WO2012161179A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2012161179A1
WO2012161179A1 PCT/JP2012/063019 JP2012063019W WO2012161179A1 WO 2012161179 A1 WO2012161179 A1 WO 2012161179A1 JP 2012063019 W JP2012063019 W JP 2012063019W WO 2012161179 A1 WO2012161179 A1 WO 2012161179A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
transport layer
layer
emitting layer
quantum dots
Prior art date
Application number
PCT/JP2012/063019
Other languages
French (fr)
Japanese (ja)
Inventor
晴哉 宮田
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2012161179A1 publication Critical patent/WO2012161179A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a light emitting device, and more particularly to a light emitting device having a light emitting layer formed of quantum dots.
  • Quantum dots which are nanoparticles with a particle size of 10 nm or less, have excellent carrier (electron, hole) confinement properties, and can easily generate excitons by electron-hole recombination. Therefore, light emission from free excitons can be expected, and it is possible to realize sharp light emission with high emission efficiency and a narrow half-value width. Further, since quantum dots can be controlled in a wide wavelength range using the quantum size effect, their application to light emitting devices such as light emitting diodes (LEDs) and semiconductor lasers has attracted attention.
  • LEDs light emitting diodes
  • Non-Patent Document 1 reports improved characteristics of multilayer quantum dot light-emitting diodes by heat treatment of quantum dot layers.
  • Non-Patent Document 1 the hole transport layer 103 and the electron transport layer 105 (hereinafter, these may be collectively referred to as “carrier transport layer”) are formed of an organic semiconductor, and these hole transport layers 103 are formed.
  • a light emitting layer 104 made of an inorganic semiconductor quantum dot 104 a is provided between the electron transport layer 105 and the electron transport layer 105. Then, by applying a voltage between the anode 101 and the cathode 106, holes are injected into the quantum dots 104 a through the hole injection layer 102 and the hole transport layer 103, while electrons pass through the electron transport layer 105. Then, it is injected into the quantum dot 104a, and holes and electrons are recombined in the quantum dot 104 to emit excitons.
  • the light emitting diode which uses the quantum dot produced by the liquid phase method as the light emitting layer 104 has a structure in which the light emitting layer in the organic EL (electroluminescence) element is formed with an inorganic semiconductor quantum dot instead of an organic semiconductor.
  • the carrier transport layers 103 and 105 are usually formed of an organic semiconductor.
  • the molecular orbitals are in an empty state not occupied by electrons, but the lowest molecular orbital among these molecular orbitals not occupied by electrons (Lowest ⁇ Unoccupied Molecular Orbital;
  • the energy level corresponding to this LUMO is the LUMO level.
  • electrons move in the LUMO level (conduction band), and holes move in the HOMO level (valence band).
  • FIG. 10 is an energy state diagram of Non-Patent Document 1.
  • the HOMO level h 1 of BiVB-MeTPD forming the hole transport layer 103 is 5.3 eV
  • the HOMO level h 2 of TPBI forming the electron transport layer 105 is 6.3 eV
  • Non-Patent Document 1 lacks consistency in the energy level, and therefore, carriers cannot be efficiently injected into the quantum dot core portion 104a ′, and the injected carriers are not allowed to flow into the quantum dot core portion. It is difficult to confine effectively in 104a '. As a result, electrons and holes cannot be efficiently recombined in the quantum dot core portion 104a ′, resulting in a decrease in light emission efficiency.
  • the carrier transport layers 103 and 105 As the characteristics of the carrier transport layers 103 and 105, it is desired that the carrier mobility is high and the transportability is good. In organic semiconductors having high carrier mobility, the ⁇ bond system often carries carrier transport.
  • ⁇ -bonded electrons absorb ultraviolet light and have a weaker binding force than ⁇ bonds.
  • an organic semiconductor having a high carrier mobility in which the ⁇ bond system is responsible for carrier transport may be decomposed by absorption of ultraviolet light, and thus has a problem of low durability against ultraviolet light.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a light emitting device capable of improving the injection efficiency and confinement efficiency of carriers into quantum dots and obtaining good light emission efficiency. To do.
  • the hole transport layer is required to have a function of efficiently injecting holes into the light emitting layer and confining electrons injected from the electron transport layer into the light emitting layer.
  • the electron transport layer is required to have a function of efficiently injecting electrons into the light emitting layer and confining holes injected from the hole transport layer into the light emitting layer. Therefore, in order to increase the efficiency of injecting carriers into the light emitting layer and effectively confine the carriers in the light emitting layer, the hole transport layer and the electron transport layer need to have appropriate energy levels.
  • the carrier transport layer (hole transport layer and electron transport layer) with quantum dots of an inorganic semiconductor instead of an organic semiconductor
  • the energy level of the carrier transport layer can be simply changed by changing the particle size of these quantum dots. The position can be adjusted.
  • the present invention has been made based on such knowledge, and the light-emitting device according to the present invention has a light-emitting layer formed of first quantum dots interposed between a hole transport layer and an electron transport layer.
  • the hole transport layer and the electron transport layer are formed of second and third quantum dots made of an inorganic material different from the first quantum dots, respectively. It is said.
  • the hole transport layer and the electron transport layer can obtain appropriate energy levels only by changing the particle diameters of the second and third quantum dots.
  • the injection efficiency can be increased, and the carriers can be effectively confined in the light emitting layer.
  • the light emitting layer and the hole transport are made so that the LUMO level of the hole transporting layer is sufficiently smaller than the LUMO level of the light emitting layer.
  • a large electron transport barrier needs to be formed between the layers.
  • the energy level of the hole transport layer so that the hole transport barrier from the hole transport layer to the light-emitting layer is small and the electron transport barrier from the light-emitting layer to the hole transport layer is large.
  • the light emitting layer and the electron transport layer are formed so that the HOMO level of the electron transport layer is sufficiently larger than the HOMO level of the light emitting layer. It is necessary to form a large hole transport barrier between them.
  • the energy level of the electron transport layer so that the electron transport barrier from the electron transport layer to the light emitting layer is small and the hole transport barrier from the light emitting layer to the electron transport layer is large.
  • the light emitting device of the present invention has a small hole and electron transport barrier transported from the hole transport layer and the electron transport layer to the light emitting layer, and the electron transport layer and the hole transport from the light emitting layer.
  • the particle size of the second and third quantum dots is controlled so that a hole and electron transport barrier transported to the layer is increased, and each energy level of the hole transport layer and the electron transport layer is controlled. Is preferably adjusted.
  • the second and third quantum dots are formed of an inorganic material having a larger band gap energy than the light emitting layer so as not to absorb the light emitted from the light emitting layer, thereby effectively improving the light emission efficiency. It becomes possible.
  • the carrier transport layer does not absorb the light emitted from the light emitting layer, and a light emitting device having better light emission efficiency can be obtained.
  • the hole transport layer is formed on the surface of the first electrode, and the HOMO level of the hole transport layer is determined by the work function of the first electrode and the light emitting layer. It is preferable that the average particle diameter of the second quantum dots is set so as to be in the middle value of the HOMO level or in the vicinity of the middle value.
  • the transport barriers between the first electrode, the hole transport layer, and the light emitting layer are made uniform or substantially uniform, and the holes injected into the anode can be smoothly injected into the light emitting layer.
  • the LUMO level of the hole transport layer has an energy level smaller than the LUMO level of the light emitting layer.
  • This increases the electron transport barrier from the light emitting layer to the hole transport layer, and enables electrons to be effectively confined in the light emitting layer.
  • the second electrode is formed on the surface of the electron transport layer, and the LUMO level of the electron transport layer is determined by the work function of the second electrode and the LUMO level of the light emitting layer. It is preferable that the average particle diameter of the third quantum dots is set so as to be an intermediate value from the level or near the intermediate value.
  • the transport barriers between the second electrode, the electron transport layer, and the light emitting layer are made uniform or substantially uniform, and the electrons injected into the cathode can be smoothly injected into the light emitting layer.
  • the HOMO level of the electron transport layer has an energy level larger than the HOMO level of the light emitting layer.
  • the first to third quantum dots are any one of an oxide semiconductor, a compound semiconductor, and a single semiconductor.
  • the hole transport layer and the electron transport layer are respectively formed of the second and third quantum dots made of an inorganic material different from the first quantum dot forming the light emitting layer. Therefore, the energy level of the carrier transport layer (the hole transport layer and the electron transport layer) can be changed by the quantum size effect only by changing the particle diameters of the second and third quantum dots, and thus the carrier It becomes possible to easily adjust the energy level of the transport layer. That is, only by changing the particle size of the second and third quantum dots, the hole transport layer and the electron transport layer can obtain appropriate energy levels, and the injection efficiency of carriers into the light emitting layer is improved. The carriers can be effectively confined in the light emitting layer.
  • the inorganic material constituting the second and third quantum dots has high mobility compared to conventional organic materials, excellent carrier transportability, and is excellent in that it is not decomposed by ultraviolet light. Has excellent durability.
  • the hole transport layer and the electron transport layer are formed of the second and third quantum dots as described above, the first quantum dot and the third quantum dot that form the second quantum dot and the light emitting layer are formed.
  • the dots and the first quantum dots are in sphere contact with each other. Therefore, the contact area between the hole transport layer and the electron transport layer and the light emitting layer is increased compared to the case where the surface and the sphere are in contact with each other as in the conventional organic material, and the probability of carrier injection into the light emitting layer is increased. This can be further improved.
  • FIG. 6 is an energy state diagram of sample number 5; It is sectional drawing which shows the conventional light-emitting device described in the nonpatent literature 1 typically. It is an energy state figure of the conventional light emitting device described in the nonpatent literature 1.
  • an anode (first electrode) 2 made of a conductive transparent material such as ITO is formed on a glass substrate (transparent substrate) 1, and a positive electrode made of a second quantum dot 3 a is formed on the surface of the anode 2.
  • a hole transport layer 3 is formed, and a light emitting layer 4 composed of the first quantum dots 4 a is formed on the surface of the hole transport layer 3.
  • an electron transport layer 5 composed of third quantum dots 5a is formed on the surface of the light emitting layer 4, and a cathode (second electrode) 6 containing a metal conductive material such as Al is formed on the surface of the electron transport layer 5. Is formed.
  • the hole transport layer 3 and the electron transport layer 5 are the second and third quantum dots 3 a and 5 a made of an inorganic material different from the first quantum dot 4 a forming the light emitting layer 4. Each is formed.
  • the light emitting diode has a small hole and electron transport barrier transported from the hole transport layer 3 and the electron transport layer 5 to the light emitting layer 4, and the light emitting layer 4 is changed from the light emitting layer 4 to the electron transport layer 3 and the hole transport layer 5.
  • the energy levels of the hole transport layer 3 and the electron transport layer 5 are adjusted by the second and third quantum dots 3a and 5a so that the transport barriers of the transported holes and electrons are increased.
  • carriers can be efficiently injected into the first quantum dots 4a, and these carriers can be effectively confined in the first quantum dots 4a, thereby improving the recombination probability.
  • the carrier injection efficiency and the recombination probability can be improved, the driving voltage of the light emitting diode is lowered, and the light emission efficiency can be improved.
  • the function of the hole transport layer 3 is to efficiently inject holes injected from the anode 2 into the first quantum dots 4a of the light emitting layer 4, while from the electron transport layer 5 to the first quantum dots 4a.
  • the injected electrons are prevented from flowing out into the hole transport layer 3 without being recombined with holes in the first quantum dots 4a, and the electrons are effectively confined in the first quantum dots 4a. It is in.
  • the function of the electron transport layer 5 is that the electrons injected from the cathode 6 are efficiently injected into the first quantum dots 4a, while the electrons are injected from the hole transport layer 3 into the first quantum dots 4a.
  • the purpose is to prevent holes from flowing out into the electron transport layer 5 without recombining with electrons in the first quantum dots 4a, and to effectively confine holes in the first quantum dots 4a.
  • the hole transport layer 3 and the electron transport layer 5 have appropriate values of the HOMO level and the LUMO level. By forming, carrier injection efficiency and confinement efficiency can be improved.
  • the hole transport layer 3 when the HOMO level of the hole transport layer 3 is larger than the HOMO level of the light-emitting layer 4, there is no hole transport barrier from the hole transport layer 3 to the light-emitting layer 4, and the holes are emitted from the light-emitting layer. 4 is easily injected.
  • the HOMO level of the hole transport layer 3 when the HOMO level of the hole transport layer 3 is smaller than the HOMO level of the light emitting layer 4, a hole transport barrier is formed between the hole transport layer 3 and the light emitting layer 4, and the hole transport barrier is formed. Is small, holes are injected into the light emitting layer 4 relatively easily. However, when the hole transport barrier is large, holes are hardly injected into the light emitting layer 4.
  • the difference between the LUMO level of the hole transport layer 3 and the LUMO level of the light emitting layer 4 is small, electrons injected into the light emitting layer 4 easily flow out to the hole transport layer 3 and transport holes.
  • the LUMO level of the layer 3 is sufficiently smaller than the LUMO level of the light emitting layer 4, a large electron transport barrier is formed, and electrons can be effectively confined in the light emitting layer 4.
  • the HOMO of the hole transport layer is set so as to be in the middle value of the work function of the anode 2 and the HOMO level of the light emitting layer 4 or in the vicinity of the intermediate value.
  • the hole transport barrier can be made as small as possible, and holes can be efficiently injected into the light emitting layer 4.
  • the LUMO level of the electron transport layer 5 is smaller than the LUMO level of the light-emitting layer 4, there is no electron transport barrier from the electron transport layer 5 to the light-emitting layer 4, and electrons are easily in the light-emitting layer 4. Injected into.
  • the LUMO level of the electron transport layer 5 is larger than the LUMO level of the light emitting layer 4, an electron transport barrier is formed between the electron transport layer 3 and the light emitting layer 4, and when the electron transport barrier is small, Can be injected into the light emitting layer 4 relatively easily.
  • the electron transport barrier is increased, electrons are hardly injected into the light emitting layer 4.
  • the electron transport having a LUMO level that is an intermediate value between the work function of the cathode 6 and the LUMO level of the light emitting layer 4 or near the intermediate value.
  • the electron transport barrier can be made as small as possible, and electrons can be efficiently injected into the light emitting layer 4.
  • the light emitting layer is formed of an inorganic semiconductor material, but the hole transport layer and the electron transport layer are formed of an organic semiconductor. Therefore, it has been difficult to obtain sufficiently good injection efficiency and confinement efficiency.
  • the transport barrier between the carrier transport layers 3 and 5 changes, but the carrier transport layer 3
  • an organic semiconductor material corresponding to the energy structure must be selected in order to optimize the energy structure, resulting in a complicated structure design of the device.
  • quantum dots (second and third quantum dots 3a and 5a) made of an inorganic material that can easily control the energy level by adjusting the particle size without depending on the material type.
  • the hole transport layer 3 and the electron transport layer 5 are formed, thereby matching the energy levels between the respective layers (between the anode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5 and the cathode 6), Carrier injection efficiency and confinement efficiency are improved.
  • the inorganic material has higher carrier mobility than the organic material, is excellent in carrier transportability, and can obtain good durability without being decomposed by ultraviolet light.
  • the hole transport layer 3 and the electron transport layer 5 are formed by the second and third quantum dots 3a and 5a as described above, the first quantum that forms the light emitting layer 4 with the second quantum dots 3a.
  • the dots 4a and the third quantum dots 5a and the first quantum dots 4a come into contact with each other in spheres, and the light emitting layer 4 is compared with the case where the surface and the sphere are in contact with each other as in the case of a conventional organic material.
  • the first quantum dots 4a forming the sphere are in contact with each other. Therefore, the contact area between the hole transport layer 3 and the electron transport layer 5 and the light emitting layer 4 is increased as compared with the case where the surface and the sphere are in contact with each other as in the case of a conventional organic material.
  • the injection probability of can be further improved.
  • the HOMO level H 0 and the LUMO level L 0 of the light emitting layer 4 according to the average particle diameter are determined.
  • the quantum dot HOMO level (hereinafter referred to as “quantum dot HOMO level”) E Hd (eV) and the quantum dot LUMO level (hereinafter referred to as “quantum dot LUMO level”).
  • E Ld (eV) can be expressed by Equations (1) and (2).
  • the quantum dot HOMO level E Hd and the quantum dot LUMO level E Ld corresponding to the average particle diameter are calculated by substituting the average particle diameter and other known numerical values into the formulas (1) and (2), and the light emitting layer 4
  • the HOMO level H 0 and the LUMO level L 0 of the (first quantum dot 4a) are determined.
  • an inorganic material larger than the band gap energy Eg of the light emitting layer 4 is selected so that the light emitted from the light emitting layer 4 is not absorbed.
  • the HOMO level H 1 of the hole transport layer 3 is determined.
  • the difference between the HOMO level H 1 of the hole transport layer 3 and the HOMO level H 0 of the light-emitting layer 4 is small Is preferred.
  • the difference between the work function W 1 of the anode 2 and the HOMO level H 1 of the hole transport layer 3 is small. Is preferred.
  • the particle size d is substituted into the formula (2) to obtain the quantum dot LUMO level E Ld, thereby determining the LUMO level L 1 of the hole transport layer 3.
  • an inorganic material used for the electron transport layer 5 is selected.
  • an inorganic material larger than the band gap energy Eg of the light emitting layer 4 is selected so that the light emitted from the light emitting layer 4 is not absorbed.
  • the LUMO level L 2 and the HOMO level H 2 of the electron transport layer 5 are determined as follows.
  • the cathode 6 ⁇ the electron
  • the electron transport barrier in the transport layer 5 ⁇ the light emitting layer 4 can be optimized.
  • the second quantum dots 3a forming the hole transport layer 3 are not particularly limited as long as they are inorganic semiconductor materials larger than the band gap energy Eg of the first quantum dots 4a.
  • An inorganic semiconductor material having a high hole mobility in the transport layer 3 is preferably used.
  • an oxide semiconductor such as NiO or MoO 3 or a compound semiconductor such as ZnTe or CdTe can be used.
  • the third quantum dot 5a forming the electron transport layer 5 is not particularly limited as long as it is an inorganic semiconductor material larger than the band gap energy of the first quantum dot 4a. It is preferable to use an inorganic semiconductor material having a high electron mobility therein.
  • an oxide semiconductor such as ZnO or TiO 2 or a compound semiconductor such as ZnS, ZnSe, or GaN can be used.
  • FIG. 3 is a manufacturing process diagram showing a manufacturing method of the light emitting diode.
  • a transparent film such as ITO is formed on a glass substrate 1 by sputtering or the like, and UV ozone treatment is performed to form an anode 2 having a thickness of 100 nm to 150 nm.
  • the second quantum dot dispersion solution is applied onto the anode 2 to form the hole transport layer 3 having a thickness of 50 to 100 nm composed of the second quantum dots 3a.
  • a first quantum dot dispersion solution in which the first quantum dots 4a are dispersed in a dispersion solvent is prepared.
  • the first quantum dot dispersion solution is applied onto the hole transport layer 3, and as shown in FIG. A 20 nm light emitting layer 4 is formed.
  • the third quantum dot dispersion solution is applied onto the light emitting layer 4, and as shown in FIG. 3C, the film thickness of 50 to 100 nm made of the third quantum dots 5a is formed.
  • the electron transport layer 5 is formed.
  • LiF, Al, or the like is used to form a cathode 6 having a film thickness of 100 nm to 300 nm by a vacuum deposition method, whereby a light emitting diode is manufactured.
  • the hole transport layer 3 is directly formed on the surface of the anode 2.
  • a hole injection layer may be interposed between the anode 2 and the hole transport layer 3. It is also preferred to optimize the energy structure by multilayering the transport layer 3 to reduce the interlayer barrier.
