制御装置内の行われる処理のフロー図。 実施例4による車内温度及び空調負荷の挙動を示す図。
 以下、本発明の実施例について図面を用いて説明する。
[実施例1]
 まず、本発明における移動体の回路構成の例を説明する。本実施形態は、鉄道車両を駆動する交流電動機と、交流電動機に交流電力を供給するインバータ装置と、前記インバータ装置と共通の電源に接続されて空調装置や照明装置などの負荷に電力を供給する補助電源装置を備えている。
 図1を用いて本実施例のシステム構成の一例を説明する。
 この実施例では、搭載される空調装置(102)が、空調負荷を連続的に調節可能なものであり、車内温度の監視や空調負荷決定を車両制御装置(101)が保持している鉄道車両について説明する。
 すなわち、この実施例では、空調装置(102)は冷房及び暖房機能のみを有しており、冷房及び暖房の入り切のタイミングや負荷量の決定は、空調装置(102)自体で行わず、車両制御装置(101)からの指令により行われる。
 鉄道車両の運行に関わる機能の管理を行う車両制御装置(101)は、鉄道車両客車内に設置された温度センサ(103)から車内温度情報(151)を取得する。
 この温度センサ(103)は、例えば熱電対を用いて客室内の温度を計測するものであるが、車内温度が計測可能であれば様々な温度センサを使用することができる。
 次に、車両制御装置(101)は現在位置推定手段(104)から現在位置情報(152)を取得する。現在位置推定手段(104)は、例えばTG(速度発電機)(105)からの車両速度情報(153)に基づいて現在位置を推定する。車両速度情報(153)はTG(速度発電機)(105)以外から取得してもよく、例えばカメラを用いた画像認識による測定、GPSを用いた測定、ドップラーセンサを用いた測定、光学センサ等を使用してもよい。
 また現在位置推定手段(104)における現在位置の推定は、現在位置が推定可能であれば、車両速度情報(153)以外を用いてもよく、例えば車両速度情報(153)を地上子からの位置情報をもとに補正する方法、カメラを用いた画像認識による方法、GPSを用いた方法、地上子のみを用いる方法などを採用することができる。
 次に、車両制御装置(101)は、鉄道車両のブレーキ開始地点を記憶している走行パタンデータベース(106)からブレーキ開始地点情報(154)を取得する。ブレーキ開始地点情報(154)は走行パタンデータベース(106)以外から取得してもよく、例えば、地上から無線通信を用いてブレーキ開始地点情報(154)を鉄道車両に送信する方法などがある。
 次に、主幹制御器(107)からブレーキの状態を示すブレーキノッチ情報(155)を取得する。ブレーキノッチ情報(155)は、主幹制御器(107)以外から取得してもよく、例えば、保安装置やATO装置などから取得することができる。またブレーキ状態にあることを示す情報はブレーキノッチ情報(155)以外でもよく、例えば、ブレーキ力指令値などを使用してもよい。
 車両制御装置(101)は、車内温度情報(151)と現在位置情報(152)とブレーキ開始地点情報(154)とブレーキノッチ情報(155)から空調負荷情報(156)を決定し、空調負荷情報を(156)を空調装置(102)へ送信する。
 実施例1における車両制御装置(101)内で行われる処理フローを図2に示す。図2のステップ201~ステップ210により回生効率の向上と車内温度の目標値近傍での維持を確保する。
 ステップ201:現在位置情報(152)を現在位置推定手段(104)から取得して、ステップ202に進む。
 ステップ202:ブレーキ開始地点情報(154)を走行パタンデータベース(106)から取得して、ステップ203へ進む。
 ステップ203:現在位置情報(152)とブレーキ開始地点情報(154)から空調負荷を零とすべき地点であるか否かを判定し、空調負荷を零とすべき地点であればステップ204に進み、空調負荷を零とすべきキロ程でなければステップ208へ進む。
 ステップ204:主幹制御器(107)からブレーキノッチ情報(155)を取得して、ステップ205へ進む。
 ステップ205:ブレーキノッチ情報(155)がブレーキ中であることを示しているか否かを判定し、ブレーキ中である場合はステップ208へ進み。ブレーキ中でない場合はステップ206へ進む。
 ステップ206:空調負荷情報(156)を0とする。空調負荷情報(156)を0とするか、0以外の値とするかにより空調のON及びOFFのタイミングを制御し、ステップ207に進む。
 ステップ207:ステップ206で決定した空調負荷情報(156)を空調装置(102)へ送信する。
 ステップ208:温度センサ(103)から車内温度情報(151)を取得して、ステップ209へ進む。
 ステップ209:車内温度情報(151)から空調負荷情報(156)を決定し、ステップ210へ進む。なお、空調負荷情報(156)の決定は、車内温度情報(151)以外を用いてもよく、例えば、車内湿度、外気温度、乗車率などである。本実施例では、車内温度が目標値近傍に制御できればよく、車内温度を目標値近傍に制御するために必要な空調負荷量の決定手段は特定しない。
 ステップ210:ステップ209で決定した空調負荷情報(156)を空調装置(102)へ送信する。
 実施例1において、ブレーキ開始地点情報(154)に基づいて、空調負荷を零とすべき地点の判定方法について、図3を用いて説明する。
 いま、車内温度の目標値が外気温度よりも高い場合、すなわち暖房制御時について説明する。
 一般に車内温度を目標値に正確に追従させることは難しく、乗客が不快を感じない範囲で目標値に対して上限値、下限値を設定し、一定の偏差を許容している。ここで、目標値に許容する偏差を足した値を許容最高温度(301)、目標値から許容する偏差を引いた値を許容最低温度(302)と定義すると、車内温度の挙動は許容最高温度(301)と許容最低温度(302)の間に制御されることとなる。