  • an organic material such as PEDOT: PSS or an inorganic material may be used as the material of the hole injection layer.
  • an organic material such as PEDOT: PSS or an inorganic material may be used as the material of the hole injection layer.
  • an organic material it is possible to contribute to planarization of the electrode surface.
  • the first to third quantum dots 3a to 5a have only a core portion and no shell portion, but have a core-shell structure or a core-shell-shell structure in which the shell portion has a two-layer structure. The same applies to the above.
  • Example No. 1 [Design of energy structure] ITO having a work function of 4.9 eV was used as the anode material, and Al having a work function of 4.3 eV was used as the cathode material.
  • InP quantum dots were used as the light emitting layer, and the average particle size was set to 6.8 nm (band gap energy Eg: 1.8 eV).
  • the quantum dot HOMO level E Hd and the quantum dot LUMO level E Ld are calculated from the mathematical formulas (1) and (2) described in [Description of Embodiments], and the HOMO level of the InP quantum dot is calculated. H 0 and LUMO level L 0 were obtained.
  • the bulk HOMO level E Hb of InP is 5.8 eV
  • bulk LUMO level E Lb is 4.5 eV
  • holes and electrons effective mass m h in InP from the following non-patent document 2
  • NiO quantum dots having a band gap energy Eg sufficiently larger than the band gap energy Eg of the InP quantum dots were selected as the hole transport layer material.
  • the average particle size of NiO quantum dots was determined.
  • the HOMO of NiO quantum dots is obtained from Equation (1).
  • the average particle diameter d corresponding to the level H Hd : 5.4 eV was determined to be 9.0 nm.
  • the quantum LUMO level E Lb of NiO is 1 .6 eV. J. Mater. Chem., 2007, 17, 127
  • ZnO quantum dots having band gap energy Eg sufficiently larger than the band gap energy Eg of InP quantum dots were selected as the electron transport layer material.
  • the average particle diameter of ZnO quantum dots was determined.
  • the LUMO level of ZnO quantum dots is obtained from Equation (2).
  • the average particle diameter d corresponding to the position L 2 : 4.2 eV was determined to be 7.7 nm.
  • Example preparation First, an InP quantum dot dispersion solution in which InP quantum dots (first quantum dots) were dispersed in toluene (dispersion solvent) was prepared.
  • indium acetate (In (CH 3 COO) 3 ) and myristic acid (C 13 H 27 COOH) were dissolved in octadecene (C 18 H 36 ) to prepare an In raw material solution.
  • trismethylsilylphosphine ((CH 3 ) 3 Si) 3 P) and octylamine (C 8 H 17 NH 2 ) were dissolved in octadecene to prepare a P raw material solution.
  • the In raw material solution was heated to 200 ° C.
  • the P raw material solution was dropped into the heated In raw material solution, and held for 2 hours to obtain InP quantum dots having an average particle diameter of 6.8 nm.
  • NiO quantum dot dispersion solution in which NiO quantum dots (second quantum dots) were dispersed in 2-propanol (dispersion solvent) was prepared.
  • Ni (CH 3 COO) nickel acetate
  • ethanol C 2 H 5 OH
  • sodium hydroxide NaOH
  • a sodium hydroxide / ethanol solution was added dropwise to the nickel acetate / ethanol solution and held for 2 hours to obtain NiO quantum dots having an average particle size of 9.0 nm.
  • a centrifuge is used to separate the precipitate from the unreacted material, and the precipitate is redispersed in 2-propanol (CH 3 CH (OH) CH 3 ), thereby producing a NiO quantum dot dispersion solution. did.
  • ZnO quantum dot dispersion solution in which ZnO quantum dots (third quantum dots) were dispersed in 2-propanol (dispersion solvent) was prepared.
  • zinc acetate Zn (CH 3 COO)
  • sodium hydroxide was dissolved in ethanol to prepare a sodium hydroxide / ethanol solution.
  • a sodium hydroxide / ethanol solution was dropped into the zinc acetate / ethanol solution and held for 2 hours to obtain ZnO quantum dots having an average particle size of 7.7 nm.
  • the precipitate and the unreacted material were separated using a centrifuge, and the precipitate was redispersed in 2-propanol, thereby preparing a ZnO quantum dot dispersion solution.
  • an ITO film was formed on the glass substrate by a sputtering method, UV ozone treatment was performed, and an anode with a film thickness of 120 nm was produced.
  • a NiO quantum dot dispersion solution was applied on the anode to form a hole transport layer having a thickness of 50 nm.
  • an InP quantum dot dispersion solution was applied onto the hole transport layer to form a light emitting layer having a thickness of 20 nm.
  • a ZnO quantum dot dispersion solution was applied onto the light emitting layer to form an electron transport layer having a thickness of 50 nm.
  • a cathode having a film thickness of 100 nm was formed by a vacuum deposition method, and thereby a sample of sample number 1 was produced.
  • Table 1 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of the first to third quantum dots of sample number 1.
  • Example No. 2 [Design of energy structure] Similar to Sample No. 1, ITO was used as the anode, NiO quantum dots with an average particle size of 9.0 nm were used as the hole transport layer, and Al was used as the cathode.
  • the HOMO level H 2 of ZnO was found to be 7.9 eV.
  • Example preparation An InP quantum dot dispersion solution having an average particle size of 4.7 nm was prepared by dripping the P raw material solution into the In raw material solution and holding it for 1 hour in the same manner as in Sample No. 1.
  • a ZnO quantum dot dispersion solution having an average particle size of 4.4 nm was prepared by dripping a sodium hydroxide / ethanol solution into a zinc acetate / ethanol solution and holding it for 1 hour in the same manner as in Sample No. 1. .
  • sample of sample number 2 was prepared in the same manner and procedure as sample number 1.
  • Table 2 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 2.
  • Example No. 3 [Design of energy structure] Similar to Sample No. 1, ITO was used as the anode and Al was used as the cathode.
  • This InP quantum dot was used as a light emitting layer, and the average particle diameter was set to 3.7 nm (band gap energy Eg: 2.9 eV).
  • This InP quantum dot has a HOMO level H 0 of 6.0 eV and a LUMO level L 0 of 3.1 eV according to equations (1) and (2).
  • NiO was used as the hole transport layer material.
  • the average particle diameter was determined from Equation (1), it was 5.8 nm.
  • the average particle size was determined from 2), it was 3.3 nm.
  • Example preparation An InP quantum dot dispersion solution having an average particle diameter of 3.7 nm was prepared by dripping the P raw material solution into the In raw material solution and holding it for 30 minutes in the same manner as in Sample No. 1.
  • a ZnO quantum dot dispersion solution having an average particle diameter of 3.3 nm was prepared by dropping a sodium hydroxide / ethanol solution into a zinc acetate / ethanol solution and maintaining it for 30 minutes in the same manner as in Sample No. 1.
  • sample No. 3 was prepared in the same manner and procedure as the sample No. 1.
  • Example No. 4 [Design of energy structure] Similar to Sample No. 1, ITO was used as the anode and Al was used as the cathode.
  • CdSe quantum dots were used as the light emitting layer, and the average particle size was set to 5.5 nm (band gap energy Eg: 2.2 eV).
  • NiO having an average particle diameter of 2.0 nm was selected for the hole transport layer.
  • the HOMO level H 1 and LUMO level L 1 of NiO corresponding to an average particle diameter of 2.0 nm were found to be 5.9 eV and 1.5 eV from the equations (1) and (2), respectively.
  • ZnO having an average particle diameter of 7.8 nm was selected for the electron transport layer.
  • the HOMO level H 2 and LUMO level L 2 of ZnO corresponding to an average particle diameter of 7.8 nm were found to be 7.8 eV and 4.2 eV from Equations (1) and (2), respectively.
  • Example preparation First, a CdSe quantum dot dispersion solution in which CdSe quantum dots (first quantum dots) were dispersed in toluene (dispersion solvent) was prepared.
  • CdO cadmium oxide
  • octadecylamine C 13 H 37 NH 2
  • selenium Se
  • tributylphosphine (C 4 H 9 ) 3 P) were dissolved in octadecene to prepare a Se raw material solution.
  • the Cd raw material solution is heated to 280 ° C.
  • the Se raw material solution is dropped into the heated Cd raw material solution, and held at a temperature of 250 ° C. for 1 hour to obtain CdSe quantum dots having an average particle size of 5.5 nm. Produced.
  • unreacted substances and CdSe quantum dots were separated using methanol, and the precipitated CdSe quantum dots were redispersed in toluene, thereby preparing a CdSe quantum dot dispersion solution.
  • a NiO quantum dot dispersion solution having an average particle diameter of 2.0 nm was prepared by dropping a sodium hydroxide / ethanol solution into a nickel acetate / ethanol solution and maintaining it for 30 minutes in the same manner as in sample number 1.
  • a ZnO quantum dot dispersion solution having an average particle diameter of 7.8 nm was prepared by dripping a sodium hydroxide / ethanol solution into a zinc acetate / ethanol solution and keeping it for 2 hours in the same manner as in Sample No. 1.
  • a sample No. 4 was prepared in the same manner and procedure as Sample No. 1 except that the above CdSe quantum dot dispersion solution, NiO quantum dot dispersion solution, and ZnO quantum dot dispersion solution were used.
  • Table 4 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 4.
  • Sample No. 5 [Design of energy structure] Similar to Sample No. 1, ITO was used as the anode, Al was used as the cathode, and ZnO having an average particle diameter of 7.8 nm was used as the Sample No. 4 as the electron transport layer.
  • This CdSe quantum dot has a HOMO level H 0 of 6.7 eV and a LUMO level L 0 of 4.9 eV according to equations (1) and (2).
  • NiO having an average particle diameter of 2.3 nm was selected for the hole transport layer.
  • the HOMO level H 1 and LUMO level L 1 of NiO corresponding to an average particle diameter of 2.0 nm were determined to be 5.8 eV and 1.5 eV from the equations (1) and (2), respectively.
  • a NiO quantum dot dispersion solution having an average particle size of 2.3 nm was prepared by dropping a sodium hydroxide / ethanol solution into a nickel acetate / ethanol solution and holding it for 30 minutes in the same manner as in sample number 1.
  • Table 5 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 5.
  • FIG. 4 to 8 are energy state diagrams showing the energy states of the samples of sample numbers 1 to 5.
  • FIG. 4 to 8 are energy state diagrams showing the energy states of the samples of sample numbers 1 to 5.
  • Table 6 shows hole or electron transport barriers.
  • Table 6 shows hole or electron transport barriers in Non-Patent Document 1 as comparative examples.
  • the hole transport barrier from the hole transport layer to the light emitting layer is 1.5 eV, the hole transport barrier is high, and the carrier injection efficiency is poor.
  • the electron transport barrier from the light-emitting layer to the hole transport layer is relatively high at 2.1 eV
  • the hole transport barrier from the light-emitting layer to the electron transport layer is as low as ⁇ 0.5 eV. Holes injected into the InP quantum dots of the layer easily flow out to the electron transport layer, and it is difficult to effectively confine electrons in the InP quantum dots.
  • Sample No. 1 has a hole transport barrier of 0.5 eV from the hole transport layer to the light emitting layer, and electron transport from the electron transport layer to the light emitting layer.
  • the barrier is also 0.1 eV, and both have low carrier transport barriers, and carriers can be easily injected from the carrier transport layer into the light emitting layer.
  • the hole transport barrier from the light-emitting layer to the electron transport layer is 1.9 eV, and the electron transport barrier from the light-emitting layer to the hole transport layer is 2.5 eV. It was found that the transport barrier is high and the carrier confinement property is excellent.
  • Sample No. 2 has a hole transport barrier from the hole transport layer to the light-emitting layer of 0.5 eV, and also has an electron transport barrier from the electron transport layer to the light-emitting layer of 0 eV. .3 eV, both of which have a low carrier transport barrier, and carriers can be easily injected from the carrier transport layer into the light-emitting layer.
  • the hole transport barrier from the light-emitting layer to the electron transport layer is 2.0 eV
  • the electron transport barrier from the light-emitting layer to the hole transport layer is 2.1 eV. It was found that the transport barrier is high and the carrier confinement property is excellent.
  • Sample No. 3 has a hole transport barrier from the hole transport layer to the light-emitting layer of 0.5 eV, and also has an electron transport barrier from the electron transport layer to the light-emitting layer of 0.
  • the carrier transport barrier is low, and carriers can be easily injected from the carrier transport layer into the light emitting layer.
  • the hole transport barrier from the light emitting layer to the electron transport layer is 2.1 eV, and the electron transport barrier from the light emitting layer to the hole transport layer is 1.5 eV. It was found that the transport barrier is high and the carrier confinement property is excellent.
  • Sample No. 4 has a hole transport barrier of 0.9 eV from the hole transport layer to the light emitting layer, and also has an electron transport barrier from the electron transport layer to the light emitting layer ⁇ Each of them is 0.4 eV, and the carrier transport barrier is low. Carriers can be easily injected from the carrier transport layer into the light emitting layer.
  • the electron transport barrier from the light emitting layer to the hole transport layer is as high as 3.1 eV, and the hole transport barrier from the light emitting layer to the electron transport layer is 1.0 eV. It was found to have a sufficiently high barrier to confine holes in CdSe quantum dots, although it is low compared to 1-3.
  • the hole transport barrier from the hole transport layer to the light emitting layer is 0.9 eV, and the electron transport barrier from the electron transport layer to the light emitting layer is ⁇
  • the carrier transport barrier is low, and the carrier can be easily injected from the carrier transport layer into the light emitting layer.
  • the electron transport barrier from the light emitting layer to the hole transport layer is as high as 3.4 eV, and the hole transport barrier from the light emitting layer to the electron transport layer is 1.1 eV. It was found to have a sufficiently high barrier to confine holes in CdSe quantum dots, although it is low compared to 1-3.
  • the electron mobility of TPBI used in the electron transport layer is 10 ⁇ 5 cm 2 / V as described in Non-Patent Document 6. -S.
  • the electron mobility of ZnO used for the electron transport layer in the examples of the present invention is 100 cm 2 / V ⁇ s as described in Non-Patent Document 7.
  • the inorganic semiconductor material of the embodiment of the present invention has a higher electron mobility than the organic semiconductor material, and thus has excellent carrier transportability, and is improved in durability without being absorbed and decomposed by ultraviolet light. You can plan. Chemical Physics Letters, 2001, 334, 61 Appl.Phys.Lett. 2005, 87, 152101

Abstract

A positive hole transport layer (3) and electron transport layer (5) are respectively formed by second and third quantum dots (3a, 5a) made of inorganic material different from first quantum dots (4a) that form a light-emitting layer (4). The energy levels of the positive hole transport layer (3) and electron transport layer (5) are adjusted by the second and third quantum dots (3a, 5a), so that the transport barrier for positive holes and electrons transported from the positive hole transport layer (3) and electron transport layer (5) to the light-emitting layer (4) is small and the transport barrier for positive holes and electrons transported from the light-emitting layer (4) to the electron transport layer (5) and the positive hole transport layer (3) is large. In this way, a light-emitting device can be realised in which the efficiency of injection and the efficiency of confinement of carriers into the quantum dots is improved, thereby making it possible to obtain excellent light-emission efficiency.

Description

発光デバイスLight emitting device
 本発明は発光デバイスに関し、より詳しくは発光層が量子ドットで形成された発光デバイスに関する。 The present invention relates to a light emitting device, and more particularly to a light emitting device having a light emitting layer formed of quantum dots.
 粒径が10nm以下のナノ粒子である量子ドットは、キャリア(電子、正孔)の閉じ込め性に優れていることから、電子-正孔の再結合により励起子を容易に生成することができる。このため自由励起子からの発光が期待でき、発光効率が高く、半値幅の狭い鋭い発光を実現することが可能である。また、量子ドットは、量子サイズ効果を利用した広い波長範囲での制御が可能であることから、発光ダイオード(LED)や半導体レーザ等の発光デバイスへの応用が注目されている。 Quantum dots, which are nanoparticles with a particle size of 10 nm or less, have excellent carrier (electron, hole) confinement properties, and can easily generate excitons by electron-hole recombination. Therefore, light emission from free excitons can be expected, and it is possible to realize sharp light emission with high emission efficiency and a narrow half-value width. Further, since quantum dots can be controlled in a wide wavelength range using the quantum size effect, their application to light emitting devices such as light emitting diodes (LEDs) and semiconductor lasers has attracted attention.
 例えば、非特許文献1には、量子ドット層の熱処理による多層量子ドット発光ダイオードの改善された特性が報告がされている。 For example, Non-Patent Document 1 reports improved characteristics of multilayer quantum dot light-emitting diodes by heat treatment of quantum dot layers.
 非特許文献1の発光ダイオードは、図9に示すように、ITOからなる陽極101の表面にPEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸))からなる正孔注入層102が形成されると共に、該正孔注入層102の表面にBiVB-MeTPD(ビニルベンジルエーテル-メチルテトラビフェニルジアミン)からなる正孔輸送層103が形成されている。また、コア部がCdSeで形成されシェル部がCdSで形成されたコア-シェル構造の量子ドット104aからなる発光層104が前記正孔輸送層103の表面に形成されている。さらに、発光層104の表面にはTPBI(1,3,5-トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼン)からなる電子輸送層105が形成され、該電子輸送層105の表面には陰極106が形成されている。 As shown in FIG. 9, the light emitting diode of Non-Patent Document 1 is a positive electrode made of PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid)) on the surface of the anode 101 made of ITO. A hole injection layer 102 is formed, and a hole transport layer 103 made of BiVB-MeTPD (vinylbenzyl ether-methyltetrabiphenyldiamine) is formed on the surface of the hole injection layer 102. Further, a light emitting layer 104 composed of quantum dots 104 a having a core-shell structure in which a core portion is formed of CdSe and a shell portion is formed of CdS is formed on the surface of the hole transport layer 103. Further, an electron transport layer 105 made of TPBI (1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene) is formed on the surface of the light emitting layer 104, and on the surface of the electron transport layer 105, A cathode 106 is formed.
 すなわち、非特許文献1では、正孔輸送層103及び電子輸送層105(以下、この両者を総じて「キャリア輸送層」と記す場合がある。)を有機半導体で形成し、これら正孔輸送層103と電子輸送層105との間に無機半導体の量子ドット104aからなる発光層104が設けられている。そして、陽極101と陰極106との間に電圧を印加することにより、正孔は正孔注入層102及び正孔輸送層103を経て量子ドット104aに注入され、一方、電子は電子輸送層105を経て量子ドット104aに注入され、量子ドット104内で正孔と電子とが再結合されて励起子発光する。 That is, in Non-Patent Document 1, the hole transport layer 103 and the electron transport layer 105 (hereinafter, these may be collectively referred to as “carrier transport layer”) are formed of an organic semiconductor, and these hole transport layers 103 are formed. A light emitting layer 104 made of an inorganic semiconductor quantum dot 104 a is provided between the electron transport layer 105 and the electron transport layer 105. Then, by applying a voltage between the anode 101 and the cathode 106, holes are injected into the quantum dots 104 a through the hole injection layer 102 and the hole transport layer 103, while electrons pass through the electron transport layer 105. Then, it is injected into the quantum dot 104a, and holes and electrons are recombined in the quantum dot 104 to emit excitons.
 ところで、液相法で作製された量子ドットを発光層104とする発光ダイオードは、有機EL(electroluminescence)素子における発光層を、有機半導体に代えて無機半導体の量子ドットで形成した構造を有しており、キャリア輸送層103、105は、非特許文献1に示すように、通常、有機半導体で形成されている。 By the way, the light emitting diode which uses the quantum dot produced by the liquid phase method as the light emitting layer 104 has a structure in which the light emitting layer in the organic EL (electroluminescence) element is formed with an inorganic semiconductor quantum dot instead of an organic semiconductor. As shown in Non-Patent Document 1, the carrier transport layers 103 and 105 are usually formed of an organic semiconductor.
 しかしながら、非特許文献1では、有機半導体で形成されているキャリア輸送層103、105と無機半導体の量子ドット104aで形成されている発光層104との間でエネルギー準位に整合性を欠き、このためキャリアの注入効率や閉じ込め効率に劣り、発光効率の低下を招いていた。 However, Non-Patent Document 1 lacks consistency in energy levels between the carrier transport layers 103 and 105 formed of an organic semiconductor and the light-emitting layer 104 formed of an inorganic semiconductor quantum dot 104a. Therefore, the carrier injection efficiency and the confinement efficiency are inferior, and the light emission efficiency is lowered.
 すなわち、量子力学的な系では、分子の有するエネルギー状態は、電子が存在する分子軌道に対応しており、エネルギーが最低で安定した基底状態と、基底状態よりもエネルギーの高い励起状態とに分けることができる。そして、基底状態の分子軌道のうち最も高い分子軌道を最高被占軌道(Highest Occupied Molecular Orbital;以下「HOMO」という。)といい、このHOMOに対応するエネルギー準位がHOMO準位である。また、励起状態では、分子軌道は電子に占有されていない空の状態となるが、これら電子に占有されていない分子軌道のうち最も低い分子軌道を最低空軌道(Lowest Unoccupied Molecular Orbital;以下、「LUMO」という。)といい、このLUMOに対応するエネルギー準位がLUMO準位である。そして、電子はLUMO準位(伝導帯)を移動し、正孔はHOMO準位(価電子帯)を移動する。 In other words, in a quantum mechanical system, the energy state of a molecule corresponds to the molecular orbital in which an electron exists, and is divided into a ground state having the lowest energy and a stable ground state and an excited state having a higher energy than the ground state. be able to. The highest molecular orbital of the ground state molecular orbitals is called the highest occupied orbital (Highest Occupied Molecular Orbital; hereinafter referred to as "HOMO"), and the energy level corresponding to this HOMO is the HOMO level. In the excited state, the molecular orbitals are in an empty state not occupied by electrons, but the lowest molecular orbital among these molecular orbitals not occupied by electrons (Lowest 電子 Unoccupied Molecular Orbital; The energy level corresponding to this LUMO is the LUMO level. Then, electrons move in the LUMO level (conduction band), and holes move in the HOMO level (valence band).
 図10は、非特許文献1のエネルギー状態図である。 FIG. 10 is an energy state diagram of Non-Patent Document 1.
 正孔輸送層103を形成するBiVB-MeTPDのHOMO準位hは5.3eVであり、電子輸送層105を形成するTPBIのHOMO準位hは6.3eVであるのに対し、量子ドット104aのコア部(以下、「量子ドットコア部」という。)104a′を形成するCdSeのHOMO準位hは6.8eVである。したがって、正孔輸送層103から量子ドットコア部104a′への正孔輸送障壁Δhは1.5eV(=6.8-5.3)と高く、量子ドットコア部104a′から電子輸送層105への正孔輸送障壁Δhが-0.5eV(=6.3-6.8)と低い。 The HOMO level h 1 of BiVB-MeTPD forming the hole transport layer 103 is 5.3 eV, and the HOMO level h 2 of TPBI forming the electron transport layer 105 is 6.3 eV, whereas the quantum dot The HOMO level h 0 of CdSe forming the core portion 104a ′ (hereinafter referred to as “quantum dot core portion”) 104a ′ is 6.8 eV. Therefore, the hole transport barrier Δh 1 from the hole transport layer 103 to the quantum dot core portion 104a ′ is as high as 1.5 eV (= 6.8−5.3), and the electron transport layer 105 from the quantum dot core portion 104a ′. The hole transport barrier Δh 2 is as low as −0.5 eV (= 6.3 to 6.8).
 すなわち、非特許文献1では、正孔輸送層103から量子ドットコア部104a′への正孔輸送障壁Δhが高く、正孔を効率良く注入するのが困難である。また、量子ドットコア部104a′から正孔輸送層103への電子輸送障壁Δlは高いものの、量子ドットコア部104a′から電子輸送層105への正孔輸送障壁Δhが低く、このため正孔を量子ドットコア部104a′内に効果的に閉じ込めるのが困難である。 That is, in Non-Patent Document 1, the hole transport barrier Δh 1 from the hole transport layer 103 to the quantum dot core portion 104a ′ is high, and it is difficult to inject holes efficiently. Also, 'although the electron transport barrier .DELTA.l 1 into the hole-transporting layer 103 is high, a quantum dot core portion 104a' quantum dot core portion 104a hole transport barrier Delta] h 2 is low in the electron-transporting layer 105 from the order positive It is difficult to effectively confine the holes in the quantum dot core portion 104a ′.
 このように非特許文献1は、エネルギー準位に整合性を欠き、このため、キャリアを効率良く量子ドットコア部104a′内に注入することができず、また注入されたキャリアを量子ドットコア部104a′内に効果的に閉じ込めるのが困難である。そしてその結果、量子ドットコア部104a′内で電子と正孔を効率良く再結合させることができず、発光効率の低下を招いていた。 Thus, Non-Patent Document 1 lacks consistency in the energy level, and therefore, carriers cannot be efficiently injected into the quantum dot core portion 104a ′, and the injected carriers are not allowed to flow into the quantum dot core portion. It is difficult to confine effectively in 104a '. As a result, electrons and holes cannot be efficiently recombined in the quantum dot core portion 104a ′, resulting in a decrease in light emission efficiency.
 また、非特許文献1のように発光層104を量子ドット104aで形成した発光ダイオードの場合、量子ドット104aの粒径を異ならせるだけで発光層104のエネルギー構造を変更することができ、エネルギー構造に応じたバンドギャップエネルギーEgを得ることができる。したがって、粒径を変更するだけで種々の発光波長を有する光を発光させることが可能である。 In addition, in the case of a light emitting diode in which the light emitting layer 104 is formed of quantum dots 104a as in Non-Patent Document 1, the energy structure of the light emitting layer 104 can be changed only by changing the particle size of the quantum dots 104a. The band gap energy Eg according to the can be obtained. Therefore, it is possible to emit light having various emission wavelengths only by changing the particle diameter.
 しかしながら、発光層104のエネルギー構造を変更すると、発光層104に隣接するキャリア輸送層103、105との間の輸送障壁も変動する。したがって、良好な発光効率を得るためにはエネルギー構造に応じた適切な有機半導体材料をキャリア輸送層103、105に選択しなければならず、デバイスの構造設計の煩雑化を招いていた。 However, when the energy structure of the light emitting layer 104 is changed, the transport barrier between the carrier transport layers 103 and 105 adjacent to the light emitting layer 104 also varies. Therefore, in order to obtain good luminous efficiency, an appropriate organic semiconductor material corresponding to the energy structure has to be selected for the carrier transport layers 103 and 105, resulting in complicated device structure design.
 また、キャリア輸送層103、105の特性としては、キャリア移動度が高く、輸送性が良好なことが望まれる。そして、高いキャリア移動度を有する有機半導体は、π結合系がキャリア輸送を担っていることが多い。 Further, as the characteristics of the carrier transport layers 103 and 105, it is desired that the carrier mobility is high and the transportability is good. In organic semiconductors having high carrier mobility, the π bond system often carries carrier transport.
 しかしながら、π結合している電子は紫外光を吸収し、かつσ結合に比べて結合力が弱い。すなわち、π結合系がキャリア輸送を担う高いキャリア移動度を有する有機半導体は、紫外光の吸収によって分解してしまうおそれがあり、このため紫外光に対する耐久性が低いという問題がある。 However, π-bonded electrons absorb ultraviolet light and have a weaker binding force than σ bonds. In other words, an organic semiconductor having a high carrier mobility in which the π bond system is responsible for carrier transport may be decomposed by absorption of ultraviolet light, and thus has a problem of low durability against ultraviolet light.
 本発明はこのような事情に鑑みなされたものであって、キャリアの量子ドット内への注入効率及び閉じ込め効率を向上させて良好な発光効率を得ることができる発光デバイスを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light emitting device capable of improving the injection efficiency and confinement efficiency of carriers into quantum dots and obtaining good light emission efficiency. To do.
 正孔輸送層は、正孔を発光層に効率的に注入し、かつ電子輸送層から発光層に注入された電子を閉じ込める機能が求められる。一方、電子輸送層は、電子を発光層に効率的に注入し、かつ正孔輸送層から発光層に注入された正孔を閉じ込める機能が求められる。したがって、キャリアの発光層への注入効率を高め、該キャリアを発光層に効果的に閉じ込めるためには、正孔輸送層及び電子輸送層が適切なエネルギー準位を有する必要がある。 The hole transport layer is required to have a function of efficiently injecting holes into the light emitting layer and confining electrons injected from the electron transport layer into the light emitting layer. On the other hand, the electron transport layer is required to have a function of efficiently injecting electrons into the light emitting layer and confining holes injected from the hole transport layer into the light emitting layer. Therefore, in order to increase the efficiency of injecting carriers into the light emitting layer and effectively confine the carriers in the light emitting layer, the hole transport layer and the electron transport layer need to have appropriate energy levels.
 また、量子ドットは、粒径を異ならせることによって、量子サイズ効果によりエネルギー準位を変動させることが可能である。 Quantum dots can be varied in energy level due to the quantum size effect by varying the particle size.
 したがって、キャリア輸送層(正孔輸送層及び電子輸送層)を、有機半導体ではなく無機半導体の量子ドットで形成することにより、これら量子ドットの粒径を変更するだけで、キャリア輸送層のエネルギー準位を調整することが可能となる。 Therefore, by forming the carrier transport layer (hole transport layer and electron transport layer) with quantum dots of an inorganic semiconductor instead of an organic semiconductor, the energy level of the carrier transport layer can be simply changed by changing the particle size of these quantum dots. The position can be adjusted.
 本発明はこのような知見に基づきなされたものであって、本発明に係る発光デバイスは、第1の量子ドットで形成された発光層が、正孔輸送層と電子輸送層との間に介在された発光デバイスであって、前記正孔輸送層及び前記電子輸送層が、前記第1の量子ドットとは異なる無機材料からなる第2及び第3の量子ドットでそれぞれ形成されていることを特徴としている。 The present invention has been made based on such knowledge, and the light-emitting device according to the present invention has a light-emitting layer formed of first quantum dots interposed between a hole transport layer and an electron transport layer. The hole transport layer and the electron transport layer are formed of second and third quantum dots made of an inorganic material different from the first quantum dots, respectively. It is said.
 これにより、第2及び第3の量子ドットの粒径を変更するだけで、正孔輸送層及び電子輸送層が適切なエネルギー準位を得ることが可能となることから、キャリアの発光層への注入効率を高めることができ、該キャリアを発光層に効果的に閉じ込めることが可能となる。 Thereby, the hole transport layer and the electron transport layer can obtain appropriate energy levels only by changing the particle diameters of the second and third quantum dots. The injection efficiency can be increased, and the carriers can be effectively confined in the light emitting layer.
 ところで、正孔はHOMO準位上を移動するため、正孔輸送層のHOMO準位が発光層のHOMO準位より大きい場合は、正孔を容易に発光層に注入することができる。また、正孔輸送層のHOMO準位が発光層のHOMO準位より小さくても、その差が小さい場合は、正孔輸送層と発光層との間の正孔輸送障壁が小さく、正孔は比較的容易に発光層に注入することができる。 By the way, since holes move on the HOMO level, when the HOMO level of the hole transport layer is higher than the HOMO level of the light emitting layer, the holes can be easily injected into the light emitting layer. In addition, even if the HOMO level of the hole transport layer is smaller than the HOMO level of the light emitting layer, if the difference is small, the hole transport barrier between the hole transport layer and the light emitting layer is small, It can be injected into the light emitting layer relatively easily.
 また、発光層に注入された電子を該発光層内に閉じ込めるためには、正孔輸送層のLUMO準位が発光層のLUMO準位よりも十分に小さくなるように、発光層と正孔輸送層との間に大きな電子輸送障壁を形成する必要がある。 In addition, in order to confine electrons injected into the light emitting layer, the light emitting layer and the hole transport are made so that the LUMO level of the hole transporting layer is sufficiently smaller than the LUMO level of the light emitting layer. A large electron transport barrier needs to be formed between the layers.
 したがって、正孔輸送層から発光層への正孔輸送障壁が小さくかつ発光層から正孔輸送層への電子輸送障壁が大きくなるように正孔輸送層のエネルギー準位を調整するのが好ましい。 Therefore, it is preferable to adjust the energy level of the hole transport layer so that the hole transport barrier from the hole transport layer to the light-emitting layer is small and the electron transport barrier from the light-emitting layer to the hole transport layer is large.
 一方、電子はLUMO準位上を移動するため、電子輸送層のLUMO準位が発光層のLUMO準位より小さい場合は、電子を容易に発光層に注入することができる。また、電子輸送層のLUMO準位が発光層のLUMO準位より大きくても、その差が小さい場合は、電子輸送層と発光層との間の電子輸送障壁は小さく、電子を容易に発光層に注入することができる。 On the other hand, since electrons move on the LUMO level, when the LUMO level of the electron transport layer is smaller than the LUMO level of the light emitting layer, the electrons can be easily injected into the light emitting layer. In addition, even if the LUMO level of the electron transport layer is larger than the LUMO level of the light emitting layer, if the difference is small, the electron transport barrier between the electron transport layer and the light emitting layer is small, and the electrons can be easily Can be injected into.
 また、発光層に注入された正孔を該発光層内に閉じ込めるためには、電子輸送層のHOMO準位が発光層のHOMO準位よりも十分に大きくなるように、発光層と電子輸送層との間で大きな正孔輸送障壁を形成する必要がある。 In addition, in order to confine holes injected into the light emitting layer in the light emitting layer, the light emitting layer and the electron transport layer are formed so that the HOMO level of the electron transport layer is sufficiently larger than the HOMO level of the light emitting layer. It is necessary to form a large hole transport barrier between them.
 したがって、電子輸送層から発光層への電子輸送障壁が小さくかつ発光層から電子輸送層への正孔輸送障壁が大きくなるように電子輸送層のエネルギー準位を調整するのが好ましい。 Therefore, it is preferable to adjust the energy level of the electron transport layer so that the electron transport barrier from the electron transport layer to the light emitting layer is small and the hole transport barrier from the light emitting layer to the electron transport layer is large.
 すなわち、本発明の発光デバイスは、前記正孔輸送層及び前記電子輸送層から前記発光層に輸送される正孔及び電子の輸送障壁が小さくかつ前記発光層から前記電子輸送層及び前記正孔輸送層に輸送される正孔及び電子の輸送障壁が大きくなるように、前記第2及び前記第3の量子ドットの粒径を制御し、前記正孔輸送層及び前記電子輸送層の各エネルギー準位が調整されているのが好ましい。 That is, the light emitting device of the present invention has a small hole and electron transport barrier transported from the hole transport layer and the electron transport layer to the light emitting layer, and the electron transport layer and the hole transport from the light emitting layer. The particle size of the second and third quantum dots is controlled so that a hole and electron transport barrier transported to the layer is increased, and each energy level of the hole transport layer and the electron transport layer is controlled. Is preferably adjusted.
 これによりキャリアの第1の量子ドットへの注入効率が向上すると共に、キャリアを第1の量子ドット内に効果的に閉じ込めることが可能となる。その結果、励起子再結合の確率が向上することから、駆動電圧を低下させることができ、発光効率の向上を図ることができる。しかも、量子ドットは粒径を変えることによりエネルギー準位が変動し、発光波長も異ならせることができることから、粒径を異ならせることにより、種々の発光色で発光可能な発光デバイスを得ることができる。 This improves the efficiency of carrier injection into the first quantum dots, and enables the carriers to be effectively confined in the first quantum dots. As a result, the probability of exciton recombination is improved, so that the drive voltage can be lowered and the light emission efficiency can be improved. In addition, since the energy level of the quantum dots can be changed and the emission wavelength can be varied by changing the particle size, it is possible to obtain light emitting devices that can emit light in various emission colors by changing the particle size. it can.
 また、第2及び第3の量子ドットとしては、発光層で発光した光を吸収しないように発光層よりも大きなバンドギャップエネルギーを有する無機材料で形成することにより、発光効率を効果的に向上させることが可能となる。 The second and third quantum dots are formed of an inorganic material having a larger band gap energy than the light emitting layer so as not to absorb the light emitted from the light emitting layer, thereby effectively improving the light emission efficiency. It becomes possible.
 すなわち、本発明の発光デバイスは、前記第2及び第3の量子ドットは、前記第1の量子ドットに比べてバンドギャップエネルギーの大きい無機材料で形成するのが好ましい。 That is, in the light emitting device of the present invention, the second and third quantum dots are preferably formed of an inorganic material having a larger band gap energy than the first quantum dots.
 これによりキャリア輸送層が発光層で発光した光を吸収することもなく、より良好な発光効率を有する発光デバイスを得ることが可能となる。 Thereby, the carrier transport layer does not absorb the light emitted from the light emitting layer, and a light emitting device having better light emission efficiency can be obtained.
 また、本発明の発光デバイスは、前記正孔輸送層は第1の電極の表面に形成されると共に、前記正孔輸送層のHOMO準位が、前記第1の電極の仕事関数と前記発光層のHOMO準位との中間値乃至中間値近傍となるように、前記第2の量子ドットの平均粒径が設定されるのが好ましい。 In the light emitting device of the present invention, the hole transport layer is formed on the surface of the first electrode, and the HOMO level of the hole transport layer is determined by the work function of the first electrode and the light emitting layer. It is preferable that the average particle diameter of the second quantum dots is set so as to be in the middle value of the HOMO level or in the vicinity of the middle value.
 これにより第1の電極、正孔輸送層、及び発光層の各層間の輸送障壁が均等乃至略均等となり、陽極に注入された正孔を円滑に発光層に注入することが可能となる。 Thereby, the transport barriers between the first electrode, the hole transport layer, and the light emitting layer are made uniform or substantially uniform, and the holes injected into the anode can be smoothly injected into the light emitting layer.
 また、本発明の発光デバイスは、前記正孔輸送層のLUMO準位が、前記発光層のLUMO準位よりも小さなエネルギー準位を有するのが好ましい。 In the light emitting device of the present invention, it is preferable that the LUMO level of the hole transport layer has an energy level smaller than the LUMO level of the light emitting layer.
 これにより発光層から正孔輸送層への電子輸送障壁が大きくなり、電子を発光層内に効果的に閉じ込めることが可能となる。 This increases the electron transport barrier from the light emitting layer to the hole transport layer, and enables electrons to be effectively confined in the light emitting layer.
 さらに、本発明の発光デバイスは、第2の電極が前記電子輸送層の表面に形成されると共に、前記電子輸送層のLUMO準位が、前記第2の電極の仕事関数と前記発光層のLUMO準位との中間値乃至中間値近傍となるように、前記第3の量子ドットの平均粒径が設定されるのが好ましい。 Further, in the light emitting device of the present invention, the second electrode is formed on the surface of the electron transport layer, and the LUMO level of the electron transport layer is determined by the work function of the second electrode and the LUMO level of the light emitting layer. It is preferable that the average particle diameter of the third quantum dots is set so as to be an intermediate value from the level or near the intermediate value.