 まず、ブレーキ開始地点情報(154)からブレーキ開始キロ程(303)を把握し、次に、現在位置情報(152)から現在のキロ程を把握する。
 現在のキロ程が、ブレーキ開始キロ程(303)の手前のキロ程(304)において、空調負荷を零(空調OFF)とした場合の車内温度の挙動が点線(305)であると仮定した場合、車内温度が許容最低温度(302)以下となるキロ程(306)が算出される。
 算出されたキロ程(306)がブレーキ開始キロ程(303)の手前である場合は、キロ程(304)において空調負荷を零とすると、ブレーキ開始キロ程(303)において車内温度が許容最低温度(302)を下回ることとなる。このように空調負荷を零とした場合に車内温度が許容最低温度(302)を下回ることが予想される場合は、空調負荷を零とすべきキロ程ではないと判定する。
 次に、現在のキロ程がキロ程(307)において、空調負荷を零(空調OFF)とした場合の車内温度の挙動が点線(308)であると仮定した場合、車内温度が許容最低温度(302)以下となるキロ程(309)が算出される。ブレーキ開始キロ程(303)よりも算出されたキロ程(309)が鉄道車両の進行方向に進んだキロ程である場合は、キロ程(307)において空調負荷を零としてもブレーキ開始キロ程(303)において車内温度が許容最低温度(302)を下回ることがない。このように空調負荷を零とした場合に車内温度が許容最低温度(302)を下回らないことが予想される場合は、空調負荷を零とすべきキロ程であると判定する。
 ここで、点線(305)及び点線(308)で示す、空調負荷を零とした場合の車内温度の挙動を表すモデルは、シミュレーションや実機試験による結果から作成したり、空調負荷を零にした期間における車内温度の挙動から作成することができる。
 車内温度の挙動が乗車率によって変化する場合は、モデルを乗車率に応じて複数保持したり、あるいは、基本となるモデルを乗車率に応じて補正するなどすることによりモデルの精度を向上させることが好ましい。
 また、空調負荷を零とすべきキロ程の判定はモデルを用いた方法以外でもよく、例えば距離で規定する方法、時間で規定する方法などがある。またこれらの規定値は、乗務員または地上と鉄道車両間の通信を用いて地上にいる係員が変更可能としてもよい。
 なお、車内温度の目標値が外気温度よりも低い場合、すなわち冷房時は、空調負荷を零とした場合に、ブレーキ開始キロ程(303)において、車内温度が許容最高温度(302)を上回らないことが予想されるキロ程を、空調負荷を零とすべきキロ程であると判定し、上回る場合は空調負荷を零とすべきキロ程でないと判定すればよい。
 暖房時を例に、実施例1を実施した場合と、上記特許文献1に示されるような公知技術を実施した場合における車内温度及び空調負荷の挙動の対比を図4に示す。
 本実施例によれば、車内温度(405)はブレーキ開始地点(403)直前で許容最低温度(402)付近まで低下する。そして、ブレーキ開始とともに回生電力を使用して、空調を作動させ、許容最高温度(401)を超えないように制御される。ブレーキ期間(404)中の車内温度(405)の挙動は、ブレーキ開始地点(403)を境に上昇し、許容最高温度(401)を超えないように制御され、回生電力を最大限有効活用することが可能になる。
 一方、公知技術の場合、車内温度(406)は、ブレーキ開始まで目標値近傍への制御を行っており、ブレーキ開始とともに回生電力を使用して空調を作動させて上昇する。許容最高温度(401)を超えないように制御が行われると仮定すると、ブレーキ開始時の車内温度(406)から許容最高温度(401)に至るまでが、空調負荷で回収できる回生電力となり、限定されたものとなってしまう。
 例えば、ブレーキ開始地点(403)において、車内温度(406)が許容最高温度(401)にある場合、回生電力を空調負荷で消費しようとすると、車内温度(406)を許容最高温度(401)以上にせざるを得ず、車内温度(406)が乗客が不快と感じる温度まで上昇することになり、回生電力を空調負荷で消費することが不可能になる。
 このように、先行技術の場合、ブレーキ開始時の車内温度(406)から許容最高温度(401)となるまでと、空調負荷(407)による回生電力の消費が制限されているため、本実施例と比べて、回生電力を空調で消費できる量が斜線範囲(408)分だけ少なくなってしまい、空調以外に回生電力を消費する負荷がない場合、回生失効や回生ブレーキ力の絞り込みによる回生効率の低下などが発生することになる。
 上述した実施例1では、図2のステップ206によってブレーキ開始前に空調負荷を零とする実施形態について説明したが、少なくとも空調負荷が減少されれば良く、必ずしも空調負荷を零とする必要は無い。このようにブレーキ開始直前の空調負荷を駅停車時や力行時などの通常よりも低い値とすれば良い。また、ブレーキ開始直前の空調負荷を零よりも大きな値とした場合には、空調負荷を零とする実施例と比較して回生電力の利用率は少なくなるが、車内温度の変動速度が小さくなり、温度の変動幅を小さくできるという効果がある。
[実施例2]
 図5は、実施例2のシステム構成を示しており、空調制御装置(502)が車両制御装置(501)からの空調ON指令を受けて、空調負荷を連続的に調節可能であり、車内温度の監視や空調負荷決定を空調制御装置(502)が保持している。
 鉄道車両の運行に関わる機能の管理を行う車両制御装置(501)は、鉄道車両客室内に設置された温度センサ(503)から車内温度情報(551)を取得し、次に、現在位置推定手段(504)から現在位置情報(552)を取得する。なお、温度センサ(503)、現在位置推定手段(504)は、実施例1の温度センサ(103)、現在位置推定手段(104)と同様のものを使用する。
 次に、車両制御装置(501)は、鉄道車両のブレーキ開始地点を記憶している走行パタンデータベース(506)からブレーキ開始地点情報(554)を取得したに後、主幹制御器(507)からブレーキの状態を示すブレーキノッチ情報(555)を取得する。
 なお、ブレーキ開始地点情報(554)は、実施例1のブレーキ開始地点情報(154)と同様の手段により取得すればよく、ブレーキの状態を示す情報としてブレーキノッチ情報以外に、例えばブレーキ力指令値を使用してもよい。
 車両制御装置(501)は、車内温度情報(551)と現在位置情報(552)とブレーキ開始地点情報(554)とブレーキノッチ情報(555)から空調ON指令(556)を決定し、空調ON指令を(556)を空調制御装置(502)へ送信する。
 空調制御装置(502)は前記温度センサ(503)からの車内温度情報(551)と車両制御装置(501)からの空調ON指令(556)をもとに空調を制御する。
 実施例2における車両制御装置(501)内での処理の流れを図6に示す。図6のステップ601~ステップ608により、回生効率の向上と車内温度の目標値近傍での維持を確保する。
 ステップ601:現在位置情報(552)を現在位置推定手段(504)から取得して、ステップ602に進む。
 ステップ602:ブレーキ開始地点情報(554)を走行パタンデータベース(506)から取得して、ステップ603へ進む。
 ステップ603:温度センサ(503)からから車内温度情報(551)を取得して、ステップ604へ進む。
 ステップ604:現在位置情報(552)とブレーキ開始地点情報(554)から、実施例1と同様の処理により、空調負荷を零とすべきキロ程であるか否かを判定し、空調負荷を零とすべきキロ程であればステップ605に進み、空調負荷を零とすべきキロ程でなければステップ606へ進む。
 ステップ605:
 主幹制御器(507)からブレーキノッチ情報(555)を取得する。ステップ607へ進む。
 ステップ606:
 空調ON指令(556)を空調制御装置(502)へ送信する。
 ステップ607:
 ブレーキノッチ情報(555)がブレーキ中であることを示しているか否かを判定し、ブレーキ中である場合はステップ608へ進み、ブレーキ中でない場合は処理を終了する。
 ステップ608:
 空調ON指令(556)を空調制御装置(502)へ送信する。
 次に実施例2における空調制御装置(502)内での処理フローを図7に示す。
 ステップ701:温度センサから(503)から車内温度情報(551)を取得し、ステップ702へ進む。
 ステップ702:車内温度情報(551)から空調負荷を決定して、ステップ703へ進む。なお、空調負荷の決定は、車内温度情報(551)以外を用いてもよく、例えば車内湿度、外気温度、乗車率などである。要するに、車内温度が目標値近傍に制御できればよく、車内温度を目標値近傍に制御するために必要な空調負荷量の決定手段は特定しない。
 ステップ703:車両制御装置(501)から空調ON指令(556)の受信確認を行い、ステップ704へ進む。
 ステップ704:空調ON指令(556)が空調ONを指令しているか否かを判定し、空調ONを指令していればステップ706に進み、空調ONを指令していなければステップ705へ進む。
 ステップ705:空調負荷を零とする。
 ステップ706:
 ステップ702で決定した空調負荷に基づいて空調装置を制御し、また、ステップ705で決定した空調負荷を零とする指令に基づいて空調装置のON及びOFFのタイミングを制御する。
 以上に述べた処理により、回生効率を向上させつつ、車内温度を目標値近傍で制御することができる。
 上述した実施例2では、図7のステップ705によって、ブレーキ開始前に空調負荷を零とする実施形態について説明したが、必ずしも空調負荷は零とする必要は無く、ブレーキ開始直前の空調負荷を駅停車時や力行時などの通常よりも低い値としても良い。
[実施例3]
 図8は、本実施例のシステム構成の一例を示しており、空調制御装置(802)が空調負荷を連続的に調節する機能を備えておらず、車内温度の調整を前記空調のON/OFFで行っている。
 鉄道車両の運行に関わる機能の管理を行う車両制御装置(801)は、鉄道車両の客室内に設置された温度センサ(803)から車内温度情報(851)を取得する。
 次に、車両制御装置(801)は現在位置推定手段(804)から現在位置情報(852)を取得する。なお、温度センサ(803)、現在位置推定手段(804)は、実施例1の温度センサ(103)、現在位置推定手段(104)と同様のものを使用する。
 次に、車両制御装置(801)は、鉄道車両のブレーキ開始地点を記憶している走行パタンデータベース(806)からブレーキ開始地点情報(854)を取得し、その後、主幹制御器(807)からブレーキの状態を示すブレーキノッチ情報(855)を取得する。
 なお、ブレーキ開始地点情報(854)は、実施例1のブレーキ開始地点情報(154)と同様の手段により取得すればよく、ブレーキの状態を示す情報としてブレーキノッチ情報意外に例えばブレーキ力指令値を使用してもよい。
 車両制御装置(801)は、車内温度情報(851)と現在位置情報(852)とブレーキ開始地点情報(854)とブレーキノッチ情報(855)から、空調ON指令(856)及び空調OFF指令(857)を決定し、空調ON指令(856)及び空調OFF指令(857)を空調制御装置(802)へ送信する。
 空調制御装置(802)は温度センサ(803)からの車内温度情報(851)をもとに車内温度が目標値となるように空調のON/OFFを決定する。ただし、車両制御装置(501)から空調ON指令(856)及び空調OFF指令(857)を受信した場合は、車両制御装置(501)からの空調ON指令(856)及び空調OFF指令(857)をもとに制御する。