 これにより第2の電極、電子輸送層、及び発光層の各層間の輸送障壁が均等乃至略均等となり、陰極に注入された電子を円滑に発光層に注入することが可能となる。 Thereby, the transport barriers between the second electrode, the electron transport layer, and the light emitting layer are made uniform or substantially uniform, and the electrons injected into the cathode can be smoothly injected into the light emitting layer.
 また、本発明の発光デバイスは、前記電子輸送層のHOMO準位は、前記発光層のHOMO準位よりも大きなエネルギー準位を有するのが好ましい。 In the light emitting device of the present invention, it is preferable that the HOMO level of the electron transport layer has an energy level larger than the HOMO level of the light emitting layer.
 これにより発光層から電子輸送層への正孔輸送障壁が大きくなり、正孔を発光層内に効果的に閉じ込めることが可能となる。 This increases the hole transport barrier from the light emitting layer to the electron transport layer, and enables holes to be effectively confined in the light emitting layer.
 また、本発明の発光デバイスは、前記第1~第3の量子ドットは、酸化物半導体、化合物半導体、及び単体半導体のうちのいずれかであるのが好ましい。 In the light emitting device of the present invention, it is preferable that the first to third quantum dots are any one of an oxide semiconductor, a compound semiconductor, and a single semiconductor.
 これにより、これら無機半導体粒子を使用してキャリア輸送層及び発光層を形成することができ、所望波長で発光する発光効率の良好な発光デバイスを容易に得ることができる。 Thereby, a carrier transport layer and a light emitting layer can be formed using these inorganic semiconductor particles, and a light emitting device with good light emission efficiency that emits light at a desired wavelength can be easily obtained.
 本発明の発光デバイスによれば、正孔輸送層及び電子輸送層が、発光層を形成する第1の量子ドットとは異なる無機材料からなる第2及び第3の量子ドットでそれぞれ形成されているので、第2及び第3の量子ドットの粒径を異ならせるだけで、量子サイズ効果によりキャリア輸送層(正孔輸送層及び電子輸送層)のエネルギー準位を変動させることができ、これによりキャリア輸送層のエネルギー準位を容易に調整することが可能となる。すなわち、第2及び第3の量子ドットの粒径を変更するだけで、正孔輸送層及び電子輸送層が適切なエネルギー準位を得ることが可能となり、キャリアの発光層への注入効率を高め、該キャリアを発光層に効果的に閉じ込めることが可能となる。 According to the light emitting device of the present invention, the hole transport layer and the electron transport layer are respectively formed of the second and third quantum dots made of an inorganic material different from the first quantum dot forming the light emitting layer. Therefore, the energy level of the carrier transport layer (the hole transport layer and the electron transport layer) can be changed by the quantum size effect only by changing the particle diameters of the second and third quantum dots, and thus the carrier It becomes possible to easily adjust the energy level of the transport layer. That is, only by changing the particle size of the second and third quantum dots, the hole transport layer and the electron transport layer can obtain appropriate energy levels, and the injection efficiency of carriers into the light emitting layer is improved. The carriers can be effectively confined in the light emitting layer.
 また、第2及び第3の量子ドットを構成する無機材料は、従来の有機材料に比べて移動度が高く、キャリア輸送性に優れている上に、紫外光により分解されることもなく、良好な耐久性を有する。 In addition, the inorganic material constituting the second and third quantum dots has high mobility compared to conventional organic materials, excellent carrier transportability, and is excellent in that it is not decomposed by ultraviolet light. Has excellent durability.
 また、上述したように正孔輸送層及び電子輸送層を第2及び第3の量子ドットで形成するので、第2の量子ドットと発光層を形成する第1の量子ドット、及び第3の量子ドットと前記第1の量子ドットとが互いに球同士で接触する。したがって、従来の有機材料のように面と球とが接触する場合に比べ、正孔輸送層及び電子輸送層と発光層との間の接触面積が増加し、発光層へのキャリアの注入確率をより一層向上させることが可能となる。 In addition, since the hole transport layer and the electron transport layer are formed of the second and third quantum dots as described above, the first quantum dot and the third quantum dot that form the second quantum dot and the light emitting layer are formed. The dots and the first quantum dots are in sphere contact with each other. Therefore, the contact area between the hole transport layer and the electron transport layer and the light emitting layer is increased compared to the case where the surface and the sphere are in contact with each other as in the conventional organic material, and the probability of carrier injection into the light emitting layer is increased. This can be further improved.
本発明に係る発光デバイスの一実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the light-emitting device which concerns on this invention. 上記発光デバイスのエネルギー状態の一例を示すエネルギー状態図である。It is an energy state figure which shows an example of the energy state of the said light emitting device. 上記発光デバイスの製造方法の一実施の形態を示す図である。It is a figure which shows one Embodiment of the manufacturing method of the said light emitting device. 試料番号1のエネルギー状態図である。It is an energy state diagram of sample number 1. 試料番号2のエネルギー状態図である。It is an energy state figure of sample number 2. 試料番号3のエネルギー状態図である。It is an energy state figure of sample number 3. 試料番号4のエネルギー状態図である。It is an energy state diagram of sample number 4. 試料番号5のエネルギー状態図である。FIG. 6 is an energy state diagram of sample number 5; 非特許文献1に記載された従来の発光デバイスを模式的に示す断面図である。It is sectional drawing which shows the conventional light-emitting device described in the nonpatent literature 1 typically. 非特許文献1に記載された従来の発光デバイスのエネルギー状態図である。It is an energy state figure of the conventional light emitting device described in the nonpatent literature 1.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は本発明に係る発光デバイスとしての発光ダイオードの一実施の形態を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an embodiment of a light-emitting diode as a light-emitting device according to the present invention.
 この発光ダイオードは、ガラス基板(透明基板)1上にITO等の導電性透明材料からなる陽極(第1の電極)2が形成され、該陽極2の表面に第2の量子ドット3aからなる正孔輸送層3が形成され、該正孔輸送層3の表面に第1の量子ドット4aからなる発光層4が形成されている。さらに発光層4の表面には第3の量子ドット5aからなる電子輸送層5が形成され、該電子輸送層5の表面にはAl等の金属製導電材料を含む陰極(第2の電極)6が形成されている。 In this light emitting diode, an anode (first electrode) 2 made of a conductive transparent material such as ITO is formed on a glass substrate (transparent substrate) 1, and a positive electrode made of a second quantum dot 3 a is formed on the surface of the anode 2. A hole transport layer 3 is formed, and a light emitting layer 4 composed of the first quantum dots 4 a is formed on the surface of the hole transport layer 3. Further, an electron transport layer 5 composed of third quantum dots 5a is formed on the surface of the light emitting layer 4, and a cathode (second electrode) 6 containing a metal conductive material such as Al is formed on the surface of the electron transport layer 5. Is formed.
 すなわち、上記発光ダイオードは、正孔輸送層3及び電子輸送層5が、発光層4を形成する第1の量子ドット4aとは異なる無機材料からなる第2及び第3の量子ドット3a、5aでそれぞれ形成されている。 That is, in the light emitting diode, the hole transport layer 3 and the electron transport layer 5 are the second and third quantum dots 3 a and 5 a made of an inorganic material different from the first quantum dot 4 a forming the light emitting layer 4. Each is formed.
 また、上記発光ダイオードは、正孔輸送層3及び電子輸送層5から発光層4に輸送される正孔及び電子の輸送障壁が小さくかつ発光層4から電子輸送層3及び正孔輸送層5に輸送される正孔及び電子の輸送障壁が大きくなるように、第2及び第3の量子ドット3a、5aにより正孔輸送層3及び電子輸送層5の各エネルギー準位が調整されている。そしてこれによりキャリアの第1の量子ドット4a内への注入を効率良く行うと共に、これらキャリアを第1の量子ドット4a内に効果的に閉じ込めることができ、再結合確率を向上させることができる。 Further, the light emitting diode has a small hole and electron transport barrier transported from the hole transport layer 3 and the electron transport layer 5 to the light emitting layer 4, and the light emitting layer 4 is changed from the light emitting layer 4 to the electron transport layer 3 and the hole transport layer 5. The energy levels of the hole transport layer 3 and the electron transport layer 5 are adjusted by the second and third quantum dots 3a and 5a so that the transport barriers of the transported holes and electrons are increased. Thus, carriers can be efficiently injected into the first quantum dots 4a, and these carriers can be effectively confined in the first quantum dots 4a, thereby improving the recombination probability.
 このようにキャリアの注入効率及び再結合確率を向上させることができることから、発光ダイオードの駆動電圧が低下し、発光効率の向上を図ることが可能となる。 Thus, since the carrier injection efficiency and the recombination probability can be improved, the driving voltage of the light emitting diode is lowered, and the light emission efficiency can be improved.
 すなわち、正孔輸送層3の機能は、陽極2から注入された正孔を発光層4の第1の量子ドット4aに効率的に注入する一方、電子輸送層5から第1の量子ドット4aに注入された電子が該第1の量子ドット4a内で正孔と再結合せずに正孔輸送層3に流出するのを阻止し、第1の量子ドット4a内に電子を効果的に閉じ込めることにある。 That is, the function of the hole transport layer 3 is to efficiently inject holes injected from the anode 2 into the first quantum dots 4a of the light emitting layer 4, while from the electron transport layer 5 to the first quantum dots 4a. The injected electrons are prevented from flowing out into the hole transport layer 3 without being recombined with holes in the first quantum dots 4a, and the electrons are effectively confined in the first quantum dots 4a. It is in.
 また、電子輸送層5の機能は、陰極6から注入された電子を前記第1の量子ドット4aに効率的に注入する一方、正孔輸送層3から前記第1の量子ドット4aに注入された正孔が該第1の量子ドット4a内で電子と再結合せずに電子輸送層5に流出するのを阻止し、第1の量子ドット4a内に正孔を効果的に閉じ込めることにある。 The function of the electron transport layer 5 is that the electrons injected from the cathode 6 are efficiently injected into the first quantum dots 4a, while the electrons are injected from the hole transport layer 3 into the first quantum dots 4a. The purpose is to prevent holes from flowing out into the electron transport layer 5 without recombining with electrons in the first quantum dots 4a, and to effectively confine holes in the first quantum dots 4a.
 そして、正孔はHOMO準位上を移動し、電子はLUMO準位上を移動することから、適切な値のHOMO準位及びLUMO準位を有するように正孔輸送層3及び電子輸送層5を形成することにより、キャリアの注入効率及び閉じ込め効率を向上させることが可能となる。 Since holes move on the HOMO level and electrons move on the LUMO level, the hole transport layer 3 and the electron transport layer 5 have appropriate values of the HOMO level and the LUMO level. By forming, carrier injection efficiency and confinement efficiency can be improved.
 すなわち、正孔輸送層3のHOMO準位が発光層4のHOMO準位よりも大きい場合は、正孔輸送層3から発光層4への正孔輸送障壁が存在せず、正孔は発光層4に容易に注入される。一方、正孔輸送層3のHOMO準位が発光層4のHOMO準位よりも小さい場合は、正孔輸送層3と発光層4との間に正孔輸送障壁が形成され、正孔輸送障壁が小さいと正孔は比較的容易に発光層4に注入されるが、正孔輸送障壁が大きくなると正孔は発光層4に注入され難くなる。 That is, when the HOMO level of the hole transport layer 3 is larger than the HOMO level of the light-emitting layer 4, there is no hole transport barrier from the hole transport layer 3 to the light-emitting layer 4, and the holes are emitted from the light-emitting layer. 4 is easily injected. On the other hand, when the HOMO level of the hole transport layer 3 is smaller than the HOMO level of the light emitting layer 4, a hole transport barrier is formed between the hole transport layer 3 and the light emitting layer 4, and the hole transport barrier is formed. Is small, holes are injected into the light emitting layer 4 relatively easily. However, when the hole transport barrier is large, holes are hardly injected into the light emitting layer 4.
 そして、陽極2から発光層4に正孔を効率よく注入するためには、陽極2の仕事関数と、正孔輸送層3及び発光層4のHOMO準位を全て同一にするのが最も効率的であるが、陽極2に使用される電極材料の材料特性から、陽極2の仕事関数と発光層4のHOMO準位を一致させるのが困難な場合が多い。 In order to efficiently inject holes from the anode 2 to the light emitting layer 4, it is most efficient to make the work function of the anode 2 and the HOMO levels of the hole transport layer 3 and the light emitting layer 4 all the same. However, it is often difficult to match the work function of the anode 2 and the HOMO level of the light emitting layer 4 due to the material characteristics of the electrode material used for the anode 2.
 一方、正孔輸送層3のLUMO準位と発光層4のLUMO準位との差が小さい場合は、発光層4に注入された電子は容易に正孔輸送層3に流出し、正孔輸送層3のLUMO準位が発光層4のLUMO準位に対して十分に小さい場合は、大きな電子輸送障壁が形成され、電子を発光層4内に効果的に閉じ込めることができる。 On the other hand, when the difference between the LUMO level of the hole transport layer 3 and the LUMO level of the light emitting layer 4 is small, electrons injected into the light emitting layer 4 easily flow out to the hole transport layer 3 and transport holes. When the LUMO level of the layer 3 is sufficiently smaller than the LUMO level of the light emitting layer 4, a large electron transport barrier is formed, and electrons can be effectively confined in the light emitting layer 4.
 したがって、陽極2の仕事関数と発光層4のエネルギー構造を考慮すると、陽極2の仕事関数と発光層4のHOMO準位との中間値乃至中間値近傍となるように、正孔輸送層のHOMO準位を設定することにより、正孔輸送障壁を極力小さくすることが可能となり、発光層4に正孔を効率よく注入することが可能となる。 Therefore, when the work function of the anode 2 and the energy structure of the light emitting layer 4 are taken into consideration, the HOMO of the hole transport layer is set so as to be in the middle value of the work function of the anode 2 and the HOMO level of the light emitting layer 4 or in the vicinity of the intermediate value. By setting the level, the hole transport barrier can be made as small as possible, and holes can be efficiently injected into the light emitting layer 4.
 そして、発光層4のバンドギャップエネルギーEgよりも大きなバンドギャップエネルギーEgを有する正孔輸送層材料を使用することにより、発光層4から正孔輸送層3への電子輸送障壁を十分に確保することが可能となる。 Then, by using a hole transport layer material having a band gap energy Eg larger than the band gap energy Eg of the light emitting layer 4, a sufficient electron transport barrier from the light emitting layer 4 to the hole transport layer 3 is secured. Is possible.
 同様に、電子輸送層5のLUMO準位が発光層4のLUMO準位よりも小さい場合は、電子輸送層5から発光層4への電子輸送障壁が存在せず、電子は発光層4に容易に注入される。一方、電子輸送層5のLUMO準位が発光層4のLUMO準位よりも大きい場合は、電子輸送層3と発光層4との間に電子輸送障壁が形成され、電子輸送障壁が小さいと電子は比較的容易に発光層4に注入されるが、電子輸送障壁が大きくなると電子は発光層4に注入され難くなる。 Similarly, when the LUMO level of the electron transport layer 5 is smaller than the LUMO level of the light-emitting layer 4, there is no electron transport barrier from the electron transport layer 5 to the light-emitting layer 4, and electrons are easily in the light-emitting layer 4. Injected into. On the other hand, when the LUMO level of the electron transport layer 5 is larger than the LUMO level of the light emitting layer 4, an electron transport barrier is formed between the electron transport layer 3 and the light emitting layer 4, and when the electron transport barrier is small, Can be injected into the light emitting layer 4 relatively easily. However, when the electron transport barrier is increased, electrons are hardly injected into the light emitting layer 4.
 そして、陰極6から発光層4に電子を効率よく注入するためには、陰極6の仕事関数と、電子輸送層5及び発光層4のLUMO準位を全て同一にするのが最も効率的であるが、陰極6に使用される電極材料の材料特性から、陰極6の仕事関数と発光層4のLUMO準位を一致させるのが困難な場合が多い。 In order to efficiently inject electrons from the cathode 6 into the light emitting layer 4, it is most efficient to make the work function of the cathode 6 and the LUMO levels of the electron transport layer 5 and the light emitting layer 4 all the same. However, it is often difficult to match the work function of the cathode 6 and the LUMO level of the light emitting layer 4 due to the material characteristics of the electrode material used for the cathode 6.
 一方、電子輸送層5のHOMO準位と発光層4のHOMO準位との差が小さい場合は、発光層4に注入された正孔は容易に電子輸送層5に流出し、電子輸送層5のHOMO準位が発光層4のHOMO準位に対して十分に大きい場合は、大きな正孔輸送障壁が形成され、正孔を発光層4内に効果的に閉じ込めることができる。 On the other hand, when the difference between the HOMO level of the electron transport layer 5 and the HOMO level of the light emitting layer 4 is small, holes injected into the light emitting layer 4 easily flow out to the electron transport layer 5, and the electron transport layer 5 When the HOMO level of the light emitting layer 4 is sufficiently larger than the HOMO level of the light emitting layer 4, a large hole transport barrier is formed, and holes can be effectively confined in the light emitting layer 4.
 したがって、陰極6の仕事関数と発光層4のエネルギー構造を考慮すると、陰極6の仕事関数と発光層4のLUMO準位との中間値乃至中間値近傍となるようなLUMO準位を有する電子輸送層材料を使用することにより、電子輸送障壁を極力小さくすることが可能となり、発光層4に電子を効率よく注入することができる。 Therefore, when the work function of the cathode 6 and the energy structure of the light emitting layer 4 are taken into account, the electron transport having a LUMO level that is an intermediate value between the work function of the cathode 6 and the LUMO level of the light emitting layer 4 or near the intermediate value. By using the layer material, the electron transport barrier can be made as small as possible, and electrons can be efficiently injected into the light emitting layer 4.
 そして、発光層4のバンドギャップエネルギーEgよりも大きなバンドギャップエネルギーEgを有する電子輸送層材料を使用することにより、発光層から電子輸送層への正孔輸送障壁を十分に確保することが可能となる。 Then, by using an electron transport layer material having a band gap energy Eg larger than the band gap energy Eg of the light emitting layer 4, it is possible to sufficiently secure a hole transport barrier from the light emitting layer to the electron transport layer. Become.
 このように陽極2及び陰極6の仕事関数や発光層4を形成する第1の量子ドット4aのエネルギー準位を考慮し、キャリアの良好な注入効率及び閉じ込め効率が得られるように適切なエネルギー準位を有する材料で正孔輸送層3及び電子輸送層5を形成する必要がある。 Thus, considering the work functions of the anode 2 and the cathode 6 and the energy level of the first quantum dots 4a forming the light emitting layer 4, an appropriate energy level can be obtained so as to obtain a good carrier injection efficiency and confinement efficiency. It is necessary to form the hole transport layer 3 and the electron transport layer 5 with a material having a position.
 しかるに、従来の発光ダイオード(図9参照)では、発光層は無機半導体材料で形成されているが、正孔輸送層及び電子輸送層は有機半導体で形成されているため、各層間でエネルギー準位の整合性に欠け、このため十分に良好な注入効率や閉じ込め効率を得るのが困難であった。 However, in the conventional light emitting diode (see FIG. 9), the light emitting layer is formed of an inorganic semiconductor material, but the hole transport layer and the electron transport layer are formed of an organic semiconductor. Therefore, it has been difficult to obtain sufficiently good injection efficiency and confinement efficiency.