 実施例3における車両制御装置(801)内での処理フローを図9に示す。図9のステップ901~ステップ907により回生効率の向上を確保する。
 ステップ901:現在位置情報(852)を現在位置推定手段(804)から取得し、ステップ902に進む。
 ステップ902:ブレーキ開始地点情報(854)を走行パタンデータベース(806)から取得し、ステップ903へ進む。
 ステップ903:現在位置情報(852)とブレーキ開始地点情報(854)から、実施例1と同様の処理により、空調負荷を零とすべきキロ程であるか否かを判定する。
 空調負荷を零とすべきキロ程であればステップ904に進み、空調負荷を零とすべきキロ程でなければ処理を終了する。
 ステップ904:主幹制御器(807)から前記ブレーキノッチ情報(855)を取得し、ステップ905へ進む。
 ステップ905:ブレーキノッチ情報(855)がブレーキ中であることを示しているか否かを判定し、ブレーキ中である場合はステップ906へ進み、ブレーキ中でない場合はステップ907へ進む。
 ステップ906:空調ON指令(856)を空調制御装置(802)へ送信する。
 ステップ907:空調OFF指令(856)を空調制御装置(802)へ送信する。
 以上に述べた処理により回生効率を向上させつつ、車内温度を目標値近傍で制御することができる。
[実施例4]
 図10は、実施例4のシステム構成の一例を示し、空調制御装置(1002)が空調負荷を連続的に調節可能であり、車内温度の監視や空調負荷決定を空調制御装置(1002)が保持している。
 この実施例では、第1許容温度偏差(1056)に加えて、この第1許容温度偏差(1056)よりも小さい第2許容温度偏差(1057)を設定する。
 鉄道車両の運行に関わる機能の管理を行う車両制御装置(1001)は、鉄道車両の客室内に設置された温度センサ(1003)から車内温度情報(1051)を取得し、次に、車両制御装置(1001)は現在位置推定手段(1004)から現在位置情報(1052)を取得する。
 なお、温度センサ(1003)、現在位置推定手段(1004)は、実施例1の温度センサ(103)、現在位置推定手段(104)と同様のものを使用する。
 次に、前記車両制御装置(1001)は、鉄道車両のブレーキ開始地点を記憶している走行パタンデータベース(1006)からブレーキ開始地点情報(1054)を取得し、その後、主幹制御器(1007)からブレーキの状態を示すブレーキノッチ情報(1055)を取得する
 なお、ブレーキ開始地点情報(1054)は、実施例1のブレーキ開始地点情報(154)と同様の手段により取得すればよく、ブレーキの状態を示す情報としてブレーキノッチ情報(1055)以外に、例えばブレーキ力指令値を使用してもよい。
 車両制御装置(1001)は、車内温度情報(1051)と現在位置情報(1052)とブレーキ開始地点情報(1054)とブレーキノッチ情報(1055)から許容温度偏差を決定し、第1許容温度偏差(1056)または第2許容温度偏差(1057)を空調制御装置(1002)へ送信する。
 空調制御装置(1002)は温度センサ(1003)からの車内温度情報(1051)と車両制御装置(1001)からの第1許容温度偏差(1056)または第2許容温度偏差(1057)をもとに空調を制御する。
 実施例4における車両制御装置(1001)内での処理フローを図11示す。図11のステップ1101~ステップ1107により回生効率の向上と車内温度の目標値近傍での維持を確保する。
 ステップ1101:現在位置情報(1052)を現在位置推定手段(1004)から取得し、ステップ1102に進む。
 ステップ1102:ブレーキ開始地点情報(1054)を走行パタンデータベース(1006)から取得し、ステップ1103へ進む。
 ステップ1103:温度センサ(1003)から車内温度情報(1051)を取得し、ステップ1103へ進む。
 ステップ1104:主幹制御器(1007)からブレーキノッチ情報(1055)を取得し、ステップ1105へ進む。
 ステップ1105:現在位置情報(1052)とブレーキ開始地点情報(1054)とブレーキノッチ情報(1055)から、実施例1と同様の処理により、空調負荷を零とすべきキロ程であるか否か、あるいはブレーキ中であるか否かを判定する。
 空調負荷を零とすべきキロ程またはブレーキ中であれば、ステップ1106に進み、それ以外であればステップ1107へ進む。
 ステップ1106:第1許容温度偏差(1056)を空調制御装置(1002)へ送信する。
 ステップ1107:第2許容温度偏差(1057)を空調制御装置(1002)へ送信する。
 次に実施例4における空調制御装置(1002)内での処理フローを図12に示す。
 ステップ1201:温度センサから(1003)から車内温度情報(1051)を取得し、ステップ1202へ進む。
 ステップ1202:車両制御装置(1001)から第1許容温度偏差(1056)を受信し、ステップ1203へ進む。
 ステップ1203:車両制御装置(1001)から第2許容温度偏差(1057)を受信し、ステップ1204へ進む。
 ステップ1204:車内温度情報(1051)から車内温度を目標値近傍に制御するために必要な空調負荷を決定し、ステップ1205へ進む。なお空調負荷の決定は、車内温度情報(1051)以外を用いてもよく、例えば車内湿度、外気温度、乗車率などである。要するに車内温度が目標値近傍に制御できればよく、車内温度を目標値近傍に制御するために必要な空調負荷量の決定手段は特定しない。
 また車内温度の目標値は日付及び季節などに応じてあらかじめ規定された値を使用してもよいし、乗務員または、地上と鉄道車両間の通信を用いて地上にいる係員が決定した値としてもよい。
 ステップ1205:車両制御装置(1001)から第1許容温度偏差(1056)及び第2許容温度偏差(1057)のいずれを受信しているかを判定する。第1許容温度偏差(1056)を受信している場合はステップ1207へ進み、第1許容温度偏差(1056)を受信していない場合はステップ1206へ進む。
 ステップ1206:空調装置をステップ1204で決定した空調負荷をもとに制御する。
 ステップ1207:空調負荷を零とする。
 ステップ1208:空調装置をステップ1207で決定した空調負荷をもとに制御する。
 ステップ1209:車内温度情報(1051)と車内温度の目標値との偏差が第1許容温度偏差(1056)より大きいかを判定し、大きければステップ1210へ進み、小さければステップ1207へ進む。
 ステップ1210:ステップ1204と同様の処理を行いで空調負荷を決定する。
 ステップ1211:空調装置をステップ1210で決定した空調負荷をもとに制御する。
 この実施例における車内温度の挙動及び空調負荷について図13を用いて説明する。
 いま、車内温度の目標値が外気温度よりも高い場合、すなわち暖房制御時について説明する。
 一般に車内温度を目標値に正確に追従させることは難しく、目標値に対して、一定の偏差を許容している。目標値に対し、許容する第1許容温度偏差(1056)を足した値を第1許容最高温度(1301)、目標値に対して、許容する第1許容温度偏差(1056)を引いた値を第1許容最低温度(1302)とそれぞれ定義する。
 また、この実施例では第1許容最高温度(1301)、第1許容最低温度(1302)に加えて、目標値に対し、第1許容温度偏差(1056)より小さい第2許容温度偏差(1057)を足した値を第2許容最高温度(1303)、引いた値を第2許容最低温度(1304)と定義し、第1許容最高温度(1301)と第1許容最低温度(1302)の偏差を第1許容温度偏差、第2許容最高温度(1303)、第2許容最低温度(1304)の偏差を第2許容温度偏差とし、第1許容温度偏差は第2許容温度偏差より大きな値としている。
 空調負荷を零とすべきキロ程またはブレーキ中でない期間(1305)では許容される温度偏差が第2許容温度偏差であるため、車内温度(1308)の挙動は第2許容最高温度(1303)と第2許容最低温度(1304)の間に制御されることとなる。
 そして、空調負荷を零とする期間(1306)、ブレーキ中(1307)では、許容される温度偏差が第2許容温度偏差より大きな第1許容温度偏差に変更される。
 車内温度(1308)が第1許容最低温度(1302)よりも高い場合は、空調負荷(1309)が零となる。なお、冷房制御時に空調負荷(1309)を零とすべき条件は車内温度(1308)が第1許容最高温度(1301)よりも低い場合となることはいうまでもない。
 実施例1と同様に、空調負荷を零とすべきキロ程になったとき、車内温度(1308)が第1許容最低温度(1302)よりも低くなった場合は、ブレーキ中(1307)であると考えられる。そこで、この時点で空調制御装置(1002)は車内温度(1308)が目標値となるように空調負荷(1309)を増大させ、車内温度(1308)は第1許容最高温度(1301)まで上昇することになる。
 なお、冷房制御時において空調制御装置(1002)が空調負荷(1309)を増大させる条件であるブレーキ中(1307)であるかの否かの判定は、車内温度(1308)が許容最高温度(1301)よりも高くなった場合とすればよい。
 また、ブレーキ中(1307)であるか否かの判定は、車内温度(1308)と第1許容最高温度(1301)または第1許容最低温度(1302)との関係以外を用いて実施してもよく、例えば、主幹制御器(1007)からのブレーキノッチ情報(1055)、ブレーキ力指令値などがある。ブレーキノッチ情報(1055)は、主幹制御器(1007)以外から取得してもよく、例えば、保安装置やATO装置などがある。本発明では、ブレーキ状態にあることが判定できればよく、その手段は特定しない。
 このように実施例4では、空調負荷を零とすべきキロ程になった時点では、車内温度(1308)が第2許容最高温度(1303)と第2許容最低温度(1304)の間の小さな許容温度偏差に制御されているため、空調負荷を零とすべきキロ程を正確に選定することができ、ブレーキ中に回生電力で消費される空調負荷を一層高めることができる。また、空調負荷を零とする期間(1306)、ブレーキ中(1307)では、許容される温度偏差が第2許容温度偏差より大きな第1許容温度偏差に変更されるので、空調負荷を零とする期間(1306)を最大限長くするとともに、ブレーキ中(1307)に空調装置で消費される回生電力を最大限増大させることが可能になる。
 なお、この実施例では、ブレーキ開始地点情報及びブレーキノッチ情報をもとに目標値に対して許容する温度偏差を変更したが、ブレーキ開始地点情報及びブレーキノッチ情報をもとに目標値を変更しても効果は変わらない。
 さらに、各実施例において、空調負荷を零とすべきキロ程及びブレーキ中の判定を車両制御装置で実施しているが、この判定を空調制御装置で実施しても効果は変わらない。
 要は、空調制御に必要な機能を鉄道車両全体で実現できていればよく、空調制御に必要な機能を車両制御装置、空調制御装置または空調装置のどちらで分担してもよい。
 上述した実施例4では、図12のステップ1207によって、空調負荷を零とする実施形態について説明したが、必ずしも空調負荷は零とする必要は無く、ブレーキ開始直前の空調負荷を駅停車時や力行時などの通常よりも低い値としても良い。
 なお、上述した各実施例では、空調負荷の制御を例に挙げて説明したが、負荷の種類は必ずしも空調に限られず、制御対象の状態量を一定範囲内に保つことが望まれる装置であれば良い。