 また、発光層4の第1の量子ドット4aの粒径を変更して発光層4のエネルギー構造を変更すると、キャリア輸送層3、5との間の輸送障壁が変動するが、キャリア輸送層3、5に有機半導体を使用した場合、エネルギー構造を最適化するためにはエネルギー構造に応じた有機半導体材料を選択しなければならず、デバイスの構造設計に煩雑化を招いていた。 Further, when the particle size of the first quantum dots 4a of the light emitting layer 4 is changed to change the energy structure of the light emitting layer 4, the transport barrier between the carrier transport layers 3 and 5 changes, but the carrier transport layer 3 When an organic semiconductor is used for 5, an organic semiconductor material corresponding to the energy structure must be selected in order to optimize the energy structure, resulting in a complicated structure design of the device.
 そこで、本実施の形態では、材料種に依存することなく粒径を調整することによって容易にエネルギー準位を制御できる無機材料からなる量子ドット(第2及び第3の量子ドット3a、5a)で正孔輸送層3及び電子輸送層5を形成し、これにより各層間(陽極2、正孔輸送層3、発光層4、電子輸送層5、陰極6間)でのエネルギー準位を整合させ、キャリアの注入効率及び閉じ込め効率を向上させている。 Therefore, in the present embodiment, quantum dots (second and third quantum dots 3a and 5a) made of an inorganic material that can easily control the energy level by adjusting the particle size without depending on the material type. The hole transport layer 3 and the electron transport layer 5 are formed, thereby matching the energy levels between the respective layers (between the anode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5 and the cathode 6), Carrier injection efficiency and confinement efficiency are improved.
 しかも、無機材料は、有機材料に比べてキャリア移動度が高く、キャリア輸送性に優れており、また、紫外光により分解されることもなく、良好な耐久性を得ることができる。 Moreover, the inorganic material has higher carrier mobility than the organic material, is excellent in carrier transportability, and can obtain good durability without being decomposed by ultraviolet light.
 また、上述したように正孔輸送層3及び電子輸送層5を第2及び第3の量子ドット3a、5aで形成するので、第2の量子ドット3aと発光層4を形成する第1の量子ドット4a、及び第3の量子ドット5aと前記第1の量子ドット4aとが互いに球同士で接触することとなり、従来の有機材料のように面と球とが接触する場合に比べ、発光層4を形成する第1の量子ドット4aと球同士で接触する。したがって、従来の有機材料のように面と球とが接触する場合に比べ、正孔輸送層3及び電子輸送層5と発光層4との間の接触面積が増加し、発光層4へのキャリアの注入確率をより一層向上させることが可能となる。 Moreover, since the hole transport layer 3 and the electron transport layer 5 are formed by the second and third quantum dots 3a and 5a as described above, the first quantum that forms the light emitting layer 4 with the second quantum dots 3a. The dots 4a and the third quantum dots 5a and the first quantum dots 4a come into contact with each other in spheres, and the light emitting layer 4 is compared with the case where the surface and the sphere are in contact with each other as in the case of a conventional organic material. The first quantum dots 4a forming the sphere are in contact with each other. Therefore, the contact area between the hole transport layer 3 and the electron transport layer 5 and the light emitting layer 4 is increased as compared with the case where the surface and the sphere are in contact with each other as in the case of a conventional organic material. The injection probability of can be further improved.
 以下、材料種及びエネルギー準位の設定手順の一例を説明する。 Hereinafter, an example of the procedure for setting the material type and energy level will be described.
 図2は、上記発光ダイオードのエネルギー状態の一例を示すエネルギー状態図である。 FIG. 2 is an energy state diagram showing an example of the energy state of the light emitting diode.
 まず、陽極材料及び陰極材料を決定する。発光層4から発光する光を取り出すために陽極2及び陰極6のいずれか少なくとも一方は透明材料で形成される。本実施の形態では、陽極2にはITO等の導電性透明材料を使用し、陰極6にはAl等の金属製導電材料を使用している。 First, the anode material and the cathode material are determined. In order to extract light emitted from the light emitting layer 4, at least one of the anode 2 and the cathode 6 is formed of a transparent material. In this embodiment, a conductive transparent material such as ITO is used for the anode 2, and a metal conductive material such as Al is used for the cathode 6.
 次に、発光層4から発光させたい波長に対応するバンドギャップエネルギーEgを決定し、該バンドギャップエネルギーEgに対応する平均粒径を求める。 Next, the band gap energy Eg corresponding to the wavelength to be emitted from the light emitting layer 4 is determined, and the average particle size corresponding to the band gap energy Eg is obtained.
 次いで、この平均粒径に応じた発光層4のHOMO準位H、及びLUMO準位Lを決定する。 Next, the HOMO level H 0 and the LUMO level L 0 of the light emitting layer 4 according to the average particle diameter are determined.
 すなわち、井戸型ポテンシャルでは、量子ドットのHOMO準位(以下、「量子ドットHOMO準位」という。)EHd(eV)、及び量子ドットのLUMO準位(以下、「量子ドットLUMO準位」という。)ELd(eV)、は、数式(1)、(2)で表すことができる。 That is, in the well-type potential, the quantum dot HOMO level (hereinafter referred to as “quantum dot HOMO level”) E Hd (eV) and the quantum dot LUMO level (hereinafter referred to as “quantum dot LUMO level”). .) E Ld (eV) can be expressed by Equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、EHbは、バルク半導体(例えば、粒径10nm以上)のHOMO準位(以下、「バルクHOMO準位」という。)(eV)、ELbは、バルク半導体のLUMO準位(以下、「バルクLUMO準位」という。)(eV)を示し、材料に固有の値である。また、dは量子ドットの粒径(m)、mは真空中の自由電子の静止質量(=9.11×10-19)(kg)、m、mは材料中の正孔、電子の各有効質量である。hはプランク定数(=6.63×10-34(m・kg/s))である。 Here, E Hb is a HOMO level (hereinafter referred to as “bulk HOMO level”) (eV) of a bulk semiconductor (for example, a particle size of 10 nm or more), and E Lb is a LUMO level (hereinafter, referred to as “bulk HOMO level”). (Referred to as “bulk LUMO level”)) (eV), which is a value specific to the material. Further, d is the particle size (m) of the quantum dots, m 0 is the static mass of free electrons in vacuum (= 9.11 × 10 −19 ) (kg), m h and me are holes in the material, Each effective mass of electrons. h is a Planck's constant (= 6.63 × 10 −34 (m 2 · kg / s)).
 そして、平均粒径その他の既知数値を数式(1)、(2)に代入して平均粒径に応じた量子ドットHOMO準位EHd及び量子ドットLUMO準位ELdを算出し、発光層4(第1の量子ドット4a)のHOMO準位H及びLUMO準位Lを決定する。 The quantum dot HOMO level E Hd and the quantum dot LUMO level E Ld corresponding to the average particle diameter are calculated by substituting the average particle diameter and other known numerical values into the formulas (1) and (2), and the light emitting layer 4 The HOMO level H 0 and the LUMO level L 0 of the (first quantum dot 4a) are determined.
 次に、正孔輸送層3に使用する無機材料を選択する。 Next, an inorganic material used for the hole transport layer 3 is selected.
 ここで、正孔輸送層3としては、発光層4で発光された光が吸収されないように発光層4のバンドギャップエネルギーEgよりも大きい無機材料が選択される。 Here, as the hole transport layer 3, an inorganic material larger than the band gap energy Eg of the light emitting layer 4 is selected so that the light emitted from the light emitting layer 4 is not absorbed.
 次に、正孔輸送層3のHOMO準位Hを決定する。 Next, the HOMO level H 1 of the hole transport layer 3 is determined.
 正孔の正孔輸送層3から発光層4への注入が容易となるためには、正孔輸送層3のHOMO準位Hと発光層4のHOMO準位Hとの差が小さいことが好ましい。その一方で、正孔が陽極2から正孔輸送層3に容易に注入されるためには、陽極2の仕事関数Wと正孔輸送層3のHOMO準位Hとの差が小さいのが好ましい。 For injection from the hole of the hole transport layer 3 to the light-emitting layer 4 is easy, the difference between the HOMO level H 1 of the hole transport layer 3 and the HOMO level H 0 of the light-emitting layer 4 is small Is preferred. On the other hand, in order for holes to be easily injected into the hole transport layer 3 from the anode 2, the difference between the work function W 1 of the anode 2 and the HOMO level H 1 of the hole transport layer 3 is small. Is preferred.
 そこで、正孔輸送層3のHOMO準位Hを、例えば、陽極2の仕事関数Wと発光層4のHOMO準位Hとの中間値乃至中間値近傍に設定する。そして、このようにして設定されたHOMO準位Hを量子ドットHOMO準位EHdとして数式(1)に代入し、この数式(1)から粒径dを求め、第2の量子ドット3aの平均粒径を決定する。 Therefore, the HOMO level H 1 of the hole transport layer 3 is set to, for example, an intermediate value between the work function W 1 of the anode 2 and the HOMO level H 0 of the light emitting layer 4 or near the intermediate value. Then, the HOMO level H 1 set in this way is substituted into the equation (1) as the quantum dot HOMO level E Hd , the particle diameter d is obtained from the equation (1), and the second quantum dot 3a Determine the average particle size.
 また、この粒径dを数式(2)に代入して量子ドットLUMO準位ELdを求め、これにより正孔輸送層3のLUMO準位Lを決定する。 Further, the particle size d is substituted into the formula (2) to obtain the quantum dot LUMO level E Ld, thereby determining the LUMO level L 1 of the hole transport layer 3.
 このように正孔輸送層3のHOMO準位Hを、発光層4のHOMO準位Hと陽極2の仕事関数Wとの中間値乃至中間値近傍に設定することにより、陽極2→正孔輸送層3→発光層4における正孔の輸送障壁を最適化することができる。 In this way, by setting the HOMO level H 1 of the hole transport layer 3 to an intermediate value between the HOMO level H 0 of the light emitting layer 4 and the work function W 1 of the anode 2, the anode 2 → The hole transport barrier in the hole transport layer 3 → the light emitting layer 4 can be optimized.
 次に、電子輸送層5に使用する無機材料を選択する。 Next, an inorganic material used for the electron transport layer 5 is selected.
 ここで、電子輸送層5としては、発光層4で発光された光が吸収されないように発光層4のバンドギャップエネルギーEgよりも大きい無機材料が選択される。 Here, as the electron transport layer 5, an inorganic material larger than the band gap energy Eg of the light emitting layer 4 is selected so that the light emitted from the light emitting layer 4 is not absorbed.
 次いで、電子輸送層5のLUMO準位L及びHOMO準位Hを以下のようにして決定する。 Next, the LUMO level L 2 and the HOMO level H 2 of the electron transport layer 5 are determined as follows.
 すなわち、電子の電子輸送層5から発光層4への注入が容易となるためには、電子輸送層5のLUMO準位Lと発光層4のLUMO準位Lとの差が小さいことが好ましい。その一方で、電子が陰極6から電子輸送層5に容易に注入されるためには、陰極6の仕事関数Wと電子輸送層5のLUMO準位Lとの差が小さいのが好ましい。 That is, in order to facilitate the injection of electrons from the electron transport layer 5 to the light emitting layer 4, the difference between the LUMO level L 2 of the electron transport layer 5 and the LUMO level L 0 of the light emitting layer 4 is small. preferable. On the other hand, since electrons are easily injected into the electron transporting layer 5 from the cathode 6 is preferably the difference between the LUMO level L 2 of the work function W 2 and the electron transport layer 5 of the cathode 6 is small.
 そこで、電子輸送層5のLUMO準位Lを、例えば、陰極6の仕事関数Wと発光層4のLUMO準位Lとの中間値乃至中間値近傍に設定する。そして、このようにして設定されたLUMO準位Lを量子ドットLUMO準位ELdとして数式(2)に代入し、この数式(2)から粒径dを求め、第3の量子ドット5aの平均粒径を決定する。 Therefore, the LUMO level L 2 of the electron transport layer 5 is set to, for example, an intermediate value or the vicinity of the intermediate value between the work function W 2 of the cathode 6 and the LUMO level L 0 of the light emitting layer 4. Then, the LUMO level L 2 set in this way is substituted into the mathematical expression (2) as the quantum dot LUMO level E Ld , the particle diameter d is obtained from this mathematical expression (2), and the third quantum dot 5a Determine the average particle size.
 また、この粒径dを数式(1)に代入して量子ドットHOMO準位EHdを求め、これにより電子輸送層5のHOMO準位Hを決定する。 Further, the quantum dot HOMO level E Hd is obtained by substituting the particle diameter d into the mathematical formula (1), thereby determining the HOMO level H 2 of the electron transport layer 5.
 このように電子輸送層5のLUMO準位Lを、発光層4のLUMO準位Lと陰極6の仕事関数Wとの中間値乃至中間値近傍に設定することにより、陰極6→電子輸送層5→発光層4における電子の輸送障壁を最適化することができる。 Thus, by setting the LUMO level L 2 of the electron transport layer 5 to an intermediate value between the LUMO level L 0 of the light-emitting layer 4 and the work function W 2 of the cathode 6, the cathode 6 → the electron The electron transport barrier in the transport layer 5 → the light emitting layer 4 can be optimized.
 また、電子輸送層5のバンドギャップエネルギーEgは、発光層4のバンドギャップエネルギーよりも大きく、しかも電子輸送層5のHOMO準位Hは発光層4のHOMO準位Hよりも十分に大きいことから、発光層4から電子輸送層5への正孔輸送障壁を高くすることができる。 The band gap energy Eg of the electron transport layer 5 is larger than the band gap energy of the light emitting layer 4, and the HOMO level H 2 of the electron transport layer 5 is sufficiently larger than the HOMO level H 0 of the light emitting layer 4. Therefore, the hole transport barrier from the light emitting layer 4 to the electron transport layer 5 can be increased.
 尚、発光層4を形成する第1の量子ドット4aとしては、光電変換作用を奏する半導体材料であれば特に限定されるものではなく、InP、CdSe、CdS、PbSe等の化合物半導体を使用することができる。 The first quantum dots 4a forming the light emitting layer 4 are not particularly limited as long as they are semiconductor materials that exhibit a photoelectric conversion effect, and compound semiconductors such as InP, CdSe, CdS, and PbSe are used. Can do.
 また、正孔輸送層3を形成する第2の量子ドット3aとしては、第1の量子ドット4aのバンドギャップエネルギーEgよりも大きい無機半導体材料であれば特に限定されるものではないが、正孔輸送層3中での正孔の移動度が大きい無機半導体材料を使用するのが好ましく、例えば、NiO、MoO等の酸化物半導体やZnTe、CdTe等の化合物半導体を使用することができる。 The second quantum dots 3a forming the hole transport layer 3 are not particularly limited as long as they are inorganic semiconductor materials larger than the band gap energy Eg of the first quantum dots 4a. An inorganic semiconductor material having a high hole mobility in the transport layer 3 is preferably used. For example, an oxide semiconductor such as NiO or MoO 3 or a compound semiconductor such as ZnTe or CdTe can be used.
 また、電子輸送層5を形成する第3の量子ドット5aとしては、第1の量子ドット4aのバンドギャップエネルギーよりも大きい無機半導体材料であれば特に限定されるものではないが、電子輸送層5中での電子の移動度が大きい無機半導体材料を使用するのが好ましく、例えば、ZnO、TiO等の酸化物半導体やZnS、ZnSe、GaN等の化合物半導体を使用することができる。 The third quantum dot 5a forming the electron transport layer 5 is not particularly limited as long as it is an inorganic semiconductor material larger than the band gap energy of the first quantum dot 4a. It is preferable to use an inorganic semiconductor material having a high electron mobility therein. For example, an oxide semiconductor such as ZnO or TiO 2 or a compound semiconductor such as ZnS, ZnSe, or GaN can be used.
 次に、上記発光ダイオードの製造方法を説明する。 Next, a method for manufacturing the light emitting diode will be described.
 図3は上記発光ダイオードの製造方法を示す製造工程図である。 FIG. 3 is a manufacturing process diagram showing a manufacturing method of the light emitting diode.
 まず、図3(a)に示すように、スパッタ法等によりガラス基板1上にITO等の透明膜を成膜し、UVオゾン処理を行い、膜厚100nm~150nmの陽極2を形成する。 First, as shown in FIG. 3A, a transparent film such as ITO is formed on a glass substrate 1 by sputtering or the like, and UV ozone treatment is performed to form an anode 2 having a thickness of 100 nm to 150 nm.
 次に、第2の量子ドット3aを分散溶媒中に分散させた第2の量子ドット分散溶液を用意する。 Next, a second quantum dot dispersion solution in which the second quantum dots 3a are dispersed in a dispersion solvent is prepared.
 そして、スピンコート法等を使用し、第2の量子ドット分散溶液を陽極2上に塗布し、第2の量子ドット3aからなる膜厚50~100nmの正孔輸送層3を形成する。 Then, using a spin coating method or the like, the second quantum dot dispersion solution is applied onto the anode 2 to form the hole transport layer 3 having a thickness of 50 to 100 nm composed of the second quantum dots 3a.
 次いで、第1の量子ドット4aを分散溶媒中に分散させた第1の量子ドット分散溶液を用意する。 Next, a first quantum dot dispersion solution in which the first quantum dots 4a are dispersed in a dispersion solvent is prepared.
 そして、スピンコート法等を使用し、第1の量子ドット分散溶液を正孔輸送層3上に塗布し、図3(b)に示すように、第1の量子ドット4aからなる膜厚10~20nmの発光層4を形成する。 Then, using a spin coating method or the like, the first quantum dot dispersion solution is applied onto the hole transport layer 3, and as shown in FIG. A 20 nm light emitting layer 4 is formed.
 次に、第3の量子ドット5aを分散溶媒中に分散させた第3の量子ドット分散溶液を用意する。 Next, a third quantum dot dispersion solution in which the third quantum dots 5a are dispersed in a dispersion solvent is prepared.
 そして、スピンコート法等を使用し、第3の量子ドット分散溶液を発光層4上に塗布し、図3(c)に示すように、第3の量子ドット5aからなる膜厚50~100nmの電子輸送層5を形成する。 Then, using a spin coating method or the like, the third quantum dot dispersion solution is applied onto the light emitting layer 4, and as shown in FIG. 3C, the film thickness of 50 to 100 nm made of the third quantum dots 5a is formed. The electron transport layer 5 is formed.
 その後、図3(d)に示すように、LiF、Al等を使用し、真空蒸着法で膜厚100nm~300nmの陰極6を形成し、これにより発光ダイオードが作製される。 Thereafter, as shown in FIG. 3 (d), LiF, Al, or the like is used to form a cathode 6 having a film thickness of 100 nm to 300 nm by a vacuum deposition method, whereby a light emitting diode is manufactured.
 尚、本発明は上記実施の形態に限定されるものでない。上記実施の形態では、陽極2の表面に正孔輸送層3を直接形成しているが、陽極2と正孔輸送層3の間に正孔注入層を介在させてもよく、また、正孔輸送層3を多層化して層間障壁を低減し、エネルギー構造を最適化するのも好ましい。 In addition, this invention is not limited to the said embodiment. In the above embodiment, the hole transport layer 3 is directly formed on the surface of the anode 2. However, a hole injection layer may be interposed between the anode 2 and the hole transport layer 3. It is also preferred to optimize the energy structure by multilayering the transport layer 3 to reduce the interlayer barrier.
 また、正孔注入層を介在させる場合、該正孔注入層の材料としては、PEDOT:PSS等の有機材料を使用してもよく、無機材料を使用してもよい。特に、正孔注入層に有機材料を使用した場合は、電極表面の平坦化に寄与することが可能となる。 Further, when a hole injection layer is interposed, an organic material such as PEDOT: PSS or an inorganic material may be used as the material of the hole injection layer. In particular, when an organic material is used for the hole injection layer, it is possible to contribute to planarization of the electrode surface.