 以上の実施例では、運動エネルギーを電気エネルギーに変換するエネルギー変換装置を備えた移動体として、鉄道車両に適用した場合について説明したが、本発明は、鉄道車両に限らず、例えば、空調装置を個別に搭載したエレベータ、カーナビゲーション等により予め減速区間を取得できる路線バス等の自動車等、予め減速開始位置を特定できる様々な移動体にも適用することできる。
 以上に述べたとおり、本発明によれば、ブレーキ開始位置の手前の地点において、空調装置の負荷を予め零とし、ブレーキ開始位置からブレーキ終了までの期間において、エネルギー変換装置による回生される電気エネルギーを、空調装置で消費するようにしたから、車内温度を許容温度範囲に維持しつつ、回生効率を大幅に向上させることが可能であり、システムの複雑化、高コスト化を招くことなく、優れた省エネ、省保守を実現できることから、様々な移動体に広く採用されることが期待できる。
 101  車両制御装置
 102  空調装置
 103  温度センサ
 104  現在位置推定手段
 105  速度発電機(TG)
 106  走行パタンデータベース
 107  主幹制御器
 151  車内温度情報
 152  現在位置情報
 153  車両速度情報
 154  ブレーキ開始地点情報
 155  ブレーキノッチ情報
 156  空調負荷情報
 501  車両制御装置
 502  空調制御装置
 503  温度センサ
 504  現在位置推定手段
 505  速度発電機(TG)
 506  走行パタンデータベース
 507  主幹制御器
 551  車内温度情報
 552  現在位置情報
 553  車両速度情報
 554  ブレーキ開始地点情報
 555  ブレーキノッチ情報
 556  空調ON指令
 801  車両制御装置
 802  空調制御装置
 803  温度センサ
 804  現在位置推定手段
 805  速度発電機(TG)
 806  走行パタンデータベース
 807  主幹制御器
 851  車内温度情報
 852  現在位置情報
 853  車両速度情報
 854  ブレーキ開始地点情報
 855  ブレーキノッチ情報
 856  空調ON指令
 857  空調OFF指令
 1001 車両制御装置
 1002 空調制御装置
 1003 温度センサ
 1004 現在位置推定手段
 1005 速度発電機(TG)
 1006 走行パタンデータベース
 1007 主幹制御器
 1051 車内温度情報
 1052 現在位置情報
 1053 車両速度情報
 1054 ブレーキ開始地点情報
 1055 ブレーキノッチ情報
 1056 第1許容温度偏差
 1057 第2許容温度偏差

Claims (7)

  1.  運動エネルギーを電気エネルギーに変換するエネルギー変換装置を備えた移動体の制御装置において、
     前記移動体に搭載される機器の負荷を調整する機器制御装置を備え、
     前記機器制御装置は、
     前記移動体のブレーキ動作直前の所定期間に、前記機器の負荷を減少または停止させる手段と、
     前記移動体のブレーキ動作中に、前記機器を前記所定期間よりも大きな負荷で動作させて回生電力を消費させる手段と、を備えることを特徴とする移動体の制御装置。
  2.  前記機器として、前記移動体の室内温度を制御する空調装置を利用することを特徴とする請求項1に記載の移動体の制御装置。
  3.  前記移動体のブレーキ開始位置を把握するブレーキ開始位置把握手段を備え、
     前記ブレーキ開始位置の手前の地点において、前記空調装置の負荷を予め零とし、ブレーキ開始位置からブレーキ終了までの期間において、前記エネルギー変換装置による回生される電気エネルギーを、前記空調装置で消費するようにしたことを特徴とする請求項2に記載の移動体の制御装置。
  4.  前記空調装置の負荷を予め零とする地点は、前記ブレーキ開始位置において、暖房時は室温が最低許容温度に、冷房時は室温が最高許容温度になるよう決定される、ことを特徴とする請求項3に記載の移動体の制御装置。
  5.  前記空調装置による室内の許容最低温度と許容最高温度の偏差である許容温度偏差として、第1許容温度偏差と、前記第1許容温度偏差よりも偏差が小さい第2許容温度偏差を設定し、前記空調装置の負荷を予め零とする地点からブレーキ終了までの期間では、前記第1許容温度偏差内に室内温度を制御し、それ以外の期間では、前記第2許容温度偏差内に室内温度を制御するようにしたことを特徴とする請求項3または請求項4に記載の移動体の制御装置。
  6.  運動エネルギーを電気エネルギーに変換するエネルギー変換装置を備えた移動体の制御方法において、
     前記移動体に搭載される機器の負荷を調整する機器制御装置は、
     前記移動体のブレーキ動作直前の所定期間に、前記機器の負荷を所定値に減少させ、
     前記移動体のブレーキ動作中に、前記機器を前記所定値よりも大きな負荷で動作させることを特徴とする移動体の制御方法。
  7.  前記機器は、前記移動体の室内温度を制御する空調装置であり、
     前記移動体のブレーキ開始位置を把握し、
     前記移動体が前記ブレーキ開始位置の手前の所定区間に存在する前記所定期間に、前記空調装置の負荷を零とし、
     前記移動体が前記ブレーキ開始位置からブレーキ終了地点に存在する場合に、前記エネルギー変換装置により回生される電気エネルギーを、前記空調装置で消費することを特徴とする請求項6に記載の移動体の制御方法。
     
PCT/JP2012/063346 2011-05-26 2012-05-24 移動体の制御装置および制御方法 WO2012161262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516435A JP5937584B2 (ja) 2011-05-26 2012-05-24 移動体の制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011117913 2011-05-26
JP2011-117913 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161262A1 true WO2012161262A1 (ja) 2012-11-29

Family

ID=47217334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063346 WO2012161262A1 (ja) 2011-05-26 2012-05-24 移動体の制御装置および制御方法

Country Status (2)

Country Link
JP (1) JP5937584B2 (ja)
WO (1) WO2012161262A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177552A3 (de) * 2013-04-30 2015-04-02 Siemens Aktiengesellschaft Vorrichtung zum betreiben zumindest eines elektrischen verbrauchers eines schienenfahrzeugs
JP2015127176A (ja) * 2013-12-27 2015-07-09 株式会社東芝 車両空調制御装置
WO2015177218A1 (en) * 2014-05-20 2015-11-26 Jaguar Land Rover Limited Vehicle control system and method
JP2016011046A (ja) * 2014-06-30 2016-01-21 三菱電機株式会社 空調制御装置、空調装置および空調制御方法
JP2016540490A (ja) * 2014-01-23 2016-12-22 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 車両に電力を供給するカテナリの電圧を制御するための方法及び装置
CN112644288A (zh) * 2020-12-25 2021-04-13 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606694B (zh) * 2020-12-25 2022-06-28 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285126A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 空調制御装置
JP2009056940A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp 電池の冷却装置
JP2009196404A (ja) * 2008-02-19 2009-09-03 Fujitsu Ten Ltd ハイブリッド制御装置、空調制御装置、ハイブリッド車両の制御方法
JP2009225630A (ja) * 2008-03-18 2009-10-01 Toshiba Corp 負荷調整装置を有する電気車
JP2010120589A (ja) * 2008-11-21 2010-06-03 Honda Motor Co Ltd 蓄電器冷却装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264086A (ja) * 1992-03-19 1993-10-12 Hitachi Ltd 空気調和装置およびその制御装置
JP3842688B2 (ja) * 2002-03-29 2006-11-08 株式会社東芝 車両用空調制御方法
ES2550603T3 (es) * 2008-06-11 2015-11-11 Mitsubishi Electric Corporation Acondicionador de aire para uso en vehículo, sistema de gestión de acondicionamiento de aire del vehículo, y método de gestión de acondicionamiento de aire del vehículo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285126A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 空調制御装置
JP2009056940A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp 電池の冷却装置
JP2009196404A (ja) * 2008-02-19 2009-09-03 Fujitsu Ten Ltd ハイブリッド制御装置、空調制御装置、ハイブリッド車両の制御方法
JP2009225630A (ja) * 2008-03-18 2009-10-01 Toshiba Corp 負荷調整装置を有する電気車
JP2010120589A (ja) * 2008-11-21 2010-06-03 Honda Motor Co Ltd 蓄電器冷却装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177552A3 (de) * 2013-04-30 2015-04-02 Siemens Aktiengesellschaft Vorrichtung zum betreiben zumindest eines elektrischen verbrauchers eines schienenfahrzeugs