 また、上記実施の形態では、第1~第3の量子のドット3a~5aは、コア部のみでシェル部を有していないが、コアーシェル構造、或いはシェル部が2層構造のコアーシェルーシェル構造にも同様に適用できる。 In the above-described embodiment, the first to third quantum dots 3a to 5a have only a core portion and no shell portion, but have a core-shell structure or a core-shell-shell structure in which the shell portion has a two-layer structure. The same applies to the above.
 また、上記実施の形態では、発光デバイスとして発光ダイオードの場合について説明したが、半導体レーザや表示装置等の各種発光デバイスに使用できるのはいうまでもない。 In the above embodiment, the case of a light emitting diode as a light emitting device has been described. However, it goes without saying that it can be used for various light emitting devices such as a semiconductor laser and a display device.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
(試料番号1)
〔エネルギー構造の設計〕
 陽極材料として仕事関数が4.9eVのITOを使用し、陰極材料として仕事関数が4.3eVのAlを使用した。
(Sample No. 1)
[Design of energy structure]
ITO having a work function of 4.9 eV was used as the anode material, and Al having a work function of 4.3 eV was used as the cathode material.
 また、発光層としてInP量子ドットを使用し、平均粒径を6.8nm(バンドギャップエネルギーEg:1.8eV)に設定した。 Further, InP quantum dots were used as the light emitting layer, and the average particle size was set to 6.8 nm (band gap energy Eg: 1.8 eV).
 次いで、〔発明を実施するための形態〕に記載した数式(1)、(2)から量子ドットHOMO準位EHd、及び量子ドットLUMO準位ELdを算出し、InP量子ドットのHOMO準位H、及びLUMO準位Lを求めた。 Next, the quantum dot HOMO level E Hd and the quantum dot LUMO level E Ld are calculated from the mathematical formulas (1) and (2) described in [Description of Embodiments], and the HOMO level of the InP quantum dot is calculated. H 0 and LUMO level L 0 were obtained.
 すなわち、InPのバルクHOMO準位EHbは5.8eV、バルクLUMO準位ELbは4.5eVであり、下記非特許文献2よりInP中の正孔及び電子の有効質量m、mは、それぞれ0.53、0.08であるから、数式(1)よりInP量子ドットのHOMO準位H(=EHd)は、5.9eV、数式(2)よりInP量子ドットのLUMO準位L(=ELd)は、4.1eVと求まった。
Physical review,2010年, B82, 205212
That is, the bulk HOMO level E Hb of InP is 5.8 eV, bulk LUMO level E Lb is 4.5 eV, holes and electrons effective mass m h in InP from the following non-patent document 2, m e is Are 0.53 and 0.08, respectively, so that the HOMO level H 0 (= E Hd ) of the InP quantum dot is 5.9 eV from the equation (1), and the LUMO level of the InP quantum dot is from the equation (2). L 0 (= E Ld ) was found to be 4.1 eV.
Physical review, 2010, B82, 205212
 次いで、このInP量子ドットのバンドギャップエネルギーEgよりも十分に大きなバンドギャップエネルギーEgを有するNiO量子ドットを正孔輸送層材料に選択した。 Next, NiO quantum dots having a band gap energy Eg sufficiently larger than the band gap energy Eg of the InP quantum dots were selected as the hole transport layer material.
 次いで、NiO量子ドットのHOMO準位Hが、発光層のHOMO準位H(=5.9eV)と陽極の仕事関数W(=4.9eV)との中間値5.4eVとなるようにNiO量子ドットの平均粒径を求めた。 Next, the HOMO level H 1 of the NiO quantum dot becomes an intermediate value 5.4 eV between the HOMO level H 0 (= 5.9 eV) of the light emitting layer and the work function W 1 (= 4.9 eV) of the anode. The average particle size of NiO quantum dots was determined.
 すなわち、NiOのバルクHOMO準位EHbは5.4eVであり、非特許文献3よりNiO中の正孔の有効質量mは0.8であるから、数式(1)よりNiO量子ドットのHOMO準位HHd:5.4eVに相当する平均粒径dは9.0nmと求まった。 That is, since the bulk HOMO level E Hb of NiO is 5.4 eV, and the effective mass m h of holes in NiO is 0.8 from Non-Patent Document 3, the HOMO of NiO quantum dots is obtained from Equation (1). The average particle diameter d corresponding to the level H Hd : 5.4 eV was determined to be 9.0 nm.
 そして、NiOのバルクLUMO準位ELbは1.6eVであり、非特許文献3よりNiOの電子の有効質量mは、2.9であるから、NiOの量子LUMO準位ELbは、1.6eVとなった。
J. Mater. Chem., 2007年, 17, 127
Since the bulk LUMO level E Lb of NiO is 1.6 eV and the effective mass m E of NiO electrons is 2.9 from Non-Patent Document 3, the quantum LUMO level E Lb of NiO is 1 .6 eV.
J. Mater. Chem., 2007, 17, 127
 また、InP量子ドットのバンドギャップエネルギーEgよりも十分に大きなバンドギャップエネルギーEgを有するZnO量子ドットを電子輸送層材料に選択した。 In addition, ZnO quantum dots having band gap energy Eg sufficiently larger than the band gap energy Eg of InP quantum dots were selected as the electron transport layer material.
 そして、ZnO量子ドットのLUMO準位Lが、発光層のLUMO準位L(=4.1eV)と陰極の仕事関数W(=4.3eV)との中間値4.2eVとなるようにZnO量子ドットの平均粒径を求めた。 Then, the LUMO level L 2 of the ZnO quantum dot is set to an intermediate value of 4.2 eV between the LUMO level L 0 (= 4.1 eV) of the light emitting layer and the work function W 1 (= 4.3 eV) of the cathode. The average particle diameter of ZnO quantum dots was determined.
 すなわち、ZnOのバルクLUMO準位ELbは4.3eVであり、非特許文献4よりZnOの電子の有効質量mは、0.24であるから、数式(2)よりZnO量子ドットのLUMO準位L:4.2eVに相当する平均粒径dは7.7nmと求まった。 That is, since the bulk LUMO level E Lb of ZnO is 4.3 eV, and the effective mass m E of ZnO electrons is 0.24 from Non-Patent Document 4, the LUMO level of ZnO quantum dots is obtained from Equation (2). The average particle diameter d corresponding to the position L 2 : 4.2 eV was determined to be 7.7 nm.
 ZnOのバルクHOMO準位EHbは7.7eVであり、非特許文献4よりZnOの正孔の有効質量mは、0.4であるから、ZnOの量子HOMO準位EHdは、7.8eVと求まった。
Appl. Phys. Lett.74,2939(1999)
Since the bulk HOMO level E Hb of ZnO is 7.7 eV and the effective mass m h of the hole of ZnO is 0.4 from Non-Patent Document 4, the quantum HOMO level E Hd of ZnO is 7. It was determined to be 8 eV.
Appl. Phys. Lett. 74, 2939 (1999)
 〔試料の作製〕
 まず、InP量子ドット(第1の量子ドット)をトルエン(分散溶媒)中に分散させたInP量子ドット分散溶液を作製した。
[Sample preparation]
First, an InP quantum dot dispersion solution in which InP quantum dots (first quantum dots) were dispersed in toluene (dispersion solvent) was prepared.
 すなわち、オクタデセン(C1836)に酢酸インジウム(In(CHCOO))及びミリスチン酸(C1327COOH)を溶解させ、In原料溶液を作製した。また、オクタデセンにトリスメチルシリルホスフィン((CHSi)P)及びオクチルアミン(C17NH)を溶解させ、P原料溶液を作製した。次いで、In原料溶液を200℃に加熱し、該加熱されたIn原料溶液にP原料溶液を滴下し、2時間保持して、平均粒径が6.8nmのInP量子ドットを得た。そして、メタノール(CHOH)を使用して未反応物とInP量子ドットを分離し、沈殿したInP量子ドットをトルエン(CCH)に再分散させ、これによりInP量子ドット分散溶液を作製した。 That is, indium acetate (In (CH 3 COO) 3 ) and myristic acid (C 13 H 27 COOH) were dissolved in octadecene (C 18 H 36 ) to prepare an In raw material solution. Further, trismethylsilylphosphine ((CH 3 ) 3 Si) 3 P) and octylamine (C 8 H 17 NH 2 ) were dissolved in octadecene to prepare a P raw material solution. Next, the In raw material solution was heated to 200 ° C., the P raw material solution was dropped into the heated In raw material solution, and held for 2 hours to obtain InP quantum dots having an average particle diameter of 6.8 nm. Then, methanol (CH 3 OH) is used to separate unreacted substances and InP quantum dots, and the precipitated InP quantum dots are redispersed in toluene (C 6 H 5 CH 3 ), whereby an InP quantum dot dispersion solution Was made.
 次に、NiO量子ドット(第2の量子ドット)を2-プロパノール(分散溶媒)中に分散させたNiO量子ドット分散溶液を作製した。 Next, a NiO quantum dot dispersion solution in which NiO quantum dots (second quantum dots) were dispersed in 2-propanol (dispersion solvent) was prepared.
 すなわち、酢酸ニッケル(Ni(CHCOO))をエタノール(COH)に溶解させて酢酸ニッケル/エタノール溶液を作製した。また、水酸化ナトリウム(NaOH)をエタノールに溶解させて水酸化ナトリウム/エタノール溶液を作製した。次いで、酢酸ニッケル/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、2時間保持して、平均粒径が9.0nmのNiO量子ドットを得た。その後、遠心分離機を使用して沈殿物と未反応物とを分離し、沈殿物を2-プロパノール(CHCH(OH)CH)に再分散させ、これによりNiO量子ドット分散溶液を作製した。 That is, nickel acetate (Ni (CH 3 COO)) was dissolved in ethanol (C 2 H 5 OH) to prepare a nickel acetate / ethanol solution. In addition, sodium hydroxide (NaOH) was dissolved in ethanol to prepare a sodium hydroxide / ethanol solution. Next, a sodium hydroxide / ethanol solution was added dropwise to the nickel acetate / ethanol solution and held for 2 hours to obtain NiO quantum dots having an average particle size of 9.0 nm. Thereafter, a centrifuge is used to separate the precipitate from the unreacted material, and the precipitate is redispersed in 2-propanol (CH 3 CH (OH) CH 3 ), thereby producing a NiO quantum dot dispersion solution. did.
 さらに、ZnO量子ドット(第3の量子ドット)を2-プロパノール(分散溶媒)中に分散させたZnO量子ドット分散溶液を作製した。 Furthermore, a ZnO quantum dot dispersion solution in which ZnO quantum dots (third quantum dots) were dispersed in 2-propanol (dispersion solvent) was prepared.
 すなわち、酢酸亜鉛(Zn(CHCOO))をエタノールに溶解させて酢酸亜鉛/エタノール溶液を作製した。また、水酸化ナトリウムをエタノールに溶解させて水酸化ナトリウム/エタノール溶液を作製した。次いで、酢酸亜鉛/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、2時間保持して、平均粒径が7.7nmのZnO量子ドットを得た。その後、遠心分離機を使用して沈殿物と未反応物とを分離し、沈殿物を2-プロパノールに再分散させ、これによりZnO量子ドット分散溶液を作製した。 That is, zinc acetate (Zn (CH 3 COO)) was dissolved in ethanol to prepare a zinc acetate / ethanol solution. In addition, sodium hydroxide was dissolved in ethanol to prepare a sodium hydroxide / ethanol solution. Next, a sodium hydroxide / ethanol solution was dropped into the zinc acetate / ethanol solution and held for 2 hours to obtain ZnO quantum dots having an average particle size of 7.7 nm. Thereafter, the precipitate and the unreacted material were separated using a centrifuge, and the precipitate was redispersed in 2-propanol, thereby preparing a ZnO quantum dot dispersion solution.
 尚、InP、NiO、及びZnOの各量子ドットの平均粒径はTEM(透過型電子顕微鏡)で確認した。 In addition, the average particle diameter of each quantum dot of InP, NiO, and ZnO was confirmed with TEM (transmission electron microscope).
 次に、スパッタ法によりガラス基板上にITO膜を成膜し、UVオゾン処理を行い、膜厚120nmの陽極を作製した。 Next, an ITO film was formed on the glass substrate by a sputtering method, UV ozone treatment was performed, and an anode with a film thickness of 120 nm was produced.
 そして、スピンコート法を使用してNiO量子ドット分散溶液を陽極上に塗布し、膜厚50nmの正孔輸送層を形成した。 Then, using a spin coating method, a NiO quantum dot dispersion solution was applied on the anode to form a hole transport layer having a thickness of 50 nm.
 次に、スピンコート法を使用し、InP量子ドット分散溶液を正孔輸送層上に塗布し、膜厚20nmの発光層を形成した。 Next, using a spin coating method, an InP quantum dot dispersion solution was applied onto the hole transport layer to form a light emitting layer having a thickness of 20 nm.
 次いで、スピンコート法を使用し、ZnO量子ドット分散溶液を発光層上に塗布し、膜厚50nmの電子輸送層を形成した。 Next, using a spin coating method, a ZnO quantum dot dispersion solution was applied onto the light emitting layer to form an electron transport layer having a thickness of 50 nm.
 そして、Alを使用し、真空蒸着法で膜厚が100nmの陰極を形成し、これにより試料番号1の試料を作製した。 Then, using Al, a cathode having a film thickness of 100 nm was formed by a vacuum deposition method, and thereby a sample of sample number 1 was produced.
 表1は、試料番号1の第1~第3の量子ドットの平均粒径、HOMO準位、LUMO準位、及びバンドギャップエネルギーEgを示している。 Table 1 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of the first to third quantum dots of sample number 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(試料番号2)
〔エネルギー構造の設計〕
 試料番号1と同様、陽極としてITO、正孔輸送層として平均粒径9.0nmのNiO量子ドット、陰極としてAlを使用した。
(Sample No. 2)
[Design of energy structure]
Similar to Sample No. 1, ITO was used as the anode, NiO quantum dots with an average particle size of 9.0 nm were used as the hole transport layer, and Al was used as the cathode.
 そして、発光層としてInP量子ドットを使用し、平均粒径を4.7nm(バンドギャップエネルギーEg:2.2eV)に設定した。このInP量子ドットは、数式(1)、(2)よりHOMO準位Hが5.9eV、LUMO準位Lは3.7eVとなった。 And the InP quantum dot was used as a light emitting layer, and the average particle diameter was set to 4.7 nm (band gap energy Eg: 2.2 eV). This InP quantum dot has a HOMO level H 0 of 5.9 eV and a LUMO level L 0 of 3.7 eV from the equations (1) and (2).
 また、電子輸送層材料としてZnOを使用した。そして、ZnOのLUMO準位Lが陰極の仕事関数(=4.3eV)と発光層のLUMO準位(=3.7eV)の中間値4.0eVとなるように、数式(2)より平均粒径を求めたところ、4.4nmとなった。 Further, ZnO was used as the electron transport layer material. Then, the average of the LUMO level L 2 of ZnO is calculated from the formula (2) so that the intermediate value between the work function (= 4.3 eV) of the cathode and the LUMO level (= 3.7 eV) of the light emitting layer is 4.0 eV. The particle diameter was determined to be 4.4 nm.
 また、この平均粒径を数式(1)に代入したところ、ZnOのHOMO準位Hは7.9eVと求まった。 Further, when this average particle diameter was substituted into the mathematical formula (1), the HOMO level H 2 of ZnO was found to be 7.9 eV.
〔試料の作製〕
 試料番号1と略同様の方法で、平均粒径4.7nmのInP量子ドット分散溶液を、In原料溶液にP原料溶液を滴下し、1時間保持して作製した。
[Sample preparation]
An InP quantum dot dispersion solution having an average particle size of 4.7 nm was prepared by dripping the P raw material solution into the In raw material solution and holding it for 1 hour in the same manner as in Sample No. 1.
 また、試料番号1と略同様の方法で、平均粒径が4.4nmのZnO量子ドット分散溶液を、酢酸亜鉛/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、1時間保持して作製した。 In addition, a ZnO quantum dot dispersion solution having an average particle size of 4.4 nm was prepared by dripping a sodium hydroxide / ethanol solution into a zinc acetate / ethanol solution and holding it for 1 hour in the same manner as in Sample No. 1. .
 尚、InP、及びZnOの各量子ドットの平均粒径は、試料番号1と同様、TEMで確認した。 In addition, the average particle diameter of each quantum dot of InP and ZnO was confirmed by TEM similarly to the sample number 1.
 これ以外は試料番号1と同様の方法・手順で試料番号2の試料を作製した。 Other than this, the sample of sample number 2 was prepared in the same manner and procedure as sample number 1.
 表2は、試料番号2の各量子ドットの平均粒径、HOMO準位、LUMO準位、及びバンドギャップエネルギーEgを示している。 Table 2 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(試料番号3)
〔エネルギー構造の設計〕
 試料番号1と同様、陽極としてITO、陰極としてAlを使用した。
(Sample No. 3)
[Design of energy structure]
Similar to Sample No. 1, ITO was used as the anode and Al was used as the cathode.
 そして、発光層としてInP量子ドットを使用し、平均粒径を3.7nm(バンドギャップエネルギーEg:2.9eV)に設定した。このInP量子ドットは、数式(1)、(2)よりHOMO準位Hが6.0eV、LUMO準位Lは3.1eVとなった。 And the InP quantum dot was used as a light emitting layer, and the average particle diameter was set to 3.7 nm (band gap energy Eg: 2.9 eV). This InP quantum dot has a HOMO level H 0 of 6.0 eV and a LUMO level L 0 of 3.1 eV according to equations (1) and (2).
 また、正孔輸送層材料としてNiOを使用した。そして、NiOのHOMO準位Hが陽極の仕事関数W(=4.9eV)と発光層のHOMO準位H(=6.0eV)の中間値近傍の5.5eVとなるように、数式(1)より平均粒径を求めたところ、5.8nmとなった。 NiO was used as the hole transport layer material. The HOMO level H 1 of NiO is 5.5 eV in the vicinity of the intermediate value between the work function W 1 (= 4.9 eV) of the anode and the HOMO level H 0 (= 6.0 eV) of the light emitting layer. When the average particle diameter was determined from Equation (1), it was 5.8 nm.
 この平均粒径を数式(2)に代入したところ、NiOのLUMO準位Lは1.6eVと求まった。 When this average particle diameter was substituted into the formula (2), the LUO level L 1 of NiO was determined to be 1.6 eV.
 また、電子輸送層材料としてZnOを使用した。そして、ZnOのLUMO準位Lが陰極の仕事関数W(=4.3eV)と発光層のLUMO準位L(=3.1eV)の中間値3.7eVとなるように、数式(2)より平均粒径を求めたところ、3.3nmとなった。 Further, ZnO was used as the electron transport layer material. Then, the formula (2) is set so that the LUMO level L 2 of ZnO becomes an intermediate value 3.7 eV between the work function W 2 (= 4.3 eV) of the cathode and the LUMO level L 0 (= 3.1 eV) of the light emitting layer. When the average particle size was determined from 2), it was 3.3 nm.
 また、この平均粒径を数式(1)に代入したところ、ZnOのHOMO準位Hは8.1eVと求まった。 Moreover, when this average particle diameter was substituted into Formula (1), the HOMO level H 2 of ZnO was found to be 8.1 eV.
〔試料の作製〕
 試料番号1と略同様の方法で、平均粒径3.7nmのInP量子ドット分散溶液を、In原料溶液にP原料溶液を滴下し、30分保持して作製した。
[Sample preparation]
An InP quantum dot dispersion solution having an average particle diameter of 3.7 nm was prepared by dripping the P raw material solution into the In raw material solution and holding it for 30 minutes in the same manner as in Sample No. 1.