CN105163975A (zh) * 2013-04-30 2015-12-16 西门子公司 用于运行轨道车辆的至少一个用电器的设备
US20160075350A1 (en) * 2013-04-30 2016-03-17 Siemens Aktiengesellschaft Device for Operating at Least one Electrical Consumer of a Rail Vehicle
CN105163975B (zh) * 2013-04-30 2017-02-22 西门子公司 用于运行轨道车辆的至少一个用电器的设备
RU2637837C2 (ru) * 2013-04-30 2017-12-07 Сименс Акциенгезелльшафт Устройство для эксплуатации, по меньшей мере, одного потребителя электроэнергии рельсового транспортного средства
JP2015127176A (ja) * 2013-12-27 2015-07-09 株式会社東芝 車両空調制御装置
JP2016540490A (ja) * 2014-01-23 2016-12-22 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 車両に電力を供給するカテナリの電圧を制御するための方法及び装置
WO2015177218A1 (en) * 2014-05-20 2015-11-26 Jaguar Land Rover Limited Vehicle control system and method
US10343547B2 (en) 2014-05-20 2019-07-09 Jaguar Land Rover Limited Vehicle control system and method
JP2016011046A (ja) * 2014-06-30 2016-01-21 三菱電機株式会社 空調制御装置、空調装置および空調制御方法
CN112644288A (zh) * 2020-12-25 2021-04-13 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质
CN112644288B (zh) * 2020-12-25 2022-04-12 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
JPWO2012161262A1 (ja) 2014-07-31
JP5937584B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5937584B2 (ja) 移動体の制御装置および制御方法
US20160075350A1 (en) Device for Operating at Least one Electrical Consumer of a Rail Vehicle
JP4188135B2 (ja) 輸送システムによって消費される電力を監視し且つ調整するための方法およびシステム
US9254753B2 (en) Train-information management device and device control method
JP5840309B2 (ja) 車両用空調制御装置
JP5174999B1 (ja) 列車情報管理装置および機器制御方法
EP2931579A1 (en) Method and device for regulating a longitudinal acceleration of a vehicle
JP2011205738A (ja) 自動列車運転装置
US20120080178A1 (en) Energy-efficient controlling of air conditioning system
EP2805862B1 (en) Traction system for railway vehicles and railway vehicles where the system is equipped
JP2008054387A (ja) 電気車両の制御装置
EP2623361A1 (en) Brake control apparatus for vehicle, and brake control apparatus for multi-car train
JP2012039738A (ja) 自動列車運転装置
JP5775798B2 (ja) 電池電車システム
CN109895655B (zh) 用于自动管理电动车辆存储的能量的方法和***
JP5366667B2 (ja) 列車総括制御システム
JP4709654B2 (ja) 交通システム
KR20200126135A (ko) 전기 자동차의 부하제어를 이용한 주행거리 증대방법
JP6272166B2 (ja) ブレーキ制御装置およびブレーキ制御方法
JP2011019326A (ja) 列車制御システム
JP2014144755A (ja) 列車制御システム
KR20150046467A (ko) 충전상태에 따른 보조모터 및 에어컴프레셔 동작 제어방법
CN116080716A (zh) 一种列车自动驾驶协同控制方法、***和计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789401

Country of ref document: EP

Kind code of ref document: A1