 試料番号1と略同様の方法で、平均粒径が5.8nmのNiO量子ドット分散溶液を、酢酸ニッケル/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、1時間保持して作製した。 A NiO quantum dot dispersion solution having an average particle diameter of 5.8 nm was prepared by dropping a sodium hydroxide / ethanol solution into a nickel acetate / ethanol solution and keeping it for 1 hour in the same manner as in Sample No. 1.
 試料番号1と略同様の方法で、平均粒径が3.3nmのZnO量子ドット分散溶液を、酢酸亜鉛/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、30分保持して作製した。 A ZnO quantum dot dispersion solution having an average particle diameter of 3.3 nm was prepared by dropping a sodium hydroxide / ethanol solution into a zinc acetate / ethanol solution and maintaining it for 30 minutes in the same manner as in Sample No. 1.
 尚、InP、NiO及びZnOの各量子ドットの平均粒径は、試料番号1と同様、TEMで確認した。 In addition, the average particle diameter of each quantum dot of InP, NiO, and ZnO was confirmed by TEM similarly to the sample number 1.
 これ以外は試料番号1と同様の方法・手順で試料番号3の試料を作製した。 Other than this, the sample No. 3 was prepared in the same manner and procedure as the sample No. 1.
 表3は、試料番号3の各量子ドットの平均粒径、HOMO準位、LUMO準位、及びバンドギャップエネルギーEgを示している。 Table 3 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(試料番号4)
〔エネルギー構造の設計〕
 試料番号1と同様、陽極としてITO、陰極としてAlを使用した。
(Sample No. 4)
[Design of energy structure]
Similar to Sample No. 1, ITO was used as the anode and Al was used as the cathode.
 発光層としてCdSe量子ドットを使用し、平均粒径を5.5nm(バンドギャップエネルギーEg:2.2eV)に設定した。 CdSe quantum dots were used as the light emitting layer, and the average particle size was set to 5.5 nm (band gap energy Eg: 2.2 eV).
 CdSe量子ドットは、非特許文献5より正孔の有効質量m及び電子の有効質量mが、それぞれ0.4、0.12であるから、数式(1)、(2)より、平均粒径5.5nmに相当するCdSeのHOMO準位Hは6.8eV、LUMO準位Lは4.6eVと求まった。
J. Chem. Phys. 1984年, 80, 4403
CdSe quantum dots, since the effective mass m e of Non-Patent Document 5 than the hole effective mass m h and electrons, respectively 0.4,0.12, Equation (1) and (2) an average particle The HOMO level H 0 of CdSe corresponding to a diameter of 5.5 nm was found to be 6.8 eV, and the LUMO level L 0 was found to be 4.6 eV.
J. Chem. Phys. 1984, 80, 4403
 正孔輸送層に平均粒径2.0nmのNiOを選択した。平均粒径が2.0nmに相当するNiOのHOMO準位H及びLUMO準位Lは、それぞれ数式(1)、(2)より5.9eV及び1.5eVと求まった。 NiO having an average particle diameter of 2.0 nm was selected for the hole transport layer. The HOMO level H 1 and LUMO level L 1 of NiO corresponding to an average particle diameter of 2.0 nm were found to be 5.9 eV and 1.5 eV from the equations (1) and (2), respectively.
 電子輸送層に平均粒径7.8nmのZnOを選択した。平均粒径が7.8nmに相当するZnOのHOMO準位H及びLUMO準位Lは、それぞれ数式(1)、(2)より7.8eV及び4.2eVと求まった。 ZnO having an average particle diameter of 7.8 nm was selected for the electron transport layer. The HOMO level H 2 and LUMO level L 2 of ZnO corresponding to an average particle diameter of 7.8 nm were found to be 7.8 eV and 4.2 eV from Equations (1) and (2), respectively.
〔試料の作製〕
 まず、CdSe量子ドット(第1の量子ドット)がトルエン(分散溶媒)中に分散したCdSe量子ドット分散溶液を作製した。
[Sample preparation]
First, a CdSe quantum dot dispersion solution in which CdSe quantum dots (first quantum dots) were dispersed in toluene (dispersion solvent) was prepared.
 すなわち、オクタデセンに酸化カドミウム(CdO)及びオクタデシルアミン(C1337NH)を溶解させ、Cd原料溶液を作製した。また、オクタデセンにセレン(Se)、トリブチルホスフィン((CP)を溶解させ、Se原料溶液を作製した。次いで、Cd原料溶液を280℃に加熱し、該加熱されたCd原料溶液にSe原料溶液を滴下し、250℃の温度で1時間保持して、平均粒径が5.5nmのCdSe量子ドットを作製した。そして、メタノールを使用して未反応物とCdSe量子ドットを分離し、沈殿したCdSe量子ドットをトルエンに再分散させ、これによりCdSe量子ドット分散溶液を作製した。 That is, cadmium oxide (CdO) and octadecylamine (C 13 H 37 NH 2 ) were dissolved in octadecene to prepare a Cd raw material solution. Further, selenium (Se) and tributylphosphine ((C 4 H 9 ) 3 P) were dissolved in octadecene to prepare a Se raw material solution. Next, the Cd raw material solution is heated to 280 ° C., the Se raw material solution is dropped into the heated Cd raw material solution, and held at a temperature of 250 ° C. for 1 hour to obtain CdSe quantum dots having an average particle size of 5.5 nm. Produced. Then, unreacted substances and CdSe quantum dots were separated using methanol, and the precipitated CdSe quantum dots were redispersed in toluene, thereby preparing a CdSe quantum dot dispersion solution.
 試料番号1と略同様の方法で、平均粒径が2.0nmのNiO量子ドット分散溶液を、酢酸ニッケル/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、30分保持して作製した。 A NiO quantum dot dispersion solution having an average particle diameter of 2.0 nm was prepared by dropping a sodium hydroxide / ethanol solution into a nickel acetate / ethanol solution and maintaining it for 30 minutes in the same manner as in sample number 1.
 試料番号1と略同様の方法で、平均粒径が7.8nmのZnO量子ドット分散溶液を、酢酸亜鉛/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、2時間保持して作製した。 A ZnO quantum dot dispersion solution having an average particle diameter of 7.8 nm was prepared by dripping a sodium hydroxide / ethanol solution into a zinc acetate / ethanol solution and keeping it for 2 hours in the same manner as in Sample No. 1.
 そして、上記CdSe量子ドット分散溶液、NiO量子ドット分散溶液、及びZnO量子ドット分散溶液を使用した以外は、試料番号1と同様の方法・手順で試料番号4の試料を作製した。 A sample No. 4 was prepared in the same manner and procedure as Sample No. 1 except that the above CdSe quantum dot dispersion solution, NiO quantum dot dispersion solution, and ZnO quantum dot dispersion solution were used.
 尚、CdSe、NiO、及びZnOの各量子ドットの平均粒径は、試料番号1と同様、TEMで確認した。 In addition, the average particle diameter of each quantum dot of CdSe, NiO, and ZnO was confirmed by TEM similarly to the sample number 1.
 表4は、試料番号4の各量子ドットの平均粒径、HOMO準位、LUMO準位、及びバンドギャップエネルギーEgを示している。 Table 4 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(試料番号5)
〔エネルギー構造の設計〕
 試料番号1と同様、陽極としてITO、陰極としてAlを使用し、電子輸送層として試料番号4と同様、平均粒径7.8nmのZnOを使用した。
(Sample No. 5)
[Design of energy structure]
Similar to Sample No. 1, ITO was used as the anode, Al was used as the cathode, and ZnO having an average particle diameter of 7.8 nm was used as the Sample No. 4 as the electron transport layer.
 そして、発光層は、試料番号4と同様、CdSe量子ドットを使用したが、平均粒径を9.2nm(バンドギャップエネルギーEg:1.8eV)に設定した。このCdSe量子ドットは、数式(1)、(2)よりHOMO準位Hが6.7eV、LUMO準位Lは4.9eVとなった。 And the light emitting layer used the CdSe quantum dot similarly to the sample number 4, but set the average particle diameter to 9.2 nm (band gap energy Eg: 1.8 eV). This CdSe quantum dot has a HOMO level H 0 of 6.7 eV and a LUMO level L 0 of 4.9 eV according to equations (1) and (2).
 正孔輸送層に平均粒径2.3nmのNiOを選択した。平均粒径が2.0nmに相当するNiOのHOMO準位H及びLUMO準位Lは、それぞれ数式(1)、(2)より5.8eV及び1.5eVと求まった。 NiO having an average particle diameter of 2.3 nm was selected for the hole transport layer. The HOMO level H 1 and LUMO level L 1 of NiO corresponding to an average particle diameter of 2.0 nm were determined to be 5.8 eV and 1.5 eV from the equations (1) and (2), respectively.
〔試料の作製〕
 試料番号4と略同様の方法で、平均粒径が9.2nmのCdSe分散溶液を、280℃に加熱されたCd原料溶液にSe原料溶液を滴下し、2時間保持して作製した。
[Sample preparation]
A CdSe dispersion solution having an average particle diameter of 9.2 nm was prepared by dropping the Se raw material solution into a Cd raw material solution heated to 280 ° C. and held for 2 hours in the same manner as in sample number 4.
 試料番号1と略同様の方法で、平均粒径が2.3nmのNiO量子ドット分散溶液を、酢酸ニッケル/エタノール溶液に水酸化ナトリウム/エタノール溶液を滴下し、30分保持して作製した。 A NiO quantum dot dispersion solution having an average particle size of 2.3 nm was prepared by dropping a sodium hydroxide / ethanol solution into a nickel acetate / ethanol solution and holding it for 30 minutes in the same manner as in sample number 1.
 尚、CdSe、及びNiOの各量子ドットの平均粒径は、試料番号1と同様、TEMで確認した。 In addition, the average particle diameter of each quantum dot of CdSe and NiO was confirmed by TEM similarly to the sample number 1.
 表5は、試料番号5の各量子ドットの平均粒径、HOMO準位、LUMO準位、及びバンドギャップエネルギーEgを示している。 Table 5 shows the average particle diameter, HOMO level, LUMO level, and band gap energy Eg of each quantum dot of sample number 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(試料の評価)
 図4~図8は、試料番号1~5の各試料のエネルギー状態を示すエネルギー状態図である。
(Sample evaluation)
4 to 8 are energy state diagrams showing the energy states of the samples of sample numbers 1 to 5. FIG.
 表6は正孔又は電子の各輸送障壁を示している。また、表6には、比較例として、非特許文献1における正孔又は電子の各輸送障壁を記載している。 Table 6 shows hole or electron transport barriers. Table 6 shows hole or electron transport barriers in Non-Patent Document 1 as comparative examples.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 この表6から明らかなように、比較例は、正孔輸送層から発光層への正孔輸送障壁は1.5eVであり、正孔輸送障壁が高く、キャリアの注入効率に劣っている。 As is apparent from Table 6, in the comparative example, the hole transport barrier from the hole transport layer to the light emitting layer is 1.5 eV, the hole transport barrier is high, and the carrier injection efficiency is poor.
 また、この比較例では、発光層から正孔輸送層への電子輸送障壁は2.1eVと比較的高いものの、発光層から電子輸送層への正孔輸送障壁は-0.5eVと低く、発光層のInP量子ドットに注入された正孔は、電子輸送層に容易に流出してしまって、InP量子ドット内に電子を効果的に閉じ込めるのが困難である。 In this comparative example, although the electron transport barrier from the light-emitting layer to the hole transport layer is relatively high at 2.1 eV, the hole transport barrier from the light-emitting layer to the electron transport layer is as low as −0.5 eV. Holes injected into the InP quantum dots of the layer easily flow out to the electron transport layer, and it is difficult to effectively confine electrons in the InP quantum dots.
 これに対し試料番号1は、図4及び表6から明らかなように、正孔輸送層から発光層への正孔輸送障壁は0.5eVであり、また電子輸送層から発光層への電子輸送障壁も0.1eVであり、いずれもキャリアの輸送障壁が低く、キャリアをキャリア輸送層から発光層に容易に注入することができる。 On the other hand, as is clear from FIG. 4 and Table 6, Sample No. 1 has a hole transport barrier of 0.5 eV from the hole transport layer to the light emitting layer, and electron transport from the electron transport layer to the light emitting layer. The barrier is also 0.1 eV, and both have low carrier transport barriers, and carriers can be easily injected from the carrier transport layer into the light emitting layer.
 また、この試料番号1では、発光層から電子輸送層への正孔輸送障壁は1.9eVであり、また発光層から正孔輸送層への電子輸送障壁も2.5eVであり、いずれもキャリアの輸送障壁が高く、キャリアの閉じ込め性に優れていることが分かった。 In Sample No. 1, the hole transport barrier from the light-emitting layer to the electron transport layer is 1.9 eV, and the electron transport barrier from the light-emitting layer to the hole transport layer is 2.5 eV. It was found that the transport barrier is high and the carrier confinement property is excellent.
 そして、この試料番号1では、陽極と陰極との間に電圧を印加すると、発光層からは、平均粒径6.8nmのInPのバンドギャップエネルギーEg:1.8eVに相当する赤色の光を発することが確認された。 In Sample No. 1, when a voltage is applied between the anode and the cathode, the light emitting layer emits red light corresponding to the band gap energy Eg of InP having an average particle diameter of 6.8 nm: 1.8 eV. It was confirmed.
 試料番号2は、図5及び表6から明らかなように、正孔輸送層から発光層への正孔輸送障壁は0.5eVであり、また電子輸送層から発光層への電子輸送障壁も0.3eVであり、いずれもキャリアの輸送障壁が低く、キャリアをキャリア輸送層から発光層に容易に注入することができる。 As apparent from FIG. 5 and Table 6, Sample No. 2 has a hole transport barrier from the hole transport layer to the light-emitting layer of 0.5 eV, and also has an electron transport barrier from the electron transport layer to the light-emitting layer of 0 eV. .3 eV, both of which have a low carrier transport barrier, and carriers can be easily injected from the carrier transport layer into the light-emitting layer.
 また、この試料番号2では、発光層から電子輸送層への正孔輸送障壁は2.0eVであり、また発光層から正孔輸送層への電子輸送障壁も2.1eVであり、いずれもキャリアの輸送障壁が高く、キャリアの閉じ込め性に優れていることが分かった。 In Sample No. 2, the hole transport barrier from the light-emitting layer to the electron transport layer is 2.0 eV, and the electron transport barrier from the light-emitting layer to the hole transport layer is 2.1 eV. It was found that the transport barrier is high and the carrier confinement property is excellent.
 そして、この試料番号2では、陽極と陰極との間に電圧を印加すると、発光層からは、平均粒径4.7nmのInPのバンドギャップエネルギーEg:2.2eVに相当する緑色の光を発することが確認された。 In Sample No. 2, when a voltage is applied between the anode and the cathode, green light corresponding to a band gap energy Eg of 2.2 eV of InP having an average particle diameter of 4.7 nm is emitted from the light emitting layer. It was confirmed.
 試料番号3は、図6及び表6から明らかなように、正孔輸送層から発光層への正孔輸送障壁は0.5eVであり、また電子輸送層から発光層への電子輸送障壁も0.6eVであり、いずれもキャリアの輸送障壁が低く、キャリアをキャリア輸送層から発光層に容易に注入することができる。 As apparent from FIG. 6 and Table 6, Sample No. 3 has a hole transport barrier from the hole transport layer to the light-emitting layer of 0.5 eV, and also has an electron transport barrier from the electron transport layer to the light-emitting layer of 0. The carrier transport barrier is low, and carriers can be easily injected from the carrier transport layer into the light emitting layer.
 また、この試料番号3では、発光層から電子輸送層への正孔輸送障壁は2.1eVであり、また発光層から正孔輸送層への電子輸送障壁も1.5eVであり、いずれもキャリアの輸送障壁が高く、キャリアの閉じ込め性に優れていることが分かった。 In Sample No. 3, the hole transport barrier from the light emitting layer to the electron transport layer is 2.1 eV, and the electron transport barrier from the light emitting layer to the hole transport layer is 1.5 eV. It was found that the transport barrier is high and the carrier confinement property is excellent.
 そして、この試料番号3では、陽極と陰極との間に電圧を印加すると、発光層からは、平均粒径3.7nmのInPのバンドギャップエネルギーEg:2.9eVに相当する青色の光を発することが確認された。 In Sample No. 3, when a voltage is applied between the anode and the cathode, blue light corresponding to the band gap energy Eg of 2.9 eV of InP having an average particle diameter of 3.7 nm is emitted from the light emitting layer. It was confirmed.
 試料番号4は、図7及び表6から明らかなように、正孔輸送層から発光層への正孔輸送障壁は0.9eVであり、また電子輸送層から発光層への電子輸送障壁も-0.4eVであり、いずれもキャリアの輸送障壁が低く、キャリアをキャリア輸送層から発光層に容易に注入することができる。 As is clear from FIG. 7 and Table 6, Sample No. 4 has a hole transport barrier of 0.9 eV from the hole transport layer to the light emitting layer, and also has an electron transport barrier from the electron transport layer to the light emitting layer − Each of them is 0.4 eV, and the carrier transport barrier is low. Carriers can be easily injected from the carrier transport layer into the light emitting layer.
 また、この試料番号4では、発光層から正孔輸送層への電子輸送障壁は3.1eVと高く、また、発光層から電子輸送層への正孔輸送障壁も1.0eVであり、試料番号1~3に比べると低いが、正孔をCdSe量子ドット内に閉じ込めるには十分に高い障壁を有することが分かった。 In Sample No. 4, the electron transport barrier from the light emitting layer to the hole transport layer is as high as 3.1 eV, and the hole transport barrier from the light emitting layer to the electron transport layer is 1.0 eV. It was found to have a sufficiently high barrier to confine holes in CdSe quantum dots, although it is low compared to 1-3.
 そして、この試料番号4では、陽極と陰極との間に電圧を印加すると、発光層からは、平均粒径5.5nmのCdSeのバンドギャップエネルギーEg:2.2eVに相当する緑色の光を発することが確認された。 In Sample No. 4, when a voltage is applied between the anode and the cathode, the light emitting layer emits green light corresponding to the band gap energy Eg: 2.2 eV of CdSe having an average particle diameter of 5.5 nm. It was confirmed.
 試料番号5は、図8及び表6から明らかなように、正孔輸送層から発光層への正孔輸送障壁は0.9eVであり、また電子輸送層から発光層への電子輸送障壁も-0.7eVであり、いずれもキャリアの輸送障壁が低く、キャリアをキャリア輸送層から発光層に容易に注入することができる。 In Sample No. 5, as is clear from FIG. 8 and Table 6, the hole transport barrier from the hole transport layer to the light emitting layer is 0.9 eV, and the electron transport barrier from the electron transport layer to the light emitting layer is − The carrier transport barrier is low, and the carrier can be easily injected from the carrier transport layer into the light emitting layer.
 また、この試料番号5では、発光層から正孔輸送層への電子輸送障壁も3.4eVと高く、また、発光層から電子輸送層への正孔輸送障壁は1.1eVであり、試料番号1~3に比べると低いが、正孔をCdSe量子ドット内に閉じ込めるには十分に高い障壁を有することが分かった。 In Sample No. 5, the electron transport barrier from the light emitting layer to the hole transport layer is as high as 3.4 eV, and the hole transport barrier from the light emitting layer to the electron transport layer is 1.1 eV. It was found to have a sufficiently high barrier to confine holes in CdSe quantum dots, although it is low compared to 1-3.
 そして、この試料番号5では、陽極と陰極との間に電圧を印加すると、発光層からは、平均粒径9.2nmのCdSeのバンドギャップエネルギーEg:1.8eVに相当する赤色の光を発することが確認された。 In Sample No. 5, when a voltage is applied between the anode and the cathode, the light emitting layer emits red light corresponding to the band gap energy Eg: 1.8 eV of CdSe having an average particle diameter of 9.2 nm. It was confirmed.
 尚、非特許文献1に記載された従来の発光ダイオードでは、電子輸送層に使用されているTPBIの電子移動度は、非特許文献6に記載されているように、10-5cm/V・sである。 In the conventional light emitting diode described in Non-Patent Document 1, the electron mobility of TPBI used in the electron transport layer is 10 −5 cm 2 / V as described in Non-Patent Document 6. -S.
 これに対し本発明実施例で電子輸送層に使用されているZnOの電子移動度は、非特許文献7に記載されているように100cm/V・sである。 On the other hand, the electron mobility of ZnO used for the electron transport layer in the examples of the present invention is 100 cm 2 / V · s as described in Non-Patent Document 7.
 すなわち、本発明実施例の無機半導体材料は、有機半導体材料に比べて電子移動度が大きく、したがってキャリア輸送性に優れており、紫外光に吸収されて分解することもなく、耐久性の向上を図ることができる。
Chemical Physics Letters, 2001年,334, 61 Appl.Phys.Lett. 2005年,87, 152101
That is, the inorganic semiconductor material of the embodiment of the present invention has a higher electron mobility than the organic semiconductor material, and thus has excellent carrier transportability, and is improved in durability without being absorbed and decomposed by ultraviolet light. You can plan.
Chemical Physics Letters, 2001, 334, 61 Appl.Phys.Lett. 2005, 87, 152101
 キャリアの量子ドット内への注入効率及び閉じ込め効率を向上させて良好な発光効率を有する発光ダイオード等の発光デバイスが実現できる。 It is possible to realize a light emitting device such as a light emitting diode having a good light emission efficiency by improving the injection efficiency and confinement efficiency of carriers into quantum dots.
2 陽極(第1の電極)
3 正孔輸送層
3a 第2の量子ドット
4 発光層
4a 第1の量子ドット
5 電子輸送層
5a 第3の量子ドット
6 陰極(第2の電極)
2 Anode (first electrode)
3 hole transport layer 3a second quantum dot 4 light emitting layer 4a first quantum dot 5 electron transport layer 5a third quantum dot 6 cathode (second electrode)

Claims (8)

  1.  第1の量子ドットで形成された発光層が、正孔輸送層と電子輸送層との間に介在された発光デバイスであって、
     前記正孔輸送層及び前記電子輸送層が、前記第1の量子ドットとは異なる無機材料からなる第2及び第3の量子ドットでそれぞれ形成されていることを特徴とする発光デバイス。
    The light emitting layer formed of the first quantum dots is a light emitting device interposed between a hole transport layer and an electron transport layer,
    The light-emitting device, wherein the hole transport layer and the electron transport layer are formed of second and third quantum dots made of an inorganic material different from the first quantum dots, respectively.
  2.  前記正孔輸送層及び前記電子輸送層から前記発光層に輸送される正孔及び電子の輸送障壁が小さくかつ前記発光層から前記電子輸送層及び前記正孔輸送層に輸送される正孔及び電子の輸送障壁が大きくなるように、前記第2及び前記第3の量子ドットの粒径を制御し、前記正孔輸送層及び前記電子輸送層の各エネルギー準位が調整されていることを特徴とする請求項1記載の発光デバイス。 Holes and electrons transported from the hole transport layer and the electron transport layer to the light emitting layer are small, and holes and electrons transported from the light emitting layer to the electron transport layer and the hole transport layer are small. And the energy levels of the hole transport layer and the electron transport layer are adjusted by controlling the particle size of the second and third quantum dots so that the transport barrier of the second and third quantum dots is increased. The light emitting device according to claim 1.
  3.  前記第2及び第3の量子ドットは、前記第1の量子ドットに比べてバンドギャップエネルギーの大きい無機材料で形成されていることを特徴とする請求項1又は請求項2記載の発光デバイス。 The light emitting device according to claim 1 or 2, wherein the second and third quantum dots are formed of an inorganic material having a larger band gap energy than the first quantum dots.
  4.  前記正孔輸送層が、第1の電極の表面に形成されると共に、
     前記正孔輸送層のHOMO準位が、前記第1の電極の仕事関数と前記発光層のHOMO準位との中間値乃至中間値近傍となるように、前記第2の量子ドットの平均粒径が設定されることを特徴とする請求項1乃至請求項3のいずれかに記載の発光デバイス。
    The hole transport layer is formed on a surface of the first electrode;
    The average particle diameter of the second quantum dots so that the HOMO level of the hole transport layer is an intermediate value or a vicinity of the intermediate value between the work function of the first electrode and the HOMO level of the light emitting layer. The light-emitting device according to claim 1, wherein: is set.
  5.  前記正孔輸送層のLUMO準位は、前記発光層のLUMO準位よりも小さなエネルギー準位を有することを特徴とする請求項1乃至請求項4のいずれかに記載の発光デバイス。 The light emitting device according to any one of claims 1 to 4, wherein the LUMO level of the hole transport layer has an energy level smaller than the LUMO level of the light emitting layer.
  6.  第2の電極が前記電子輸送層の表面に形成されると共に、
     前記電子輸送層のLUMO準位が、前記第2の電極の仕事関数と前記発光層のLUMO準位との中間値乃至中間値近傍となるように、前記第3の量子ドットの平均粒径が設定されることを特徴とする請求項1乃至請求項5のいずれかに記載の発光デバイス。
    A second electrode is formed on the surface of the electron transport layer;
    The average particle diameter of the third quantum dots is such that the LUMO level of the electron transport layer is an intermediate value between the work function of the second electrode and the LUMO level of the light-emitting layer or in the vicinity of the intermediate value. The light emitting device according to claim 1, wherein the light emitting device is set.
  7.  前記電子輸送層のHOMO準位は、前記発光層のHOMO準位よりも大きなエネルギー準位を有することを特徴とする請求項1乃至請求項6のいずれかに記載の発光デバイス。 The light emitting device according to any one of claims 1 to 6, wherein the HOMO level of the electron transport layer has a larger energy level than the HOMO level of the light emitting layer.
  8.  前記第1~第3の量子ドットは、酸化物半導体、化合物半導体、及び単体半導体のうちのいずれかであることを特徴とする請求項1乃至請求項7のいずれかに記載の発光デバイス。 The light emitting device according to any one of claims 1 to 7, wherein the first to third quantum dots are any one of an oxide semiconductor, a compound semiconductor, and a single semiconductor.
PCT/JP2012/063019 2011-05-26 2012-05-22 Light-emitting device WO2012161179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011118073 2011-05-26
JP2011-118073 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161179A1 true WO2012161179A1 (en) 2012-11-29

Family

ID=47217255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063019 WO2012161179A1 (en) 2011-05-26 2012-05-22 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2012161179A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146838A1 (en) * 2011-12-09 2013-06-13 Samsung Electronics Co., Ltd. Quantum dot device including different kinds of quantum dot layers
CN105552244A (en) * 2016-02-17 2016-05-04 京东方科技集团股份有限公司 Light-emitting device and preparation method thereof as well as display device
JP2016532301A (en) * 2013-08-29 2016-10-13 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッドUniversity Of Florida Research Foundation,Inc. Infrared photodetector stable in air from inorganic semiconductors made from solution
WO2017054887A1 (en) * 2015-10-02 2017-04-06 Toyota Motor Europe All quantum dot based optoelectronic device
WO2019078235A1 (en) * 2017-10-19 2019-04-25 Nsマテリアルズ株式会社 Light emitting element and illuminating apparatus
WO2019093345A1 (en) * 2017-11-08 2019-05-16 Nsマテリアルズ株式会社 Display device
WO2019171556A1 (en) * 2018-03-08 2019-09-12 シャープ株式会社 Element, electronic device, and method for producing element
EP3540806A1 (en) * 2018-03-12 2019-09-18 Samsung Electronics Co., Ltd. Electroluminescent device, and display device comprising the same
WO2020026446A1 (en) * 2018-08-03 2020-02-06 シャープ株式会社 Electroluminescent element and display device
WO2020059024A1 (en) * 2018-09-18 2020-03-26 シャープ株式会社 Light-emitting device and manufacturing method of light-emitting device
WO2020065944A1 (en) * 2018-09-28 2020-04-02 シャープ株式会社 Light emitting device and method for producing light emitting device
CN111162183A (en) * 2019-03-15 2020-05-15 广东聚华印刷显示技术有限公司 Quantum dot light-emitting diode, preparation method thereof and light source structure
CN111341926A (en) * 2020-03-09 2020-06-26 京东方科技集团股份有限公司 QLED device, manufacturing method thereof, display panel and display device
WO2020240807A1 (en) * 2019-05-31 2020-12-03 シャープ株式会社 Light emitting element and display device
CN112151689A (en) * 2020-09-28 2020-12-29 京东方科技集团股份有限公司 Quantum dot light-emitting device, preparation method thereof and display device
CN112331778A (en) * 2019-11-20 2021-02-05 广东聚华印刷显示技术有限公司 Quantum dot light-emitting device, preparation method thereof and light-emitting device
WO2021044493A1 (en) * 2019-09-02 2021-03-11 シャープ株式会社 Element and electronic device
WO2021064822A1 (en) * 2019-09-30 2021-04-08 シャープ株式会社 Light-emitting element, light-emitting device
WO2021079437A1 (en) * 2019-10-23 2021-04-29 シャープ株式会社 Light-emitting element, display device, production method for light-emitting element, and production method for display device
CN112970130A (en) * 2018-10-30 2021-06-15 夏普株式会社 Light-emitting element and method for manufacturing light-emitting element
WO2021117076A1 (en) * 2019-12-09 2021-06-17 シャープ株式会社 Light emitting device, and method for manufacturing light emitting device
EP3869578A1 (en) * 2020-02-13 2021-08-25 Samsung Electronics Co., Ltd. Quantum dot device, method of manufacturing the same, and electronic device
CN113421986A (en) * 2021-06-24 2021-09-21 合肥福纳科技有限公司 QD light emitting layer, quantum dot light emitting device and preparation method thereof
WO2021214910A1 (en) * 2020-04-22 2021-10-28 シャープ株式会社 Light-emitting element and display device
JP2022516211A (en) * 2019-01-11 2022-02-25 京東方科技集團股▲ふん▼有限公司 Quantum dot light emitting device and its manufacturing method
WO2023062839A1 (en) * 2021-10-15 2023-04-20 シャープディスプレイテクノロジー株式会社 Light emitting element
US11910629B2 (en) * 2019-09-23 2024-02-20 Samsung Electronics Co., Ltd. Light emitting device, method of manufacturing the same, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038634A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Current injection light-emitting element
JP2007095685A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd Light-emitting device including semiconductor nanocrystal layer free of void and its manufacturing method
JP2008214363A (en) * 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
JP2009537994A (en) * 2006-05-15 2009-10-29 スティオン コーポレイション Method and structure for thin film photoelectric materials using semiconductor materials
JP2010055900A (en) * 2008-08-27 2010-03-11 Sharp Corp Electroluminescent element
JP2010532409A (en) * 2007-06-29 2010-10-07 イーストマン コダック カンパニー Luminescent nanocomposite particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038634A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Current injection light-emitting element
JP2007095685A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd Light-emitting device including semiconductor nanocrystal layer free of void and its manufacturing method
JP2009537994A (en) * 2006-05-15 2009-10-29 スティオン コーポレイション Method and structure for thin film photoelectric materials using semiconductor materials
JP2008214363A (en) * 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
JP2010532409A (en) * 2007-06-29 2010-10-07 イーストマン コダック カンパニー Luminescent nanocomposite particles
JP2010055900A (en) * 2008-08-27 2010-03-11 Sharp Corp Electroluminescent element

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146838A1 (en) * 2011-12-09 2013-06-13 Samsung Electronics Co., Ltd. Quantum dot device including different kinds of quantum dot layers
JP2016532301A (en) * 2013-08-29 2016-10-13 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッドUniversity Of Florida Research Foundation,Inc. Infrared photodetector stable in air from inorganic semiconductors made from solution
WO2017054887A1 (en) * 2015-10-02 2017-04-06 Toyota Motor Europe All quantum dot based optoelectronic device
CN108352451A (en) * 2015-10-02 2018-07-31 丰田自动车欧洲公司 Opto-electronic device based on full quantum dot
US10897023B2 (en) 2015-10-02 2021-01-19 Toyota Motor Europe All quantum dot based optoelectronic device
CN105552244A (en) * 2016-02-17 2016-05-04 京东方科技集团股份有限公司 Light-emitting device and preparation method thereof as well as display device
US10225907B2 (en) 2016-02-17 2019-03-05 Boe Technology Group Co., Ltd. Light emitting device having at least two quantum dot light emitting layers and fabricating method thereof
WO2019078235A1 (en) * 2017-10-19 2019-04-25 Nsマテリアルズ株式会社 Light emitting element and illuminating apparatus
CN111247873A (en) * 2017-10-19 2020-06-05 Ns材料株式会社 Light emitting element and lighting device
JPWO2019078235A1 (en) * 2017-10-19 2020-11-05 Nsマテリアルズ株式会社 Light emitting element and lighting device
CN111279793A (en) * 2017-11-08 2020-06-12 Ns材料株式会社 Display device
EP3709773A4 (en) * 2017-11-08 2021-08-18 NS Materials Inc. Display device
WO2019093345A1 (en) * 2017-11-08 2019-05-16 Nsマテリアルズ株式会社 Display device
WO2019171556A1 (en) * 2018-03-08 2019-09-12 シャープ株式会社 Element, electronic device, and method for producing element
JPWO2019171556A1 (en) * 2018-03-08 2021-03-18 シャープ株式会社 Devices, electronic devices, and methods of manufacturing devices
US11515446B2 (en) 2018-03-08 2022-11-29 Sharp Kabushiki Kaisha Element, electronic device, and method for producing element
CN111819707A (en) * 2018-03-08 2020-10-23 夏普株式会社 Element, electronic device, and method for manufacturing element
CN111819707B (en) * 2018-03-08 2023-05-02 夏普株式会社 Element, electronic device, and method for manufacturing element
US10879484B2 (en) 2018-03-12 2020-12-29 Samsung Electronics Co., Ltd. Electroluminescent device, and display device comprising the same
JP2019160796A (en) * 2018-03-12 2019-09-19 三星電子株式会社Samsung Electronics Co.,Ltd. Electroluminescent device and display device
KR102611215B1 (en) * 2018-03-12 2023-12-06 삼성전자주식회사 Electroluminescent device, and display device comprising thereof
EP3540806A1 (en) * 2018-03-12 2019-09-18 Samsung Electronics Co., Ltd. Electroluminescent device, and display device comprising the same
JP7265893B2 (en) 2018-03-12 2023-04-27 三星電子株式会社 Electroluminescence device and display device
US11581504B2 (en) 2018-03-12 2023-02-14 Samsung Electronics Co., Ltd. Electroluminescent device, and display device comprising the same
KR20190107506A (en) * 2018-03-12 2019-09-20 삼성전자주식회사 Electroluminescent device, and display device comprising thereof
CN110265555A (en) * 2018-03-12 2019-09-20 三星电子株式会社 Electroluminescent device and display device including it
WO2020026446A1 (en) * 2018-08-03 2020-02-06 シャープ株式会社 Electroluminescent element and display device
US11778843B2 (en) 2018-09-18 2023-10-03 Sharp Kabushiki Kaisha Light-emitting device and manufacturing method of light-emitting device
WO2020059024A1 (en) * 2018-09-18 2020-03-26 シャープ株式会社 Light-emitting device and manufacturing method of light-emitting device
WO2020065944A1 (en) * 2018-09-28 2020-04-02 シャープ株式会社 Light emitting device and method for producing light emitting device
CN112970130B (en) * 2018-10-30 2024-02-09 夏普株式会社 Light-emitting element and method for manufacturing light-emitting element
CN112970130A (en) * 2018-10-30 2021-06-15 夏普株式会社 Light-emitting element and method for manufacturing light-emitting element
JP2022516211A (en) * 2019-01-11 2022-02-25 京東方科技集團股▲ふん▼有限公司 Quantum dot light emitting device and its manufacturing method
CN111162183A (en) * 2019-03-15 2020-05-15 广东聚华印刷显示技术有限公司 Quantum dot light-emitting diode, preparation method thereof and light source structure
CN111162183B (en) * 2019-03-15 2022-06-10 广东聚华印刷显示技术有限公司 Quantum dot light-emitting diode, preparation method thereof and light source structure
WO2020240807A1 (en) * 2019-05-31 2020-12-03 シャープ株式会社 Light emitting element and display device
CN114342102A (en) * 2019-09-02 2022-04-12 夏普株式会社 Element and electronic device
WO2021044493A1 (en) * 2019-09-02 2021-03-11 シャープ株式会社 Element and electronic device
US11910629B2 (en) * 2019-09-23 2024-02-20 Samsung Electronics Co., Ltd. Light emitting device, method of manufacturing the same, and display device
WO2021064822A1 (en) * 2019-09-30 2021-04-08 シャープ株式会社 Light-emitting element, light-emitting device
WO2021079437A1 (en) * 2019-10-23 2021-04-29 シャープ株式会社 Light-emitting element, display device, production method for light-emitting element, and production method for display device
CN112331778A (en) * 2019-11-20 2021-02-05 广东聚华印刷显示技术有限公司 Quantum dot light-emitting device, preparation method thereof and light-emitting device
WO2021117076A1 (en) * 2019-12-09 2021-06-17 シャープ株式会社 Light emitting device, and method for manufacturing light emitting device
EP3869578A1 (en) * 2020-02-13 2021-08-25 Samsung Electronics Co., Ltd. Quantum dot device, method of manufacturing the same, and electronic device
CN111341926A (en) * 2020-03-09 2020-06-26 京东方科技集团股份有限公司 QLED device, manufacturing method thereof, display panel and display device
CN111341926B (en) * 2020-03-09 2022-12-27 京东方科技集团股份有限公司 QLED device, manufacturing method thereof, display panel and display device
WO2021214910A1 (en) * 2020-04-22 2021-10-28 シャープ株式会社 Light-emitting element and display device
CN112151689A (en) * 2020-09-28 2020-12-29 京东方科技集团股份有限公司 Quantum dot light-emitting device, preparation method thereof and display device
CN113421986A (en) * 2021-06-24 2021-09-21 合肥福纳科技有限公司 QD light emitting layer, quantum dot light emitting device and preparation method thereof
WO2023062839A1 (en) * 2021-10-15 2023-04-20 シャープディスプレイテクノロジー株式会社 Light emitting element

Similar Documents

Publication Publication Date Title
WO2012161179A1 (en) Light-emitting device
US11005058B2 (en) Light-emitting device including quantum dots
US10164205B2 (en) Device including quantum dots
US10014438B2 (en) Light emitting device including semiconductor nanocrystals
US9887375B2 (en) Device including quantum dots and method for making same
CN106784392B (en) Composite quantum dot light-emitting diode device and preparation method thereof
KR101728575B1 (en) Device including quantum dots
KR101625224B1 (en) Device including semiconductor nanocrystals and a layer including a doped oraganic material and methods
WO2017076135A1 (en) Electroluminescent device, preparation method thereof and ink composition
CN110649167A (en) Quantum dot light-emitting diode and preparation method thereof
CN109980105A (en) A kind of QLED device
GB2516929A (en) Light Emitting Device
CN105226184B (en) Electroluminescent device comprising stable organic radical compound
KR101633451B1 (en) Tunable light emitting diode using core-shell structured metal oxide-fullerene quantum dots and its preparing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP